
Package ‘MicrosoftML’
February 11, 2018

Version 9.3.0

MmlBuildId 9.3.0.1210

Title Microsoft Machine Learning for R

Author Microsoft Corporation

Maintainer Microsoft Corporation <mrspack@microsoft.com>

Depends R (>= 3.3.2),
methods,
RevoScaleR (>= 9.2.1)

Imports stats,
utils,
tools,
jsonlite

Suggests RUnit,
lattice,
magrittr,
knitr

#VignetteBuilder knitr

Description Microsoft Machine Learning algorithms for R.

License file LICENSE

Copyright Copyright 2016 Microsoft Corporation

RoxygenNote 5.0.1

R topics documented:
MicrosoftML-package . 3
categorical . 4
categoricalHash . 6
concat . 8
dropColumns . 9
ensembleControl . 10
extractPixels . 11
fastForest . 12
fastLinear . 13
fastTrees . 14
featurizeImage . 15
getNetDefinition . 17

1

2 R topics documented:

getSampleDataDir . 18
getSentiment . 19
kernel . 20
loadImage . 21
logisticRegression . 22
loss functions . 23
maOptimizer . 25
minCount . 27
mlDataStep . 29
mutualInformation . 30
neuralNet . 32
ngram . 33
oneClassSvm . 34
resizeImage . 35
rxEnsemble . 37
rxFastForest . 40
rxFastLinear . 44
rxFastTrees . 49
rxFeaturize . 53
rxHashEnv . 56
rxLogisticRegression . 56
rxNeuralNet . 60
rxOneClassSvm . 65
rxPredict.mlModel . 69
selectColumns . 71
selectFeatures . 72
stopwordsDefault . 73
summary.mlModel . 77
tlcBinaryNeuralNetwork . 79
tlcFastForestClassification . 82
tlcFastForestRegression . 84
tlcFastTreeBinaryClassification . 87
tlcFastTreeRanking . 91
tlcFastTreeRegression . 95
tlcLogisticRegression . 99
tlcMultiClassLogisticRegression . 101
tlcMultiClassNeuralNetwork . 103
tlcMultiRegressionNeuralNetwork . 105
tlcOneClassSVM . 108
tlcRegressionNeuralNetwork . 109
tlcScore . 112
tlcTrain . 114

Index 117

MicrosoftML-package 3

MicrosoftML-package MicrosoftML: State-of-the-Art Machine Learning Algorithms from Mi-
crosoft Corporation

Description

A package that provides state-of-the-art machine learning algorithms for R, developed by Microsoft.
It is used with the RevoScaleR package.

Details

Package: MicrosoftML
Type: Package
Version: 9.3.0
Build: 9.3.0.1210
License: file LICENSE
LazyLoad: yes

The key functions/concepts in the package are as follows (to list all public functions, type li-
brary(help="MicrosoftML") at the R prompt):

Machine Learning Algorithms • rxFastTrees: An implementation of FastRank, an efficient
implementation of the MART gradient boosting algorithm.

• rxFastForest: A random forest and Quantile regression forest implementation using
rxFastTrees.

• rxLogisticRegression: Logistic regression using L-BFGS.
• rxOneClassSvm: One class support vector machines.
• rxNeuralNet: Binary, multi-class, and regression neural net.
• rxFastLinear: Stochastic dual coordinate ascent optimization for linear binary classifi-

cation and regression.

Scoring • rxPredict.mlModel: Scores using a model created by one of the machine learning
algorithms.

Helper functions for arguments • expLoss: Specifications for exponential classification loss
function.

• logLoss: Specifications for log classification loss function.
• hingeLoss: Specifications for hinge classification loss function.
• smoothHingeLoss: Specifications for smooth hinge classification loss function.
• poissonLoss: Specifications for poisson regression loss function.
• squaredLoss: Specifications for squared regression loss function.
• linearKernel: Specification for linear kernel.
• rbfKernel: Specification for radial basis function kernel.
• polynomialKernel: Specification for polynomial kernel.
• sigmoidKernel: Specification for sigmoid kernel.
• minCount: Specification for feature selection in count mode.
• mutualInformation: Specification for feature selection in mutual information mode.

4 categorical

Helper functions for machine learning transforms • featurizeText: Transformation to pro-
duce a bag of counts of ngrams in a given text. It offers language detection, tokenization,
stopwords removing, text normalization and feature generation.

• concat: Transformation to create a single vector-valued column from multiple columns.
• categorical: Create indicator vector using categorical transform with dictionary.
• categoricalHash: Converts the categorical value into an indicator array by hashing.
• selectFeatures: Selects features from the specified variables.

Author(s)

Microsoft Corporation Microsoft Technical Support

categorical Machine Learning Categorical Data Transform

Description

Categorical transform that can be performed on data before training a model.

Usage

categorical(vars, outputKind = "ind", maxNumTerms = 1e+06, terms = "",
...)

Arguments

vars A character vector or list of variable names to transform. If named, the names
represent the names of new variables to be created.

outputKind A character string that specifies the kind of output kind.

• "ind": Outputs an indicator vector. The input column is a vector of cat-
egories, and the output contains one indicator vector per slot in the input
column.

• "bag": Outputs a multi-set vector. If the input column is a vector of cat-
egories, the output contains one vector, where the value in each slot is the
number of occurrences of the category in the input vector. If the input col-
umn contains a single category, the indicator vector and the bag vector are
equivalent

• "key": Outputs an index. The output is an integer id (between 1 and the
number of categories in the dictionary) of the category.

The default value is "ind".

maxNumTerms An integer that specifies the maximum number of categories to include in the
dictionary. The default value is 1000000.

terms Optional character vector of terms or categories.

... Additional arguments sent to compute engine.

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409

categorical 5

Details

The categorical transform passes through a data set, operating on text columns, to build a dictio-
nary of categories. For each row, the entire text string appearing in the input column is defined as
a category. The output of the categorical transform is an indicator vector. Each slot in this vector
corresponds to a category in the dictionary, so its length is the size of the built dictionary. The
categorical transform can be applied to one or more columns, in which case it builds a separate
dictionary for each column that it is applied to.

categorical is not currently supported to handle factor data.

Value

A maml object defining the transform.

Author(s)

Microsoft Corporation Microsoft Technical Support

See Also

rxFastTrees, rxFastForest, rxNeuralNet, rxOneClassSvm, rxLogisticRegression.

Examples

trainReviews <- data.frame(review = c(
"This is great",
"I hate it",
"Love it",
"Do not like it",
"Really like it",
"I hate it",
"I like it a lot",
"I kind of hate it",
"I do like it",
"I really hate it",
"It is very good",
"I hate it a bunch",
"I love it a bunch",
"I hate it",
"I like it very much",
"I hate it very much.",
"I really do love it",
"I really do hate it",
"Love it!",
"Hate it!",
"I love it",
"I hate it",
"I love it",
"I hate it",
"I love it"),

like = c(TRUE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, FALSE, TRUE), stringsAsFactors = FALSE

)

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409

6 categoricalHash

testReviews <- data.frame(review = c(
"This is great",
"I hate it",
"Love it",
"Really like it",
"I hate it",
"I like it a lot",
"I love it",
"I do like it",
"I really hate it",
"I love it"), stringsAsFactors = FALSE)

Use a categorical transform: the entire string is treated as a category
outModel1 <- rxLogisticRegression(like~reviewCat, data = trainReviews,

mlTransforms = list(categorical(vars = c(reviewCat = "review"))))
Note that 'I hate it' and 'I love it' (the only strings appearing more than once)
have non-zero weights
summary(outModel1)

Use the model to score
scoreOutDF1 <- rxPredict(outModel1, data = testReviews,

extraVarsToWrite = "review")
scoreOutDF1

categoricalHash Machine Learning Categorical HashData Transform

Description

Categorical hash transform that can be performed on data before training a model.

Usage

categoricalHash(vars, hashBits = 16, seed = 314489979, ordered = TRUE,
invertHash = 0, outputKind = "Bag", ...)

Arguments

vars A character vector or list of variable names to transform. If named, the names
represent the names of new variables to be created.

hashBits An integer specifying the number of bits to hash into. Must be between 1 and
30, inclusive. The default value is 16.

seed An integer specifying the hashing seed. The default value is 314489979.

ordered TRUE to include the position of each term in the hash. Otherwise, FALSE. The
default value is TRUE.

invertHash An integer specifying the limit on the number of keys that can be used to gener-
ate the slot name. 0 means no invert hashing; -1 means no limit. While a zero
value gives better performance, a non-zero value is needed to get meaningful
coefficent names. The default value is 0.

outputKind A character string that specifies the kind of output kind.

categoricalHash 7

• "ind": Outputs an indicator vector. The input column is a vector of cat-
egories, and the output contains one indicator vector per slot in the input
column.

• "bag": Outputs a multi-set vector. If the input column is a vector of cat-
egories, the output contains one vector, where the value in each slot is the
number of occurrences of the category in the input vector. If the input col-
umn contains a single category, the indicator vector and the bag vector are
equivalent

• "key": Outputs an index. The output is an integer id (between 1 and the
number of categories in the dictionary) of the category.

The default value is "Bag".

... Additional arguments sent to the compute engine.

Details

categoricalHash converts a categorical value into an indicator array by hashing the value and
using the hash as an index in the bag. If the input column is a vector, a single indicator bag is
returned for it.

categoricalHash does not currently support handling factor data.

Value

a maml object defining the transform.

Author(s)

Microsoft Corporation Microsoft Technical Support

See Also

rxFastTrees, rxFastForest, rxNeuralNet, rxOneClassSvm, rxLogisticRegression.

Examples

trainReviews <- data.frame(review = c(
"This is great",
"I hate it",
"Love it",
"Do not like it",
"Really like it",
"I hate it",
"I like it a lot",
"I kind of hate it",
"I do like it",
"I really hate it",
"It is very good",
"I hate it a bunch",
"I love it a bunch",
"I hate it",
"I like it very much",
"I hate it very much.",
"I really do love it",
"I really do hate it",
"Love it!",

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409

8 concat

"Hate it!",
"I love it",
"I hate it",
"I love it",
"I hate it",
"I love it"),

like = c(TRUE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, FALSE, TRUE), stringsAsFactors = FALSE

)

testReviews <- data.frame(review = c(
"This is great",
"I hate it",
"Love it",
"Really like it",
"I hate it",
"I like it a lot",
"I love it",
"I do like it",
"I really hate it",
"I love it"), stringsAsFactors = FALSE)

Use a categorical hash transform
outModel2 <- rxLogisticRegression(like~reviewCatHash, data = trainReviews,

mlTransforms = list(categoricalHash(vars = c(reviewCatHash = "review"))))
Weights are similar to categorical
summary(outModel2)

Use the model to score
scoreOutDF2 <- rxPredict(outModel2, data = testReviews,

extraVarsToWrite = "review")
scoreOutDF2

concat Machine Learning Concat Transform

Description

Combines several columns into a single vector-valued column.

Usage

concat(vars, ...)

Arguments

vars A named list of character vectors of input variable names and the name of the
output variable. Note that all the input variables must be of the same type. It is
possible to produce mulitple output columns with the concatenation transform.
In this case, you need to use a list of vectors to define a one-to-one mappings

dropColumns 9

between input and output variables. For example, to concatenate columns In-
NameA and InNameB into column OutName1 and also columns InNameC and
InNameD into column OutName2, use the list: (list(OutName1 = c(InNameA,
InNameB), outName2 = c(InNameC, InNameD)))

... Additional arguments sent to the compute engine

Details

concat creates a single vector-valued column from multiple columns. It can be performed on data
before training a model. The concatenation can significantly speed up the processing of data when
the number of columns is as large as hundreds to thousands.

Value

A maml object defining the concatenation transform.

Author(s)

Microsoft Corporation Microsoft Technical Support

See Also

featurizeText, categorical, categoricalHash, rxFastTrees, rxFastForest, rxNeuralNet,
rxOneClassSvm, rxLogisticRegression.

Examples

testObs <- rnorm(nrow(iris)) > 0
testIris <- iris[testObs,]
trainIris <- iris[!testObs,]

multiLogitOut <- rxLogisticRegression(
formula = Species~Features, type = "multiClass", data = trainIris,
mlTransforms = list(concat(vars = list(

Features = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")
))))

summary(multiLogitOut)

dropColumns Drops columns from the dataset

Description

Specified columns to drop from the dataset.

Usage

dropColumns(vars, ...)

Arguments

vars A character vector or list of the names of the variables to drop.

... Additional arguments sent to compute engine.

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409

10 ensembleControl

Value

A maml object defining the transform.

Author(s)

Microsoft Corporation Microsoft Technical Support

ensembleControl ensembleControl

Description

Control the parameters used to create an ensemble.

Usage

ensembleControl(randomSeed = NULL, modelCount = 1, replace = FALSE,
sampRate = ifelse(replace, 1, 0.632), splitData = FALSE,
combineMethod = NULL, ...)

Arguments

randomSeed Specifies the random seed. The default value is NULL.

modelCount Specifies the number of models to train. The default value is 1, meaning no
ensembling occurs.

replace A logical value specifying if the sampling of observations should be done with
or without replacement. The default value is FALSE.

sampRate a scalar of positive value specifying the percentage of observations to sample
for each trainer. The default is 1.0 for sampling with replacement (i.e., re-
place=TRUE) and 0.632 for sampling without replacement (i.e., replace=FALSE).

splitData A logical value that specifies whether or not to train the base models on non-
overlapping partitions. The default is FALSE. It is available only for RxSpark
compute context and is ignored for others.

combineMethod Specifies the method used to combine the models:

• median to compute the median of the individual model outputs,
• average to compute the average of the individual model outputs and
• vote to compute (pos-neg) / the total number of models, where ’pos’ is the

number of positive outputs and ’neg’ is the number of negative outputs.

The default value is median.

... Not used currently.

Value

A list of ensemble parameters.

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409

extractPixels 11

extractPixels Machine Learning Extract Pixel Data Transform

Description

Extracts the pixel values from an image.

Usage

extractPixels(vars, useAlpha = FALSE, useRed = TRUE, useGreen = TRUE,
useBlue = TRUE, interleaveARGB = FALSE, convert = TRUE, offset = NULL,
scale = NULL)

Arguments

vars A named list of character vectors of input variable names and the name of the
output variable. Note that the input variables must be of the same type. For one-
to-one mappings between input and output variables, a named character vector
can be used.

useAlpha Specifies whether to use alpha channel. The default value is FALSE.

useRed Specifies whether to use red channel. The default value is TRUE.

useGreen Specifies whether to use green channel. The default value is TRUE.

useBlue Specifies whether to use blue channel. The default value is TRUE.

interleaveARGB Whether to separate each channel or interleave in ARGB order. This might be
important, for example, if you are training a convolutional neural network, since
this would affect the shape of the kernel, stride etc.

convert Whether to convert to floating point. The default value is FALSE.

offset Specifies the offset (pre-scale). This requires convert = TRUE. The default
value is NULL.

scale Specifies the scale factor. This requires convert = TRUE. The default value is
NULL.

Details

extractPixels extracts the pixel values from an image. The input variables are images of the same
size, typically the output of a resizeImage transform. The output are pixel data in vector form that
are typically used as features for a learner.

Value

A maml object defining the transform.

Author(s)

Microsoft Corporation Microsoft Technical Support

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409

12 fastForest

Examples

train <- data.frame(Path = c(system.file("help/figures/RevolutionAnalyticslogo.png", package = "MicrosoftML")), Label = c(TRUE), stringsAsFactors = FALSE)

Loads the images from variable Path, resizes the images to 1x1 pixels and trains a neural net.
model <- rxNeuralNet(

Label ~ Features,
data = train,
mlTransforms = list(

loadImage(vars = list(Features = "Path")),
resizeImage(vars = "Features", width = 1, height = 1, resizing = "Aniso"),
extractPixels(vars = "Features")
),

mlTransformVars = "Path",
numHiddenNodes = 1,
numIterations = 1)

Featurizes the images from variable Path using the default model, and trains a linear model on the result.
model <- rxFastLinear(

Label ~ Features,
data = train,
mlTransforms = list(

loadImage(vars = list(Features = "Path")),
resizeImage(vars = "Features", width = 224, height = 224), # If dnnModel == "AlexNet", the image has to be resized to 227x227.
extractPixels(vars = "Features"),
featurizeImage(var = "Features")
),

mlTransformVars = "Path")

fastForest fastForest

Description

Creates a list containing the function name and arguments to train a FastForest model with rxEnsemble.

Usage

fastForest(numTrees = 100, numLeaves = 20, minSplit = 10,
exampleFraction = 0.7, featureFraction = 0.7, splitFraction = 0.7,
numBins = 255, firstUsePenalty = 0, gainConfLevel = 0,
trainThreads = 8, randomSeed = NULL, ...)

Arguments

numTrees Specifies the total number of decision trees to create in the ensemble.By creating
more decision trees, you can potentially get better coverage, but the training time
increases. The default value is 100.

numLeaves The maximum number of leaves (terminal nodes) that can be created in any tree.
Higher values potentially increase the size of the tree and get better precision,
but risk overfitting and requiring longer training times. The default value is 20.

fastLinear 13

minSplit Minimum number of training instances required to form a leaf. That is, the
minimal number of documents allowed in a leaf of a regression tree, out of the
sub-sampled data. A ’split’ means that features in each level of the tree (node)
are randomly divided. The default value is 10.

exampleFraction

The fraction of randomly chosen instances to use for each tree. The default value
is 0.7.

featureFraction

The fraction of randomly chosen features to use for each tree. The default value
is 0.7.

splitFraction The fraction of randomly chosen features to use on each split. The default value
is 0.7.

numBins Maximum number of distinct values (bins) per feature. The default value is 255.
firstUsePenalty

The feature first use penalty coefficient. The default value is 0.

gainConfLevel Tree fitting gain confidence requirement (should be in the range [0,1)). The
default value is 0.

trainThreads The number of threads to use in training. If NULL is specified, the number of
threads to use is determined internally. The default value is NULL.

randomSeed Specifies the random seed. The default value is NULL.

... Additional arguments.

fastLinear fastLinear

Description

Creates a list containing the function name and arguments to train a Fast Linear model with rxEnsemble.

Usage

fastLinear(lossFunction = NULL, l2Weight = NULL, l1Weight = NULL,
trainThreads = NULL, convergenceTolerance = 0.1, maxIterations = NULL,
shuffle = TRUE, checkFrequency = NULL, ...)

Arguments

lossFunction Specifies the empirical loss function to optimize. For binary classification, the
following choices are available:

• logLoss: The log-loss. This is the default.
• hingeLoss: The SVM hinge loss. Its parameter represents the margin size.
• smoothHingeLoss: The smoothed hinge loss. Its parameter represents the

smoothing constant.

For linear regression, squared loss squaredLoss is currently supported. When
this parameter is set to NULL, its default value depends on the type of learning:

• logLoss for binary classification.
• squaredLoss for linear regression.

14 fastTrees

l2Weight Specifies the L2 regularization weight. The value must be either non-negative
or NULL. If NULL is specified, the actual value is automatically computed based
on data set. NULL is the default value.

l1Weight Specifies the L1 regularization weight. The value must be either non-negative
or NULL. If NULL is specified, the actual value is automatically computed based
on data set. NULL is the default value.

trainThreads Specifies how many concurrent threads can be used to run the algorithm. When
this parameter is set to NULL, the number of threads used is determined based on
the number of logical processors available to the process as well as the sparsity
of data. Set it to 1 to run the algorithm in a single thread.

convergenceTolerance

Specifies the tolerance threshold used as a convergence criterion. It must be
between 0 and 1. The default value is 0.1. The algorithm is considered to have
converged if the relative duality gap, which is the ratio between the duality gap
and the primal loss, falls below the specified convergence tolerance.

maxIterations Specifies an upper bound on the number of training iterations. This parameter
must be positive or NULL. If NULL is specified, the actual value is automatically
computed based on data set. Each iteration requires a complete pass over the
training data. Training terminates after the total number of iterations reaches the
specified upper bound or when the loss function converges, whichever happens
earlier.

shuffle Specifies whether to shuffle the training data. Set TRUE to shuffle the data; FALSE
not to shuffle. The default value is TRUE. SDCA is a stochastic optimization
algorithm. If shuffling is turned on, the training data is shuffled on each iteration.

checkFrequency The number of iterations after which the loss function is computed and checked
to determine whether it has converged. The value specified must be a positive
integer or NULL. If NULL, the actual value is automatically computed based on
data set. Otherwise, for example, if checkFrequency = 5 is specified, then
the loss function is computed and convergence is checked every 5 iterations.
The computation of the loss function requires a separate complete pass over the
training data.

... Additional arguments.

fastTrees fastTrees

Description

Creates a list containing the function name and arguments to train a FastTree model with rxEnsemble.

Usage

fastTrees(numTrees = 100, numLeaves = 20, learningRate = 0.2,
minSplit = 10, exampleFraction = 0.7, featureFraction = 1,
splitFraction = 1, numBins = 255, firstUsePenalty = 0,
gainConfLevel = 0, unbalancedSets = FALSE, trainThreads = 8,
randomSeed = NULL, ...)

featurizeImage 15

Arguments

numTrees Specifies the total number of decision trees to create in the ensemble.By creating
more decision trees, you can potentially get better coverage, but the training time
increases. The default value is 100.

numLeaves The maximum number of leaves (terminal nodes) that can be created in any tree.
Higher values potentially increase the size of the tree and get better precision,
but risk overfitting and requiring longer training times. The default value is 20.

learningRate Determines the size of the step taken in the direction of the gradient in each step
of the learning process. This determines how fast or slow the learner converges
on the optimal solution. If the step size is too big, you might overshoot the
optimal solution. If the step size is too samll, training takes longer to converge
to the best solution.

minSplit Minimum number of training instances required to form a leaf. That is, the
minimal number of documents allowed in a leaf of a regression tree, out of the
sub-sampled data. A ’split’ means that features in each level of the tree (node)
are randomly divided. The default value is 10. Only the number of instances is
counted even if instances are weighted.

exampleFraction

The fraction of randomly chosen instances to use for each tree. The default value
is 0.7.

featureFraction

The fraction of randomly chosen features to use for each tree. The default value
is 1.

splitFraction The fraction of randomly chosen features to use on each split. The default value
is 1.

numBins Maximum number of distinct values (bins) per feature. If the feature has fewer
values than the number indicated, each value is placed in its own bin. If there
are more values, the algorithm creates numBins bins.

firstUsePenalty

The feature first use penalty coefficient. This is a form of regularization that
incurs a penalty for using a new feature when creating the tree. Increase this
value to create trees that don’t use many features. The default value is 0.

gainConfLevel Tree fitting gain confidence requirement (should be in the range [0,1)). The
default value is 0.

unbalancedSets If TRUE, derivatives optimized for unbalanced sets are used. Only applicable
when type equal to "binary". The default value is FALSE.

trainThreads The number of threads to use in training. The default value is 8.

randomSeed Specifies the random seed. The default value is NULL.

... Additional arguments.

featurizeImage Machine Learning Image Featurization Transform

Description

Featurizes an image using a pre-trained deep neural network model.

16 featurizeImage

Usage

featurizeImage(var, outVar = NULL, dnnModel = "Resnet18")

Arguments

var Input variable containing extracted pixel values.

outVar The prefix of the output variables containing the image features. If null, the
input variable name will be used. The default value is NULL.

dnnModel The pre-trained deep neural network. The possible options are:

• "resnet18"

• "resnet50"

• "resnet101"

• "alexnet"

The default value is "resnet18". See Deep Residual Learning for Image Recog-
nition for details about ResNet.

Details

featurizeImage featurizes an image using the specified pre-trained deep neural network model.
The input variables to this transforms must be extracted pixel values.

Value

A maml object defining the transform.

Author(s)

Microsoft Corporation Microsoft Technical Support

Examples

train <- data.frame(Path = c(system.file("help/figures/RevolutionAnalyticslogo.png", package = "MicrosoftML")), Label = c(TRUE), stringsAsFactors = FALSE)

Loads the images from variable Path, resizes the images to 1x1 pixels and trains a neural net.
model <- rxNeuralNet(

Label ~ Features,
data = train,
mlTransforms = list(

loadImage(vars = list(Features = "Path")),
resizeImage(vars = "Features", width = 1, height = 1, resizing = "Aniso"),
extractPixels(vars = "Features")
),

mlTransformVars = "Path",
numHiddenNodes = 1,
numIterations = 1)

Featurizes the images from variable Path using the default model, and trains a linear model on the result.
model <- rxFastLinear(

Label ~ Features,
data = train,
mlTransforms = list(

loadImage(vars = list(Features = "Path")),
resizeImage(vars = "Features", width = 224, height = 224), # If dnnModel == "AlexNet", the image has to be resized to 227x227.

http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409

getNetDefinition 17

extractPixels(vars = "Features"),
featurizeImage(var = "Features")
),

mlTransformVars = "Path")

getNetDefinition Get the Net# definition from a trained neural network model

Description

Returns the Net# definition from a trained neural network model.

Usage

getNetDefinition(model, getWeights = TRUE)

Arguments

model The previously trained neural network model.

getWeights If TRUE, the weights are included in the returned Net# definition.

Details

Returns the Net# definition from a trained neural network model. It is useful for implementing a
form of continued training, where the initial weights of the model are obtained from a previously
trained model. Because only the weights are initialized from the trained model (but not gradients,
momentum etc.), the training is not really resumed where it was left at the end of training of the
first model.

Value

A character string containing the Net# definition.

Author(s)

Microsoft Corporation Microsoft Technical Support

Examples

Train a neural network on the iris dataset for 10 iterations.
model1 <- rxNeuralNet(

formula = Species~Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
data = iris,
numHiddenNodes=10,
type="multi",
numIterations=10,
optimizer=adaDeltaSgd())

Train another neural network on the iris dataset, initializing the topology and weights
from the previously trained model.
model2 <- rxNeuralNet(

formula = Species~Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
data = iris,

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409

18 getSampleDataDir

netDefinition=getNetDefinition(model1),
type="multi",
numIterations=10,
optimizer = adaDeltaSgd())

getSampleDataDir Get Package Sample Data Location

Description

Location where downloaded sample data is stored.

Usage

getSampleDataDir(sampleDataDir = NULL, createDir = TRUE)

Arguments

sampleDataDir Specifies the path to the location where downloaded sample data is (or is to be)
stored or NULL.

createDir TRUE to create the directory if it does not exist; FALSE not to create the directory.

Details

If sampleDataDir is NULL, the function first checks to see if an option has been set containing
sampleDataDir, i.e. getOption("sampleDataDir"). If that is NULL too, a ’sampleDataDir’ sub-
directory of the current working directory is used. If createDir is TRUE, the directory is created if
it does not exist.

Value

A character string containing the path to the location of the sample data.

Author(s)

Microsoft Corporation Microsoft Technical Support

Examples

This example sets the option to be the same as the default
options(sampleDataDir = file.path(getwd(), "sampleDataDir"))

dataDir <- getSampleDataDir(createDir = FALSE)

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409

getSentiment 19

getSentiment Machine Learning Sentiment Analyzer Transform

Description

Scores natual language text and creates a column that contains probabilities that the sentiments in
the text are positive.

Usage

getSentiment(vars, ...)

Arguments

vars A character vector or list of variable names to transform. If named, the names
represent the names of new variables to be created.

... Additional arguments sent to compute engine.

Details

The getSentiment transform returns the probability that the sentiment of a natural text is positive.
Currently supports only the English language.

Value

A maml object defining the transform.

Author(s)

Microsoft Corporation Microsoft Technical Support

See Also

rxFastTrees, rxFastForest, rxNeuralNet, rxOneClassSvm, rxLogisticRegression, rxFastLinear.

Examples

Create the data
CustomerReviews <- data.frame(Review = c(

"I really did not like the taste of it",
"It was surprisingly quite good!",
"I will never ever ever go to that place again!!"),
stringsAsFactors = FALSE)

Get the sentiment scores
sentimentScores <- rxFeaturize(data = CustomerReviews,

mlTransforms = getSentiment(vars = list(SentimentScore = "Review")))

Let's translate the score to something more meaningful
sentimentScores$PredictedRating <- ifelse(sentimentScores$SentimentScore > 0.6,

"AWESOMENESS", "BLAH")

Let's look at the results
sentimentScores

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409

20 kernel

kernel Kernel

Description

Kernels supported for use in computing inner products.

Usage

linearKernel(...)

polynomialKernel(a = NULL, bias = 0, deg = 3, ...)

rbfKernel(gamma = NULL, ...)

sigmoidKernel(gamma = NULL, coef0 = 0, ...)

Arguments

a The numeric value for a in the term (a*<x,y> + b)^d. If not specified, (1/(number of features)
is used.

bias The numeric value for b in the term (a*<x,y> + b)^d.

deg The integer value for d in the term (a*<x,y> + b)^d.

gamma The numeric value for gamma in the expression tanh(gamma*<x,y> + c). If
not specified, 1/(number of features) is used.

coef0 The numeric value for c in the expression tanh(gamma*<x,y> + c).

... Additional arguments passed to the Microsoft ML compute engine.

Details

These helper functions specify the kernel that is used for training in relevant algorithms. The kernals
that are suppored:

• linearKernel: linear kernel.

• rbfKernel: radial basis function kernel.

• polynomialKernel: polynomial kernel.

• sigmoidKernel: sigmoid kernel.

Value

A character string defining the kernel.

Author(s)

Microsoft Corporation Microsoft Technical Support

References

Estimating the Support of a High-Dimensional Distribution

New Support Vector Algorithms

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409
http://research.microsoft.com/pubs/69731/tr-99-87.pdf
http://www.stat.purdue.edu/~yuzhu/stat598m3/Papers/NewSVM.pdf

loadImage 21

See Also

rxOneClassSvm

Examples

Simulate some simple data
set.seed(7)
numRows <- 200
normalData <- data.frame(day = 1:numRows)
normalData$pageViews = runif(numRows, min = 10, max = 1000) + .5 * normalData$day
testData <- data.frame(day = 1:numRows)
The test data has outliers above 1000
testData$pageViews = runif(numRows, min = 10, max = 1400) + .5 * testData$day

train <- function(kernelFunction, args=NULL) {
model <- rxOneClassSvm(formula = ~pageViews + day, data = normalData,
kernel = kernelFunction(args))
scores <- rxPredict(model, data = testData, writeModelVars = TRUE)
scores$groups = scores$Score > 0
scores

}
display <- function(scores) {

print(sum(scores$groups))
rxLinePlot(pageViews ~ day, data = scores, groups = groups, type = "p",
symbolColors = c("red", "blue"))

}
scores <- list()
scores$rbfKernel <- train(rbfKernel)
scores$linearKernel <- train(linearKernel)
scores$polynomialKernel <- train(polynomialKernel, (a = .2))
scores$sigmoidKernel <- train(sigmoidKernel)
display(scores$rbfKernel)
display(scores$linearKernel)
display(scores$polynomialKernel)
display(scores$sigmoidKernel)

loadImage Machine Learning Load Image Transform

Description

Loads image data.

Usage

loadImage(vars)

Arguments

vars A named list of character vectors of input variable names and the name of the
output variable. Note that the input variables must be of the same type. For one-
to-one mappings between input and output variables, a named character vector
can be used.

22 logisticRegression

Details

loadImage loads images from paths.

Value

A maml object defining the transform.

Author(s)

Microsoft Corporation Microsoft Technical Support

Examples

train <- data.frame(Path = c(system.file("help/figures/RevolutionAnalyticslogo.png", package = "MicrosoftML")), Label = c(TRUE), stringsAsFactors = FALSE)

Loads the images from variable Path, resizes the images to 1x1 pixels and trains a neural net.
model <- rxNeuralNet(

Label ~ Features,
data = train,
mlTransforms = list(

loadImage(vars = list(Features = "Path")),
resizeImage(vars = "Features", width = 1, height = 1, resizing = "Aniso"),
extractPixels(vars = "Features")
),

mlTransformVars = "Path",
numHiddenNodes = 1,
numIterations = 1)

Featurizes the images from variable Path using the default model, and trains a linear model on the result.
model <- rxFastLinear(

Label ~ Features,
data = train,
mlTransforms = list(

loadImage(vars = list(Features = "Path")),
resizeImage(vars = "Features", width = 224, height = 224), # If dnnModel == "AlexNet", the image has to be resized to 227x227.
extractPixels(vars = "Features"),
featurizeImage(var = "Features")
),

mlTransformVars = "Path")

logisticRegression logisticRegression

Description

Creates a list containing the function name and arguments to train a logistic regression model with
rxEnsemble.

Usage

logisticRegression(l2Weight = 1, l1Weight = 1, optTol = 1e-07,
memorySize = 20, initWtsScale = 0, maxIterations = 2147483647,
showTrainingStats = FALSE, sgdInitTol = 0, trainThreads = NULL,
denseOptimizer = FALSE, ...)

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409

loss functions 23

Arguments

l2Weight The L2 regularization weight. Its value must be greater than or equal to 0 and
the default value is set to 1.

l1Weight The L1 regularization weight. Its value must be greater than or equal to 0 and
the default value is set to 1.

optTol Threshold value for optimizer convergence. If the improvement between itera-
tions is less than the threshold, the algorithm stops and returns the current model.
Smaller values are slower, but more accurate. The default value is 1e-07.

memorySize Memory size for L-BFGS, specifying the number of past positions and gradients
to store for the computation of the next step. This optimization parameter limits
the amount of memory that is used to compute the magnitude and direction of
the next step. When you specify less memory, training is faster but less accurate.
Must be greater than or equal to 1 and the default value is 20.

initWtsScale Sets the initial weights diameter that specifies the range from which values are
drawn for the initial weights. These weights are initialized randomly from
within this range. For example, if the diameter is specified to be d, then the
weights are uniformly distributed between -d/2 and d/2. The default value is
0, which specifies that allthe weights are initialized to 0.

maxIterations Sets the maximum number of iterations. After this number of steps, the algo-
rithm stops even if it has not satisfied convergence criteria.

showTrainingStats

Specify TRUE to show the statistics of training data and the trained model; other-
wise, FALSE. The default value is FALSE. For additional information about model
statistics, see summary.mlModel.

sgdInitTol Set to a number greater than 0 to use Stochastic Gradient Descent (SGD) to find
the initial parameters. A non-zero value set specifies the tolerance SGD uses to
determine convergence. The default value is 0 specifying that SGD is not used.

trainThreads The number of threads to use in training the model. This should be set to the
number of cores on the machine. Note that L-BFGS multi-threading attempts to
load dataset into memory. In case of out-of-memory issues, set trainThreads
to 1 to turn off multi-threading. If NULL the number of threads to use is deter-
mined internally. The default value is NULL.

denseOptimizer If TRUE, forces densification of the internal optimization vectors. If FALSE, en-
ables the logistic regression optimizer use sparse or dense internal states as it
finds appropriate. Setting denseOptimizer to TRUE requires the internal opti-
mizer to use a dense internal state, which may help alleviate load on the garbage
collector for some varieties of larger problems.

... Additional arguments.

loss functions Classification and Regression Loss functions

Description

The loss functions for classification and regression.

24 loss functions

Usage

expLoss(beta = 1, ...)

hingeLoss(margin = 1, ...)

logLoss(...)

smoothHingeLoss(smoothingConst = 1, ...)

poissonLoss(...)

squaredLoss(...)

Arguments

beta Specifies the numeric value of beta (dilation). The default value is 1.

margin Specifies the numeric margin value. The default value is 1.

smoothingConst Specifies the numeric value of the smoothing constant. The default value is 1.

... hidden argument.

Details

A loss function measures the discrepancy between the prediction of a machine learning algorithm
and the supervised output and represents the cost of being wrong.

The classification loss functions supported are:

• logLoss

• expLoss

• hingeLoss

• smoothHingeLoss

The regression loss functions supported are:

• poissonLoss

• squaredLoss.

Value

A character string defining the loss function.

Author(s)

Microsoft Corporation Microsoft Technical Support

See Also

rxFastLinear, rxNeuralNet

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409

maOptimizer 25

Examples

train <- function(lossFunction) {

result <- rxFastLinear(isCase ~ age + parity + education + spontaneous + induced,
transforms = list(isCase = case == 1), lossFunction = lossFunction,
data = infert,
type = "binary")

coef(result)[["age"]]
}

age <- list()
age$LogLoss <- train(logLoss())
age$LogLossHinge <- train(hingeLoss())
age$LogLossSmoothHinge <- train(smoothHingeLoss())
age

maOptimizer Optimization Algorithms

Description

Specifies Optimization Algorithms for Neural Net.

Usage

adaDeltaSgd(decay = 0.95, conditioningConst = 1e-06)

sgd(learningRate = 0.001, momentum = 0, nag = FALSE, weightDecay = 0,
lRateRedRatio = 1, lRateRedFreq = 100, lRateRedErrorRatio = 0)

Arguments

decay Specifies the decay rate applied to gradients when calculating the step in the
ADADELTA adaptive optimization algorithm. This rate is used to ensure that
the learning rate continues to make progress by giving smaller weights to remote
gradients in the calculation of the step size. Mathematically, it replaces the mean
square of the gradients with an exponentially decaying average of the squared
gradients in the denominator of the update rule. The value assigned must be in
the range (0,1).

conditioningConst

Specifies a conditioning constant for the ADADELTA adaptive optimization al-
gorithm that is used to condition the step size in regions where the exponentially
decaying average of the squared gradients is small. The value assigned must be
in the range (0,1).

learningRate Specifies the size of the step taken in the direction of the negative gradient for
each iteration of the learning process. The default value is = 0.001.

momentum Specifies weights for each dimension that control the contribution of the previ-
ous step to the size of the next step during training. This modifies the learningRate
to speed up training. The value must be >= 0 and < 1.

26 maOptimizer

nag If TRUE, Nesterov’s Accelerated Gradient Descent is used. This method reduces
the oracle complexity of gradient descent and is optimal for smooth convex op-
timization.

weightDecay Specifies the scaling weights for the step size. After each weight update, the
weights in the network are scaled by (1 -learningRate * weightDecay).
The value must be >= 0 and < 1.

lRateRedRatio Specifies the learning rate reduction ratio: the ratio by which the learning rate
is reduced during training. Reducing the learning rate can avoid local minima.
The value must be > 0 and <= 1.

• A value of 1.0 means no reduction.
• A value of 0.9 means the learning rate is reduced to 90 its current value.

The reduction can be triggered either periodically, to occur after a fixed number
of iterations, or when a certain error criteria concerning increases or decreases
in the loss function are satisfied.

• To trigger a periodic rate reduction, specify the frequency by setting the
number of iterations between reductions with the lRateRedFreq argument.

• To trigger rate reduction based on an error criterion, specify a number in
lRateRedErrorRatio.

lRateRedFreq Sets the learning rate reduction frequency by specifying number of iterations
betweeen reductions. For example, if 10 is specified, the learning rate is reduced
once every 10 iterations.

lRateRedErrorRatio

Spefifies the learning rate reduction error criterion. If set to 0, the learning rate
is reduced if the loss increases between iterations. If set to a fractional value
greater than0, the learning rate is reduced if the loss decreases by less than that
fraction of its previous value.

Details

These functions can be used for the optimizer argument in rxNeuralNet.

• The sgd function specifies Stochastic Gradient Descent. maOptimizer

• The adaDeltaSgd function specifies the AdaDelta gradient descent, described in the 2012
paper "ADADELTA: An Adaptive Learning Rate Method" by Matthew D.Zeiler.

Value

A character string that contains the specification for the optimization algorithm.

Author(s)

Microsoft Corporation Microsoft Technical Support

References

ADADELTA: An Adaptive Learning Rate Method

See Also

rxNeuralNet,

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409
http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf

minCount 27

Examples

myIris = iris
myIris$Setosa <- iris$Species == "setosa"

res1 <- rxNeuralNet(formula = Setosa~Sepal.Length + Sepal.Width + Petal.Width,
data = myIris,
optimizer = sgd(learningRate = .002))

res2 <- rxNeuralNet(formula = Setosa~Sepal.Length + Sepal.Width + Petal.Width,
data = myIris,
optimizer = adaDeltaSgd(decay = .9, conditioningConst = 1e-05))

minCount Feature Selection Count Mode

Description

Count mode of feature selection used in the feature selection transform selectFeatures.

Usage

minCount(count = 1, ...)

Arguments

count The threshold for count based feature selection. A feature is selected if and only
if at least count examples have non-default value in the feature. The default
value is 1.

... Additional arguments to be passed directly to the Microsoft Compute Engine.

Details

When using the count mode in feature selection transform, a feature is selected if the number of
examples have at least the specified count examples of non-default values in the feature. The count
mode feature selection transform is very useful when applied together with a categorical hash trans-
form (see also, categoricalHash. The count feature selection can remove those features generated
by hash transform that have no data in the examples.

Value

A character string defining the count mode.

Author(s)

Microsoft Corporation Microsoft Technical Support

See Also

mutualInformation selectFeatures

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409

28 minCount

Examples

trainReviews <- data.frame(review = c(
"This is great",
"I hate it",
"Love it",
"Do not like it",
"Really like it",
"I hate it",
"I like it a lot",
"I kind of hate it",
"I do like it",
"I really hate it",
"It is very good",
"I hate it a bunch",
"I love it a bunch",
"I hate it",
"I like it very much",
"I hate it very much.",
"I really do love it",
"I really do hate it",
"Love it!",
"Hate it!",
"I love it",
"I hate it",
"I love it",
"I hate it",
"I love it"),

like = c(TRUE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, FALSE, TRUE), stringsAsFactors = FALSE

)

testReviews <- data.frame(review = c(
"This is great",
"I hate it",
"Love it",
"Really like it",
"I hate it",
"I like it a lot",
"I love it",
"I do like it",
"I really hate it",
"I love it"), stringsAsFactors = FALSE)

Use a categorical hash transform which generated 128 features.
outModel1 <- rxLogisticRegression(like~reviewCatHash, data = trainReviews, l1Weight = 0,

mlTransforms = list(categoricalHash(vars = c(reviewCatHash = "review"), hashBits = 7)))
summary(outModel1)

Apply a categorical hash transform and a count feature selection transform
which selects only those hash features that has value.
outModel2 <- rxLogisticRegression(like~reviewCatHash, data = trainReviews, l1Weight = 0,

mlTransforms = list(
categoricalHash(vars = c(reviewCatHash = "review"), hashBits = 7),
selectFeatures("reviewCatHash", mode = minCount())))

mlDataStep 29

summary(outModel2)

Apply a categorical hash transform and a mutual information feature selection transform
which selects those features appearing with at least a count of 5.
outModel3 <- rxLogisticRegression(like~reviewCatHash, data = trainReviews, l1Weight = 0,

mlTransforms = list(
categoricalHash(vars = c(reviewCatHash = "review"), hashBits = 7),
selectFeatures("reviewCatHash", mode = minCount(count = 5))))
summary(outModel3)

mlDataStep Data step using MicrosoftML transformations

Description

NOT YET IMPLEMENTED Data step for a data frame or RevoScaleR data source using Mi-
crosoftML transformations

Usage

mlDataStep(data, outData = NULL, outVars = NULL, overwrite = FALSE,
verbose = 1, ...)

Arguments

data A RevoScaleR data source object, a data frame, or the path to a .xdf file.

outData The output text or xdf file name, an RxDataSource with write capabilities, to
store predictions. If NULL, a data frame will be returned.

outVars specifies the variables to retain in the output data set.

overwrite logical value. If TRUE, an existing outData will be overwritten.

verbose An integer value that specifies the amount of output wanted. If 0, no verbose
output is printed during calculations. Integer values from 1 to 4 provide increas-
ing amounts of information.

... Additional arguments to be passed directly to the Microsoft Compute Engine.

Value

A data frame or an RxDataSource object representing the created output data.

Author(s)

Microsoft Corporation Microsoft Technical Support

See Also

rxPredict.mlModel.

Examples

Not yet implemented

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409

30 mutualInformation

mutualInformation Feature Selection Mutual Information Mode

Description

Mutual information mode of feature selection used in the feature selection transform selectFeatures.

Usage

mutualInformation(numFeaturesToKeep = 1000, numBins = 256, ...)

Arguments

numFeaturesToKeep

If the number of features to keep is specified to be n, the transform picks the n
features that have the highest mutual information with the dependent variable.
The default value is 1000.

numBins Maximum number of bins for numerical values. Powers of 2 are recommended.
The default value is 256.

... Additional arguments to be passed directly to the Microsoft Compute Engine.

Details

The mutual information of two random variables X and Y is a measure of the mutual dependence
between the variables. Formally, the mutual information can be written as:

I(X;Y) = E[log(p(x,y)) - log(p(x)) - log(p(y))]

where the expectation is taken over the joint distribution of X and Y. Here p(x,y) is the joint prob-
ability density function of X and Y, p(x) and p(y) are the marginal probability density functions of
X and Y respectively. In general, a higher mutual information between the dependent variable (or
label) and an independent varialbe (or feature) means that the label has higher mutual dependence
over that feature.

The mutual information feature selection mode selects the features based on the mutual information.
It keeps the top numFeaturesToKeep features with the largest mutual information with the label.

Value

a character string defining the mode.

Author(s)

Microsoft Corporation Microsoft Technical Support

References

Wikipedia: Mutual Information

See Also

minCount selectFeatures

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409
https://en.wikipedia.org/wiki/Mutual_information

mutualInformation 31

Examples

trainReviews <- data.frame(review = c(
"This is great",
"I hate it",
"Love it",
"Do not like it",
"Really like it",
"I hate it",
"I like it a lot",
"I kind of hate it",
"I do like it",
"I really hate it",
"It is very good",
"I hate it a bunch",
"I love it a bunch",
"I hate it",
"I like it very much",
"I hate it very much.",
"I really do love it",
"I really do hate it",
"Love it!",
"Hate it!",
"I love it",
"I hate it",
"I love it",
"I hate it",
"I love it"),

like = c(TRUE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, FALSE, TRUE), stringsAsFactors = FALSE

)

testReviews <- data.frame(review = c(
"This is great",
"I hate it",
"Love it",
"Really like it",
"I hate it",
"I like it a lot",
"I love it",
"I do like it",
"I really hate it",
"I love it"), stringsAsFactors = FALSE)

Use a categorical hash transform which generated 128 features.
outModel1 <- rxLogisticRegression(like~reviewCatHash, data = trainReviews, l1Weight = 0,

mlTransforms = list(categoricalHash(vars = c(reviewCatHash = "review"), hashBits = 7)))
summary(outModel1)

Apply a categorical hash transform and a count feature selection transform
which selects only those hash features that has value.
outModel2 <- rxLogisticRegression(like~reviewCatHash, data = trainReviews, l1Weight = 0,

mlTransforms = list(
categoricalHash(vars = c(reviewCatHash = "review"), hashBits = 7),
selectFeatures("reviewCatHash", mode = minCount())))

32 neuralNet

summary(outModel2)

Apply a categorical hash transform and a mutual information feature selection transform
which selects those features appearing with at least a count of 5.
outModel3 <- rxLogisticRegression(like~reviewCatHash, data = trainReviews, l1Weight = 0,

mlTransforms = list(
categoricalHash(vars = c(reviewCatHash = "review"), hashBits = 7),
selectFeatures("reviewCatHash", mode = minCount(count = 5))))
summary(outModel3)

neuralNet neuralNet

Description

Creates a list containing the function name and arguments to train a NeuralNet model with rxEnsemble.

Usage

neuralNet(numHiddenNodes = 100, numIterations = 100, optimizer = sgd(),
netDefinition = NULL, initWtsDiameter = 0.1, maxNorm = 0,
acceleration = c("sse", "gpu"), miniBatchSize = 1, ...)

Arguments

numHiddenNodes The default number of hidden nodes in the neural net. The default value is 100.

numIterations The number of iterations on the full training set. The default value is 100.

optimizer A list specifying either the sgd or adaptive optimization algorithm. This list
can be created using sgd or adaDeltaSgd. The default value is sgd.

netDefinition The Net# definition of the structure of the neural network. For more information
about the Net# language, see Reference Guide

initWtsDiameter

Sets the initial weights diameter that specifies the range from which values are
drawn for the initial learning weights. The weights are initialized randomly from
within this range. The default value is 0.1.

maxNorm Specifies an upper bound to constrain the norm of the incoming weight vector at
each hidden unit. This can be very important in maxout neural networks as well
as in cases where training produces unbounded weights.

acceleration Specifies the type of hardware acceleration to use. Possible values are "sse" and
"gpu". For GPU acceleration, it is recommended to use a miniBatchSize greater
than one. If you want to use the GPU acceleration, there are additional manual
setup steps are required:

• Download and install NVidia CUDA Toolkit 6.5 (CUDA Toolkit).
• Download and install NVidia cuDNN v2 Library (cudnn Library).
• Find the libs directory of the MicrosoftRML package by calling system.file("mxLibs/x64", package = "MicrosoftML").
• Copy cublas64_65.dll, cudart64_65.dll and cusparse64_65.dll from the CUDA

Toolkit 6.5 into the libs directory of the MicrosoftML package.
• Copy cudnn64_65.dll from the cuDNN v2 Library into the libs directory of

the MicrosoftML package.

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-azure-ml-netsharp-reference-guide/
https://developer.nvidia.com/cuda-toolkit-65)
https://developer.nvidia.com/rdp/cudnn-archive

ngram 33

miniBatchSize Sets the mini-batch size. Recommended values are between 1 and 256. This
parameter is only used when the acceleration is GPU. Setting this parameter to
a higher value improves the speed of training, but it might negatively affect the
accuracy. The default value is 1.

... Additional arguments.

ngram Machine Learning Feature Extractors

Description

Feature Extractors that can be used with mtText.

Usage

ngramCount(ngramLength = 1, skipLength = 0, maxNumTerms = 1e+07,
weighting = "tf")

ngramHash(ngramLength = 1, skipLength = 0, hashBits = 16,
seed = 314489979, ordered = TRUE, invertHash = 0)

Arguments

ngramLength An integer that specifies the maximum number of tokens to take when construct-
ing an n-gram. The default value is 1.

skipLength An integer that specifies the maximum number of tokens to skip when con-
structing an n-gram. If the value specified as skip length is k, then n-grams can
contain up to k skips (not necessarily consecutive). For example, if k=2, then
the 3-grams extracted from the text "the sky is blue today" are: "the sky is", "the
sky blue", "the sky today", "the is blue", "the is today" and "the blue today". The
default value is 0.

maxNumTerms An integer that specifies the maximum number of categories to include in the
dictionary. The default value is 10000000.

weighting A character string that specifies the weighting criteria:

• "tf": to use term frequency.
• "idf": to use inverse document frequency.
• "tfidf": to use both term frequency and inverse document frequency.

hashBits integer value. Number of bits to hash into. Must be between 1 and 30, inclusive.

seed integer value. Hashing seed.

ordered TRUE to include the position of each term in the hash. Otherwise, FALSE. The
default value is TRUE.

invertHash An integer specifying the limit on the number of keys that can be used to gener-
ate the slot name. 0 means no invert hashing; -1 means no limit. While a zero
value gives better performance, a non-zero value is needed to get meaningful
coefficent names.

34 oneClassSvm

Details

ngramCount allows defining arguments for count-based feature extraction. It accepts following
options: ngramLenght, skipLenght, maxNumTerms and weighting.

ngramHash allows defining arguments for hashing-based feature extraction. It accepts the following
options: ngramLenght, skipLenght, hashBits, seed, ordered and invertHash.

Value

A character string defining the transform.

Author(s)

Microsoft Corporation Microsoft Technical Support

See Also

featurizeText.

Examples

myData <- data.frame(opinion = c(
"I love it!",
"I love it!",
"Love it!",
"I love it a lot!",
"Really love it!",
"I hate it",
"I hate it",
"I hate it.",
"Hate it",
"Hate"),
like = rep(c(TRUE, FALSE), each = 5),
stringsAsFactors = FALSE)

outModel1 <- rxLogisticRegression(like~opinionCount, data = myData,
mlTransforms = list(featurizeText(vars = c(opinionCount = "opinion"),

wordFeatureExtractor = ngramHash(invertHash = -1, hashBits = 3))))
summary(outModel1)

outModel2 <- rxLogisticRegression(like~opinionCount, data = myData,
mlTransforms = list(featurizeText(vars = c(opinionCount = "opinion"),

wordFeatureExtractor = ngramCount(maxNumTerms = 5, weighting = "tf"))))
summary(outModel2)

oneClassSvm oneClassSvm

Description

Creates a list containing the function name and arguments to train a OneClassSvm model with
rxEnsemble.

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409

resizeImage 35

Usage

oneClassSvm(cacheSize = 100, kernel = rbfKernel(), epsilon = 0.001,
nu = 0.1, shrink = TRUE, ...)

Arguments

cacheSize The maximal size in MB of the cache that stores the training data. Increase this
for large training sets. The default value is 100 MB.

kernel A character string representing the kernel used for computing inner products.
For more information, see maKernel. The following choices are available:

• rbfKernel(): Radial basis function kernel. It’s parameter representsgamma
in the term exp(-gamma|x-y|^2. If not specified, it defaults to 1 divided
by the number of features used. For example, rbfKernel(gamma = .1).
This is the default value.

• linearKernel(): Linear kernel.
• polynomialKernel(): Polynomial kernel with parameter names a, bias,

and deg in the term (a*<x,y> + bias)^deg. The bias, defaults to 0. The
degree, deg, defaults to 3. If a is not specified, it is set to 1 divided by the
number of features. For example, maKernelPoynomial(bias = 0, deg =
3).

• sigmoidKernel(): Sigmoid kernel with parameter names gamma and coef0
in the term tanh(gamma*<x,y> + coef0). gamma, defaults to to 1 divided
by the number of features. The parameter coef0 defaults to 0. For example,
sigmoidKernel(gamma = .1, coef0 = 0).

epsilon The threshold for optimizer convergence. If the improvement between iterations
is less than the threshold, the algorithm stops and returns the current model. The
value must be greater than or equal to .Machine$double.eps. The default value
is 0.001.

nu The trade-off between the fraction of outliers and the number of support vectors
(represented by the Greek letter nu). Must be between 0 and 1, typically between
0.1 and 0.5. The default value is 0.1.

shrink Uses the shrinking heuristic if TRUE. In this case, some samples will be "shrunk"
during the training procedure, which may speed up training. The default value
is TRUE.

... Additional arguments to be passed directly to the Microsoft Compute Engine.

resizeImage Machine Learning Resize Image Transform

Description

Resizes an image to a specified dimension using a specified resizing method.

Usage

resizeImage(vars, width = 224, height = 224, resizingOption = "IsoCrop")

36 resizeImage

Arguments

vars A named list of character vectors of input variable names and the name of the
output variable. Note that the input variables must be of the same type. For one-
to-one mappings between input and output variables, a named character vector
can be used.

width Specifies the width of the scaled image in pixels. The default value is 224.

height Specifies the height of the scaled image in pixels. The default value is 224.

resizingOption Specified the resizing method to use. Note that all methods are using bilinear
interpolation. The options are:

• "IsoPad": The image is resized such that the aspect ratio is preserved. If
needed, the image is padded with black to fit the new width or height.

• "IsoCrop": The image is resized such that the aspect ratio is preserved. If
needed, the image is cropped to fit the new width or height.

• "Aniso": The image is stretched to the new width and height, without pre-
serving the aspect ratio.

The default value is "IsoPad".

Details

resizeImage resizes an image to the specified height and width using a specified resizing method.
The input variables to this transforms must be images, typically the result of the loadImage trans-
form.

Value

A maml object defining the transform.

Author(s)

Microsoft Corporation Microsoft Technical Support

Examples

train <- data.frame(Path = c(system.file("help/figures/RevolutionAnalyticslogo.png", package = "MicrosoftML")), Label = c(TRUE), stringsAsFactors = FALSE)

Loads the images from variable Path, resizes the images to 1x1 pixels and trains a neural net.
model <- rxNeuralNet(

Label ~ Features,
data = train,
mlTransforms = list(

loadImage(vars = list(Features = "Path")),
resizeImage(vars = "Features", width = 1, height = 1, resizing = "Aniso"),
extractPixels(vars = "Features")
),

mlTransformVars = "Path",
numHiddenNodes = 1,
numIterations = 1)

Featurizes the images from variable Path using the default model, and trains a linear model on the result.
model <- rxFastLinear(

Label ~ Features,
data = train,
mlTransforms = list(

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409

rxEnsemble 37

loadImage(vars = list(Features = "Path")),
resizeImage(vars = "Features", width = 224, height = 224), # If dnnModel == "AlexNet", the image has to be resized to 227x227.
extractPixels(vars = "Features"),
featurizeImage(var = "Features")
),

mlTransformVars = "Path")

rxEnsemble Ensembles

Description

Train an ensemble of models

Usage

rxEnsemble(formula = NULL, data, trainers, type = c("binary", "regression",
"multiClass", "anomaly"), randomSeed = NULL,
modelCount = length(trainers), replace = FALSE, sampRate = NULL,
splitData = FALSE, combineMethod = c("median", "average", "vote"),
maxCalibration = 1e+05, mlTransforms = NULL, mlTransformVars = NULL,
rowSelection = NULL, transforms = NULL, transformObjects = NULL,
transformFunc = NULL, transformVars = NULL, transformPackages = NULL,
transformEnvir = NULL, blocksPerRead = rxGetOption("blocksPerRead"),
reportProgress = rxGetOption("reportProgress"), verbose = 1,
computeContext = rxGetOption("computeContext"), ...)

Arguments

formula The formula as described in rxFormula. Interaction terms and F() are not cur-
rently supported in the MicrosoftML.

data A data source object or a character string specifying a ‘.xdf’ file or a data frame
object. Alternatively, it can be a list of data sources indicating each model should
be trained using one of the data sources in the list. In this case, the length of the
data list must be equal to modelCount.

trainers A list of trainers with their arguments. The trainers are created by using fastTrees,
fastForest, fastLinear, logisticRegression or neuralNet.

type A character string that specifies the type of ensemble: "binary" for Binary
Classification or "regression" for Regression.

randomSeed Specifies the random seed. The default value is NULL.

modelCount Specifies the number of models to train. If this number is greater than the length
of the trainers list, the trainers list is duplicated to match modelCount.

replace A logical value specifying if the sampling of observations should be done with
or without replacement. The default value is /codeFALSE.

sampRate a scalar of positive value specifying the percentage of observations to sample
for each trainer. The default is 1.0 for sampling with replacement (i.e., re-
place=TRUE) and 0.632 for sampling without replacement (i.e., replace=FALSE).
When splitData is TRUE, the default of sampRate is 1.0 (no sampling is done
before splitting).

38 rxEnsemble

splitData A logical value specifying whether or not to train the base models on non-
overlapping partitions. The default is FALSE. It is available only for RxSpark
compute context and ignored for others.

combineMethod Specifies the method used to combine the models:
• median to compute the median of the individual model outputs,
• average to compute the average of the individual model outputs and
• vote to compute (pos-neg) / the total number of models, where ’pos’ is the

number of positive outputs and ’neg’ is the number of negative outputs.
maxCalibration Specifies the maximum number of examples to use for calibration. This argu-

ment is ignored for all tasks other than binary classification.
mlTransforms Specifies a list of MicrosoftML transforms to be performed on the data before

training or NULL if no transforms are to be performed. Transforms that require
an additional pass over the data (such as featurizeText, categorical) are not
allowed. These transformations are performed after any specified R transforma-
tions. The default value is NULL.

mlTransformVars

Specifies a character vector of variable names to be used in mlTransforms or
NULL if none are to be used. The default value is NULL.

rowSelection Specifies the rows (observations) from the data set that are to be used by the
model with the name of a logical variable from the data set (in quotes) or with a
logical expression using variables in the data set. For example, rowSelection = "old"
will only use observations in which the value of the variable old is TRUE. rowSelection = (age > 20) & (age < 65) & (log(income) > 10)
only uses observations in which the value of the age variable is between 20 and
65 and the value of the log of the income variable is greater than 10. The row
selection is performed after processing any data transformations (see the argu-
ments transforms or transformFunc). As with all expressions, rowSelection
can be defined outside of the function call using the expression function.

transforms An expression of the form list(name = expression,...) that represents the
first round of variable transformations. As with all expressions, transforms (or
rowSelection) can be defined outside of the function call using the expression
function. The default value is NULL.

transformObjects

A named list that contains objects that can be referenced by transforms, transformsFunc,
and rowSelection. The default value is NULL.

transformFunc The variable transformation function. See rxTransform for details. The default
value is NULL.

transformVars A character vector of input data set variables needed for the transformation func-
tion. See rxTransform for details. The default value is NULL.

transformPackages

A character vector specifying additional R packages (outside of those specified
in rxGetOption("transformPackages")) to be made available and preloaded
for use in variable transformation functions. For exmple, those explicitly de-
fined in RevoScaleR functions via their transforms and transformFunc ar-
guments or those defined implicitly via their formula or rowSelection argu-
ments. The transformPackages argument may also be NULL, indicating that no
packages outside rxGetOption("transformPackages") are preloaded. The
default value is NULL.

transformEnvir A user-defined environment to serve as a parent to all environments developed
internally and used for variable data transformation. If transformEnvir = NULL,
a new "hash" environment with parent baseenv() is used instead. The default
value is NULL.

rxEnsemble 39

blocksPerRead Specifies the number of blocks to read for each chunk of data read from the data
source.

reportProgress An integer value that specifies the level of reporting on the row processing
progress:

• 0: no progress is reported.
• 1: the number of processed rows is printed and updated.
• 2: rows processed and timings are reported.
• 3: rows processed and all timings are reported.

verbose An integer value that specifies the amount of output wanted. If 0, no verbose
output is printed during calculations. Integer values from 1 to 4 provide increas-
ing amounts of information. The default value is 1.

computeContext Sets the context in which computations are executed, specified with a valid
RxComputeContext. Currently local and RxSpark compute contexts are sup-
ported. When RxSpark is specified, the training of the models is done in a dis-
tributed way, and the ensembling is done locally. Note that the compute context
cannot be non-waiting.

... Additional arguments to be passed directly to the Microsoft Compute Engine.

Details

/coderxEnsemble is a function that trains a number of models of various kinds to obtain better
predictive performance than could be obtained from a single model.

Value

A rxEnsemble object with the trained ensemble model.

Examples

Create an ensemble of regression rxFastTrees models

use xdf data source
dataFile <- file.path(rxGetOption("sampleDataDir"), "claims4blocks.xdf")
rxGetInfo(dataFile, getVarInfo = TRUE, getBlockSizes = TRUE)
form <- cost ~ age + type + number

rxSetComputeContext("localpar")
rxGetComputeContext()

build an ensemble model that contains three 'rxFastTrees' models with different parameters
ensemble <- rxEnsemble(

formula = form,
data = dataFile,
type = "regression",
trainers = list(fastTrees(), fastTrees(numTrees = 60), fastTrees(learningRate = 0.1)), #a list of trainers with their arguments.
replace = TRUE # Indicates using a bootstrap sample for each trainer
)

use text data source
colInfo <- list(DayOfWeek = list(type = "factor", levels = c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday")))

source <- system.file("SampleData/AirlineDemoSmall.csv", package = "RevoScaleR")
data <- RxTextData(source, missingValueString = "M", colInfo = colInfo)

40 rxFastForest

When 'distributed' is TRUE distributed data source is created
distributed <- FALSE
if (distributed) {

bigDataDirRoot <- "/share"
inputDir <- file.path(bigDataDirRoot, "AirlineDemoSmall")
rxHadoopMakeDir(inputDir)
rxHadoopCopyFromLocal(source, inputDir)
hdfsFS <- RxHdfsFileSystem()
data <- RxTextData(file = inputDir, missingValueString = "M", colInfo = colInfo, fileSystem = hdfsFS)

}

When 'distributed' is TRUE training is distributed
if (distributed) {

cc <- rxSetComputeContext(RxSpark())
} else {

cc <- rxGetComputeContext()
}

ensemble <- rxEnsemble(
formula = ArrDelay ~ DayOfWeek,
data = data,
type = "regression",
trainers = list(fastTrees(), fastTrees(numTrees = 60), fastTrees(learningRate = 0.1)), # The ensemble will contain three 'rxFastTrees' models
replace = TRUE # Indicates using a bootstrap sample for each trainer
)

Change the compute context back to previous for scoring
rxSetComputeContext(cc)

Put score and model variables in data frame
scores <- rxPredict(ensemble, data = data, writeModelVars = TRUE)

Plot actual versus predicted values with smoothed line
rxLinePlot(Score ~ ArrDelay, type = c("p", "smooth"), data = scores)

rxFastForest Fast Forest

Description

Machine Learning Fast Forest

Usage

rxFastForest(formula = NULL, data, type = c("binary", "regression"),
numTrees = 100, numLeaves = 20, minSplit = 10, exampleFraction = 0.7,
featureFraction = 0.7, splitFraction = 0.7, numBins = 255,
firstUsePenalty = 0, gainConfLevel = 0, trainThreads = 8,
randomSeed = NULL, mlTransforms = NULL, mlTransformVars = NULL,
rowSelection = NULL, transforms = NULL, transformObjects = NULL,
transformFunc = NULL, transformVars = NULL, transformPackages = NULL,
transformEnvir = NULL, blocksPerRead = rxGetOption("blocksPerRead"),
reportProgress = rxGetOption("reportProgress"), verbose = 2,

rxFastForest 41

computeContext = rxGetOption("computeContext"),
ensemble = ensembleControl(), ...)

Arguments

formula The formula as described in rxFormula. Interaction terms and F() are not cur-
rently supported in the MicrosoftML.

data A data source object or a character string specifying a ‘.xdf’ file or a data frame
object.

type A character string denoting Fast Tree type:

• "binary" for the default Fast Tree Binary Classification or
• "regression" for Fast Tree Regression.

numTrees Specifies the total number of decision trees to create in the ensemble.By creating
more decision trees, you can potentially get better coverage, but the training time
increases. The default value is 100.

numLeaves The maximum number of leaves (terminal nodes) that can be created in any tree.
Higher values potentially increase the size of the tree and get better precision,
but risk overfitting and requiring longer training times. The default value is 20.

minSplit Minimum number of training instances required to form a leaf. That is, the
minimal number of documents allowed in a leaf of a regression tree, out of the
sub-sampled data. A ’split’ means that features in each level of the tree (node)
are randomly divided. The default value is 10.

exampleFraction

The fraction of randomly chosen instances to use for each tree. The default value
is 0.7.

featureFraction

The fraction of randomly chosen features to use for each tree. The default value
is 0.7.

splitFraction The fraction of randomly chosen features to use on each split. The default value
is 0.7.

numBins Maximum number of distinct values (bins) per feature. The default value is 255.

firstUsePenalty

The feature first use penalty coefficient. The default value is 0.

gainConfLevel Tree fitting gain confidence requirement (should be in the range [0,1)). The
default value is 0.

trainThreads The number of threads to use in training. If NULL is specified, the number of
threads to use is determined internally. The default value is NULL.

randomSeed Specifies the random seed. The default value is NULL.

mlTransforms Specifies a list of MicrosoftML transforms to be performed on the data before
training or NULL if no transforms are to be performed. See featurizeText,
categorical, and categoricalHash, for transformations that are supported.
These transformations are performed after any specified R transformations. The
default value is NULL.

mlTransformVars

Specifies a character vector of variable names to be used in mlTransforms or
NULL if none are to be used. The default value is NULL.

42 rxFastForest

rowSelection Specifies the rows (observations) from the data set that are to be used by the
model with the name of a logical variable from the data set (in quotes) or with a
logical expression using variables in the data set. For example, rowSelection = "old"
will only use observations in which the value of the variable old is TRUE. rowSelection = (age > 20) & (age < 65) & (log(income) > 10)
only uses observations in which the value of the age variable is between 20 and
65 and the value of the log of the income variable is greater than 10. The row
selection is performed after processing any data transformations (see the argu-
ments transforms or transformFunc). As with all expressions, rowSelection
can be defined outside of the function call using the expression function.

transforms An expression of the form list(name = expression,...) that represents the
first round of variable transformations. As with all expressions, transforms (or
rowSelection) can be defined outside of the function call using the expression
function.

transformObjects

A named list that contains objects that can be referenced by transforms, transformsFunc,
and rowSelection.

transformFunc The variable transformation function. See rxTransform for details.

transformVars A character vector of input data set variables needed for the transformation func-
tion. See rxTransform for details.

transformPackages

A character vector specifying additional R packages (outside of those specified
in rxGetOption("transformPackages")) to be made available and preloaded
for use in variable transformation functions. For exmple, those explicitly defined
in RevoScaleR functions via their transforms and transformFunc arguments
or those defined implicitly via their formula or rowSelection arguments. The
transformPackages argument may also be NULL, indicating that no packages
outside rxGetOption("transformPackages") are preloaded.

transformEnvir A user-defined environment to serve as a parent to all environments developed
internally and used for variable data transformation. If transformEnvir = NULL,
a new "hash" environment with parent baseenv() is used instead.

blocksPerRead Specifies the number of blocks to read for each chunk of data read from the data
source.

reportProgress An integer value that specifies the level of reporting on the row processing
progress:

• 0: no progress is reported.
• 1: the number of processed rows is printed and updated.
• 2: rows processed and timings are reported.
• 3: rows processed and all timings are reported.

verbose An integer value that specifies the amount of output wanted. If 0, no verbose
output is printed during calculations. Integer values from 1 to 4 provide increas-
ing amounts of information.

computeContext Sets the context in which computations are executed, specified with a valid
RxComputeContext. Currently local and RxInSqlServer compute contexts are
supported.

ensemble Control parameters for ensembling.

... Additional arguments to be passed directly to the Microsoft Compute Engine.

rxFastForest 43

Details

Decision trees are non-parametric models that perform a sequence of simple tests on inputs. This
decision procedure maps them to outputs found in the training dataset whose inputs were similar
to the instance being processed. A decision is made at each node of the binary tree data structure
based on a measure of similarity that maps each instance recursively through the branches of the
tree until the appropriate leaf node is reached and the output decision returned.

Decision trees have several advantages:

• They are efficient in both computation and memory usage during training and prediction.

• They can represent non-linear decision boundaries.

• They perform integrated feature selection and classification.

• They are resilient in the presence of noisy features.

Fast forest regression is a random forest and quantile regression forest implementation using the
regression tree learner in rxFastTrees. The model consists of an ensemble of decision trees. Each
tree in a decision forest outputs a Gaussian distribution by way of prediction. An aggregation
is performed over the ensemble of trees to find a Gaussian distribution closest to the combined
distribution for all trees in the model.

This decision forest classifier consists of an ensemble of decision trees. Generally, ensemble mod-
els provide better coverage and accuracy than single decision trees. Each tree in a decision forest
outputs a Gaussian distribution by way of prediction. An aggregation is performed over the ensem-
ble of trees to find a Gaussian distribution closest to the combined distribution for all trees in the
model.

Value

• rxFastForest: A rxFastForest object with the trained model.

• FastForest: A learner specification object of class maml for the Fast Forest trainer.

Note

This algorithm is multi-threaded and will always attempt to load the entire dataset into memory.

Author(s)

Microsoft Corporation Microsoft Technical Support

References

Wikipedia: Random forest

Quantile regression forest

From Stumps to Trees to Forests

See Also

rxFastTrees, rxFastLinear, rxLogisticRegression, rxNeuralNet, rxOneClassSvm, featurizeText,
categorical, categoricalHash, rxPredict.mlModel.

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409
http://en.wikipedia.org/wiki/Random_forest
http://jmlr.org/papers/volume7/meinshausen06a/meinshausen06a.pdf
https://blogs.technet.microsoft.com/machinelearning/2014/09/10/from-stumps-to-trees-to-forests/

44 rxFastLinear

Examples

Estimate a binary classification forest
infert1 <- infert
infert1$isCase = (infert1$case == 1)
forestModel <- rxFastForest(formula = isCase ~ age + parity + education + spontaneous + induced,

data = infert1)

Create text file with per-instance results using rxPredict
txtOutFile <- tempfile(pattern = "scoreOut", fileext = ".txt")
txtOutDS <- RxTextData(file = txtOutFile)
scoreDS <- rxPredict(forestModel, data = infert1,

extraVarsToWrite = c("isCase", "Score"), outData = txtOutDS)

Print the fist ten rows
rxDataStep(scoreDS, numRows = 10)

Clean-up
file.remove(txtOutFile)

##
Estimate a regression fast forest

Use the built-in data set 'airquality' to create test and train data
DF <- airquality[!is.na(airquality$Ozone),]
DF$Ozone <- as.numeric(DF$Ozone)
randomSplit <- rnorm(nrow(DF))
trainAir <- DF[randomSplit >= 0,]
testAir <- DF[randomSplit < 0,]
airFormula <- Ozone ~ Solar.R + Wind + Temp

Regression Fast Forest for train data
rxFastForestReg <- rxFastForest(airFormula, type = "regression",

data = trainAir)

Put score and model variables in data frame
rxFastForestScoreDF <- rxPredict(rxFastForestReg, data = testAir,

writeModelVars = TRUE)

Plot actual versus predicted values with smoothed line
rxLinePlot(Score ~ Ozone, type = c("p", "smooth"), data = rxFastForestScoreDF)

rxFastLinear Fast Linear Model – Stochastic Dual Coordinate Ascent

Description

A Stochastic Dual Coordinate Ascent (SDCA) optimization trainer for linear binary classification
and regression.

rxFastLinear is a trainer based on the Stochastic Dual Coordinate Ascent (SDCA) method, a
state-of-the-art optimization technique for convex objective functions. The algorithm can be scaled
for use on large out-of-memory data sets due to a semi-asynchronized implementation that supports
multi-threading. primal and dual updates in a separate thread. Several choices of loss functions
are also provided. The SDCA method combines several of the best properties and capabilities of

rxFastLinear 45

logistic regression and SVM algorithms. For more information on SDCA, see the citations in the
reference section.

Traditional optimization algorithms, such as stochastic gradient descent (SGD), optimize the empir-
ical loss function directly. The SDCA chooses a different approach that optimizes the dual problem
instead. The dual loss function is parametrized by per-example weights. In each iteration, when a
training example from the training data set is read, the corresponding example weight is adjusted
so that the dual loss function is optimized with respect to the current example. No learning rate is
needed by SDCA to determine step size as is required by various gradient descent methods.

rxFastLinear supports binary classification with three types of loss functions currently: Log loss,
hinge loss, and smoothed hinge loss. Linear regression also supports with squared loss function.
Elastic net regularization can be specified by the l2Weight and l1Weight parameters. Note that the
l2Weight has an effect on the rate of convergence. In general, the larger the l2Weight, the faster
SDCA converges.

Note that rxFastLinear is a stochastic and streaming optimization algorithm. The results depends
on the order of the training data. For reproducible results, it is recommended that one sets shuffle
to FALSE and trainThreads to 1.

Usage

rxFastLinear(formula = NULL, data, type = c("binary", "regression"),
lossFunction = NULL, l2Weight = NULL, l1Weight = NULL,
trainThreads = NULL, convergenceTolerance = 0.1, maxIterations = NULL,
shuffle = TRUE, checkFrequency = NULL, normalize = "auto",
mlTransforms = NULL, mlTransformVars = NULL, rowSelection = NULL,
transforms = NULL, transformObjects = NULL, transformFunc = NULL,
transformVars = NULL, transformPackages = NULL, transformEnvir = NULL,
blocksPerRead = rxGetOption("blocksPerRead"),
reportProgress = rxGetOption("reportProgress"), verbose = 1,
computeContext = rxGetOption("computeContext"),
ensemble = ensembleControl(), ...)

Arguments

formula The formula described in rxFormula. Interaction terms and F() are currently
not supported in MicrosoftML.

data A data source object or a character string specifying a ‘.xdf’ file or a data frame
object.

type Specifies the model type with a character string: "binary" for the default binary
classification or "regression" for linear regression.

lossFunction Specifies the empirical loss function to optimize. For binary classification, the
following choices are available:

• logLoss: The log-loss. This is the default.
• hingeLoss: The SVM hinge loss. Its parameter represents the margin size.
• smoothHingeLoss: The smoothed hinge loss. Its parameter represents the

smoothing constant.

For linear regression, squared loss squaredLoss is currently supported. When
this parameter is set to NULL, its default value depends on the type of learning:

• logLoss for binary classification.
• squaredLoss for linear regression.

46 rxFastLinear

l2Weight Specifies the L2 regularization weight. The value must be either non-negative
or NULL. If NULL is specified, the actual value is automatically computed based
on data set. NULL is the default value.

l1Weight Specifies the L1 regularization weight. The value must be either non-negative
or NULL. If NULL is specified, the actual value is automatically computed based
on data set. NULL is the default value.

trainThreads Specifies how many concurrent threads can be used to run the algorithm. When
this parameter is set to NULL, the number of threads used is determined based on
the number of logical processors available to the process as well as the sparsity
of data. Set it to 1 to run the algorithm in a single thread.

convergenceTolerance

Specifies the tolerance threshold used as a convergence criterion. It must be
between 0 and 1. The default value is 0.1. The algorithm is considered to have
converged if the relative duality gap, which is the ratio between the duality gap
and the primal loss, falls below the specified convergence tolerance.

maxIterations Specifies an upper bound on the number of training iterations. This parameter
must be positive or NULL. If NULL is specified, the actual value is automatically
computed based on data set. Each iteration requires a complete pass over the
training data. Training terminates after the total number of iterations reaches the
specified upper bound or when the loss function converges, whichever happens
earlier.

shuffle Specifies whether to shuffle the training data. Set TRUE to shuffle the data; FALSE
not to shuffle. The default value is TRUE. SDCA is a stochastic optimization
algorithm. If shuffling is turned on, the training data is shuffled on each iteration.

checkFrequency The number of iterations after which the loss function is computed and checked
to determine whether it has converged. The value specified must be a positive
integer or NULL. If NULL, the actual value is automatically computed based on
data set. Otherwise, for example, if checkFrequency = 5 is specified, then
the loss function is computed and convergence is checked every 5 iterations.
The computation of the loss function requires a separate complete pass over the
training data.

normalize Specifies the type of automatic normalization used:

• "auto": if normalization is needed, it is automatically performed. This is
the default value.

• "no": no normalization is performed.
• "yes": normalization is performed.
• "warn": if normalization is needed, a warning message is displayed, but

normalization is not performed.

Normalization rescales disparate data ranges to a standard scale. Feature scaling
insures the distances between data points are proportional and enables various
optimization methods such as gradient descent to converge much faster. If nor-
malization is performed, a MaxMin normalizer is used. It normalizes values in
an interval [a, b] where -1 <= a <= 0 and 0 <= b <= 1 and b - a = 1. This
normalizer preserves sparsity by mapping zero to zero.

mlTransforms Specifies a list of MicrosoftML transforms to be performed on the data before
training or NULL if no transforms are to be performed. See featurizeText,
categorical, and categoricalHash, for transformations that are supported.
These transformations are performed after any specified R transformations. The
default value is NULL.

rxFastLinear 47

mlTransformVars

Specifies a character vector of variable names to be used in mlTransforms or
NULL if none are to be used. The default value is NULL.

rowSelection Specifies the rows (observations) from the data set that are to be used by the
model with the name of a logical variable from the data set (in quotes) or with a
logical expression using variables in the data set. For example, rowSelection = "old"
will only use observations in which the value of the variable old is TRUE. rowSelection = (age > 20) & (age < 65) & (log(income) > 10)
only uses observations in which the value of the age variable is between 20 and
65 and the value of the log of the income variable is greater than 10. The row
selection is performed after processing any data transformations (see the argu-
ments transforms or transformFunc). As with all expressions, rowSelection
can be defined outside of the function call using the expression function.

transforms An expression of the form list(name = expression,...) that represents the
first round of variable transformations. As with all expressions, transforms (or
rowSelection) can be defined outside of the function call using the expression
function.

transformObjects

A named list that contains objects that can be referenced by transforms, transformsFunc,
and rowSelection.

transformFunc The variable transformation function. See rxTransform for details.

transformVars A character vector of input data set variables needed for the transformation func-
tion. See rxTransform for details.

transformPackages

A character vector specifying additional R packages (outside of those specified
in rxGetOption("transformPackages")) to be made available and preloaded
for use in variable transformation functions. For exmple, those explicitly defined
in RevoScaleR functions via their transforms and transformFunc arguments
or those defined implicitly via their formula or rowSelection arguments. The
transformPackages argument may also be NULL, indicating that no packages
outside rxGetOption("transformPackages") are preloaded.

transformEnvir A user-defined environment to serve as a parent to all environments developed
internally and used for variable data transformation. If transformEnvir = NULL,
a new "hash" environment with parent baseenv() is used instead.

blocksPerRead Specifies the number of blocks to read for each chunk of data read from the data
source.

reportProgress An integer value that specifies the level of reporting on the row processing
progress:

• 0: no progress is reported.
• 1: the number of processed rows is printed and updated.
• 2: rows processed and timings are reported.
• 3: rows processed and all timings are reported.

verbose An integer value that specifies the amount of output wanted. If 0, no verbose
output is printed during calculations. Integer values from 1 to 4 provide increas-
ing amounts of information.

computeContext Sets the context in which computations are executed, specified with a valid
RxComputeContext. Currently local and RxInSqlServer compute contexts are
supported.

ensemble Control parameters for ensembling.

... Additional arguments to be passed directly to the Microsoft Compute Engine.

48 rxFastLinear

Value

• rxFastLinear: A rxFastLinear object with the trained model.

• FastLinear: A learner specification object of class maml for the Fast Linear trainer.

Note

This algorithm is multi-threaded and will not attempt to load the entire dataset into memory.

Author(s)

Microsoft Corporation Microsoft Technical Support

References

Scaling Up Stochastic Dual Coordinate Ascent

Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization

See Also

logLoss, hingeLoss, smoothHingeLoss, squaredLoss, rxFastTrees, rxFastForest, rxLogisticRegression,
rxNeuralNet, rxOneClassSvm, featurizeText, categorical, categoricalHash, rxPredict.mlModel.

Examples

Train a binary classiication model with rxFastLinear
res1 <- rxFastLinear(isCase ~ age + parity + education + spontaneous + induced,

transforms = list(isCase = case == 1),
data = infert,
type = "binary")

Print a summary of the model
summary(res1)

Score to a data frame
scoreDF <- rxPredict(res1, data = infert,

extraVarsToWrite = "isCase")

Compute and plot the Radio Operator Curve and AUC
roc1 <- rxRoc(actualVarName = "isCase", predVarNames = "Probability", data = scoreDF)
plot(roc1)
rxAuc(roc1)

###
rxFastLinear Regression

Create an xdf file with the attitude data
myXdf <- tempfile(pattern = "tempAttitude", fileext = ".xdf")
rxDataStep(attitude, myXdf, rowsPerRead = 50, overwrite = TRUE)
myXdfDS <- RxXdfData(file = myXdf)

attitudeForm <- rating ~ complaints + privileges + learning +
raises + critical + advance

Estimate a regression model with rxFastLinear
res2 <- rxFastLinear(formula = attitudeForm, data = myXdfDS,

type = "regression")

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409
http://research.microsoft.com/en-us/um/people/mbilenko/papers/15-sasdca.pdf
http://www.jmlr.org/papers/volume14/shalev-shwartz13a/shalev-shwartz13a.pdf

rxFastTrees 49

Score to data frame
scoreOut2 <- rxPredict(res2, data = myXdfDS,

extraVarsToWrite = "rating")

Plot the rating versus the score with a regression line
rxLinePlot(rating~Score, type = c("p","r"), data = scoreOut2)

Clean up
file.remove(myXdf)

rxFastTrees Fast Tree

Description

Machine Learning Fast Tree

Usage

rxFastTrees(formula = NULL, data, type = c("binary", "regression"),
numTrees = 100, numLeaves = 20, learningRate = 0.2, minSplit = 10,
exampleFraction = 0.7, featureFraction = 1, splitFraction = 1,
numBins = 255, firstUsePenalty = 0, gainConfLevel = 0,
unbalancedSets = FALSE, trainThreads = 8, randomSeed = NULL,
mlTransforms = NULL, mlTransformVars = NULL, rowSelection = NULL,
transforms = NULL, transformObjects = NULL, transformFunc = NULL,
transformVars = NULL, transformPackages = NULL, transformEnvir = NULL,
blocksPerRead = rxGetOption("blocksPerRead"),
reportProgress = rxGetOption("reportProgress"), verbose = 2,
computeContext = rxGetOption("computeContext"),
ensemble = ensembleControl(), ...)

Arguments

formula The formula as described in rxFormula. Interaction terms and F() are not cur-
rently supported in the MicrosoftML.

data A data source object or a character string specifying a ‘.xdf’ file or a data frame
object.

type A character string that specifies the type of Fast Tree: "binary" for the default
Fast Tree Binary Classification or "regression" for Fast Tree Regression.

numTrees Specifies the total number of decision trees to create in the ensemble.By creating
more decision trees, you can potentially get better coverage, but the training time
increases. The default value is 100.

numLeaves The maximum number of leaves (terminal nodes) that can be created in any tree.
Higher values potentially increase the size of the tree and get better precision,
but risk overfitting and requiring longer training times. The default value is 20.

learningRate Determines the size of the step taken in the direction of the gradient in each step
of the learning process. This determines how fast or slow the learner converges
on the optimal solution. If the step size is too big, you might overshoot the
optimal solution. If the step size is too samll, training takes longer to converge
to the best solution.

50 rxFastTrees

minSplit Minimum number of training instances required to form a leaf. That is, the
minimal number of documents allowed in a leaf of a regression tree, out of the
sub-sampled data. A ’split’ means that features in each level of the tree (node)
are randomly divided. The default value is 10. Only the number of instances is
counted even if instances are weighted.

exampleFraction

The fraction of randomly chosen instances to use for each tree. The default value
is 0.7.

featureFraction

The fraction of randomly chosen features to use for each tree. The default value
is 1.

splitFraction The fraction of randomly chosen features to use on each split. The default value
is 1.

numBins Maximum number of distinct values (bins) per feature. If the feature has fewer
values than the number indicated, each value is placed in its own bin. If there
are more values, the algorithm creates numBins bins.

firstUsePenalty

The feature first use penalty coefficient. This is a form of regularization that
incurs a penalty for using a new feature when creating the tree. Increase this
value to create trees that don’t use many features. The default value is 0.

gainConfLevel Tree fitting gain confidence requirement (should be in the range [0,1)). The
default value is 0.

unbalancedSets If TRUE, derivatives optimized for unbalanced sets are used. Only applicable
when type equal to "binary". The default value is FALSE.

trainThreads The number of threads to use in training. The default value is 8.

randomSeed Specifies the random seed. The default value is NULL.

mlTransforms Specifies a list of MicrosoftML transforms to be performed on the data before
training or NULL if no transforms are to be performed. See featurizeText,
categorical, and categoricalHash, for transformations that are supported.
These transformations are performed after any specified R transformations. The
default value is NULL.

mlTransformVars

Specifies a character vector of variable names to be used in mlTransforms or
NULL if none are to be used. The default value is NULL.

rowSelection Specifies the rows (observations) from the data set that are to be used by the
model with the name of a logical variable from the data set (in quotes) or with a
logical expression using variables in the data set. For example, rowSelection = "old"
will only use observations in which the value of the variable old is TRUE. rowSelection = (age > 20) & (age < 65) & (log(income) > 10)
only uses observations in which the value of the age variable is between 20 and
65 and the value of the log of the income variable is greater than 10. The row
selection is performed after processing any data transformations (see the argu-
ments transforms or transformFunc). As with all expressions, rowSelection
can be defined outside of the function call using the expression function.

transforms An expression of the form list(name = expression,...) that represents the
first round of variable transformations. As with all expressions, transforms (or
rowSelection) can be defined outside of the function call using the expression
function.

transformObjects

A named list that contains objects that can be referenced by transforms, transformsFunc,
and rowSelection.

rxFastTrees 51

transformFunc The variable transformation function. See rxTransform for details.

transformVars A character vector of input data set variables needed for the transformation func-
tion. See rxTransform for details.

transformPackages

A character vector specifying additional R packages (outside of those specified
in rxGetOption("transformPackages")) to be made available and preloaded
for use in variable transformation functions. For exmple, those explicitly defined
in RevoScaleR functions via their transforms and transformFunc arguments
or those defined implicitly via their formula or rowSelection arguments. The
transformPackages argument may also be NULL, indicating that no packages
outside rxGetOption("transformPackages") are preloaded.

transformEnvir A user-defined environment to serve as a parent to all environments developed
internally and used for variable data transformation. If transformEnvir = NULL,
a new "hash" environment with parent baseenv() is used instead.

blocksPerRead Specifies the number of blocks to read for each chunk of data read from the data
source.

reportProgress An integer value that specifies the level of reporting on the row processing
progress:

• 0: no progress is reported.
• 1: the number of processed rows is printed and updated.
• 2: rows processed and timings are reported.
• 3: rows processed and all timings are reported.

verbose An integer value that specifies the amount of output wanted. If 0, no verbose
output is printed during calculations. Integer values from 1 to 4 provide increas-
ing amounts of information.

computeContext Sets the context in which computations are executed, specified with a valid
RxComputeContext. Currently local and RxInSqlServer compute contexts are
supported.

ensemble Control parameters for ensembling.

... Additional arguments to be passed directly to the Microsoft Compute Engine.

Details

rxFastTrees is an implementation of FastRank. FastRank is an efficient implementation of the
MART gradient boosting algorithm. Gradient boosting is a machine learning technique for regres-
sion problems. It builds each regression tree in a step-wise fashion, using a predefined loss function
to measure the error for each step and corrects for it in the next. So this prediction model is actually
an ensemble of weaker prediction models. In regression problems, boosting builds a series of of
such trees in a step-wise fashion and then selects the optimal tree using an arbitrary differentiable
loss function.

MART learns an ensemble of regression trees, which is a decision tree with scalar values in its
leaves. A decision (or regression) tree is a binary tree-like flow chart, where at each interior node
one decides which of the two child nodes to continue to based on one of the feature values from
the input. At each leaf node, a value is returned. In the interior nodes, the decision is based on the
test "x <= v", where x is the value of the feature in the input sample and v is one of the possible
values of this feature. The functions that can be produced by a regression tree are all the piece-wise
constant functions.

The ensemble of trees is produced by computing, in each step, a regression tree that approximates
the gradient of the loss function, and adding it to the previous tree with coefficients that minimize

52 rxFastTrees

the loss of the new tree. The output of the ensemble produced by MART on a given instance is the
sum of the tree outputs.

• In case of a binary classification problem, the output is converted to a probability by using
some form of calibration.

• In case of a regression problem, the output is the predicted value of the function.

• In case of a ranking problem, the instances are ordered by the output value of the ensemble.

If type is set to "regression", a regression version of FastTree is used. If set to "ranking", a
ranking version of FastTree is used. In the ranking case, the instances should be ordered by the
output of the tree ensemble. The only difference in the settings of these versions is in the calibration
settings, which are needed only for classification.

Value

• rxFastTrees: A rxFastTrees object with the trained model.

• FastTree: A learner specification object of class maml for the Fast Tree trainer.

Note

This algorithm is multi-threaded and will always attempt to load the entire dataset into memory.

Author(s)

Microsoft Corporation Microsoft Technical Support

References

Wikipedia: Gradient boosting (Gradient tree boosting)

Greedy function approximation: A gradient boosting machine.

See Also

rxFastForest, rxFastLinear, rxLogisticRegression, rxNeuralNet, rxOneClassSvm, featurizeText,
categorical, categoricalHash, rxPredict.mlModel.

Examples

Estimate a binary classification tree
infert1 <- infert
infert1$isCase = (infert1$case == 1)
treeModel <- rxFastTrees(formula = isCase ~ age + parity + education + spontaneous + induced,

data = infert1)

Create xdf file with per-instance results using rxPredict
xdfOut <- tempfile(pattern = "scoreOut", fileext = ".xdf")
scoreDS <- rxPredict(treeModel, data = infert1,

extraVarsToWrite = c("isCase", "Score"),
outData = xdfOut)

rxDataStep(scoreDS, numRows = 10)

Clean-up
file.remove(xdfOut)

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409
https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451

rxFeaturize 53

##
Estimate a regression fast tree

Use the built-in data set 'airquality' to create test and train data
DF <- airquality[!is.na(airquality$Ozone),]
DF$Ozone <- as.numeric(DF$Ozone)
randomSplit <- rnorm(nrow(DF))
trainAir <- DF[randomSplit >= 0,]
testAir <- DF[randomSplit < 0,]
airFormula <- Ozone ~ Solar.R + Wind + Temp

Regression Fast Tree for train data
fastTreeReg <- rxFastTrees(airFormula, type = "regression",

data = trainAir)

Put score and model variables in data frame
fastTreeScoreDF <- rxPredict(fastTreeReg, data = testAir,

writeModelVars = TRUE)

Plot actual versus predicted values with smoothed line
rxLinePlot(Score ~ Ozone, type = c("p", "smooth"), data = fastTreeScoreDF)

rxFeaturize Data Transformation for RevoScaleR data sources

Description

Transforms data from an input data set to an output data set.

Usage

rxFeaturize(data, outData = NULL, overwrite = FALSE, dataThreads = NULL,
randomSeed = NULL, maxSlots = 5000, mlTransforms = NULL,
mlTransformVars = NULL, rowSelection = NULL, transforms = NULL,
transformObjects = NULL, transformFunc = NULL, transformVars = NULL,
transformPackages = NULL, transformEnvir = NULL,
blocksPerRead = rxGetOption("blocksPerRead"),
reportProgress = rxGetOption("reportProgress"), verbose = 1,
computeContext = rxGetOption("computeContext"), ...)

Arguments

data A RevoScaleR data source object, a data frame, or the path to a .xdf file.

outData Output text or xdf file name or an RxDataSource with write capabilities in which
to store transformed data. If NULL, a data frame is returned. The default value is
NULL.

overwrite If TRUE, an existing outData is overwritten; if FALSE an existing outData is not
overwritten. The default value is /codeFALSE.

dataThreads An integer specifying the desired degree of parallelism in the data pipeline. If
NULL, the number of threads used is determined internally. The default value is
NULL.

randomSeed Specifies the random seed. The default value is NULL.

54 rxFeaturize

maxSlots Max slots to return for vector valued columns (<=0 to return all).

mlTransforms Specifies a list of MicrosoftML transforms to be performed on the data before
training or NULL if no transforms are to be performed. See featurizeText,
categorical, and categoricalHash, for transformations that are supported.
These transformations are performed after any specified R transformations. The
default value is NULL.

mlTransformVars

Specifies a character vector of variable names to be used in mlTransforms or
NULL if none are to be used. The default value is NULL.

rowSelection Specifies the rows (observations) from the data set that are to be used by the
model with the name of a logical variable from the data set (in quotes) or with a
logical expression using variables in the data set. For example, rowSelection = "old"
will only use observations in which the value of the variable old is TRUE. rowSelection = (age > 20) & (age < 65) & (log(income) > 10)
only uses observations in which the value of the age variable is between 20 and
65 and the value of the log of the income variable is greater than 10. The row
selection is performed after processing any data transformations (see the argu-
ments transforms or transformFunc). As with all expressions, rowSelection
can be defined outside of the function call using the expression function.

transforms An expression of the form list(name = expression,...) that represents the
first round of variable transformations. As with all expressions, transforms (or
rowSelection) can be defined outside of the function call using the expression
function. The default value is NULL.

transformObjects

A named list that contains objects that can be referenced by transforms, transformsFunc,
and rowSelection. The default value is NULL.

transformFunc The variable transformation function. See rxTransform for details. The default
value is NULL.

transformVars A character vector of input data set variables needed for the transformation func-
tion. See rxTransform for details. The default value is NULL.

transformPackages

A character vector specifying additional R packages (outside of those specified
in rxGetOption("transformPackages")) to be made available and preloaded
for use in variable transformation functions. For exmple, those explicitly de-
fined in RevoScaleR functions via their transforms and transformFunc ar-
guments or those defined implicitly via their formula or rowSelection argu-
ments. The transformPackages argument may also be NULL, indicating that no
packages outside rxGetOption("transformPackages") are preloaded. The
default value is NULL.

transformEnvir A user-defined environment to serve as a parent to all environments developed
internally and used for variable data transformation. If transformEnvir = NULL,
a new "hash" environment with parent baseenv() is used instead The default
value is NULL.

blocksPerRead Specifies the number of blocks to read for each chunk of data read from the data
source.

reportProgress An integer value that specifies the level of reporting on the row processing
progress:

• 0: no progress is reported.
• 1: the number of processed rows is printed and updated.
• 2: rows processed and timings are reported.

rxFeaturize 55

• 3: rows processed and all timings are reported.

The default value is 1.

verbose An integer value that specifies the amount of output wanted. If 0, no verbose
output is printed during calculations. Integer values from 1 to 4 provide increas-
ing amounts of information. The default value is 1.

computeContext Sets the context in which computations are executed, specified with a valid
RxComputeContext. Currently local and RxInSqlServer compute contexts are
supported.

... Additional arguments to be passed directly to the Microsoft Compute Engine.

Value

A data frame or an RxDataSource object representing the created output data.

Author(s)

Microsoft Corporation Microsoft Technical Support

See Also

rxDataStep, rxImport, rxTransform.

Examples

rxFeaturize basically allows you to access data from the MicrosoftML transforms
In this example we'll look at getting the output of the categorical transform

Create the data
categoricalData <- data.frame(

placesVisited = c(
"London",
"Brunei",
"London",
"Paris",
"Seria"

),
stringsAsFactors = FALSE

)

Invoke the categorical transform
categorized <- rxFeaturize(

data = categoricalData,
mlTransforms = list(categorical(vars = c(xDataCat = "placesVisited")))

)

Now let's look at the data
categorized

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409

56 rxLogisticRegression

rxHashEnv An environment object used to store package-wide state.

Description

An environment object used to store package-wide state.

Usage

rxHashEnv

Format

An object of class environment of length 2.

rxLogisticRegression Logistic Regression

Description

Machine Learning Logistic Regression

Usage

rxLogisticRegression(formula = NULL, data, type = c("binary", "multiClass"),
l2Weight = 1, l1Weight = 1, optTol = 1e-07, memorySize = 20,
initWtsScale = 0, maxIterations = 2147483647, showTrainingStats = FALSE,
sgdInitTol = 0, trainThreads = NULL, denseOptimizer = FALSE,
normalize = "auto", mlTransforms = NULL, mlTransformVars = NULL,
rowSelection = NULL, transforms = NULL, transformObjects = NULL,
transformFunc = NULL, transformVars = NULL, transformPackages = NULL,
transformEnvir = NULL, blocksPerRead = rxGetOption("blocksPerRead"),
reportProgress = rxGetOption("reportProgress"), verbose = 1,
computeContext = rxGetOption("computeContext"),
ensemble = ensembleControl(), ...)

Arguments

formula The formula as described in rxFormula. Interaction terms and F() are not cur-
rently supported in the MicrosoftML.

data A data source object or a character string specifying a ‘.xdf’ file or a data frame
object.

type A character string that specifies the type of Logistic Regression: "binary" for
the default binary classification logistic regression or "multi" for multinomial
logistic regression.

l2Weight The L2 regularization weight. Its value must be greater than or equal to 0 and
the default value is set to 1.

l1Weight The L1 regularization weight. Its value must be greater than or equal to 0 and
the default value is set to 1.

rxLogisticRegression 57

optTol Threshold value for optimizer convergence. If the improvement between itera-
tions is less than the threshold, the algorithm stops and returns the current model.
Smaller values are slower, but more accurate. The default value is 1e-07.

memorySize Memory size for L-BFGS, specifying the number of past positions and gradients
to store for the computation of the next step. This optimization parameter limits
the amount of memory that is used to compute the magnitude and direction of
the next step. When you specify less memory, training is faster but less accurate.
Must be greater than or equal to 1 and the default value is 20.

initWtsScale Sets the initial weights diameter that specifies the range from which values are
drawn for the initial weights. These weights are initialized randomly from
within this range. For example, if the diameter is specified to be d, then the
weights are uniformly distributed between -d/2 and d/2. The default value is
0, which specifies that allthe weights are initialized to 0.

maxIterations Sets the maximum number of iterations. After this number of steps, the algo-
rithm stops even if it has not satisfied convergence criteria.

showTrainingStats

Specify TRUE to show the statistics of training data and the trained model; other-
wise, FALSE. The default value is FALSE. For additional information about model
statistics, see summary.mlModel.

sgdInitTol Set to a number greater than 0 to use Stochastic Gradient Descent (SGD) to find
the initial parameters. A non-zero value set specifies the tolerance SGD uses to
determine convergence. The default value is 0 specifying that SGD is not used.

trainThreads The number of threads to use in training the model. This should be set to the
number of cores on the machine. Note that L-BFGS multi-threading attempts to
load dataset into memory. In case of out-of-memory issues, set trainThreads
to 1 to turn off multi-threading. If NULL the number of threads to use is deter-
mined internally. The default value is NULL.

denseOptimizer If TRUE, forces densification of the internal optimization vectors. If FALSE, en-
ables the logistic regression optimizer use sparse or dense internal states as it
finds appropriate. Setting denseOptimizer to TRUE requires the internal opti-
mizer to use a dense internal state, which may help alleviate load on the garbage
collector for some varieties of larger problems.

normalize Specifies the type of automatic normalization used:
• "auto": if normalization is needed, it is performed automatically. This is

the default choice.
• "no": no normalization is performed.
• "yes": normalization is performed.
• "warn": if normalization is needed, a warning message is displayed, but

normalization is not performed.
Normalization rescales disparate data ranges to a standard scale. Feature scaling
insures the distances between data points are proportional and enables various
optimization methods such as gradient descent to converge much faster. If nor-
malization is performed, a MaxMin normalizer is used. It normalizes values in
an interval [a, b] where -1 <= a <= 0 and 0 <= b <= 1 and b - a = 1. This
normalizer preserves sparsity by mapping zero to zero.

mlTransforms Specifies a list of MicrosoftML transforms to be performed on the data before
training or NULL if no transforms are to be performed. See featurizeText,
categorical, and categoricalHash, for transformations that aresupported.
These transformations are performed after any specified R transformations. The
default avlue is NULL.

58 rxLogisticRegression

mlTransformVars

Specifies a character vector of variable names to be used in mlTransforms or
NULL if none are to be used. The default value is NULL.

rowSelection Specifies the rows (observations) from the data set that are to be used by the
model with the name of a logical variable from the data set (in quotes) or with a
logical expression using variables in the data set. For example, rowSelection = "old"
will only use observations in which the value of the variable old is TRUE. rowSelection = (age > 20) & (age < 65) & (log(income) > 10)
only uses observations in which the value of the age variable is between 20 and
65 and the value of the log of the income variable is greater than 10. The row
selection is performed after processing any data transformations (see the argu-
ments transforms or transformFunc). As with all expressions, rowSelection
can be defined outside of the function call using the expression function.

transforms An expression of the form list(name = expression,...) that represents the
first round of variable transformations. As with all expressions, transforms (or
rowSelection) can be defined outside of the function call using the expression
function.

transformObjects

A named list that contains objects that can be referenced by transforms, transformsFunc,
and rowSelection.

transformFunc The variable transformation function. See rxTransform for details.

transformVars A character vector of input data set variables needed for the transformation func-
tion. See rxTransform for details.

transformPackages

A character vector specifying additional R packages (outside of those specified
in rxGetOption("transformPackages")) to be made available and preloaded
for use in variable transformation functions. For exmple, those explicitly defined
in RevoScaleR functions via their transforms and transformFunc arguments
or those defined implicitly via their formula or rowSelection arguments. The
transformPackages argument may also be NULL, indicating that no packages
outside rxGetOption("transformPackages") are preloaded.

transformEnvir A user-defined environment to serve as a parent to all environments developed
internally and used for variable data transformation. If transformEnvir = NULL,
a new "hash" environment with parent baseenv() is used instead.

blocksPerRead Specifies the number of blocks to read for each chunk of data read from the data
source.

reportProgress An integer value that specifies the level of reporting on the row processing
progress:

• 0: no progress is reported.
• 1: the number of processed rows is printed and updated.
• 2: rows processed and timings are reported.
• 3: rows processed and all timings are reported.

verbose An integer value that specifies the amount of output wanted. If 0, no verbose
output is printed during calculations. Integer values from 1 to 4 provide increas-
ing amounts of information.

computeContext Sets the context in which computations are executed, specified with a valid
RxComputeContext. Currently local and RxInSqlServer compute contexts are
supported.

ensemble Control parameters for ensembling.

... Additional arguments to be passed directly to the Microsoft Compute Engine.

rxLogisticRegression 59

Details

Logistic Regression is a classification method used to predict the value of a categorical dependent
variable from its relationship to one or more independent variables assumed to have a logistic dis-
tribution. If the dependent variable has only two possible values (success/failure), then the logistic
regression is binary. If the dependent variable has more than two possible values (blood type given
diagnostic test results), then the logistic regression is multinomial.

The optimization technique used for rxLogisticRegression is the limited memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS). Both the L-BFGS and regular BFGS algorithms use quasi-
Newtonian methods to estimate the computationally intensive Hessian matrix in the equation used
by Newton’s method to calculate steps. But the L-BFGS approximation uses only a limited amount
of memory to compute the next step direction, so that it is especially suited for problems with a
large number of variables. The memorySize parameter specifies the number of past positions and
gradients to store for use in the computation of the next step.

This learner can use elastic net regularization: a linear combination of L1 (lasso) and L2 (ridge)
regularizations. Regularization is a method that can render an ill-posed problem more tractable by
imposing constraints that provide information to supplement the data and that prevents overfitting by
penalizing models with extreme coefficient values. This can improve the generalization of the model
learned by selecting the optimal complexity in the bias-variance tradeoff. Regularization works by
adding the penalty that is associated with coefficient values to the error of the hypothesis. An
accurate model with extreme coefficient values would be penalized more, but a less accurate model
with more conservative values would be penalized less. L1 and L2 regularization have different
effects and uses that are complementary in certain respects.

• l1Weight: can be applied to sparse models, when working with high-dimensional data. It
pulls small weights associated features that are relatively unimportant towards 0.

• l2Weight: is preferable for data that is not sparse. It pulls large weights towards zero.

Adding the ridge penalty to the regularization overcomes some of lasso’s limitations. It can improve
its predictive accuracy, for example, when the number of predictors is greater than the sample size.
If x = l1Weight and y = l2Weight, ax + by = c defines the linear span of the regularization
terms. The default values of x and y are both 1. An agressive regularization can harm predictive
capacity by excluding important variables out of the model. So choosing the optimal values for the
regularization parameters is important for the performance of the logistic regression model.

Value

• rxLogisticRegression: A rxLogisticRegression object with the trained model.

• LogisticReg: A learner specification object of class maml for the Logistic Reg trainer.

Note

This algorithm will attempt to load the entire dataset into memory when trainThreads > 1 (multi-
threading).

Author(s)

Microsoft Corporation Microsoft Technical Support

References

Wikipedia: L-BFGS

Wikipedia: Logistic regression

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409
http://en.wikipedia.org/wiki/L-BFGS
http://en.wikipedia.org/wiki/Logistic_regression

60 rxNeuralNet

Scalable Training of L1-Regularized Log-Linear Models

Test Run - L1 and L2 Regularization for Machine Learning

See Also

rxFastTrees, rxFastForest, rxFastLinear, rxNeuralNet, rxOneClassSvm, featurizeText,
categorical, categoricalHash, rxPredict.mlModel.

Examples

Estimate a logistic regression model
logitModel <- rxLogisticRegression(isCase ~ age + parity + education + spontaneous + induced,

transforms = list(isCase = case == 1),
data = infert)

Print a summary of the model
summary(logitModel)

Score to a data frame
scoreDF <- rxPredict(logitModel, data = infert,

extraVarsToWrite = "isCase")

Compute and plot the Radio Operator Curve and AUC
roc1 <- rxRoc(actualVarName = "isCase", predVarNames = "Probability", data = scoreDF)
plot(roc1)
rxAuc(roc1)

###
Multi-class logistic regression
testObs <- rnorm(nrow(iris)) > 0
testIris <- iris[testObs,]
trainIris <- iris[!testObs,]
multiLogit <- rxLogisticRegression(

formula = Species~Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
type = "multiClass", data = trainIris)

Score the model
scoreMultiDF <- rxPredict(multiLogit, data = testIris,

extraVarsToWrite = "Species")
Print the first rows of the data frame with scores
head(scoreMultiDF)
Look at confusion matrix
table(scoreMultiDF$Species, scoreMultiDF$PredictedLabel)

Look at the observations with incorrect predictions
badPrediction = scoreMultiDF$Species != scoreMultiDF$PredictedLabel
scoreMultiDF[badPrediction,]

rxNeuralNet Neural Net

Description

Neural networks for regression modeling and for Binary and multi-class classification.

http://research.microsoft.com/apps/pubs/default.aspx?id=78900
https://msdn.microsoft.com/en-us/magazine/dn904675.aspx

rxNeuralNet 61

Usage

rxNeuralNet(formula = NULL, data, type = c("binary", "multiClass",
"regression"), numHiddenNodes = 100, numIterations = 100,
optimizer = sgd(), netDefinition = NULL, initWtsDiameter = 0.1,
maxNorm = 0, acceleration = c("sse", "gpu"), miniBatchSize = 1,
normalize = "auto", mlTransforms = NULL, mlTransformVars = NULL,
rowSelection = NULL, transforms = NULL, transformObjects = NULL,
transformFunc = NULL, transformVars = NULL, transformPackages = NULL,
transformEnvir = NULL, blocksPerRead = rxGetOption("blocksPerRead"),
reportProgress = rxGetOption("reportProgress"), verbose = 1,
computeContext = rxGetOption("computeContext"),
ensemble = ensembleControl(), ...)

Arguments

formula The formula as described in rxFormula. Interaction terms and F() are not cur-
rently supported in the MicrosoftML.

data A data source object or a character string specifying a ‘.xdf’ file or a data frame
object.

type A character string denoting Fast Tree type:

• "binary" for the default binary classification neural network.
• "multiClass" for multi-class classification neural network.
• "regression" for a regression neural network.

numHiddenNodes The default number of hidden nodes in the neural net. The default value is 100.

numIterations The number of iterations on the full training set. The default value is 100.

optimizer A list specifying either the sgd or adaptive optimization algorithm. This list
can be created using sgd or adaDeltaSgd. The default value is sgd.

netDefinition The Net# definition of the structure of the neural network. For more information
about the Net# language, see Reference Guide

initWtsDiameter

Sets the initial weights diameter that specifies the range from which values are
drawn for the initial learning weights. The weights are initialized randomly from
within this range. The default value is 0.1.

maxNorm Specifies an upper bound to constrain the norm of the incoming weight vector at
each hidden unit. This can be very important in maxout neural networks as well
as in cases where training produces unbounded weights.

acceleration Specifies the type of hardware acceleration to use. Possible values are "sse" and
"gpu". For GPU acceleration, it is recommended to use a miniBatchSize greater
than one. If you want to use the GPU acceleration, there are additional manual
setup steps are required:

• Download and install NVidia CUDA Toolkit 6.5 (CUDA Toolkit).
• Download and install NVidia cuDNN v2 Library (cudnn Library).
• Find the libs directory of the MicrosoftRML package by calling system.file("mxLibs/x64", package = "MicrosoftML").
• Copy cublas64_65.dll, cudart64_65.dll and cusparse64_65.dll from the CUDA

Toolkit 6.5 into the libs directory of the MicrosoftML package.
• Copy cudnn64_65.dll from the cuDNN v2 Library into the libs directory of

the MicrosoftML package.

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-azure-ml-netsharp-reference-guide/
https://developer.nvidia.com/cuda-toolkit-65
https://developer.nvidia.com/rdp/cudnn-archive

62 rxNeuralNet

miniBatchSize Sets the mini-batch size. Recommended values are between 1 and 256. This
parameter is only used when the acceleration is GPU. Setting this parameter to
a higher value improves the speed of training, but it might negatively affect the
accuracy. The default value is 1.

normalize Specifies the type of automatic normalization used:

• "auto": if normalization is needed, it is performed automatically. This is
the default choice.

• "no": no normalization is performed.
• "yes": normalization is performed.
• "warn": if normalization is needed, a warning message is displayed, but

normalization is not performed.

Normalization rescales disparate data ranges to a standard scale. Feature scaling
insures the distances between data points are proportional and enables various
optimization methods such as gradient descent to converge much faster. If nor-
malization is performed, a MaxMin normalizer is used. It normalizes values in
an interval [a, b] where -1 <= a <= 0 and 0 <= b <= 1 and b - a = 1. This
normalizer preserves sparsity by mapping zero to zero.

mlTransforms Specifies a list of MicrosoftML transforms to be performed on the data before
training or NULL if no transforms are to be performed. See featurizeText,
categorical, and categoricalHash, for transformations that are supported.
These transformations are performed after any specified R transformations. The
default value is NULL.

mlTransformVars

Specifies a character vector of variable names to be used in mlTransforms or
NULL if none are to be used. The default value is NULL.

rowSelection Specifies the rows (observations) from the data set that are to be used by the
model with the name of a logical variable from the data set (in quotes) or with a
logical expression using variables in the data set. For example, rowSelection = "old"
will only use observations in which the value of the variable old is TRUE. rowSelection = (age > 20) & (age < 65) & (log(income) > 10)
only uses observations in which the value of the age variable is between 20 and
65 and the value of the log of the income variable is greater than 10. The row
selection is performed after processing any data transformations (see the argu-
ments transforms or transformFunc). As with all expressions, rowSelection
can be defined outside of the function call using the expression function.

transforms An expression of the form list(name = expression,...) that represents the
first round of variable transformations. As with all expressions, transforms (or
rowSelection) can be defined outside of the function call using the expression
function.

transformObjects

A named list that contains objects that can be referenced by transforms, transformsFunc,
and rowSelection.

transformFunc The variable transformation function. See rxTransform for details.

transformVars A character vector of input data set variables needed for the transformation func-
tion. See rxTransform for details.

transformPackages

A character vector specifying additional R packages (outside of those specified
in rxGetOption("transformPackages")) to be made available and preloaded
for use in variable transformation functions. For exmple, those explicitly defined
in RevoScaleR functions via their transforms and transformFunc arguments

rxNeuralNet 63

or those defined implicitly via their formula or rowSelection arguments. The
transformPackages argument may also be NULL, indicating that no packages
outside rxGetOption("transformPackages") are preloaded.

transformEnvir A user-defined environment to serve as a parent to all environments developed
internally and used for variable data transformation. If transformEnvir = NULL,
a new "hash" environment with parent baseenv() is used instead.

blocksPerRead Specifies the number of blocks to read for each chunk of data read from the data
source.

reportProgress An integer value that specifies the level of reporting on the row processing
progress:

• 0: no progress is reported.
• 1: the number of processed rows is printed and updated.
• 2: rows processed and timings are reported.
• 3: rows processed and all timings are reported.

verbose An integer value that specifies the amount of output wanted. If 0, no verbose
output is printed during calculations. Integer values from 1 to 4 provide increas-
ing amounts of information.

computeContext Sets the context in which computations are executed, specified with a valid
RxComputeContext. Currently local and RxInSqlServer compute contexts are
supported.

ensemble Control parameters for ensembling.

... Additional arguments to be passed directly to the Microsoft Compute Engine.

Details

A neural network is a class of prediction models inspired by the human brain. A neural network
can be represented as a weighted directed graph. Each node in the graph is called a neuron. The
neurons in the graph are arranged in layers, where neurons in one layer are connected by a weighted
edge (weights can be 0 or positive numbers) to neurons in the next layer. The first layer is called
the input layer, and each neuron in the input layer corresponds to one of the features. The last layer
of the function is called the output layer. So in the case of binary neural networks it contains two
output neurons, one for each class, whose values are the probabilities of belonging to each class.
The remaining layers are called hidden layers. The values of the neurons in the hidden layers and in
the output layer are set by calculating the weighted sum of the values of the neurons in the previous
layer and applying an activation function to that weighted sum. A neural network model is defined
by the structure of its graph (namely, the number of hidden layers and the number of neurons in
each hidden layer), the choice of activation function, and the weights on the graph edges. The
neural network algorithm tries to learn the optimal weights on the edges based on the training data.

Although neural networks are widely known for use in deep learning and modeling complex prob-
lems such as image recognition, they are also easily adapted to regression problems. Any class of
statistical models can be considered a neural network if they use adaptive weights and can approxi-
mate non-linear functions of their inputs. Neural network regression is especially suited to problems
where a more traditional regression model cannot fit a solution.

Value

• rxNeuralNet: an rxNeuralNet object with the trained model.

• NeuralNet: a learner specification object of class maml for the Neural Net trainer.

64 rxNeuralNet

Note

This algorithm is single-threaded and will not attempt to load the entire dataset into memory.

Author(s)

Microsoft Corporation Microsoft Technical Support

References

Wikipedia: Artificial neural network

See Also

rxFastTrees, rxFastForest, rxFastLinear, rxLogisticRegression, rxOneClassSvm, featurizeText,
categorical, categoricalHash, rxPredict.mlModel.

Examples

Estimate a binary neural net
rxNeuralNet1 <- rxNeuralNet(isCase ~ age + parity + education + spontaneous + induced,

transforms = list(isCase = case == 1),
data = infert)

Score to a data frame
scoreDF <- rxPredict(rxNeuralNet1, data = infert,

extraVarsToWrite = "isCase",
outData = NULL) # return a data frame

Compute and plot the Radio Operator Curve and AUC
roc1 <- rxRoc(actualVarName = "isCase", predVarNames = "Probability", data = scoreDF)
plot(roc1)
rxAuc(roc1)

###
Regression neural net

Create an xdf file with the attitude data
myXdf <- tempfile(pattern = "tempAttitude", fileext = ".xdf")
rxDataStep(attitude, myXdf, rowsPerRead = 50, overwrite = TRUE)
myXdfDS <- RxXdfData(file = myXdf)

attitudeForm <- rating ~ complaints + privileges + learning +
raises + critical + advance

Estimate a regression neural net
res2 <- rxNeuralNet(formula = attitudeForm, data = myXdfDS,

type = "regression")

Score to data frame
scoreOut2 <- rxPredict(res2, data = myXdfDS,

extraVarsToWrite = "rating")

Plot the rating versus the score with a regression line
rxLinePlot(rating~Score, type = c("p","r"), data = scoreOut2)

Clean up

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409
http://en.wikipedia.org/wiki/Artificial_neural_network

rxOneClassSvm 65

file.remove(myXdf)

###
Multi-class neural net
multiNN <- rxNeuralNet(

formula = Species~Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
type = "multiClass", data = iris)

scoreMultiDF <- rxPredict(multiNN, data = iris,
extraVarsToWrite = "Species", outData = NULL)

Print the first rows of the data frame with scores
head(scoreMultiDF)
Compute % of incorrect predictions
badPrediction = scoreMultiDF$Species != scoreMultiDF$PredictedLabel
sum(badPrediction)*100/nrow(scoreMultiDF)
Look at the observations with incorrect predictions
scoreMultiDF[badPrediction,]

rxOneClassSvm OneClass SVM

Description

Machine Learning One Class Support Vector Machines

Usage

rxOneClassSvm(formula = NULL, data, cacheSize = 100, kernel = rbfKernel(),
epsilon = 0.001, nu = 0.1, shrink = TRUE, normalize = "auto",
mlTransforms = NULL, mlTransformVars = NULL, rowSelection = NULL,
transforms = NULL, transformObjects = NULL, transformFunc = NULL,
transformVars = NULL, transformPackages = NULL, transformEnvir = NULL,
blocksPerRead = rxGetOption("blocksPerRead"),
reportProgress = rxGetOption("reportProgress"), verbose = 1,
computeContext = rxGetOption("computeContext"),
ensemble = ensembleControl(), ...)

Arguments

formula The formula as described in rxFormula. Interaction terms and F() are not cur-
rently supported in the MicrosoftML.

data A data source object or a character string specifying a ‘.xdf’ file or a data frame
object.

cacheSize The maximal size in MB of the cache that stores the training data. Increase this
for large training sets. The default value is 100 MB.

kernel A character string representing the kernel used for computing inner products.
For more information, see maKernel. The following choices are available:

• rbfKernel(): Radial basis function kernel. It’s parameter representsgamma
in the term exp(-gamma|x-y|^2. If not specified, it defaults to 1 divided
by the number of features used. For example, rbfKernel(gamma = .1).
This is the default value.

• linearKernel(): Linear kernel.

66 rxOneClassSvm

• polynomialKernel(): Polynomial kernel with parameter names a, bias,
and deg in the term (a*<x,y> + bias)^deg. The bias, defaults to 0. The
degree, deg, defaults to 3. If a is not specified, it is set to 1 divided by the
number of features. For example, maKernelPoynomial(bias = 0, deg =
3).

• sigmoidKernel(): Sigmoid kernel with parameter names gamma and coef0
in the term tanh(gamma*<x,y> + coef0). gamma, defaults to to 1 divided
by the number of features. The parameter coef0 defaults to 0. For example,
sigmoidKernel(gamma = .1, coef0 = 0).

epsilon The threshold for optimizer convergence. If the improvement between iterations
is less than the threshold, the algorithm stops and returns the current model. The
value must be greater than or equal to .Machine$double.eps. The default value
is 0.001.

nu The trade-off between the fraction of outliers and the number of support vectors
(represented by the Greek letter nu). Must be between 0 and 1, typically between
0.1 and 0.5. The default value is 0.1.

shrink Uses the shrinking heuristic if TRUE. In this case, some samples will be "shrunk"
during the training procedure, which may speed up training. The default value
is TRUE.

normalize Specifies the type of automatic normalization used:

• "auto": if normalization is needed, it is performed automatically. This is
the default choice.

• "no": no normalization is performed.
• "yes": normalization is performed.
• "warn": if normalization is needed, a warning message is displayed, but

normalization is not performed.

Normalization rescales disparate data ranges to a standard scale. Feature scaling
insures the distances between data points are proportional and enables various
optimization methods such as gradient descent to converge much faster. If nor-
malization is performed, a MaxMin normalizer is used. It normalizes values in
an interval [a, b] where -1 <= a <= 0 and 0 <= b <= 1 and b - a = 1. This
normalizer preserves sparsity by mapping zero to zero.

mlTransforms Specifies a list of MicrosoftML transforms to be performed on the data before
training or NULL if no transforms are to be performed. See featurizeText,
categorical, and categoricalHash, for transformations that are supported.
These transformations are performed after any specified R transformations. The
default value is NULL.

mlTransformVars

Specifies a character vector of variable names to be used in mlTransforms or
NULL if none are to be used. The default value is NULL.

rowSelection Specifies the rows (observations) from the data set that are to be used by the
model with the name of a logical variable from the data set (in quotes) or with a
logical expression using variables in the data set. For example, rowSelection = "old"
will only use observations in which the value of the variable old is TRUE. rowSelection = (age > 20) & (age < 65) & (log(income) > 10)
only uses observations in which the value of the age variable is between 20 and
65 and the value of the log of the income variable is greater than 10. The row
selection is performed after processing any data transformations (see the argu-
ments transforms or transformFunc). As with all expressions, rowSelection
can be defined outside of the function call using the expression function.

rxOneClassSvm 67

transforms An expression of the form list(name = expression,...) that represents the
first round of variable transformations. As with all expressions, transforms (or
rowSelection) can be defined outside of the function call using the expression
function.

transformObjects

A named list that contains objects that can be referenced by transforms, transformsFunc,
and rowSelection.

transformFunc The variable transformation function. See rxTransform for details.
transformVars A character vector of input data set variables needed for the transformation func-

tion. See rxTransform for details.
transformPackages

A character vector specifying additional R packages (outside of those specified
in rxGetOption("transformPackages")) to be made available and preloaded
for use in variable transformation functions. For exmple, those explicitly defined
in RevoScaleR functions via their transforms and transformFunc arguments
or those defined implicitly via their formula or rowSelection arguments. The
transformPackages argument may also be NULL, indicating that no packages
outside rxGetOption("transformPackages") are preloaded.

transformEnvir A user-defined environment to serve as a parent to all environments developed
internally and used for variable data transformation. If transformEnvir = NULL,
a new "hash" environment with parent baseenv() is used instead.

blocksPerRead Specifies the number of blocks to read for each chunk of data read from the data
source.

reportProgress An integer value that specifies the level of reporting on the row processing
progress:

• 0: no progress is reported.
• 1: the number of processed rows is printed and updated.
• 2: rows processed and timings are reported.
• 3: rows processed and all timings are reported.

verbose An integer value that specifies the amount of output wanted. If 0, no verbose
output is printed during calculations. Integer values from 1 to 4 provide increas-
ing amounts of information.

computeContext Sets the context in which computations are executed, specified with a valid
RxComputeContext. Currently local and RxInSqlServer compute contexts are
supported.

ensemble Control parameters for ensembling.
... Additional arguments to be passed directly to the Microsoft Compute Engine.

Details

detection is to identify outliers that do not belong to some target class. This type of SVM is one-
class because the training set contains only examples from the target class. It infers what properties
are normal for the objects in the target class and from these properties predicts which examples are
unlike the normal examples. This is useful for anomaly detection because the scarcity of training
examples is the defining character of anomalies: typically there are very few examples of network
intrusion, fraud, or other types of anomalous behavior.

Value

• rxOneClassSvm: A rxOneClassSvm object with the trained model.
• OneClassSvm: A learner specification object of class maml for the OneClass Svm trainer.

68 rxOneClassSvm

Note

This algorithm is single-threaded and will always attempt to load the entire dataset into memory.

Author(s)

Microsoft Corporation Microsoft Technical Support

References

Wikipedia: Anomaly detection

Microsoft Azure Machine Learning Studio: One-Class Support Vector Machine

Estimating the Support of a High-Dimensional Distribution

New Support Vector Algorithms

LIBSVM: A Library for Support Vector Machines

See Also

rbfKernel, linearKernel, polynomialKernel, sigmoidKernel rxFastTrees, rxFastForest,
rxFastLinear, rxLogisticRegression, rxNeuralNet, featurizeText, categorical, categoricalHash,
rxPredict.mlModel.

Examples

Estimate a One-Class SVM model
trainRows <- c(1:30, 51:80, 101:130)
testRows = !(1:150 %in% trainRows)
trainIris <- iris[trainRows,]
testIris <- iris[testRows,]

svmModel <- rxOneClassSvm(
formula = ~Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
data = trainIris)

Add additional non-iris data to the test data set
testIris$isIris <- 1
notIris <- data.frame(

Sepal.Length = c(2.5, 2.6),
Sepal.Width = c(.75, .9),
Petal.Length = c(2.5, 2.5),
Petal.Width = c(.8, .7),
Species = c("not iris", "not iris"),
isIris = 0)

testIris <- rbind(testIris, notIris)

scoreDF <- rxPredict(svmModel,
data = testIris, extraVarsToWrite = "isIris")

Look at the last few observations
tail(scoreDF)
Look at average scores conditioned by 'isIris'
rxCube(Score ~ F(isIris), data = scoreDF)

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409
https://en.wikipedia.org/wiki/Anomaly_detection
https://msdn.microsoft.com/en-us/library/azure/dn913103.aspx
http://research.microsoft.com/pubs/69731/tr-99-87.pdf
http://www.stat.purdue.edu/~yuzhu/stat598m3/Papers/NewSVM.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf

rxPredict.mlModel 69

rxPredict.mlModel Score using a Microsoft R Machine Learning model

Description

Reports per-instance scoring results in a data frame or RevoScaleR data source using a trained
Microsoft R Machine Learning model with a RevoScaleR data source.

Usage

S3 method for class 'mlModel'
rxPredict(modelObject, data, outData = NULL,
writeModelVars = FALSE, extraVarsToWrite = NULL, suffix = NULL,
overwrite = FALSE, dataThreads = NULL,
blocksPerRead = rxGetOption("blocksPerRead"),
reportProgress = rxGetOption("reportProgress"), verbose = 1,
computeContext = rxGetOption("computeContext"), ...)

Arguments

modelObject A model information object returned from a MicrosoftML model. For example,
an object returned from rxFastTrees or rxLogisticRegression.

data A RevoScaleR data source object, a data frame, or the path to a .xdf file.

outData Output text or xdf file name or an RxDataSource with write capabilities in which
to store predictions. If NULL, a data frame is returned. The default value is NULL.

writeModelVars If TRUE, variables in the model are written to the output data set in addition to
the scoring variables. If variables from the input data set are transformed in the
model, the transformed variables are also included. The default value is FALSE.

extraVarsToWrite

NULL or character vector of additional variables names from the input data to in-
clude in the outData. If writeModelVars is TRUE, model variables are included
as well. The default value is NULL.

suffix A character string specifying suffix to append to the created scoring variable(s)
or NULL in there is no suffix. The default value is NULL.

overwrite If TRUE, an existing outData is overwritten; if FALSE an existing outData is not
overwritten. The default value is FALSE.

dataThreads An integer specifying the desired degree of parallelism in the data pipeline. If
NULL, the number of threads used is determined internally. The default value is
NULL.

blocksPerRead Specifies the number of blocks to read for each chunk of data read from the data
source.

reportProgress An integer value that specifies the level of reporting on the row processing
progress:

• 0: no progress is reported.
• 1: the number of processed rows is printed and updated.
• 2: rows processed and timings are reported.
• 3: rows processed and all timings are reported.

70 rxPredict.mlModel

The default value is 1.

verbose An integer value that specifies the amount of output wanted. If 0, no verbose
output is printed during calculations. Integer values from 1 to 4 provide increas-
ing amounts of information. The default value is 1.

computeContext Sets the context in which computations are executed, specified with a valid
RxComputeContext. Currently local and RxInSqlServer compute contexts are
supported.

... Additional arguments to be passed directly to the Microsoft Compute Engine.

Details

The following items are reported in the output by default: scoring on three variables for the binary
classifiers: PredictedLabel, Score, and Probability; the Score for oneClassSvm and regression clas-
sifiers; PredictedLabel for Multi-class classifiers, plus a variable for each category prepended by
the Score.

Value

A data frame or an RxDataSource object representing the created output data. By default, output
from scoring binary classifiers include three variables: PredictedLabel, Score, and Probability;
rxOneClassSvm and regression include one variable: Score; and multi-class classifiers include
PredictedLabel plus a variable for each category prepended by Score. If a suffix is provided, it
is added to the end of these output variable names.

Author(s)

Microsoft Corporation Microsoft Technical Support

See Also

rxFastTrees, rxFastForest, rxLogisticRegression, rxNeuralNet, rxOneClassSvm.

Examples

Estimate a logistic regression model
infert1 <- infert
infert1$isCase <- (infert1$case == 1)
myModelInfo <- rxLogisticRegression(formula = isCase ~ age + parity + education + spontaneous + induced,

data = infert1)

Create an xdf file with per-instance results using rxPredict
xdfOut <- tempfile(pattern = "scoreOut", fileext = ".xdf")
scoreDS <- rxPredict(myModelInfo, data = infert1,

outData = xdfOut, overwrite = TRUE,
extraVarsToWrite = c("isCase", "Probability"))

Summarize results with an ROC curve
rxRocCurve(actualVarName = "isCase", predVarNames = "Probability", data = scoreDS)

Use the built-in data set 'airquality' to create test and train data
DF <- airquality[!is.na(airquality$Ozone),]
DF$Ozone <- as.numeric(DF$Ozone)
set.seed(12)

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409

selectColumns 71

randomSplit <- rnorm(nrow(DF))
trainAir <- DF[randomSplit >= 0,]
testAir <- DF[randomSplit < 0,]
airFormula <- Ozone ~ Solar.R + Wind + Temp

Regression Fast Tree for train data
fastTreeReg <- rxFastTrees(airFormula, type = "regression",

data = trainAir)

Put score and model variables in data frame, including the model variables
Add the suffix "Pred" to the new variable
fastTreeScoreDF <- rxPredict(fastTreeReg, data = testAir,

writeModelVars = TRUE, suffix = "Pred")

rxGetVarInfo(fastTreeScoreDF)

Clean-up
file.remove(xdfOut)

selectColumns Selects a set of columns, dropping all others

Description

Selects a set of columns to retrain, dropping all others.

Usage

selectColumns(vars, ...)

Arguments

vars Specifiies character vector or list of the names of the variables to keep.

... Additional arguments sent to compute engine.

Value

A maml object defining the transform.

Author(s)

Microsoft Corporation Microsoft Technical Support

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409

72 selectFeatures

selectFeatures Machine Learning Feature Selection Transform

Description

The feature selection transform selects features from the specified variables using the specified
mode.

Usage

selectFeatures(vars, mode, ...)

Arguments

vars A formula or a vector/list of strings specifying the name of variables upon which
the feature selection is performed, if the mode is minCount(). For example,
~ var1 + var2 + var3. If mode is mutualInformation(), a formula or a named
list of strings describing the dependent variable and the independent variables.
For example, label ~ var1 + var2 + var3.

mode Specifies the mode of feature selection. This can be either minCount or mutualInformation.

... Additional arguments to be passed directly to the Microsoft Compute Engine.

Details

The feature selection transform selects features from the specified variables using one of the two
modes: count or mutual information. For more information, see minCount and mutualInformation.

Value

A maml object defining the transform.

See Also

minCount mutualInformation

Examples

trainReviews <- data.frame(review = c(
"This is great",
"I hate it",
"Love it",
"Do not like it",
"Really like it",
"I hate it",
"I like it a lot",
"I kind of hate it",
"I do like it",
"I really hate it",
"It is very good",
"I hate it a bunch",
"I love it a bunch",
"I hate it",

stopwordsDefault 73

"I like it very much",
"I hate it very much.",
"I really do love it",
"I really do hate it",
"Love it!",
"Hate it!",
"I love it",
"I hate it",
"I love it",
"I hate it",
"I love it"),

like = c(TRUE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, FALSE, TRUE), stringsAsFactors = FALSE

)

testReviews <- data.frame(review = c(
"This is great",
"I hate it",
"Love it",
"Really like it",
"I hate it",
"I like it a lot",
"I love it",
"I do like it",
"I really hate it",
"I love it"), stringsAsFactors = FALSE)

Use a categorical hash transform which generated 128 features.
outModel1 <- rxLogisticRegression(like~reviewCatHash, data = trainReviews, l1Weight = 0,

mlTransforms = list(categoricalHash(vars = c(reviewCatHash = "review"), hashBits = 7)))
summary(outModel1)

Apply a categorical hash transform and a count feature selection transform
which selects only those hash slots that has value.
outModel2 <- rxLogisticRegression(like~reviewCatHash, data = trainReviews, l1Weight = 0,

mlTransforms = list(
categoricalHash(vars = c(reviewCatHash = "review"), hashBits = 7),
selectFeatures("reviewCatHash", mode = minCount())))
summary(outModel2)

Apply a categorical hash transform and a mutual information feature selection transform
which selects only 10 features with largest mutual information with the label.
outModel3 <- rxLogisticRegression(like~reviewCatHash, data = trainReviews, l1Weight = 0,

mlTransforms = list(
categoricalHash(vars = c(reviewCatHash = "review"), hashBits = 7),
selectFeatures(like ~ reviewCatHash, mode = mutualInformation(numFeaturesToKeep = 10))))
summary(outModel3)

stopwordsDefault Machine Learning Text Transform

Description

Text transforms that can be performed on data before training a model.

74 stopwordsDefault

Usage

stopwordsDefault()

stopwordsCustom(dataFile = "")

termDictionary(terms = "", dataFile = "", sort = "occurrence")

featurizeText(vars, language = "English", stopwordsRemover = NULL,
case = "lower", keepDiacritics = FALSE, keepPunctuations = TRUE,
keepNumbers = TRUE, dictionary = NULL,
wordFeatureExtractor = ngramCount(), charFeatureExtractor = NULL,
vectorNormalizer = "l2", ...)

Arguments

dataFile character: <string>. Data file containing the terms (short form data).

terms An optional character vector of terms or categories.

sort Specifies how to order items when vectorized. Two orderings are supported:

• "occurrence": items appear in the order encountered.
• "value": items are sorted according to their default comparison. For ex-

ample, text sorting will be case sensitive (e.g., ’A’ then ’Z’ then ’a’).

vars A named list of character vectors of input variable names and the name of the
output variable. Note that the input variables must be of the same type. For one-
to-one mappings between input and output variables, a named character vector
can be used.

language Secifies the language used in the data set. The following values are supported:

• "AutoDetect": for automatic language detection.
• "English".
• "French".
• "German".
• "Dutch".
• "Italian".
• "Spanish".
• "Japanese".

stopwordsRemover

Specifies the stopwords remover to use. There are three options supported:

• NULL No stopwords remover is used.
• stopwordsDefault: A precompiled language-specific lists of stop words

is used that includes the most common words from Microsoft Office.
• stopwordsCustom: A user-defined list of stopwords. It accepts the follow-

ing option: dataFile.

The default value is NULL.

case Text casing using the rules of the invariant culture. Takes the following values:

• "lower".
• "upper".
• "none".

The default value is "lower".

stopwordsDefault 75

keepDiacritics FALSE to remove diacritical marks; TRUE to retain diacritical marks. The default
value is FALSE.

keepPunctuations

FALSE to remove punctuation; TRUE to retain punctuation. The default value is
TRUE.

keepNumbers FALSE to remove numbers; TRUE to retain numbers. The default value is TRUE.

dictionary A termDictionary of whitelisted terms which accepts the following options:

• terms,
• dataFile, and
• sort.

The default value is NULL. Note that the stopwords list takes precedence over the
dictionary whitelist as the stopwords are removed before the dictionary terms
are whitelisted.

wordFeatureExtractor

Specifies the word feature extraction arguments. There are two different feature
extraction mechanisms:

• ngramCount: Count-based feature extraction (equivalent to WordBag). It
accepts the following options: maxNumTerms and weighting.

• ngramHash: Hashing-based feature extraction (equivalent to WordHash-
Bag). It accepts the following options: hashBits, seed, ordered and
invertHash.

The default value is ngramCount.
charFeatureExtractor

Specifies the char feature extraction arguments. There are two different feature
extraction mechanisms:

• ngramCount: Count-based feature extraction (equivalent to WordBag). It
accepts the following options: maxNumTerms and weighting.

• ngramHash: Hashing-based feature extraction (equivalent to WordHash-
Bag). It accepts the following options: hashBits, seed, ordered and
invertHash.

The default value is NULL.
vectorNormalizer

Normalize vectors (rows) individually by rescaling them to unit norm. Takes
one of the following values:

• "none".
• "l2".
• "l1".
• "linf".

The default value is "l2".

... Additional arguments sent to the compute engine.

Details

The featurizeText transform produces a bag of counts of sequences of consecutive words, called
n-grams, from a given corpus of text. There are two ways it can do this:

• build a dictionary of n-grams and use the id in the dictionary as the index in the bag;

• hash each n-gram and use the hash value as the index in the bag.

76 stopwordsDefault

The purpose of hashing is to convert variable-length text documents into equal-length numeric
feature vectors, to support dimensionality reduction and to make the lookup of feature weights
faster.

The text transform is applied to text input columns. It offers language detection, tokenization,
stopwords removing, text normalization and feature generation. It supports the following languages
by default: English, French, German, Dutch, Italian, Spanish and Japanese.

The n-grams are represented as count vectors, with vector slots corresponding either to n-grams
(created using ngramCount) or to their hashes (created using ngramHash). Embedding ngrams in
a vector space allows their contents to be compared in an efficient manner. The slot values in the
vector can be weighted by the following factors:

• term frequency - The number of occurrences of the slot in the text

• inverse document frequency - A ratio (the logarithm of inverse relative slot frequency) that
measures the information a slot provides by determining how common or rare it is across the
entire text.

• term frequency-inverse document frequency - the product term frequency and the inverse doc-
ument frequency.

Value

A maml object defining the transform.

Author(s)

Microsoft Corporation Microsoft Technical Support

See Also

ngramCount, ngramHash, rxFastTrees, rxFastForest, rxNeuralNet, rxOneClassSvm, rxLogisticRegression.

Examples

trainReviews <- data.frame(review = c(
"This is great",
"I hate it",
"Love it",
"Do not like it",
"Really like it",
"I hate it",
"I like it a lot",
"I kind of hate it",
"I do like it",
"I really hate it",
"It is very good",
"I hate it a bunch",
"I love it a bunch",
"I hate it",
"I like it very much",
"I hate it very much.",
"I really do love it",
"I really do hate it",
"Love it!",
"Hate it!",
"I love it",

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409

summary.mlModel 77

"I hate it",
"I love it",
"I hate it",
"I love it"),

like = c(TRUE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, FALSE, TRUE), stringsAsFactors = FALSE

)

testReviews <- data.frame(review = c(
"This is great",
"I hate it",
"Love it",
"Really like it",
"I hate it",
"I like it a lot",
"I love it",
"I do like it",
"I really hate it",
"I love it"), stringsAsFactors = FALSE)

outModel <- rxLogisticRegression(like ~ reviewTran, data = trainReviews,
mlTransforms = list(featurizeText(vars = c(reviewTran = "review"),
stopwordsRemover = stopwordsDefault(), keepPunctuations = FALSE)))

'hate' and 'love' have non-zero weights
summary(outModel)

Use the model to score
scoreOutDF5 <- rxPredict(outModel, data = testReviews,

extraVarsToWrite = "review")
scoreOutDF5

summary.mlModel Summary of a Microsoft R Machine Learning model.

Description

Summary of a Microsoft R Machine Learning model.

Usage

S3 method for class 'mlModel'
summary(object, top = 20, ...)

Arguments

object A model object returned from a MicrosoftML analysis.
top Specifies the count of top coefficients to show in the summary for linear models

such as rxLogisticRegression and rxFastLinear. The bias appears first,
followed by other weights, sorted by their absolute values in descending order.
If set to NULL, all non-zero coefficients are shown. Otherwise, only the first top
coefficients are shown.

... Additional arguments to be passed to the summary method.

78 summary.mlModel

Details

Provides summary information about the original function call, the data set used to train the model,
and statistics for coefficients in the model.

Value

The summary method of the MicrosoftML analysis objects returns a list that includes the original
function call and the underlying parameters used. The coef method returns a named vector of
weights, processing information from the model object.

For rxLogisticRegression, the following statistics may also present in the summary when showTrainingStats
is set to TRUE.

training.size The size, in terms of row count, of the data set used to train the model.

deviance The model deviance is given by -2 * ln(L) where L is the likelihood of ob-
taining the observations with all features incorporated in the model.

null.deviance The null deviance is given by -2 * ln(L0) where L0 is the likelihood of obtain-
ing the observations with no effect from the features. The null model includes
the bias if there is one in the model.

aic The AIC (Akaike Information Criterion) is defined as 2 * k + deviance, where
k is the number of coefficients of the model. The bias counts as one of the coef-
ficients. The AIC is a measure of the relative quality of the model. It deals with
the trade-off between the goodness of fit of the model (measured by deviance)
and the complexity of the model (measured by number of coefficients).

coefficients.stats

This is a data frame containing the statistics for each coefficient in the model.
For each coefficient, the following statistics are shown. The bias appears in the
first row, and the remaining coefficients in the ascending order of p-value.

• EstimateThe estimated coefficient value of the model.
• Std ErrorThis is the square root of the large-sample variance of the estimate

of the coefficient.
• z-ScoreWe can test against the null hypothesis, which states that the co-

efficient should be zero, concerning the significance of the coefficient by
calculating the ratio of its estimate and its standard error. Under the null
hypothesis, if there is no regularization applied, the estimate of the con-
cerning coefficient follows a normal distribution with mean 0 and a standard
deviation equal to the standard error computed above. The z-score outputs
the ratio between the estimate of a coefficient and the standard error of the
coefficient.

• Pr(>|z|)This is the corresponding p-value for the two-sided test of the z-
score. Based on the significance level, a significance indicator is appended
to the p-value. If F(x) is the CDF of the standard normal distribution
N(0, 1), then P(>|z|) = 2 -2 * F(|z|).

Author(s)

Microsoft Corporation Microsoft Technical Support

See Also

rxFastTrees, rxFastForest, rxFastLinear, rxOneClassSvm, rxNeuralNet, rxLogisticRegression.

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409

tlcBinaryNeuralNetwork 79

Examples

Estimate a logistic regression model
logitModel <- rxLogisticRegression(isCase ~ age + parity + education + spontaneous + induced,

transforms = list(isCase = case == 1),
data = infert)

Print a summary of the model
summary(logitModel)

Score to a data frame
scoreDF <- rxPredict(logitModel, data = infert,

extraVarsToWrite = "isCase")

Compute and plot the Radio Operator Curve and AUC
roc1 <- rxRoc(actualVarName = "isCase", predVarNames = "Probability", data = scoreDF)
plot(roc1)
rxAuc(roc1)

###
Multi-class logistic regression
testObs <- rnorm(nrow(iris)) > 0
testIris <- iris[testObs,]
trainIris <- iris[!testObs,]
multiLogit <- rxLogisticRegression(

formula = Species~Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
type = "multiClass", data = trainIris)

Score the model
scoreMultiDF <- rxPredict(multiLogit, data = testIris,

extraVarsToWrite = "Species")
Print the first rows of the data frame with scores
head(scoreMultiDF)
Look at confusion matrix
table(scoreMultiDF$Species, scoreMultiDF$PredictedLabel)

Look at the observations with incorrect predictions
badPrediction = scoreMultiDF$Species != scoreMultiDF$PredictedLabel
scoreMultiDF[badPrediction,]

tlcBinaryNeuralNetwork

BinaryClassifierTrainer, Trainer: ’BinaryNeuralNetwork’

Description

A binary neural network is a binary classification algorithm that uses neural network with two
outputs to predict a certain binary value. TLC supports various types of neural networks, including
deep neural networks (DNNs) and convolutional neural networks (CNN) via Net# language.

Usage

tlcBinaryNeuralNetwork(lossFunction = "CrossEntropy",
defaultHiddenNodes = 100, netFileName = "", numIterations = 100,
displayRefresh = 1, optimizationAlgorithm = "sgd",

80 tlcBinaryNeuralNetwork

initWtsDiameter = 0.1, maxNorm = 0, earlyStoppingRule = list(),
earlyStoppingMetrics = 0, pruning = FALSE, pruningFactor = 0.01,
pruningRounds = 10, pruningRoundIterations = 5, acceleration = "avx",
preTrainerType = "NoPreTrainer", preTrainingEpoch = NULL,
miniBatchSize = 1, shuffle = TRUE, inputDropoutRate = 0,
hiddenDropoutRate = 0, netDefinition = "")

Arguments

lossFunction list: <name><options>. Loss function Default value:’CrossEntropy’ (short form
loss)

defaultHiddenNodes

integer: <int>. Default number of hidden nodes Default value:’100’ (short form
hidden)

netFileName character: <string>. Net file name (short form filename)

numIterations integer: <int>. Number of training iterations Default value:’100’ (short form
iter)

displayRefresh integer: <int>. Display refresh frequency in number iterations Default value:’1’
(short form refresh)

optimizationAlgorithm

list: <name><options>. Optimization algorithm (Adadelta or SGD) Default
value:’sgd’ (short form algo)

initWtsDiameter

double: <float>. Init weights diameter Default value:’0.1’ (short form initwts)

maxNorm double: <float>. Constrains the norm of incoming weights of a node Default
value:’0’

earlyStoppingRule

list: <name><options>. Early stopping rule (short form esr)
earlyStoppingMetrics

integer: <int>. Early stopping metrics Default value:’0’ (short form esmt)

pruning logical: [+|-]. Enable post-training pruning (Optimal Brain Damage) Default
value:’-’ (short form prune)

pruningFactor double: <float>. Pruning factor: % of weights removed each pruning iteration
Default value:’0.01’ (short form prunefact)

pruningRounds integer: <int>. Number of pruning rounds Default value:’10’ (short form pruner-
ound)

pruningRoundIterations

integer: <int>. Number of pruning round iterations Default value:’5’ (short form
pruneiter)

acceleration list: <name><options>. Hardware acceleration level Default value:’avx’ (short
form accel)

preTrainerType character: [NoPreTrainer|Greedy]. Net Pre-Trainer Default value:’NoPreTrainer’
(short form pretrain)

preTrainingEpoch

integer: <int>. Number of epochs for pre-training. If not set, defaults to numIt-
erations(iter). (short form prepoch)

miniBatchSize integer: <int>. Mini-batch size Default value:’1’ (short form mbsize)

shuffle logical: [+|-]. Whether to shuffle for each training iteration Default value:’+’
(short form shuf)

tlcBinaryNeuralNetwork 81

inputDropoutRate

double: <float>. Input dropout rate Default value:’0’ (short form idrop)
hiddenDropoutRate

double: <float>. Hidden dropout rate Default value:’0’ (short form hdrop)

netDefinition character: <string>. Neural network definition (short form net)

... : . hidden arguments

Value

a character string defining: BinaryNeuralNetwork (BinaryClassifierTrainer, Trainer).

Author(s)

Microsoft Corporation

References

https://microsoft.sharepoint.com/teams/TLC

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

The function is currently defined as
function (lossFunction = "CrossEntropy", defaultHiddenNodes = 100,

netFileName = "", numIterations = 100, displayRefresh = 1,
optimizationAlgorithm = "sgd", initWtsDiameter = 0.1, maxNorm = 0,
earlyStoppingRule = list(), earlyStoppingMetrics = 0, pruning = FALSE,
pruningFactor = 0.01, pruningRounds = 10, pruningRoundIterations = 5,
acceleration = "avx", preTrainerType = "NoPreTrainer", preTrainingEpoch = NULL,
miniBatchSize = 1, shuffle = TRUE, inputDropoutRate = 0,
hiddenDropoutRate = 0, netDefinition = "", ...)

{
params <- character()
params <- mluPasteArg(lossFunction, "list", params)
params <- mluPasteArg(defaultHiddenNodes, "integer", params)
params <- mluPasteArg(netFileName, "character", params)
params <- mluPasteArg(numIterations, "integer", params)
params <- mluPasteArg(displayRefresh, "integer", params)
params <- mluPasteArg(optimizationAlgorithm, "list", params)
params <- mluPasteArg(initWtsDiameter, "double", params)
params <- mluPasteArg(maxNorm, "double", params)
params <- mluPasteArg(earlyStoppingRule, "list", params)
params <- mluPasteArg(earlyStoppingMetrics, "integer", params)
params <- mluPasteArg(pruning, "logical", params)
params <- mluPasteArg(pruningFactor, "double", params)
params <- mluPasteArg(pruningRounds, "integer", params)
params <- mluPasteArg(pruningRoundIterations, "integer", params)
params <- mluPasteArg(acceleration, "list", params)
params <- mluPasteArg(preTrainerType, "character", params)
params <- mluPasteArg(preTrainingEpoch, "integer", params)
params <- mluPasteArg(miniBatchSize, "integer", params)
params <- mluPasteArg(shuffle, "logical", params)

https://microsoft.sharepoint.com/teams/TLC

82 tlcFastForestClassification

params <- mluPasteArg(inputDropoutRate, "double", params)
params <- mluPasteArg(hiddenDropoutRate, "double", params)
params <- mluPasteArg(netDefinition, "character", params)
dotargs <- list(...)
for (arg in names(dotargs)) {

params <- mluPasteArg(dotargs[[arg]], "", params, arg)
}
params <- sprintf("BinaryNeuralNetwork{%s}", params)
return(structure(params, class = c("BinaryNeuralNetwork",

"BinaryClassifierTrainer", "maml", "character")))
}

tlcFastForestClassification

BinaryClassifierTrainer, Trainer: ’FastForestClassification’

Description

Uses a random forest learner to perform binary classification.

Usage

tlcFastForestClassification(featureFraction = 0.7,
baggingTrainFraction = 0.7, splitFraction = 0.7, numThreads = 8,
rngSeed = 123, entropyCoefficient = 0, histogramPoolSize = -1,
diskTranspose = FALSE, maxBins = 255, sparsifyThreshold = 0.7,
featureFirstUsePenalty = 0, featureReusePenalty = 0,
gainConfidenceLevel = 0, softmaxTemperature = 0, executionTimes = FALSE,
numLeaves = 20, minDocumentsInLeafs = 10, numTrees = 100,
smoothing = 0, testFrequency = 2147483647, baggingSize = 1)

Arguments

featureFraction

double: <float>. The fraction of features (chosen randomly) to use on each
iteration Default value:’0.7’ (short form ff)

baggingTrainFraction

double: <float>. The fraction of Instances (chosen randomly) to use on each
iteration Default value:’0.7’ (short form bagfrac)

splitFraction double: <float>. The fraction of features (chosen randomly) to use on each split
Default value:’0.7’ (short form sf)

numThreads integer: <int>. The number of threads to use Default value:’8’ (short form t)

rngSeed integer: <int>. The seed of the random number generator Default value:’123’
(short form r1)

entropyCoefficient

double: <float>. The entropy (regularization) coefficient between 0 and 1 De-
fault value:’0’ (short form e)

histogramPoolSize

integer: <int>. The number of histograms in the pool (between 2 and num-
Leaves) Default value:’-1’ (short form ps)

tlcFastForestClassification 83

diskTranspose logical: [+|-]. Whether to utilize the disk when performing the transpose Default
value:’-’ (short form dt)

maxBins integer: <int>. Maximum number of distinct values (bins) per feature Default
value:’255’ (short form mb)

sparsifyThreshold

double: <float>. Sparsity level needed to use sparse feature representation De-
fault value:’0.7’ (short form sp)

featureFirstUsePenalty

double: <float>. The feature first use penalty coefficient Default value:’0’ (short
form ffup)

featureReusePenalty

double: <float>. The feature re-use penalty (regularization) coefficient Default
value:’0’ (short form frup)

gainConfidenceLevel

double: <float>. Tree fitting gain confidence requirement (should be in the range
[0,1)). Default value:’0’ (short form gainconf)

softmaxTemperature

double: <float>. The temperature of the randomized softmax distribution for
choosing the feature Default value:’0’ (short form smtemp)

executionTimes logical: [+|-]. Print execution time breakdown to stdout Default value:’-’ (short
form et)

numLeaves integer: <int>. The max number of leaves in each regression tree Default
value:’20’ (short form nl)

minDocumentsInLeafs

integer: <int>. The minimal number of documents allowed in a leaf of a regres-
sion tree, out of the subsampled data Default value:’10’ (short form mil)

numTrees integer: <int>. Number of weak hypotheses in the ensemble Default value:’100’
(short form iter)

smoothing double: <float>. Smoothing paramter for tree regularization Default value: ’0.0’
(short form s)

testFrequency integer: <int>. Calculate metric values for train/valid/test every k rounds Default
value: ’2147483647’ (short form tf)

baggingSize integer: <int>. Number of trees in each bag (0 for disabling bagging) Default
value: ’0’ (short form bag)

... : . hidden arguments

Value

a character string defining: FastForestClassification (BinaryClassifierTrainer, Trainer).

Author(s)

Microsoft Corporation

References

https://microsoft.sharepoint.com/teams/TLC

https://microsoft.sharepoint.com/teams/TLC

84 tlcFastForestRegression

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

The function is currently defined as
function (featureFraction = 0.7, baggingTrainFraction = 0.7,

splitFraction = 0.7, numThreads = 8, rngSeed = 123,
entropyCoefficient = 0, histogramPoolSize = -1, diskTranspose = FALSE,
maxBins = 255, sparsifyThreshold = 0.7, featureFirstUsePenalty = 0,
featureReusePenalty = 0, gainConfidenceLevel = 0, softmaxTemperature = 0,
executionTimes = FALSE, numLeaves = 20, minDocumentsInLeafs = 10,
numTrees = 100, ...)

{
params <- character()
params <- mluPasteArg(featureFraction, 'double', params)
params <- mluPasteArg(baggingTrainFraction, 'double', params)
params <- mluPasteArg(splitFraction, 'double', params)
params <- mluPasteArg(numThreads, 'integer', params)
params <- mluPasteArg(rngSeed, 'integer', params)
params <- mluPasteArg(entropyCoefficient, 'double', params)
params <- mluPasteArg(histogramPoolSize, 'integer', params)
params <- mluPasteArg(diskTranspose, 'logical', params)
params <- mluPasteArg(maxBins, 'integer', params)
params <- mluPasteArg(sparsifyThreshold, 'double', params)
params <- mluPasteArg(featureFirstUsePenalty, 'double', params)
params <- mluPasteArg(featureReusePenalty, 'double', params)
params <- mluPasteArg(gainConfidenceLevel, 'double', params)
params <- mluPasteArg(softmaxTemperature, 'double', params)
params <- mluPasteArg(executionTimes, 'logical', params)
params <- mluPasteArg(numLeaves, 'integer', params)
params <- mluPasteArg(minDocumentsInLeafs, 'integer', params)
params <- mluPasteArg(numTrees, 'integer', params)
params <- mluPasteArg(smoothing, 'double', params)
params <- mluPasteArg(testFrequency, 'integer', params)
params <- mluPasteArg(baggingSize, 'integer', params)
dotargs <- list(...)
for (arg in names(dotargs)) {

params <- mluPasteArg(dotargs[[arg]], "", params, arg)
}
params <- sprintf("FastForestClassification{%s}", params)
return(structure(params, class = c("FastForestClassification",

"BinaryClassifierTrainer", "maml", "character")))
}

tlcFastForestRegression

RegressorTrainer, Trainer: ’FastForestRegression’

Description

Trains a random forest to fit target values using least-squares.

tlcFastForestRegression 85

Usage

tlcFastForestRegression(quantileSampleCount = 100, featureFraction = 0.7,
baggingTrainFraction = 0.7, splitFraction = 0.7, numThreads = 8,
rngSeed = 123, entropyCoefficient = 0, histogramPoolSize = -1,
diskTranspose = FALSE, maxBins = 255, sparsifyThreshold = 0.7,
featureFirstUsePenalty = 0, featureReusePenalty = 0,
gainConfidenceLevel = 0, softmaxTemperature = 0, executionTimes = FALSE,
numLeaves = 20, minDocumentsInLeafs = 10, numTrees = 100,
smoothing = 0, testFrequency = 2147483647, baggingSize = 1)

Arguments

quantileSampleCount

integer: <int>. Number of labels to be sampled from each leaf to make the
distribtuion Default value:’100’ (short form qsc)

featureFraction

double: <float>. The fraction of features (chosen randomly) to use on each
iteration Default value:’0.7’ (short form ff)

baggingTrainFraction

double: <float>. The fraction of Instances (chosen randomly) to use on each
iteration Default value:’0.7’ (short form bagfrac)

splitFraction double: <float>. The fraction of features (chosen randomly) to use on each split
Default value:’0.7’ (short form sf)

numThreads integer: <int>. The number of threads to use Default value:’8’ (short form t)

rngSeed integer: <int>. The seed of the random number generator Default value:’123’
(short form r1)

entropyCoefficient

double: <float>. The entropy (regularization) coefficient between 0 and 1 De-
fault value:’0’ (short form e)

histogramPoolSize

integer: <int>. The number of histograms in the pool (between 2 and num-
Leaves) Default value:’-1’ (short form ps)

diskTranspose logical: [+|-]. Whether to utilize the disk when performing the transpose Default
value:’-’ (short form dt)

maxBins integer: <int>. Maximum number of distinct values (bins) per feature Default
value:’255’ (short form mb)

sparsifyThreshold

double: <float>. Sparsity level needed to use sparse feature representation De-
fault value:’0.7’ (short form sp)

featureFirstUsePenalty

double: <float>. The feature first use penalty coefficient Default value:’0’ (short
form ffup)

featureReusePenalty

double: <float>. The feature re-use penalty (regularization) coefficient Default
value:’0’ (short form frup)

gainConfidenceLevel

double: <float>. Tree fitting gain confidence requirement (should be in the range
[0,1)). Default value:’0’ (short form gainconf)

86 tlcFastForestRegression

softmaxTemperature

double: <float>. The temperature of the randomized softmax distribution for
choosing the feature Default value:’0’ (short form smtemp)

executionTimes logical: [+|-]. Print execution time breakdown to stdout Default value:’-’ (short
form et)

numLeaves integer: <int>. The max number of leaves in each regression tree Default
value:’20’ (short form nl)

minDocumentsInLeafs

integer: <int>. The minimal number of documents allowed in a leaf of a regres-
sion tree, out of the subsampled data Default value:’10’ (short form mil)

numTrees integer: <int>. Number of weak hypotheses in the ensemble Default value:’100’
(short form iter)

smoothing double: <float>. Smoothing paramter for tree regularization Default value: ’0.0’
(short form s)

testFrequency integer: <int>. Calculate metric values for train/valid/test every k rounds Default
value: ’2147483647’ (short form tf)

baggingSize integer: <int>. Number of trees in each bag (0 for disabling bagging) Default
value: ’0’ (short form bag)

... : . hidden arguments

Value

a character string defining: FastForestRegression (RegressorTrainer, Trainer).

Author(s)

Microsoft Corporation

References

https://microsoft.sharepoint.com/teams/TLC

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

The function is currently defined as
function (quantileSampleCount = 100,

featureFraction = 0.7, baggingTrainFraction = 0.7, splitFraction = 0.7,
numThreads = 8, rngSeed = 123, entropyCoefficient = 0,
histogramPoolSize = -1, diskTranspose = FALSE, maxBins = 255,
sparsifyThreshold = 0.7, featureFirstUsePenalty = 0, featureReusePenalty = 0,
gainConfidenceLevel = 0, softmaxTemperature = 0, executionTimes = FALSE,
numLeaves = 20, minDocumentsInLeafs = 10, numTrees = 100, smoothing = 0.0,
testFrequency = 2147483647, baggingSize = 1, ...)

{
params <- character()
params <- mluPasteArg(quantileSampleCount, "integer", params)
params <- mluPasteArg(featureFraction, "double", params)
params <- mluPasteArg(baggingTrainFraction, "double", params)

https://microsoft.sharepoint.com/teams/TLC

tlcFastTreeBinaryClassification 87

params <- mluPasteArg(splitFraction, "double", params)
params <- mluPasteArg(numThreads, "integer", params)
params <- mluPasteArg(rngSeed, "integer", params)
params <- mluPasteArg(entropyCoefficient, "double", params)
params <- mluPasteArg(histogramPoolSize, "integer", params)
params <- mluPasteArg(diskTranspose, "logical", params)
params <- mluPasteArg(maxBins, "integer", params)
params <- mluPasteArg(sparsifyThreshold, "double", params)
params <- mluPasteArg(featureFirstUsePenalty, "double", params)
params <- mluPasteArg(featureReusePenalty, "double", params)
params <- mluPasteArg(gainConfidenceLevel, "double", params)
params <- mluPasteArg(softmaxTemperature, "double", params)
params <- mluPasteArg(executionTimes, "logical", params)
params <- mluPasteArg(numLeaves, "integer", params)
params <- mluPasteArg(minDocumentsInLeafs, "integer", params)
params <- mluPasteArg(numTrees, "integer", params)
params <- mluPasteArg(smoothing, 'double', params)
params <- mluPasteArg(testFrequency, 'integer', params)
params <- mluPasteArg(baggingSize, 'integer', params)
dotargs <- list(...)
for (arg in names(dotargs)) {

params <- mluPasteArg(dotargs[[arg]], "", params, arg)
}
params <- sprintf("FastForestRegression{%s}", params)
return(structure(params, class = c("FastForestRegression",

"RegressorTrainer", "maml", "character")))
}

tlcFastTreeBinaryClassification

BinaryClassifierTrainer, Trainer: ’FastTreeBinaryClassification’

Description

Uses a logit-boost boosted tree learner to perform binary classification.

Usage

tlcFastTreeBinaryClassification(unbalancedSets = FALSE, featureFraction = 1,
baggingSize = 0, baggingTrainFraction = 0.7,
bestStepRankingRegressionTrees = FALSE, useLineSearch = FALSE,
numPostBracketSteps = 0, minStepSize = 0,
optimizationAlgorithm = "GradientDescent", earlyStoppingRule = list(),
earlyStoppingMetrics = 0, enablePruning = FALSE,
useTolerantPruning = FALSE, pruningThreshold = 0.004,
pruningWindowSize = 5, testFrequency = 2147483647, learningRates = 0.2,
shrinkage = 1, dropoutRate = 0, splitFraction = 1,
getDerivativesSampleRate = 1, writeLastEnsemble = FALSE, smoothing = 0,
maxTreeOutput = 100, numThreads = 8, rngSeed = 123,
fileSplitSeed = 123, entropyCoefficient = 0, histogramPoolSize = -1,
diskTranspose = FALSE, maxBins = 255, sparsifyThreshold = 0.7,
featureFirstUsePenalty = 0, featureReusePenalty = 0,

88 tlcFastTreeBinaryClassification

gainConfidenceLevel = 0, softmaxTemperature = 0, executionTimes = FALSE,
numLeaves = 20, minDocumentsInLeafs = 10, numTrees = 100)

Arguments

unbalancedSets logical: [+|-]. Should we use derivatives optimized for unbalanced sets Default
value:’-’ (short form us)

featureFraction

double: <float>. The fraction of features (chosen randomly) to use on each
iteration Default value:’1’ (short form ff)

baggingSize integer: <int>. Number of trees in each bag (0 for disabling bagging) Default
value:’0’ (short form bag)

baggingTrainFraction

double: <float>. Percentage of training queries used in each bag Default value:’0.7’
(short form bagfrac)

bestStepRankingRegressionTrees

logical: [+|-]. Use best regression step trees? Default value:’-’ (short form bsr)

useLineSearch logical: [+|-]. Should we use line search for a step size Default value:’-’ (short
form ls)

numPostBracketSteps

integer: <int>. Number of post-bracket line search steps Default value:’0’ (short
form lssteps)

minStepSize double: <float>. Minimum line search step size Default value:’0’ (short form
minstep)

optimizationAlgorithm

character: [GradientDescent|AcceleratedGradientDescent|ConjugateGradientDescent].
Optimization algorithm to be used (GradientDescent, AcceleratedGradientDes-
cent) Default value:’GradientDescent’ (short form oa)

earlyStoppingRule

list: <name><options>. Early stopping rule. (Validation set (/valid) is required.)
(short form esr)

earlyStoppingMetrics

integer: <int>. Early stopping metrics. (For regression, 1: L1, 2:L2; for ranking,
1:NDCG@1, 3:NDCG@3) Default value:’0’ (short form esmt)

enablePruning logical: [+|-]. Enable post-training pruning to avoid overfitting. (a validation set
is required) Default value:’-’ (short form pruning)

useTolerantPruning

logical: [+|-]. Use window and tolerance for pruning Default value:’-’ (short
form prtol)

pruningThreshold

double: <double>. The tolerance threshold for pruning Default value:’0.004’
(short form prth)

pruningWindowSize

integer: <int>. The moving window size for pruning Default value:’5’ (short
form prws)

testFrequency integer: <int>. Calculate NDCG values for train/valid/test every k rounds De-
fault value:’2147483647’ (short form tf)

learningRates double: <float>. The learning rate Default value:’0.2’ (short form lr)

shrinkage double: <float>. Shrinkage Default value:’1’ (short form shrk)

tlcFastTreeBinaryClassification 89

dropoutRate double: <float>. Dropout rate for tree regularization Default value:’0’ (short
form tdrop)

splitFraction double: <float>. The fraction of features (chosen randomly) to use on each split
Default value:’1’ (short form sf)

getDerivativesSampleRate

integer: <int>. same each query 1 in k times in the GetDerivatives function
Default value:’1’ (short form sr)

writeLastEnsemble

logical: [+|-]. Write the last ensemble instead of the one determined by early
stopping Default value:’-’ (short form hl)

smoothing double: <float>. Smoothing paramter for tree regularization Default value:’0’
(short form s)

maxTreeOutput double: <float>. Upper bound on absolute value of single tree output Default
value:’100’ (short form mo)

numThreads integer: <int>. The number of threads to use Default value:’8’ (short form t)

rngSeed integer: <int>. The seed of the random number generator Default value:’123’
(short form r1)

fileSplitSeed integer: <int>. The seed of the file splitter Default value:’123’ (short form r2)
entropyCoefficient

double: <float>. The entropy (regularization) coefficient between 0 and 1 De-
fault value:’0’ (short form e)

histogramPoolSize

integer: <int>. The number of histograms in the pool (between 2 and num-
Leaves) Default value:’-1’ (short form ps)

diskTranspose logical: [+|-]. Whether to utilize the disk when performing the transpose Default
value:’-’ (short form dt)

maxBins integer: <int>. Maximum number of distinct values (bins) per feature Default
value:’255’ (short form mb)

sparsifyThreshold

double: <float>. Sparsity level needed to use sparse feature representation De-
fault value:’0.7’ (short form sp)

featureFirstUsePenalty

double: <float>. The feature first use penalty coefficient Default value:’0’ (short
form ffup)

featureReusePenalty

double: <float>. The feature re-use penalty (regularization) coefficient Default
value:’0’ (short form frup)

gainConfidenceLevel

double: <float>. Tree fitting gain confidence requirement (should be in the range
[0,1)). Default value:’0’ (short form gainconf)

softmaxTemperature

double: <float>. The temperature of the randomized softmax distribution for
choosing the feature Default value:’0’ (short form smtemp)

executionTimes logical: [+|-]. Print execution time breakdown to stdout Default value:’-’ (short
form et)

numLeaves integer: <int>. The max number of leaves in each regression tree Default
value:’20’ (short form nl)

90 tlcFastTreeBinaryClassification

minDocumentsInLeafs

integer: <int>. The minimal number of documents allowed in a leaf of a regres-
sion tree, out of the subsampled data Default value:’10’ (short form mil)

numTrees integer: <int>. Number of weak hypotheses in the ensemble Default value:’100’
(short form iter)

... : . hidden arguments

Value

a character string defining: FastTreeBinaryClassification (BinaryClassifierTrainer, Trainer).

Author(s)

Microsoft Corporation

References

https://microsoft.sharepoint.com/teams/TLC

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

The function is currently defined as
function (unbalancedSets = FALSE, featureFraction = 1, baggingSize = 0,

baggingTrainFraction = 0.7, bestStepRankingRegressionTrees = FALSE,
useLineSearch = FALSE, numPostBracketSteps = 0, minStepSize = 0,
optimizationAlgorithm = "GradientDescent", earlyStoppingRule = list(),
earlyStoppingMetrics = 0, enablePruning = FALSE, useTolerantPruning = FALSE,
pruningThreshold = 0.004, pruningWindowSize = 5, testFrequency = 2147483647,
learningRates = 0.2, shrinkage = 1, dropoutRate = 0, splitFraction = 1,
getDerivativesSampleRate = 1, writeLastEnsemble = FALSE,
smoothing = 0, maxTreeOutput = 100,
numThreads = 8, rngSeed = 123,
fileSplitSeed = 123, entropyCoefficient = 0, histogramPoolSize = -1,
diskTranspose = FALSE, maxBins = 255, sparsifyThreshold = 0.7,
featureFirstUsePenalty = 0, featureReusePenalty = 0, gainConfidenceLevel = 0,
softmaxTemperature = 0, executionTimes = FALSE,
numLeaves = 20, minDocumentsInLeafs = 10, numTrees = 100,
...)

{
params <- character()
params <- mluPasteArg(unbalancedSets, "logical", params)
params <- mluPasteArg(featureFraction, "double", params)
params <- mluPasteArg(baggingSize, "integer", params)
params <- mluPasteArg(baggingTrainFraction, "double", params)
params <- mluPasteArg(bestStepRankingRegressionTrees, "logical", params)
params <- mluPasteArg(useLineSearch, "logical", params)
params <- mluPasteArg(numPostBracketSteps, "integer", params)
params <- mluPasteArg(minStepSize, "double", params)
params <- mluPasteArg(optimizationAlgorithm, "character", params)
params <- mluPasteArg(earlyStoppingRule, "list", params)
params <- mluPasteArg(earlyStoppingMetrics, "integer", params)

https://microsoft.sharepoint.com/teams/TLC

tlcFastTreeRanking 91

params <- mluPasteArg(enablePruning, "logical", params)
params <- mluPasteArg(useTolerantPruning, "logical", params)
params <- mluPasteArg(pruningThreshold, "double", params)
params <- mluPasteArg(pruningWindowSize, "integer", params)
params <- mluPasteArg(testFrequency, "integer", params)
params <- mluPasteArg(learningRates, "double", params)
params <- mluPasteArg(shrinkage, "double", params)
params <- mluPasteArg(dropoutRate, "double", params)
params <- mluPasteArg(splitFraction, "double", params)
params <- mluPasteArg(getDerivativesSampleRate, "integer", params)
params <- mluPasteArg(writeLastEnsemble, "logical", params)
params <- mluPasteArg(smoothing, "double", params)
params <- mluPasteArg(maxTreeOutput, "double", params)
params <- mluPasteArg(numThreads, "integer", params)
params <- mluPasteArg(rngSeed, "integer", params)
params <- mluPasteArg(fileSplitSeed, "integer", params)
params <- mluPasteArg(entropyCoefficient, "double", params)
params <- mluPasteArg(histogramPoolSize, "integer", params)
params <- mluPasteArg(diskTranspose, "logical", params)
params <- mluPasteArg(maxBins, "integer", params)
params <- mluPasteArg(sparsifyThreshold, "double", params)
params <- mluPasteArg(featureFirstUsePenalty, "double", params)
params <- mluPasteArg(featureReusePenalty, "double", params)
params <- mluPasteArg(gainConfidenceLevel, "double", params)
params <- mluPasteArg(softmaxTemperature, "double", params)
params <- mluPasteArg(executionTimes, "logical", params)
params <- mluPasteArg(numLeaves, "integer", params)
params <- mluPasteArg(minDocumentsInLeafs, "integer", params)
params <- mluPasteArg(numTrees, "integer", params)
dotargs <- list(...)
for (arg in names(dotargs)) {

params <- mluPasteArg(dotargs[[arg]], "", params, arg)
}
params <- sprintf("FastTreeBinaryClassification{%s}", params)
return(structure(params, class = c("FastTreeBinaryClassification",

"BinaryClassifierTrainer", "maml", "character")))
}

tlcFastTreeRanking RankerTrainer, Trainer: ’FastTreeRanking’

Description

Trains gradient boosted decision trees to the LambdaRank quasi-gradient.

Usage

tlcFastTreeRanking(customGains = "0,3,7,15,31", trainDCG = FALSE,
featureFraction = 1, baggingSize = 0, baggingTrainFraction = 0.7,
bestStepRankingRegressionTrees = FALSE, useLineSearch = FALSE,
numPostBracketSteps = 0, minStepSize = 0,
optimizationAlgorithm = "GradientDescent", earlyStoppingRule = list(),
earlyStoppingMetrics = 0, enablePruning = FALSE,

92 tlcFastTreeRanking

useTolerantPruning = FALSE, pruningThreshold = 0.004,
pruningWindowSize = 5, testFrequency = 2147483647, learningRates = 0.2,
shrinkage = 1, dropoutRate = 0, splitFraction = 1,
getDerivativesSampleRate = 1, writeLastEnsemble = FALSE, smoothing = 0,
maxTreeOutput = 100, numThreads = 8, rngSeed = 123,
entropyCoefficient = 0, histogramPoolSize = -1, diskTranspose = FALSE,
maxBins = 255, sparsifyThreshold = 0.7, featureFirstUsePenalty = 0,
featureReusePenalty = 0, gainConfidenceLevel = 0,
softmaxTemperature = 0, executionTimes = FALSE, numLeaves = 20,
minDocumentsInLeafs = 10, numTrees = 100, ...)

Arguments

customGains character: <string>. Comma seperated list of gains associated to each relevance
label. Default value:’0,3,7,15,31’ (short form gains)

trainDCG logical: [+|-]. Train DCG instead of NDCG Default value:’-’ (short form dcg)

featureFraction

double: <float>. The fraction of features (chosen randomly) to use on each
iteration Default value:’1’ (short form ff)

baggingSize integer: <int>. Number of trees in each bag (0 for disabling bagging) Default
value:’0’ (short form bag)

baggingTrainFraction

double: <float>. Percentage of training queries used in each bag Default value:’0.7’
(short form bagfrac)

bestStepRankingRegressionTrees

logical: [+|-]. Use best regression step trees? Default value:’-’ (short form bsr)

useLineSearch logical: [+|-]. Should we use line search for a step size Default value:’-’ (short
form ls)

numPostBracketSteps

integer: <int>. Number of post-bracket line search steps Default value:’0’ (short
form lssteps)

minStepSize double: <float>. Minimum line search step size Default value:’0’ (short form
minstep)

optimizationAlgorithm

character: [GradientDescent|AcceleratedGradientDescent|ConjugateGradientDescent].
Optimization algorithm to be used (GradientDescent, AcceleratedGradientDes-
cent) Default value:’GradientDescent’ (short form oa)

earlyStoppingRule

list: <name><options>. Early stopping rule. (Validation set (/valid) is required.)
(short form esr)

earlyStoppingMetrics

integer: <int>. Early stopping metrics. (For regression, 1: L1, 2:L2; for ranking,
1:NDCG@1, 3:NDCG@3) Default value:’0’ (short form esmt)

enablePruning logical: [+|-]. Enable post-training pruning to avoid overfitting. (a validation set
is required) Default value:’-’ (short form pruning)

useTolerantPruning

logical: [+|-]. Use window and tolerance for pruning Default value:’-’ (short
form prtol)

tlcFastTreeRanking 93

pruningThreshold

double: <double>. The tolerance threshold for pruning Default value:’0.004’
(short form prth)

pruningWindowSize

integer: <int>. The moving window size for pruning Default value:’5’ (short
form prws)

testFrequency integer: <int>. Calculate NDCG values for train/valid/test every k rounds De-
fault value:’2147483647’ (short form tf)

learningRates double: <float>. The learning rate Default value:’0.2’ (short form lr)
shrinkage double: <float>. Shrinkage Default value:’1’ (short form shrk)
dropoutRate double: <float>. Dropout rate for tree regularization Default value:’0’ (short

form tdrop)
splitFraction double: <float>. The fraction of features (chosen randomly) to use on each split

Default value:’1’ (short form sf)
getDerivativesSampleRate

integer: <int>. same each query 1 in k times in the GetDerivatives function
Default value:’1’ (short form sr)

writeLastEnsemble

logical: [+|-]. Write the last ensemble instead of the one determined by early
stopping Default value:’-’ (short form hl)

smoothing double: <float>. Smoothing paramter for tree regularization Default value:’0’
(short form s)

maxTreeOutput double: <float>. Upper bound on absolute value of single tree output Default
value:’100’ (short form mo)

numThreads integer: <int>. The number of threads to use Default value:’8’ (short form t)
rngSeed integer: <int>. The seed of the random number generator Default value:’123’

(short form r1)
entropyCoefficient

double: <float>. The entropy (regularization) coefficient between 0 and 1 De-
fault value:’0’ (short form e)

histogramPoolSize

integer: <int>. The number of histograms in the pool (between 2 and num-
Leaves) Default value:’-1’ (short form ps)

diskTranspose logical: [+|-]. Whether to utilize the disk when performing the transpose Default
value:’-’ (short form dt)

maxBins integer: <int>. Maximum number of distinct values (bins) per feature Default
value:’255’ (short form mb)

sparsifyThreshold

double: <float>. Sparsity level needed to use sparse feature representation De-
fault value:’0.7’ (short form sp)

featureFirstUsePenalty

double: <float>. The feature first use penalty coefficient Default value:’0’ (short
form ffup)

featureReusePenalty

double: <float>. The feature re-use penalty (regularization) coefficient Default
value:’0’ (short form frup)

gainConfidenceLevel

double: <float>. Tree fitting gain confidence requirement (should be in the range
[0,1)). Default value:’0’ (short form gainconf)

94 tlcFastTreeRanking

softmaxTemperature

double: <float>. The temperature of the randomized softmax distribution for
choosing the feature Default value:’0’ (short form smtemp)

executionTimes logical: [+|-]. Print execution time breakdown to stdout Default value:’-’ (short
form et)

numLeaves integer: <int>. The max number of leaves in each regression tree Default
value:’20’ (short form nl)

minDocumentsInLeafs

integer: <int>. The minimal number of documents allowed in a leaf of a regres-
sion tree, out of the subsampled data Default value:’10’ (short form mil)

numTrees integer: <int>. Number of weak hypotheses in the ensemble Default value:’100’
(short form iter)

... : . hidden arguments

Value

a character string defining: FastTreeRanking (RankerTrainer, Trainer).

Author(s)

Microsoft Corporation

References

https://microsoft.sharepoint.com/teams/TLC

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

The function is currently defined as
function (customGains = "0,3,7,15,31", trainDCG = FALSE, featureFraction = 1,

baggingSize = 0, baggingTrainFraction = 0.7, bestStepRankingRegressionTrees = FALSE,
useLineSearch = FALSE, numPostBracketSteps = 0, minStepSize = 0,
optimizationAlgorithm = "GradientDescent", earlyStoppingRule = list(),
earlyStoppingMetrics = 0, enablePruning = FALSE, useTolerantPruning = FALSE,
pruningThreshold = 0.004, pruningWindowSize = 5, testFrequency = 2147483647,
learningRates = 0.2, shrinkage = 1, dropoutRate = 0, splitFraction = 1,
getDerivativesSampleRate = 1, writeLastEnsemble = FALSE,
smoothing = 0, maxTreeOutput = 100,
numThreads = 8, rngSeed = 123,
entropyCoefficient = 0, histogramPoolSize = -1,
diskTranspose = FALSE, maxBins = 255, sparsifyThreshold = 0.7,
featureFirstUsePenalty = 0, featureReusePenalty = 0, gainConfidenceLevel = 0,
softmaxTemperature = 0, executionTimes = FALSE,
numLeaves = 20, minDocumentsInLeafs = 10, numTrees = 100,
...)

{
params <- character()
params <- mluPasteArg(customGains, "character", params)
params <- mluPasteArg(trainDCG, "logical", params)

https://microsoft.sharepoint.com/teams/TLC

tlcFastTreeRegression 95

params <- mluPasteArg(featureFraction, "double", params)
params <- mluPasteArg(baggingSize, "integer", params)
params <- mluPasteArg(baggingTrainFraction, "double", params)
params <- mluPasteArg(bestStepRankingRegressionTrees, "logical", params)
params <- mluPasteArg(useLineSearch, "logical", params)
params <- mluPasteArg(numPostBracketSteps, "integer", params)
params <- mluPasteArg(minStepSize, "double", params)
params <- mluPasteArg(optimizationAlgorithm, "character", params)
params <- mluPasteArg(earlyStoppingRule, "list", params)
params <- mluPasteArg(earlyStoppingMetrics, "integer", params)
params <- mluPasteArg(enablePruning, "logical", params)
params <- mluPasteArg(useTolerantPruning, "logical", params)
params <- mluPasteArg(pruningThreshold, "double", params)
params <- mluPasteArg(pruningWindowSize, "integer", params)
params <- mluPasteArg(testFrequency, "integer", params)
params <- mluPasteArg(learningRates, "double", params)
params <- mluPasteArg(shrinkage, "double", params)
params <- mluPasteArg(dropoutRate, "double", params)
params <- mluPasteArg(splitFraction, "double", params)
params <- mluPasteArg(getDerivativesSampleRate, "integer", params)
params <- mluPasteArg(writeLastEnsemble, "logical", params)
params <- mluPasteArg(smoothing, "double", params)
params <- mluPasteArg(maxTreeOutput, "double", params)
params <- mluPasteArg(numThreads, "integer", params)
params <- mluPasteArg(rngSeed, "integer", params)
params <- mluPasteArg(entropyCoefficient, "double", params)
params <- mluPasteArg(histogramPoolSize, "integer", params)
params <- mluPasteArg(diskTranspose, "logical", params)
params <- mluPasteArg(maxBins, "integer", params)
params <- mluPasteArg(sparsifyThreshold, "double", params)
params <- mluPasteArg(featureFirstUsePenalty, "double", params)
params <- mluPasteArg(featureReusePenalty, "double", params)
params <- mluPasteArg(gainConfidenceLevel, "double", params)
params <- mluPasteArg(softmaxTemperature, "double", params)
params <- mluPasteArg(executionTimes, "logical", params)
params <- mluPasteArg(numLeaves, "integer", params)
params <- mluPasteArg(minDocumentsInLeafs, "integer", params)
params <- mluPasteArg(numTrees, "integer", params)
dotargs <- list(...)
for (arg in names(dotargs)) {

params <- mluPasteArg(dotargs[[arg]], "", params, arg)
}
params <- sprintf("FastTreeRanking{%s}", params)
return(structure(params, class = c("FastTreeRanking",

"RankerTrainer", "maml", "character")))
}

tlcFastTreeRegression RegressorTrainer, Trainer: ’FastTreeRegression’

Description

Trains gradient boosted decision trees to fit target values using least-squares.

96 tlcFastTreeRegression

Usage

tlcFastTreeRegression(featureFraction = 1, baggingSize = 0,
baggingTrainFraction = 0.7, bestStepRankingRegressionTrees = FALSE,
useLineSearch = FALSE, numPostBracketSteps = 0, minStepSize = 0,
optimizationAlgorithm = "GradientDescent", earlyStoppingRule = list(),
earlyStoppingMetrics = 0, enablePruning = FALSE,
useTolerantPruning = FALSE, pruningThreshold = 0.004,
pruningWindowSize = 5, testFrequency = 2147483647, learningRates = 0.2,
shrinkage = 1, dropoutRate = 0, splitFraction = 1,
getDerivativesSampleRate = 1, writeLastEnsemble = FALSE, smoothing = 0,
maxTreeOutput = 100, numThreads = 8, rngSeed = 123,
entropyCoefficient = 0, histogramPoolSize = -1, diskTranspose = FALSE,
maxBins = 255, sparsifyThreshold = 0.7, featureFirstUsePenalty = 0,
featureReusePenalty = 0, gainConfidenceLevel = 0,
softmaxTemperature = 0, executionTimes = FALSE, numLeaves = 20,
minDocumentsInLeafs = 10, numTrees = 100, ...)

Arguments

featureFraction

double: <float>. The fraction of features (chosen randomly) to use on each
iteration Default value:’1’ (short form ff)

baggingSize integer: <int>. Number of trees in each bag (0 for disabling bagging) Default
value:’0’ (short form bag)

baggingTrainFraction

double: <float>. Percentage of training queries used in each bag Default value:’0.7’
(short form bagfrac)

bestStepRankingRegressionTrees

logical: [+|-]. Use best regression step trees? Default value:’-’ (short form bsr)
useLineSearch logical: [+|-]. Should we use line search for a step size Default value:’-’ (short

form ls)
numPostBracketSteps

integer: <int>. Number of post-bracket line search steps Default value:’0’ (short
form lssteps)

minStepSize double: <float>. Minimum line search step size Default value:’0’ (short form
minstep)

optimizationAlgorithm

character: [GradientDescent|AcceleratedGradientDescent|ConjugateGradientDescent].
Optimization algorithm to be used (GradientDescent, AcceleratedGradientDes-
cent) Default value:’GradientDescent’ (short form oa)

earlyStoppingRule

list: <name><options>. Early stopping rule. (Validation set (/valid) is required.)
(short form esr)

earlyStoppingMetrics

integer: <int>. Early stopping metrics. (For regression, 1: L1, 2:L2; for ranking,
1:NDCG@1, 3:NDCG@3) Default value:’0’ (short form esmt)

enablePruning logical: [+|-]. Enable post-training pruning to avoid overfitting. (a validation set
is required) Default value:’-’ (short form pruning)

useTolerantPruning

logical: [+|-]. Use window and tolerance for pruning Default value:’-’ (short
form prtol)

tlcFastTreeRegression 97

pruningThreshold

double: <double>. The tolerance threshold for pruning Default value:’0.004’
(short form prth)

pruningWindowSize

integer: <int>. The moving window size for pruning Default value:’5’ (short
form prws)

testFrequency integer: <int>. Calculate NDCG values for train/valid/test every k rounds De-
fault value:’2147483647’ (short form tf)

learningRates double: <float>. The learning rate Default value:’0.2’ (short form lr)
shrinkage double: <float>. Shrinkage Default value:’1’ (short form shrk)
dropoutRate double: <float>. Dropout rate for tree regularization Default value:’0’ (short

form tdrop)
splitFraction double: <float>. The fraction of features (chosen randomly) to use on each split

Default value:’1’ (short form sf)
getDerivativesSampleRate

integer: <int>. same each query 1 in k times in the GetDerivatives function
Default value:’1’ (short form sr)

writeLastEnsemble

logical: [+|-]. Write the last ensemble instead of the one determined by early
stopping Default value:’-’ (short form hl)

smoothing double: <float>. Smoothing paramter for tree regularization Default value:’0’
(short form s)

maxTreeOutput double: <float>. Upper bound on absolute value of single tree output Default
value:’100’ (short form mo)

numThreads integer: <int>. The number of threads to use Default value:’8’ (short form t)
rngSeed integer: <int>. The seed of the random number generator Default value:’123’

(short form r1)
entropyCoefficient

double: <float>. The entropy (regularization) coefficient between 0 and 1 De-
fault value:’0’ (short form e)

histogramPoolSize

integer: <int>. The number of histograms in the pool (between 2 and num-
Leaves) Default value:’-1’ (short form ps)

diskTranspose logical: [+|-]. Whether to utilize the disk when performing the transpose Default
value:’-’ (short form dt)

maxBins integer: <int>. Maximum number of distinct values (bins) per feature Default
value:’255’ (short form mb)

sparsifyThreshold

double: <float>. Sparsity level needed to use sparse feature representation De-
fault value:’0.7’ (short form sp)

featureFirstUsePenalty

double: <float>. The feature first use penalty coefficient Default value:’0’ (short
form ffup)

featureReusePenalty

double: <float>. The feature re-use penalty (regularization) coefficient Default
value:’0’ (short form frup)

gainConfidenceLevel

double: <float>. Tree fitting gain confidence requirement (should be in the range
[0,1)). Default value:’0’ (short form gainconf)

98 tlcFastTreeRegression

softmaxTemperature

double: <float>. The temperature of the randomized softmax distribution for
choosing the feature Default value:’0’ (short form smtemp)

executionTimes logical: [+|-]. Print execution time breakdown to stdout Default value:’-’ (short
form et)

numLeaves integer: <int>. The max number of leaves in each regression tree Default
value:’20’ (short form nl)

minDocumentsInLeafs

integer: <int>. The minimal number of documents allowed in a leaf of a regres-
sion tree, out of the subsampled data Default value:’10’ (short form mil)

numTrees integer: <int>. Number of weak hypotheses in the ensemble Default value:’100’
(short form iter)

... : . hidden arguments

Value

a character string defining: FastTreeRegression (RegressorTrainer, Trainer).

Author(s)

Microsoft Corporation

References

https://microsoft.sharepoint.com/teams/TLC

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

The function is currently defined as
function (featureFraction = 1, baggingSize = 0, baggingTrainFraction = 0.7,

bestStepRankingRegressionTrees = FALSE, useLineSearch = FALSE,
numPostBracketSteps = 0, minStepSize = 0, optimizationAlgorithm = "GradientDescent",
earlyStoppingRule = list(), earlyStoppingMetrics = 0, enablePruning = FALSE,
useTolerantPruning = FALSE, pruningThreshold = 0.004, pruningWindowSize = 5,
testFrequency = 2147483647, learningRates = 0.2, shrinkage = 1,
dropoutRate = 0, splitFraction = 1, getDerivativesSampleRate = 1,
writeLastEnsemble = FALSE, smoothing = 0, maxTreeOutput = 100, numThreads = 8,
rngSeed = 123, entropyCoefficient = 0,
histogramPoolSize = -1, diskTranspose = FALSE, maxBins = 255,
sparsifyThreshold = 0.7, featureFirstUsePenalty = 0, featureReusePenalty = 0,
gainConfidenceLevel = 0, softmaxTemperature = 0, executionTimes = FALSE,
numLeaves = 20, minDocumentsInLeafs = 10,
numTrees = 100, ...)

{
params <- character()
params <- mluPasteArg(featureFraction, "double", params)
params <- mluPasteArg(baggingSize, "integer", params)
params <- mluPasteArg(baggingTrainFraction, "double", params)
params <- mluPasteArg(bestStepRankingRegressionTrees, "logical", params)

https://microsoft.sharepoint.com/teams/TLC

tlcLogisticRegression 99

params <- mluPasteArg(useLineSearch, "logical", params)
params <- mluPasteArg(numPostBracketSteps, "integer", params)
params <- mluPasteArg(minStepSize, "double", params)
params <- mluPasteArg(optimizationAlgorithm, "character", params)
params <- mluPasteArg(earlyStoppingRule, "list", params)
params <- mluPasteArg(earlyStoppingMetrics, "integer", params)
params <- mluPasteArg(enablePruning, "logical", params)
params <- mluPasteArg(useTolerantPruning, "logical", params)
params <- mluPasteArg(pruningThreshold, "double", params)
params <- mluPasteArg(pruningWindowSize, "integer", params)
params <- mluPasteArg(testFrequency, "integer", params)
params <- mluPasteArg(learningRates, "double", params)
params <- mluPasteArg(shrinkage, "double", params)
params <- mluPasteArg(dropoutRate, "double", params)
params <- mluPasteArg(splitFraction, "double", params)
params <- mluPasteArg(getDerivativesSampleRate, "integer", params)
params <- mluPasteArg(writeLastEnsemble, "logical", params)
params <- mluPasteArg(smoothing, "double", params)
params <- mluPasteArg(maxTreeOutput, "double", params)
params <- mluPasteArg(numThreads, "integer", params)
params <- mluPasteArg(rngSeed, "integer", params)
params <- mluPasteArg(entropyCoefficient, "double", params)
params <- mluPasteArg(histogramPoolSize, "integer", params)
params <- mluPasteArg(diskTranspose, "logical", params)
params <- mluPasteArg(maxBins, "integer", params)
params <- mluPasteArg(sparsifyThreshold, "double", params)
params <- mluPasteArg(featureFirstUsePenalty, "double", params)
params <- mluPasteArg(featureReusePenalty, "double", params)
params <- mluPasteArg(gainConfidenceLevel, "double", params)
params <- mluPasteArg(softmaxTemperature, "double", params)
params <- mluPasteArg(executionTimes, "logical", params)
params <- mluPasteArg(numLeaves, "integer", params)
params <- mluPasteArg(minDocumentsInLeafs, "integer", params)
params <- mluPasteArg(numTrees, "integer", params)
dotargs <- list(...)
for (arg in names(dotargs)) {

params <- mluPasteArg(dotargs[[arg]], "", params, arg)
}
params <- sprintf("FastTreeRegression{%s}", params)
return(structure(params, class = c("FastTreeRegression",

"RegressorTrainer", "maml", "character")))
}

tlcLogisticRegression BinaryClassifierTrainer, Trainer: ’LogisticRegression’

Description

Logistic Regression is a method in statistics used to predict the probability of occurrence of an event
and can be used as a classification algorithm. The algorithm predicts the probability of occurrence
of an event by fitting data to a logistical function.

100 tlcLogisticRegression

Usage

tlcLogisticRegression(l2Weight = 1, l1Weight = 1, optTol = 1e-07,
memorySize = 20, maxIterations = 2147483647, showTrainingStats = FALSE,
sgdInitializationTolerance = 0, quiet = FALSE, initWtsDiameter = 0,
numThreads = NULL, denseOptimizer = FALSE)

Arguments

l2Weight double: <float>. L2 regularization weight Default value:’1’ (short form l2)

l1Weight double: <float>. L1 regularization weight Default value:’1’ (short form l1)

optTol double: <float>. Tolerance parameter for optimization convergence. Lower =
slower, more accurate Default value:’1E-07’ (short form ot)

memorySize integer: <int>. Memory size for L-BFGS. Lower=faster, less accurate Default
value:’20’ (short form m)

maxIterations integer: <int>. Maximum iterations. Default value:’2147483647’ (short form
maxiter)

showTrainingStats

logical: [+|-]. Include training statistics in model Default value:’-’
sgdInitializationTolerance

double: <float>. Run SGD to initialize LR weights, converging to this tolerance
Default value:’0’ (short form sgd)

quiet logical: [+|-]. If set to true, produce no output during training. Default value:’-’
(short form q)

initWtsDiameter

double: <float>. Init weights diameter Default value:’0’ (short form initwts)

numThreads integer: <int>. Number of threads (short form nt)

denseOptimizer logical: [+|-]. Force densification of the internal optimization vectors Default
value:’-’ (short form do)

... : . hidden arguments

Value

a character string defining: LogisticRegression (BinaryClassifierTrainer, Trainer).

Author(s)

Microsoft Corporation

References

https://microsoft.sharepoint.com/teams/TLC

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

The function is currently defined as
function (l2Weight = 1, l1Weight = 1, optTol = 1e-07, memorySize = 20,

https://microsoft.sharepoint.com/teams/TLC

tlcMultiClassLogisticRegression 101

maxIterations = 2147483647, showTrainingStats = FALSE, sgdInitializationTolerance = 0,
quiet = FALSE, initWtsDiameter = 0, numThreads = NULL, denseOptimizer = FALSE,
...)

{
params <- character()
params <- mluPasteArg(l2Weight, "double", params)
params <- mluPasteArg(l1Weight, "double", params)
params <- mluPasteArg(optTol, "double", params)
params <- mluPasteArg(memorySize, "integer", params)
params <- mluPasteArg(maxIterations, "integer", params)
params <- mluPasteArg(showTrainingStats, "logical", params)
params <- mluPasteArg(sgdInitializationTolerance, "double", params)
params <- mluPasteArg(quiet, "logical", params)
params <- mluPasteArg(initWtsDiameter, "double", params)
params <- mluPasteArg(numThreads, "integer", params)
params <- mluPasteArg(denseOptimizer, "logical", params)
dotargs <- list(...)
for (arg in names(dotargs)) {

params <- mluPasteArg(dotargs[[arg]], "", params, arg)
}
params <- sprintf("LogisticRegression{%s}", params)
return(structure(params, class = c("LogisticRegression",

"BinaryClassifierTrainer", "maml", "character")))
}

tlcMultiClassLogisticRegression

MultiClassClassifierTrainer, Trainer: ’MultiClassLogisticRegression’

Description

Not Available!

Usage

tlcMultiClassLogisticRegression(l2Weight = 1, l1Weight = 1,
optTol = 1e-07, memorySize = 20, maxIterations = 2147483647,
showTrainingStats = FALSE, sgdInitializationTolerance = 0,
quiet = FALSE, initWtsDiameter = 0, numThreads = NULL,
denseOptimizer = FALSE)

Arguments

l2Weight double: <float>. L2 regularization weight Default value:’1’ (short form l2)

l1Weight double: <float>. L1 regularization weight Default value:’1’ (short form l1)

optTol double: <float>. Tolerance parameter for optimization convergence. Lower =
slower, more accurate Default value:’1E-07’ (short form ot)

memorySize integer: <int>. Memory size for L-BFGS. Lower=faster, less accurate Default
value:’20’ (short form m)

maxIterations integer: <int>. Maximum iterations. Default value:’2147483647’ (short form
maxiter)

102 tlcMultiClassLogisticRegression

showTrainingStats

logical: [+|-]. Include training statistics in model Default value:’-’
sgdInitializationTolerance

double: <float>. Run SGD to initialize LR weights, converging to this tolerance
Default value:’0’ (short form sgd)

quiet logical: [+|-]. If set to true, produce no output during training. Default value:’-’
(short form q)

initWtsDiameter

double: <float>. Init weights diameter Default value:’0’ (short form initwts)

numThreads integer: <int>. Number of threads (short form nt)

denseOptimizer logical: [+|-]. Force densification of the internal optimization vectors Default
value:’-’ (short form do)

... : . hidden arguments

Value

a character string defining: MultiClassLogisticRegression (MultiClassClassifierTrainer, Trainer).

Author(s)

Microsoft Corporation

References

https://microsoft.sharepoint.com/teams/TLC

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

The function is currently defined as
function (l2Weight = 1, l1Weight = 1, optTol = 1e-07, memorySize = 20,

maxIterations = 2147483647, showTrainingStats = FALSE, sgdInitializationTolerance = 0,
quiet = FALSE, initWtsDiameter = 0, numThreads = NULL, denseOptimizer = FALSE,
...)

{
params <- character()
params <- mluPasteArg(l2Weight, "double", params)
params <- mluPasteArg(l1Weight, "double", params)
params <- mluPasteArg(optTol, "double", params)
params <- mluPasteArg(memorySize, "integer", params)
params <- mluPasteArg(maxIterations, "integer", params)
params <- mluPasteArg(showTrainingStats, "logical", params)
params <- mluPasteArg(sgdInitializationTolerance, "double", params)
params <- mluPasteArg(quiet, "logical", params)
params <- mluPasteArg(initWtsDiameter, "double", params)
params <- mluPasteArg(numThreads, "integer", params)
params <- mluPasteArg(denseOptimizer, "logical", params)
dotargs <- list(...)
for (arg in names(dotargs)) {

params <- mluPasteArg(dotargs[[arg]], "", params, arg)

https://microsoft.sharepoint.com/teams/TLC

tlcMultiClassNeuralNetwork 103

}
params <- sprintf("MultiClassLogisticRegression{%s}", params)
return(structure(params, class = c("MultiClassLogisticRegression",

"MultiClassClassifierTrainer", "maml", "character")))
}

tlcMultiClassNeuralNetwork

MultiClassClassifierTrainer, Trainer: ’MultiClassNeuralNetwork’

Description

Multi-class neural network is multi-class classification algorithm which uses neural network with as
many outputs as there are classes. TLC supports various types of neural networks, including deep
neural networks (DNNs) and convolutional neural networks (CNN) via Net# language.

Usage

tlcMultiClassNeuralNetwork(defaultOutputNodes = NULL,
lossFunction = "CrossEntropy", defaultHiddenNodes = 100,
netFileName = "", numIterations = 100, displayRefresh = 1,
optimizationAlgorithm = "sgd", initWtsDiameter = 0.1, maxNorm = 0,
earlyStoppingRule = list(), earlyStoppingMetrics = 0, pruning = FALSE,
pruningFactor = 0.01, pruningRounds = 10, pruningRoundIterations = 5,
acceleration = "avx", preTrainerType = "NoPreTrainer",
preTrainingEpoch = NULL, miniBatchSize = 1, shuffle = TRUE,
inputDropoutRate = 0, hiddenDropoutRate = 0, netDefinition = "")

Arguments

defaultOutputNodes

integer: <int>. Default number of output nodes (short form output)

lossFunction list: <name><options>. Loss function Default value:’CrossEntropy’ (short form
loss)

defaultHiddenNodes

integer: <int>. Default number of hidden nodes Default value:’100’ (short form
hidden)

netFileName character: <string>. Net file name (short form filename)

numIterations integer: <int>. Number of training iterations Default value:’100’ (short form
iter)

displayRefresh integer: <int>. Display refresh frequency in number iterations Default value:’1’
(short form refresh)

optimizationAlgorithm

list: <name><options>. Optimization algorithm (Adadelta or SGD) Default
value:’sgd’ (short form algo)

initWtsDiameter

double: <float>. Init weights diameter Default value:’0.1’ (short form initwts)

maxNorm double: <float>. Constrains the norm of incoming weights of a node Default
value:’0’

104 tlcMultiClassNeuralNetwork

earlyStoppingRule

list: <name><options>. Early stopping rule (short form esr)
earlyStoppingMetrics

integer: <int>. Early stopping metrics Default value:’0’ (short form esmt)

pruning logical: [+|-]. Enable post-training pruning (Optimal Brain Damage) Default
value:’-’ (short form prune)

pruningFactor double: <float>. Pruning factor: % of weights removed each pruning iteration
Default value:’0.01’ (short form prunefact)

pruningRounds integer: <int>. Number of pruning rounds Default value:’10’ (short form pruner-
ound)

pruningRoundIterations

integer: <int>. Number of pruning round iterations Default value:’5’ (short form
pruneiter)

acceleration list: <name><options>. Hardware acceleration level Default value:’avx’ (short
form accel)

preTrainerType character: [NoPreTrainer|Greedy]. Net Pre-Trainer Default value:’NoPreTrainer’
(short form pretrain)

preTrainingEpoch

integer: <int>. Number of epochs for pre-training. If not set, defaults to numIt-
erations(iter). (short form prepoch)

miniBatchSize integer: <int>. Mini-batch size Default value:’1’ (short form mbsize)

shuffle logical: [+|-]. Whether to shuffle for each training iteration Default value:’+’
(short form shuf)

inputDropoutRate

double: <float>. Input dropout rate Default value:’0’ (short form idrop)
hiddenDropoutRate

double: <float>. Hidden dropout rate Default value:’0’ (short form hdrop)

netDefinition character: <string>. Neural network definition (short form net)

... : . hidden arguments

Value

a character string defining: MultiClassNeuralNetwork (MultiClassClassifierTrainer, Trainer).

Author(s)

Microsoft Corporation

References

https://microsoft.sharepoint.com/teams/TLC

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

The function is currently defined as

https://microsoft.sharepoint.com/teams/TLC

tlcMultiRegressionNeuralNetwork 105

function (defaultOutputNodes = NULL, lossFunction = "CrossEntropy",
defaultHiddenNodes = 100, netFileName = "", numIterations = 100,
displayRefresh = 1, optimizationAlgorithm = "sgd", initWtsDiameter = 0.1,
maxNorm = 0, earlyStoppingRule = list(), earlyStoppingMetrics = 0,
pruning = FALSE, pruningFactor = 0.01, pruningRounds = 10,
pruningRoundIterations = 5, acceleration = "avx", preTrainerType = "NoPreTrainer",
preTrainingEpoch = NULL, miniBatchSize = 1, shuffle = TRUE,
inputDropoutRate = 0, hiddenDropoutRate = 0, netDefinition = "", ...)

{
params <- character()
params <- mluPasteArg(defaultOutputNodes, "integer", params)
params <- mluPasteArg(lossFunction, "list", params)
params <- mluPasteArg(defaultHiddenNodes, "integer", params)
params <- mluPasteArg(netFileName, "character", params)
params <- mluPasteArg(numIterations, "integer", params)
params <- mluPasteArg(displayRefresh, "integer", params)
params <- mluPasteArg(optimizationAlgorithm, "list", params)
params <- mluPasteArg(initWtsDiameter, "double", params)
params <- mluPasteArg(maxNorm, "double", params)
params <- mluPasteArg(earlyStoppingRule, "list", params)
params <- mluPasteArg(earlyStoppingMetrics, "integer", params)
params <- mluPasteArg(pruning, "logical", params)
params <- mluPasteArg(pruningFactor, "double", params)
params <- mluPasteArg(pruningRounds, "integer", params)
params <- mluPasteArg(pruningRoundIterations, "integer", params)
params <- mluPasteArg(acceleration, "list", params)
params <- mluPasteArg(preTrainerType, "character", params)
params <- mluPasteArg(preTrainingEpoch, "integer", params)
params <- mluPasteArg(miniBatchSize, "integer", params)
params <- mluPasteArg(shuffle, "logical", params)
params <- mluPasteArg(inputDropoutRate, "double", params)
params <- mluPasteArg(hiddenDropoutRate, "double", params)
params <- mluPasteArg(netDefinition, "character", params)
dotargs <- list(...)
for (arg in names(dotargs)) {

params <- mluPasteArg(dotargs[[arg]], "", params, arg)
}
params <- sprintf("MultiClassNeuralNetwork{%s}", params)
return(structure(params, class = c("MultiClassNeuralNetwork",

"MultiClassClassifierTrainer", "maml", "character")))
}

tlcMultiRegressionNeuralNetwork

MultiOutputRegressorTrainer, Trainer: ’MultiRegressionNeuralNet-
work’

Description

Regression neural network is a regression algorithm with multiple outputs.

Usage

tlcMultiRegressionNeuralNetwork(lossFunction = "SquaredError",

106 tlcMultiRegressionNeuralNetwork

defaultHiddenNodes = 100, netFileName = "", numIterations = 100,
displayRefresh = 1, optimizationAlgorithm = "sgd",
initWtsDiameter = 0.1, maxNorm = 0, earlyStoppingRule = list(),
earlyStoppingMetrics = 0, pruning = FALSE, pruningFactor = 0.01,
pruningRounds = 10, pruningRoundIterations = 5, acceleration = "avx",
preTrainerType = "NoPreTrainer", preTrainingEpoch = NULL,
miniBatchSize = 1, shuffle = TRUE, inputDropoutRate = 0,
hiddenDropoutRate = 0, netDefinition = "", ...)

Arguments

lossFunction list: <name><options>. Loss function Default value:’SquaredError’ (short form
loss)

defaultHiddenNodes

integer: <int>. Default number of hidden nodes Default value:’100’ (short form
hidden)

netFileName character: <string>. Net file name (short form filename)

numIterations integer: <int>. Number of training iterations Default value:’100’ (short form
iter)

displayRefresh integer: <int>. Display refresh frequency in number iterations Default value:’1’
(short form refresh)

optimizationAlgorithm

list: <name><options>. Optimization algorithm (Adadelta or SGD) Default
value:’sgd’ (short form algo)

initWtsDiameter

double: <float>. Init weights diameter Default value:’0.1’ (short form initwts)

maxNorm double: <float>. Constrains the norm of incoming weights of a node Default
value:’0’

earlyStoppingRule

list: <name><options>. Early stopping rule (short form esr)
earlyStoppingMetrics

integer: <int>. Early stopping metrics Default value:’0’ (short form esmt)

pruning logical: [+|-]. Enable post-training pruning (Optimal Brain Damage) Default
value:’-’ (short form prune)

pruningFactor double: <float>. Pruning factor: % of weights removed each pruning iteration
Default value:’0.01’ (short form prunefact)

pruningRounds integer: <int>. Number of pruning rounds Default value:’10’ (short form pruner-
ound)

pruningRoundIterations

integer: <int>. Number of pruning round iterations Default value:’5’ (short form
pruneiter)

acceleration list: <name><options>. Hardware acceleration level Default value:’avx’ (short
form accel)

preTrainerType character: [NoPreTrainer|Greedy]. Net Pre-Trainer Default value:’NoPreTrainer’
(short form pretrain)

preTrainingEpoch

integer: <int>. Number of epochs for pre-training. If not set, defaults to numIt-
erations(iter). (short form prepoch)

miniBatchSize integer: <int>. Mini-batch size Default value:’1’ (short form mbsize)

tlcMultiRegressionNeuralNetwork 107

shuffle logical: [+|-]. Whether to shuffle for each training iteration Default value:’+’
(short form shuf)

inputDropoutRate

double: <float>. Input dropout rate Default value:’0’ (short form idrop)
hiddenDropoutRate

double: <float>. Hidden dropout rate Default value:’0’ (short form hdrop)

netDefinition character: <string>. Neural network definition (short form net)

... : . hidden arguments

Value

a character string defining: MultiRegressionNeuralNetwork (MultiOutputRegressorTrainer, Trainer).

Author(s)

Microsoft Corporation

References

https://microsoft.sharepoint.com/teams/TLC

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

The function is currently defined as
function (lossFunction = "SquaredError", defaultHiddenNodes = 100,

netFileName = "", numIterations = 100, displayRefresh = 1,
optimizationAlgorithm = "sgd", initWtsDiameter = 0.1, maxNorm = 0,
earlyStoppingRule = list(), earlyStoppingMetrics = 0, pruning = FALSE,
pruningFactor = 0.01, pruningRounds = 10, pruningRoundIterations = 5,
acceleration = "avx", preTrainerType = "NoPreTrainer", preTrainingEpoch = NULL,
miniBatchSize = 1, shuffle = TRUE, inputDropoutRate = 0,
hiddenDropoutRate = 0, ...)

{
params <- character()
params <- mluPasteArg(lossFunction, "list", params)
params <- mluPasteArg(defaultHiddenNodes, "integer", params)
params <- mluPasteArg(netFileName, "character", params)
params <- mluPasteArg(numIterations, "integer", params)
params <- mluPasteArg(displayRefresh, "integer", params)
params <- mluPasteArg(optimizationAlgorithm, "list", params)
params <- mluPasteArg(initWtsDiameter, "double", params)
params <- mluPasteArg(maxNorm, "double", params)
params <- mluPasteArg(earlyStoppingRule, "list", params)
params <- mluPasteArg(earlyStoppingMetrics, "integer", params)
params <- mluPasteArg(pruning, "logical", params)
params <- mluPasteArg(pruningFactor, "double", params)
params <- mluPasteArg(pruningRounds, "integer", params)
params <- mluPasteArg(pruningRoundIterations, "integer", params)
params <- mluPasteArg(acceleration, "list", params)
params <- mluPasteArg(preTrainerType, "character", params)

https://microsoft.sharepoint.com/teams/TLC

108 tlcOneClassSVM

params <- mluPasteArg(preTrainingEpoch, "integer", params)
params <- mluPasteArg(miniBatchSize, "integer", params)
params <- mluPasteArg(shuffle, "logical", params)
params <- mluPasteArg(inputDropoutRate, "double", params)
params <- mluPasteArg(hiddenDropoutRate, "double", params)
params <- mluPasteArg(netDefinition, 'character', params)
dotargs <- list(...)
for (arg in names(dotargs)) {

params <- mluPasteArg(dotargs[[arg]], "", params, arg)
}
params <- sprintf("MultiRegressionNeuralNetwork{%s}", params)
return(structure(params, class = c("MultiRegressionNeuralNetwork",

"MultiOutputRegressorTrainer", "maml", "character")))
}

tlcOneClassSVM AnomalyDetectorTrainer, Trainer: ’OneClassSVM’

Description

Not Available!

Usage

tlcOneClassSVM(kernel = "RbfKernel", cacheSize = 100, epsilon = 0.001,
nu = 0.1, shrink = TRUE)

Arguments

kernel list: <name><options>. The kernel used for computing inner products Default
value:’RbfKernel’ (short form ker)

cacheSize double: <double>. Cache size, specified in megabytes Default value:’100’
(short form cache)

epsilon double: <double>. Stopping tolerance Default value:’0.001’ (short form eps)

nu double: <double>. This parameter determines the trade-off between the fraction
of outliers and the number of support vectors Default value:’0.1’

shrink logical: [+|-]. This parameter determines whether or not to use the shrinking
heuristic Default value:’+’

... : . hidden arguments

Value

a character string defining: OneClassSVM (AnomalyDetectorTrainer, Trainer).

Author(s)

Microsoft Corporation

References

https://microsoft.sharepoint.com/teams/TLC

https://microsoft.sharepoint.com/teams/TLC

tlcRegressionNeuralNetwork 109

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

The function is currently defined as
function (kernel = "RbfKernel", cacheSize = 100, epsilon = 0.001,

nu = 0.1, shrink = TRUE, ...)
{

params <- character()
params <- mluPasteArg(kernel, "list", params)
params <- mluPasteArg(cacheSize, "double", params)
params <- mluPasteArg(epsilon, "double", params)
params <- mluPasteArg(nu, "double", params)
params <- mluPasteArg(shrink, "logical", params)
dotargs <- list(...)
for (arg in names(dotargs)) {

params <- mluPasteArg(dotargs[[arg]], "", params, arg)
}
params <- sprintf("OneClassSVM{%s}", params)
return(structure(params, class = c("OneClassSvm",

"AnomalyDetectorTrainer", "maml", "character")))
}

tlcRegressionNeuralNetwork

RegressorTrainer, Trainer: ’RegressionNeuralNetwork’

Description

Regression neural network is a regression algorithm which uses neural network with single out-
put. TLC supports various types of neural networks, including deep neural networks (DNNs) and
convolutional neural networks (CNN) via Net# language.

Usage

tlcRegressionNeuralNetwork(lossFunction = "SquaredError",
defaultHiddenNodes = 100, netFileName = "", numIterations = 100,
displayRefresh = 1, optimizationAlgorithm = "sgd",
initWtsDiameter = 0.1, maxNorm = 0, earlyStoppingRule = list(),
earlyStoppingMetrics = 0, pruning = FALSE, pruningFactor = 0.01,
pruningRounds = 10, pruningRoundIterations = 5, acceleration = "avx",
preTrainerType = "NoPreTrainer", preTrainingEpoch = NULL,
miniBatchSize = 1, shuffle = TRUE, inputDropoutRate = 0,
hiddenDropoutRate = 0, netDefinition = "")

Arguments

lossFunction list: <name><options>. Loss function Default value:’SquaredError’ (short form
loss)

110 tlcRegressionNeuralNetwork

defaultHiddenNodes

integer: <int>. Default number of hidden nodes Default value:’100’ (short form
hidden)

netFileName character: <string>. Net file name (short form filename)

numIterations integer: <int>. Number of training iterations Default value:’100’ (short form
iter)

displayRefresh integer: <int>. Display refresh frequency in number iterations Default value:’1’
(short form refresh)

optimizationAlgorithm

list: <name><options>. Optimization algorithm (Adadelta or SGD) Default
value:’sgd’ (short form algo)

initWtsDiameter

double: <float>. Init weights diameter Default value:’0.1’ (short form initwts)

maxNorm double: <float>. Constrains the norm of incoming weights of a node Default
value:’0’

earlyStoppingRule

list: <name><options>. Early stopping rule (short form esr)
earlyStoppingMetrics

integer: <int>. Early stopping metrics Default value:’0’ (short form esmt)

pruning logical: [+|-]. Enable post-training pruning (Optimal Brain Damage) Default
value:’-’ (short form prune)

pruningFactor double: <float>. Pruning factor: % of weights removed each pruning iteration
Default value:’0.01’ (short form prunefact)

pruningRounds integer: <int>. Number of pruning rounds Default value:’10’ (short form pruner-
ound)

pruningRoundIterations

integer: <int>. Number of pruning round iterations Default value:’5’ (short form
pruneiter)

acceleration list: <name><options>. Hardware acceleration level Default value:’avx’ (short
form accel)

preTrainerType character: [NoPreTrainer|Greedy]. Net Pre-Trainer Default value:’NoPreTrainer’
(short form pretrain)

preTrainingEpoch

integer: <int>. Number of epochs for pre-training. If not set, defaults to numIt-
erations(iter). (short form prepoch)

miniBatchSize integer: <int>. Mini-batch size Default value:’1’ (short form mbsize)

shuffle logical: [+|-]. Whether to shuffle for each training iteration Default value:’+’
(short form shuf)

inputDropoutRate

double: <float>. Input dropout rate Default value:’0’ (short form idrop)
hiddenDropoutRate

double: <float>. Hidden dropout rate Default value:’0’ (short form hdrop)

netDefinition character: <string>. Neural network definition (short form net)

... : . hidden arguments

Value

a character string defining: RegressionNeuralNetwork (RegressorTrainer, Trainer).

tlcRegressionNeuralNetwork 111

Author(s)

Microsoft Corporation

References

https://microsoft.sharepoint.com/teams/TLC

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

The function is currently defined as
function (lossFunction = "SquaredError", defaultHiddenNodes = 100,

netFileName = "", numIterations = 100, displayRefresh = 1,
optimizationAlgorithm = "sgd", initWtsDiameter = 0.1, maxNorm = 0,
earlyStoppingRule = list(), earlyStoppingMetrics = 0, pruning = FALSE,
pruningFactor = 0.01, pruningRounds = 10, pruningRoundIterations = 5,
acceleration = "avx", preTrainerType = "NoPreTrainer", preTrainingEpoch = NULL,
miniBatchSize = 1, shuffle = TRUE, inputDropoutRate = 0,
hiddenDropoutRate = 0, netDefinition = "", ...)

{
params <- character()
params <- mluPasteArg(lossFunction, "list", params)
params <- mluPasteArg(defaultHiddenNodes, "integer", params)
params <- mluPasteArg(netFileName, "character", params)
params <- mluPasteArg(numIterations, "integer", params)
params <- mluPasteArg(displayRefresh, "integer", params)
params <- mluPasteArg(optimizationAlgorithm, "list", params)
params <- mluPasteArg(initWtsDiameter, "double", params)
params <- mluPasteArg(maxNorm, "double", params)
params <- mluPasteArg(earlyStoppingRule, "list", params)
params <- mluPasteArg(earlyStoppingMetrics, "integer", params)
params <- mluPasteArg(pruning, "logical", params)
params <- mluPasteArg(pruningFactor, "double", params)
params <- mluPasteArg(pruningRounds, "integer", params)
params <- mluPasteArg(pruningRoundIterations, "integer", params)
params <- mluPasteArg(acceleration, "list", params)
params <- mluPasteArg(preTrainerType, "character", params)
params <- mluPasteArg(preTrainingEpoch, "integer", params)
params <- mluPasteArg(miniBatchSize, "integer", params)
params <- mluPasteArg(shuffle, "logical", params)
params <- mluPasteArg(inputDropoutRate, "double", params)
params <- mluPasteArg(hiddenDropoutRate, "double", params)
params <- mluPasteArg(netDefinition, "character", params)
dotargs <- list(...)
for (arg in names(dotargs)) {

params <- mluPasteArg(dotargs[[arg]], "", params, arg)
}
params <- sprintf("RegressionNeuralNetwork{%s}", params)
return(structure(params, class = c("RegressionNeuralNetwork",

"RegressorTrainer", "maml", "character")))
}

https://microsoft.sharepoint.com/teams/TLC

112 tlcScore

tlcScore Command: ’Score’

Description

Scores a data file.

Usage

tlcScore(featureColumn = "Features", groupColumn = "GroupId",
customColumn.with.tag = "", scorer = list(), saver = list(),
outputDataFile = "", keepHidden = FALSE,
postTransform.with.tag = list(), outputAllColumns = FALSE,
outputColumn = "", loader = list(), dataFile = "",
outputModelFile = "", inputModelFile = "", loadTransforms = FALSE,
randomSeed = NULL, parallel = NULL, transform.with.tag = list(), ...,
commandContext = "")

Arguments

featureColumn character: <string>. Column to use for features when scorer is not defined De-
fault value:’Features’ (short form feat)

groupColumn character: <string>. Group column name Default value:’GroupId’ (short form
group)

customColumn.with.tag

character: <string>. Input columns: Columns with custom kinds declared through
key assignments, e.g., col[Kind]=Name to assign column named ’Name’ kind
’Kind’ (short form col)

scorer list: <name><options>. Scorer to use

saver list: <name><options>. The data saver to use

outputDataFile character: <string>. File to save the data (short form dout)

keepHidden logical: [+|-]. Whether to include hidden columns Default value:’-’ (short form
keep)

postTransform.with.tag

list: <name><options>. Post processing transform (short form pxf)
outputAllColumns

logical: [+|-]. Whether to output all columns or just scores (short form all)

outputColumn character: <string>. What columns to output beyond score columns, if outputAllColumns=-
. (short form outCol)

loader list: <name><options>. The data loader

dataFile character: <string>. The data file (short form data)
outputModelFile

character: <string>. Model file to save (short form out)

inputModelFile character: <string>. Model file to load (short form in)

loadTransforms logical: [+|-]. Load transforms from model file? (short form loadTrans)

randomSeed integer: <int>. Random seed (short form seed)

tlcScore 113

parallel integer: <int>. Desired degree of parallelism in the data pipeline (short form n)
transform.with.tag

list: <name><options>. Transform (short form xf)

commandContext character: [chain|sweep|]. The compute context of the command. Default value:”

... : . hidden arguments

Value

the output of the TLC Command: Score (Command).

Note

args with tag (customColumn.with.tag, postTransform.with.tag, transform.with.tag) can be speci-
fied as: structure(’...’, tag = ’...’).

Author(s)

Microsoft Corporation

References

https://microsoft.sharepoint.com/teams/TLC

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

The function is currently defined as
function (featureColumn = "Features", groupColumn = "GroupId",

customColumn.with.tag = "", scorer = list(), saver = list(),
outputDataFile = "", keepHidden = FALSE, postTransform.with.tag = list(),
outputAllColumns = FALSE, outputColumn = "", loader = list(),
dataFile = "", outputModelFile = "", inputModelFile = "",
loadTransforms = FALSE, randomSeed = NULL, parallel = NULL,
transform.with.tag = list(), ..., commandContext = "")

{
params <- character()
params <- mluPasteArg(featureColumn, "character", params)
params <- mluPasteArg(groupColumn, "character", params)
params <- mluPasteArg(customColumn.with.tag, "character", params)
params <- mluPasteArg(scorer, "list", params)
params <- mluPasteArg(saver, "list", params)
params <- mluPasteArg(outputDataFile, "character", params)
params <- mluPasteArg(keepHidden, "logical", params)
params <- mluPasteArg(postTransform.with.tag, "list", params)
params <- mluPasteArg(outputAllColumns, "logical", params)
params <- mluPasteArg(outputColumn, "character", params)
params <- mluPasteArg(loader, "list", params)
params <- mluPasteArg(dataFile, "character", params)
params <- mluPasteArg(outputModelFile, "character", params)
params <- mluPasteArg(inputModelFile, "character", params)
params <- mluPasteArg(loadTransforms, "logical", params)

https://microsoft.sharepoint.com/teams/TLC

114 tlcTrain

params <- mluPasteArg(randomSeed, "integer", params)
params <- mluPasteArg(parallel, "integer", params)
params <- mluPasteArg(transform.with.tag, "list", params)
dotargs <- list(...)
for (arg in names(dotargs)) {

params <- mluPasteArg(dotargs[[arg]], "", params, arg)
}
active.calls <- sapply(sys.calls(), function(acall) as.character(acall[[1]]))
if (!nzchar(commandContext) && length(active.calls) > 1) {

chainIds <- grep("chain", active.calls, ignore.case = TRUE)
sweepIds <- grep("sweep", active.calls, ignore.case = TRUE)
if (length(chainIds) > 0 && length(sweepIds) == 0)

commandContext <- "chain"
else if (length(sweepIds) > 0 && length(chainIds) ==

0)
commandContext <- "sweep"

else if (length(sweepIds) > 0 && length(chainIds) > 0)
commandContext <- ifelse(max(chainIds) > max(sweepIds),

"chain", "sweep")
}
params <- switch(commandContext, chain = sprintf("Score{%s}",

params), sweep = sprintf("{Score%s}", params), sprintf("Score%s",
params))

if (commandContext == "")
mamlRun(params)

else return(structure(params, class = c("Score", "Command", "maml", "character")))
}

tlcTrain Command: ’Train’

Description

Trains a predictor.

Usage

tlcTrain(customColumn.with.tag = "", normalize = "Auto",
trainer = "AveragedPerceptron", validationFile = "",
calibrator = "sigmoid", randomSeed = NULL, parallel = NULL,
transform.with.tag = list(), ..., commandContext = "")

Arguments

customColumn.with.tag

character: <string>. Columns with custom kinds declared through key assign-
ments, e.g., col[Kind]=Name to assign column named ’Name’ kind ’Kind’ (short
form col)

normalize character: [No|Warn|Auto|Yes]. Normalize option for the feature column De-
fault value:’Auto’ (short form norm)

trainer list: <name><options>. Trainer to use Default value:’AveragedPerceptron’ (short
form tr)

tlcTrain 115

validationFile character: <string>. The validation data file (short form valid)

calibrator list: <name><options>. Output calibrator Default value:’PlattCalibration’ (short
form cali)

randomSeed integer: <int>. Random seed (short form seed)

parallel integer: <int>. Desired degree of parallelism in the data pipeline (short form n)
transform.with.tag

list: <name><options>. Transform (short form xf)

commandContext character: [chain|sweep|]. The compute context of the command. Default value:”

... : . hidden arguments

Value

the output of the TLC Command: Train (Command).

Note

args with tag (customColumn.with.tag, transform.with.tag) can be specified as: structure(’...’, tag =
’...’).

Author(s)

Microsoft Corporation

References

https://microsoft.sharepoint.com/teams/TLC

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

The function is currently defined as
function (featureColumn = "Features", labelColumn = "Label",

weightColumn = "Weight", groupColumn = "GroupId", nameColumn = "Name",
customColumn.with.tag = "", normalizeFeatures = "Auto", trainer = "AveragedPerceptron",
validationFile = "", cacheData = FALSE, calibrator = "PlattCalibration",
maxCalibrationExamples = 1e+09, continueTrain = FALSE, loader = list(),
dataFile = "", outputModelFile = "", inputModelFile = "",
loadTransforms = FALSE, randomSeed = NULL, parallel = NULL,
transform.with.tag = list(), ..., commandContext = "")

{
params <- character()
params <- mluPasteArg(featureColumn, "character", params)
params <- mluPasteArg(labelColumn, "character", params)
params <- mluPasteArg(weightColumn, "character", params)
params <- mluPasteArg(groupColumn, "character", params)
params <- mluPasteArg(nameColumn, "character", params)
params <- mluPasteArg(customColumn.with.tag, "character", params)
params <- mluPasteArg(normalizeFeatures, "character", params)
params <- mluPasteArg(trainer, "list", params)
params <- mluPasteArg(validationFile, "character", params)

https://microsoft.sharepoint.com/teams/TLC

116 tlcTrain

params <- mluPasteArg(cacheData, "logical", params)
params <- mluPasteArg(calibrator, "list", params)
params <- mluPasteArg(maxCalibrationExamples, "integer", params)
params <- mluPasteArg(continueTrain, "logical", params)
params <- mluPasteArg(loader, "list", params)
params <- mluPasteArg(dataFile, "character", params)
params <- mluPasteArg(outputModelFile, "character", params)
params <- mluPasteArg(inputModelFile, "character", params)
params <- mluPasteArg(loadTransforms, "logical", params)
params <- mluPasteArg(randomSeed, "integer", params)
params <- mluPasteArg(parallel, "integer", params)
params <- mluPasteArg(transform.with.tag, "list", params)
dotargs <- list(...)
for (arg in names(dotargs)) {

params <- mluPasteArg(dotargs[[arg]], "", params, arg)
}
active.calls <- sapply(sys.calls(), function(acall) as.character(acall[[1]]))
if (!nzchar(commandContext) && length(active.calls) > 1) {

chainIds <- grep("chain", active.calls, ignore.case = TRUE)
sweepIds <- grep("sweep", active.calls, ignore.case = TRUE)
if (length(chainIds) > 0 && length(sweepIds) == 0)

commandContext <- "chain"
else if (length(sweepIds) > 0 && length(chainIds) ==

0)
commandContext <- "sweep"

else if (length(sweepIds) > 0 && length(chainIds) > 0)
commandContext <- ifelse(max(chainIds) > max(sweepIds),

"chain", "sweep")
}
params <- switch(commandContext, chain = sprintf("Train{%s}",

params), sweep = sprintf("{Train%s}", params), sprintf("Train%s",
params))

if (commandContext == "")
mamlRun(params)

else return(structure(params, class = c("Train", "Command", "maml", "character")))
}

Index

∗Topic AnomalyDetectorTrainer
tlcOneClassSVM, 108

∗Topic BinaryClassifierTrainer
tlcBinaryNeuralNetwork, 79
tlcFastForestClassification, 82
tlcFastTreeBinaryClassification,

87
tlcLogisticRegression, 99

∗Topic Command
tlcScore, 112
tlcTrain, 114

∗Topic MultiClassClassifierTrainer
tlcMultiClassLogisticRegression,

101
tlcMultiClassNeuralNetwork, 103

∗Topic MultiOutputRegressorTrainer
tlcMultiRegressionNeuralNetwork,

105
∗Topic RankerTrainer

tlcFastTreeRanking, 91
∗Topic RegressorTrainer

tlcFastForestRegression, 84
tlcFastTreeRegression, 95
tlcRegressionNeuralNetwork, 109

∗Topic Trainer
tlcBinaryNeuralNetwork, 79
tlcFastForestClassification, 82
tlcFastForestRegression, 84
tlcFastTreeBinaryClassification,

87
tlcFastTreeRanking, 91
tlcFastTreeRegression, 95
tlcLogisticRegression, 99
tlcMultiClassLogisticRegression,

101
tlcMultiClassNeuralNetwork, 103
tlcMultiRegressionNeuralNetwork,

105
tlcOneClassSVM, 108
tlcRegressionNeuralNetwork, 109

∗Topic alexnet
featurizeImage, 15

∗Topic anomaly

rxOneClassSvm, 65
∗Topic classification

rxFastForest, 40
rxFastLinear, 44
rxFastTrees, 49
rxLogisticRegression, 56
rxNeuralNet, 60

∗Topic cnn
featurizeImage, 15

∗Topic count
minCount, 27

∗Topic datasets
rxHashEnv, 56

∗Topic detection
rxOneClassSvm, 65

∗Topic dnn
featurizeImage, 15
rxNeuralNet, 60

∗Topic fast
rxFastLinear, 44

∗Topic feature
minCount, 27
mutualInformation, 30
selectFeatures, 72

∗Topic featurize
featurizeImage, 15

∗Topic file
mlDataStep, 29
summary.mlModel, 77

∗Topic image
extractPixels, 11
featurizeImage, 15
loadImage, 21
resizeImage, 35

∗Topic information
mutualInformation, 30

∗Topic kernel
kernel, 20

∗Topic linear
rxFastLinear, 44

∗Topic loss
loss functions, 23

∗Topic manip

117

118 INDEX

mlDataStep, 29
rxFeaturize, 53
rxPredict.mlModel, 69
summary.mlModel, 77

∗Topic models
rxFastForest, 40
rxFastTrees, 49
rxLogisticRegression, 56
rxNeuralNet, 60
rxOneClassSvm, 65

∗Topic mutual
mutualInformation, 30

∗Topic network
rxNeuralNet, 60

∗Topic neural
rxNeuralNet, 60

∗Topic nlp
getSentiment, 19

∗Topic optimizer
maOptimizer, 25

∗Topic package
MicrosoftML-package, 3

∗Topic regression
rxFastForest, 40
rxFastLinear, 44
rxFastTrees, 49
rxNeuralNet, 60

∗Topic resnet
featurizeImage, 15

∗Topic sdca
rxFastLinear, 44

∗Topic selection
minCount, 27
mutualInformation, 30
selectFeatures, 72

∗Topic sentiment
getSentiment, 19

∗Topic stochastic
rxFastLinear, 44

∗Topic text
getSentiment, 19

∗Topic transform
categorical, 4
categoricalHash, 6
concat, 8
dropColumns, 9
extractPixels, 11
featurizeImage, 15
getNetDefinition, 17
getSampleDataDir, 18
getSentiment, 19
loadImage, 21

ngram, 33
resizeImage, 35
selectColumns, 71
selectFeatures, 72
stopwordsDefault, 73

adaDeltaSgd, 32, 61
adaDeltaSgd (maOptimizer), 25

BinaryNet (tlcBinaryNeuralNetwork), 79
bnn (tlcBinaryNeuralNetwork), 79
btc (tlcFastTreeBinaryClassification),

87
btr (tlcFastTreeRegression), 95
btrank (tlcFastTreeRanking), 91

categorical, 4, 4, 9, 38, 41, 43, 46, 48, 50,
52, 54, 57, 60, 62, 64, 66, 68

categoricalHash, 4, 6, 9, 27, 41, 43, 46, 48,
50, 52, 54, 57, 60, 62, 64, 66, 68

coef.mlModel (summary.mlModel), 77
concat, 4, 8

dropColumns, 9

ensembleControl, 10
expLoss, 3
expLoss (loss functions), 23
expression, 38, 42, 47, 50, 54, 58, 62, 66, 67
extractPixels, 11

fastForest, 12, 37
fastLinear, 13, 37
fastrank

(tlcFastTreeBinaryClassification),
87

FastRankBinaryClassification
(tlcFastTreeBinaryClassification),
87

FastRankBinaryClassificationWrapper
(tlcFastTreeBinaryClassification),
87

FastRankClassification
(tlcFastTreeBinaryClassification),
87

FastRankRanking (tlcFastTreeRanking), 91
FastRankRankingWrapper

(tlcFastTreeRanking), 91
FastRankRegression

(tlcFastTreeRegression), 95
FastRankRegressionWrapper

(tlcFastTreeRegression), 95

INDEX 119

fastrankwrapper
(tlcFastTreeBinaryClassification),
87

FastTreeClassification
(tlcFastTreeBinaryClassification),
87

fastTrees, 14, 37
featurizeImage, 15
featurizeText, 4, 9, 34, 38, 41, 43, 46, 48,

50, 52, 54, 57, 60, 62, 64, 66, 68
featurizeText (stopwordsDefault), 73
ff (tlcFastForestClassification), 82
ffc (tlcFastForestClassification), 82
ffr (tlcFastForestRegression), 84
fr (tlcFastTreeBinaryClassification), 87
frc (tlcFastTreeBinaryClassification),

87
frr (tlcFastTreeRegression), 95
frrank (tlcFastTreeRanking), 91
ft (tlcFastTreeBinaryClassification), 87
ftc (tlcFastTreeBinaryClassification),

87
ftr (tlcFastTreeRegression), 95
ftrank (tlcFastTreeRanking), 91

getNetDefinition, 17
getSampleDataDir, 18
getSentiment, 19

hingeLoss, 3, 13, 45, 48
hingeLoss (loss functions), 23

kernel, 20

linearKernel, 3, 68
linearKernel (kernel), 20
loadImage, 21
logisticRegression, 22, 37
logisticregressionwrapper

(tlcLogisticRegression), 99
logLoss, 3, 13, 45, 48
logLoss (loss functions), 23
loss functions, 23
lr (tlcLogisticRegression), 99

maKernel, 35, 65
maKernel (kernel), 20
maOptimizer, 25
mcnn (tlcMultiClassNeuralNetwork), 103
MicrosoftML-package, 3
minCount, 3, 27, 30, 72
mlDataStep, 29
mlr (tlcMultiClassLogisticRegression),

101

mrnn (tlcMultiRegressionNeuralNetwork),
105

MulticlassLogisticRegressionPredictorNew
(tlcMultiClassLogisticRegression),
101

MultiClassNet
(tlcMultiClassNeuralNetwork),
103

multilr
(tlcMultiClassLogisticRegression),
101

MultiRegressionNet
(tlcMultiRegressionNeuralNetwork),
105

mutualInformation, 3, 27, 30, 72

neuralNet, 32, 37
ngram, 33
ngramCount, 75, 76
ngramCount (ngram), 33
ngramHash, 75, 76
ngramHash (ngram), 33

oneClassSvm, 34

poissonLoss, 3
poissonLoss (loss functions), 23
polynomialKernel, 3, 68
polynomialKernel (kernel), 20

rank (tlcFastTreeRanking), 91
rbfKernel, 3, 68
rbfKernel (kernel), 20
RegressionNet

(tlcRegressionNeuralNetwork),
109

resizeImage, 35
rnn (tlcRegressionNeuralNetwork), 109
RxComputeContext, 39, 42, 47, 51, 55, 58, 63,

67, 70
RxDataSource, 29, 55, 70
rxDataStep, 55
rxEnsemble, 12–14, 22, 32, 34, 37
rxFastForest, 3, 5, 7, 9, 19, 40, 48, 52, 60,

64, 68, 70, 76, 78
rxFastLinear, 3, 19, 24, 43, 44, 52, 60, 64,

68, 77, 78
rxFastTrees, 3, 5, 7, 9, 19, 43, 48, 49, 60, 64,

68–70, 76, 78
rxFeaturize, 53
rxFormula, 37, 41, 45, 49, 56, 61, 65
rxHashEnv, 56
rxImport, 55

120 INDEX

RxInSqlServer, 42, 47, 51, 55, 58, 63, 67, 70
rxLogisticRegression, 3, 5, 7, 9, 19, 43, 48,

52, 56, 64, 68–70, 76–78
rxNeuralNet, 3, 5, 7, 9, 19, 24, 26, 43, 48, 52,

60, 60, 68, 70, 76, 78
rxOneClassSvm, 3, 5, 7, 9, 19, 21, 43, 48, 52,

60, 64, 65, 70, 76, 78
rxPredict.mlModel, 3, 29, 43, 48, 52, 60, 64,

68, 69
RxSpark, 39
rxTransform, 38, 42, 47, 51, 54, 55, 58, 62, 67

selectColumns, 71
selectFeatures, 4, 27, 30, 72
sgd, 32, 61
sgd (maOptimizer), 25
sigmoidKernel, 3, 68
sigmoidKernel (kernel), 20
smoothHingeLoss, 3, 13, 45, 48
smoothHingeLoss (loss functions), 23
squaredLoss, 3, 13, 45, 48
squaredLoss (loss functions), 23
stopwordsCustom (stopwordsDefault), 73
stopwordsDefault, 73
summary.mlModel, 23, 57, 77

termDictionary (stopwordsDefault), 73
tlcBinaryNeuralNetwork, 79
tlcFastForestClassification, 82
tlcFastForestRegression, 84
tlcFastTreeBinaryClassification, 87
tlcFastTreeRanking, 91
tlcFastTreeRegression, 95
tlcLogisticRegression, 99
tlcMultiClassLogisticRegression, 101
tlcMultiClassNeuralNetwork, 103
tlcMultiRegressionNeuralNetwork, 105
tlcOneClassSVM, 108
tlcRegressionNeuralNetwork, 109
tlcScore, 112
tlcTrain, 114

	MicrosoftML-package
	categorical
	categoricalHash
	concat
	dropColumns
	ensembleControl
	extractPixels
	fastForest
	fastLinear
	fastTrees
	featurizeImage
	getNetDefinition
	getSampleDataDir
	getSentiment
	kernel
	loadImage
	logisticRegression
	loss functions
	maOptimizer
	minCount
	mlDataStep
	mutualInformation
	neuralNet
	ngram
	oneClassSvm
	resizeImage
	rxEnsemble
	rxFastForest
	rxFastLinear
	rxFastTrees
	rxFeaturize
	rxHashEnv
	rxLogisticRegression
	rxNeuralNet
	rxOneClassSvm
	rxPredict.mlModel
	selectColumns
	selectFeatures
	stopwordsDefault
	summary.mlModel
	tlcBinaryNeuralNetwork
	tlcFastForestClassification
	tlcFastForestRegression
	tlcFastTreeBinaryClassification
	tlcFastTreeRanking
	tlcFastTreeRegression
	tlcLogisticRegression
	tlcMultiClassLogisticRegression
	tlcMultiClassNeuralNetwork
	tlcMultiRegressionNeuralNetwork
	tlcOneClassSVM
	tlcRegressionNeuralNetwork
	tlcScore
	tlcTrain
	Index

