GUROBI OPTIMIZER
REFERENCE MANUAL

GUROBI

OPTIMIZATION

Version 7.0, Copyright (©) 2017, Gurobi Optimization, Inc.

Contents

1 Introduction 29
2 C API Overview 31
2.1 Environment Creation and Destruction 36
GRBloadenv 36
GRBloadclientenv 36
GRBloadcloudenv 37
GRBfreeenv e 38
GRBgetconcurrentenv Lo 38
GRBdiscardconcurrentenvs L. 39

2.2 Model Creation and Modification 40
GRBloadmodel 40
GRBnewmodel e 42
GRBcopymodelo 43
GRBaddconstr e 43
GRBaddconstrs e 44
GRBaddgenconstrXxx 45
GRBaddgenconstrMaxo oL oL 46
GRBaddgenconstrMin Lo L Lo 46
GRBaddgenconstrAbs 47
GRBaddgenconstrAnd 48
GRBaddgenconstrOr L Lo 48
GRBaddgenconstrIndicator L 49
GRBaddqeconstr 50
GRBaddgpterms 52
GRBaddrangeconstr Lo 53
GRBaddrangeconstrs L Lo 54

GRBaddsos 55
GRBaddvar 56
GRBaddvars e 57
GRBchgeoeffso 58
GRBdelconstrs 59
GRBdelgenconstrs 59

GRBdelq e 60
GRBdelqconstrso 60

GRBdelsos 60
GRBdelvars e e 61
GRBsetpwlobjo 61
GRBupdatemodel 63

GRBfreemodel 63

GRBXaddconstrso 64
GRBXaddrangeconstrs L L Lo 65
GRBXaddvars 66
GRBXchgeoeffs oo 67
GRBXloadmodel 68
2.3 Model Solution e 71
GRBoptimize 71
GRBoptimizeasynco 71
GRBcomputellS 72
GRBfeasrelaxo 73
GRBfixedmodel 74
GRBresetmodelo 74
GRBsync 74
2.4 Model Queries e e 76
GRBgetcoeff 76
GRBgetconstrbynameo L Lo 76
GRBgetconstrs 77
GRBgetenv 77
GRBgetgenconstrMax 78
GRBgetgenconstrMin oL 79
GRBgetgenconstrAbs 80
GRBgetgenconstrAndo 80
GRBgetgenconstrOro 81
GRBgetgenconstrindicator L 82
GRBgetpwlobj 83
GRBgetq o 84
GRBgetqconstro 85
GRBgetsos 86
GRBgetvarbynameo 87
GRBgetvars 87
GRBXgetconstrso 88
GRBXgetvars 89
2.5 Input/Outputo e 91
GRBreadmodel oL 91
GRBread e e 91
GRBwrite 92
2.6 Attribute Managemento 93
GRBgetattrinfo 93
GRBgetintattr 93
GRBsetintattr 94
GRBgetintattrelement 94
GRBsetintattrelement L 95
GRBgetintattrarray 95
GRBsetintattrarray 96

GRBgetintattrlist L 97

GRBsetintattrlist 97
GRBgetdblattro 98
GRBsetdblattr 98
GRBgetdblattrelement L Lo 99
GRBsetdblattrelement oo 99
GRBgetdblattrarray L Lo 100
GRBsetdblattrarray 100
GRBgetdblattrlist 101
GRBsetdblattrlist 101
GRBgetcharattrelement L L oL oo 102
GRBsetcharattrelement oL 102
GRBgetcharattrarray L L L o 103
GRBsetcharattrarrayo 104
GRBgetcharattrlist Lo 104
GRBsetcharattrlist e 105
GRBgetstrattr oL 105
GRBsetstrattr 106
GRBgetstrattrelement L Lo 106
GRBsetstrattrelement oL 107
GRBgetstrattrarrayo 108
GRBsetstrattrarrayo 108
GRBgetstrattrlist 109
GRBsetstrattrlist 110
2.7 Parameter Management and Tuning Lo 111
GRBtunemodel 111
GRBgettuneresult oo 111
GRBgetdblparam 112
GRBgetintparamo 112
GRBgetstrparam 113
GRBsetdblparam 113
GRBsetintparam 114
GRBsetstrparam 114
GRBgetdblparaminfo oo o 115
GRBgetintparaminfoo o 115
GRBgetstrparaminfo oL oo 116
GRBreadparams 117
GRBwriteparams 117
2.8 Monitoring Progress - Logging and Callbacks 118
GRBmsg 118
GRBsetcallbackfunc o o 118
GRBgetcallbackfunc Lo 119
GRBcbget 119
GRBversion e e 120

2.9 Modifying Solver Behavior - Callbacks 121

GRBcbeuto 121

GRBcblazy 122
GRBcbsolution o 123
GRBterminate oo 123

2.10 Error Handling e 124
GRBgeterrormsgo 124

2.11 Advanced simplex routines 125
GRBFSolve 125
GRBBSolve 125
GRBBinvColj 126
GRBBinvRowi 126
GRBgetBasisHead 127

3 C++ API Overview 128
3.1 GRBEnv. 133
GRBEDV() .+« o o o e e e e e e e e e e e e 133
GRBEnv:get() o o 135
GRBEnv:getErrorMsg() o 135
GRBEnv::getParamlInfo() o L. 136
GRBEnvimessage() 137
GRBEnv:readParams() Lo 137
GRBEnv:uresetParams() Lo Lo o 137
GRBEnv:set()o 137
GRBEnv:writeParams() Lo Lo 138

3.2 GRBModel 139
GRBModel() o 139
GRBModel::addConstr() 139
GRBModel::addConstrs() o o oo 141
GRBModel::addGenConstrXxx()o o 142
GRBModel::addQConstr() oL 146
GRBModel::addRange()o o 147
GRBModel::addRanges() Lo 148
GRBModel::addSOS() o oo o 148
GRBModel::addVar() o 149
GRBModel::addVars()o 150
GRBModel::chgCoeff() oo oo 151
GRBModel::chgCoeffs() o 152
GRBModel::computelIS() oo 152
GRBModel::discardConcurrentEnvs() L. 153
GRBModel::feasRelax()o 153
GRBModel::fixedModel() 155
GRBModel:iget() 155
GRBModel::getCoeff() oo o 159
GRBModel::getCol() o 159
GRBModel::getConcurrentEnv() o L. 160
GRBModel::getConstrByName() 160

3.3 GRBVar

3.4 GRBConstr

3.5 GRBQConstr

GRBModel::getConstrs() o 160
GRBModel::getEnv()o 161
GRBModel::getGenConstrMax() 161
GRBModel::getGenConstrMin() L o L 161
GRBModel::getGenConstrAbs() 162
GRBModel::getGenConstrAnd() oL 162
GRBModel::getGenConstrOr() 163
GRBModel::getGenConstrIndicator() 163
GRBModel::getGenConstrs() oo 164
GRBModel::getObjective() o 164
GRBModel::;getPWLObj() 164
GRBModel::getQCRow() oo oo 165
GRBModel::getQConstrs() 165
GRBModel::getRow() 165
GRBModel::getSOS() o 165
GRBModel::getSOSs() o v v oo 166
GRBModel::getTuneResult() 166
GRBModel::getVarByName()o 166
GRBModel::getVars() L 167
GRBModel::optimize()o 167
GRBModel::optimizeasync() o Lo 167
GRBModel::presolve()o 168
GRBModel:iread() Lo 168
GRBModel:irtemove()o 168
GRBModel:reset() oL 169
GRBModel::setCallback() oo oo 169
GRBModel:iset() o o oo 170
GRBModel::setObjective() o v o oo 174
GRBModel::setPWLObj() oo oo 174
GRBModel:isync() . . o v o oo 175
GRBModel::terminate() oo 176
GRBModel::tune() . . . o o o 176
GRBModel::update()o 176
GRBModel::write() . . . v« v oo 176
... 178
GRBVar:get() o 178
GRBVarusameAs() 179
GRBVarzset()o 179
... 180
GRBConstrget() o 180
GRBConstrisameAs() oo oo e 181
GRBConstrzset() o o o 181
.. 182
GRBQConstr:get() 182
GRBQConstrset() . . . v o o 183

3.6 GRBSOS 184
GRBSOS::get() . . o v o o 184
3.7 GRBGenConstr 185
GRBGenConstr:get() o oo o 185
GRBGenConstrzset() oL 185
3.8 GRBEXpr 186
GRBExpr:getValue() 186
3.9 GRBLinExpr e 187
GRBLInExpr() 187
GRBLinExpr:addTerms() o .o o 188
GRBLinExpr:clear() o 188
GRBLinExpr::getConstant() o 188
GRBLinExpr::getCoeff() oo 188
GRBLinExpr:getValue() 189
GRBLinExpr:getVar() Lo 189
GRBLinExpr::operator=. 189
GRBLinExpr::operator+ 189
GRBLinExpr::operator- Lo 190
GRBLinExpr::operator+=. 190
GRBLinExpr::operator-= L oo 190
GRBLinExpr::operator®= 190
GRBLinExpriremove() e 191
GRBLinExpr:size() 191
3.10 GRBQuadExpr 192
GRBQuadExpr() 192
GRBQuadExpr::addTerm() 193
GRBQuadExpr:addTerms() 194
GRBQuadExpr::clear() L 194
GRBQuadExpr::getCoeff() 194
GRBQuadExpr::getLinExpr() 195
GRBQuadExpr::getValue() 195
GRBQuadExpr::getVarl() 195
GRBQuadExpr::getVar2() 195
GRBQuadExpr::operator= 196
GRBQuadExpr::operator+ 196
GRBQuadExpr::operator- Lo 196
GRBQuadExpr::operator+= 196
GRBQuadExpr::operator-= Lo 197
GRBQuadExpr:operator*= 197
GRBQuadExproremove()o 197
GRBQuadExpr:size() 197
3.11 GRBTempConstr o e 198
3.12 GRBColumn 199
GRBColumn() 199
GRBColumn::addTerm() 199

GRBColumn::addTerms() o 199

GRBColumn::clear() o 199
GRBColumn::getCoeff() oo 200
GRBColumn::getConstr() o 200
GRBColumn:remove() oo oo 200
GRBColumn:size() 200
3.13 GRBCallback e 201
GRBCallback() 201
GRBCallback::abort() Lo 201
GRBCallback:addCut() oo 201
GRBCallback::addLazy() 202
GRBCallback::getDoubleInfo() 203
GRBCallback::getIntInfo() oo 203
GRBCallback::getNodeRel() oo 203
GRBCallback::getSolution() 204
GRBCallback::getStringInfo() oo L 204
GRBCallback::setSolution()o 205
3.14 GRBException e 206
GRBException() 206
GRBException::getErrorCode()o Lo 206
GRBException:getMessage() o oo 206
3.15 Non-Member Functions e 207
operator== 207
operator<<= L e e 207
operator>= 207
operator+ L 208
operator- oL Lo 209
operator® . ..o L 210
operator/ 212
3.16 Attribute Enumso oL oL 213
GRB_ CharAttr e 213
GRB_ DoubleAttr e 213
GRB IntAttr. e 213
GRB_StringAttr 213
3.17 Parameter Enums oo e 214
GRB DoubleParam 214
GRB IntParam 214
GRB_ StringParam Lo 214
Java API Overview 215
41 GRBEnv. 221
GRBEnv() 221
GRBEnv.dispose() 223
GRBEnv.get() 223
GRBEnv.getErrorMsg() L 224

GRBEnv.getParamInfo() 224

GRBEnv.message() 225

GRBEnv.readParams() 225
GRBEnv.release() 225
GRBEnv.resetParams() 226
GRBEDVSCH() -+« o o o oo e e e e e e e e e e 226
GRBEnv.writeParams() o 227
4.2 GRBModel 228
GRBModel() o 228
GRBModel.addConstr()o 229
GRBModel.addConstrs() oo 231
GRBModel.addGenConstrXxx() 232
GRBModel.addQConstr() 236
GRBModel.addRange() 238
GRBModel.addRanges() 239
GRBModel.addSOS() 239
GRBModel.addVar() o 239
GRBModel.addVars() 241
GRBModel.chgCoeff() 243
GRBModel.chgCoeffs() 243
GRBModel.computelIS() 244
GRBModel.discardConcurrentEnvs() L. 244
GRBModel.dispose()o o 244
GRBModel.feasRelax() Lo 244
GRBModel.fixedModel() L 246
GRBModel.get() 246
GRBModel.getCoeff() o 261
GRBModel.getCol() 261
GRBModel.getConcurrentEnv() L oL 262
GRBModel.getConstrByName() 262
GRBModel.getConstrs() o v vt 262
GRBModel.getEnv() 263
GRBModel.getGenConstrMax() o 263
GRBModel.getGenConstrMin() 263
GRBModel.getGenConstrAbs() oo 264
GRBModel.getGenConstrAnd() L. 264
GRBModel.getGenConstrOr() 265
GRBModel.getGenConstrIndicator() 265
GRBModel.getGenConstrs() o 266
GRBModel.getObjective() o o oo 266
GRBModel.getPWLODbj() o oo o 266
GRBModel.getQConstr()« oo 267
GRBModel.getQConstrs() o o 267
GRBModel.getRow() 267
GRBModel.getSOS() o oo 267
GRBModel.getSOSs() o o o oo 268

4.3

4.4

4.5

4.6

4.7

4.8

4.9

GRBModel.getTuneResult() 268

GRBModel.getVarByName() 268
GRBModel.getVars() 269
GRBModel.optimize() 269
GRBModel.optimizeasync() 269
GRBModel.presolve() 270
GRBModel.read() 270
GRBModel.remove() oo 270
GRBModel.reset() 271
GRBModel.setCallback() 271
GRBModel.set() 272
GRBModel.setObjective()o 285
GRBModel.setPWLODj() 285
GRBModel.terminate() 286
GRBModel.tune() 287
GRBModel.update() 287
GRBModel.write() 287
GRBVar e 288
GRBVar.get() 288
GRBVar.sameAs() 289
GRBVarset()o 289
GRBConstr e 290
GRBConstr.get() 290
GRBConstr.sameAs() e 291
GRBConstr.set() o v oo 291
GRBQConstr e 292
GRBQConstr.get() 292
GRBQConstr.set() e 293
GRBSOS . . . 294
GRBSOS.get() . . . o v v o 294
GRBGenConstr 295
GRBGenConstr.get() e 295
GRBGenConstr.set() o v oo i 295
GRBEXpr o 296
GRBExpr.getValue() 296
GRBLinExpr e 297
GRBLIinExpr() o 297
GRBLinExpr.add() o 297
GRBLinExpr.addConstant() 298
GRBLinExpr.addTerm() 298
GRBLinExpr.addTerms() 298
GRBLinExpr.clear() 299
GRBLinExpr.getConstant() o 299
GRBLinExpr.getCoeff() 299
GRBLinExpr.getValue() 299

10

GRBLinExpr.getVar() 299

GRBLinExpr.multAdd()o 300
GRBLinExpr.oremove() 300
GRBLinExpr.size() 300
4.10 GRBQuadExpr 301
GRBQuadExpr()« . 301
GRBQuadExpr.add() 302
GRBQuadExpr.addConstant() 302
GRBQuadExpr.addTerm() 302
GRBQuadExpr.addTerms() oo 303
GRBQuadExpr.clear() 304
GRBQuadExpr.getCoeff()o 304
GRBQuadExpr.getLinExpr() 304
GRBQuadExpr.getValue() 304
GRBQuadExpr.getVarl() 305
GRBQuadExpr.getVar2() 305
GRBQuadExprmultAdd() 305
GRBQuadExpr.remove() 305
GRBQuadExpr.size() 306
4.11 GRBColumn 307
GRBColumn() 307
GRBColumn.addTerm() 307
GRBColumn.addTerms() 307
GRBColumn.clear() 308
GRBColumn.getCoeff() o 308
GRBColumn.getConstr() 308
GRBColumn.remove()o 309
GRBColumn.size() oo e 309
4.12 GRBCallback 310
GRBCallback() 310
GRBCallback.abort() 310
GRBCallback.addCut() 310
GRBCallback.addLazy() 311
GRBCallback.getDoublelnfo() o L 312
GRBCallback.getIntInfo() L o 312
GRBCallback.getNodeRel() o 312
GRBCallback.getSolution() 313
GRBCallback.getStringInfo() oo 313
GRBCallback.setSolution() 314
4.13 GRBException 315
GRBException() o 315
GRBException.getErrorCode() Lo o 315
4.14 GRB . . . o 316
Constants 316
GRB.CharAttr 320

GRB.DoubleAttr 320

GRB.DoubleParam oo o 320
GRB.IntAttr 320
GRB.IntParam 320
GRB.StringAttr 320
GRB.StringParam oo 320
5 .NET API Overview 321
51 GRBEnv. . . . 327
GRBEnv() 327
GRBEnv.Dispose() 329
GRBEnv.ErrorMsg L 329
GRBEnv.Get() o 329
GRBEnv.GetParamInfo() 330
GRBEnv.Message() o v v i 331
GRBEnv.ReadParams() 331
GRBEnv.Release() 331
GRBEnv.ResetParams() L oo 331
GRBEnv.Set() 331
GRBEnv.WriteParams() L o 332
5.2 GRBModel 333
GRBModel() e 333
GRBModel.AddConstr()o 334
GRBModel.AddConstrs() v v vt 334
GRBModel.AddGenConstrXxx() o 335
GRBModel.AddQConstr() o v v v 339
GRBModel.AddRange() 340
GRBModel.AddRanges() e 341
GRBModel.AddSOS() o 341
GRBModel.AddVar() 341
GRBModel.AddVars() 343
GRBModel.ChgCoeff() 345
GRBModel.ChgCoeffs() 345
GRBModel.ComputelIS() 346
GRBModel.DiscardConcurrentEnvs() 0L 346
GRBModel.Dispose() 346
GRBModel.FeasRelax() o 346
GRBModel.FixedModel() 348
GRBModel.Get() 348
GRBModel.GetCoeff() 360
GRBModel.GetCol() oo oo 360
GRBModel.GetConcurrentEnv() 360
GRBModel.GetConstrByName() 361
GRBModel.GetConstrs() 361
GRBModel.GetEnv() 361
GRBModel.GetGenConstrMax() oo 361

12

5.3

5.4

5.5

5.6

5.7

GRBModel.GetGenConstrMin() L. 362

GRBModel.GetGenConstrAbs() oo 362
GRBModel.GetGenConstrAnd() 362
GRBModel.GetGenConstrOr() o 363
GRBModel.GetGenConstrIndicator() 363
GRBModel.GetGenConstrs()« v oo v vt i 364
GRBModel.GetObjective() o 364
GRBModel.GetPWLODbj() o o oo 364
GRBModel.GetQConstr() 364
GRBModel.GetQConstrs() 365
GRBModel.GetQCRow() 365
GRBModel.GetRow() 365
GRBModel.GetSOS() 365
GRBModel.GetSOSs() v v v oo 366
GRBModel.GetTuneResult() 366
GRBModel.GetVarByName() 366
GRBModel.GetVars() 366
GRBModel.Optimize() e 367
GRBModel::OptimizeAsync() Lo 367
GRBModel.Presolve() 367
GRBModel.Read() 367
GRBModel.Remove() 368
GRBModel.Reset() 369
GRBModel.SetCallback() 369
GRBModel.Set() 369
GRBModel.SetObjective() o v v 381
GRBModel.SetPWLObj() o 381
GRBModel. Terminate() o 383
GRBModel. Tune() 383
GRBModel.Update() o 383
GRBModel.Write() 383
GRBVar e 384
GRBVar.Get() 384
GRBVar.SameAs() 384
GRBVar.Set() 385
GRBConstr 386
GRBConstr.Get() 386
GRBConstr.SameAs() 386
GRBConstr.Set() o 387
GRBQConstr e 388
GRBQConstr.Get() o 388
GRBQConstr.Set() o 388
GRBSOS . . . 390
GRBSOS.Get() . . . o v oo 390
GRBGenConstr 391

GRBGenConstr.Get() L 391

GRBGenConstr.Set() 391
5.8 GRBExXpr 392
GRBExpr.Value 392
5.9 GRBLInExpr e 393
GRBLInEXpr()« 393
GRBLinExpr.Add() 394
GRBLinExpr.AddConstant() 394
GRBLinExpr.AddTerm() 394
GRBLinExpr.AddTerms() o 394
GRBLinExpr.Clear() 395
GRBLinExpr.Constant 395
GRBLinExpr.GetCoeff() oo 395
GRBLinExpr.GetVar() e 395
GRBLinExpr.MultAdd() 395
GRBLinExpr.Remove() 396
GRBLinExpr.Size e 396
GRBLinExpr.Value 396
5.10 GRBQuadExpr 397
GRBQuadExpr() 397
GRBQuadExpr.Add() 398
GRBQuadExpr.AddConstant() 398
GRBQuadExpr.AddTerm() 398
GRBQuadExpr.AddTerms()« oo oo 399
GRBQuadExpr.Clear() 400
GRBQuadExpr.GetCoeff() 400
GRBQuadExpr.GetVarl() 400
GRBQuadExpr.GetVar2() 401
GRBQuadExpr.LinExpr() 401
GRBQuadExpr.MultAdd() 401
GRBQuadExpr.Remove() 401
GRBQuadExpr.Size 402
GRBQuadExpr.Value 402
5.11 GRBTempConstr e e 403
5.12 GRBColumn 404
GRBColumn() 404
GRBColumn. AddTerm() 404
GRBColumn.AddTerms() oo it 404
GRBColumn.Clear() o oo 405
GRBColumn.GetCoeff() 405
GRBColumn.GetConstr() 405
GRBColumn.Remove() 405
GRBColumn.Size 406
5.13 Overloaded Operators i 407

OPerator <<= e e e e e e e e 407

operator >= Lo 407

operator == e 407

operator + oL L e e 408

operator - e e e e e 409

operator * . . . L 410

operator / 412

implicit cast 412

5.14 GRBCallback 414
GRBCallback() 414
GRBCallback.Abort() 414
GRBCallback. AddCut()« 414
GRBCallback.AddLazy() 415
GRBCallback.GetDoubleInfo() 416
GRBCallback.GetIntInfo() o o 416
GRBCallback.GetNodeRel() o 416
GRBCallback.GetSolution() L oo 417
GRBCallback.GetStringInfo() oo 417
GRBCallback.SetSolution()o 417

5.15 GRBException e 419
GRBException() 419
GRBException.ErrorCode L o 419

516 GRB o e 420
Constants L 420
GRB.CharAttr 424
GRB.DoubleAttr 424
GRB.DoubleParam o 424
GRB.IntAttr 424
GRB.IntParam oL 424
GRB.StringAttr 424
GRB.StringParam oo 424

6 Python API Overview 425
6.1 Global Functions 430
models() 430
disposeDefaultEnv() Lo 430

multidict() 430
paramHelp() 431

quicksum() 431

read() ... 431
readParams() L 432
resetParams() o 432

setParam() 432

system() . ..o 433
writeParams() 433

6.2 Model e 434
Model() 434

Model.addConstr() 434

Model.addConstrs() o o oo 435
Model.addGenConstrXxx() oo L 436
Model.addGenConstrMax() L 436
Model.addGenConstrMin()o L 437
Model.addGenConstrAbs() o L 437
Model.addGenConstrAnd() o 438
Model.addGenConstrOr()o 438
Model.addGenConstrIndicator() 438
Model.addQConstr() 439
Model.addRange() 440
ModeLaddSOS() -« « v v v e e e e e 440
Model.addVar() 441
Model.addVars() 441
Model.chCut() o 442
Model.chbGet() o 443
Model.cbGetNodeRel() 443
Model.cbGetSolution() L 444
Model.cbLazy () . . . v v v v o 444
Model.cbSetSolution() L 445
Model.chgCoeff() 445
Model.computelIS() 446
Model.copy() o o o 446
Model.discardConcurrentEnvs() o Lo 446
Model.feasRelaxS() 447
Model.feasRelax() 448
Modelfixed() 449
Model.getAttr() 449
Model.getCoeff() 450
Model.getCol() o o o o 450
Model.getConcurrentEnv()o Lo 450
Model.getConstrByName() 451
Model.getConstrs() 451
Model.getGenConstrMax() 451
Model.getGenConstrMin() L. L 452
Model.getGenConstrAbs()o 452
Model.getGenConstrAnd() Lo 452
Model.getGenConstrOr() L 453
Model.getGenConstrIndicator() 453
Model.getGenConstrs() 454
Model.getObjective()« « v v i 454
Model.getParamInfo() o L 454
Model.getPWLODj()« o o oo 455
Model.getQConstrs() oL 455
Model.getQCROW() o v v 455

16

6.3

6.4

6.5

6.6

6.7

6.8

Model.getRow() L 456

Model.getSOS() o o o o 456
Model.getSOSs() o o o 456
Model.getTuneResult() o 456
Model.getVarByName() 457
Model.getVars() 457
Model.message() o 457
Model.optimize() 458
Model.presolve() L 458
Model.printAttr() 458
Model.printQuality() 459
Model.printStats() 459
Model.read() 459
Model.relax() o o o 460
Model.remove() 460
Model.reset() o oo 460
Model.resetParams() 460
Model.setAttr() o 460
Model.setObjective() o 461
Model.setPWLObj() o o 461
Model.setParam() 463
Model.terminate() 463
Model.tune() 463
Model.update() o 463
Model.write() 464
Var . . . e 465
Var.getAttr() 465
VarsameAs()o 465
VarssetAttr() 466
Comstr o e e 467
Constr.getAttr() 467
Constr.sameAs() 467
Constr.setAttr() 468
QConstr 469
QConstr.getAttr() 469
QConstr.setAttr() 469
SOS . 471
SOS.getAttr() o o 471
GenConstr. 472
GenConstr.getAttr() 472
GenConstr.setAttr() o 472
LinExpr . . . o o 472
LinExpr() 473
LinExpr.add() 474
LinExpr.addConstant() o 474

LinExpr.addTerms() 474

LinExpr.clear() o 474
LinEXpr.copy() . . v v v v v i e e 475
LinExpr.getConstant() 475
LinExpr.getCoeff() 475
LinExpr.getValue() 475
LinExpr.getVar() 476
LinExproremove() o oL 476
LinExpr.size() 476
LinExpr._eq () 476
LinExpr. le (). 477
LinExpr. ge () 477
6.9 QuadExpr e 478
QuadExpr() 478
QuadExpr.add() 479
QuadExpr.addConstant() 479
QuadExpr.addTerms()o 479
QuadExpr.clear() 480
QuadExpr.copy() . . .« o oo 480
QuadExpr.getCoeff() 480
QuadExpr.getLinExpr() 480
QuadExpr.getValue() 481
QuadExpr.getVarl() L 481
QuadExpr.getVar2() 481
QuadExpr.oremove() 481
QuadExpr.size() 482
QuadExpr.__eq () o 482
QuadExpr. le (). 482
QuadExpr.__ge () 482
6.10 TempConstr e 483
6.11 Column 484
Column() o oo 484
Column.addTerms() 484
Column.clear() e 484
Column.copy() .« « « v v v v i 485
Column.getCoeff() 485
Column.getConstr() o 485
Column.remove() o 485
Column.size() o o o 486
6.12 Callbacks o 487
6.13 GurobiError oo 488
6.14 Envo e 489
EOV() o o o e e e e 489
Env.ClientEnv() 489

Env.CloudEnv() 490

Env.resetParams()o 491

Env.setParam() 491
Env.writeParams() Lo 492

6.15 GRB e e 493
Constants L 493

GRB.Attr . . . o 495
GRB.Param 495

6.16 tuplelist 496
tuplelist() 496
tuplelist.select() L 496
tuplelist.clean() 497
tuplelist._contains_ () 497

6.17 tupledict 498
tupledict() 498
tupledict.select() L 498
tupledict.sum()o 499
tupledict.prod() 499
tupledict.clean() Lo 499

7 MATLAB API Overview 501
7.1 Solving models with the Gurobi MATLAB interface 502
gurobi() 502

7.2 Reading and writing models with the Gurobi MATLAB interface 507
gurobi read() 507

gurobi write() 507

7.3 Computing an IIS with the Gurobi MATLAB interface 508
gurobi_dis() 508

7.4 Setting up the Gurobi MATLAB interface 509
8 R API Overview 510
8.1 Solving models with the Gurobi R interface, 511
8.2 Writing models with the Gurobi R interface 516
8.3 Installing the R package 517
9 Variables and Constraints 518
9.1 Variables L e 518
9.2 Constraints L e 519
9.3 Tolerances and Ill Conditioning - A Caveat 523
10 Attributes 524
10.1 Model Attributes 533
NumConstrs o e 533

NumVars e 533

NumSOS . . . 533
NumQConstrs e 534
NumGenConstrs 534

NumNZs . . . e 534

DNumNZs e 534
NumQNZs 534
NumQCNZS o o 534
NumIntVars 535
NumBinVars 535
NumPWLODbjVars e 535
ModelName 535
ModelSense e 535
ObjCon 535
ObjVal e 536
ObjBound 536
ObjBoundC 536
PoolObjBound 536
PoolObjVal e 537
MIPGap . - . . o o o e 537
Runtime e 537
Status e 537
SolCount e e 537
IterCount e 537
BarlterCount e 538
NodeCount e 538
IsMIP e 538
IsSQP . . . e 538
IsSQCP e 538
IISMinimal e 538
MaxCoefl e 539
MinCoeff e 539
MaxBound 539
MinBound 539
MaxObjCoeff 539
MinObjCoeff o 539
MaxRHS e 539
MinRHS e 540
MaxQCCoeff e 540
MinQCCoeff 540
MaxQObjCoeff 540
MinQObjCoeff e 540
Kappa e 540
KappaExact o o 540
FarkasProof 541
TuneResultCount e 541
10.2 Variable Attributes 541
LB . 541

VType . . o e 542
VarName 542
X e 542
XN oo e 542
RC . . e 543
BarX . .o 543
Start e 543
VarHintVal e 544
VarHintPri 544
BranchPriority 545
VBasis e e 545
PStart 545
IISLB . . . e 546
IISUB e 546
PWLODbJCvx oo 546
SAODbjLow e 546
SAODbJUp . . . o 546
SALBLow e 547
SALBUD . . . 547
SAUBLow e 547
SAUBUD 547
UnbdRay o e 547
10.3 Linear Constraint Attributes 547
SENSE e e 548
RHS . . . 548
ConstrName e e 548
Pi 548
Slack e 549
CBasisS e 549
DStart 549
Lazy . . . o o e 550
IISConstr e 550
SARHSLoOwW e 550
SARHSUp e 550
FarkasDual e 551
10.4 SOS Attributes e 551
IISSOS . . . e 551
10.5 Quadratic Constraint Attributes 551
QCSense L 551
QCRHS e 552
QCName 552
QCPIL . . . e e 552
QCSlack 552
IISQConstr e 552

10.6 General Constraint Attributes 552

GenConstrType o o 553
GenConstrName e e 553
IISGenConstr e 553
10.7 Quality Attributes 553
BoundVio 553
BoundSVio e 553
BoundViolndex 554
BoundSViolndex 554
BoundVioSum 554
BoundSVioSum 554
ConstrVio e 554
ConstrSVio e e 555
ConstrViolndex e 555
ConstrSViolndex e 555
ConstrVioSum e 555
ConstrSVioSum e e 555
ConstrResidual 555
ConstrSResidual e 556
ConstrResiduallndex 556
ConstrSResiduallndex 556
ConstrResidualSum 556
ConstrSResidualSum 556
DualVio 557
DualSVio e 557
DualViolndex 557
DualSViolndex e 557
DualVioSum e 558
DualSVioSum e 558
DualResidual e 558
DualSResidual 558
DualResiduallndex 558
DualSResiduallndex 559
DualResidualSum e 559
DualSResidualSum 559
ComplVio o e 559
ComplViolndex e 559
ComplVioSum 559
IntVio e 560
IntViolndex e 560
IntVioSum 560
10.8 Multi-objective Attributes L 560
ObjN . e 560
ObjNCon e 561

ObjNPriority 561

ObjNWeight oo 561

ObjNRelTol o 561
ObjNADbsTol 561
ObjNVal 562
ObjNName 562
NumODbj o e 562
10.9 Attribute Examples 562
C Attribute Examples 564
C++ Attribute Exampleso 565
C# Attribute Examples 565
Java Attribute Examples L L 566
Python Attribute Examples o L 566
Visual Basic Attribute Examples 0oL 567
11 Parameters 568
11.1 Parameter Guidelines L L 573
Continuous Models e 573
MIP Models o . o e 575
11.2 Parameter Descriptions L 577
AggFill . . . o o 577
Aggregate L 577
BarConvTol e 577
BarCorrectors L 578
BarHomogeneous L L L e 578
BarOrder 0 e 578
BarQCPConvTol 579
BarlterLimit 579
BestBdStop 579
BestObjStop oL 580
BranchDir e 580
DegenMoves L e 581
CliqueCuts 581
ConcurrentJobs L 581
ConcurrentMIP e 582
ConcurrentSettings oL 582
CoverCuts 583
CroSSOVET . . . v v v v o e e e e e e e e 583
CrossoverBasis L 584
Cutoff e 584
CutAggPasses L 584
CutPasses e e 585
Cuts . . . o 585
Disconnected e 985
Displaylnterval L 586
DistributedMIPJobs 586
DualReductions 586

FeasibilityTol o . e 587

FeasRelaxBigM o e 587
FlowCoverCuts e 587
FlowPathCuts e 587
GomoryPasses 588
GUBCoverCuts o e e 588
Heuristics o e 588
IISMethod e 589
ImpliedCuts e 589
ImproveStartGap 589
ImproveStartNodes 590
ImproveStartTime 590
InfProofCuts 590
InfUnbdInfo e 591
InputFile 591
IntFeasTol e 9591
TterationLimito 592
LazyConstraints e 592
LogFile o o e 592
LogToConsole 592
MarkowitzTol e 593
Method e 993
MinRelNodes e 593
MIPFocus e e 594
MIPGap o o e 594
MIPGapAbs 595
MIPSepCuts o o o e e 595
MIQCPMethod e 595
MIRCuUts e 595
ModKCuts e 596
MultiObjMethod L 596
MultiObjPre e 596
NetworkCuts e 597
NodefileDir e 597
NodefileStart e 597
NodeLimit e 998
NodeMethod 598
NormAdjust 598
NumericFocus 599
ObjScale 599
OptimalityTol 599
ObjNumber 600
OutputFlag 600
PerturbValue 600
PoolGap e 600

24

PoolSearchMode e 601

PoolSolutions 601
PreCrush e 602
PreDepRow o 602
PreDual e 602
PreMIQCPForm 602
PrePasses 603
PreQLinearize 603
Presolve e 603
PreSOSIBigM o 604
PreSOS2BigM e 604
PreSparsify 605
ProjlmpliedCuts e 605
PSDTol 605
PumpPasses 606
QCPDual 606
Quad e 606
Record 606
ResultFile e 607
RINS . 607
ScaleFlag 608
Seed e 608
Siftingo 608
SiftMethod e 609
SimplexPricingo 609
SolutionLimit e 609
SolutionNumber 609
StrongCGCuts o 610
SubMIPCuts e 610
SubMIPNodes e 610
Symmetry e 611
Threads e 611
TimeLimit e 611
TuneCriterion e 612
TuneJobs e 612
TuneOutput e 612
TuneResults e 613
TuneTimeLimit 613
TuneTrials e 613
UpdateMode 614
VarBranch 614
WorkerPassword 615
WorkerPool 615
WorkerPort 615
ZeroHalfCuts e 615

ZeroObjNodeso

11.3 Parameter Examples oL Lo

C Parameter Examples L L oo
C++ Parameter Examples Lo oo
C# Parameter Examples L oo
Java Parameter Examples 00
MATLAB Parameter Examples
Python Parameter Examples L L.
R Parameter Examples oo
Visual Basic Parameter Examples

12 Optimization Status Codes

13 Callback Codes

14 Error Codes

15 Model File Formats
15.1 MPS format e
15.2 REW format e
15.3 LP format e e
15.4 RLP format e
15.5 ILP format e
15.6 OPB format e
15.7 MST format e
15.8 HNT format e e
15.9 ORD format e
15.10BAS format e
15.11SOL format e
15.12PRM format e

16 Logging

16.1 Simplex Logging L L

16.2 Barrier Logging L

16.3 Sifting Logging L
16.4 MIP Logging 0 e
16.5 Multi-Objective Logging
16.6 Distributed MIP Logging

17 Gurobi Command-Line Tool
17.1 Solving a Model
17.2 Replaying Recording Files L

17.3 Gurobi Remote Services and Compute Server Administration

621

623

626

629
629
634
635
640
640
640
641
641
642
642
643
643

644
644
645
648
649
651
652

26

18 Solution Pool
18.1 Finding Multiple Solutions
18.2 Examples e

18.3 Retrieving Solutions L L
18.4 Subtleties and Limitations

19 Multiple Objectives
19.1 Specifying Multiple Objectives
19.2 Working With Multiple Objective
19.3 Additional Details L

20 Recording

API Calls

20.1 Recording o L L e

20.2 Replay

20.3 Limitations s

21 Concurrent Optimizer

22 Parameter

Tuning Tool

22.1 Command-Line Tuning
22.2 Tuning APL e

23 Gurobi Remote Services

23.1 Setting Up and Administering Gurobi Remote Services

Gurobi Remote Services Parameters
Firewalls e
Administrative Commands
Copyright Notice for 3rd Party Library

24 Distributed Parallel Algorithms
24.1 Configuring a Distributed Worker Pool
24.2 Writing Your Own Distributed Algorithms
24.3 Distributed Algorithm Considerations

25 Gurobi Compute Server

25.1 Setting Up and Administering a Gurobi Compute Server

25.2 Compute Server Usage o o i

Client Configuration
Job Priorities e
Performance Considerations on a Wide-Area Network (WAN)
Callbacks
Developing for Compute Server
Acknowledgement of 3rd Party Icons

659
659
660
660
660

662
662
663
664

666
666
667
667

668

671
672
674

675
675
675
676
676
677

678
678
682
682

26 Gurobi Instant Cloud
26.1 Client Setup o
26.2 Instant Cloud Setup e
26.3 Copyright Notice for 3rd Party Libraries

28

Model Data
Java API

. .NET API
Gurobi

Interactive Python API

Shell Gurobi Algorithms
MATLAB API

Gurobi
Command
Line Solution Data

This is the reference manual for the Gurobi™ Optimizer. It contains documentation for the
following Gurobi language interfaces:

e C
o Ct++
Java®)

Microsoft®.NET

Python®

MATLAB®
e R

The Gurobi interactive shell is also documented in the Python section.

The different Gurobi language interfaces share many common features. These are described at
the end of this manual. Two particularly important common features are the Attribute interface
and the Gurobi Parameter set. You may wish to bookmark these pages, since you are likely to refer
to them frequently as you develop applications that use the Gurobi Optimizer.

This document also includes information on our Distributed Parallel Algorithms, which allow
you to use multiple machines to achieve higher performance, Gurobi Compute Server, which allows
you to offload Gurobi computations from a set of client machines onto one or more servers, and
Gurobi Instant Cloud, which allows you to launch machines on the cloud and offload Gurobi
computations to them.

Additional Resources

You can consult the Gurobi Quick Start for a high-level overview of the Gurobi Optimizer, or the
Gurobi Example Tour for a quick tour of the examples provided with the Gurobi distribution.

29

Introduction

http://www.gurobi.com/documentation/{7}.{0}/quick-start-guide/
http://www.gurobi.com/documentation/{7}.{0}/examples/index.html

Getting Help

If you have a question that is not answered in this document, you can post it to the Gurobi
Google Group. If you have a current maintenance contract with us, you can send your question to
support@gurobi. com.

30

http://groups.google.com/group/gurobi
http://groups.google.com/group/gurobi

C API Overview

This section documents the Gurobi C interface. This manual begins with a quick overview of the
functions in the interface, and continues with detailed descriptions of all of the available interface
routines.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide
or the Example Tour. These documents provide concrete examples of how to use the routines
described here.

Environments

The first step in using the Gurobi C optimizer is to create an environment, using the GRBloadenv
call. The environment acts as a container for all data associated with a set of optimization runs. You
will generally only need one environment in your program, even if you wish to work with multiple
optimization models. Once you are done with an environment, you should call GRBfreeenv to
release the associated resources.

Models

You can create one or more optimization models within an environment. A model consists of a set of
variables, a linear, quadratic, or piecewise-linear objective function on those variables, and a set of
constraints. Each variable has an associated lower bound, upper bound, type (continuous, binary,
integer, semi-continuous, or semi-integer), and linear objective coefficient. Each linear constraint
has an associated sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side
value. Refer to this section for more information on variables and constraints.

An optimization model may be specified all at once, through the GRBloadmodel routine, or
built incrementally, by first calling GRBnewmodel and then calling GRBaddvars to add variables
and GRBaddconstr, GRBaddqconstr, GRBaddsos, or any of the GRBaddgenconstrXxx methods to
add constraints. Models are dynamic entities; you can always add or delete variables or constraints.

Specific variables and constraints are referred to throughout the Gurobi C interface using their
indices. Variable indices are assigned as variables are added to the model, in a contiguous fashion.
The same is true for constraints. In adherence to C language conventions, indices all start at 0.

We often refer to the class of an optimization model. A model with a linear objective function,
linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic,
the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is a
Quadratically-Constrained Program (QCP). We’ll sometimes also discuss a special case of QCP, the
Second-Order Cone Program (SOCP). If the model contains any integer variables, semi-continuous
variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the
model is a Mized Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, in-
cluding Mized Integer Linear Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mized
Integer Quadratically-Constrained Programs (MIQCP), and Mized Integer Second-Order Cone Pro-
grams (MISOCP). The Gurobi Optimizer handles all of these model classes.

31

http://www.gurobi.com/documentation/{7}.{0}/quick-start-guide/
http://www.gurobi.com/documentation/{7}.{0}/examples/index.html

Solving a Model

Once you have built a model, you can call GRBoptimize to compute a solution. By default,
GRBoptimize () will use the concurrent optimizer to solve LP models, the barrier algorithm to
solve QP and QCP models, and the branch-and-cut algorithm to solve mixed integer models. The
solution is stored as a set of attributes of the model. The C interface contains an extensive set of
routines for querying these attributes.

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBoptimize ()
will only perform further optimization if relevant data has changed since the model was last op-
timized. If you would like to discard previously computed solution information and restart the
optimization from scratch without changing the model, you can call GRBresetmodel.

After a MIP model has been solved, you can call GRBfixedmodel to compute the associated
fixzed model. This model is identical to the input model, except that all integer variables are fixed
to their values in the MIP solution. In some applications, it is useful to compute information on
this continuous version of the MIP model (e.g., dual variables, sensitivity information, etc.).

Multiple Solutions and Multiple Objectives

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to
a model with a single objective function. Gurobi provides features that allow you to relax either
of these assumptions. You should refer to the section on Solution Pools for information on how to
request more than one solution, or the section on Multiple Objectives for information on how to
specify multiple objective functions and control the tradeoff between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause
of the infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be
useful for diagnosing the cause of an infeasibility, call GRBcomputellS to compute an Irreducible
Inconsistent Subsystem (IIS). This routine can be used for both continuous and MIP models, but
you should be aware that the MIP version can be quite expensive. This routine populates a set of
IIS attributes.

To attempt to repair an infeasibility, call GRBfeasrelax to compute a feasibility relaxation for
the model. This relaxation allows you to find a solution that minimizes the magnitude of the
constraint violation.

Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some
attributes are associated with the variables of the model, some with the constraints of the model,
and some with the model itself. To give a simple example, solving an optimization model causes
the X variable attribute to be populated. Attributes such as X that are computed by the Gurobi
optimizer cannot be modified directly by the user, while others, such as the variable lower bound
array (the LB attribute) can.

The Gurobi C interface contains an extensive set of routines for querying or modifying attribute
values. The exact routine to use for a particular attribute depends on the type of the attribute.
As mentioned earlier, attributes can be either variable attributes, constraint attributes, or model
attributes. Variable and constraint attributes are arrays, and use a set of array attribute routines.
Model attributes are scalars, and use a set of scalar routines. Attribute values can additionally be
of type char, int, double, or string (really char *).

32

Scalar model attributes are accessed through a set of GRBget*attr () routines (e.g., GRBget-
intattr). In addition, those model attributes that can be set directly by the user (e.g., the objective
sense) may be modified through the GRBset*attr () routines (e.g., GRBsetdblattr).

Array attributes are accessed through three sets of routines. The first set, the GRBget*attrarray ()
routines (e.g., GRBgetcharattrarray) return a contiguous sub-array of the attribute array, specified
using the index of the first member and the length of the desired sub-array. The second set, the
GRBget*attrelement () routines (e.g., GRBgetcharattrelement) return a single entry from the at-
tribute array. Finally, the GRBget*attrlist () routines (e.g., GRBgetdblattrlist) retrieve attribute
values for a list of indices.

Array attributes that can be set by the user are modified through the GRBset*attrarray(),
GRBset*attrelement (), and GRBset*attrlist() routines.

The full list of Gurobi attributes can be found in the Attributes section.

Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to
variable bounds, constraint right-hand sides, etc.). The main exceptions are modifications to the
constraints themselves, and to the quadratic and piecewise-linear portions of the objective function.

The constraint matrix can be modified in a few ways. The first is to call GRBchgcoeffs to
change individual matrix coefficients. This routine can be used to modify the value of an existing
non-zero, to set an existing non-zero to zero, or to create a new non-zero. The constraint ma-
trix is also modified when you remove constraints (through GRBdelconstrs) or variables (through
GRBdelvars). The non-zero values associated with the deleted constraints or variables are removed
along with the constraints or variables themselves.

Quadratic objective terms are added to the objective function using the GRBaddgpterms rou-
tine. You can add a list of quadratic terms in one call, or you can add terms incrementally through
multiple calls. The GRBdelq routine allows you to delete all quadratic terms from the model. Note
that quadratic models will typically have both quadratic and linear terms. Linear terms are entered
and modified through the Obj attribute, in the same way that they are handled for models with
purely linear objective functions.

If your variables have piecewise-linear objectives, you can specify them using the GRBsetpwlobj
routine. Call this routine once for each relevant variable. The Gurobi simplex solver includes
algorithmic support for convex piecewise-linear objective functions, so for continuous models you
should see a substantial performance benefit from using this feature. To clear a previously specified
piecewise-linear objective function, simply set the Obj attribute on the corresponding variable to
0.

Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed
in a lazy fashion, meaning that modifications don’t affect the model immediately. Rather, they
are queued and applied later. If your program simply creates a model and solves it, you will
probably never notice this behavior. However, if you ask for information about the model before
your modifications have been applied, the details of the lazy update approach may be relevant to
you.

As we just noted, model modifications (bound changes, right-hand side changes, objective
changes, etc.) are placed in a queue. These queued modifications can be applied to the model
in three different ways. The first is by an explicit call to GRBupdatemodel. The second is by a

33

call to GRBoptimize. The third is by a call to GRBwrite to write out the model. The first case
gives you fine-grained control over when modifications are applied. The second and third make the
assumption that you want all pending modifications to be applied before you optimize your model
or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is
that this approach makes it much easier to perform multiple modifications to a model, since the
model remains unchanged between modifications. The second is that processing model modifica-
tions can be expensive, particularly in a Compute Server environment, where modifications require
communication between machines. Thus, it is useful to have visibility into exactly when these
modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then
update, then make more modifications, then update again, etc. Updating after each individual
modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value
of the requested data from the point of the last update. If the object you tried to query didn’t
exist then, you’ll get an INDEX_OUT_OF_RANGE error instead.

The semantics of lazy updates have changed in this release. While the vast majority of programs
will continue to work unmodified, you can use the UpdateMode parameter to revert to the previous
behavior if you run into an issue.

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of
the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms,
strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi param-
eters before beginning the optimization. Parameters are set using the GRBset*param() routines
(e.g., GRBsetintparam). Current values can be retrieved with the GRBget*param() routines (e.g.,
GRBgetdblparam). Parameters can be of type int, double, or char * (string). You can also read a
set of parameter settings from a file using GRBreadparams, or write the set of changed parameters
using GRBwriteparams.

We also include an automated parameter tuning tool that explores many different sets of pa-
rameter changes in order to find a set that improves performance. You can call GRBtunemodel to
invoke the tuning tool on a model. Refer to the parameter tuning tool section for more information.

One thing we should note is that each model gets its own copy of the environment when it
is created. Parameter changes to the original environment therefore have no effect on existing
models. Use GRBgetenv to retrieve the environment associated with a particular model if you
want to change a parameter for that model.

Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will
send output to the screen. A few simple controls are available for modifying the default logging
behavior. If you would like to direct output to a file as well as to the screen, specify the log file
name in GRBloadenv when you create your environment. You can modify the LogFile parameter
if you wish to redirect the log to a different file after creating the environment. The frequency of
logging output can be controlled with the DisplayInterval parameter, and logging can be turned off
entirely with the OutputFlag parameter. A detailed description of the Gurobi log file can be found
in the Logging section.

34

More detailed progress monitoring can be done through the Gurobi callback function. The
GRBsetcallbackfunc routine allows you to install a function that the Gurobi optimizer will call
regularly during the optimization process. You can call GRBcbget from within the callback to
obtain additional information about the state of the optimization.

Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. If you call routine
GRBterminate from within a callback, for example, the optimizer will terminate at the earliest
convenient point. Routine GRBcbsolution allows you to inject a feasible solution (or partial solu-
tion) during the solution of a MIP model. Routines GRBcbcut and GRBcblazy allow you to add
cutting planes and lazy constraints during a MIP optimization, respectively.

Error Handling

Most of the Gurobi C library routines return an integer error code. A zero return value indicates
that the routine completed successfully, while a non-zero value indicates that an error occurred.
The list of possible error return codes can be found in the Error Codes section.

When an error occurs, additional information on the error can be obtained by calling GRBgeter-
rormsg.

35

2.1 Environment Creation and Destruction
GRBloadenv

int GRBloadenv (GRBenv **envP,
const char *logfilename)

Create an environment. Optimization models live within an environment, so this is typically
the first Gurobi routine called in an application.

In addition to creating a new environment, this routine will also check the current working
directory for a file named gurobi.env, and it will attempt to read parameter settings from this file
if it exists. The file should be in PRM format (briefly, each line should contain a parameter name,
followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments.

Return value:

A non-zero return value indicates that there was a problem creating the environment. Refer
to the Error Code table for a list of possible return values.

Arguments:

envP: The location in which the pointer to the newly created environment should be placed.
logfilename: The name of the log file for this environment. May be NULL (or an empty
string), in which case no log file is created.

GRBloadclientenv

int GRBloadclientenv (GRBenv **envP,
const char *logfilename,
const char *computeserver,

int port,

const char *password,
int priority,
double timeout)

Create a client environment on a compute server. Optimization models live within an environ-
ment, so this is typically the first Gurobi routine called in an application. This call specifies the
compute server on which those optimization models will be solved, as well as the priority of the
associated jobs.

In addition to creating a new environment, this routine will also check the current working
directory for a file named gurobi.env, and it will attempt to read parameter settings from this file
if it exists. The file should be in PRM format (briefly, each line should contain a parameter name,
followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments.

Return value:

A non-zero return value indicates that there was a problem creating the environment. Refer
to the Error Code table for a list of possible return values.

36

Arguments:

envP: The location in which the pointer to the newly created environment should be placed.

logfilename: The name of the log file for this environment. May be NULL (or an empty
string), in which case no log file is created.

computeserver: A comma-separated list of Gurobi compute servers. You can refer to
compute server machines using their names or their IP addresses.

port: The port number used to connect to the compute server. You should pass a -1 value,
which indicates that the default port should be used, unless your server administrator has
changed our recommended port settings.

password: The password for gaining access to the specified compute servers. Pass an empty
string if no password is required.

priority: The priority of the job. Priorities must be between -100 and 100, with a default
value of 0 (by convention). Higher priority jobs are chosen from the server job queue
before lower priority jobs. A job with priority 100 runs immediately, bypassing the job
queue and ignoring the job limit on the server. You should exercise caution with priority
100 jobs, since they can severely overload a server, which can cause jobs to fail, and in
extreme cases can cause the server to crash.

timeout: Job timeout (in seconds). If the job doesn’t reach the front of the queue before
the specified timeout, the call will exit with a JOB_REJECTED error. Use a negative value
to indicate that the call should never timeout.

Example usage:
GRBenv *env;
error = GRBloadclientenv(&env, "gurobi.log",
"serverl.mydomain.com,server2.mydomain.com",
"5, -1.0);

GRBloadcloudenv

int GRBloadcloudenv (GRBenv **xenvP,
const char x*logfilename,
const char *accessID,
const char *secretKey,
const char *pool)

Create a Gurobi Instant Cloud environment. Optimization models live within an environment,
so this is typically the first Gurobi routine called in an application. This call will use an existing
Instant Cloud machine if one is currently running within the specified machine pool, and it will
launch a new one otherwise. Note that launching a new machine can take a few minutes.

You should visit the Gurobi Instant Cloud site to obtain your accessID and secretKey, con-
figure your machine pools, and perform other cloud setup and maintenance tasks.

You should keep your secretKey private. Sharing it with others will allow them to launch
Instant Cloud instances in your account.

In addition to creating a new environment, this routine will also check the current working
directory for a file named gurobi.env, and it will attempt to read parameter settings from this file
if it exists. The file should be in PRM format (briefly, each line should contain a parameter name,
followed by the desired value for that parameter).

37

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments.

Return value:

A non-zero return value indicates that there was a problem creating the environment. Refer
to the Error Code table for a list of possible return values.

Arguments:

envP: The location in which the pointer to the newly created environment should be placed.

logfilename: The name of the log file for this environment. May be NULL (or an empty
string), in which case no log file is created.

accessID: The access ID for your Gurobi Instant Cloud license. This can be retrieved from
the Gurobi Instant Cloud website. When used in combination with your secretKey, this
allows you to launch Instant Cloud instances and submit jobs to them.

secretKey: The secret key for your Gurobi Instant Cloud license. This can be retrieved
from the Gurobi Instant Cloud website. When used in combination with your accessID,
this allows you to launch Instant Cloud instances and submit jobs to them. Note that you
should keep your secret key private.

pool: The machine pool. Machine pools allow you to create fixed configurations on the
Instant Cloud website (capturing things like type of machine, geographic region, etc.),
and then launch and share machines from client programs without having to restarte the
configuration information each time you launch a machine. May be NULL (or an empty
string), in which case your job will be launched in the default pool associated with your
cloud license.

Example usage:
GRBenv *env;

error = GRBloadcloudenv(&env, "gurobi.log",
"3dlecef9-dfad-eff4-b3fa", "ae6L23alJe3+fas", "");

GRBfreeenv

‘void GRBfreeenv (GRBenv *env)

Free an environment that was previously allocated by GRBloadenv, and release the associated
memory. This routine should be called when an environment is no longer needed. In particular, it
should only be called once all models built using the environment have been freed.

Arguments:

env: The environment to be freed.

GRBgetconcurrentenv

GRBenv * GRBgetconcurrentenv (GRBmodel *model,
int num)

Create/retrieve a concurrent environment for a model.

This routine provides fine-grained control over the concurrent optimizer. By creating your
own concurrent environments and setting appropriate parameters on these environments (e.g., the
Method parameter), you can control exactly which strategies the concurrent optimizer employs.

38

For example, if you create two concurrent environments, and set Method to primal simplex for
one and dual simplex for the other, subsequent concurrent optimizer runs will use the two simplex
algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with
num=0. For example, if you want three concurrent environments, they must be numbered 0, 1,
and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent
optimization on that model. Use GRBdiscardconcurrentenvs to revert back to default concurrent
optimizer behavior.

Return value:

The concurrent environment. A NULL return value indicates that there was a problem
creating the environment.

Arguments:

model: The model for the concurrent environment.
num: The concurrent environment number.

Example usage:
GRBenv *env0 = GRBgetconcurrentenv(model, 0);

GRBenv *envl = GRBgetconcurrentenv(model, 1);

GRBdiscardconcurrentenvs

| void GRBdiscardconcurrentenvs (GRBmodel * model)

Discard concurrent environments for a model.
The concurrent environments created by GRBgetconcurrentenv will be used by every subsequent
call to the concurrent optimizer until the concurrent environments are discarded.
Arguments:
model: The model for the concurrent environment.

Example usage:
GRBdiscardconcurrentenvs (model) ;

39

2.2 Model Creation and Modification

GRBloadmodel

int GRBloadmodel (

GRBenv
GRBmodel
const char
int

int

int

double
double
char
double

int

int

int

double
double
double
char

const char
const char

*env,
*x*modelP,
*Pname,
numvars,
numconstrs,
objsense,
objcon,
*obj,
*sense,
*rhs,
*vbeg,
*vlen,
*vind,
*vval,

*1b,

*ub,
*vtype,
*kyarnames,
*xconstrnames)

Create a new optimization model, using the provided arguments to initialize the model data
(objective function, variable bounds, constraint matrix, etc.). The model is then ready for opti-
mization, or for modification (e.g., addition of variables or constraints, changes to variable types

or bounds, etc.).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXloadmodel variant of this routine.

Return value:

A non-zero return value indicates that a problem occurred while creating the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:

env: The environment in which the new model should be created. Note that the new model
gets a copy of this environment, so subsequent modifications to the original environment
(e.g., parameter changes) won’t affect the new model. Use GRBgetenv to modify the
environment associated with a model.

modelP: The location in which the pointer to the newly created model should be placed.

Pname: The name of the model.

numvars: The number of variables in the model.

numconstrs: The number of constraints in the model.

objsense: The sense of the objective function. Allowed values are 1 (minimization) or -1

(maximization).

objcon: Constant objective offset.

40

obj: Objective coefficients for the new variables. This argument can be NULL, in which case
the objective coefficients are set to 0.0.

sense: The senses of the new constraints. Options are >=’ (equal), ’<’ (less-than-or-equal),
or ’>’ (greater-than-or-equal). You can also use constants GRB_EQUAL, GRB_LESS_EQUAL,
or GRB_GREATER_EQUAL.

rhs: Right-hand-side values for the new constraints. This argument can be NULL if you are
not adding any constraint.

vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Column (CSC) format. Each column in the constraint matrix is represented as a list of
index-value pairs, where each index entry provides the constraint index for a non-zero
coefficient, and each value entry provides the corresponding non-zero value. Each variable
in the model has a vbeg and vlen value, indicating the start position of the non-zeros for
that variable in the vind and vval arrays, and the number of non-zero values for that
variable, respectively. Thus, for example, if vbeg[2] = 10 and vlen[2] = 2, that would
indicate that variable 2 has two non-zero values associated with it. Their constraint indices
can be found in vind[10] and vind[11], and the numerical values for those non-zeros
can be found in vval[10] and vval[11].

vlen: Number of constraint matrix non-zero values associated with each variable. See the
description of the vbeg argument for more information.

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

1b: Lower bounds for the new variables. This argument can be NULL, in which case all
variables get lower bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

Important notes:

We recommend that you build a model one constraint or one variable at a time, using GRBad-
dconstr or GRBaddvar, rather than using this routine to load the entire constraint matrix at once.
It is much simpler, less error prone, and it introduces no significant overhead.

Example usage:

/* maximize X+ y+2z
subject to x+ 2y + 3z <=4
x+ y >= 1

X, y, z binary */

int vars 3;

2;

int constrs

41

int vbegl[l = {0, 2, 43};

int vlien[]l = {2, 2, 1};

int vind[] = {0, 1, 0, 1, 0};

double vval[] = {1.0, 1.0, 2.0, 1.0, 3.0%};

double obj[] {1.0, 1.0, 2.03};

char sense[] = {GRB_LESS_EQUAL, GRB_GREATER_EQUAL};
double rhs[] {4.0, 1.0%};

char vtypel[] = {GRB_BINARY, GRB_BINARY, GRB_BINARY};

error = GRBloadmodel(env, &model, "example", vars, constrs, -1, 0.0,
obj, sense, rhs, vbeg, vlen, vind, vval,
NULL, NULL, vtype, NULL, NULL);

GRBnewmodel

int GRBnewmodel (GRBenv *env,

GRBmodel **xmodelP,
const char *Pname,

int numvars,
double *obj,
double *1b,
double *ub,
char *vtype,

const char #**varnames)
Create a new optimization model. This routine allows you to specify an initial set of vari-

ables (with objective coefficients, bounds, types, and names), but the initial model will have no
constraints. Constraints can be added later with GRBaddconstr or GRBaddconstrs.

Return value:
A non-zero return value indicates that a problem occurred while creating the new model.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
env: The environment in which the new model should be created. Note that the new
model will get a copy of this environment, so subsequent modifications to the original
environment (e.g., parameter changes) won’t affect the new model. Use GRBgetenv to
modify the environment associated with a model.
modelP: The location in which the pointer to the new model should be placed.
Pname: The name of the model.
numvars: The number of variables in the model.
obj: Objective coefficients for the new variables. This argument can be NULL, in which case
the objective coefficients are set to 0.0.
1b: Lower bounds for the new variables. This argument can be NULL, in which case all
variables get lower bounds of 0.0.
ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

42

vtype: Types for the variables. Options are GRB_CONTINUQUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

Example usage:

double obj[] = {1.0, 1.0%};
char *names[] = {"varl", "var2"};
error = GRBnewmodel(env, &model, "New", 2, obj, NULL, NULL, NULL, names);

GRBcopymodel

| GRBmodel * GRBcopymodel (GRBmodel #model)

Create a copy of an existing model.
Return value:
A copy of the input model. A NULL return value indicates that a problem was encountered.
Arguments:
model: The model to copy.
Example usage:
GRBmodel *copy = GRBcopymodel(orig);

GRBaddconstr

int GRBaddconstr (GRBmodel *model,
int numnz,
int *cind,
double *cval,
char sense,
double rhs,
const char *constrname)

Add a new linear constraint to a model. Note that, due to our lazy update approach, the new
constraint won'’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while adding the constraint.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new constraint should be added.

numnz: The number of non-zero coefficients in the new constraint.

cind: Variable indices for non-zero values in the new constraint.

cval: Numerical values for non-zero values in the new constraint.

sense: Sense for the new constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

rhs: Right-hand-side value for the new constraint.

43

constrname: Name for the new constraint. This argument can be NULL, in which case the

constraint is given a default name.

Example usage:

int ind[] {1, 3, 4};

double vall] {1.0, 2.0, 1.0%};

/* x1 + 2 x3 + x4 =1 %/

error = GRBaddconstr(model, 3, ind, val, GRB_EQUAL, 1.0, "New");

GRBaddconstrs

int GRBaddconstrs (GRBmodel *model,
int numconstrs,
int numnz,
int *cbeg,
int *cind,
double *xcval,
char *sense,
double *rhs,

const char **constrnames)

Add new linear constraints to a model. Note that, due to our lazy update approach, the

new constraints won’t actually be added until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

We recommend that you build your model one constraint at a time (using GRBaddconstr),

since it introduces no significant overhead and we find that it produces simpler code. Feel free to
use this routine if you disagree, though.

If your constraint matrix may contain more than 2 billion non-zero values, you should consider

using the GRBXaddconstrs variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while adding the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to which the new constraints should be added.
numconstrs: The number of new constraints to add.
numnz: The total number of non-zero coefficients in the new constraints.
cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse

Row (CSR) format by this routine. Each constraint in the constraint matrix is represented
as a list of index-value pairs, where each index entry provides the variable index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each new
constraint has an associated cbeg value, indicating the start position of the non-zeros for
that constraint in the cind and cval arrays. This routine requires that the non-zeros for
constraint i immediately follow those for constraint i-1 in cind and cval. Thus, cbeg[i]
indicates both the index of the first non-zero in constraint i and the end of the non-zeros
for constraint i-1. To give an example of how this representation is used, consider a case
where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has two
non-zero values associated with it. Their variable indices can be found in cind[10] and

44

cind[11], and the numerical values for those non-zeros can be found in cval[10] and
cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

sense: Sense for the new constraints. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

rhs: Right-hand-side values for the new constraints. This argument can be NULL, in which
case the right-hand-side values are set to 0.0.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

GRBaddgenconstrXxx

Each of the functions described below adds a new general constraint to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types:
variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and
SOS constraints. These are typically treated directly by the underlying solver (although not always),
and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general
constraints. These are typically not treated directly by the solver. Rather, they are transformed
by presolve into mathematically equivalent sets of constraints (and variables), chosen from among
the fundamental types listed above. These general constraints are provided as a convenience to
users. If such constraints appear in your model, but if you prefer to reformulate them yourself
using fundamental constraint types instead, you can certainly do so. However, note that Gurobi
can sometimes exploit information contained in the other constraints in the model to build a more
efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

e MAX (GRBaddgenconstrMax): set a decision variable equal to the maximum value from
among a set of decision variables

e MIN (GRBaddgenconstrMin): set a decision variable equal to the minimum value from among
a set of decision variables

e ABS (GRBaddgenconstrAbs): set a decision variable equal to the absolute value of some
other decision variable

e AND (GRBaddgenconstrAnd): set a binary variable equal to one if and only if all of a set of
binary decision variables are equal to one

e OR (GRBaddgenconstrOr): set a binary variable equal to one if and only if at least one
variable out of a set of binary decision variables is equal to one

e INDICATOR (GRBaddgenconstrindicator): a given binary variable may only take a certain
value if a given linear constraint is satisfied

Please refer to this section for additional details on general constraints.

45

GRBaddgenconstrMax

int GRBaddgenconstrMax (GRBmodel *model,
const char *name,

int resvar,
int nvars,
intx* vars,
double constant)

Add a new general constraint of type GRB_GENCONSTR_MAX to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A MAX constraint r = max{z1,...,Z,,c} states that the resultant variable r should be equal
to the maximum of the operand variables x1, ..., x, and the constant c.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

int resvar: The index of the resultant variable r whose value will be equal to the max of
the other variables.

int nvars: The number n of operand variables over which the max will be taken.

const int *vars: An array containing the indices of the operand variables x; over which
the max will be taken.

double constant: An additional operand that allows you to include a constant ¢ among
the arguments of the max operation.

Example usage:
/* x5 = max(xl, x3, x4, 2.0) *x/

int ind[] = {1, 3, 4};
error = GRBaddgenconstrMax(model, "maxconstr", 5,
3, ind, 2.0);

GRBaddgenconstrMin

int GRBaddgenconstrMin (GRBmodel *model,
const char *name,

int resvar,
int nvars,
intx* vars,
double constant)

Add a new general constraint of type GRB_GENCONSTR_MIN to a model. = Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

46

A MIN constraint 7 = min{x, ..., x,, c} states that the resultant variable r should be equal to
the minimum of the operand variables x1,...,x, and the constant c.
Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.
int resvar: The index of the resultant variable r whose value will be equal to the min of
the other variables.
int nvars: The number n of operand variables over which the min will be taken.
const int *vars: An array containing the indices of the operand variables x; over which
the min will be taken.
double constant: An additional operand that allows you to include a constant ¢ among
the arguments of the min operation.
Example usage:
/* x5 = min(x1, x3, x4, 2.0) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrMin(model, "minconstr", 5,
3, ind, 2.0);

GRBaddgenconstrAbs

int GRBaddgenconstrAbs (GRBmodel *model,
const char *name,
int resvar,
int argvar)

Add a new general constraint of type GRB_GENCONSTR_ABS to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

An ABS constraint r = abs{z} states that the resultant variable r should be equal to the
absolute value of the argument variable z.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

int resvar: The index of the resultant variable r whose value will be to equal the absolute
value of the argument variable.

47

int argvar: The index of the argument variable = for which the absolute value will be
taken.

Example usage:
/* x5 = abs(xl) */

error = GRBaddgenconstrAbs(model, "absconstr", 5, 1);
GRBaddgenconstrAnd

int GRBaddgenconstrAnd (GRBmodel *model,
const char *name,

int resvar,
int nvars,
int* vars)

Add a new general constraint of type GRB_GENCONSTR_AND to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

An AND constraint » = and{z1,...,z,} states that the binary resultant variable r should be 1
if and only if all of the operand variables z1, ..., z, are equal to 1. If any of the operand variables
is 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary; indepen-
dently of how they were created.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

int resvar: The index of the binary resultant variable » whose value will be equal to the
AND concatenation of the other variables.

int nvars: The number n of binary operand variables over which the AND will be taken.

const int *vars: An array containing the indices of the binary operand variables z; over
which the AND concatenation will be taken.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Example usage:
/* x5 = and(x1, x3, x4) */

int ind[] = {1, 3, 4};
error = GRBaddgenconstrAnd(model, "andconstr", 5, 3, ind);

GRBaddgenconstrOr

int GRBaddgenconstrOr (GRBmodel *model,
const char *name,

int resvar,
int nvars,
int* vars)

48

Add a new general constraint of type GRB_GENCONSTR_OR to a model. Note that, due to our
lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

An OR constraint r = or{zy,...,z,} states that the binary resultant variable r should be 1 if
and only if any of the operand variables x1, ..., x, is equal to 1. If all operand variables are 0, then
the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary; indepen-
dently of how they were created.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

int resvar: The index of the binary resultant variable r whose value will be equal to the
OR concatenation of the other variables.

int nvars: The number n of binary operand variables over which the OR will be taken.

const int *vars: An array containing the indices of the binary operand variables x; over
which the OR concatenation will be taken.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Example usage:

/* x5 = or(x1l, x3, x4) *x/
int ind[] = {1, 3, 4};
error = GRBaddgenconstrOr(model, "orconstr", 5, 3, ind);

GRBaddgenconstrindicator

int GRBaddgenconstrIndicator (GRBmodel *model,
const char *name,
int binvar,
int binval,
int nvars,
intx* ind,
doublex* val,
char sense,
double rhs)

Add a new general constraint of type GRB_GENCONSTR_INDICATOR to a model. Note that, due
to our lazy update approach, the new constraint won’t actually be added until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

An INDICATOR constraint z = f — alz < b states that if the binary indicator variable z is
equal to f € {0,1}, then the linear constraint a”« < b should hold. On the other hand, if z = 1— f,
the linear constraint may be violated. The sense of the linear constraint can also be specified to be
CC:W or “>77.

49

Note that the indicator variable z of a constraint will be forced to be binary; independently of
how it was created.
Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.
int binvar: The index of the binary indicator variable z.
int binval: The value f for the binary indicator variable that would force the linear
constraint to be satisfied (0 or 1).
int nvars: The number n of non-zero coefficients in the linear constraint triggered by the
indicator.
const int *ind: Indices for the variables x; with non-zero values in the linear constraint.
const double *val: Numerical values for non-zero values a; in the linear constraint.
char sense: Sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or
GRB_GREATER_EQUAL.
double rhs: Right-hand-side value for the linear constraint.
Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Example usage:
/¥ x7 =1 ->x1 +2x3 + x4 =1 %/
int ind[] = {1, 3, 4};
double vall] {1.0, 2.0, 1.0};
error = GRBaddgenconstrIndicator(model, NULL, 7, 1,
3, ind, val, GRB_EQUAL, 1.0);

GRBaddqconstr

int GRBaddqconstr (GRBmodel *model,
int numlnz,
int *1ind,
double *x1val,
int numqgnz,
int *qrow,
int *qcol,
double *qval,
char sense,
double rhs,
const char *constrname)

Add a new quadratic constraint to a model. Note that, due to our lazy update approach,
the new constraint won’t actually be added until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A quadratic constraint consists of a set of quadratic terms, a set of linear terms, a sense, and a
right-hand side value: 7 Qxz 4 ¢"x < b. The quadratic terms are input through the numgnz, grow,

50

qgcol, and qval arguments, and the linear terms are input through the numlnz, 1ind, and lval
arguments.

Important note: the algorithms Gurobi uses to solve quadratically constrained problems can
only handle certain types of quadratic constraints. Constraints of the following forms are always
accepted:

o 27Qx + ¢"x < b, where Q is Positive Semi-Definite (PSD)

o 17z <42, where x is a vector of variables, and y is a non-negative variable (a Second-Order
Cone)

e 17z < yz, where x is a vector of variables, and y and z are non-negative variables (a rotated
Second-Order Cone)

If you add a constraint that isn’t in one of these forms (and Gurobi presolve is unable to transform
the constraint into one of these forms), you'll get an error when you try to solve the model.
Constraints where the quadratic terms only involve binary variables will always be transformed
into one of these forms.
Return value:
A non-zero return value indicates that a problem occurred while adding the quadratic con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to which the new constraint should be added.
numlnz: The number of linear terms in the new quadratic constraint.
lind: Variable indices associated with linear terms.
lval: Numerical values associated with linear terms.
numglnz: The number of quadratic terms in the new quadratic constraint.
grow: Row indices associated with quadratic terms. A quadratic term is represented using
three values: a pair of indices (stored in qrow and qcol), and a coefficient (stored in qval).
The associated arguments arrays provide the corresponding values for each quadratic term.
To give an example, if you wish to input quadratic terms 2x3 + xox1 + x%, you would call
this routine with numgnz=3, qrow[] = {0, 0, 1}, qcol[l = {0, 1, 1}, and qval[] =
{2.0, 1.0, 1.0}
gcol: Column indices associated with quadratic terms. See the description of the qrow
argument for more information.
gval: Numerical values associated with quadratic terms. See the description of the qrow
argument for more information.
sense: Sense for the new quadratic constraint. Options are GRB_LESS_EQUAL or GRB_-
GREATER_EQUAL.
rhs: Right-hand-side value for the new quadratic constraint.
constrname: Name for the new quadratic constraint. This argument can be NULL, in which
case the constraint is given a default name.
Example usage:
int lind[] = {1, 2};
double 1lvall[] {2.0, 1.0};
int grow[] = {0, 0, 1};

o1

int qcol[] {0, 1, 13};

double gvalll {2.0, 1.0, 1.03};

/* 2 x072 + x0 x1 + x172 + 2 x1 + x2 <=1 */

error = GRBaddqconstr(model, 2, lind, lval, 3, qrow, qcol, gval,
GRB_LESS_EQUAL, 1.0, "New");

GRBaddgpterms
int GRBaddgqpterms (GRBmodel =*model,
int numqgnz,
int *qrow,
int *qcol,

double *qval)

Add new quadratic objective terms into an existing model. Note that new terms are (numer-
ically) added into existing terms, and that adding a term in row i and column j is equivalent to
adding a term in row j and column i. You can add all quadratic objective terms in a single call,
or you can add them incrementally in multiple calls.

Note that, due to our lazy update approach, the new quadratic terms won’t actually be added
until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize),
or write the model to disk (using GRBwrite).

To build an objective that contains both linear and quadratic terms, use this routine to add the
quadratic terms and use the Obj attribute to add the linear terms.

If you wish to change a quadratic term, you can either add the difference between the current
term and the desired term using this routine, or you can call GRBdelq to delete all quadratic terms,
and then rebuild your new quadratic objective from scratch.

Return value:

A non-zero return value indicates that a problem occurred while adding the quadratic terms.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new quadratic objective terms should be added.

numgnz: The number of new quadratic objective terms to add.

grow: Row indices associated with quadratic terms. A quadratic term is represented using
three values: a pair of indices (stored in qrow and qcol), and a coefficient (stored in qval).
The three argument arrays provide the corresponding values for each quadratic term. To
give an example, if you wish to input quadratic objective 223 + zox1 + 27, you would call
this routine with numgnz=3, qrow[] = {0, 0, 1}, qcol[l = {0, 1, 1}, and qval[] =
{2.0, 1.0, 1.0%}.

gcol: Column indices associated with quadratic terms. See the description of the qrow
argument for more information.

gval: Numerical values associated with quadratic terms. See the description of the qrow
argument for more information.

Important notes:

Note that building quadratic objectives requires some care, particularly if you are migrating
an application from another solver. Some solvers require you to specify the entire () matrix, while
others only accept the lower triangle. In addition, some solvers include an implicit 0.5 multipler

52

on (), while others do not. The Gurobi interface is built around quadratic terms, rather than a @)
matrix. If your quadratic objective contains a term 2 x y, you can enter it as a single term, 2 x y,
or as a pair of terms, x y and y x.
Example usage:

int qrow[] = {0, 0, 1};

int qcol(] {0, 1, 1};

double qvalll = {2.0, 1.0, 3.0};

/* minimize 2 x72 + x¥y + 3 y~2 */

error = GRBaddgpterms(model, 3, qrow, qcol, gval);

GRBaddrangeconstr

int GRBaddrangeconstr (GRBmodel *model,
int numnz,
int *cind,
double *cval,
double lower,
double upper,
const char *constrname)

Add a new range constraint to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution. Note that,
due to our lazy update approach, the new constraint won’t actually be added until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while adding the constraint.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new constraint should be added.

numnz: The number of non-zero coefficients in the linear expression.

cind: Variable indices for non-zero values in the linear expression.

cval: Numerical values for non-zero values in the linear expression.

lower: Lower bound on linear expression.

upper: Upper bound on linear expression.

constrname: Name for the new constraint. This argument can be NULL, in which case the
constraint is given a default name.

Important notes:

Note that adding a range constraint to the model adds both a new constraint and a new variable.
If you are keeping a count of the variables in the model, remember to add one whenever you add
a range.

Note also that range constraints are stored internally as equality constraints. We use the extra
variable that is added with a range constraint to capture the range information. Thus, the Sense
attribute on a range constraint will always be GRB_EQUAL.

Example usage:

93

int ind[] = {1, 3, 4};

double vall] {1.0, 2.0, 3.0};

/* 1 <= x1 + 2 x3 + 3 x4 <=2 %/

error = GRBaddrangeconstr(model, 3, ind, val, 1.0, 2.0, "NewRange");

GRBaddrangeconstrs

int GRBaddrangeconstrs (GRBmodel *model,
int numconstrs,
int numnz,
int *cbeg,
int *cind,
double *cval,
double *lower,
double *upper,
const char **constrnames)

Add new range constraints to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution. Note that,
due to our lazy update approach, the new constraints won’t actually be added until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXaddrangeconstrs variant of this routine.

Return value:

A non-zero return value indicates that a problem occurred while adding the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new constraints should be added.

numconstrs: The number of new constraints to add.

numnz: The total number of non-zero coefficients in the new constraints.

cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Row (CSR) format by this routine. Each constraint in the constraint matrix is represented
as a list of index-value pairs, where each index entry provides the variable index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each new
constraint has an associated cbeg value, indicating the start position of the non-zeros for
that constraint in the cind and cval arrays. This routine requires that the non-zeros for
constraint i immediately follow those for constraint i-1 in cind and cval. Thus, cbeg[i]
indicates both the index of the first non-zero in constraint i and the end of the non-zeros
for constraint i-1. To give an example of how this representation is used, consider a case
where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has two
non-zero values associated with it. Their variable indices can be found in cind[10] and
cind[11], and the numerical values for those non-zeros can be found in cval[10] and
cval[11].

54

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

lower: Lower bounds for the linear expressions.

upper: Upper bounds for the linear expressions.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

Important notes:

Note that adding a range constraint to the model adds both a new constraint and a new
variable. If you are keeping a count of the variables in the model, remember to add one for each
range constraint.

Note also that range constraints are stored internally as equality constraints. We use the extra
variable that is added with a range constraint to capture the range information. Thus, the Sense
attribute on a range constraint will always be GRB_EQUAL.

GRBaddsos
int GRBaddsos (GRBmodel *model,
int numsos,
int nummembers,
int *types,
int xbeg,
int *ind,

double *xweight)

Add new Special Ordered Set (SOS) constraints to a model. Note that, due to our lazy update
approach, the new SOS constraints won’t actually be added until you update the model (using
GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using
GRBwrite).

Please refer to this section for details on SOS constraints.

Return value:

A non-zero return value indicates that a problem occurred while adding the SOS constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new SOSs should be added.

numsos: The number of new SOSs to add.

nummembers: The total number of SOS members in the new SOSs.

types: The types of the SOS sets. SOS sets can be of type GRB_SOS_TYPE1 or GRB_S0S_-
TYPE2.

beg: The members of the added SOS sets are passed into this routine in Compressed Sparse
Row (CSR) format. Each SOS is represented as a list of index-value pairs, where each
index entry provides the variable index for an SOS member, and each value entry provides
the weight of that variable in the corresponding SOS set. Each new SOS has an associated
beg value, indicating the start position of the SOS member list in the ind and weight
arrays. This routine requires that the members for SOS i immediately follow those for

95

SOS i-1 in ind and weight. Thus, beg[i] indicates both the index of the first non-zero
in constraint i and the end of the non-zeros for constraint i-1. To give an example of
how this representation is used, consider a case where beg[2] = 10 and beg[3] = 12.
This would indicate that SOS number 2 has two members. Their variable indices can be
found in ind[10] and ind[11], and the associated weights can be found in weight [10]
and weight [11].

ind: Variable indices associated with SOS members. See the description of the beg argument

for more information.

weight: Weights associated with SOS members. See the description of the beg argument

for more information.

Example usage:

int typesl[] {GRB_SOS_TYPE1, GRB_SOS_TYPE1l};

int begl] = {0, 2};
int ind[] = {1, 2, 1, 3};
double weight[] = {1, 2, 1, 2};

error = GRBaddsos(model, 2, 4, types, beg, ind, weight);

GRBaddvar

int GRBaddvar (GRBmodel *model,
int numnz,
int *vind,
double *xyval,
double obj,
double 1b,
double ub,
char vtype,

const char *varname)

Add a new variable to a model. Note that, due to our lazy update approach, the new variable

won’t actually be added until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while adding the variable. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: The model to which the new variable should be added.
numnz: The number of non-zero coefficients in the new column.
vind: Constraint indices associated with non-zero values for the new variable.
vval: Numerical values associated with non-zero values for the new variable.
obj: Objective coeflicient for the new variable.
1b: Lower bound for the new variable.
ub: Upper bound for the new variable.
vtype: Type for the new variable. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,

GRB_SEMICONT, or GRB_SEMIINT.

56

varname: Name for the new variable. This argument can be NULL, in which case the variable
is given a default name.
Example usage:
int ind[] = {1, 3, 4};
double vall] {1.0, 1.0, 1.03};
error = GRBaddvar (model, 3, ind, val, 1.0, 0.0, GRB_INFINITY,
GRB_CONTINUQUS, "New");

GRBaddvars

int GRBaddvars (GRBmodel *model,
int numvars,
int numnz,
int *vbeg,
int *vind,
double *vval,
double *obj,
double *1b,
double *ub,
char *vtype,

const char **varnames)

Add new variables to a model. Note that, due to our lazy update approach, the new variables
won’t actually be added until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXaddvars variant of this routine.

Return value:

A non-zero return value indicates that a problem occurred while adding the variables. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new variables should be added.
numvars: The number of new variables to add.

numnz: The total number of non-zero coefficients in the new columns.

vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Column (CSC) format. Each column in the constraint matrix is represented as a list of
index-value pairs, where each index entry provides the constraint index for a non-zero
coefficient, and each value entry provides the corresponding non-zero value. Each variable
in the model has a vbeg, indicating the start position of the non-zeros for that variable
in the vind and vval arrays. This routine requires columns to be stored contiguously,
so the start position for a variable is the end position for the previous variable. To give
an example, if vbeg[2] = 10 and vbeg[3] = 12, that would indicate that variable 2 has
two non-zero values associated with it. Their constraint indices can be found in vind[10]
and vind[11], and the numerical values for those non-zeros can be found in vval[10]
and vval[11].

o7

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

obj: Objective coefficients for the new variables. This argument can be NULL, in which case
the objective coefficients are set to 0.0.

1b: Lower bounds for the new variables. This argument can be NULL, in which case all
variables get lower bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUQUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

GRBchgcoeffs
int GRBchgcoeffs (GRBmodel #*model,
int numchgs,
int *cind,
int *vind,

double *val)

Change a set of constraint matrix coefficients. This routine can be used to set a non-zero
coefficient to zero, to create a non-zero coefficient where the coefficient is currently zero, or to
change an existing non-zero coefficient to a new non-zero value. If you make multiple changes to
the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the changes won’t actually be integrated into the
model until you update the model (using GRBupdatemodel), optimize the model (using GRBop-
timize), or write the model to disk (using GRBwrite).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXchgcoeffs variant of this routine.

Return value:

A non-zero return value indicates that a problem occurred while performing the modification.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to modify.

numchgs: The number of coefficients to modify.

cind: Constraint indices for the coeflicients to modify.

vind: Variable indices for the coefficients to modify.

val: The new values for the coefficients. For example, if cind[0] = 1, vind[0] = 3, and
val[0] = 2.0, then the coefficient in constraint 1 associated with variable 3 would be
changed to 2.0.

Example usage:

58

int cind[] = {0, 1};

int vind[] {0, 0%};

double val[] = {1.0, 1.0%};

error = GRBchgcoeffs(model, 2, cind, vind, val);

GRBdelconstrs

int GRBdelconstrs (GRBmodel *model,
int numdel,
int *ind)

Delete a list of constraints from an existing model. Note that, due to our lazy update approach,
the constraints won’t actually be removed until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while deleting the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to modify.
numdel: The number of constraints to remove.
ind: The indices of the constraints to remove.
Example usage:
int first_four[] = {0, 1, 2, 3};
error = GRBdelconstrs(model, 4, first_four);

GRBdelgenconstrs

int GRBdelgenconstrs (GRBmodel *model,
int numdel,
int *ind)

Delete a list of general constraints from an existing model. Note that, due to our lazy update
approach, the general constraints won’t actually be removed until you update the model (using
GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using
GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while deleting the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to modify.
numdel: The number of general constraints to remove.
ind: The indices of the general constraints to remove.

Example usage:

int first_four[] = {0, 1, 2, 3};
error = GRBdelgenconstrs(model, 4, first_four);

99

GRBdelq

‘int GRBdelq (GRBmodel +*model)

Delete all quadratic objective terms from an existing model. Note that, due to our lazy
update approach, the quadratic terms won’t actually be removed until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while deleting the quadratic
objective terms. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to modify.
Example usage:
error = GRBdelq(model) ;

GRBdelqconstrs
int GRBdelqconstrs (GRBmodel *model,
int numdel,
int *ind)

Delete a list of quadratic constraints from an existing model. Note that, due to our lazy update
approach, the quadratic constraints won’t actually be removed until you update the model (using
GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using
GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while deleting the quadratic
constraints. Refer to the Error Code table for a list of possible return values. Details on
the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to modify.
numdel: The number of quadratic constraints to remove.
ind: The indices of the quadratic constraints remove.

Example usage:

int first _four[] = {0, 1, 2, 3};
error = GRBdelqconstrs(model, 4, first_four);

GRBdelsos
int GRBdelsos (GRBmodel *model,
int numdel,
int *ind)

Delete a list of Special Ordered Set (SOS) constraints from an existing model. Note that, due
to our lazy update approach, the SOS constraints won’t actually be removed until you update the

60

model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).
Return value:
A non-zero return value indicates that a problem occurred while deleting the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to modify.
numdel: The number of SOSs to remove.
ind: The indices of the SOSs to remove.
Example usage:
int first_four[] = {0, 1, 2, 3};
error = GRBdelsos(model, 4, first_four);

GRBdelvars

int GRBdelvars (GRBmodel *model,
int numdel,
int *ind)

Delete a list of variables from an existing model. Note that, due to our lazy update approach,
the variables won’t actually be removed until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while deleting the variables.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to modify.
numdel: The number of variables to remove.
ind: The indices of the variables to remove.

Example usage:

int first_twol[] = {0, 1};
error = GRBdelvars(model, 2, first_two);

GRBsetpwlobj
int GRBsetpwlobj (GRBmodel x*model,
int var,
int npoints,
double *X,

double *y)

Set a piecewise-linear objective function for a variable.

The arguments to this method specify a list of points that define a piecewise-linear objective
function for a single variable. Specifically, the = and y arguments give coordinates for the vertices
of the function.

For example, suppose we want to define the function f(z) shown below:

61

~ x[0] x[1] x[2]

The vertices of the function occur at the points (1,1), (3,2) and (5,4), so npoints is 3, z is {1, 3,
5}, and y is {1, 2, 4}. With these arguments we define f(1) = 1, f(3) = 2 and f(5) = 4. Other
objective values are linearly interpolated between neighboring points. The first pair and last pair
of points each define a ray, so values outside the specified x values are extrapolated from these
points. Thus, in our example, f(—1) =0 and f(6) = 5.

More formally, a set of n points

X:{xla“-,xn}a y:{ylv"'ayn}

define the following piecewise-linear function:

y1 + 272 (v — 1), if v <,
fv) = yi—l—%(v—xi), ifv>z;and v < @iyq,
Yp + L=l (y —), if v > T,

Tn—Tn—1

The x entries must appear in non-decreasing order. Two points can have the same x coordinate
— this can be useful for specifying a discrete jump in the objective function.

Note that a piecewise-linear objective can change the type of a model. Specifically, including
a non-convex piecewise linear objective function in a continuous model will transform that model
into a MIP. This can significantly increase the cost of solving the model.

Setting a piecewise-linear objective for a variable will set the Obj attribute on that variable to
0. Similarly, setting the 0bj attribute will delete the piecewise-linear objective on that variable.

Each variable can have its own piecewise-linear objective function. They must be specified
individually, even if multiple variables share the same function.

Note that, due to our lazy update approach, the new piecewise-linear objective won’t actu-
ally be added until you update the model (using GRBupdatemodel), optimize the model (using
GRBoptimize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while setting the piecewise-linear
objective. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

62

Arguments:
model: The model to modify.
var: The variable whose objective function is being changed.
npoints: The number of points that define the piecewise-linear function.

x: The x values for the points that define the piecewise-linear function. Must be in non-
decreasing order.

y: The y values for the points that define the piecewise-linear function.
Example usage:

double x[] = {1, 3, 5};
double y[1 = {1, 2, 4};
error = GRBsetpwlobj(model, var, 3, x, y);

GRBupdatemodel

| int GRBupdatemodel (GRBmodel *model)

Process any pending model modifications.
Return value:

A non-zero return value indicates that a problem occurred while updating the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: The model to update.
Example usage:

error = GRBupdatemodel (model) ;

GRBfreemodel

| int GRBfreemodel (GRBmodel *model)

Free a model and release the associated memory.
Return value:
A non-zero return value indicates that a problem occurred while freeing the model. Refer to

the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:
model: The model to be freed.
Example usage:

error = GRBfreemodel (model);

63

GRBXaddconstrs

int GRBXaddconstrs (GRBmodel *model,

int numconstrs,
size_t numnz,
size_t *cbeg,

int *cind,
double *xcval,

char *sense,
double *xrhs,

const char **constrnames)

The size_t version of GRBaddconstrs. The two arguments that count non-zero values are of
type size_t in this version to support models with more than 2 billion non-zero values.

Add new linear constraints to a model. Note that, due to our lazy update approach, the
new constraints won’t actually be added until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

We recommend that you build your model one constraint at a time (using GRBaddconstr),
since it introduces no significant overhead and we find that it produces simpler code. Feel free to
use this routine if you disagree, though.

Return value:

A non-zero return value indicates that a problem occurred while adding the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new constraints should be added.

numconstrs: The number of new constraints to add.

numnz: The total number of non-zero coefficients in the new constraints.

cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Row (CSR) format by this routine. Each constraint in the constraint matrix is represented
as a list of index-value pairs, where each index entry provides the variable index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each new
constraint has an associated cbeg value, indicating the start position of the non-zeros for
that constraint in the cind and cval arrays. This routine requires that the non-zeros for
constraint i immediately follow those for constraint i-1 in cind and cval. Thus, cbeg[i]
indicates both the index of the first non-zero in constraint i and the end of the non-zeros
for constraint i-1. To give an example of how this representation is used, consider a case
where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has two
non-zero values associated with it. Their variable indices can be found in cind[10] and
cind[11], and the numerical values for those non-zeros can be found in cval[10] and
cvall11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

sense: Sense for the new constraints. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

64

rhs: Right-hand-side values for the new constraints. This argument can be NULL, in which
case the right-hand-side values are set to 0.0.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

GRBXaddrangeconstrs

int GRBXaddrangeconstrs (GRBmodel *model,
int numconstrs,
size_t numnz,
size_t *cbeg,
int *cind,
double *xcval,
double *]lower,
double *upper,

const char **constrnames)

The size_t version of GRBaddrangeconstrs. The argument that counts non-zero values is of
type size_t in this version to support models with more than 2 billion non-zero values.

Add new range constraints to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution. Note that,
due to our lazy update approach, the new constraints won’t actually be added until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while adding the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new constraints should be added.

numconstrs: The number of new constraints to add.

numnz: The total number of non-zero coefficients in the new constraints.

cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Row (CSR) format by this routine. Each constraint in the constraint matrix is represented
as a list of index-value pairs, where each index entry provides the variable index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each new
constraint has an associated cbeg value, indicating the start position of the non-zeros for
that constraint in the cind and cval arrays. This routine requires that the non-zeros for
constraint i immediately follow those for constraint i-1 in cind and cval. Thus, cbeg[il
indicates both the index of the first non-zero in constraint i and the end of the non-zeros
for constraint i-1. To give an example of how this representation is used, consider a case
where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has two
non-zero values associated with it. Their variable indices can be found in cind[10] and
cind[11], and the numerical values for those non-zeros can be found in cval[10] and
cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

65

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

lower: Lower bounds for the linear expressions.

upper: Upper bounds for the linear expressions.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

Important notes:

Note that adding a range constraint to the model adds both a new constraint and a new
variable. If you are keeping a count of the variables in the model, remember to add one for each
range constraint.

Note also that range constraints are stored internally as equality constraints. We use the extra
variable that is added with a range constraint to capture the range information. Thus, the Sense
attribute on a range constraint will always be GRB_EQUAL.

GRBXaddvars

int GRBXaddvars (GRBmodel *model,
int numvars,
size_t numnz,
size_t *vbeg,
int *vind,
double *vval,
double *obj,
double *1b,
double *ub,
char *vtype,

const char **varnames)

The size_t version of GRBaddvars. The two arguments that count non-zero values are of type
size_t in this version to support models with more than 2 billion non-zero values.

Add new variables to a model. Note that, due to our lazy update approach, the new variables
won’t actually be added until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while adding the variables. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new variables should be added.

numvars: The number of new variables to add.

numnz: The total number of non-zero coefficients in the new columns.

vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Column (CSC) format. Each column in the constraint matrix is represented as a list of
index-value pairs, where each index entry provides the constraint index for a non-zero
coeflicient, and each value entry provides the corresponding non-zero value. Each variable
in the model has a vbeg, indicating the start position of the non-zeros for that variable
in the vind and vval arrays. This routine requires columns to be stored contiguously,

66

so the start position for a variable is the end position for the previous variable. To give
an example, if vbeg[2] = 10 and vbeg[3] = 12, that would indicate that variable 2 has
two non-zero values associated with it. Their constraint indices can be found in vind[10]
and vind[11], and the numerical values for those non-zeros can be found in vval[10]
and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

obj: Objective coefficients for the new variables. This argument can be NULL, in which case
the objective coefficients are set to 0.0.

1b: Lower bounds for the new variables. This argument can be NULL, in which case all
variables get lower bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUQUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

GRBXchgcoeffs
int GRBXchgcoeffs (GRBmodel *model,
size_t numchgs,
int *cind,
int *vind,

double xval)

The size_t version of GRBchgcoeffs. The argument that counts non-zero values is of type
size_t in this version to support models with more than 2 billion non-zero values.

Change a set of constraint matrix coefficients. This routine can be used to set a non-zero
coefficient to zero, to create a non-zero coefficient where the coefficient is currently zero, or to
change an existing non-zero coefficient to a new non-zero value. If you make multiple changes to
the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the changes won’t actually be integrated into the
model until you update the model (using GRBupdatemodel), optimize the model (using GRBop-
timize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while performing the modification.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to modify.

numchgs: The number of coefficients to modify.

cind: Constraint indices for the coeflicients to modify.
vind: Variable indices for the coefficients to modify.

67

val: The new values for the coefficients. For example, if cind[0] = 1, vind[0] = 3, and
val[0] = 2.0, then the coefficient in constraint 1 associated with variable 3 would be
changed to 2.0.

Example usage:

int cind[] = {0, 1};

int vind[] = {0, 0};

double vall[] = {1.0, 1.0%};

error = GRBXchgcoeffs(model, 2, cind, vind, val);

GRBXloadmodel

int GRBXloadmodel (GRBenv *env,
GRBmodel **xmodelP,
const char *Pname,
int numvars,
int numconstrs,
int objsense,
double objcon,
double *obj,
char *sense,
double *rhs,
size_t *vbeg,
int *vlen,
int *vind,
double *xvval,
double *x1b,
double *ub,
char *vtype,
const char **varnames,

const char **constrnames)

The size_t version of GRBloadmodel. The argument that counts non-zero values is of type
size_t in this version to support models with more than 2 billion non-zero values.

Create a new optimization model, using the provided arguments to initialize the model data
(objective function, variable bounds, constraint matrix, etc.). The model is then ready for opti-
mization, or for modification (e.g., addition of variables or constraints, changes to variable types
or bounds, etc.).

Return value:
A non-zero return value indicates that a problem occurred while creating the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
env: The environment in which the new model should be created. Note that the new model
gets a copy of this environment, so subsequent modifications to the original environment
(e.g., parameter changes) won’t affect the new model. Use GRBgetenv to modify the
environment associated with a model.
modelP: The location in which the pointer to the newly created model should be placed.

68

Pname: The name of the model.

numvars: The number of variables in the model.

numconstrs: The number of constraints in the model.

objsense: The sense of the objective function. Allowed values are 1 (minimization) or -1
(maximization).

objcon: Constant objective offset.

obj: Objective coefficients for the new variables. This argument can be NULL, in which case
the objective coefficients are set to 0.0.

sense: The senses of the new constraints. Options are ’=’ (equal), ><’ (less-than-or-equal),
or ’>’ (greater-than-or-equal). You can also use constants GRB_EQUAL, GRB_LESS_EQUAL,
or GRB_GREATER_EQUAL.

rhs: Right-hand-side values for the new constraints. This argument can be NULL, in which
case the right-hand-side values are set to 0.0.

vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Column (CSC) format. Each column in the constraint matrix is represented as a list of
index-value pairs, where each index entry provides the constraint index for a non-zero
coefficient, and each value entry provides the corresponding non-zero value. Each variable
in the model has a vbeg and vlen value, indicating the start position of the non-zeros for
that variable in the vind and vval arrays, and the number of non-zero values for that
variable, respectively. Thus, for example, if vbeg[2] = 10 and vlen[2] = 2, that would
indicate that variable 2 has two non-zero values associated with it. Their constraint indices
can be found in vind[10] and vind[11], and the numerical values for those non-zeros
can be found in vval[10] and vval[11].

vlen: Number of constraint matrix non-zero values associated with each variable. See the
description of the vbeg argument for more information.

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

1b: Lower bounds for the new variables. This argument can be NULL, in which case all
variables get lower bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

Important notes:

We recommend that you build a model one constraint or one variable at a time, using GRBad-
dconstr or GRBaddvar, rather than using this routine to load the entire constraint matrix at once.
It is much simpler, less error prone, and it introduces no significant overhead.

Example usage:

69

/* maximize X +
subject to x + 2

X +
X, y, z binary */

int vars = 3;
int constrs = 2;
size_t vbegll = {0,
int vlien[]l] = {2,
int vind[] = {0,

double vvall]
double obj[]
char sense[]
double rhs[]
char vtypel]

error = GRBXloadmodel (env, &model, "example", vars, constrs,

y+ 2z
y+3z<=4
y >= 1

2, 4%};
2, 1};
1, 0, 1, 0};

{t1.0, 1.0, 2.0, 1.0, 3.0};

{1.0, 1.0, 2.0};

{GRB_LESS_EQUAL, GRB_GREATER_EQUAL};
{4.0, 1.03};

{GRB_BINARY, GRB_BINARY, GRB_BINARY};

obj, sense, rhs, vbeg, vlen, vind, vval,
NULL, NULL, vtype, NULL, NULL);

-1, 0.0,

70

2.3 Model Solution
GRBoptimize

| int GRBoptimize (GRBmodel #model)

Optimize a model. The algorithm used for the optimization depends on the model type (simplex
or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful completion,
this method will populate the solution related attributes of the model. See the Attributes section
for more information on attributes.

Please consult this section for a discussion of some of the practical issues associated with solving
a precisely defined mathematical model using finite-precision floating-point arithmetic.

Note that this routine will process all pending model modifications.

Return value:

A non-zero return value indicates that a problem occurred while optimizing the model.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to optimize. Note that this routine only reports whether the optimization
ran into an error. Query the Status attribute to determine the result of the optimization
(see the Attributes section for more information on querying attributes).
Example usage:
error = GRBoptimize(model) ;

GRBoptimizeasync

| int GRBoptimizeasync (GRBmodel *model)

Optimize a model asynchronously. This routine returns immediately. Your program can perform
other computations while optimization proceeds in the background. To check the state of the
asynchronous optimization, query the Status attribute for the model. A value of IN_PROGRESS
indicates that the optimization has not yet completed. When you are done with your foreground
tasks, you must call GRBsync to sync your foreground program with the asynchronous optimization
task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in
the background is severely limited. Specifically, you can only perform attribute queries, and only
for a few attributes (listed below). Any other calls on the running model, or on any other models that
were built within the same Gurobi environment, will fail with error code OPTIMIZATION_IN_PROGRESS.

Note that there are no such restrictions on models built in other environments. Thus, for
example, you could create multiple environments, and then have a single foreground program
launch multiple simultaneous asynchronous optimizations, each in its own environment.

As already noted, you are allowed to query the value of the Status attribute while an asyn-
chronous optimization is in progress. The other attributes that can be queried are: ObjVal, Ob-
jBound, IterCount, NodeCount, and BarlterCount. In each case, the returned value reflects progress
in the optimization to that point. Any attempt to query the value of an attribute not on this list
will return an OPTIMIZATION_IN_PROGRESS error.

71

Return value:

A non-zero return value indicates that a problem occurred while optimizing the model.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to optimize. Note that this routine only reports whether launching the
asynchronous job ran into an error. Query the Status attribute to determine the result of
the optimization (see the Attributes section for more information on querying attributes).
The return value of GRBsync indicates whether the background optimization ran into an
€rror.

Example usage:

error = GRBoptimizeasync(model);
/* ... perform other compute-intensive tasks... */

error = GRBsync(model) ;

GRBcomputellS

‘int GRBcomputeIIS (GRBmodel +*model)

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints
and variable bounds of the original model. If all constraints in the model except those in the IIS
are removed, the model is still infeasible. However, further removing any one member of the IIS
produces a feasible result.

This routine populates the IISConstr, IISGenConstr, IISQConstr, IISSOS, IISLB, and IISUB
attributes. You can also obtain information about the results of the IIS computation by writing a
.ilp format file (see GRBwrite). This file contains only the IIS from the original model.

Note that this routine can be used to compute IISs for both continuous and MIP models.
Return value:

A non-zero return value indicates that a problem occurred while computing the IIS. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: The infeasible model. This routine will return an error if the input model is feasible.
Important note:

This routine only reports whether the computation ran into an error. Query the IISConstr,
IISGenConstr, 1ISQConstr, IISSOS, IISLB, or IISUB attributes to determine the result of the
computation (see the Attributes section for more information on querying attributes).

Example usage:

error = GRBcomputeIIS(model);

72

GRBfeasrelax

int GRBfeasrelax (GRBmodel x*model,
int relaxobjtype,
int minrelax,
double *1bpen,
double *ubpen,
double *rhspen,
double xfeasobjP)

Modifies the input model to create a feasibility relaxation. Note that you need to call GRBop-
timize on the result to compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the
solution violates the bounds and linear constraints of the original model. This routine provides a
number of options for specifying the relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the
sum of the weighted magnitudes of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the cost per unit violation in the lower bounds, upper bounds, and linear
constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the
weighted sum of the squares of the bound and constraint violations. The 1lbpen, ubpen, and
rhspen arguments specify the coefficients on the squares of the lower bound, upper bound, and
linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the
weighted count of bound and constraint violations. The 1bpen, ubpen, and rhspen arguments
specify the cost of violating a lower bound, upper bound, and linear constraint, respectively.

To give an example, a violation of 2.0 on constraint i would contribute 2*rhspen[i] to the
feasibility relaxation objective for relaxobjtype=0, it would contribute 2*2*rhspen([i] for
relaxobjtype=1, and it would contribute rhspen[i] for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is
created. If minrelax=0, optimizing the returned model gives a solution that minimizes the cost of
the violation. If minrelax=1, optimizing the returned model finds a solution that minimizes the
original objective, but only from among those solutions that minimize the cost of the violation. Note
that GRBfeasrelax must solve an optimization problem to find the minimum possible relaxation
for minrelax=1, which can be quite expensive.

In all cases, you can specify a penalty of GRB_INFINITY to indicate that a specific bound or
linear constraint may not be violated.

Note that this is a destructive routine: it modifies the model passed to it. If you don’t want to
modify your original model, use GRBcopymodel to create a copy before calling this routine.

Return value:

A non-zero return value indicates that a problem occurred while computing the feasibility
relaxation. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The original (infeasible) model. The model is modified by this routine.
relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.

73

lbpen: The penalty associated with violating a lower bound. Can be NULL, in which case
no lower bound violations are allowed.

ubpen: The penalty associated with violating an upper bound. Can be NULL, in which case
no upper bound violations are allowed.

rhspen: The penalty associated with violating a linear constraint. Can be NULL, in which
case no constraint violations are allowed.

feasobjP: When minrelax=1, this returns the objective value for the minimum cost relax-
ation.

Example usage:

double penaltiesl[];
error = GRBfeasrelax(model, 0, O, NULL, NULL, penalties, NULL);
error = GRBoptimize(model);

GRBfixedmodel

| GRBmodel * GRBfixedmodel (GRBmodel #model)

Create the fixed model associated with a MIP model. The MIP model must have a solution
loaded (e.g., after a call to GRBoptimize). In the fixed model, each integer variable is fixed to the
value that variable takes in the MIP solution.

Return value:

This routine returns the computed model. If there is a problem, the routine returns NULL.

Arguments:

model: The MIP model (with a solution loaded).

Example usage:

GRBmodel *fixed = GRBfixedmodel (model);

GRBresetmodel

| int GRBresetmodel (GRBmodel #*model)

Reset the model to an unsolved state, discarding any previously computed solution information.
Return value:
A non-zero return value indicates that a problem occurred while resetting the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: The model to reset.
Example usage:
error = GRBresetmodel (model);

GRBsync

| int GRBsync (GRBmodel #*model)

Wait for a previous asynchronous optimization call to complete.

74

Calling GRBoptimizeasync returns control to the calling routine immediately. The caller can
perform other computations while optimization proceeds, and can check on the progress of the opti-
mization by querying various model attributes. The GRBsync call forces the calling program to wait
until the asynchronous optimization completes. You must call GRBsync before the corresponding
model is freed.

The GRBsync call returns a non-zero error code if the optimization itself ran into any problems.
In other words, error codes returned by this method are those that GRBoptimize itself would have
returned, had the original method not been asynchronous.

Note that you need to call GRBsync even if you know that the asynchronous optimization has
already completed.

Return value:

A non-zero return value indicates that a problem occurred while solving the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:

model: The model that is currently being solved.
Example usage:
error = GRBoptimizeasync(model) ;

/* ... perform other compute-intensive tasks... */

error = GRBsync(model);

75

2.4 Model Queries

While most model related queries are handled through the attribute interface, a few fall outside of
that interface. These are described here.

GRBgetcoeff
int GRBgetcoeff (GRBmodel *model,
int constrind,
int varind,

double *valP)

Retrieve a single constraint matrix coefficient.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the coefficient.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model from which the coefficient should be retrieved.

constrind: The constraint index for the desired coefficient.

varind: The variable index for the desired coefficient.

valP: The location in which the requested matrix coefficient should be placed.
Example usage:

double A12;
error = GRBgetcoeff (model, 1, 2, &A12);

GRBgetconstrbyname

int GRBgetconstrbyname (GRBmodel *model,
const char *name,
int *constrnumP)

Retrieves a linear constraint from its name. If multiple linear constraints have the same name,
this routine chooses one arbitrarily.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the constraint.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the linear constraint should be retrieved.
name: The name of the desired linear constraint.

constrnumP: Constraint number for a linear constraint with the indicated name. Returns
-1 if no matching name is found.

76

GRBgetconstrs

int GRBgetconstrs (GRBmodel *model,
int *numnzP ,
int *cbeg,
int *cind,
double *xcval,
int start,
int len)

Retrieve the non-zeros for a set of linear constraints from the constraint matrix. Typical usage
is to call this routine twice. In the first call, you specify the requested set of constraints, with
NULL values for cbeg, cind, and cval. The routine returns the number of non-zero values for the
specified constraint range in numnzP. That allows you to make certain that cind and cval are of
sufficient size to hold the result of the second call.

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXgetconstrs variant of this routine.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the constraint
coefficients. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model from which the linear constraints should be retrieved.

numnzP: The number of non-zero values retrieved.

cbeg: Constraint matrix non-zero values are returned in Compressed Sparse Row (CSR) for-
mat. Each constraint in the constraint matrix is represented as a list of index-value pairs,
where each index entry provides the variable index for a non-zero coefficient, and each
value entry provides the corresponding non-zero value. Each constraint has an associated
cbeg value, indicating the start position of the non-zeros for that constraint in the cind
and cval arrays. The non-zeros for constraint i immediately follow those for constraint
i-1 in cind and cval. Thus, cbegl[i] indicates both the index of the first non-zero in
constraint i and the end of the non-zeros for constraint i-1. For example, consider the
case where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has
two non-zero values associated with it. Their variable indices can be found in cind[10]
and cind[11], and the numerical values for those non-zeros can be found in cval[10]
and cvall[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

start: The index of the first linear constraint to retrieve.

len: The number of linear constraints to retrieve.

GRBgetenv

| GRBenv * GRBgetenv (GRBmodel #model)

77

Retrieve the environment associated with a model.

Return value:
The environment associated with the model. A NULL return value indicates that there was

a problem retrieving the environment.
Arguments:
model: The model from which the environment should be retrieved.
Example usage:
GRBenv *env = GRBgetenv(model);

GRBgetgenconstrMax
int GRBgetgenconstrMax (GRBmodel *model,
int id,
intx* resvarP,
intx* nvarsP,
int* vars,

double* constantP)
Retrieve the data of a general constraint of type MAX. Calling this function for a general

constraint of different type leads to an error return code. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general

constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in nvarsP. That allows you to make certain
that the vars array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrMax for a description of the semantics of this general constraint type.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.
Note that any combination of the following arguments can be NULL.
int *resvarP: The variable index associated with the resultant variable of the constraint.
int #*nvarsP: The number of operand variables of the constraint.
int *vars: An array to store the variable indices associated with the variable operands of
the constraint.
double *constantP: The additional constant operand of the constraint.
Example usage:
int type;
int resvar;
int nvars;
int *vars;
double constant;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);

78

if (type == GRB_GENCONSTR_MAX) {
error = GRBgetgenconstrMax(model, 3, &resvar, &nvars, NULL, &constant);
/* ...allocate vars to hold ’nvars’ values... */
error = GRBgetgenconstrMax(model, 3, NULL, NULL, vars, NULL);

GRBgetgenconstrMin

int GRBgetgenconstrMin (GRBmodel *model,

int id,

intx* resvarP,
int* nvarsP,
intx* vars,

double* constantP)

Retrieve the data of a general constraint of type MIN. Calling this function for a general
constraint of different type leads to an error return code. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in nvarsP. That allows you to make certain
that the vars array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrMin for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.
Note that any combination of the following arguments can be NULL.
int *resvarP: The variable index associated with the resultant variable of the constraint.
int *nvarsP: The number of operand variables of the constraint.
int *vars: An array to store the variable indices associated with the variable operands of
the constraint.
double *constantP: The additional constant operand of the constraint.
Example usage:
int type;
int resvar;
int nvars;
int *vars;
double constant;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRIYPE, 3, &type);
if (type == GRB_GENCONSTR_MIN) {
error = GRBgetgenconstrMin(model, 3, &resvar, &nvars, NULL, &constant);
/* ...allocate vars to hold ’nvars’ values... */

79

error = GRBgetgenconstrMin(model, 3, NULL, NULL, vars, NULL);

+
GRBgetgenconstrAbs
int GRBgetgenconstrAbs (GRBmodel x*model,
int id,
intx* resvarP,
int* argvarP)

Retrieve the data of a general constraint of type ABS. Calling this function for a general
constraint of different type leads to an error return code. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also GRBaddgenconstrAbs for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.
Note that any combination of the following arguments can be NULL.
int *resvarP: The variable index associated with the resultant variable of the constraint.
int *argvarP: The variable index associated with the argument variable of the constraint.
Example usage:
int type;
int resvar;
int argvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_ABS) {
error = GRBgetgenconstrAbs(model, 3, &resvar, &argvar);

}
GRBgetgenconstrAnd
int GRBgetgenconstrAnd (GRBmodel #*model,
int id,
intx* resvarP,
intx* nvarsP,
int* vars)

Retrieve the data of a general constraint of type AND. Calling this function for a general
constraint of different type leads to an error return code. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of

80

operand variables in the specified general constraint in nvarsP. That allows you to make certain
that the vars array is of sufficient size to hold the result of the second call.
See also GRBaddgenconstrAnd for a description of the semantics of this general constraint type.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.
Note that any combination of the following arguments can be NULL.
int *resvarP: The variable index associated with the binary resultant variable of the con-
straint.
int *nvarsP: The number of binary operand variables of the constraint.
int *vars: An array to store the variable indices associated with the binary variable
operands of the constraint.
Example usage:
int type;
int resvar;
int nvars;
int *vars;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_AND) {
error = GRBgetgenconstrAnd(model, 3, &resvar, &nvars, NULL);

/* ...allocate vars to hold ’nvars’ values... */
error = GRBgetgenconstrAnd(model, 3, NULL, NULL, vars);
}
GRBgetgenconstrOr
int GRBgetgenconstrOr (GRBmodel +*model,

int id,
intx* resvarP,
int* nvarsP,
int* vars)

Retrieve the data of a general constraint of type OR. Calling this function for a general constraint
of different type leads to an error return code. You can query the GenConstrType attribute to
determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in nvarsP. That allows you to make certain
that the vars array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrOr for a description of the semantics of this general constraint type.

Return value:

81

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.
Note that any combination of the following arguments can be NULL.
int *resvarP: The variable index associated with the binary resultant variable of the con-
straint.
int #*nvarsP: The number of binary operand variables of the constraint.
int *vars: An array to store the variable indices associated with the binary variable
operands of the constraint.
Example usage:
int type;
int resvar;
int nvars;
int *vars;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_OR) {

error = GRBgetgenconstrOr (model, 3, &resvar, &nvars, NULL);

/* ...allocate vars to hold ’nvars’ values... */

error = GRBgetgenconstrOr (model, 3, NULL, NULL, vars);

GRBgetgenconstrindicator

int GRBgetgenconstrIndicator (GRBmodel *model,

int id,

intx* binvarP,
intx* binvalP,
intx* nvarsP,
intx* ind,
doublex* val,
charx senseP,

double* rhsP)

Retrieve the data of a general constraint of type INDICATOR. Calling this function for a general
constraint of different type leads to an error return code. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with NULL values for the ind and val arguments. The routine returns the total number
of non-zero coefficients in the linear constraint associated with the specified indicator constraint in
nvarsP. That allows you to make certain that the ind and val arrays are of sufficient size to hold
the result of the second call.

See also GRBaddgenconstrIndicator for a description of the semantics of this general constraint

type.

82

Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.
Note that any combination of the following arguments can be NULL.
int *binvarP: The variable index associated with the binary indicator variable.
int *binvalP: The value that the indicator variable has to take in order to trigger the
linear constraint.
int *nvarsP: The number of non-zero coefficients in the linear constraint triggered by the
indicator.
int *ind: An array to store the variable indices for non-zero values in the linear constraint.
double *val: An array to store the numerical values for non-zero values in the linear
constraint.
char *senseP: Sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL,
or GRB_GREATER_EQUAL.
double #*rhsP: Right-hand-side value for the linear constraint.
Example usage:
int type;
int binvar;
int binval:
int nvars;
int *ind;
double *val;
char sense;
double rhs;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_INDICATOR) {
error = GRBgetgenconstrIndicator(model, 3, &binvar, &binval, &nvars,
NULL, NULL, &sense, &rhs);
/* ...allocate ind and val to hold ’nvars’ values... */
error = GRBgetgenconstrIndicator(model, 3, NULL, NULL, NULL,
ind, val, NULL, NULL);

X
GRBgetpwlobj
int GRBgetpwlobj (GRBmodel x*model,
int var,
int *npointsP,
double *X,

double xy)

83

Retrieve the piecewise-linear objective function for a variable. The x and y arguments must
be large enough to hold the result. If either are NULL, then npointsP will contain the number of
points in the function on return.

Refer to the description of GRBsetpwlobj for additional information on what the values in x
and y mean.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the piecewise-
linear objective function. Refer to the Error Code table for a list of possible return values.
Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model from which the piecewise-linear objective function is being retrieved.

var: The variable whose objective function is being retrieved.

npointsP: The number of points that define the piecewise-linear function.

x: The x values for the points that define the piecewise-linear function. These will always
be in non-decreasing order.

y: The y values for the points that define the piecewise-linear function.

Example usage:

double *x;
double *y;

error = GRBgetpwlobj(model, var, &npoints, NULL, NULL);
/* ...allocate x and y to hold ’npoints’ values... */
error = GRBgetpwlobj(model, var, &npoints, x, y);

GRBgetq
int GRBgetq (GRBmodel +*model,
int *numqnzP,
int *qrow,
int *qcol,

double *qval)

Retrieve all quadratic objective terms. The qrow, qcol, and qval arguments must be large
enough to hold the result. You can query the NumQNZs attribute to determine how many terms
will be returned.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the quadratic
objective terms. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model from which the quadratic objective terms should be retrieved.

numqnzP: The number of quadratic objective terms retrieved.

grow: Row indices associated with quadratic terms. A quadratic term is represented using
three values: a pair of indices (stored in qrow and qcol), and a coefficient (stored in qval).
The array arguments give the corresponding values for each quadratic term. To give an
example, if the quadratic terms in the model are 222 + zox1 + 2%, this routine would return
qrow[] = {0, 0, 1}, qcol[]l = {0, 1, 1}, and qval[]l = {2.0, 1.0, 1.0}.

84

gcol: Column indices associated with quadratic terms. See the description of the qrow
argument for more information.
gval: Numerical values associated with quadratic terms. See the description of the qrow
argument for more information.
Example usage:

int qnz;

int *qrow, *qcol;

double *qval;

error = GRBgetdblattr(model, GRB_DBL_ATTR_NUMQNZS, &qnz);
/* ...allocate qrow, qcol, qval to hold ’qnz’ values... */
error = GRBgetq(model, &gnz, qrow, qcol, qval);

GRBgetqconstr

int GRBgetqconstr (GRBmodel =*model,
int qconstr,
int *numlnzP,
int *1ind,
double *x1val,
int *numgqnzpP,
int *qrow,
int *qcol,
double xqval)

Retrieve the linear and quadratic terms associated with a single quadratic constraint. Typical
usage is to call this routine twice. In the first call, you specify the requested quadratic constraint,
with NULL values for the array arguments. The routine returns the total number of linear and
quadratic terms in the specified quadratic constraint in numlnzP and numgnzP, respectively. That
allows you to make certain that 1ind, 1val, qrow, qcol, and gval are of sufficient size to hold the
result of the second call.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the quadratic
constraint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model from which the quadratic constraint should be retrieved.

gconstr: The index of the requested quadratic constraint.

numlnzP: The number of linear terms retrieved for the requested quadratic constraint.

lind: Variable indices associated with linear terms.

lval: Numerical coefficients associated with linear terms.

numqnzP: The number of quadratic terms retrieved for the requested quadratic constraint.

grow: Row indices associated with quadratic terms. A quadratic term is represented using
three values: a pair of indices (stored in qrow and qcol), and a coefficient (stored in qval).
The associated arguments arrays provide the corresponding values for each quadratic term.
To give an example, if the requested quadratic constraint has quadratic terms 23:3 +xoxr1+

85

22, this routine would return *numqnzP=3, qrow[] = {0, 0, 1}, qcol[]l = {0, 1, 1},
and qval[]l = {2.0, 1.0, 1.0}.

gcol: Column indices associated with quadratic terms. See the description of the qrow
argument for more information.

gval: Numerical values associated with quadratic terms. See the description of the qrow
argument for more information.

GRBgetsos

int GRBgetsos (GRBmodel *model,
int *nummembersP,
int *sostype,
int *beg,
int *ind,
double *weight,
int start,
int len)

Retrieve the members and weights of a set of SOS constraints. Typical usage is to call this
routine twice. In the first call, you specify the requested SOS constraints, with NULL values for ind
and weight. The routine returns the total number of members for the specified SOS constraints in
nummembersP. That allows you to make certain that ind and weight are of sufficient size to hold
the result of the second call.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the SOS members.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model from which the SOS constraints should be retrieved.

nummembersP: The total number of SOS members retrieved.

sostype: The types of the SOS constraints. Possible values are GRB_SOS_TYPE1 or GRB_-
S0S_TYPE2

beg: SOS constraints are returned in Compressed Sparse Row (CSR) format. Each SOS
constraint in the model is represented as a list of index-value pairs, where each index
entry provides the variable index for an SOS member, and each value entry provides the
corresponding SOS constraint weight. Each SOS constraint has an associated beg value,
indicating the start position of the members of that constraint in the ind and weight
arrays. The members for SOS constraint i immediately follow those for constraint i-1
in ind and weight. Thus, beg[i] indicates both the index of the first member of SOS
constraint i and the end of the member list for SOS constraint i-1. For example, consider
the case where beg[2] = 10 and beg[3] = 12. This would indicate that SOS constraint
2 has two members. Their variable indices can be found in ind[10] and ind[11], and
their SOS weights can be found in weight [10] and weight [11].

ind: Variable indices associated with SOS members. See the description of the beg argument
for more information.

weight: Weights associated with SOS members. See the description of the beg argument
for more information.

86

start: The index of the first SOS constraint to retrieve.
len: The number of SOS constraints to retrieve.

GRBgetvarbyname

int GRBgetvarbyname (GRBmodel *model,
const char *name,
int *varnumP)

Retrieves a variable from its name. If multiple variables have the same name, this routine
chooses one arbitrarily.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the variable.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: The model from which the variable should be retrieved.
name: The name of the desired variable.
varnumP: Variable number for a variable with the indicated name. Returns -1 if no matching
name is found.

GRBgetvars

int GRBgetvars (GRBmodel *model,
int *numnzP,
int *vbeg,
int *vind,
double *vval,
int start,
int len)

Retrieve the non-zeros for a set of variables from the constraint matrix. Typical usage is to call
this routine twice. In the first call, you specify the requested set of variables, with NULL values for
vbeg, vind, and vval. The routine returns the number of non-zero values for the specified variables
in numnzP. That allows you to make certain that vind and vval are of sufficient size to hold the
result of the second call.

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXgetvars variant of this routine.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the variable
coefficients. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model from which the variables should be retrieved.

numnzP: The number of non-zero values retrieved.

vbeg: Constraint matrix non-zero values are returned in Compressed Sparse Column (CSC)
format by this routine. Each column in the constraint matrix is represented as a list

87

of index-value pairs, where each index entry provides the constraint index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each
variable has an associated vbeg value, indicating the start position of the non-zeros for
that constraint in the vind and vval arrays. The non-zeros for variable i immediately
follow those for variable i-1 in vind and vval. Thus, vbeg[i] indicates both the index
of the first non-zero in variable i and the end of the non-zeros for variable i-1. For
example, consider the case where vbeg[2] = 10 and vbeg[3] = 12. This would indicate
that variable 2 has two non-zero values associated with it. Their constraint indices can
be found in vind[10] and vind[11], and the numerical values for those non-zeros can be
found in vval[10] and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

start: The index of the first variable to retrieve.

len: The number of variables to retrieve.

GRBXgetconstrs

int GRBXgetconstrs (GRBmodel *model,
size_t *numnzpP,
size_t *cbeg,
int *cind,
double *xcval,
int start,
int len)

The size_t version of GRBgetconstrs. The two arguments that count non-zero values are of
type size_t in this version to support models with more than 2 billion non-zero values.

Retrieve the non-zeros for a set of linear constraints from the constraint matrix. Typical usage
is to call this routine twice. In the first call, you specify the requested set of constraints, with
NULL values for cbeg, cind, and cval. The routine returns the number of non-zero values for the
specified constraint range in numnzP. That allows you to make certain that cind and cval are of
sufficient size to hold the result of the second call.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the constraint
coefficients. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model from which the constraints should be retrieved.

numnzP: The number of non-zero values retrieved.

cbeg: Constraint matrix non-zero values are returned in Compressed Sparse Row (CSR) for-
mat. Each constraint in the constraint matrix is represented as a list of index-value pairs,
where each index entry provides the variable index for a non-zero coefficient, and each
value entry provides the corresponding non-zero value. Each constraint has an associated
cbeg value, indicating the start position of the non-zeros for that constraint in the cind
and cval arrays. The non-zeros for constraint i immediately follow those for constraint

88

i-1 in cind and cval. Thus, cbegl[i] indicates both the index of the first non-zero in
constraint i and the end of the non-zeros for constraint i-1. For example, consider the
case where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has
two non-zero values associated with it. Their variable indices can be found in cind[10]
and cind[11], and the numerical values for those non-zeros can be found in cval[10]
and cvall[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

start: The index of the first constraint to retrieve.

len: The number of constraints to retrieve.

GRBXgetvars

int GRBXgetvars (GRBmodel *model,
size_t *numnzP,
size_t *vbeg,
int *vind,
double *xvval,
int start,
int len)

The size_t version of GRBgetvars. The two arguments that count non-zero values are of type
size_t in this version to support models with more than 2 billion non-zero values.

Retrieve the non-zeros for a set of variables from the constraint matrix. Typical usage is to call
this routine twice. In the first call, you specify the requested set of variables, with NULL values for
vbeg, vind, and vval. The routine returns the number of non-zero values for the specified variables
in numnzP. That allows you to make certain that vind and vval are of sufficient size to hold the
result of the second call.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the variable
coeflicients. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model from which the variables should be retrieved.

numnzP: The number of non-zero values retrieved.

vbeg: Constraint matrix non-zero values are returned in Compressed Sparse Column (CSC)
format by this routine. Each column in the constraint matrix is represented as a list
of index-value pairs, where each index entry provides the constraint index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each
variable has an associated vbeg value, indicating the start position of the non-zeros for
that constraint in the vind and vval arrays. The non-zeros for variable i immediately
follow those for variable i-1 in vind and vval. Thus, vbeg[i] indicates both the index
of the first non-zero in variable i and the end of the non-zeros for variable i-1. For
example, consider the case where vbeg[2] = 10 and vbeg[3] = 12. This would indicate
that variable 2 has two non-zero values associated with it. Their constraint indices can

89

be found in vind[10] and vind[11], and the numerical values for those non-zeros can be
found in vval[10] and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

start: The index of the first variable to retrieve.

len: The number of variables to retrieve.

90

2.5 Input/Output
GRBreadmodel

int GRBreadmodel (GRBenv *env,
const char x*filename,
GRBmodel **modelP)

Read a model from a file.
Return value:
A non-zero return value indicates that a problem occurred while reading the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
env: The environment in which to load the new model. This should come from a previous
call to GRBloadenv.
filename: The path to the file to be read. Note that the type of the file is encoded in the
file name suffix. Valid suffixes are .mps, .rew, .1p, .rlp, .ilp, or .opb. The files can be
compressed, so additional suffixes of .zip, .gz, .bz2, or .7z are accepted.
modelP: The location in which the pointer to the model should be placed.
Example usage:
GRBmodel *model;
error = GRBreadmodel(env, "/tmp/model.mps.bz2", &model);

GRBread

int GRBread (GRBmodel *model,
const char *filename)

Import optimization data from a file. This routine is the general entry point for importing data
from a file into a model. It can be used to read start vectors for MIP models, basis files for LP
models, or parameter settings. The type of data read is determined by the file suffix. File formats
are described in the File Format section.

Return value:

A non-zero return value indicates that a problem occurred while reading the file. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:

model: The model that will receive the start vector.
filename: The path to the file to be read. The suffix on the file must be either .mst or
.sol for a MIP start file, .hnt for a MIP hint file, .ord for a priority order file, .bas for
a basis file, or .prm for a parameter file, The suffix may optionally be followed by .zip,
.gz, .bz2, or .7z.
Example usage:

error = GRBread(model, "/tmp/model.mst.bz2");

91

GRBwrite

int GRBwrite (GRBmodel *model,
const char *filename)

This routine is the general entry point for writing optimization data to a file. It can be used
to write optimization models, solutions vectors, basis vectors, start vectors, or parameter settings.
The type of data written is determined by the file suffix. File formats are described in the File
Format section.

Note that writing a model to a file will process all pending model modifications. However,
writing other model information (solutions, bases, etc.) will not.

Return value:

A non-zero return value indicates that a problem occurred while writing the file. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:

model: The model containing the data to be written.
filename: The name of the file to be written. The file type is encoded in the file name suffix.
Valid suffixes are .mps, .rew, .1p, or .rlp for writing the model itself, . i1p for writing just
the IIS associated with an infeasible model (see GRBcomputellS for further information),
.sol for writing the current solution, .mst for writing a start vector, .hnt for writing a
hint file, .bas for writing an LP basis, or .prm for writing modified parameter settings.
The files can be compressed, so additional suffixes of .gz, .bz2, or .7z are accepted.
Example usage:
error = GRBwrite(model, "/tmp/model.rlp.gz");

92

2.6 Attribute Management
GRBgetattrinfo

int GRBgetattrinfo (GRBmodel *model,
const char *attrname,

int *datatypeP,
int *attrtypeP,
int xsettableP)

Obtain information about an attribute.
Return value:
A non-zero return value indicates that a problem occurred while obtaining information about
the attribute. Refer to the Error Code table for a list of possible return values. Details on
the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of an attribute. Available attributes are listed and described in the
Attributes section of this document.
datatypeP: On completion, the integer pointed to by this argument will indicate the data
type of the attribute. Possible types are char (0), int (1), double (2), or string(3). This
argument can be NULL.
attrtypeP: On completion, the integer pointed to by this argument will indicate the type
of the attribute. Possible types are model attribute (0), variable attribute (1), linear
constraint attribute (2), (3) SOS constraint attribute, (4) quadratic constraint attribute,
or (5) general constraint attribute. This argument can be NULL.
settableP: On completion, the integer pointed to by this argument will indicate whether
the attribute can be set (1) or not (0). This argument can be NULL.
Example usage:
int datatype, attrtype, settable;
error = GRBgetattrinfo(model, "ModelName", &datatype, &attrtype, &settable);

GRBgetintattr

int GRBgetintattr (GRBmodel xmodel,
const char *attrname,
int *valueP)

Query the value of an integer-valued model attribute.

Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-

readmodel.

93

attrname: The name of an integer-valued model attribute. Available attributes are listed
and described in the Attributes section of this document.
valueP: The location in which the current value of the requested attribute should be placed.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To
query a single element of an array attribute, use GRBgetintattrelement instead.
Example usage:
error = GRBgetintattr(model, "NumBinVars", &numbin);

GRBsetintattr

int GRBsetintattr (GRBmodel *model,
const char *attrname,
int newvalue)

Set the value of an integer-valued model attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of an integer-valued model attribute. Available attributes are listed
and described in the Attributes section of this document.
newvalue: The desired new value of this attribute.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To
modify a single element of an array attribute, use GRBsetintattrelement instead.
Example usage:
error = GRBsetintattr(model, "ModelSense", -1);

GRBgetintattrelement

int GRBgetintattrelement (GRBmodel *model,
const char =*attrname,
int element,
int *valueP)

Query a single value from an integer-valued array attribute.

Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-

readmodel.

94

attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

element: The index of the requested array element.

valueP: A pointer to the location where the requested value should be returned.
Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint

attributes). To query a scalar attribute (i.e., a model attribute), use GRBgetintattr instead.

Example usage:

int first_one;

error = GRBgetintattrelement(model, "VBasis", 0, &first_one);

GRBsetintattrelement

int GRBsetintattrelement (GRBmodel *model,
const char *attrname,
int element,
int newvalue)

Set a single value in an integer-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.
Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint
attributes). To modify a scalar attribute (i.e., a model attribute), use GRBsetintattr instead.
Example usage:

error = GRBsetintattrelement (model, "VBasis", 0, GRB_BASIC);

GRBgetintattrarray

int GRBgetintattrarray (GRBmodel *model,
const char *attrname,

int start,
int len,
int *values)

Query the values of an integer-valued array attribute.
Return value:

95

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.

values: A pointer to the location where the array attribute should be returned. Note that
the result array must be as long as the requested sub-array.

Example usage:

int cbasis[NUMCONSTRS];
error = GRBgetintattrarray(model, "CBasis", O, NUMCONSTRS, cbasis);

GRBsetintattrarray

int GRBsetintattrarray (GRBmodel *model,
const char *attrname,

int start,
int len,
int *values)

Set the values of an integer-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

start: The index of the first entry in the array to set.
len: The number of array entries to set.

values: A pointer to the desired new values for the specified sub-array of the attribute.
Note that the values array must be as long as the sub-array to be changed.

Example usage:

int cbasis[] = {GRB_BASIC, GRB_BASIC, GRB_NONBASIC_LOWER, GRB_BASIC};
error = GRBsetintattrarray(model, "CBasis", 0, 4, cbasis);

96

GRBgetintattrlist

int GRBgetintattrlist (GRBmodel *model,
const char *attrname,

int len,
int *ind,
int *values)

Query the values of an integer-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
len: The number of attribute elements to retrive.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned.
Note that the result array must be as long as the requested index list.
Example usage:
int desired[] = {0, 2, 4, 6};
int cbasis[4];
error = GRBgetintattrlist(model, "CBasis", 4, desired, cbasis);

GRBsetintattrlist

int GRBsetintattrlist (GRBmodel *model,
const char *attrname,

int len,
int *ind,
int xvalues)

Set the values of an integer-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.

97

values: A pointer to the desired new values for the specified elements of the attribute. Note
that the values array must be as long as the list of indices.
Example usage:
int change[] = {0, 1, 3};
int newbas[] = {GRB_BASIC, GRB_NONBASIC_ LOWER, GRB_NONBASIC_ LOWER};
error = GRBsetintattrlist(model, "VBasis", 3, change, newbas);

GRBgetdblattr

int GRBgetdblattr (GRBmodel xmodel,
const char *attrname,
double *valueP)

Query the value of a double-valued model attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a double-valued model attribute. Available attributes are listed and
described in the Attributes section of this document.
valueP: The location in which the current value of the requested attribute should be placed.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To
query a single element of an array attribute, use GRBgetdblattrelement instead.
Example usage:
error = GRBgetdblattr(model, "ObjCon", &objcon);

GRBsetdblattr

int GRBsetdblattr (GRBmodel *model,
const char *attrname,
double newvalue)

Set the value of a double-valued model attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a double-valued model attribute. Available attributes are listed and
described in the Attributes section of this document.
newvalue: The desired new value of this attribute.

98

Important note:

Note that this method should be used for scalar attributes only (i.e., model attributes).

modify a single element of an array attribute, use GRBsetdblattrelement instead.
Example usage:
error = GRBsetdblattr(model, "ObjCon", 0.0);
GRBgetdblattrelement

int GRBgetdblattrelement (GRBmodel *model,

To

const char *attrname,
int element,
double *valueP)

Query a single value from a double-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
element: The index of the requested array element.
values: A pointer to the location where the requested value should be returned.
Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint

attributes). To query a scalar attribute (i.e., a model attribute), use GRBgetdblattr instead.

Example usage:
double first_one;
error = GRBgetdblattrelement(model, "X", 0, &first_one);

GRBsetdblattrelement

int GRBsetdblattrelement (GRBmodel *model,

const char *attrname,
int element,
double newvalue)

Set a single value in a double-valued array attribute.

Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-

readmodel.

99

attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.
Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint

attributes). To modify a scalar attribute (i.e., a model attribute), use GRBsetdblattr instead.

Example usage:
error = GRBsetdblattrelement(model, "Start", 0, 1.0);

GRBgetdblattrarray

int GRBgetdblattrarray (GRBmodel *model,
const char *attrname,

int start,
int len,
double *values)

Query the values of a double-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.
values: A pointer to the location where the array attribute should be returned. Note that
the result array must be as long as the requested sub-array.

Example usage:
double 1b[NUMVARS];

error = GRBgetdblattrarray(model, "LB", 0, cols, 1lb);

GRBsetdblattrarray

int GRBsetdblattrarray (GRBmodel *xmodel,
const char *attrname,

int start,
int len,
double *values)

Set the values of a double-valued array attribute.

Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

100

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute.
Note that the values array must be as long as the sub-array to be changed.
Example usage:
double start[] = {1.0, 1.0, 0.0, 1.0%};
error = GRBsetdblattrarray(model, "Start", 0, 4, start);

GRBgetdblattrlist

int GRBgetdblattrlist (GRBmodel *model,
const char *attrname,

int len,
int *ind,
double *values)

Query the values of a double-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
len: The number of attribute elements to retrive.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned.
Note that the result array must be as long as the requested index list.
Example usage:
int desired[] = {0, 2, 4, 63};
double x[4];
error = GRBgetdblattrlist(model, "X", 4, desired, cbasis);

GRBsetdblattrlist

int GRBsetdblattrlist (GRBmodel *model,
const char *attrname,

int len,
int *ind,
double *values)

101

Set the values of a double-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.
values: A pointer to the desired new values for the specified elements of the attribute. Note
that the values array must be as long as the list of indices.

Example usage:
0t chagge[] = {0, 1, 3};

double start[] = {1.0, 3.0, 2.0};
error = GRBsetdblattrlist(model, "Start", 3, change, start);

GRBgetcharattrelement

int GRBgetcharattrelement (GRBmodel *model,
const char *attrname,
int element,
char *valueP)

Query a single value from a character-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
element: The index of the requested array element.
values: A pointer to the location where the requested value should be returned.

Examgle usage:
ar flrst _one;

error = GRBgetcharattrelement (model, "VType", 0, &first_one);

GRBsetcharattrelement

int GRBsetcharattrelement (GRBmodel *model,
const char *attrname,
int element,
char newvalue)

102

Set a single value in a character-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.

Example usage:

error = GRBsetcharattrelement (model, "VType", O, GRB_BINARY);

GRBgetcharattrarray

int GRBgetcharattrarray (GRBmodel *model,
const char *attrname,

int start,
int len,
char *values)

Query the values of a character-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.

values: A pointer to the location where the array attribute should be returned. Note that
the result array must be as long as the requested sub-array.

Example usage:

char vtypes[NUMVARS];
error = GRBgetcharattrarray(model, "VType", O, NUMVARS, vtypes);

103

GRBsetcharattrarray

int GRBsetcharattrarray (GRBmodel *model,
const char *attrname,

int start,
int len,
char *values)

Set the values of a character-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute.
Note that the values array must be as long as the sub-array to be changed.

Examﬁle usage:
char vtypes[] = {GRB_BINARY, GRB_CONTINUQOUS, GRB_INTEGER, GRB_BINARY};

error = GRBsetcharattrarray(model, "VType", O, 4, vtypes);

GRBgetcharattrlist

int GRBgetcharattrlist (GRBmodel *model,
const char *attrname,

int len,
int *ind,
char *values)

Query the values of a character-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
len: The number of attribute elements to retrive.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned.
Note that the result array must be as long as the requested index list.
Example usage:

104

int desired[] = {0, 2, 4, 67};
char vtypes[4];
error = GRBgetcharattrlist(model, "VType", 4, desired, vtypes);

GRBsetcharattrlist

int GRBsetcharattrlist (GRBmodel *model,
const char *attrname,

int len,
int *ind,
char *values)

Set the values of a character-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.
values: A pointer to the desired new values for the specified elements of the attribute. Note
that the values array must be as long as the list of indices.
Example usage:
int change[] = {0, 1, 3};
char vtypes[] = {GRB_BINARY, GRB_BINARY, GRB_BINARY};
error = GRBsetcharattrlist(model, "Vtype", 3, change, vtypes);

GRBgetstrattr

int GRBgetstrattr (GRBmodel *model,
const char *attrname,
char **xvalueP)

Query the value of a string-valued model attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a string-valued model attribute. Available attributes are listed and
described in the Attributes section of this document.

105

valueP: The location in which the current value of the requested attribute should be placed.

Important notes:

Note that all interface routines that return string-valued attributes are returning pointers into
internal Gurobi data structures. The user should copy the contents of the pointer to a different
data structure before the next call to a Gurobi library routine. The user should also be careful to
never modify the data pointed to by the returned character pointer.

Note that this method should be used for scalar attributes only (i.e., model attributes). To
query a single element of an array attribute, use GRBgetstrattrelement instead.

Example usage:

char *modelname;
error = GRBgetstrattr(model, "ModelName", &modelname);

GRBsetstrattr

int GRBsetstrattr (GRBmodel *model,
const char *attrname,
const char *newvalue)

Set the value of a string-valued model attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a string-valued model attribute. Available attributes are listed and
described in the Attributes section of this document.
newvalue: The desired new value of this attribute.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To
modify a single element of an array attribute, use GRBsetstrattrelement instead.
Example usage:
error = GRBsetstrattr(model, "ModelName", "Modified name");

GRBgetstrattrelement

int GRBgetstrattrelement (GRBmodel *model,
const char *attrname,
int element,
char **valueP)

Query a single value from a string-valued array attribute.

Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

106

Arguments:

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

element: The index of the requested array element.
valueP: A pointer to the location where the requested value should be returned.
Important notes:

Note that all interface routines that return string-valued attributes are returning pointers into
internal Gurobi data structures. The user should copy the contents of the pointer to a different
data structure before the next call to a Gurobi library routine. The user should also be careful to
never modify the data pointed to by the returned character pointer.

Note that this method should be used for array attributes only (i.e., variable or constraint
attributes). To query a scalar attribute (i.e., a model attribute), use GRBgetstrattr instead.

Example usage:

char **varname;
error = GRBgetstrattrelement(model, "VarName", 1, varname);

GRBsetstrattrelement

int GRBsetstrattrelement (GRBmodel *model,
const char *attrname,
int element,
char *newvalue)

Set a single value in a string-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.
Important note:

Note that this method should be used for array attributes only (i.e., variable or constraint
attributes). To modify a scalar attribute (i.e., a model attribute), use GRBsetstrattr instead.

Example usage:

error = GRBsetstrattrelement(model, "ConstrName", 0, "NewConstr");

107

GRBgetstrattrarray

int GRBgetstrattrarray (GRBmodel *model,
const char *attrname,

int start,
int len,
char **xvalues)

Query the values of a string-valued array attribute.

Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

start: The index of the first entry in the array to retrieve.

len: The number of array entries to retrieve.

values: A pointer to the location where the array attribute should be returned. Note that
the result array must be as long as the requested sub-array.

Important notes:

Note that all interface routines that return string-valued attributes are returning pointers into
internal Gurobi data structures. The user should copy the contents of the pointer to a different
data structure before the next call to a Gurobi library routine. The user should also be careful to
never modify the data pointed to by the returned character pointer.

Example usage:

char **varnames [NUMVARS] ;
error = GRBgetstrattrarray(model, "VarName", O, NUMVARS, varnames);

GRBsetstrattrarray

int GRBsetstrattrarray (GRBmodel *model,
const char *attrname,

int start,
int len,
char **xvalues)

Set the values of a string-valued array attribute.

Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-

readmodel.

108

attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

start: The index of the first entry in the array to set.
len: The number of array entries to set.

values: A pointer to the desired new values for the specified sub-array of the attribute.
Note that the values array must be as long as the sub-array to be changed.

Example usage:

char **varnames [NUMVARS] ;
error = GRBsetstrattrarray(model, "VarName", O, NUMVARS, varnames);

GRBgetstrattrlist

int GRBgetstrattrlist (GRBmodel *model,
const char *attrname,

int len,
int *ind,
char *xvalues)

Query the values of a string-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.

Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
len: The number of attribute elements to retrive.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned.
Note that the result array must be as long as the requested index list.
Important notes:
Note that all interface routines that return string-valued attributes are returning pointers into
internal Gurobi data structures. The user should copy the contents of the pointer to a different

data structure before the next call to a Gurobi library routine. The user should also be careful to
never modify the data pointed to by the returned character pointer.

Example usage:

int desired[] = {0, 2, 4, 6};
char **varnames[4];
error = GRBgetstrattrlist(model, "VarName", 4, desired, varnames);

109

GRBsetstrattrlist

int GRBsetstrattrlist (GRBmodel *model,
const char *attrname,

int len,
int *ind,
char **xvalues)

Set the values of a string-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.
values: A pointer to the desired new values for the specified elements of the attribute. Note
that the values array must be as long as the list of indices.
Example usage:
int chagel[]l = {0, 1, 3};
char **varnames[] = {"VarO", "Varl", "Var3"};
error = GRBsetstrattrlist(model, "VarName", 3, change, varnames);

110

2.7 Parameter Management and Tuning
GRBtunemodel

| int GRBtunemodel (GRBmodel *model)

Perform an automated search for parameter settings that improve performance on a model.
Upon completion, this routine stores the best parameter sets it found. The number of stored
parameter sets can be determined by querying the value of the TuneResultCount attribute. The
actual settings can be retrieved using GRBgettuneresult

Please refer to the parameter tuning section for details on the tuning tool.

Return value:

A non-zero return value indicates that a problem occurred while tuning the model. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:

model: The model to be tuned.
Example usage:
error = GRBtunemodel (model);
if (error) goto QUIT;

error = GRBgetintattr(model, "TuneResultCount", &nresults);
if (error) goto QUIT;

GRBgettuneresult

int GRBgettuneresult (GRBmodel *model,
int n)

Use this routine to retrieve the results of a previous GRBtunemodel call. Calling this routine
with argument n causes tuned parameter set n to be copied into the model. Parameter sets are
stored in order of decreasing quality, with parameter set 0 being the best. The number of available
sets is stored in attribute TuneResultCount.

Once you have retrieved a tuning result, you can call GRBoptimize to use these parameter
settings to optimize the model, or GRBwrite to write the changed parameters to a .prm file.

Please refer to the parameter tuning section for details on the tuning tool.

Return value:

A non-zero return value indicates that a problem occurred while retrieving a tuning result.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: A model that has previously been used as the argument of GRBtunemodel.
n: The index of the tuning result to retrieve. The best result is available as index 0. The
number of stored results is available in attribute TuneResultCount.

Example usage:

error = GRBtunemodel (model);
if (error) goto QUIT;

111

error = GRBgetintattr(model, "TuneResultCount", &nresults);
if (error) goto QUIT;

if (nresults > 0) {
error = GRBgettuneresult(model, 0);
if (error) goto QUIT;

}

GRBgetdblparam

int GRBgetdblparam (GRBenv *env,
const char *paramname,
double xvalueP)

Retrieve the value of a double-valued parameter.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being queried.
paramname: The name of the parameter. Please consult the parameter section for a

complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.
valueP: The location in which the current value of the requested parameter should be placed.

Example usage:
double cutoff;

error = GRBgetdblparam(GRBgetenv(model), "Cutoff", &cutoff);

GRBgetintparam

int GRBgetintparam (GRBenv *env,
const char *paramname,
int xvalueP)

Retrieve the value of an integer-valued parameter.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being queried.
paramname: The name of the parameter. Please consult the parameter section for a

complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.
valueP: The location in which the current value of the requested parameter should be placed.
Example usage:

112

int limit;
error = GRBgetintparam(GRBgetenv(model), "SolutionLimit", &limit);

GRBgetstrparam

int GRBgetstrparam (GRBenv *env,
const char *paramname,
char *xvalue)

Retrieve the value of a string-valued parameter.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being queried.
paramname: The name of the parameter. Please consult the parameter section for a

complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.
value: The location in which the current value of the requested parameter should be placed.
Example usage:
char logfilename [GRB_MAX_STRLEN];
error = GRBgetstrparam(GRBgetenv(model), "LogFile", logfilename);

GRBsetdblparam
int GRBsetdblparam (GRBenv *env,
const char *paramname,
double newvalue)

Modify the value of a double-valued parameter.

Return value:
A non-zero return value indicates that a problem occurred while modifying the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being modified.
paramname: The name of the parameter. Please consult the parameter section for a

complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.
newvalue: The desired new value of the parameter.

Important note:

Note that a model gets its own copy of the environment when it is created. Changes to the
original environment have no effect on the copy. Use GRBgetenv to retrieve the environment
associated with a model if you would like a parameter change to affect that model.

Example usage:

error = GRBsetdblparam(GRBgetenv(model), "Cutoff", 100.0);

113

GRBsetintparam

int GRBsetintparam (GRBenv *env,
const char *paramname,
int newvalue)

Modify the value of an integer-valued parameter.

Return value:
A non-zero return value indicates that a problem occurred while modifying the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being modified.
paramname: The name of the parameter. Please consult the parameter section for a

complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.
newvalue: The desired new value of the parameter.

Important note:

Note that a model gets its own copy of the environment when it is created. Changes to the
original environment have no effect on the copy. Use GRBgetenv to retrieve the environment
associated with a model if you would like a parameter change to affect that model.

Example usage:

error = GRBsetintparam(GRBgetenv(model), "SolutionLimit", 5);

GRBsetstrparam

int GRBsetstrparam (GRBenv *xenv,
const char *paramname,
const char *newvalue)

Modify the value of a string-valued parameter.

Return value:

A non-zero return value indicates that a problem occurred while modifying the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

env: The environment whose parameter value is being modified.

paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

newvalue: The desired new value of the parameter.

Important note:

Note that a model gets its own copy of the environment when it is created. Changes to the
original environment have no effect on the copy. Use GRBgetenv to retrieve the environment
associated with a model if you would like a parameter change to affect that model.

Example usage:

error = GRBsetstrparam(GRBgetenv(model), "LogFile", "/tmp/new.log");

114

GRBgetdblparaminfo

int GRBgetdblparaminfo (GRBenv *env,
const char *paramname,
double *valueP,
double *minP,
double *maxP,
double *defaultP)

Retrieve information about a double-valued parameter. Specifically, retrieve the current value
of the parameter, the minimum and maximum allowed values, and the default value.
Return value:
A non-zero return value indicates that a problem occurred while retrieving parameter in-
formation. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Arguments:
env: The environment whose parameter information is being queried.
paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.
valueP (optional): The location in which the current value of the specified parameter
should be placed.
minP (optional): The location in which the minimum allowed value of the specified pa-
rameter should be placed.
maxP (optional): The location in which the maximum allowed value of the specified pa-
rameter should be placed.
defaultP (optional): The location in which the default value of the specified parameter
should be placed.
Example usage:
error = GRBgetdblparaminfo(GRBgetenv(model), "MIPGap", ¤tGap,
&minAllowedGap, NULL, &defaultGap);

GRBgetintparaminfo

int GRBgetintparaminfo (GRBenv *env,
const char *paramname,
int *valueP,
int *minP,
int *maxP,
int *defaultP)

Retrieve information about an int-valued parameter. Specifically, retrieve the current value of
the parameter, the minimum and maximum allowed values, and the default value.
Return value:
A non-zero return value indicates that a problem occurred while retrieving parameter in-
formation. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Arguments:

115

env: The environment whose parameter information is being queried.

paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

valueP (optional): The location in which the current value of the specified parameter
should be placed.

minP (optional): The location in which the minimum allowed value of the specified pa-
rameter should be placed.

maxP (optional): The location in which the maximum allowed value of the specified pa-
rameter should be placed.

defaultP (optional): The location in which the default value of the specified parameter
should be placed.

Example usage:

error = GRBgetintparaminfo(GRBgetenv(model), "SolutionLimit", ¤t,
&minAllowedLimit, NULL, &defaultLimit);

GRBgetstrparaminfo

int GRBgetstrparaminfo (GRBenv *env,
const char *paramname,
char *value,
char *default)

Retrieve information about a string-valued parameter. Specifically, retrieve the current and
default values of the parameter.
Return value:
A non-zero return value indicates that a problem occurred while retrieving parameter in-
formation. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Arguments:
env: The environment whose parameter information is being queried.
paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.
value (optional): The location in which the current value of the specified parameter
should be placed.
default (optional): The location in which the default value of the specified parameter
should be placed.

Example usage:

char defaultval [GRB_MAX_ STRLEN];

char currentval [GRB_MAX_STRLEN] ;

error = GRBgetstrparaminfo(GRBgetenv(model), "LogFile", currentval,
defaultval);

116

GRBreadparams

int GRBreadparams (GRBenv *env,
const char *filename)

Import a set of parameter modifications from a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.
Return value:
A non-zero return value indicates that a problem occurred while reading the parameter file.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
env: The environment into which the parameter changes should be imported.
filename: The path to the file to be read. The suffix on a parameter file should be .prm,
optionally followed by .zip, .gz, .bz2, or .7z.
Example usage:
error = GRBreadparams(env, "/tmp/model.prm.bz2");

GRBwriteparams

int GRBwriteparams (GRBenv *env,
const char *filename)

Write the set of changed parameter values to a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.
Return value:
A non-zero return value indicates that a problem occurred while writing the parameter file.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
env: The environment whose parameter changes are being written.
filename: The path to the file to be written. The suffix on a parameter file should be .prm,
optionally followed by .gz, .bz2, or .7z.
Example usage:
error = GRBwriteparams(env, "/tmp/model.prm");

117

2.8 Monitoring Progress - Logging and Callbacks
GRBmsg

void GRBmsg (GRBenv *env,
const char *message)

Insert a message into the Gurobi log file.
Arguments:
env: The environment whose log file should receive the message.
message: The message to be appended to the log.
Example usage:
error = GRBmsg(env, "Add this message to the log");

GRBsetcallbackfunc

int GRBsetcallbackfunc (GRBmodel x*model,

int (*cb) (GRBmodel *model, void *cbdata, int
where, void *usrdata),
void xusrdata)

Set up a user callback function. Note that a model can only have a single callback function, so
this call will replace an existing callback.
Note that a model can only have a single callback method, so this call will replace an existing
callback. To disable a previously set callback, call this function with a cb argument of NULL.
When solving a model using multiple threads, note that the user callback is only ever called
from a single thread, so you don’t need to worry about the thread-safety of your callback.
Return value:
A non-zero return value indicates that a problem occurred while setting the user callback.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: The model in which the callback should be installed.
cb: A function pointer to the user callback function. The callback will be called regularly
from the Gurobi optimizer. The where argument to the callback function will indicate
where in the optimization process the callback was invoked. Possible values are described
in the Callback Codes section. The user callback can then call a number of routines
to retrieve additional details about the state of the optimization (e.g., GRBcbget), or
to inject new information (e.g., GRBcbcut, GRBcbsolution). The user callback function
should return 0 if no error was encountered, or it can return one of the Gurobi Error Codes
if the user callback would like the optimization to stop and return an error result.
usrdata: An optional pointer to user data that will be passed back to the user callback
function each time it is invoked (in the usrdata argument).
Example usage:
int mycallback(GRBmodel #*model, void *cbdata, int where, void *usrdata);
error = GRBsetcallbackfunc(model, mycallback, NULL);

118

GRBgetcallbackfunc

int GRBgetcallbackfunc (GRBmodel x*model,
int (**cb) (GRBmodel *model, void *cbdata,
int where, void *usrdata))

Retrieve the current user callback function.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the user callback.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: The model in which the callback should be installed.
cb: A function pointer to the user callback function.
Example usage:
int (*mycallback) (GRBmodel *model, void *cbdata, int where, void *usrdata);
error = GRBgetcallbackfunc(model, &mycallback);

GRBcbget

int GRBcbget (void *cbdata,
int where,
int what,
void *resultP)

Retrieve additional information about the progress of the optimization. Note that this routine
can only be called from within a user callback function.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the requested
data. Refer to the Error Code table for a list of possible return values. Details on the error
can be obtained by calling GRBgeterrormsg.
Arguments:
cbdata: The cbdata argument that was passed into the user callback by the Gurobi opti-
mizer. This argument must be passed unmodified from the user callback to GRBcbget ().
where: The where argument that was passed into the user callback by the Gurobi optimizer.
This argument must be passed unmodified from the user callback to GRBcbget ().
what: The data requested by the user callback. Valid values are described in the Callback
Codes section.
resultP: The location in which the requested data should be placed.
Example usage:
if (where == GRB_CB_MIP) {
double nodecount;
error = GRBcbget(cbdata, where, GRB_CB_MIP_NODECNT, (void *) &nodecount);
if (error) return O;
printf ("MIP node count is %d\n", nodecount);

119

GRBversion

void GRBversion (int *majorP,
int *minorP,
int *technicalP)

Return the Gurobi library version number (major, minor, and technical).
Arguments:
majorP: The location in which the major version number should be placed. May be NULL.
minorP: The location in which the minor version number should be placed. May be NULL.
technicalP: The location in which the technical version number should be placed. May be
NULL.
Example usage:
int major, minor, technical;
GRBversion(&major, &minor, &technical);
printf ("Gurobi library version %d.%d.%d\n", major, minor, technical);

120

2.9 Modifying Solver Behavior - Callbacks

GRBcbcut
int GRBcbcut (void *cbdata,
int cutlen,
const int *xcutind,
const double =*cutval,
char cutsense,
double cutrhs)

Add a new cutting plane to the MIP model from within a user callback routine. Note that this
routine can only be called when the where value on the callback routine is GRB_CB_MIPNODE (see
the Callback Codes section for more information).

Cutting planes can be added at any node of the branch-and-cut tree. Note that cuts should be
added sparingly, since they increase the size of the relaxation model that is solved at each node
and can significantly degrade node processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the
relaxation solution at the current node, call GRBcbget with what = GRB_CB_MIPNODE_REL.

When adding your own cuts, you must set parameter PreCrush to value 1. This setting shuts
off a few presolve reductions that sometimes prevent cuts on the original model from being applied
to the presolved model.

One very important note: you should only add cuts that are implied by the constraints in your
model. If you cut off an integer solution that is feasible according to the original model constraints,
you are likely to obtain an incorrect solution to your MIP problem.

Return value:

A non-zero return value indicates that a problem occurred while adding the cut. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:

cbdata: The cbdata argument that was passed into the user callback by the Gurobi opti-
mizer. This argument must be passed unmodified from the user callback to GRBcbcut ().

cutlen: The number of non-zero coefficients in the new cutting plane.

cutind: Variable indices for non-zero values in the new cutting plane.

cutval: Numerical values for non-zero values in the new cutting plane.

cutsense: Sense for the new cutting plane. Options are GRB_LESS_EQUAL, GRB_EQUAL, or
GRB_GREATER_EQUAL.

cutrhs: Right-hand-side value for the new cutting plane.

Example usage:

if (where == GRB_CB_MIPNODE) {
int cutind[] = {0, 13};
double cutvall[] = {1.0, 1.0};
error = GRBcbcut(cbdata, 2, cutind, cutval, GRB_LESS EQUAL, 1.0);
if (error) return O;

121

GRBcblazy

int GRBcblazy (void xcbdata,
int lazylen,
const int *lazyind,
const double *lazyval,
char lazysense,
double lazyrhs)

Add a new lazy constraint to the MIP model from within a user callback routine. Note that this
routine can only be called when the where value on the callback routine is either GRB_CB_MIPNODE
or GRB_CB_MIPSOL (see the Callback Codes section for more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large
to represent explicitly. By only including the constraints that are actually violated by solutions
found during the branch-and-cut search, it is sometimes possible to find a proven optimal solution
while only adding a fraction of the full set of constraints.

You would typically add a lazy constraint by querying the current node solution (by calling
GRBcbget from a GRB_CB_MIPSOL or GRB_CB_MIPNODE callback, using what=GRB_CB_MIPSOL_SOL
or what=GRB_CB_MIPNODE_REL), and then calling GRBcblazy () to add a constraint that cuts off the
solution. Gurobi guarantees that you will have the opportunity to cut off any solutions that would
otherwise be considered feasible.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints,
including those that have already been added. Node solutions will usually respect previously added
lazy constraints, but not always.

Note that you must set the LazyConstraints parameter if you want to use lazy constraints.

Return value:

A non-zero return value indicates that a problem occurred while adding the lazy constraint.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

cbdata: The cbdata argument that was passed into the user callback by the Gurobi opti-
mizer. This argument must be passed unmodified from the user callback to GRBcblazy ().

lazylen: The number of non-zero coefficients in the new lazy constraint.

lazyind: Variable indices for non-zero values in the new lazy constraint.

lazyval: Numerical values for non-zero values in the new lazy constraint.

lazysense: Sense for the new lazy constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL,
or GRB_GREATER_EQUAL.

lazyrhs: Right-hand-side value for the new lazy constraint.

Example usage:

if (where == GRB_CB_MIPSOL) {
int lazyind[] = {0, 1};
double lazyvall[]l = {1.0, 1.03};
error = GRBcblazy(cbdata, 2, lazyind, lazyval, GRB_LESS_EQUAL, 1.0);
if (error) return O;

122

GRBcbsolution

int GRBcbsolution (void *cbdata,
const double *solution,
double *objP)

Provide a new feasible solution for a MIP model from within a user callback routine. Note that
this routine can only be called when the where value on the callback routine is GRB_CB_MIPNODE
(see the Callback Codes section for more information).

Heuristics solutions are typically built from the current relaxation solution. To retrieve the
relaxation solution at the current node, call GRBcbget with what = GRB_CB_MIPNODE_REL.

When providing a solution, you can specify values for any subset of the variables in the model.
To leave a variable value unspecified, set the variable to GRB_UNDEFINED in the solution vector.
The Gurobi MIP solver will attempt to extend the specified partial solution to a complete solution.

Return value:

A non-zero return value indicates that a problem occurred while adding the new solution.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

cbdata: The cbdata argument that was passed into the user callback by the Gurobi opti-
mizer. This argument must be passed unmodified from the user callback to GRBcbsolution ()

solution: The solution vector. You must provide one entry for each variable in the model.
Note that you can leave an entry unspecified by setting it to GRB_UNDEFINED. The Gurobi
optimizer will attempt to find appropriate values for the unspecified variables.

objP: Objective value for solution that results from this call. Returns GRB_INFINITY if no
solution is found.

Example usage:

if (where == GRB_CB_MIPNODE) {
error = GRBcbsolution(cbdata, solution, &obj);
if (error) return O;

}

GRBterminate

| void GRBterminate (GRBmodel #*model)

Generate a request to terminate the current optimization. This routine can be called at any
time during an optimization. When the optimization stops, the Status attribute will be equal to
GRB_INTERRUPTED.

Arguments:

model: The model to terminate.
Example usage:
if (time_to_quit)
GRBterminate (model) ;

123

2.10 Error Handling
GRBgeterrormsg

| char * GRBgeterrormsg (GRBenv *env)

Retrieve the error message associated with the most recent error that occurred in an environ-
ment.
Return value:
A string containing the error message.
Arguments:
env: The environment in which the error occurred.
Example usage:
error = GRBgetintattr(model, "DOES_NOT_EXIST", &attr);
if (error)
printf ("%s\n", GRBgeterrormsg(env));

124

2.11 Advanced simplex routines

This section describes a set of advanced basis routines. These routines allow you to compute
solutions to various linear systems involving the simplex basis matrix. Note that these should only
be used by advanced users. We provide no technical support for these routines.
Before describing the routines, we should first describe the GRBsvec data structure that is used
to input or return sparse vectors:
typedef struct SVector {

int len;
int *ind;
double *val;
} GRBsvec;

The len field gives the number of non-zero values in the vector. The ind and val fields
give the index and value for each non-zero, respectively. Indices are zero-based. To give an ex-
ample, the sparse vector [0, 2.0, 0, 1.0] would be represented as len=2, ind = [1, 3], and
val = [2.0, 1.0].

The user is responsible for allocating and freeing the ind and val fields. The length of the
result vector for these routines is not known in advance, so the user must allocate these arrays to
hold the longest possible result (whose length is noted in the documentation for each routine).

GRBFSolve

int GRBFSolve (GRBmodel *model,
GRBsvec *b,
GRBsvec *x)

Computes the solution to the linear system Bx = b, where B is the current simplex basis matrix,
b is an input vector, and x is the result vector.
Return value:
A non-zero return value indicates that a problem occurred while computing the desired
vector. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.
b: The sparse right-hand side vector. It should contain one entry for each non-zero value in
the input.
x: The sparse result vector. The user is responsible for allocating the ind and val fields to
be large enough to hold as many as one non-zero entry per constraint in the model.

GRBBSolve

int GRBBSolve (GRBmodel *model,
GRBsvec *b,
GRBsvec *xX)

Computes the solution to the linear system BTz = b, where B” is the transpose of the current
simplex basis matrix, b is an input vector, and z is the result vector.

125

Return value:
A non-zero return value indicates that a problem occurred while computing the desired
vector. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.
b: The sparse right-hand side vector. It should contain one entry for each non-zero value in
the input.
x: The sparse result vector. The user is responsible for allocating the ind and val fields to
be large enough to hold as many as one non-zero entry per constraint in the model.

GRBBinvColj

int GRBBinvColj (GRBmodel *model,
int J»
GRBsvec *x)
Computes the solution to the linear system Bx = A;, where B is the current simplex basis
matrix and A; is the column of the constraint matrix A associated with variable j.
Return value:
A non-zero return value indicates that a problem occurred while computing the desired
vector. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.
j: Indicates the index of the column of A to use as the right-hand side for the linear solve.
The index j must be between 0 and cols-1, where cols is the number of columns in the
model.
x: The sparse result vector. The user is responsible for allocating the ind and val fields to
be large enough to hold as many as one non-zero entry per constraint in the model.

GRBBinvRowi

int GRBBinvRowi (GRBmodel #*model,
int i,
GRBsvec *x)

Computes a single tableau row. More precisely, this routine returns row 4 from the matrix B~ A,
where B~ is the inverse of the basis matrix and A is the constaint matrix. Note that the tableau
will contain columns corresponding to the variables in the model, and also columns corresponding
to artificial and slack variables associated with constraints.

Return value:

A non-zero return value indicates that a problem occurred while computing the desired
vector. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

126

Arguments:

model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.

i: The index of the desired tableau row.

x: The result vector. The result will contain one entry for each non-zero value. Note that
the result may contain values for slack variables; the slack on row i will have index cols+i,
where cols is the number of columns in the model. The user is responsible for allocating
the ind and val fields to be large enough to hold the largest possible result. For this
routine, the result could have one entry for each variable in the model, plus one entry for
each constraint.

GRBgetBasisHead

int GRBgetBasisHead (GRBmodel *model,
int *bhead)

Returns the indices of the variables that make up the current basis matrix.
Return value:
A non-zero return value indicates that a problem occurred while extracting the basis. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.
bhead: The constraint matrix columns that make up the current basis. The result contains
one entry per constraint in A. If bhead[i]=j, then column i in the basis matrix B is
column j from the constraint matrix A. Note that the basis may contain slack or articifial
variables. If bhead[i] is greater than or equal to cols (the number of columns in A), then
the corresponding basis column is the articial or slack variable from row bhead [i]-cols.

127

This section documents the Gurobi C++4 interface. This manual begins with a quick overview of
the classes exposed in the interface and the most important methods on those classes. It then
continues with a comprehensive presentation of all of the available classes and methods.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide
or the Example Tour. These documents provide concrete examples of how to use the classes and
methods described here.

Environments

The first step in using the Gurobi C++ interface is to create an environment object. Environments
are represented using the GRBEnv class. An environment acts as the container for all data associ-
ated with a set of optimization runs. You will generally only need one environment object in your
program.

Models

You can create one or more optimization models within an environment. Each model is repre-
sented as an object of class GRBModel. A model consists of a set of decision variables (objects of
class GRBVar), a linear or quadratic objective function on those variables (specified using GRB-
Model::setObjective), and a set of constraints on these variables (objects of class GRBConstr,
GRBQConstr, GRBSOS, or GRBGenConstr). Each variable has an associated lower bound, upper
bound, and type (continuous, binary, etc.). Each linear or quadratic constraint has an associated
sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side value. Refer to this
section for more information on variables and constraints.

Linear constraints are specified by building linear expressions (objects of class GRBLinExpr),
and then specifying relationships between these expressions (for example, requiring that one expres-
sion be equal to another). Quadratic constraints are built in a similar fashion, but using quadratic
expressions (objects of class GRBQuadExpr) instead.

An optimization model may be specified all at once, by loading the model from a file (using the
appropriate GRBModel constructor), or built incrementally, by first constructing an empty object of
class GRBModel and then subsequently calling GRBModel::addVar or GRBModel::add Vars to add
additional variables, and GRBModel::addConstr, GRBModel::addQConstr, GRBModel::addSOS,
or any of the GRBModel::addGenConstrXxx methods to add constraints. Models are dynamic
entities; you can always add or remove variables or constraints.

We often refer to the class of an optimization model. A model with a linear objective function,
linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic,
the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is a
Quadratically-Constrained Program (QCP). We’ll sometimes also discuss a special case of QCP, the
Second-Order Cone Program (SOCP). If the model contains any integer variables, semi-continuous
variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the
model is a Mized Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, in-
cluding Mized Integer Linear Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mized

128

C++ API Overview

http://www.gurobi.com/documentation/{7}.{0}/quick-start-guide/
http://www.gurobi.com/documentation/{7}.{0}/examples/index.html

Integer Quadratically-Constrained Programs (MIQCP), and Mized Integer Second-Order Cone Pro-
grams (MISOCP). The Gurobi Optimizer handles all of these model classes.

Solving a Model

Once you have built a model, you can call GRBModel::optimize to compute a solution. By default,
optimize will use the concurrent optimizer to solve LP models, the barrier algorithm to solve
QP and QCP models, and the branch-and-cut algorithm to solve mixed integer models. The
solution is stored in a set of attributes of the model. These attributes can be queried using a set of
attribute query methods on the GRBModel, GRBVar, GRBConstr, GRBQConstr, GRBSOS, and
GRBGenConstr classes.

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBModel::optimize
will only perform further optimization if relevant data has changed since the model was last op-
timized. If you would like to discard previously computed solution information and restart the
optimization from scratch without changing the model, you can call GRBModel::reset.

After a MIP model has been solved, you can call GRBModel::fixedModel to compute the asso-
ciated fized model. This model is identical to the input model, except that all integer variables are
fixed to their values in the MIP solution. In some applications, it is useful to compute information
on this continuous version of the MIP model (e.g., dual variables, sensitivity information, etc.).

Multiple Solutions and Multiple Objectives

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to
a model with a single objective function. Gurobi provides features that allow you to relax either
of these assumptions. You should refer to the section on Solution Pools for information on how to
request more than one solution, or the section on Multiple Objectives for information on how to
specify multiple objective functions and control the tradeoff between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the
infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be useful
for diagnosing the cause of an infeasibility, call GRBModel::computellS to compute an Irreducible
Inconsistent Subsystem (IIS). This method can be used for both continuous and MIP models, but
you should be aware that the MIP version can be quite expensive. This method populates a set of
IIS attributes.

To attempt to repair an infeasibility, call GRBModel::feasRelax to compute a feasibility relax-
ation for the model. This relaxation allows you to find a solution that minimizes the magnitude of
the constraint violation.

Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some
attributes are associated with the variables of the model, some with the constraints of the model,
and some with the model itself. To give a simple example, solving an optimization model causes
the X variable attribute to be populated. Attributes such as X that are computed by the Gurobi
optimizer cannot be modified directly by the user, while others, such as the variable lower bound
(the LB attribute) can.

Attributes are queried using GRBVar::get, GRBConstr::get, GRBQConstr::get, GRBSOS::get,
GRBGenConstr::get, or GRBModel::get, and modified using GRBVar::set, GRBConstr::set, GR-
BQConstr::set, GRBGenConstr::set, or GRBModel::set. Attributes are grouped into a set of enums

129

by type (GRB__CharAttr, GRB_DoubleAttr, GRB_ IntAttr, GRB_ StringAttr). The get() and
set () methods are overloaded, so the type of the attribute determines the type of the returned
value. Thus, constr.get (GRB.DoubleAttr.RHS) returns a double, while constr.get (GRB.CharAttr.Sense)
returns a char.
If you wish to retrieve attribute values for a set of variables or constraints, it is usually more
efficient to use the array methods on the associated GRBModel object. Method GRBModel::get
includes signatures that allow you to query or modify attribute values for arrays of variables or
constraints.
The full list of attributes can be found in the Attributes section.

Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to
variable bounds, constraint right-hand sides, etc.). The main exceptions are modifications to the
constraint matrix and the objective function.

The constraint matrix can be modified in a few ways. The first is to call the chgCoeffs method
on a GRBModel object to change individual matrix coefficients. This method can be used to
modify the value of an existing non-zero, to set an existing non-zero to zero, or to create a new
non-zero. The constraint matrix is also modified when you remove a variable or constraint from the
model (through the GRBModel::remove method). The non-zero values associated with the deleted
constraint or variable are removed along with the constraint or variable itself.

The model objective function can also be modified in a few ways. The easiest is to build an
expression that captures the objective function (a GRBLinExpr or GRBQuadExpr object), and
then pass that expression to method GRBModel::setObjective. If you wish to modify the objective,
you can simply call setObjective again with a new GRBLinExpr or GRBQuadExpr object.

For linear objective functions, an alternative to setObjective is to use the Obj variable attribute
to modify individual linear objective coefficients.

If your variables have piecewise-linear objectives, you can specify them using the GRBModel::setPWLODj
method. Call this method once for each relevant variable. The Gurobi simplex solver includes al-
gorithmic support for convex piecewise-linear objective functions, so for continuous models you
should see a substantial performance benefit from using this feature. To clear a previously specified
piecewise-linear objective function, simply set the Obj attribute on the corresponding variable to
0.

Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed
in a lazy fashion, meaning that modifications don’t affect the model immediately. Rather, they
are queued and applied later. If your program simply creates a model and solves it, you will
probably never notice this behavior. However, if you ask for information about the model before
your modifications have been applied, the details of the lazy update approach may be relevant to
you.

As we just noted, model modifications (bound changes, right-hand side changes, objective
changes, etc.) are placed in a queue. These queued modifications can be applied to the model
in three different ways. The first is by an explicit call to GRBModel::update. The second is by a
call to GRBModel::optimize. The third is by a call to GRBModel::write to write out the model.
The first case gives you fine-grained control over when modifications are applied. The second
and third make the assumption that you want all pending modifications to be applied before you

130

optimize your model or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is
that this approach makes it much easier to perform multiple modifications to a model, since the
model remains unchanged between modifications. The second is that processing model modifica-
tions can be expensive, particularly in a Compute Server environment, where modifications require
communication between machines. Thus, it is useful to have visibility into exactly when these
modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then
update, then make more modifications, then update again, etc. Updating after each individual
modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value
of the requested data from the point of the last update. If the object you tried to query didn’t
exist then, you’ll get a NOT_IN_MODEL exception instead.

The semantics of lazy updates have changed in this release. While the vast majority of programs
will continue to work unmodified, you can use the UpdateMode parameter to revert to the previous
behavior if you run into an issue.

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of
the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms,
strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters
before beginning the optimization. Parameters can be of type int, double, or string.

The simplest way to set parameters is through the GRBModel::set method on the model object.
Similarly, parameter values can be queried with GRBModel::get.

Parameters can also be set on the Gurobi environment object, using GRBEnv::set. Note that
each model gets its own copy of the environment when it is created, so parameter changes to the
original environment have no effect on existing models.

You can read a set of parameter settings from a file using GRBEnv::readParams, or write the
set of changed parameters using GRBEnv::writeParams.

We also include an automated parameter tuning tool that explores many different sets of pa-
rameter changes in order to find a set that improves performance. You can call GRBModel::tune to
invoke the tuning tool on a model. Refer to the parameter tuning tool section for more information.

The full list of Gurobi parameters can be found in the Parameters section.

Memory Management

Memory management must always be considered in C++ programs. In particular, the Gurobi
library and the user program share the same C+4 heap, so the user must be aware of certain
aspects of how the Gurobi library uses this heap. The basic rules for managing memory when using
the Gurobi optimizer are as follows:

e As with other dynamically allocated C++ objects, GRBEnv or GRBModel objects should be
freed using the associated destructors. In other words, given a GRBModel object m, you should
call delete m when you are no longer using m.

e Objects that are associated with a model (e.g., GRBConstr, GRBQConstr, GRBSOS, GRB-
GenConstr, and GRBVar objects) are managed by the model. In particular, deleting a model

131

will delete all of the associated objects. Similarly, removing an object from a model (using
GRBModel::remove) will also delete the object.

e Some Gurobi methods return an array of objects or values. For example, GRBModel::addVars
returns an array of GRBVar objects. It is the user’s responsibility to free the returned array
(using delete[]). The reference manual indicates when a method returns a heap-allocated
result.

One consequence of these rules is that you must be careful not to use an object once it has been
freed. This is no doubt quite clear for environments and models, where you call the destructors
explicitly, but may be less clear for constraints and variables, which are implicitly deleted when the
associated model is deleted.

Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will
send output to the screen. A few simple controls are available for modifying the default logging
behavior. If you would like to direct output to a file as well as to the screen, specify the log file
name in the GRBEnv constructor. You can modify the LogFile parameter if you wish to redirect
the log to a different file after creating the environment object. The frequency of logging output can
be controlled with the Displaylnterval parameter, and logging can be turned off entirely with the
OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging
section.

More detailed progress monitoring can be done through the GRBCallback class. The GRB-
Model::setCallback method allows you to receive a periodic callback from the Gurobi optimizer.
You do this by sub-classing the GRBCallback abstract class, and writing your own callback()
method on this class. You can call GRBCallback::getDoublelnfo, GRBCallback::getIntInfo, GRB-
Callback::getStringInfo, or GRBCallback::getSolution from within the callback to obtain additional
information about the state of the optimization.

Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. The simplest control
callback is GRBCallback::abort, which asks the optimizer to terminate at the earliest convenient
point. Method GRBCallback::setSolution allows you to inject a feasible solution (or partial solution)
during the solution of a MIP model. Methods GRBCallback::addCut and GRBCallback::addLazy
allow you to add cutting planes and lazy constraints during a MIP optimization, respectively.

Error Handling

All of the methods in the Gurobi C++ library can throw an exception of type GRBException.
When an exception occurs, additional information on the error can be obtained by retrieving the
error code (using method GRBException: :getErrorCode), or by retrieving the exception message
(using method GRBException: :getMessage). The list of possible error return codes can be found
in the Error Codes section.

132

3.1 GRBEnv

Gurobi environment object. Gurobi models are always associated with an environment. You must
create an environment before can you create and populate a model. You will generally only need
a single environment object in your program.

The methods on environment objects are mainly used to manage Gurobi parameters (e.g., get,
getParamlInfo, set).

GRBEnv()

Constructor for GRBEnv object. If the constructor is called with no arguments, no log file will be
written for the environment.

You have the option of constructing either a local environment, which solves Gurobi models on
the local machine, a client environment for a Gurobi compute server, which will solve Gurobi models
on a server machine, or an Instant Cloud environment, which will launch a Gurobi Cloud server
and solve models on that server. Choose the appropriate signature for the type of environment you
wish to launch.

Note that the GRBEnv constructor will check the current working directory for a file named
gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file
should be in PRM format (briefly, each line should contain a parameter name, followed by the
desired value for that parameter).

In general, you should aim to create a single Gurobi environment object in your program, even
if you plan to work with multiple models. Reusing one environment is much more efficient than
creating and destroying multiple environments.

| GRBEnv GRBEnv ()
Create a Gurobi environment (with logging disabled).
Return value:
An environment object (with no associated log file).

‘ GRBEnv GRBEnv (const string& logFileName)

Create a Gurobi environment (with logging enabled).
Arguments:

logFileName: The desired log file name.
Return value:

An environment object.

GRBEnv GRBEnv (const string& logFileName,
const string& computeserver,

int port,

const string& password,
int priority,
double timeout)

133

Create a client Gurobi environment on a compute server.
Arguments:
logFileName: The name of the log file for this environment. Pass an empty string for no
log file.
computeserver: A comma-separated list of Gurobi compute servers. You can refer to
compute server machines using their names or their IP addresses.
port: The port number used to connect to the compute server. You should pass a -1 value,
which indicates that the default port should be used, unless your server administrator has
changed our recommended port settings.
password: The password for gaining access to the specified compute servers. Pass an empty
string if no password is required.
priority: The priority of the job. Priorities must be between -100 and 100, with a default
value of 0 (by convention). Higher priority jobs are chosen from the server job queue
before lower priority jobs. A job with priority 100 runs immediately, bypassing the job
queue and ignoring the job limit on the server. You should exercise caution with priority
100 jobs, since they can severely overload a server, which can cause jobs to fail, and in
extreme cases can cause the server to crash.
timeout: Job timeout (in seconds). If the job doesn’t reach the front of the queue before the
specified timeout, the constructor will throw a JOB_REJECTED exception. Use a negative
value to indicate that the call should never timeout.
Return value:
An environment object.

GRBEnv GRBEnv (const string& logFileName,
const string& accessID,
const string& secretKey,
const string& pool)
Create a Gurobi Instant Cloud environment.
Arguments:
logfilename: The name of the log file for this environment. May be NULL (or an empty
string), in which case no log file is created.
accessID: The access ID for your Gurobi Instant Cloud license. This can be retrieved from
the Gurobi Instant Cloud website. When used in combination with your secretKey, this
allows you to launch Instant Cloud instances and submit jobs to them.
secretKey: The secret key for your Gurobi Instant Cloud license. This can be retrieved
from the Gurobi Instant Cloud website. When used in combination with your accessID,
this allows you to launch Instant Cloud instances and submit jobs to them. Note that you
should keep your secret key private.
pool: The machine pool. Machine pools allow you to create fixed configurations on the
Instant Cloud website (capturing things like type of machine, geographic region, etc.),
and then launch and share machines from client programs without having to restarte the
configuration information each time you launch a machine. May be NULL (or an empty
string), in which case your job will be launched in the default pool associated with your
cloud license.
Return value:

134

An environment object.

GRBEnv::get()

Query the value of a parameter.

| double get (GRB_DoubleParam param)

Query the value of a double-valued parameter.
Arguments:
param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
Return value:
The current value of the requested parameter.

‘int get (GRB_IntParam param)

Query the value of an int-valued parameter.
Arguments:
param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
Return value:
The current value of the requested parameter.

‘ const string get (GRB_StringParam param)

Query the value of a string-valued parameter.
Arguments:
param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
Return value:
The current value of the requested parameter.

GRBEnv::getErrorMsg()

Query the error message for the most recent exception associated with this environment.

‘ const string getErrorMsg ()
Return value:
The error string.

135

GRBEnv::getParamlinfo()

Obtain information about a parameter.

void getParamInfo (GRB_DoubleParam param,

doublex* valP,
doublex* minP,
doublex* maxP,
doublex* *defP)
Obtain detailed information about a double parameter.

Arguments:

param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

valP: The current value of the parameter.

minP: The minimum allowed value of the parameter.

maxP: The maximum allowed value of the parameter.

defP: The default value of the parameter.

void getParamInfo (GRB_IntParam param,

intx* valP,

intx* minP,

int* maxP,

int* defP)
Obtain detailed information about an integer parameter.

Arguments:

param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

valP: The current value of the parameter.

minP: The minimum allowed value of the parameter.

maxP: The maximum allowed value of the parameter.

defP: The default value of the parameter.

void getParamInfo (GRB_StringParam param,

stringx* valP,
string* defP)
Obtain detailed information about a string parameter.

Arguments:
param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
valP: The current value of the parameter.
defP: The default value of the parameter.

136

GRBEnv::message()

Write a message to the console and the log file.

‘void message (const string& message)

Arguments:
message: Print a message to the console and to the log file. Note that this call has no effect
unless the OutputFlag parameter is set.

GRBEnv::readParams()

Read new parameter settings from a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

| void readParams (const string%& paramfile)

Arguments:
paramfile: Name of the file containing parameter settings. Parameters should be listed
one per line, with the parameter name first and the desired value second. For example:

Gurobi parameter file
Threads 1
MIPGap O

Blank lines and lines that begin with the hash symbol are ignored.

GRBEnv::resetParams()

Reset all parameters to their default values.
Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

| void resetParams ()

GRBEnv::set()

Set the value of a parameter.

Important notes:

Note that a model gets its own copy of the environment when it is created. Changes to the
original environment have no effect on the copy. Use GRBModel::set to change a parameter on an
existing model.

void set (GRB_DoubleParam param,
double newvalue)

137

Set the value of a double-valued parameter.
Arguments:
param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
newvalue: The desired new value of the parameter.

void set (GRB_IntParam param,
int newvalue)
Set the value of an int-valued parameter.
Arguments:
param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
newvalue: The desired new value of the parameter.

void set (GRB_StringParam param,
const string& newvalue)
Set the value of a string-valued parameter.
Arguments:
param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
newvalue: The desired new value of the parameter.

void set (const string& param,
const string& mnewvalue)
Set the value of any parameter using strings alone.
Arguments:
param: The name of the parameter being modified. Please consult the parameter section
for a complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.
newvalue: The desired new value of the parameter.

GRBEnv::writeParams()

Write all non-default parameter settings to a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

| void writeParams (const string% paramfile)

Arguments:

paramfile: Name of the file to which non-default parameter settings should be written.
The previous contents are overwritten.

138

3.2 GRBModel

Gurobi model object. Commonly used methods include addVar (adds a new decision variable to the
model), addConstr (adds a new constraint to the model), optimize (optimizes the current model),
and get (retrieves the value of an attribute).

GRBModel()

Constructor for GRBModel. The simplest version creates an empty model. You can then call
addVar and addConstr to populate the model with variables and constraints. The more complex
constructors can read a model from a file, or make a copy of an existing model.

‘ GRBModel GRBModel (const GRBEnv& env)

Model constructor.
Arguments:
env: Environment for new model.
Return value:
New model object. Model initially contains no variables or constraints.

GRBModel GRBModel (const GRBEnv& env,
const string& filename)

Read a model from a file. Note that the type of the file is encoded in the file name suffix.
Valid suffixes are .mps, .rew, .1p, .rlp, .ilp, or .opb. The files can be compressed, so additional
suffixes of .zip, .gz, .bz2, or .7z are accepted.

Arguments:

env: Environment for new model.

modelname: Name of the file containing the model.
Return value:

New model object.

| GRBModel GRBModel (const GRBModelZ model)

Create a copy of an existing model.
Arguments:
model: Model to copy.
Return value:
New model object. Model is a clone of the input model.

GRBModel::addConstr()

Add a single linear constraint to a model. Multiple signatures are available.

139

GRBConstr addConstr (const GRBLinExpr& 1lhsExpr,

char sense,
const GRBLinExpr& rhsExpr,
string name="")

Add a single linear constraint to a model.
Arguments:
lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).
rhsExpr: Right-hand side expression for new linear constraint.
name (optional): Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr (const GRBLinExpr& lhsExpr,

char sense,
GRBVar rhsVar,
string name="")

Add a single linear constraint to a model.
Arguments:
lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).
rhsVar: Right-hand side variable for new linear constraint.
name (optional): Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr (const GRBLinExpr& lhsExpr,

char sense,
double rhsVal,
string name="")

Add a single linear constraint to a model.
Arguments:
lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).
rhsVal: Right-hand side value for new linear constraint.
name (optional): Name for new constraint.
Return value:
New constraint object.

140

GRBConstr addConstr (GRBVar 1lhsVar,

char sense,

GRBVar rhsVar,

string name="")
Add a single linear constraint to a model.

Arguments:
lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).
rhsVar: Right-hand side variable for new linear constraint.
name (optional): Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr (GRBVar 1lhsVar,

char sense,

double rhsVal,

string name="")
Add a single linear constraint to a model.

Arguments:
lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).
rhsVal: Right-hand side value for new linear constraint.
name (optional): Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr (GRBTempConstr& tc,
string name="")
Add a single linear constraint to a model.
Arguments:
tc: Temporary constraint object, created using an overloaded comparison operator. See
GRBTempConstr for more information.
name (optional): Name for new constraint.
Return value:
New constraint object.

GRBModel::addConstrs()

Add new linear constraints to a model.

We recommend that you build your model one constraint at a time (using addConstr), since it
introduces no significant overhead and we find that it produces simpler code. Feel free to use these
methods if you disagree, though.

141

‘GRBConstr* addConstrs (int count)

Add count new linear constraints to a model.
Arguments:
count: Number of constraints to add to the model. The new constraints are all of the form
0 <= 0.
Return value:
Array of new constraint objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBConstr* addConstrs (const GRBLinExpr* 1lhsExprs,

const charx* senses,

const double* rhsVals,

const string* names,

int count)
Add count new linear constraints to a model.

Arguments:
lhsExprs: Left-hand side expressions for the new linear constraints.
senses: Senses for new linear constraints (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).
rhsVals: Right-hand side values for the new linear constraints.
names: Names for new constraints.
count: Number of constraints to add.
Return value:
Array of new constraint objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBModel::addGenConstrXxx()

Each of the functions described below adds a new general constraint to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types:
variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and
SOS constraints. These are typically treated directly by the underlying solver (although not always),
and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general
constraints. These are typically not treated directly by the solver. Rather, they are transformed
by presolve into mathematically equivalent sets of constraints (and variables), chosen from among
the fundamental types listed above. These general constraints are provided as a convenience to
users. If such constraints appear in your model, but if you prefer to reformulate them yourself
using fundamental constraint types instead, you can certainly do so. However, note that Gurobi
can sometimes exploit information contained in the other constraints in the model to build a more
efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

e MAX (addGenConstrMax): set a decision variable equal to the maximum value from among
a set of decision variables

142

e MIN (addGenConstrMin): set a decision variable equal to the minimum value from among a
set of decision variables

e ABS (addGenConstrAbs): set a decision variable equal to the absolute value of some other
decision variable

e AND (addGenConstrAnd): set a binary variable equal to one if and only if all of a set of
binary decision variables are equal to one

¢ OR (addGenConstrOr): set a binary variable equal to one if and only if at least one variable
out of a set of binary decision variables is equal to one

e INDICATOR (addGenConstrIndicator): a given binary variable may only take a certain value
if a given linear constraint is satisfied

Please refer to this section for additional details on general constraints.

GRBModel::addGenConstrMax()
Add a new general constraint of type GRB_GENCONSTR_MAX to a model.

A MAX constraint r = max{z1,...,Z,,c} states that the resultant variable r should be equal
to the maximum of the operand variables x1, ..., x, and the constant c.
GRBGenConstr addGenConstrMax (GRBVar resvar,

const GRBVar* vars,
int len,
double constant=-GRB_INFINITY,
string name="")

Arguments:

resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
constant (optional): The additional constant operand of the new constraint.
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrMin()
Add a new general constraint of type GRB_GENCONSTR_MIN to a model.

A MIN constraint r = min{z1,...,Z,, c} states that the resultant variable r should be equal to
the minimum of the operand variables x1,...,x, and the constant c.
GRBGenConstr addGenConstrMin (GRBVar resvar,
const GRBVar* vars,
int len,
double constant=GRB_INFINITY,
string name="")

143

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
constant (optional): The additional constant operand of the new constraint.
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrAbs()

Add a new general constraint of type GRB_GENCONSTR_ABS to a model.
An ABS constraint r = abs{z} states that the resultant variable r should be equal to the
absolute value of the argument variable z.

GRBGenConstr addGenConstrAbs (GRBVar resvar,
GRBVar argvar,
string name="")

Arguments:
resvar: The resultant variable of the new constraint.
argvar: The argument variable of the new constraint.
name (optional): Name for the new general constraint.
Return value:
New general constraint.

GRBModel::addGenConstrAnd()

Add a new general constraint of type GRB_GENCONSTR_AND to a model.

An AND constraint » = and{z1, ..., z,} states that the binary resultant variable r should be 1
if and only if all of the operand variables x1, ..., x, are equal to 1. If any of the operand variables
is 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary; indepen-
dently of how they were created.

GRBGenConstr addGenConstrAnd (GRBVar resvar,
const GRBVar* vars,
int len,
string name="")
Arguments:

resvar: The resultant binary variable of the new constraint.
vars: Array of binary variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
name (optional): Name for the new general constraint.

Return value:
New general constraint.

144

GRBModel::addGenConstrOr()

Add a new general constraint of type GRB_GENCONSTR_OR to a model.

An OR constraint r = or{zy,...,z,} states that the binary resultant variable r should be 1 if
and only if any of the operand variables x1, ..., x, is equal to 1. If all operand variables are 0, then
the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary; indepen-
dently of how they were created.

GRBGenConstr addGenConstrOr (GRBVar resvar,
const GRBVar* vars,
int len,
string name="")
Arguments:

resvar: The resultant binary variable of the new constraint.
vars: Array of binary variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrIndicator()

Add a new general constraint of type GRB_GENCONSTR_INDICATOR to a model.

An INDICATOR constraint z = f — a2 < b states that if the binary indicator variable z is
equal to f € {0,1}, then the linear constraint a” = < b should hold. On the other hand, if z = 1 — f,
the linear constraint may be violated. The sense of the linear constraint can also be specified to be
=or >.

Note that the indicator variable z of a constraint will be forced to be binary; independently of
how it was created.

Multiple signatures are available.

GRBGenConstr addGenConstrIndicator (GRBVar binvar,
int binval,
const GRBLinExpr& expr,
char sense,
double rhs,
string name="")

Arguments:

binvar: The binary indicator variable.

binval: The value for the binary indicator variable that would force the linear constraint
to be satisfied (0 or 1).

expr: Left-hand side expression for the linear constraint triggered by the indicator.

sense: Sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

145

rhs: Right-hand-side value for the linear constraint.

name (optional): Name for the new general constraint.
Return value:

New general constraint.

GRBGenConstr addGenConstrIndicator (GRBVar binvar,
int binval,
const GRBTempConstr& constr,
string name="")

Arguments:

binvar: The binary indicator variable.

binval: The value for the binary indicator variable that would force the linear constraint
to be satisfied (0 or 1).

constr: Temporary constraint object defining the linear constraint that is triggered by the
indicator. The temporary constraint object is created using an overloaded comparison
operator. See GRBTempConstr for more information.

name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addQConstr()

Add a quadratic constraint to a model. Multiple signatures are available.

Important note: the algorithms that Gurobi uses to solve quadratically constrained problems
can only handle certain types of quadratic constraints. Constraints of the following forms are always
accepted:

e 27Qx + ¢"x < b, where Q is Positive Semi-Definite (PSD)

e 27z <42, where x is a vector of variables, and ¥ is a non-negative variable (a Second-Order
Cone)

e 17z < yz, where x is a vector of variables, and y and z are non-negative variables (a rotated
Second-Order Cone)

If you add a constraint that isn’t in one of these forms (and Gurobi presolve is unable to transform
the constraint into one of these forms), you’ll get an error when you try to solve the model.
Constraints where the quadratic terms only involve binary variables will always be transformed
into one of these forms.

GRBQConstr addQConstr (const GRBQuadExpr& 1lhsExpr,
char sense,
const GRBQuadExpr& rhsExpr,
string name="")

Add a quadratic constraint to a model.
Arguments:

146

lhsExpr: Left-hand side expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB_LESS_EQUAL or GRB_GREATER_EQUAL).
rhsExpr: Right-hand side expression for new quadratic constraint.
name (optional): Name for new constraint.
Return value:
New quadratic constraint object.

GRBQConstr addQConstr (const GRBQuadExpr& 1lhsExpr,

char sense,

GRBVar rhsVar,

string name="")
Add a quadratic constraint to a model.

Arguments:
lhsExpr: Left-hand side expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB_LESS_EQUAL or GRB_GREATER_EQUAL).
rhsVar: Right-hand side variable for new quadratic constraint.
name (optional): Name for new constraint.
Return value:
New quadratic constraint object.

GRBQConstr addQConstr (GRBTempConstr& tc,
string name="")
Add a quadratic constraint to a model.
Arguments:
tc: Temporary constraint object, created using an overloaded comparison operator. See
GRBTempConstr for more information.
name (optional): Name for new constraint.
Return value:
New quadratic constraint object.

GRBModel::addRange()

Add a single range constraint to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution.

Note that range constraints are stored internally as equality constraints. We add an extra
variable to the model to capture the range information. Thus, the Sense attribute on a range
constraint will always be GRB_EQUAL.

GRBConstr addRange (const GRBLinExpr& expr,

double lower,
double upper,
string name="")

Arguments:
expr: Linear expression for new range constraint.

147

lower: Lower bound for linear expression.

upper: Upper bound for linear expression.

name (optional): Name for new constraint.
Return value:

New constraint object.

GRBModel::addRanges()

Add new range constraints to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution.

GRBConstr* addRanges (const GRBLinExpr* exprs,

const doublex* lower,
const doublex* upper,
const string* names,
int count)

Arguments:
exprs: Linear expressions for the new range constraints.
lower: Lower bounds for linear expressions.
upper: Upper bounds for linear expressions.
name: Names for new range constraints.
count: Number of range constraints to add.
Return value:
Array of new constraint objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBModel::addSOS()

Add an SOS constraint to the model. Please refer to this section for details on SOS constraints.

GRBSOS addS0S (const GRBVar* vars,
const doublex* weights,
int len,
int type)
Arguments:
vars: Array of variables that participate in the SOS constraint.
weights: Weights for the variables in the SOS constraint.
len: Number of members in the new SOS set (length of vars and weights arrays).
type: SOS type (can be GRB_SOS_TYPE1 or GRB_SOS_TYPE2).
Return value:
New SOS constraint.

148

GRBModel::addVar()

Add a single decision variable to a model.

GRBVar addVar (double 1b,

double ub,
double obj,

char type,
string name="")

Add a variable; non-zero entries will be added later.
Arguments:
1b: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_-
SEMICONT,OTGRB_SEMIINT)
name (optional): Name for new variable.
Return value:
New variable object.

GRBVar addVar (double 1b,
double ub,
double obj,
char type,
int numnz,
const GRBConstr* constrs,
const doublex* coeffs,
string name="")

Add a variable, and the associated non-zero coefficients.
Arguments:
1b: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coeflicient for new variable.
type: Variable type ﬁn‘nemfvaﬂabka(GRB_CONTINUOUS,GRB_BINARY,GRB_INTEGER,GRB_—
SEMICONT,OFGRB_SEMIINT)
numnz: Number of constraints in which this new variable participates.
constrs: Array of constraints in which the variable participates.
coeffs: Array of coefficients for each constraint in which the variable participates.
name (optional): Name for new variable.
Return value:
New variable object.

149

GRBVar addVar (double 1b,

double ub,

double obj,

char type,

const GRBColumn& col,

string name="")
Add a variable, and the associated non-zero coefficients.

Arguments:
1b: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_-
SEMICONT,OrGRB_SEMIINT)
col: GRBColumn object for specifying a set of constraints to which new variable belongs.
name (optional): Name for new variable.
Return value:
New variable object.

GRBModel::addVars()

Add new decision variables to a model.

GRBVar* addVars (int count,
char type=GRB_CONTINUOUS)
Add count new decision variables to a model. All associated attributes take their default values,
except the variable type, which is specified as an argument.

Arguments:
count: Number of variables to add.
type (optional): Variable type for new variables (GRB_CONTINUQUS, GRB_BINARY, GRB_-

INTEGER,GRB_SEMICONT,OrGRB_SEMIINT)

Return value:
Array of new variable objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBVar* addVars (const doublex 1b,
const double*x ub,
const doublex obj,

const charx* type,
const string* names,
int count)

Add count new decision variables to a model. This signature allows you to use arrays to hold
the various variable attributes (lower bound, upper bound, etc.).
Arguments:
1b: Lower bounds for new variables. Can be NULL, in which case the variables get lower
bounds of 0.0.

150

ub: Upper bounds for new variables. Can be NULL, in which case the variables get infinite
upper bounds.

obj: Objective coefficients for new variables. Can be NULL, in which case the variables get
objective coefficients of 0.0.

type: Variable types for new variables (GRB_CONTINUQUS, GRB_BINARY, GRB_INTEGER, GRB_-
SEMICONT, or GRB_SEMIINT). Can be NULL, in which case the variables are assumed to be
continuous.

names: Names for new variables. Can be NULL, in which case all variables are given default
names.

count: The number of variables to add.

Return value:
Array of new variable objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBVar* addVars (const double* 1b,
const doublex* ub,
const doublex* obj,
const charx* type,
const string* names,
const GRBColumn* cols,
int count)

Add new decision variables to a model. This signature allows you to specify the set of constraints
to which each new variable belongs using an array of GRBColumn objects.
Arguments:
1b: Lower bounds for new variables. Can be NULL, in which case the variables get lower
bounds of 0.0.
ub: Upper bounds for new variables. Can be NULL, in which case the variables get infinite
upper bounds.
obj: Objective coefficients for new variables. Can be NULL, in which case the variables get
objective coefficients of 0.0.
type: Variable types for new variables (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_-
SEMICONT, or GRB_SEMIINT). Can be NULL, in which case the variables are assumed to be
continuous.
names: Names for new variables. Can be NULL, in which case all variables are given default
names.
cols: GRBColumn objects for specifying a set of constraints to which each new column
belongs.
count: The number of variables to add.
Return value:
Array of new variable objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBModel::chgCoeff()

Change one coefficient in the model. The desired change is captured using a GRBVar object, a
GRBConstr object, and a desired coefficient for the specified variable in the specified constraint. If

151

you make multiple changes to the same coeflicient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you
update the model (using GRBModel::update), optimize the model (using GRBModel::optimize),
or write the model to disk (using GRBModel::write).

void chgCoeff (GRBConstr constr,
GRBVar var,
double newvalue)
Arguments:
constr: Constraint for coefficient to be changed.
var: Variable for coefficient to be changed.
newvalue: Desired new value for coefficient.

GRBModel::chgCoeffs()

Change a list of coefficients in the model. Each desired change is captured using a GRBVar object,
a GRBConstr object, and a desired coefficient for the specified variable in the specified constraint.
The entries in the input arrays each correspond to a single desired coefficient change. If you make
multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you
update the model (using GRBModel::update), optimize the model (using GRBModel::optimize),
or write the model to disk (using GRBModel::write).

void chgCoeffs (const GRBConstr* constrs,

const GRBVar* vars,
const doublex vals,
int len)

Arguments:
constrs: Constraints for coefficients to be changed.
vars: Variables for coefficients to be changed.
vals: Desired new values for coefficients.
len: Number of coefficients to change (length of vars, constrs, and vals arrays).

GRBModel::computellS()

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and
variable bounds of the original model. If all constraints in the model except those in the IIS
are removed, the model is still infeasible. However, further removing any one member of the IIS
produces a feasible result.

This method populates the TISCONSTR, IISQCONSTR, and IISGENCONSTR constraint attributes,
the IISS0S SOS attribute, and the IISLB, and IISUB variable attributes. You can also obtain
information about the results of the IIS computation by writing a .ilp format file (see GRB-
Model::write). This file contains only the IIS from the original model.

Note that this method can be used to compute IISs for both continuous and MIP models.

| void computeIIS ()

152

GRBModel::discardConcurrentEnvs()

Discard concurrent environments for a model.
The concurrent environments created by getConcurrentEnv will be used by every subsequent
call to the concurrent optimizer until the concurrent environments are discarded.

‘ void discardConcurrentEnvs ()

GRBModel::feasRelax()

Modifies the GRBModel object to create a feasibility relaxation. Note that you need to call optimize
on the result to compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the
solution violates the bounds and linear constraints of the original model. This method provides a
number of options for specifying the relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the
sum of the weighted magnitudes of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the cost per unit violation in the lower bounds, upper bounds, and linear
constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the
weighted sum of the squares of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the coefficients on the squares of the lower bound, upper bound, and
linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the
weighted count of bound and constraint violations. The lbpen, ubpen, and rhspen arguments
specify the cost of violating a lower bound, upper bound, and linear constraint, respectively.

To give an example, if a constraint with rhspen value p is violated by 2.0, it would con-
tribute 2*p to the feasibility relaxation objective for relaxobjtype=0, it would contribute 2*2xp
for relaxobjtype=1, and it would contribute p for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is
created. If minrelax=false, optimizing the returned model gives a solution that minimizes the
cost of the violation. If minrelax=true, optimizing the returned model finds a solution that
minimizes the original objective, but only from among those solutions that minimize the cost of the
violation. Note that feasRelax must solve an optimization problem to find the minimum possible
relaxation when minrelax=true, which can be quite expensive.

There are two signatures for this method. The more complex one takes a list of variables
and constraints, as well as penalties associated with relaxing the corresponding lower bounds,
upper bounds, and constraints. If a variable or constraint is not included in one of these lists,
the associated bounds or constraints may not be violated. The simpler signature takes a pair of
boolean arguments, vrelax and crelax, that indicate whether variable bounds and/or constraints
can be violated. If vrelax/crelax is true, then every bound/constraint is allowed to be violated,
respectively, and the associated cost is 1.0.

Note that this is a destructive method: it modifies the model on which it is invoked. If you
don’t want to modify your original model, use the GRBModel constructor to create a copy before
invoking this method.

153

double feasRelax (int relaxobjtype,

bool minrelax,
int vlen,

int clen,
const GRBVar* vars,
doublex* lbpen,
doublex* ubpen,
const GRBConstr* constr,
doublex rhspen)

Create a feasibility relaxation model.

Arguments:
relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vlen: The length of the list of variables whose bounds are allowed to be violated.
clen: The length of the list of linear contraints that are allowed to be violated.
vars: Variables whose bounds are allowed to be violated.
lbpen: Penalty for violating a variable lower bound. One entry for each variable in argument
vars.
ubpen: Penalty for violating a variable upper bound. One entry for each variable in argument
vars.
constr: Linear constraints that are allowed to be violated.
rhspen: Penalty for violating a linear constraint. One entry for each variable in argument
constr.
Return value:
Zero if minrelax is false. If minrelax is true, the return value is the objective value for
the relaxation performed. If the value is less than 0, it indicates that the method failed to
create the feasibility relaxation.

double feasRelax (int relaxobjtype,
bool minrelax,
bool vrelax,
bool crelax)
Simplified method for creating a feasibility relaxation model.
Arguments:
relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vrelax: Indicates whether variable bounds can be relaxed (with a cost of 1.0 for any viola-

tions.
crelax: Indicates whether linear constraints can be relaxed (with a cost of 1.0 for any
violations.

Return value:
Zero if minrelax is false. If minrelax is true, the return value is the objective value for
the relaxation performed. If the value is less than 0, it indicates that the method failed to
create the feasibility relaxation.

154

GRBModel::fixedModel()

Create the fixed model associated with a MIP model. The MIP model must have a solution loaded
(e.g., after a call to the optimize method). In the fixed model, each integer variable is fixed to the
value that variable takes in the MIP solution.

| GRBModel fixedModel ()
Return value:
Fixed model associated with calling object.

GRBModel::get()

Query the value(s) of a parameter or attribute. Use this method for parameters, for scalar model
attributes, or for arrays of constraint or variable attributes.

‘double get (GRB_DoubleParam param)

Query the value of a double-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

‘int get (GRB_IntParam param)

Query the value of an int-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

‘string get (GRB_StringParam param)

Query the value of a string-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

char* get (GRB_CharAttr attr,
const GRBVar* vars,
int count)
Query a char-valued variable attribute for an array of variables.

155

Arguments:
attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.
Return value:
The current values of the requested attribute for each input variable. Note that the result
is heap-allocated, and must be returned to the heap by the user.

charx get (GRB_CharAttr attr,
const GRBConstr* constrs,
int count)
Query a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.
Return value:
The current values of the requested attribute for each input constraint. Note that the result
is heap-allocated, and must be returned to the heap by the user.

char* get (GRB_CharAttr attr,
const GRBQConstr* qconstrs,
int count)
Query a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of quadratic constraints whose attribute values are being queried.
count: The number of quadratic constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input quadratic constraint. Note that
the result is heap-allocated, and must be returned to the heap by the user.

| double get (GRB_DoubleAttr attr)

Query the value of a double-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

doublex get (GRB_DoubleAttr attr,
const GRBVar* vars,
int count)

156

Query a double-valued variable attribute for an array of variables.
Arguments:
attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.
Return value:
The current values of the requested attribute for each input variable. Note that the result
is heap-allocated, and must be returned to the heap by the user.

doublex get (GRB_DoubleAttr attr,
const GRBConstr* constrs,
int count)
Query a double-valued constraint attribute for an array of constraints.
Arguments:
attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.
Return value:
The current values of the requested attribute for each input constraint. Note that the result
is heap-allocated, and must be returned to the heap by the user.

doublex get (GRB_DoubleAttr attr,
const GRBQConstr* qconstrs,
int count)

Query a double-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:
attr: The attribute being queried.
constrs: An array of quadratic constraints whose attribute values are being queried.
count: The number of quadratic constraint attributes to retrieve.
Return value:
The current values of the requested attribute for each input quadratic constraint. Note that
the result is heap-allocated, and must be returned to the heap by the user.

| int get (GRB_IntAttr attr)

Query the value of an int-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int* get (GRB_IntAttr attr,
const GRBVar* vars,
int count)

157

Query an int-valued variable attribute for an array of variables.
Arguments:
attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.
Return value:
The current values of the requested attribute for each input variable. Note that the result
is heap-allocated, and must be returned to the heap by the user.

intx get (GRB_IntAttr attr,
const GRBConstr* constrs,
int count)
Query an int-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.
Return value:
The current values of the requested attribute for each input constraint. Note that the result
is heap-allocated, and must be returned to the heap by the user.

‘string get (GRB_StringAttr attr)

Query the value of a string-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:
The current value of the requested attribute.

string* get (GRB_StringAttr attr,
const GRBVar* vars,
int count)
Query a string-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.

Return value:

The current values of the requested attribute for each input variable. Note that the result
is heap-allocated, and must be returned to the heap by the user.

string* get (GRB_StringAttr attr,
const GRBConstr* constrs,
int count)

158

Query a string-valued constraint attribute for an array of constraints.
Arguments:
attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.
Return value:
The current values of the requested attribute for each input constraint. Note that the result
is heap-allocated, and must be returned to the heap by the user.

stringx get (GRB_StringAttr attr,
const GRBQConstr* qconstrs,
int count)
Query a string-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of quadratic constraints whose attribute values are being queried.
count: The number of quadratic constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input quadratic constraint. Note that
the result is heap-allocated, and must be returned to the heap by the user.

GRBModel::getCoeff()

Query the coefficient of variable var in linear constraint constr (note that the result can be zero).

double getCoeff (GRBConstr constr,
GRBVar var)
Arguments:
constr: The requested constraint.
var: The requested variable.
Return value:
The current value of the requested coefficient.

GRBModel::getCol()

Retrieve the list of constraints in which a variable participates, and the associated coefficients. The
result is returned as a GRBColumn object.

| GRBColumn getCol (GRBVar var)

Arguments:
var: The variable of interest.
Return value:
A GRBColumn object that captures the set of constraints in which the variable participates.

159

GRBModel::getConcurrentEnv()

Create/retrieve a concurrent environment for a model.

This method provides fine-grained control over the concurrent optimizer. By creating your
own concurrent environments and setting appropriate parameters on these environments (e.g., the
Method parameter), you can control exactly which strategies the concurrent optimizer employs.
For example, if you create two concurrent environments, and set Method to primal simplex for
one and dual simplex for the other, subsequent concurrent optimizer runs will use the two simplex
algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with
num=0. For example, if you want three concurrent environments, they must be numbered 0, 1,
and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent
optimization on that model. Use discardConcurrentEnvs to revert back to default concurrent
optimizer behavior.

GRBEnv getConcurrentEnv (int num)

Arguments:

num: The concurrent environment number.
Return value:

The concurrent environment for the model.

GRBModel::getConstrByName()

Retrieve a linear constraint from its name. If multiple linear constraints have the same name, this
method chooses one arbitrarily.

‘GRBConstr getConstrByName (const string& name)

Arguments:

name: The name of the desired linear constraint.
Return value:

The requested linear constraint.

GRBModel::getConstrs()

Retrieve an array of all linear constraints in the model.

| GRBConstr* getConstrs ()
Return value:
An array of all linear constraints in the model. Note that this array is heap-allocated, and
must be returned to the heap by the user.

160

GRBModel::getEnv()

Query the environment associated with the model. Note that each model makes its own copy of
the environment when it is created. To change parameters for a model, for example, you should
use this method to obtain the appropriate environment object.

‘ GRBEnv getEnv ()
Return value:
The environment for the model.

GRBModel::getGenConstrMax()

Retrieve the data of a general constraint of type MAX. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in 1enP. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrMax for a description of the semantics of this general constraint type.

void getGenConstrMax (GRBGenConstr genc,

GRBVarx* resvarP,
GRBVarx* vars,

intx* lenP,
doublex* constantP)

Arguments:
genc: The index of the general constraint.
Any combination of the following four arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.
constantP: Pointer to store the additional constant operand of the constraint.

GRBModel::getGenConstrMin()

Retrieve the data of a general constraint of type MIN. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in 1enP. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrMin for a description of the semantics of this general constraint type.

161

void getGenConstrMin (GRBGenConstr genc,

GRBVarx* resvarP,
GRBVarx* vars,

intx* lenP,
doublex* constantP)

Arguments:
genc: The index of the general constraint.
Any combination of the following four arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.
constantP: Pointer to store the additional constant operand of the constraint.

GRBModel::getGenConstrAbs()

Retrieve the data of a general constraint of type ABS. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

See also addGenConstrAbs for a description of the semantics of this general constraint type.

void getGenConstrAbs (GRBGenConstr genc,
GRBVarx* resvarP,
GRBVarx* argvarP)
Arguments:
genc: The index of the general constraint.
Any combination of the following two arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
argvarP: Pointer to store the argument variable of the constraint.

GRBModel::getGenConstrAnd()

Retrieve the data of a general constraint of type AND. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in 1enP. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrAnd for a description of the semantics of this general constraint type.

void getGenConstrAnd (GRBGenConstr genc,

GRBVarx* resvarP,
GRBVarx* vars,
int* lenP)

Arguments:

162

genc: The index of the general constraint.
Any combination of the following three arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.

GRBModel::getGenConstrOr()

Retrieve the data of a general constraint of type OR. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in 1enP. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrOr for a description of the semantics of this general constraint type.

void getGenConstrOr (GRBGenConstr genc,

GRBVarx* resvarP,
GRBVarx* vars,
int* lenP)

Arguments:
genc: The index of the general constraint.
Any combination of the following three arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.

GRBModel::getGenConstrindicator()

Retrieve the data of a general constraint of type INDICATOR. Calling this function for a general
constraint of different type leads to an exception. You can query the GenConstrType attribute to
determine the type of the general constraint.

See also addGenConstrIndicator for a description of the semantics of this general constraint

type.

void getGenConstrIndicator (GRBGenConstr genc,

GRBVarx* binvarP,
intx* binvalP,
GRBLinExpr* exprP,
charx senseP,
doublex* rhsP)

Arguments:
genc: The index of the general constraint.
Any combination of the following five arguments can be NULL.

163

binvarP: Pointer to store the binary indicator variable of the constraint.

binvalP: Pointer to store the value that the indicator variable has to take in order to trigger
the linear constraint.

exprP: Pointer to a GRBLinExpr object to store the left-hand-side expression of the linear
constraint that is triggered by the indicator.

senseP: Pointer to store the sense for the linear constraint. Options are GRB_LESS_EQUAL,
GRB_EQUAL, or GRB_GREATER_EQUAL.

rhsP: Pointer to store the right-hand-side value for the linear constraint.

GRBModel::getGenConstrs()

Retrieve an array of all general constraints in the model.

| GRBGenConstr* getGenConstrs ()
Return value:
An array of all general constraints in the model. Note that this array is heap-allocated, and
must be returned to the heap by the user.

GRBModel::getObjective()

Retrieve a quadratic model objective.
Note that the constant and linear portions of the objective can also be retrieved using the
ObjCon and Obj attributes.

| GRBQuadExpr getObjective ()
Return value:
The model objective.

GRBMaodel::getPWLObj()

Retrieve the piecewise-linear objective function for a variable. The return value gives the number
of points that define the function, and the z and y arguments give the coordinates of the points,
respectively. The x and y arguments must be large enough to hold the result. Call this method
with NULL values for and y if you just want the number of points.

Refer to the description of setPWLOD] for additional information on what the values in and
1 mean.

int getPWLObj (GRBVar var,
double[] x,
double[] 1y)
Arguments:
var: The variable whose objective function is being retrieved.
x: The x values for the points that define the piecewise-linear function. These will always
be in non-decreasing order.

164

y: The y values for the points that define the piecewise-linear function.
Return value:
The number of points that define the piecewise-linear objective function.

GRBModel::getQCRow()

Retrieve the left-hand side expression from a quadratic constraint. The result is returned as a
GRBQuadExpr object.

‘GRBQuadExpr getQCRow (GRBQConstr qconstr)

Arguments:
qgconstr: The quadratic constraint of interest.
Return value:
A GRBQuadExpr object that captures the left-hand side of the quadratic constraint.

GRBModel::getQConstrs()

Retrieve an array of all quadratic constraints in the model.

‘ GRBQConstrx getQConstrs ()
Return value:
An array of all quadratic constraints in the model. Note that this array is heap-allocated,
and must be returned to the heap by the user.

GRBModel::getRow()

Retrieve a list of variables that participate in a constraint, and the associated coefficients. The
result is returned as a GRBLinExpr object.

‘GRBLinExpr getRow (GRBConstr constr)

Arguments:
constr: The constraint of interest.
Return value:
A GRBLinExpr object that captures the set of variables that participate in the constraint.

GRBModel::getSOS()

Retrieve the list of variables that participate in an SOS constraint, and the associated coefficients.
The return value is the length of this list. If you would like to allocate space for the result before
retrieving the result, call the method first with NULL array arguments to determine the appropriate
array lengths.

165

int getS0S (GRBSOS sos,
GRBVar* vars,
double* weights,
int* typeP)
Arguments:
sos: The SOS set of interest.
vars: A list of variables that participate in sos.
weights: The SOS weights for each participating variable.
typeP: The type of the SOS set (either GRB_SOS_TYPE1 or GRB_SOS_TYPE2).
Return value:
The length of the result arrays.

GRBModel::getSOSs()

Retrieve an array of all SOS constraints in the model.

| GRBSOS* getS0Ss ()
Return value:
An array of all SOS constraints in the model. Note that this array is heap-allocated, and
must be returned to the heap by the user.

GRBModel::get TuneResult()

Use this method to retrieve the results of a previous tune call. Calling this method with argument
n causes tuned parameter set n to be copied into the model. Parameter sets are stored in order of
decreasing quality, with parameter set 0 being the best. The number of available sets is stored in
attribute TuneResultCount.

Once you have retrieved a tuning result, you can call optimize to use these parameter settings
to optimize the model, or write to write the changed parameters to a .prm file.

Please refer to the parameter tuning section for details on the tuning tool.

| void getTuneResult (int n)

n: The index of the tuning result to retrieve. The best result is available as index 0. The
number of stored results is available in attribute TuneResultCount.

GRBModel::getVarByName()

Retrieve a variable from its name. If multiple variables have the same name, this method chooses
one arbitrarily.

‘GRBVar getVarByName (const string& name)

Arguments:
name: The name of the desired variable.

166

Return value:
The requested variable.

GRBModel::getVars()

Retrieve an array of all variables in the model.

‘ GRBVar* getVars ()
Return value:
An array of all variables in the model. Note that this array is heap-allocated, and must be
returned to the heap by the user.

GRBModel::optimize()

Optimize the model. The algorithm used for the optimization depends on the model type (simplex
or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful completion,
this method will populate the solution related attributes of the model. See the Attributes section
for more information on attributes.

Please consult this section for a discussion of some of the practical issues associated with solving
a precisely defined mathematical model using finite-precision floating-point arithmetic.

Note that this method will process all pending model modifications.

‘ void optimize ()

GRBModel::optimizeasync()

Optimize a model asynchronously. This routine returns immediately. Your program can perform
other computations while optimization proceeds in the background. To check the state of the
asynchronous optimization, query the Status attribute for the model. A value of IN_PROGRESS
indicates that the optimization has not yet completed. When you are done with your foreground
tasks, you must call sync to sync your foreground program with the asynchronous optimization
task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in
the background is severely limited. Specifically, you can only perform attribute queries, and only
for a few attributes (listed below). Any other calls on the running model, or on any other models that
were built within the same Gurobi environment, will fail with error code OPTIMIZATION_IN_PROGRESS.

Note that there are no such restrictions on models built in other environments. Thus, for
example, you could create multiple environments, and then have a single foreground program
launch multiple simultaneous asynchronous optimizations, each in its own environment.

As already noted, you are allowed to query the value of the Status attribute while an asyn-
chronous optimization is in progress. The other attributes that can be queried are: ObjVal, Ob-
jBound, IterCount, NodeCount, and BarlterCount. In each case, the returned value reflects progress
in the optimization to that point. Any attempt to query the value of an attribute not on this list
will return an OPTIMIZATION IN_PROGRESS error.

| void optimizeasync ()

167

GRBModel::presolve()

Perform presolve on a model.

| GRBModel presolve ()
Return value:
Presolved version of original model.

GRBModel::read()

This method is the general entry point for importing data from a file into a model. It can be used
to read basis files for continuous models, start vectors for MIP models, or parameter settings. The
type of data read is determined by the file suffix. File formats are described in the File Format
section.

Note that this is not the method to use if you want to read a new model from a file. For that,
use the GRBModel constructor. One variant of the constructor takes the name of the file that
contains the new model as its argument.

void read (const string& filename)

Arguments:
filename: Name of the file to read. The suffix on the file must be either .bas (for an LP
basis), .mst or .sol (for a MIP start), .hnt (for MIP hints), .ord (for a priority order),
or .prm (for a parameter file). The suffix may optionally be followed by .zip, .gz, .bz2,

or .7z.

GRBModel::remove()

Remove a variable, constraint, or SOS from a model.

‘void remove (GRBConstr constr)

Remove a linear constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel::update), optimize
the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

Arguments:

constr: The linear constraint to remove.

‘void remove (GRBGenConstr genconstr)

Remove a general constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel::update), optimize
the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

Arguments:

168

genconstr: The general constraint to remove.

| void remove (GRBQConstr qconstr)

Remove a quadratic constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel::update), optimize
the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

Arguments:

gconstr: The quadratic constraint to remove.

| void remove (GRBSOS sos)

Remove an SOS constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel::update), optimize
the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

Arguments:

sos: The SOS constraint to remove.

| void remove (GRBVar var)

Remove a variable from the model. Note that, due to our lazy update approach, the change
won’t actually take effect until you update the model (using GRBModel::update), optimize the
model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

Arguments:

var: The variable to remove.

GRBModel::reset()

Reset the model to an unsolved state, discarding any previously computed solution information.

| void reset ()

GRBModel::setCallback()

Set the callback object for a model. The callback() method on this object will be called period-
ically from the Gurobi solver. You will have the opportunity to obtain more detailed information
about the state of the optimization from this callback. See the documentation for GRBCallback
for additional information.

Note that a model can only have a single callback method, so this call will replace an existing
callback. To disable a previously set callback, call this method with a NULL argument.

| void setCallback (GRBCallback* cb)

169

GRBModel::set()

Set the value(s) of a parameter or attribute. Use this method for parameters, for scalar model
attributes, and for arrays of constraint or variable attributes.

void set (GRB_DoubleParam param,
double newvalue)

Set the value of a double-valued parameter.

The difference between setting a parameter on a model and setting it on an environment (i.e.,
through GRBEnv::set) is that the former modifies the parameter for a single model, while the
latter modifies the parameter for every model that is subsequently built using that environment
(and leaves the parameter unchanged for models that were previously built using that environment).

Arguments:

param: The parameter being modified.
newvalue: The desired new value for the parameter.

void set (GRB_IntParam param,
int newvalue)

Set the value of an int-valued parameter.

The difference between setting a parameter on a model and setting it on an environment (i.e.,
through GRBEnv::set) is that the former modifies the parameter for a single model, while the
latter modifies the parameter for every model that is subsequently built using that environment
(and leaves the parameter unchanged for models that were previously built using that environment).

Arguments:

param: The parameter being modified.
newvalue: The desired new value for the parameter.

void set (GRB_StringParam param,
string newvalue)

Set the value of a string-valued parameter.

The difference between setting a parameter on a model and setting it on an environment (i.e.,
through GRBEnv::set) is that the former modifies the parameter for a single model, while the
latter modifies the parameter for every model that is subsequently built using that environment
(and leaves the parameter unchanged for models that were previously built using that environment).

Arguments:

param: The parameter being modified.
newvalue: The desired new value for the parameter.

void set (GRB_CharAttr attr,
const GRBVar* vars,

charx newvalues,
int count)
Set a char-valued variable attribute for an array of variables.

Arguments:

170

attr: The attribute being modified.

vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

void set (GRB_CharAttr attr,
const GRBConstr* constrs,
charx newvalues,
int count)
Set a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.

constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

void set (GRB_CharAttr attr,
const GRBQConstr* qconstrs,
charx* newvalues,
int count)
Set a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.

constrs: An array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
count: The number of quadratic constraint attributes to set.

void set (GRB_DoubleAttr attr,
double newvalue)
Set the value of a double-valued model attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void set (GRB_DoubleAttr attr,
const GRBVar* vars,

doublex* newvalues,
int count)
Set a double-valued variable attribute for an array of variables.

Arguments:
attr: The attribute being modified.
vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

171

void set (GRB_DoubleAttr attr,
const GRBConstr* constrs,

doublex* newvalues,
int count)
Set a double-valued constraint attribute for an array of constraints.

Arguments:
attr: The attribute being modified.
constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

void set (GRB_DoubleAttr attr,
const GRBQConstr* qconstrs,
doublex* newvalues,
int count)
Set a double-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.

constrs: An array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
count: The number of quadratic constraint attributes to set.

void set (GRB_IntAttr attr,
int newvalue)
Set the value of an int-valued model attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void set (GRB_IntAttr attr,
const GRBVar* vars,

intx* newvalues,
int count)
Set an int-valued variable attribute for an array of variables.

Arguments:
attr: The attribute being modified.
vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

void set (GRB_IntAttr attr,
const GRBConstr* constrs,
intx* newvalues,
int count)

172

Set an int-valued constraint attribute for an array of constraints.
Arguments:

void

attr: The attribute being modified.

constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

set (GRB_StringAttr attr,
string newvalue)

Set the value of a string-valued model attribute.
Arguments:

void

attr: The attribute being modified.
newvalue: The desired new value for the attribute.

set (GRB_StringAttr attr,
const GRBVar* vars,
string* newvalues,
int count)

Set a string-valued variable attribute for an array of variables.
Arguments:

void

attr: The attribute being modified.

vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

set (GRB_StringAttr attr,
const GRBConstr* constrs,
stringk* newvalues,
int count)

Set a string-valued constraint attribute for an array of constraints.
Arguments:

void

attr: The attribute being modified.

constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

set (GRB_StringAttr attr,
const GRBQConstr* qconstrs,
string* newvalues,
int count)

Set a string-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.

constrs: An array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
count: The number of quadratic constraint attributes to set.

173

GRBModel::setObjective()

Set the model objective equal to a linear or quadratic expression.

Note that you can also modify the linear portion of a model objective using the Obj variable
attribute. If you wish to mix and match these two approaches, please note that this method replaces
the entire existing objective, while the 0bj attribute can be used to modify individual linear terms.

void setObjective (GRBLinExpr linexpr,
int sense=0)
Arguments:
linexpr: New linear model objective.
sense (optional): Optimization sense (GRB_MINIMIZE for minimization, GRB_MAXIMIZE
for maximization). Omit this argument to use the ModelSense attribute value to determine
the sense.

void setObjective (GRBQuadExpr quadexpr,
int sense=0)
Arguments:
quadexpr: New quadratic model objective.
sense (optional): Optimization sense (GRB_MINIMIZE for minimization, GRB_MAXIMIZE
for maximization). Omit this argument to use the ModelSense attribute value.

GRBMaodel::setPWLObj()

Set a piecewise-linear objective function for a variable.

The arguments to this method specify a list of points that define a piecewise-linear objective
function for a single variable. Specifically, the z and y arguments give coordinates for the vertices
of the function.

For example, suppose we want to define the function f(x) shown below:

174

The vertices of the function occur at the points (1, 1), (3,2) and (5,4), so npoints is 3, z is {1, 3,
5}, and y is {1, 2, 4}. With these arguments we define f(1) =1, f(3) = 2 and f(5) = 4. Other
objective values are linearly interpolated between neighboring points. The first pair and last pair
of points each define a ray, so values outside the specified x values are extrapolated from these
points. Thus, in our example, f(—1) =0 and f(6) = 5.

More formally, a set of n points

X:{a:1,...,xn}, y:{y177yn}

define the following piecewise-linear function:

y1 + 220 (v — 1), if v <y,
Fo)y=4 vit it w—m), ifv>aandv <z,
Yn + 222 (0 — @), i 0 > @y

The x entries must appear in non-decreasing order. Two points can have the same x coordinate
— this can be useful for specifying a discrete jump in the objective function.

Note that a piecewise-linear objective can change the type of a model. Specifically, including
a non-convex piecewise linear objective function in a continuous model will transform that model
into a MIP. This can significantly increase the cost of solving the model.

Setting a piecewise-linear objective for a variable will set the Obj attribute on that variable to
0. Similarly, setting the Obj attribute will delete the piecewise-linear objective on that variable.

Each variable can have its own piecewise-linear objective function. They must be specified
individually, even if multiple variables share the same function.

void setPWLObj (GRBvar var,
int npoints,
double[] x,
double[] 1y)
Set the piecewise-linear objective function for a variable.
Arguments:
var: The variable whose objective function is being set.
npoints: Number of points that define the piecewise-linear function.
x: The x values for the points that define the piecewise-linear function. Must be in non-
decreasing order.
y: The y values for the points that define the piecewise-linear function.

GRBModel::sync()

Wait for a previous asynchronous optimization call to complete.

Calling optimizeasync returns control to the calling routine immediately. The caller can perform
other computations while optimization proceeds, and can check on the progress of the optimization
by querying various model attributes. The sync call forces the calling program to wait until the
asynchronous optimization call completes. You must call sync before the corresponding model
object is deleted.

175

The sync call throws an exception if the optimization itself ran into any problems. In other
words, exceptions thrown by this method are those that optimize itself would have thrown, had
the original method not been asynchronous.

Note that you need to call sync even if you know that the asynchronous optimization has
already completed.

| void sync ()

GRBModel::terminate()

Generate a request to terminate the current optimization. This method can be called at any time
during an optimization.

| void terminate ()

GRBModel::tune()

Perform an automated search for parameter settings that improve performance. Upon completion,
this method stores the best parameter sets it found. The number of stored parameter sets can be
determined by querying the value of the TuneResultCount attribute. The actual settings can be
retrieved using getTuneResult

Please refer to the parameter tuning section for details on the tuning tool.

| void tune ()

GRBModel::update()

Process any pending model modifications.

| void wupdate ()

GRBModel::write()

This method is the general entry point for writing model data to a file. It can be used to write
optimization models, IIS submodels, solutions, basis vectors, MIP start vectors, or parameter
settings. The type of file written is determined by the file suffix. File formats are described in the
File Format section.

Note that writing a model to a file will process all pending model modifications. However,
writing other model information (solutions, bases, etc.) will not.

‘void write (const string& filename)

Arguments:

176

filename: Name of the file to write. The file type is encoded in the file name suffix. Valid
suffixes for writing the model itself are .mps, .rew, .1p, or .rlp. An IIS can be written
by using an .ilp suffix. Use .sol for a solution file, .mst for a MIP start, .hnt for MIP
hints, .bas for a basis file, or .prm for a parameter file. The suffix may optionally be
followed by .gz, .bz2, or .7z, which produces a compressed result.

177

3.3 GRBVar

Gurobi variable object. Variables are always associated with a particular model. You create a
variable object by adding a variable to a model (using GRBModel::addVar), rather than by using
a GRBVar constructor.

The methods on variable objects are used to get and set variable attributes. For example,
solution information can be queried by calling get(GRB_DoubleAttr_X). Note that you can also
query attributes for a set of variables at once. This is done using the attribute query method on
the GRBModel object (GRBModel::get).

GRBVar::get()

Query the value of a variable attribute.

| char get (GRB_CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| double get (GRB_DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| int get (GRB_IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| string get (GRB_StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

178

GRBVar::sameAs()

‘bool sameAs (GRBVar var2)

Check whether two variable objects refer to the same variable.
Arguments:
var2: The other variable.
Return value:
Boolean result indicates whether the two variable objects refer to the same model variable.

GRBVar::set()

Set the value of a variable attribute.

void set (GRB_CharAttr attr,
char newvalue)
Set the value of a char-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_DoubleAttr attr,
double newvalue)
Set the value of a double-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_IntAttr attr,
int newvalue)
Set the value of an int-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_StringAttr attr,
const string& newvalue)
Set the value of a string-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

179

3.4 GRBConstr

Gurobi constraint object. Constraints are always associated with a particular model. You create
a constraint object by adding a constraint to a model (using GRBModel::addConstr), rather than
by using a GRBConstr constructor.

The methods on constraint objects are used to get and set constraint attributes. For example,
constraint right-hand sides can be queried by calling get(GRB_DoubleAttr_RHS). Note that you
can also query attributes for a set of constraints at once. This is done using the attribute query
method on the GRBModel object (GRBModel::get).

GRBConstr::get()

Query the value of a constraint attribute.

| char get (GRB_CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| double get (GRB_DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| int get (GRB_IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| string get (GRB_StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

180

GRBConstr::sameAs()

‘bool sameAs (GRBConstr constr2)

Check whether two constraint objects refer to the same constraint.

Arguments:
constr2: The other constraint.

Return value:
Boolean result indicates whether the two constraint objects refer to the same model con-
straint.

GRBConstr::set()

Set the value of a constraint attribute.

void set (GRB_CharAttr attr,
char newvalue)
Set the value of a char-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_DoubleAttr attr,
double newvalue)
Set the value of a double-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_IntAttr attr,
int newvalue)
Set the value of an int-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_StringAttr attr,
const string& newvalue)
Set the value of a string-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

181

3.5 GRBQConstr

Gurobi quadratic constraint object. Quadratic constraints are always associated with a partic-
ular model. You create a quadratic constraint object by adding a constraint to a model (using
GRBModel::addQConstr), rather than by using a GRBQConstr constructor.

The methods on quadratic constraint objects are used to get and set quadratic constraint
attributes. For example, quadratic constraint right-hand sides can be queried by calling
get(GRB_DoubleAttr_QCRHS). Note, however, that it is generally more efficient to query attributes
for a set of constraints at once. This is done using the attribute query method on the GRBModel
object (GRBModel::get).

GRBQConstr::get()

Query the value of a quadratic constraint attribute.

‘char get (GRB_CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| double get (GRB_DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| int get (GRB_IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

‘string get (GRB_StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

182

attr: The attribute being queried.
Return value:
The current value of the requested attribute.

GRBQConstr::set()

Set the value of a quadratic constraint attribute.

void set (GRB_CharAttr attr,
char newvalue)
Set the value of a char-valued attribute.
Arguments:
attr: The attribute being modified.

newvalue: The desired new value of the attribute.

void set (GRB_DoubleAttr attr,
double newvalue)
Set the value of a double-valued attribute.
Arguments:
attr: The attribute being modified.

newvalue: The desired new value of the attribute.

void set (GRB_StringAttr attr,
const string& newvalue)
Set the value of a string-valued attribute.
Arguments:
attr: The attribute being modified.

newvalue: The desired new value of the attribute.

183

3.6 GRBSOS

Gurobi SOS constraint object. SOS constraints are always associated with a particular model.
You create an SOS object by adding an SOS constraint to a model (using GRBModel::addSOS),
rather than by using a GRBSOS constructor. Similarly, SOS constraints are removed using the
GRBModel::remove method.

An SOS constraint can be of type 1 or 2 (GRB_SOS_TYPE1 or GRB_SOS_TYPE2). A type 1 SOS
constraint is a set of variables for which at most one variable in the set may take a value other than
zero. A type 2 SOS constraint is an ordered set of variables where at most two variables in the set
may take non-zero values. If two take non-zero values, they must be contiguous in the ordered set.

SOS constraint objects have one attribute, IISS0S, which can be queried with the GRBSOS::get
method.

GRBSO0S::get()
Query the value of an SOS attribute.

| int get (GRB_IntAttr attr)

Arguments:
attr: The attribute being queried.
Return value:
The current value of the requested attribute.

184

3.7 GRBGenConstr

Gurobi general constraint object. General constraints are always associated with a particular
model. You create a general constraint object by adding a constraint to a model (using one of the

GRBModel::addGenConstrXxx) methods, rather than by using a GRBGenConstr constructor.

The methods on general constraint objects are used to get and set general constraint attributes.

For example, general constraint types can be queried by calling

get(GRB_IntAttr_GenConstrType). Note, however, that it is generally more efficient to query
attributes for a set of constraints at once. This is done using the attribute query method on the

GRBModel object (GRBModel::get).

GRBGenConstr::get()

Query the value of a general constraint attribute.

| int get (GRB_IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| string get (GRB_StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBGenConstr::set()

Set the value of a general constraint attribute.

‘ void set (GRB_StringAttr attr,
| const string& newvalue)
Set the value of a string-valued attribute.
Arguments:
attr: The attribute being modified.

newvalue: The desired new value of the attribute.

185

3.8 GRBExpr
Abstract base class for the GRBLinExpr and GRBQuadExpr classes. Expressions are used to build

objectives and constraints. They are temporary objects that typically have short lifespans.
GRBExpr::getValue()

Compute the value of an expression for the current solution.

| double getValue ()
Return value:
Value of the expression for the current solution.

186

3.9 GRBLinExpr

Gurobi linear expression object. A linear expression consists of a constant term, plus a list of
coefficient-variable pairs that capture the linear terms. Linear expressions are used to build con-
straints. They are temporary objects that typically have short lifespans.

The GRBLinExpr class is a sub-class of the abstract base class GRBExpr.

You generally build linear expressions using overloaded operators. For example, if x is a GRB-
Var object, then x + 1 is a GRBLinExpr object. Expressions can be built from constants (e.g.,
expr = 0), variables (e.g., expr = 1 * x + 2 x y), or from other expressions (e.g., expr2 = 2
* exprl + x, or expr3 = exprl + 2 * expr2). You can also modify existing expressions (e.g.,
expr += X, or expr2 -= exprl).

Another option for building expressions is to use the addTerms method, which adds an array
of new terms at once. Terms can also be removed from an expression, using remove.

Note that the cost of building expressions depends heavily on the approach you use. While
you can generally ignore this issue when building small expressions, you should be aware of a few
efficiency issues when building large expressions:

e You should avoid using expr = expr + xin aloop. It will lead to runtimes that are quadratic
in the number of terms in the expression.

e Using expr += x (or expr -= x) is much more efficient than expr = expr + x. Building a
large expression by looping over += statements is reasonably efficient, but it isn’t the most
efficient approach.

e The most efficient way to build a large expression is to make a single call to addTerms.

Individual terms in a linear expression can be queried using the getVar, getCoeff, and getCon-
stant methods. You can query the number of terms in the expression using the size method.

Note that a linear expression may contain multiple terms that involve the same variable. These
duplicate terms are merged when creating a constraint from an expression, but they may be visible
when inspecting individual terms in the expression (e.g., when using getVar).

GRBLinExpr()

Linear expression constructor. Create a constant expression or an expression with one term.

‘GRBLinExpr GRBLinExpr (double constant=0.0)

Create a constant linear expression.
Arguments:

constant (optional): Constant value for expression.
Return value:

A constant expression object.

GRBLinExpr GRBLinExpr (GRBVar var,
double coeff=1.0)

187

Create an expression with one term.
Arguments:

var: Variable for expression term.

coeff (optional): Coefficient for expression term.
Return value:

An expression object containing one linear term.

GRBLinExpr::addTerms()

Add new terms into a linear expression.

void addTerms (const doublex coeffs,
const GRBVar* vars,
int count)
Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.
count: Number of terms to add to the expression.

GRBLinExpr::clear()

Set a linear expression to 0.
You should use the overloaded expr = 0 instead. The clear method is mainly included for
consistency with our interfaces to non-overloaded languages.

| void clear ()

GRBLinExpr::getConstant()

Retrieve the constant term from a linear expression.

| double getConstant ()
Return value:
Constant from expression.

GRBLinExpr::getCoeff()

Retrieve the coefficient from a single term of the expression.

| double getCoeff (int i)

Arguments:
i: Index for coefficient of interest.
Return value:
Coefficient for the term at index i in the expression.

188

GRBLinExpr::getValue()

Compute the value of a linear expression for the current solution.

| double getValue ()
Return value:
Value of the expression for the current solution.

GRBLinExpr::getVar()

Retrieve the variable object from a single term of the expression.

| GRBVar getVar (int i)

Arguments:
i: Index for term of interest.
Return value:
Variable for the term at index i in the expression.

GRBLinExpr::operator=

Set an expression equal to another expression.

‘ GRBLinExpr operator= (const GRBLinExpr& rhs)

Arguments:

rhs: Source expression.
Return value:

New expression object.

GRBLinExpr::operator+

Add one expression into another, producing a result expression.

‘ GRBLinExpr operator+ (const GRBLinExpr& rhs)

Arguments:
rhs: Expression to add.
Return value:

Expression object which is equal the sum of the invoking expression and the argument

expression.

189

GRBLinExpr::operator-

Subtract one expression from another, producing a result expression.

‘ GRBLinExpr operator—- (const GRBLinExpr& rhs)
Arguments:
rhs: Expression to subtract.

Return value:
Expression object which is equal the invoking expression minus the argument expression.

GRBLinExpr::operator+=

Add an expression into the invoking expression.

void operator+= (const GRBLinExpr& expr)

Arguments:
expr: Expression to add.

GRBLinExpr::operator-=

Subtract an expression from the invoking expression.

void operator-= (const GRBLinExpr& expr)

Arguments:
expr: Expression to subtract.

GRBLinExpr::operator*=

Multiply the invoking expression by a constant.

void operator*= (double multiplier)

Arguments:
multiplier: Constant multiplier.

190

GRBLinExpr::remove()

Remove a term from a linear expression.

‘void remove (int i)

Remove the term stored at index i of the expression.
Arguments:
i: The index of the term to be removed.

‘boolean remove (GRBVar var)

Remove all terms associated with variable var from the expression.
Arguments:

var: The variable whose term should be removed.
Return value:

Returns true if the variable appeared in the linear expression (and was removed).

GRBLinExpr::size()

Retrieve the number of terms in the linear expression (not including the constant).

| unsigned int size ()
Return value:
Number of terms in the expression.

191

3.10 GRBQuadExpr

Gurobi quadratic expression object. A quadratic expression consists of a linear expression, plus a
list of coefficient-variable-variable triples that capture the quadratic terms. Quadratic expressions
are used to build quadratic objective functions and quadratic constraints. They are temporary
objects that typically have short lifespans.

The GRBQuadExpr class is a sub-class of the abstract base class GRBExpr.

You generally build quadratic expressions using overloaded operators. For example, if x is a
GRBVar object, then x * x is a GRBQuadExpr object. Expressions can be built from constants
(e.g., expr = 0), variables (e.g., expr = 1 * x *x + 2 * x * y), or from other expressions (e.g.,
expr2 = 2 * exprl + x * x, or expr3 = exprl + 2 * expr2). You can also modify existing
expressions (e.g., expr += x * X, or expr2 -= exprl).

The other option for building expressions is to start with an empty expression (using the GRB-
QuadExpr constructor), and then add terms. Terms can be added individually (using addTerm)
or in groups (using addTerms). Terms can also be removed from an expression (using remove).

Note that the cost of building expressions depends heavily on the approach you use. While
you can generally ignore this issue when building small expressions, you should be aware of a few
efficiency issues when building large expressions:

e You should avoid using expr = expr + x*x in a loop. It will lead to runtimes that are
quadratic in the number of terms in the expression.

e Using expr += x*x (or expr -= x*x) is much more efficient than expr = expr + x*x. Build-
ing a large expression by looping over += statements is reasonably efficient, but it isn’t the
most efficient approach.

e The most efficient way to build a large expression is to make a single call addTerms.

Individual terms in a quadratic expression can be queried using the getVarl, getVar2, and
getCoeff methods. You can query the number of quadratic terms in the expression using the size
method. To query the constant and linear terms associated with a quadratic expression, first obtain
the linear portion of the quadratic expression using getLinExpr, and then use the getConstant,
getCoeff, or getVar on the resulting GRBLinExpr object.

Note that a quadratic expression may contain multiple terms that involve the same variable
pair. These duplicate terms are merged when creating the model objective from an expression, but
they may be visible when inspecting individual terms in the expression (e.g., when using getVarl
and getVar2).

GRBQuadExpr()

Quadratic expression constructor. Create a constant expression or an expression with one term.

‘GRBQuadExpr GRBQuadExpr (double constant=0.0)

Create a constant quadratic expression.
Arguments:
constant (optional): Constant value for expression.

192

Return value:
A constant expression object.

GRBQuadExpr GRBQuadExpr (GRBVar var,
double coeff=1.0)

Create an expression with one term.
Arguments:

var: Variable for expression term.

coeff (optional): Coefficient for expression term.
Return value:

An expression object containing one quadratic term.

‘GRBQuadExpr GRBQuadExpr (GRBLinExpr linexpr)

Initialize a quadratic expression from an existing linear expression.
Arguments:
orig: Existing linear expression to copy.
Return value:
Quadratic expression object whose initial value is taken from the input linear expression.

GRBQuadExpr::addTerm()

Add a single new term into a quadratic expression.

void addTerm (double coeff,
GRBVar var)
Add a new linear term into a quadratic expression.
Arguments:
coeff: Coefficient for new linear term.
var: Variable for new linear term.

void addTerm (double coeff,
GRBVar varl,
GRBVar var2)
Add a new quadratic term into a quadratic expression.
Arguments:
coeff: Coefficient for new quadratic term.
varl: Variable for new quadratic term.
var2: Variable for new quadratic term.

193

GRBQuadExpr::addTerms()

Add new terms into a quadratic expression.

void addTerms (const doublex coeffs,
const GRBVar* vars,
int count)
Add new linear terms into a quadratic expression.
Arguments:
coeffs: Coefficients for new linear terms.
vars: Variables for new linear terms.
count: Number of linear terms to add to the quadratic expression.

void addTerms (const doublex coeffs,
const GRBVar* varsl,
const GRBVar* vars2,
int count)
Add new quadratic terms into a quadratic expression.
Arguments:
coeffs: Coefficients for new quadratic terms.
varsl: First variables for new quadratic terms.
vars2: Second variables for new quadratic terms.
count: Number of quadratic terms to add to the quadratic expression.

GRBQuadExpr::clear()

Set a quadratic expression to 0.
You should use the overloaded expr = 0 instead. The clear method is mainly included for
consistency with our interfaces to non-overloaded languages.

‘ void clear ()

GRBQuadExpr::getCoeff()

Retrieve the coefficient from a single quadratic term of the quadratic expression.

| double getCoeff (int i)

Arguments:
i: Index for coefficient of interest.
Return value:
Coefficient for the quadratic term at index i in the quadratic expression.

194

GRBQuadExpr::getLinExpr()

A quadratic expression is represented as a linear expression, plus a list of quadratic terms. This
method retrieves the linear expression associated with the quadratic expression.

| GRBLinExpr getLinExpr ()
Return value:
Linear expression associated with the quadratic expression.

GRBQuadExpr::getValue()

Compute the value of a quadratic expression for the current solution.

| double getValue ()
Return value:
Value of the expression for the current solution.

GRBQuadExpr::getVarl()

Retrieve the first variable object associated with a single quadratic term from the expression.

| GRBVar getVarl (int i)

Arguments:
i: Index for term of interest.
Return value:
First variable for the quadratic term at index i in the quadratic expression.

GRBQuadExpr::getVar2()

Retrieve the second variable object associated with a single quadratic term from the expression.

| GRBVar getVar2 (int i)

Arguments:
i: Index for term of interest.
Return value:
Second variable for the quadratic term at index i in the quadratic expression.

195

GRBQuadExpr::operator=

Set a quadratic expression equal to another quadratic expression.

‘ GRBQuadExpr operator= (const GRBQuadExpr& rhs)

Arguments:

rhs: Source quadratic expression.
Return value:

New quadratic expression object.

GRBQuadExpr::operator+

Add one expression into another, producing a result expression.

‘ GRBQuadExpr operator+ (const GRBQuadExpr& rhs)

Arguments:
rhs: Expression to add.

Return value:
Expression object which is equal the sum of the invoking expression and the argument
expression.

GRBQuadExpr::operator-

Subtract one expression from another, producing a result expression.

‘GRBQuadExpr operator- (const GRBQuadExpr& rhs)

Arguments:
rhs: Expression to subtract.
Return value:
Expression object which is equal the invoking expression minus the argument expression.

GRBQuadExpr::operator+=

Add an expression into the invoking expression.

| void operator+= (const GRBQuadExpr& expr)

Arguments:
expr: Expression to add.

196

GRBQuadExpr::operator-=

Subtract an expression from the invoking expression.

‘ void operator-= (const GRBQuadExpr& expr)

Arguments:
expr: Expression to subtract.

GRBQuadExpr::operator*=

Multiply the invoking expression by a constant.

void operator*= (double multiplier)

Arguments:
multiplier: Constant multiplier.

GRBQuadExpr::remove()

Remove a quadratic term from a quadratic expression.

| void remove (int i)

Remove the quadratic term stored at index i of the expression.
Arguments:
i: The index of the term to be removed.

\boolean remove (GRBVar var)

Remove all quadratic terms associated with variable var from the quadratic expression.
Arguments:

var: The variable whose term should be removed.
Return value:

Returns true if the variable appeared in the quadratic expression (and was removed).

GRBQuadExpr::size()

Retrieve the number of quadratic terms in the quadratic expression.

| unsigned int size ()
Return value:
Number of quadratic terms in the expression.

197

3.11 GRBTempConstr

Gurobi temporary constraint object. Objects of this class are created as intermediate results when
building constraints using overloaded operators. There are no member functions on this class.
Instead, GRBTempConstr objects are created by a set of non-member functions: ==, <=, and >=.
You will generally never store objects of this class in your own variables.

Consider the following examples:

model.addConstr(x + y <= 1);
model.addQConstr(x*x + y*y <= 1);

The overloaded <= operator creates an object of type GRBTempContr, which is then immediately
passed to method GRBModel::addConstr or GRBModel::addQConstr.

198

3.12 GRBColumn

Gurobi column object. A column consists of a list of coefficient, constraint pairs. Columns are used
to represent the set of constraints in which a variable participates, and the associated coefficients.

They are temporary objects that typically have short lifespans.

You generally build columns by starting with an empty column (using the GRBColumn con-
structor), and then adding terms. Terms can be added individually, using addTerm, or in groups,

using addTerms. Terms can also be removed from a column, using remove.

Individual terms in a column can be queried using the getConstr, and getCoeff methods. You

can query the number of terms in the column using the size method.

GRBColumn()

Column constructor. Create an empty column.

| GRBColumn GRBColumn ()
Return value:
An empty column object.

GRBColumn::addTerm()

Add a single term into a column.

void addTerm (double coeff,
GRBConstr constr)
Arguments:
coeff: Coefficient for new term.
constr: Constraint for new term.

GRBColumn::addTerms()

Add new terms into a column.

void addTerms (const doublex coeffs,
const GRBConstr* constrs,
int count)
Add a list of terms into a column.

Arguments:
coeffs: Coeflicients for new terms.
constrs: Constraints for new terms.
count: Number of terms to add to the column.

GRBColumn::clear()

Remove all terms from a column.

| void clear ()

199

GRBColumn::getCoeff()

Retrieve the coefficient from a single term in the column.

| double getCoeff (int i)

Return value:
Coefficient for the term at index i in the column.

GRBColumn::getConstr()

Retrieve the constraint object from a single term in the column.

| GRBConstr getConstr (int i)

Return value:
Constraint for the term at index i in the column.

GRBColumn::remove()

Remove a single term from a column.

| void remove (int i)

Remove the term stored at index i of the column.
Arguments:
i: The index of the term to be removed.

‘boolean remove (GRBConstr constr)

Remove the term associated with constraint constr from the column.
Arguments:

constr: The constraint whose term should be removed.
Return value:

Returns true if the constraint appeared in the column (and was removed).

GRBColumn::size()

Retrieve the number of terms in the column.

| unsigned int size ()
Return value:
Number of terms in the column.

200

3.13 GRBCallback

Gurobi callback class. This is an abstract class. To implement a callback, you should create a
subclass of this class and implement a callback() method. If you pass an object of this subclass
to method GRBModel::setCallback before calling GRBModel::optimize, the callback() method
of the class will be called periodically. Depending on where the callback is called from, you can
obtain various information about the progress of the optimization.

Note that this class contains one protected int member variable: where. You can query this
variable from your callback() method to determine where the callback was called from.

Gurobi callbacks can be used both to monitor the progress of the optimization and to modify
the behavior of the Gurobi optimizer. A simple user callback function might call the GRBCall-
back::getIntInfo or GRBCallback::getDoublelnfo methods to produce a custom display, or perhaps
to terminate optimization early (using GRBCallback::abort). More sophisticated MIP callbacks
might use GRBCallback::getNodeRel or GRBCallback::getSolution to retrieve values from the so-
lution to the current node, and then use GRBCallback::addCut or GRBCallback::addLazy to add
a constraint to cut off that solution, or GRBCallback::setSolution to import a heuristic solution
built from that solution.

When solving a model using multiple threads, note that the user callback is only ever called
from a single thread, so you don’t need to worry about the thread-safety of your callback.

You can look at the callback_c++.cpp example for details of how to use Gurobi callbacks.

GRBCallback()

Callback constructor.

| GRBCallback GRBCallback ()
Return value:
A callback object.

GRBCallback::abort()

Abort optimization. When the optimization stops, the Status attribute will be equal to GRB_-
INTERRUPTED.

| void abort ()

GRBCallback::addCut()

Add a cutting plane to the MIP model from within a callback function. Note that this method can
only be invoked when the where member variable is equal to GRB_CB_MIPNODE (see the Callback
Codes section for more information).

Cutting planes can be added at any node of the branch-and-cut tree. However, they should be
added sparingly, since they increase the size of the relaxation model that is solved at each node
and can significantly degrade node processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the
relaxation solution at the current node, you should first call getNodeRel.

201

When adding your own cuts, you must set parameter PreCrush to value 1. This setting shuts
off a few presolve reductions that sometimes prevent cuts on the original model from being applied
to the presolved model.

Note that cutting planes added through this method must truly be cutting planes — they can
cut off continuous solutions, but they may not cut off integer solutions that respect the original
constraints of the model. Ignoring this restriction will lead to incorrect solutions.

void addCut (const GRBLinExpr& lhsExpr,
char sense,
double rhsVal)
Arguments:
lhsExpr: Left-hand side expression for new cutting plane.
sense: Sense for new cutting plane (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsVal: Right-hand side value for new cutting plane.

void addCut (GRBTempConstr& tc)

Arguments:
tc: Temporary constraint object, created using an overloaded comparison operator. See
GRBTempConstr for more information.

GRBCallback::addLazy()

Add a lazy constraint to the MIP model from within a callback function. Note that this method can
only be invoked when the where member variable is equal to GRB_CB_MIPNODE or GRB_CB_MIPSOL
(see the Callback Codes section for more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large
to represent explicitly. By only including the constraints that are actually violated by solutions
found during the branch-and-cut search, it is sometimes possible to find a proven optimal solution
while only adding a fraction of the full set of constraints.

You would typically add a lazy constraint by first querying the current node solution (by calling
getSolution from a GRB_CB_MIPSOL callback, or getNodeRel from a GRB_CB_MIPNODE callback), and
then calling addLazy () to add a constraint that cuts off the solution. Gurobi guarantees that you
will have the opportunity to cut off any solutions that would otherwise be considered feasible.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints,
including those that have already been added. Node solutions will usually respect previously added
lazy constraints, but not always.

Note that you must set the LazyConstraints parameter if you want to use lazy constraints.

void addLazy (const GRBLinExpr& 1lhsExpr,
char sense,
double rhsVal)
Arguments:
lhsExpr: Left-hand side expression for new lazy constraint.

202

sense: Sense for new lazy constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).
rhsVal: Right-hand side value for new lazy constraint.

‘void addLazy (GRBTempConstr& tc)

Arguments:
tc: Temporary constraint object, created using an overloaded comparison operator. See
GRBTempConstr for more information.

GRBCallback::getDoublelnfo()

Request double-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the double-valued information
that can be queried for different values of where, please refer to the Callback section.

| double getDoubleInfo (int what)

Arguments:

what: Information requested (refer the list of Gurobi Callback Codes for possible values).
Return value:

Value of requested callback information.

GRBCallback::getlIntinfo()

Request int-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the int-valued information that
can be queried for different values of where, please refer to the Callback section.

| int getIntInfo (int what)

Arguments:

what: Information requested (refer to the list of Gurobi Callback Codes for possible values).
Return value:

Value of requested callback information.

GRBCallback::getNodeRel()

Retrieve values from the node relaxation solution at the current node. Only available when the
where member variable is equal to GRB_CB_MIPNODE, and GRB_CB_MIPNODE_STATUS is equal to
GRB_OPTIMAL.

double getNodeRel (GRBVar v)

203

Arguments:
v: The variable whose value is desired.
Return value:
The value of the specified variable in the node relaxation for the current node.

doublex getNodeRel (const GRBVar* xvars,
int len)

Arguments:
xvars: The list of variables whose values are desired.
len: The number of variables in the list.

Return value:
The values of the specified variables in the node relaxation for the current node. Note that
the result is heap-allocated, and must be returned to the heap by the user.

GRBCallback::getSolution()

Retrieve values from the current solution vector. Only available when the where member variable
is equal to GRB_CB_MIPSOL.

| double getSolution (GRBVar v)

Arguments:
v: The variable whose value is desired.
Return value:
The value of the specified variable in the current solution vector.

doublex getSolution (const GRBVar* xvars,
int len)

Arguments:
xvars: The list of variables whose values are desired.
len: The number of variables in the list.

Return value:
The values of the specified variables in the current solution. Note that the result is heap-
allocated, and must be returned to the heap by the user.

GRBCallback::getStringInfo()

Request string-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the string-valued information
that can be queried for different values of where, please refer to the Callback section.

| string getStringInfo (int what)

Arguments:

204

what: Information requested (refer to the list of Gurobi Callback Codes for possible values).

Return value:
Value of requested callback information.

GRBCallback::setSolution()

Import solution values for a heuristic solution. Only available when the where member variable is

equal to GRB_CB_MIPNODE.

When you specify a heuristic solution from a callback, variables initially take undefined values.
You should use this method to specify variable values. You can make multiple calls to setSolution
from one callback invocation to specify values for multiple sets of variables. At the end of the
callback, if values have been specified for any variables, the Gurobi optimizer will try to compute a
feasible solution from the specified values, possibly filling in values for variables whose values were

left undefined.

void setSolution (GRBVar v,
double val)
Arguments:
v: The variable whose values is being set.
val: The value of the variable in the new solution.

void setSolution (const GRBVar* xvars,
const double* sol,
int len)
Arguments:
xvars: The variables whose values are being set.

sol: The values of the variables in the new solution.

len: The number of variables.

205

3.14 GRBException

Gurobi exception object. Exceptions can be thrown by nearly every method in the Gurobi C++
APL

GRBEXxception()

Exception constructor.

‘GRBException GRBException (int errcode=0)

Create a Gurobi exception.
Arguments:

errcode (optional): Error code for exception.
Return value:

An exception object.

GRBException GRBException (string errmsg,
int errcode=0)

Create a Gurobi exception.
Arguments:

errmsg: Error message for exception.

errcode (optional): Error code for exception.
Return value:

An exception object.

GRBException::getErrorCode()

Retrieve the error code associated with a Gurobi exception.

| int getErrorCode ()
Return value:
The error code associated with the exception.

GRBException::getMessage()

Retrieve the error message associated with a Gurobi exception.

‘ const string getMessage ()
Return value:
The error message associated with the exception.

206

3.15 Non-Member Functions

Several Gurobi C++4 interface functions aren’t member functions on a particular object.

operator==

Create an equality constraint

GRBTempConstr operator== GRBQuadExpr lhsExpr,
GRBQuadExpr rhsExpr)

Arguments:
lhsExpr: Left-hand side of equality constraint.
rhsExpr: Right-hand side of equality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to GRB-
Model::addConstr.

operator<=

Create an inequality constraint

GRBTempConstr operator<= (GRBQuadExpr 1lhsExpr,
GRBQuadExpr rhsExpr)

Arguments:
lhsExpr: Left-hand side of inequality constraint.
rhsExpr: Right-hand side of inequality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to GRB-
Model::addConstr or GRBModel::addQConstr.

operator>=

Create an inequality constraint

GRBTempConstr operator>= (GRBQuadExpr 1lhsExpr,
GRBQuadExpr rhsExpr)

Arguments:
lhsExpr: Left-hand side of inequality constraint.
rhsExpr: Right-hand side of inequality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to GRB-
Model::addConstr or GRBModel::addQConstr.

207

operator+-

Overloaded operator on expression objects.

GRBLinExpr operator+ (const GRBLinExpr& exprl,
const GRBLinExpr& expr2)
Add a pair of expressions.
Arguments:
exprl: First expression to be added.
expr2: Second expression to be added.
Return value:
Sum expression.

‘ GRBLinExpr operator+ (const GRBLinExpr& expr)

Allow plus sign to be used before an expression.
Arguments:

expr: Expression.
Return value:

Result expression.

GRBLinExpr operator+ (GRBVar x,
GRBVar y)

Add a pair of variables.
Arguments:

x: First variable to be added.

y: Second variable to be added.
Return value:

Sum expression.

GRBQuadExpr operator+ (const GRBQuadExpr& expril,
const GRBQuadExpr& expr2)
Add a pair of expressions.
Arguments:
exprl: First expression to be added.
expr2: Second expression to be added.
Return value:
Sum expression.

‘ GRBQuadExpr operator+ (const GRBQuadExpr& expr)

Allow plus sign to be used before an expression.
Arguments:

208

expr: Expression.
Return value:
Result expression.

operator-

Overloaded operator on expression objects.

GRBLinExpr operator- (const GRBLinExpr& exprl,
const GRBLinExpr& expr2)
Subtract one expression from another.
Arguments:
exprl: Start expression.
expr2: Expression to be subtracted.
Return value:
Difference expression.

‘ GRBLinExpr operator- (const GRBLinExpr& expr)

Negate an expression.
Arguments:

expr: Expression.
Return value:

Negation of expression.

GRBQuadExpr operator- (const GRBQuadExpr& expril,
const GRBQuadExpr& expr2)
Subtract one expression from another.
Arguments:
exprl: Start expression.
expr2: Expression to be subtracted.
Return value:
Difference expression.

‘GRBQuadEXpr operator- (const GRBQuadExpr& expr)

Negate an expression.
Arguments:

expr: Expression.
Return value:

Negation of expression.

209

operator*

Overloaded operator on expression objects.

GRBLinExpr operator* (GRBVar x,

double a)
Multiply a variable and a constant.
Arguments:
x: Variable.

a: Constant multiplier.
Return value:
Expression that represents the result of multiplying the variable by a constant.

GRBLinExpr operator* (double a,

GRBVar x)
Multiply a variable and a constant.
Arguments:
a: Constant multiplier.
x: Variable.

Return value:
Expression that represents the result of multiplying the variable by a constant.

GRBLinExpr operator* (const GRBLinExpr& expr,
double a)
Multiply an expression and a constant.
Arguments:
expr: Expression.
a: Constant multiplier.
Return value:
Expression that represents the result of multiplying the expression by a constant.

GRBLinExpr operator* (double a,
const GRBLinExpr& expr)
Multiply an expression and a constant.
Arguments:
a: Constant multiplier.
expr: Expression.
Return value:
Expression that represents the result of multiplying the expression by a constant.

GRBQuadExpr operator* (const GRBQuadExpr& expr,
double a)
Multiply an expression and a constant.

210

Arguments:
expr: Expression.
a: Constant multiplier.
Return value:
Expression that represents the result of multiplying the expression by a constant.

GRBQuadExpr operator* (double a,
const GRBQuadExpr& expr)
Multiply an expression and a constant.
Arguments:
a: Constant multiplier.
expr: Expression.
Return value:
Expression that represents the result of multiplying the expression by a constant.

GRBQuadExpr operator* (GRBVar x,
GRBVar 1y)
Multiply a pair of variables.
Arguments:
x: First variable.
y: Second variable.
Return value:
Expression that represents the result of multiplying the argument variables.

GRBQuadExpr operator* (GRBVar var,
const GRBLinExpr& expr)
Multiply an expression and a variable.
Arguments:
var: Variable.
expr: Expression.
Return value:
Expression that represents the result of multiplying the expression by a variable.

GRBQuadExpr operator* (const GRBLinExpr& expr,
GRBVar var)
Multiply an expression and a variable.
Arguments:
var: Variable.
expr: Expression.
Return value:
Expression that represents the result of multiplying the expression by a variable.

GRBQuadExpr operator* (const GRBLinExpr& exprl,
const GRBLinExpr& expr2)

211

Multiply a pair of expressions.
Arguments:
exprl: First expression.
expr2: Second expression.
Return value:
Expression that represents the result of multiplying the argument expressions.

operator/

Overloaded operator to divide a variable or expression by a constant.

GRBLinExpr operator/ (GRBVar x,
double a)
Arguments:
x: Variable.
a: Constant divisor.
Return value:
Expression that represents the result of dividing the variable by a constant.

GRBLinExpr operator/ (const GRBLinExpr& expr,
double a)
Arguments:
expr: Expression.
a: Constant divisor.
Return value:
Expression that represents the result of dividing the expression by a constant.

GRBLinExpr operator/ (const GRBQuadExpr& expr,
double a)
Arguments:
expr: Expression.
a: Constant divisor.
Return value:
Expression that represents the result of dividing the expression by a constant.

212

3.16 Attribute Enums

These enums are used to get or set Gurobi attributes. The complete list of attributes can be found
in the Attributes section.

GRB_CharAttr

This enum is used to get or set char-valued attributes (through GRBModel::get or GRBModel::set).
Please refer to the Attributes section to see a list of all char attributes and their functions.
GRB_DoubleAttr

This enum is used to get or set double-valud attributes (through GRBModel::get or GRBModel::set).
Please refer to the Attributes section to see a list of all double attributes and their functions.
GRB_IntAttr

This enum is used to get or set int-valued attributes (through GRBModel::get or GRBModel::set).
Please refer to the Attributes section to see a list of all int attributes and their functions.
GRB_StringAttr

This enum is used to get or set string-valued attributes (through GRBModel::get or GRBModel::set).
Please refer to the Attributes section to see a list of all string attributes and their functions.

213

3.17 Parameter Enums

These enums are used to get or set Gurobi parameters. The complete of parameters can be found
in the Parameters section.

GRB_DoubleParam

This enum is used to get or set double-valued parameters (through GRBModel::get, GRBModel::set.
GRBEnv::get, or GRBEnv::set). Please refer to the Parameters section to see a list of all double
parameters and their functions.

GRB_IntParam

This enum is used to get or set int-valued parameters (through GRBModel::get, GRBModel::set.
GRBEnv::get, or GRBEnv:set). Please refer to the Parameters section to see a list of all int
parameters and their functions.

GRB_StringParam

This enum is used to get or set string-valued parameters (through GRBModel::get, GRBModel::set,
GRBEnv::get, or GRBEnv:set). Please refer to the Parameters section to see a list of all int
parameters and their functions.

214

This section documents the Gurobi Java interface. This manual begins with a quick overview of
the classes exposed in the interface and the most important methods on those classes. It then
continues with a comprehensive presentation of all of the available classes and methods.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide
or the Example Tour. These documents provide concrete examples of how to use the classes and
methods described here.

Environments

The first step in using the Gurobi Java interface is to create an environment object. Environments
are represented using the GRBEnv class. An environment acts as the container for all data associ-
ated with a set of optimization runs. You will generally only need one environment object in your
program.

Models

You can create one or more optimization models within an environment. Each model is repre-
sented as an object of class GRBModel. A model consists of a set of decision variables (objects of
class GRBVar), a linear or quadratic objective function on these variables (specified using GRB-
Model.setObjective), and a set of constraints on these variables (objects of class GRBConstr, GR~
BQConstr, GRBSOS, or GRBGenConstr). Each variable has an associated lower bound, upper
bound, and type (continuous, binary, etc.). Each linear or quadratic constraint has an associated
sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side value. Refer to this
section for more information on variables and constraints.

Linear constraints are specified by building linear expressions (objects of class GRBLinExpr),
and then specifying relationships between these expressions (for example, requiring that one expres-
sion be equal to another). Quadratic constraints are built in a similar fashion, but using quadratic
expressions (objects of class GRBQuadExpr) instead.

An optimization model may be specified all at once, by loading the model from a file (using the
appropriate GRBModel constructor), or built incrementally, by first constructing an empty object
of class GRBModel and then subsequently calling GRBModel.addVar or GRBModel.addVars to add
additional variables, and GRBModel.addConstr, GRBModel.addQConstr, GRBModel.addSOS, or
any of the GRBModel.addGenConstrXxx methods to add additional constraints. Models are dy-
namic entities; you can always add or remove variables or constraints.

We often refer to the class of an optimization model. A model with a linear objective function,
linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic,
the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is a
Quadratically-Constrained Program (QCP). We’ll sometimes also discuss a special case of QCP, the
Second-Order Cone Program (SOCP). If the model contains any integer variables, semi-continuous
variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the
model is a Mized Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, in-
cluding Mized Integer Linear Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mized

215

Java API Overview

http://www.gurobi.com/documentation/{7}.{0}/quick-start-guide/
http://www.gurobi.com/documentation/{7}.{0}/examples/index.html

Integer Quadratically-Constrained Programs (MIQCP), and Mized Integer Second-Order Cone Pro-
grams (MISOCP). The Gurobi Optimizer handles all of these model classes.

Solving a Model

Once you have built a model, you can call GRBModel.optimize to compute a solution. By default,
optimize will use the concurrent optimizer to solve LP models, the barrier algorithm to solve
QP and QCP models, and the branch-and-cut algorithm to solve mixed integer models. The
solution is stored in a set of attributes of the model. These attributes can be queried using a set of
attribute query methods on the GRBModel, GRBVar, GRBConstr, GRBQConstr, GRBSOS, and
GRBGenConstr, and classes.

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBModel.optimize
will only perform further optimization if relevant data has changed since the model was last op-
timized. If you would like to discard previously computed solution information and restart the
optimization from scratch without changing the model, you can call GRBModel.reset.

After a MIP model has been solved, you can call GRBModel.fixedModel to compute the asso-
ciated fized model. This model is identical to the input model, except that all integer variables are
fixed to their values in the MIP solution. In some applications, it is useful to compute information
on this continuous version of the MIP model (e.g., dual variables, sensitivity information, etc.).

Multiple Solutions and Multiple Objectives

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to
a model with a single objective function. Gurobi provides features that allow you to relax either
of these assumptions. You should refer to the section on Solution Pools for information on how to
request more than one solution, or the section on Multiple Objectives for information on how to
specify multiple objective functions and control the tradeoff between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the
infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be useful
for diagnosing the cause of an infeasibility, call GRBModel.computellS to compute an Irreducible
Inconsistent Subsystem (IIS). This method can be used for both continuous and MIP models, but
you should be aware that the MIP version can be quite expensive. This method populates a set of
IIS attributes.

To attempt to repair an infeasibility, call GRBModel.feasRelax to compute a feasibility relax-
ation for the model. This relaxation allows you to find a solution that minimizes the magnitude of
the constraint violation.

Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some
attributes are associated with the variables of the model, some with the constraints of the model,
and some with the model itself. To give a simple example, solving an optimization model causes
the X variable attribute to be populated. Attributes such as X that are computed by the Gurobi
optimizer cannot be modified directly by the user, while others, such as the variable lower bound
(the LB attribute) can.

Attributes are queried using GRBVar.get, GRBConstr.get, GRBQConstr.get, GRBSOS.get,
GRBGenConstr.get, or GRBModel.get, and modified using GRBVar.set, GRBConstr.set, GRBQ-
Constr.set, GRBGenConstr.set, or GRBModel.set. Attributes are grouped into a set of enums by

216

type (GRB.CharAttr, GRB.DoubleAttr, GRB.IntAttr,

GRB.StringAttr). The get() and set() methods are overloaded, so the type of the attribute
determines the type of the returned value. Thus, constr.get (GRB.DoubleAttr.RHS) returns a
double, while constr.get (GRB.CharAttr.Sense) returns a char.

If you wish to retrieve attribute values for a set of variables or constraints, it is usually more
efficient to use the array methods on the associated GRBModel object. Method GRBModel.get
includes signatures that allow you to query or modify attribute values for one-, two-, and three-
dimensional arrays of variables or constraints.

The full list of attributes can be found in the Attributes section.

Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to
variable bounds, constraint right-hand sides, etc.). The main exceptions are modifications to the
constraint matrix and to the objective function.

The constraint matrix can be modified in a few ways. The first is to call the chgCoeff method
on a GRBModel object to change individual matrix coefficients. This method can be used to
modify the value of an existing non-zero, to set an existing non-zero to zero, or to create a new
non-zero. The constraint matrix is also modified when you remove a variable or constraint from the
model (through the GRBModel.remove method). The non-zero values associated with the deleted
constraint or variable are removed along with the constraint or variable itself.

The model objective function can also be modified in a few ways. The easiest is to build an
expression that captures the objective function (a GRBLinExpr or GRBQuadExpr object), and
then pass that expression to method GRBModel.setObjective. If you wish to modify the objective,
you can simply call setObjective again with a new GRBLinExpr or GRBQuadExpr object.

For linear objective functions, an alternative to setObjective is to use the Obj variable attribute
to modify individual linear objective coefficients.

If your variables have piecewise-linear objectives, you can specify them using the GRBModel.setPWLODb}
method. Call this method once for each relevant variable. The Gurobi simplex solver includes al-
gorithmic support for convex piecewise-linear objective functions, so for continuous models you
should see a substantial performance benefit from using this feature. To clear a previously specified
piecewise-linear objective function, simply set the Obj attribute on the corresponding variable to
0.

Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed
in a lazy fashion, meaning that modifications don’t affect the model immediately. Rather, they
are queued and applied later. If your program simply creates a model and solves it, you will
probably never notice this behavior. However, if you ask for information about the model before
your modifications have been applied, the details of the lazy update approach may be relevant to
you.

As we just noted, model modifications (bound changes, right-hand side changes, objective
changes, etc.) are placed in a queue. These queued modifications can be applied to the model
in three different ways. The first is by an explicit call to GRBModel.update. The second is by a
call to GRBModel.optimize. The third is by a call to GRBModel.write to write out the model. The
first case gives you fine-grained control over when modifications are applied. The second and third
make the assumption that you want all pending modifications to be applied before you optimize

217

your model or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is
that this approach makes it much easier to perform multiple modifications to a model, since the
model remains unchanged between modifications. The second is that processing model modifica-
tions can be expensive, particularly in a Compute Server environment, where modifications require
communication between machines. Thus, it is useful to have visibility into exactly when these
modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then
update, then make more modifications, then update again, etc. Updating after each individual
modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value
of the requested data from the point of the last update. If the object you tried to query didn’t
exist then, you’ll get a NOT_IN_MODEL exception instead.

The semantics of lazy updates have changed in this release. While the vast majority of programs
will continue to work unmodified, you can use the UpdateMode parameter to revert to the previous
behavior if you run into an issue.

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of
the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms,
strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters
before beginning the optimization. Parameters can be of type int, double, or string.

The simplest way to set parameters is through the GRBModel.set method on the model object.
Similarly, parameter values can be queried with GRBModel.get.

Parameters can also be set on the Gurobi environment object, using GRBEnv.set. Note that
each model gets its own copy of the environment when it is created, so parameter changes to the
original environment have no effect on existing models.

You can read a set of parameter settings from a file using GRBEnv.readParams, or write the
set of changed parameters using GRBEnv.writeParams.

We also include an automated parameter tuning tool that explores many different sets of pa-
rameter changes in order to find a set that improves performance. You can call GRBModel.tune to
invoke the tuning tool on a model. Refer to the parameter tuning tool section for more information.

The full list of Gurobi parameters can be found in the Parameters section.

Memory Management

Users typically do not need to concern themselves with memory management in Java, since it
is handled automatically by the garbage collector. The Gurobi Java interface utilizes the same
garbage collection mechanism as other Java programs, but there are a few specifics of our memory
management that users should be aware of.

In general, Gurobi objects live in the same Java heap as other Java objects. When they are
no longer referenced, they become candidates for garbage collection, and are returned to the pool
of free space at the next invocation of the garbage collector. Two important exceptions are the
GRBEnv and GRBModel objects. A GRBModel object has a small amount of memory associated
with it in the Java heap, but the majority of the space associated with a model lives in the heap
of the Gurobi native code library (the Gurobi DLL in Windows, or the Gurobi shared library in
Linux or Mac). The Java heap manager is unaware of the memory associated with the model in

218

the native code library, so it does not consider this memory usage when deciding whether to invoke
the garbage collector. When the garbage collector eventually collects the Java GRBModel object,
the memory associated with the model in the Gurobi native code library will be freed, but this
collection may come later than you might want. Similar considerations apply to the GRBEnv object.

If you are writing a Java program that makes use of multiple Gurobi models or environments,
we recommend that you call GRBModel.dispose when you are done using the associated GRBModel
object, and GRBEnv.dispose when you are done using the associated GRBEnv object and after you
have called GRBModel.dispose on all of the models created using that GRBEnv object.

Native Code

As noted earlier, the Gurobi Java interface is a thin layer that sits on top of our native code
library (the Gurobi DLL on Windows, and the Gurobi shared library on Linux or Mac). Thus, an
application that uses the Gurobi Java library will load the Gurobi native code library at runtime.
In order for this happen, you need to make sure that two things are true. First, you need to make
sure that the native code library is available in the search path of the target machine (PATH on
Windows, LD_LIBRARY_PATH on Linux, or DYLD_LIBRARY_PATH on Mac). These paths are set up
as part of the installation of the Gurobi Optimizer, but may not be configured appropriately on a
machine where the full Gurobi Optimizer has not been installed. Second, you need to be sure that
the Java JVM and the Gurobi native library use the same object format. In particular, you need
to use the 32-bit Gurobi native library with a 32-bit Java JVM, and similarly the 64-bit Gurobi
native library with a 64-bit Java JVM.

Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will
send output to the screen. A few simple controls are available for modifying the default logging
behavior. If you would like to direct output to a file as well as to the screen, specify the log file
name in the GRBEnv constructor. You can modify the LogFile parameter if you wish to redirect
the log to a different file after creating the environment object. The frequency of logging output can
be controlled with the Displaylnterval parameter, and logging can be turned off entirely with the
OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging
section.

More detailed progress monitoring can be done through the GRBCallback class. The GRB-
Model.setCallback method allows you to receive a periodic callback from the Gurobi optimizer.
You do this by sub-classing the GRBCallback abstract class, and writing your own Callback()
method on this class. You can call GRBCallback.getDoublelnfo, GRBCallback.getIntInfo, GRB-
Callback.getStringlnfo, or GRBCallback.getSolution from within the callback to obtain additional
information about the state of the optimization.

Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. The simplest control
callback is GRBCallback.abort, which asks the optimizer to terminate at the earliest convenient
point. Method GRBCallback.setSolution allows you to inject a feasible solution (or partial solution)
during the solution of a MIP model. Methods GRBCallback.addCut and GRBCallback.addLazy
allow you to add cutting planes and lazy constraints during a MIP optimization, respectively.

219

Error Handling

All of the methods in the Gurobi Java library can throw an exception of type GRBException.
When an exception occurs, additional information on the error can be obtained by retrieving the
error code (using method GRBException.getErrorCode), or by retrieving the exception message
(using method GRBException.getMessage from the parent class). The list of possible error return
codes can be found in the Error Codes section.

220

4.1 GRBEnv

Gurobi environment object. Gurobi models are always associated with an environment. You must
create an environment before can you create and populate a model. You will generally only need
a single environment object in your program.

The methods on environment objects are mainly used to manage Gurobi parameters (e.g., get,
getParamlInfo, set).

While the Java garbage collector will eventually collect an unused GRBEnv object, an environment
will hold onto resources (Gurobi licenses, file descriptors, etc.) until that collection occurs. If your
program creates multiple GRBEnv objects, we recommend that you call GRBEnv.dispose when you
are done using one.

GRBEnv()

Environment constructor.

Constructor for GRBEnv object. If the constructor is called with no arguments, no log file will
be written for the environment.

You have the option of constructing either a local environment, which solves Gurobi models on
the local machine, or a client environment for a Gurobi compute server, which will solve Gurobi
models on a server machine. For the latter, choose the signature that allows you to specify the
names of the Gurobi compute servers and the priority of the associated job.

Note that the GRBEnv constructor will check the current working directory for a file named
gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file
should be in PRM format (briefly, each line should contain a parameter name, followed by the
desired value for that parameter).

In general, you should aim to create a single Gurobi environment object in your program, even
if you plan to work with multiple models. Reusing one environment is much more efficient than
creating and destroying multiple environments.

| GRBEnv GRBEnv ()
Create a Gurobi environment (with logging disabled).
Return value:
An environment object (with no associated log file).

| GRBEnv GRBEnv (String logFileName)

Create a Gurobi environment (with logging enabled).
Arguments:

logFileName: The desired log file name.
Return value:

An environment object.

221

GRBEnv GRBEnv (String logFileName,
String computeserver,

int port,
String password,
int priority,

double timeout)
Create a client Gurobi environment on a compute server.
Arguments:
logFileName: The name of the log file for this environment. Pass an empty string for no
log file.

computeserver: A comma-separated list of Gurobi compute servers. You can refer to
compute server machines using their names or their IP addresses.

port: The port number used to connect to the compute server. You should pass a -1 value,
which indicates that the default port should be used, unless your server administrator has
changed our recommended port settings.

password: The password for gaining access to the specified compute servers. Pass an empty
string if no password is required.

priority: The priority of the job. Priorities must be between -100 and 100, with a default
value of 0 (by convention). Higher priority jobs are chosen from the server job queue
before lower priority jobs. A job with priority 100 runs immediately, bypassing the job
queue and ignoring the job limit on the server. You should exercise caution with priority
100 jobs, since they can severely overload a server, which can cause jobs to fail, and in
extreme cases can cause the server to crash.

timeout: Job timeout (in seconds). If the job doesn’t reach the front of the queue before the
specified timeout, the constructor will throw a JOB_REJECTED exception. Use a negative
value to indicate that the call should never timeout.

Return value:
An environment object.

GRBEnv GRBEnv (String logFileName,
String accesslID,
String secretKey,
String pool)
Create a Gurobi environment on Gurobi Instant Cloud
Arguments:
logfilename: The name of the log file for this environment. May be NULL (or an empty
string), in which case no log file is created.
accessID: The access ID for your Gurobi Instant Cloud license. This can be retrieved from
the Gurobi Instant Cloud website. When used in combination with your secretKey, this
allows you to launch Instant Cloud instances and submit jobs to them.
secretKey: The secret key for your Gurobi Instant Cloud license. This can be retrieved
from the Gurobi Instant Cloud website. When used in combination with your accessID,
this allows you to launch Instant Cloud instances and submit jobs to them. Note that you
should keep your secret key private.

222

pool: The machine pool. Machine pools allow you to create fixed configurations on the
Instant Cloud website (capturing things like type of machine, geographic region, etc.),
and then launch and share machines from client programs without having to restate the
configuration information each time you launch a machine. May be null (or an empty
string), in which case your job will be launched in the default pool associated with your
cloud license.

Return value:
An environment object.

GRBEnv.dispose()

Release the resources associated with a GRBEnv object. While the Java garbage collector will
eventually reclaim these resources, we recommend that you call the dispose method when you are
done using an environment if your program creates more than one.

The dispose method on a GRBEnv should be called only after you have called dispose on all
of the models that were created within that environment. You should not attempt to use a GRBEnv
object after calling dispose.

| void dispose ()

GRBEnv.get()

Query the value of a parameter.

| double get (GRB.DoubleParam param)

Query the value of a double-valued parameter.
Arguments:
param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
Return value:
The current value of the requested parameter.

‘int get (GRB.IntParam param)

Query the value of an int-valued parameter.
Arguments:
param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
Return value:
The current value of the requested parameter.

223

| String get (GRB.StringParam param)

Query the value of a string-valued parameter.
Arguments:
param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
Return value:
The current value of the requested parameter.

GRBEnv.getErrorMsg()

Query the error message for the most recent exception associated with this environment.

| String getErrorMsg ()
Return value:
The error string.

GRBEnv.getParaminfo()

Obtain information about a parameter.

void getParamInfo (GRB.DoubleParam param,
double[] info)
Obtain detailed information about a double parameter.
Arguments:
param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
info: The returned information. The result will contain four entries: the current value of
the parameter, the minimum allowed value, the maximum allowed value, and the default
value.

void getParamInfo (GRB.IntParam param,
int [] info)
Obtain detailed information about an integer parameter.
Arguments:
param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
info: The returned information. The result will contain four entries: the current value of
the parameter, the minimum allowed value, the maximum allowed value, and the default
value.

224

void getParamInfo (GRB.StringParam param,
String[] info)
Obtain detailed information about a string parameter.
Arguments:
param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
info: The returned information. The result will contain two entries: the current value of
the parameter and the default value.

GRBEnv.message()

Write a message to the console and the log file.

‘void message (String message)

Arguments:
message: Print a message to the console and to the log file. Note that this call has no effect
unless the OutputFlag parameter is set.

GRBEnv.readParams()

Read new parameter settings from a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

| void readParams (String paramfile)

Arguments:
paramfile: Name of the file containing parameter settings. Parameters should be listed
one per line, with the parameter name first and the desired value second. For example:

Gurobi parameter file
Threads 1
MIPGap O

Blank lines and lines that begin with the hash symbol are ignored.

GRBEnv.release()

Release the license associated with this environment. You will no longer be able to call optimize
on models created with this environment after the license has been released.

| void release ()

225

GRBEnv.resetParams()

Reset all parameters to their default values.
Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

| void resetParams ()

GRBEnv.set()

Set the value of a parameter.

Important notes:

Note that a model gets its own copy of the environment when it is created. Changes to the
original environment have no effect on the copy. Use GRBModel.set to change a parameter on an
existing model.

void set (GRB.DoubleParam param,
double newvalue)
Set the value of a double-valued parameter.
Arguments:
param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
newvalue: The desired new value of the parameter.

void set (GRB.IntParam param,
int newvalue)
Set the value of an int-valued parameter.
Arguments:
param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
newvalue: The desired new value of the parameter.

void set (GRB.StringParam param,
String newvalue)
Set the value of a string-valued parameter.
Arguments:
param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
newvalue: The desired new value of the parameter.

226

void set (String param,
String mnewvalue)
Set the value of any parameter using strings alone.
Arguments:
param: The name of the parameter being modified. Please consult the parameter section
for a complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.
newvalue: The desired new value of the parameter.

GRBEnv.writeParams()

Write all non-default parameter settings to a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

‘void writeParams (String paramfile)

Arguments:
paramfile: Name of the file to which non-default parameter settings should be written.
The previous contents are overwritten.

227

4.2 GRBModel

Gurobi model object. Commonly used methods include addVar (adds a new decision variable to the
model), addConstr (adds a new constraint to the model), optimize (optimizes the current model),
and get (retrieves the value of an attribute).

While the Java garbage collector will eventually collect an unused GRBModel object, the vast
majority of the memory associated with a model is stored outside of the Java heap. As a result,
the garbage collector can’t see this memory usage, and thus it can’t take this quantity into account
when deciding whether collection is necessary. We recommend that you call GRBModel.dispose
when you are done using a model.

GRBModel()

Constructor for GRBModel. The simplest version creates an empty model. You can then call
addVar and addConstr to populate the model with variables and constraints. The more complex
constructors can read a model from a file, or make a copy of an existing model.

‘GRBModel GRBModel (GRBEnv env)

Model constructor.
Arguments:
env: Environment for new model.
Return value:
New model object. Model initially contains no variables or constraints.

GRBModel GRBModel (GRBEnv env,
String filename)

Read a model from a file. Note that the type of the file is encoded in the file name suffix.
Valid suffixes are .mps, .rew, .1p, .rlp, .ilp, or .opb. The files can be compressed, so additional
suffixes of .zip, .gz, .bz2, or .7z are accepted.

Arguments:

env: Environment for new model.

modelname: Name of the file containing the model.
Return value:

New model object.

‘GRBModel GRBModel (GRBModel model)

Create a copy of an existing model.
Arguments:
model: Model to copy.
Return value:
New model object. Model is a clone of the input model.

228

GRBModel.addConstr()

Add a single linear constraint to a model. Multiple signatures are available.

GRBConstr addConstr (GRBLinExpr
char
GRBLinExpr
String
Add a single linear constraint to a model.
Arguments:

lhsExpr,
sense,
rhsExpr,
name)

lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-

EQUAL).

rhsExpr: Right-hand side expression for new linear constraint.

name: Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr (GRBLinExpr
char
GRBVar
String
Add a single linear constraint to a model.
Arguments:

lhsExpr,
sense,
rhsVar,
name)

lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-

EQUAL).

rhsVar: Right-hand side variable for new linear constraint.

name: Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr (GRBLinExpr
char
double
String
Add a single linear constraint to a model.
Arguments:

lhsExpr: Left-hand side expression fo

lhsExpr,
sense,
rhsVal,
name)

r new linear constraint.

sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-

EQUAL).

rhsVal: Right-hand side value for new linear constraint.

name: Name for new constraint.
Return value:

229

New constraint object.

GRBConstr addConstr (GRBVar lhsVar,
char sense,
GRBLinExpr rhsExpr,
String name)
Add a single linear constraint to a model.
Arguments:

lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).
rhsExpr: Right-hand side expression for new linear constraint.
name: Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr (GRBVar 1lhsVar,
char sense,
GRBVar rhsVar,
String name)
Add a single linear constraint to a model.
Arguments:
lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).
rhsVar: Right-hand side variable for new linear constraint.
name: Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr (GRBVar 1lhsVar,
char sense,
double rhsVal,
String name)
Add a single linear constraint to a model.
Arguments:
lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).
rhsVal: Right-hand side value for new linear constraint.
name: Name for new constraint.
Return value:
New constraint object.

230

GRBConstr addConstr (double 1lhsVal,
char sense,
GRBVar rhsVar,
String name)
Add a single linear constraint to a model.
Arguments:
lhsVal: Left-hand side value for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).
rhsVar: Right-hand side variable for new linear constraint.
name: Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr (double lhsVal,
char sense,
GRBLinExpr rhsExpr,
String name)

Add a single linear constraint to a model.
Arguments:
lhsVal: Left-hand side value for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).
rhsExpr: Right-hand side expression for new linear constraint.
name: Name for new constraint.
Return value:
New constraint object.

GRBModel.addConstrs()

Add new linear constraints to a model.

We recommend that you build your model one constraint at a time (using addConstr), since it
introduces no significant overhead and we find that it produces simpler code. Feel free to use these
methods if you disagree, though.

‘GRBConstr[] addConstrs (int count)

Add count new linear constraints to a model. The new constraints are all of the form 0 <= 0.
Arguments:

count: Number of constraints to add.
Return value:

Array of new constraint objects.

231

GRBConstr[] addConstrs (GRBLinExpr[] 1hsExprs,

char[] senses,
double[] rhsVals,
String[] names)

Add new linear constraints to a model. The number of added constraints is determined by the
length of the input arrays (which must be consistent across all arguments).
Arguments:
lhsExprs: Left-hand side expressions for the new linear constraints.
senses: Senses for new linear constraints (GRB .LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).
rhsVals: Right-hand side values for the new linear constraints.
names: Names for new constraints.
Return value:
Array of new constraint objects.

GRBConstr[] addConstrs (GRBLinExpr[] lhsExprs,
char[] senses,
GRBLinExpr[] rhsExprs,
int start,
int len,
String[] names)

Add new linear constraints to a model. This signature allows you to use arrays to hold the
various constraint attributes (left-hand side, sense, etc.), without forcing you to add one constraint
for each entry in the array. The start and len arguments allow you to specify which constraints
to add.

Arguments:

lhsExprs: Left-hand side expressions for the new linear constraints.
senses: Senses for new linear constraints (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).
rhs: Right-hand side expressions for the new linear constraints.
start: The first constraint in the list to add.
len: The number of variables to add.
names: Names for new constraints.
Return value:
Array of new constraint objects.

GRBModel.addGenConstrXxx()

Each of the functions described below adds a new general constraint to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types:
variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and
SOS constraints. These are typically treated directly by the underlying solver (although not always),
and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general
constraints. These are typically not treated directly by the solver. Rather, they are transformed

232

by presolve into mathematically equivalent sets of constraints (and variables), chosen from among
the fundamental types listed above. These general constraints are provided as a convenience to
users. If such constraints appear in your model, but if you prefer to reformulate them yourself
using fundamental constraint types instead, you can certainly do so. However, note that Gurobi
can sometimes exploit information contained in the other constraints in the model to build a more
efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

e MAX (addGenConstrMax): set a decision variable equal to the maximum value from among
a set of decision variables

e MIN (addGenConstrMin): set a decision variable equal to the minimum value from among a
set of decision variables

e ABS (addGenConstrAbs): set a decision variable equal to the absolute value of some other
decision variable

e AND (addGenConstrAnd): set a binary variable equal to one if and only if all of a set of
binary decision variables are equal to one

e OR (addGenConstrOr): set a binary variable equal to one if and only if at least one variable
out of a set of binary decision variables is equal to one

e INDICATOR (addGenConstrIndicator): a given binary variable may only take a certain value
if a given linear constraint is satisfied

Please refer to this section for additional details on general constraints.

GRBModel.addGenConstrMax()
Add a new general constraint of type GRB.GENCONSTR_MAX to a model.

A MAX constraint r = max{z1,...,Z,,c} states that the resultant variable r should be equal
to the maximum of the operand variables x1,...,x, and the constant c.
GRBGenConstr addGenConstrMax (GRBVar resvar,
GRBVar[] vars,
double constant,
String name)
Arguments:

resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
constant: The additional constant operand of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

233

GRBModel.addGenConstrMin()

Add a new general constraint of type GRB.GENCONSTR_MIN to a model.
A MIN constraint r = min{z1,...,Z,, c} states that the resultant variable r should be equal to
the minimum of the operand variables x1,...,x, and the constant c.

GRBGenConstr addGenConstrMin (GRBVar resvar,
GRBVar[] vars,
double constant,
String name)
Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
constant: The additional constant operand of the new constraint.
name: Name for the new general constraint.
Return value:
New general constraint.

GRBModel.addGenConstrAbs()

Add a new general constraint of type GRB.GENCONSTR_ABS to a model.
An ABS constraint r = abs{z} states that the resultant variable r should be equal to the
absolute value of the argument variable z.

GRBGenConstr addGenConstrAbs (GRBVar resvar,
GRBVar argvar,
String name)
Arguments:
resvar: The resultant variable of the new constraint.
argvar: The argument variable of the new constraint.
name: Name for the new general constraint.
Return value:
New general constraint.

GRBModel.addGenConstrAnd()

Add a new general constraint of type GRB.GENCONSTR_AND to a model.

An AND constraint » = and{x1, ..., z,} states that the binary resultant variable r should be 1
if and only if all of the operand variables z1,...,x, are equal to 1. If any of the operand variables
is 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary; indepen-
dently of how they were created.

GRBGenConstr addGenConstrAnd (GRBVar resvar,
GRBVar[] vars,
String name)

234

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
name: Name for the new general constraint.
Return value:
New general constraint.

GRBModel.addGenConstrOr()

Add a new general constraint of type GRB.GENCONSTR_OR to a model.

An OR constraint r = or{zy,...,z,} states that the binary resultant variable r should be 1 if
and only if any of the operand variables x1, ..., x, is equal to 1. If all operand variables are 0, then
the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary; indepen-
dently of how they were created.

GRBGenConstr addGenConstrOr (GRBVar resvar,
GRBVar[] vars,
String name)
Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
name: Name for the new general constraint.
Return value:
New general constraint.

GRBModel.addGenConstrindicator()

Add a new general constraint of type GRB.GENCONSTR_INDICATOR to a model.

An INDICATOR constraint z = f — a”x < b states that if the binary indicator variable z is
equal to f € {0,1}, then the linear constraint a’« < b should hold. On the other hand, if z = 1— f,
the linear constraint may be violated. The sense of the linear constraint can also be specified to be
=or >.

Note that the indicator variable z of a constraint will be forced to be binary; independently of
how it was created.

GRBGenConstr addGenConstrIndicator (GRBVar binvar,
int binval,
GRBLinExpr expr,
char sense,
double rhs,
String name)
Arguments:

binvar: The binary indicator variable.
binval: The value for the binary indicator variable that would force the linear constraint
to be satisfied (0 or 1).

235

expr: Left-hand side expression for the linear constraint triggered by the indicator.
sense: Sense for the linear constraint. Options are GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL.
rhs: Right-hand-side value for the linear constraint.
name: Name for the new general constraint.
Return value:
New general constraint.

GRBModel.addQConstr()

Add a quadratic constraint to a model. Multiple signatures are available.

Important note: the algorithms that Gurobi uses to solve quadratically constrained problems
can only handle certain types of quadratic constraints. Constraints of the following forms are always
accepted:

o 27Qx + ¢"x < b, where @ is Positive Semi-Definite (PSD)

o x7x <42, where x is a vector of variables, and y is a non-negative variable (a Second-Order
Cone)

e 17z < yz, where x is a vector of variables, and y and z are non-negative variables (a rotated
Second-Order Cone)

If you add a constraint that isn’t in one of these forms (and Gurobi presolve is unable to transform
the constraint into one of these forms), you’ll get an error when you try to solve the model.
Constraints where the quadratic terms only involve binary variables will always be transformed
into one of these forms.

GRBQConstr addQConstr (GRBQuadExpr 1lhsExpr,

char sense,

GRBQuadExpr rhsExpr,

String name)
Add a quadratic constraint to a model.

Arguments:
lhsExpr: Left-hand side quadratic expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side quadratic expression for new quadratic constraint.
name: Name for new constraint.
Return value:
New quadratic constraint object.

GRBQConstr addQConstr (GRBQuadExpr 1lhsExpr,

char sense,
GRBVar rhsVar,
String name)

Add a quadratic constraint to a model.

236

Arguments:
lhsExpr: Left-hand side quadratic expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhsVar: Right-hand side variable for new quadratic constraint.
name: Name for new constraint.
Return value:
New quadratic constraint object.

GRBQConstr addQConstr (GRBQuadExpr 1lhsExpr,
char sense,
GRBLinExpr rhsExpr,
String name)
Add a quadratic constraint to a model.
Arguments:

lhsExpr: Left-hand side quadratic expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side linear expression for new quadratic constraint.
name: Name for new constraint.
Return value:
New quadratic constraint object.

GRBQConstr addQConstr (GRBQuadExpr 1lhsExpr,
char sense,
double rhsVal,
String name)

Add a quadratic constraint to a model.
Arguments:

lhsExpr: Left-hand side quadratic expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhsVal: Right-hand side value for new quadratic constraint.
name: Name for new constraint.
Return value:
New quadratic constraint object.

GRBQConstr addQConstr (GRBLinExpr lhsExpr,
char sense,
GRBQuadExpr rhsExpr,
String name)

Add a quadratic constraint to a model.
Arguments:

lhsExpr: Left-hand side linear expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side quadratic expression for new quadratic constraint.

name: Name for new constraint.

237

Return value:
New quadratic constraint object.

GRBQConstr addQConstr (GRBVar lhsVar,
char sense,
GRBQuadExpr rhsExpr,
String name)
Add a quadratic constraint to a model.
Arguments:

lhsVar: Left-hand side variable for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side quadratic expression for new quadratic constraint.
name: Name for new constraint.
Return value:
New quadratic constraint object.

GRBQConstr addQConstr (double lhsVal,
char sense,
GRBQuadExpr rhsExpr,
String name)
Add a quadratic constraint to a model.
Arguments:

lhsVal: Left-hand side value for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side quadratic expression for new quadratic constraint.
name: Name for new constraint.
Return value:
New quadratic constraint object.

GRBModel.addRange()

Add a single range constraint to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution.

Note that range constraints are stored internally as equality constraints. We add an extra
variable to the model to capture the range information. Thus, the Sense attribute on a range
constraint will always be GRB.EQUAL.

GRBConstr addRange (GRBLinExpr expr,

double lower,
double upper,
String name)

Arguments:
expr: Linear expression for new range constraint.
lower: Lower bound for linear expression.

238

upper: Upper bound for linear expression.
name: Name for new constraint.

Return value:
New constraint object.

GRBModel.addRanges()

Add new range constraints to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution.

GRBConstr[] addRanges (GRBLinExpr[] exprs,

double[] lower,
double[] upper,
Stringl[] names)

Arguments:
exprs: Linear expressions for the new range constraints.
lower: Lower bounds for linear expressions.
upper: Upper bounds for linear expressions.
name: Names for new range constraints.
count: Number of range constraints to add.
Return value:
Array of new constraint objects.

GRBModel.addSOS()

Add an SOS constraint to the model. Please refer to this section for details on SOS constraints.

GRBSOS addSO0S (GRBVar[] vars,
double[] weights,
int type)
Arguments:
vars: Array of variables that participate in the SOS constraint.
weights: Weights for the variables in the SOS constraint.
type: SOS type (can be GRB.SO0S_TYPE1 or GRB.SOS_TYPE2).
Return value:
New SOS constraint.

GRBModel.addVar()

Add a single decision variable to a model.

GRBVar addVar (double 1b,
double ub,
double obj,
char type,
String name)

239

Add a variable to a model; non-zero entries will be added later.
Arguments:
1b: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB.CONTINUQUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICDNT,orGRB.SEMIINT)
name: Name for new variable.
Return value:
New variable object.

GRBVar addVar (double 1b,
double ub,
double obj,
char type,
GRBConstr[] constrs,
double[] coeffs,
String name)
Add a variable to a model, and the associated non-zero coefficients.
Arguments:

1b: Lower bound for new variable.

ub: Upper bound for new variable.

obj: Objective coefficient for new variable.

type: Variable type for new variable (GRB.CONTINUQUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT,OrGRB.SEMIINT)

constrs: Array of constraints in which the variable participates.

coeffs: Array of coefficients for each constraint in which the variable participates. The
lengths of the constrs and coeffs arrays must be identical.

name: Name for new variable.

Return value:
New variable object.

GRBVar addVar (double 1b,
double ub,
double obj,
char type,
GRBColumn col,
String name)

Add a variable to a model. This signature allows you to specify the set of constraints to which
the new variable belongs using a GRBColumn object.
Arguments:
1b: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.

240

type: Variable type for new variable (GRB.CONTINUQUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMI INT).
col: GRBColumn object for specifying a set of constraints to which new variable belongs.
name: Name for new variable.
Return value:
New variable object.

GRBModel.addVars()

Add new decision variables to a model.

GRBVar[] addVars (int count,
char type)
Add count new decision variables to a model. All associated attributes take their default values,
except the variable type, which is specified as an argument.
Arguments:
count: Number of variables to add.
type: Variable type for new variables (GRB.CONTINUQUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMI INT).
Return value:
Array of new variable objects.

GRBVar[] addVars (double[] 1b,
double[] ub,
double[] obj,
char[] type,
String[] names)
Add new decision variables to a model. The number of added variables is determined by the
length of the input arrays (which must be consistent across all arguments).
Arguments:
1b: Lower bounds for new variables. Can be null, in which case the variables get lower
bounds of 0.0.
ub: Upper bounds for new variables. Can be null, in which case the variables get infinite
upper bounds.
obj: Objective coefficients for new variables. Can be null, in which case the variables get
objective coefficients of 0.0.
type: Variable types for new variables (GRB.CONTINUQUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed
to be continuous.
names: Names for new variables. Can be null, in which case all variables are given default
names.
Return value:
Array of new variable objects.

241

GRBVar[] addVars (double[] 1b,
double[] ub,
double[] obj,
char[] type,
String[] names,
int start,
int len)

Add new decision variables to a model. This signature allows you to use arrays to hold the
various variable attributes (lower bound, upper bound, etc.), without forcing you to add a variable
for each entry in the array. The start and len arguments allow you to specify which variables to
add.

Arguments:

1b: Lower bounds for new variables. Can be null, in which case the variables get lower
bounds of 0.0.

ub: Upper bounds for new variables. Can be null, in which case the variables get infinite
upper bounds.

obj: Objective coefficients for new variables. Can be null, in which case the variables get
objective coefficients of 0.0.

type: Variable types for new variables (GRB.CONTINUQUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed
to be continuous.

names: Names for new variables. Can be null, in which case all variables are given default
names.
start: The first variable in the list to add.
len: The number of variables to add.
Return value:
Array of new variable objects.

GRBVar[] addVars (doublel] 1b,
double[] ub,
double[] obj,
char[] type,
Stringl[] names,

GRBColumn[] col)
Add new decision variables to a model. This signature allows you to specify the list of constraints
to which each new variable belongs using an array of GRBColumn objects.
Arguments:
1b: Lower bounds for new variables. Can be null, in which case the variables get lower
bounds of 0.0.
ub: Upper bounds for new variables. Can be null, in which case the variables get infinite
upper bounds.
obj: Objective coefficients for new variables. Can be null, in which case the variables get
objective coefficients of 0.0.
type: Variable types for new variables (GRB.CONTINUQUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed

242

to be continuous.
names: Names for new variables. Can be null, in which case all variables are given default
names.
cols: GRBColumn objects for specifying a set of constraints to which each new column
belongs.
Return value:
Array of new variable objects.

GRBModel.chgCoeff()

Change one coefficient in the model. The desired change is captured using a GRBVar object, a
GRBConstr object, and a desired coeflicient for the specified variable in the specified constraint. If
you make multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you
update the model (using GRBModel.update), optimize the model (using GRBModel.optimize), or
write the model to disk (using GRBModel.write).

void chgCoeff (GRBConstr constr,
GRBVar var,
double newvalue)
Arguments:
constr: Constraint for coefficient to be changed.
var: Variable for coefficient to be changed.
newvalue: Desired new value for coefficient.

GRBModel.chgCoeffs()

Change a list of coefficients in the model. Each desired change is captured using a GRBVar object,
a GRBConstr object, and a desired coefficient for the specified variable in the specified constraint.
The entries in the input arrays each correspond to a single desired coefficient change. The lengths
of the input arrays must all be the same. If you make multiple changes to the same coefficient, the
last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you
update the model (using GRBModel.update), optimize the model (using GRBModel.optimize), or
write the model to disk (using GRBModel.write).

void chgCoeffs (GRBConstr[] constrs,
GRBVar[] vars,
double[] vals)
Arguments:
constrs: Constraints for coefficients to be changed.
vars: Variables for coefficients to be changed.
vals: Desired new values for coefficients.

243

GRBModel.computellS()

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and
variable bounds of the original model. If all constraints in the model except those in the IIS
are removed, the model is still infeasible. However, further removing any one member of the IIS
produces a feasible result.

This method populates the IISCONSTR, IISQCONSTR, and IISGENCONSTR constraint attributes,
the IISS0S SOS attribute, and the IISLB, and IISUB variable attributes. You can also obtain
information about the results of the IIS computation by writing a .ilp format file (see GRB-
Model.write). This file contains only the IIS from the original model.

Note that this method can be used to compute IISs for both continuous and MIP models.

| void computeIIS ()

GRBModel.discardConcurrentEnvs()

Discard concurrent environments for a model.
The concurrent environments created by getConcurrentEnv will be used by every subsequent
call to the concurrent optimizer until the concurrent environments are discarded.

\ void discardConcurrentEnvs ()

GRBModel.dispose()

Release the resources associated with a GRBModel object. While the Java garbage collector will
eventually reclaim these resources, we recommend that you call the dispose method when you are
done using a model.

You should not attempt to use a GRBModel object after calling dispose on it.

| void dispose ()

GRBModel.feasRelax()

Modifies the GRBModel object to create a feasibility relaxation. Note that you need to call optimize
on the result to compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the
solution violates the bounds and linear constraints of the original model. This method provides a
number of options for specifying the relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the
sum of the weighted magnitudes of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the cost per unit violation in the lower bounds, upper bounds, and linear
constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the
weighted sum of the squares of the bound and constraint violations. The lbpen, ubpen, and

244

rhspen arguments specify the coefficients on the squares of the lower bound, upper bound, and
linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the
weighted count of bound and constraint violations. The 1lbpen, ubpen, and rhspen arguments
specify the cost of violating a lower bound, upper bound, and linear constraint, respectively.

To give an example, if a constraint with rhspen value p is violated by 2.0, it would con-
tribute 2*p to the feasibility relaxation objective for relaxobjtype=0, it would contribute 2*2xp
for relaxobjtype=1, and it would contribute p for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is
created. If minrelax=false, optimizing the returned model gives a solution that minimizes the
cost of the violation. If minrelax=true, optimizing the returned model finds a solution that
minimizes the original objective, but only from among those solutions that minimize the cost of the
violation. Note that feasRelax must solve an optimization problem to find the minimum possible
relaxation when minrelax=true, which can be quite expensive.

There are two signatures for this method. The more complex one takes a list of variables
and constraints, as well as penalties associated with relaxing the corresponding lower bounds,
upper bounds, and constraints. If a variable or constraint is not included in one of these lists,
the associated bounds or constraints may not be violated. The simpler signature takes a pair of
boolean arguments, vrelax and crelax, that indicate whether variable bounds and/or constraints
can be violated. If vrelax/crelax is true, then every bound/constraint is allowed to be violated,
respectively, and the associated cost is 1.0.

Note that this is a destructive method: it modifies the model on which it is invoked. If you
don’t want to modify your original model, use the GRBModel constructor to create a copy before
invoking this method.

double feasRelax (int relaxobjtype,

boolean minrelax,
GRBVar[] vars,
double[] lbpen,
doublel[] ubpen,
GRBConstr[] constr,
double[] rhspen)

Create a feasibility relaxation model.

Arguments:

relaxobjtype: The cost function used when finding the minimum cost relaxation.

minrelax: The type of feasibility relaxation to perform.

vars: Variables whose bounds are allowed to be violated.

lbpen: Penalty for violating a variable lower bound. One entry for each variable in argument
vars.

ubpen: Penalty for violating a variable upper bound. One entry for each variable in argument
vars.

constr: Linear constraints that are allowed to be violated.

rhspen: Penalty for violating a linear constraint. One entry for each variable in argument
constr.

Arguments:

245

Return value:
Zero if minrelax is false. If minrelax is true, the return value is the objective value for
the relaxation performed. If the value is less than 0, it indicates that the method failed to
create the feasibility relaxation.

double feasRelax (int relaxobjtype,
boolean minrelax,
boolean vrelax,
boolean crelax)
Simplified method for creating a feasibility relaxation model.
Arguments:
relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vrelax: Indicates whether variable bounds can be relaxed (with a cost of 1.0 for any viola-

tions.
crelax: Indicates whether linear constraints can be relaxed (with a cost of 1.0 for any
violations.

Return value:
Zero if minrelax is false. If minrelax is true, the return value is the objective value for
the relaxation performed. If the value is less than 0, it indicates that the method failed to
create the feasibility relaxation.

GRBModel.fixedModel()

Create the fixed model associated with a MIP model. The MIP model must have a solution loaded
(e.g., after a call to the optimize method). In the fixed model, each integer variable is fixed to the
value that variable takes in the MIP solution.

| GRBModel fixedModel ()
Return value:
Fixed model associated with calling object.

GRBModel.get()

Query the value(s) of a parameter or attribute. Use this method for parameters, for scalar model
attributes, and for arrays of constraint or variable attributes.

‘double get (GRB.DoubleParam param)

Query the value of a double-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

246

| int get (GRB.IntParam param)

Query the value of an int-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

| String get (GRB.StringParam param)

Query the value of a string-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

char[] get (GRB.CharAttr attr,
GRBVar|[] vars)

Query a char-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.

vars: The variables whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input variable.

char[] get (GRB.CharAttr attr,

GRBVar[] vars,
int start,
int len)
Query a char-valued variable attribute for a sub-array of variables.

Arguments:
attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.
Return value:
The current values of the requested attribute for each input variable.

char[][] get (GRB.CharAttr attr,
GRBVar [][] vars)
Query a char-valued variable attribute for a two-dimensional array of variables.
Arguments:
attr: The attribute being queried.

247

vars: A two-dimensional array of variables whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input variable.

char[][]1[] get (GRB.CharAttr attr,

GRBVar[]1[1[] vars)
Query a char-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.

vars: A three-dimensional array of variables whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input variable.

char[] get (GRB.CharAttr attr,
GRBConstr[] constrs)
Query a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.

constrs: The constraints whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input constraint.

char[] get (GRB.CharAttr attr,
GRBConstr[] constrs,

int start,
int len)
Query a char-valued constraint attribute for a sub-array of constraints.

Arguments:
attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The index of the first constraint of interest in the list.
len: The number of constraints.
Return value:

The current values of the requested attribute for each input constraint.

char[][] get (GRB.CharAttr attr,
GRBConstr[][] constrs)

Query a char-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being queried.

constrs: A two-dimensional array of constraints whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input constraint.

248

char[J[1[] get (GRB.CharAttr attr,
GRBConstr[]J[J[] constrs)

Query a char-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.

constrs: A three-dimensional array of constraints whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input constraint.

char[] get (GRB.CharAttr attr,
GRBQConstr[] qconstrs)

Query a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.

qgconstrs: The quadratic constraints whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input quadratic constraint.

char[] get (GRB.CharAttr attr,
GRBQConstr[] qconstrs,

int start,
int len)
Query a char-valued quadratic constraint attribute for a sub-array of quadratic constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being queried.
start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.
Return value:
The current values of the requested attribute for each input quadratic constraint.

char[][] get (GRB.CharAttr attr,
GRBQConstr[][] qconstrs)
Query a char-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.
Arguments:
attr: The attribute being queried.
gconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being queried.
Return value:
The current values of the requested attribute for each input quadratic constraint.

249

char[J[1[] get (GRB.CharAttr attr,
GRBQConstr[][1[] qgconstrs)
Query a char-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.
Arguments:
attr: The attribute being queried.
gconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being queried.
Return value:
The current values of the requested attribute for each input quadratic constraint.

| double get (GRB.DoubleAttr attr)

Query the value of a double-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double[] get (GRB.DoubleAttr attr,
GRBVar[] vars)

Query a double-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.

vars: The variables whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input variable.

double[] get (GRB.DoubleAttr attr,

GRBVar[] vars,
int start,
int len)
Query a double-valued variable attribute for a sub-array of variables.

Arguments:
attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.
Return value:
The current values of the requested attribute for each input variable.

double[][] get (GRB.DoubleAttr attr,
GRBVar[][] vars)

250

Query a double-valued variable attribute for a two-dimensional array of variables.
Arguments:
attr: The attribute being queried.

vars: A two-dimensional array of variables whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input variable.

double[]J[J[] get (GRB.DoubleAttr attr,
GRBVar[][]1([] vars)
Query a double-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.

vars: A three-dimensional array of variables whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input variable.

double[] get (GRB.DoubleAttr attr,
GRBConstr[] constrs)

Query a double-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.

constrs: The constraints whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input constraint.

double[] get (GRB.DoubleAttr attr,

GRBConstr[] constrs,
int start,
int len)
Query a double-valued constraint attribute for a sub-array of constraints.

Arguments:
attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The first constraint of interest in the list.
len: The number of constraints.
Return value:
The current values of the requested attribute for each input constraint.

double[][] get (GRB.DoubleAttr attr,
GRBConstr[][] comstrs)
Query a double-valued constraint attribute for a two-dimensional array of constraints.
Arguments:
attr: The attribute being queried.

251

constrs: A two-dimensional array of constraints whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input constraint.

double[][1[] get (GRB.DoubleAttr attr,
GRBConstr[][][] constrs)
Query a double-valued constraint attribute for a three-dimensional array of constraints.
Arguments:
attr: The attribute being queried.

constrs: A three-dimensional array of constraints whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input constraint.

double[] get (GRB.DoubleAttr attr,
GRBQConstr[] gconstrs)
Query a double-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.

gconstrs: The quadratic constraints whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input quadratic constraint.

double[] get (GRB.DoubleAttr attr,

GRBQConstr[] qgconstrs,
int start,
int len)
Query a double-valued quadratic constraint attribute for a sub-array of quadratic constraints.

Arguments:
attr: The attribute being queried.
qgconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being queried.
start: The first quadratic constraint of interest in the list.
len: The number of quadratic constraints.
Return value:

The current values of the requested attribute for each input quadratic constraint.

double[][] get (GRB.DoubleAttr attr,
GRBQConstr[][] qconstrs)

Query a double-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.

gconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being queried.

252

Return value:
The current values of the requested attribute for each input quadratic constraint.

double[][1[]1 get (GRB.DoubleAttr attr,

GRBQConstr[][1[]1 qconstrs)
Query a double-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.

gconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being queried.
Return value:

The current values of the requested attribute for each input quadratic constraint.

| int get (GRB.IntAttr attr)

Query the value of an int-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int[] get (GRB.IntAttr attr,
GRBVar [] vars)
Query an int-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.

vars: The variables whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input variable.

int[] get (GRB.IntAttr attr,

GRBVar[] vars,
int start,
int len)
Query an int-valued variable attribute for a sub-array of variables.

Arguments:
attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.
Return value:
The current values of the requested attribute for each input variable.

253

int[1[] get (GRB.IntAttr attr,
GRBVar [] [] vars)
Query an int-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.

vars: A two-dimensional array of variables whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input variable.

int[J[1[] get (GRB.IntAttr attr,
GRBVar[J[][] wvars)
Query an int-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.

vars: A three-dimensional array of variables whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input variable.

int[] get (GRB.IntAttr attr,
GRBConstr[] constrs)
Query an int-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.

constrs: The constraints whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input constraint.

int[] get (GRB.IntAttr attr,
GRBConstr[] constrs,

int start,
int len)
Query an int-valued constraint attribute for a sub-array of constraints.

Arguments:
attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The index of the first constraint of interest in the list.
len: The number of constraints.
Return value:
The current values of the requested attribute for each input constraint.

int[J[] get (GRB.IntAttr attr,
GRBConstr[][] constrs)
Query an int-valued constraint attribute for a two-dimensional array of constraints.

254

Arguments:
attr: The attribute being queried.

constrs: A two-dimensional array of constraints whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input constraint.

int[J[J[] get (GRB.IntAttr attr,
GRBConstr[][1[] constrs)

Query an int-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.

constrs: A three-dimensional array of constraints whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input constraint.

int[] get (GRB.IntAttr attr,
GRBQConstr[] qconstrs)

Query an int-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.

qgconstrs: The quadratic constraints whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input quadratic constraint.

int[] get (GRB.IntAttr attr,
GRBQConstr[] qconstrs,

int start,
int len)
Query an int-valued quadratic constraint attribute for a sub-array of quadratic constraints.

Arguments:
attr: The attribute being queried.

gconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being queried.
start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.
Return value:

The current values of the requested attribute for each input quadratic constraint.

int[J[] get (GRB.IntAttr attr,
GRBQConstr[][] qconstrs)

Query an int-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.

Arguments:

255

attr: The attribute being queried.
gconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being queried.
Return value:
The current values of the requested attribute for each input quadratic constraint.

int[J[1[] get (GRB.IntAttr attr,
GRBQConstr[J[J[] qconstrs)
Query an int-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.
Arguments:
attr: The attribute being queried.
gconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being queried.
Return value:
The current values of the requested attribute for each input quadratic constraint.

int[] get (GRB.IntAttr attr,
GRBGenConstr[] genconstrs)

Query an int-valued general constraint attribute for an array of general constraints.
Arguments:

attr: The attribute being queried.

genconstrs: The general constraints whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input general constraint.

int[] get (GRB.IntAttr attr,
GRBGenConstr[] genconstrs,
int start,
int len)
Query an int-valued general constraint attribute for a sub-array of general constraints.
Arguments:

attr: The attribute being queried.
genconstrs: A one-dimensional array of general constraints whose attribute values are
being queried.
start: The index of the first general constraint of interest in the list.
len: The number of general constraints.
Return value:
The current values of the requested attribute for each input general constraint.

int[J[] get (GRB.IntAttr attr,
GRBGenConstr[] [] genconstrs)
Query an int-valued general constraint attribute for a two-dimensional array of general con-
straints.

256

Arguments:
attr: The attribute being queried.
genconstrs: A two-dimensional array of general constraints whose attribute values are
being queried.
Return value:
The current values of the requested attribute for each input general constraint.

int[J[J[] get (GRB.IntAttr attr,
GRBGenConstr[] [J[] genconstrs)
Query an int-valued general constraint attribute for a three-dimensional array of general con-
straints.

Arguments:
attr: The attribute being queried.
genconstrs: A three-dimensional array of general constraints whose attribute values are
being queried.
Return value:
The current values of the requested attribute for each input general constraint.

| String get (GRB.StringAttr attr)

Query the value of a string-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

String[] get (GRB.StringAttr attr,
GRBVar[] vars)

Query a String-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.

vars: The variables whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input variable.

String[] get (GRB.StringAttr attr,

GRBVar[] vars,
int start,
int len)
Query a String-valued variable attribute for a sub-array of variables.

Arguments:
attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.

257

start: The index of the first variable of interest in the list.
len: The number of variables.
Return value:
The current values of the requested attribute for each input variable.

String[J[] get (GRB.StringAttr attr,
GRBVar [][] vars)
Query a String-valued variable attribute for a two-dimensional array of variables.
Arguments:
attr: The attribute being queried.

vars: A two-dimensional array of variables whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input variable.

String[J[1[] get (GRB.StringAttr attr,
GRBVar [1[]1[] vars)

Query a String-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.

vars: A three-dimensional array of variables whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input variable.

String[] get (GRB.StringAttr attr,
GRBConstr[] constrs)

Query a String-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.

constrs: The constraints whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input constraint.

String[] get (GRB.StringAttr attr,

GRBConstr[] constrs,
int start,
int len)
Query a String-valued constraint attribute for a sub-array of constraints.

Arguments:
attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The index of the first constraint of interest in the list.
len: The number of constraints.
Return value:

258

The current values of the requested attribute for each input constraint.

String[J[] get (GRB.StringAttr attr,
GRBConstr[][] constrs)

Query a String-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being queried.

constrs: A two-dimensional array of constraints whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input constraint.

String[J[1[] get (GRB.StringAttr attr,
GRBConstr[][1[] constrs)

Query a String-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.

constrs: A three-dimensional array of constraints whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input constraint.

String[] get (GRB.StringAttr attr,
GRBQConstr[] qgconstrs)

Query a String-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.

gconstrs: The quadratic constraints whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input quadratic constraint.

String[] get (GRB.StringAttr attr,

GRBQConstr[] qgconstrs,
int start,
int len)

Query a String-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being queried.

qgconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being queried.
start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.
Return value:

The current values of the requested attribute for each input quadratic constraint.

259

String[J[] get (GRB.StringAttr attr,
GRBQConstr[][] qconstrs)
Query a String-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.
Arguments:
attr: The attribute being queried.
gconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being queried.
Return value:
The current values of the requested attribute for each input quadratic constraint.

String[J[J[] get (GRB.StringAttr attr,
GRBQConstr[][1[] qconstrs)
Query a String-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.
Arguments:
attr: The attribute being queried.
gconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being queried.
Return value:
The current values of the requested attribute for each input quadratic constraint.

String[] get (GRB.StringAttr attr,
GRBGenConstr[] genconstrs)

Query a String-valued general constraint attribute for an array of general constraints.
Arguments:

attr: The attribute being queried.

constrs: The general constraints whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input general constraint.

String[] get (GRB.StringAttr attr,
GRBGenConstr[] genconstrs,

int start,
int len)
Query a String-valued general constraint attribute for a sub-array of constraints.

Arguments:
attr: The attribute being queried.
constrs: A one-dimensional array of general constraints whose attribute values are being
queried.
start: The index of the first general constraint of interest in the list.
len: The number of general constraints.
Return value:
The current values of the requested attribute for each input general constraint.

260

String[][] get (GRB.StringAttr attr,
GRBGenConstr[] [] genconstrs)

Query a String-valued constraint attribute for a two-dimensional array of general constraints.
Arguments:

attr: The attribute being queried.

constrs: A two-dimensional array of general constraints whose attribute values are being

queried.

Return value:

The current values of the requested attribute for each input general constraint.

String[J[J[1 get (GRB.StringAttr attr,
GRBConstr[][J[] constrs)

Query a String-valued constraint attribute for a three-dimensional array of general constraints.
Arguments:

attr: The attribute being queried.

constrs: A three-dimensional array of general constraints whose attribute values are being

queried.

Return value:

The current values of the requested attribute for each input general constraint.

GRBModel.getCoeff()

Query the coefficient of variable var in linear constraint constr (note that the result can be zero).

double getCoeff (GRBConstr constr,
GRBVar var)
Arguments:
constr: The requested constraint.
var: The requested variable.
Return value:
The current value of the requested coefficient.

GRBModel.getCol()

Retrieve the list of constraints in which a variable participates, and the associated coefficients. The
result is returned as a GRBColumn object.

| GRBColumn getCol (GRBVar var)

Arguments:
var: The variable of interest.
Return value:
A GRBColumn object that captures the set of constraints in which the variable participates.

261

GRBModel.getConcurrentEnv()

Create/retrieve a concurrent environment for a model.

This method provides fine-grained control over the concurrent optimizer. By creating your
own concurrent environments and setting appropriate parameters on these environments (e.g., the
Method parameter), you can control exactly which strategies the concurrent optimizer employs.
For example, if you create two concurrent environments, and set Method to primal simplex for
one and dual simplex for the other, subsequent concurrent optimizer runs will use the two simplex
algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with
num=0. For example, if you want three concurrent environments, they must be numbered 0, 1,
and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent
optimization on that model. Use discardConcurrentEnvs to revert back to default concurrent
optimizer behavior.

‘GRBEnv getConcurrentEnv (int num)

Arguments:

num: The concurrent environment number.
Return value:

The concurrent environment for the model.

GRBModel.getConstrByName()

Retrieve a linear constraint from its name. If multiple linear constraints have the same name, this
method chooses one arbitrarily. Returns null if no constraint has that name.

| GRBConstr getConstrByName (String name)

Arguments:

name: The name of the desired linear constraint.
Return value:

The requested linear constraint.

GRBModel.getConstrs()

Retrieve an array of all linear constraints in the model.

‘ GRBConstr[] getConstrs ()
Return value:
All linear constraints in the model.

262

GRBModel.getEnv()

Query the environment associated with the model. Note that each model makes its own copy of
the environment when it is created. To change parameters for a model, for example, you should
use this method to obtain the appropriate environment object.

‘ GRBEnv getEnv ()
Return value:
The environment for the model.

GRBModel.getGenConstrMax()

Retrieve the data of a general constraint of type MAX. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a null value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in len. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrMax for a description of the semantics of this general constraint type.

void getGenConstrMax (GRBGenConstr genc,

GRBVar[] resvar,
GRBVar[] vars,
int[] len,
double([] constant)

Arguments:
genc: The index of the general constraint.
Any combination of the following four arguments can be null.
resvar: Store the resultant variable of the constraint at resvar [0].
vars: Array to store the operand variables of the constraint.
len: Store the number of operand variables of the constraint at len[0].
constant: Store the additional constant operand of the constraint at constant [0].

GRBModel.getGenConstrMin()

Retrieve the data of a general constraint of type MIN. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a null value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in len. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrMin for a description of the semantics of this general constraint type.

263

void getGenConstrMin (GRBGenConstr genc,

GRBVar[] resvar,
GRBVar[] vars,
int[] len,
double[] constant)

Arguments:
genc: The index of the general constraint.
Any combination of the following four arguments can be null.
resvar: Store the resultant variable of the constraint at resvar [0].
vars: Array to store the operand variables of the constraint.
len: Store the number of operand variables of the constraint at 1en[0].
constant: Store the additional constant operand of the constraint at constant [0].

GRBModel.getGenConstrAbs()

Retrieve the data of a general constraint of type ABS. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

See also addGenConstrAbs for a description of the semantics of this general constraint type.

void getGenConstrAbs (GRBGenConstr genc,
GRBVar[] resvar,
GRBVar[] argvar)
Arguments:
genc: The index of the general constraint.
Any combination of the following two arguments can be null.
resvar: Store the resultant variable of the constraint at resvar [0].
argvar: Store the argument variable of the constraint at resvar [0].

GRBModel.getGenConstrAnd()

Retrieve the data of a general constraint of type AND. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a null value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in len. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrAnd for a description of the semantics of this general constraint type.

void getGenConstrAnd (GRBGenConstr genc,

GRBVar[] resvar,
GRBVar[] vars,
int [] len)

Arguments:

264

genc: The index of the general constraint.
Any combination of the following four arguments can be null.
resvar: Store the resultant variable of the constraint at resvar [0].
vars: Array to store the operand variables of the constraint.
len: Store the number of operand variables of the constraint at 1len[0].

GRBModel.getGenConstrOr()

Retrieve the data of a general constraint of type OR. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a null value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in len. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrOr for a description of the semantics of this general constraint type.

void getGenConstrOr (GRBGenConstr genc,

GRBVar [] resvar,
GRBVar [] vars,
int[] len)

Arguments:
genc: The index of the general constraint.
Any combination of the following four arguments can be null.
resvar: Store the resultant variable of the constraint at resvar [0].
vars: Array to store the operand variables of the constraint.
len: Store the number of operand variables of the constraint at len[0].

GRBModel.getGenConstrindicator()

Retrieve the data of a general constraint of type INDICATOR. Calling this function for a general
constraint of different type leads to an exception. You can query the GenConstrType attribute to
determine the type of the general constraint.

See also addGenConstrIndicator for a description of the semantics of this general constraint

type.

void getGenConstrIndicator (GRBGenConstr genc,

GRBVar[] binvar,
int[] binval,
GRBLinExpr[] expr,
char[] sense,
double[] rhs)

Arguments:
genc: The index of the general constraint.
Any combination of the following five arguments can be null.

265

binvar: Store the binary indicator variable of the constraint at binvar [0].

binval: Store the value that the indicator variable has to take in order to trigger the linear
constraint at binval [0].

expr: Create a GRBLinExpr object to store the left-hand-side expression of the linear
constraint that is triggered by the indicator at expr[0].

sense: Store the sense for the linear constraint at sense [0]. Options are GRB.LESS_EQUAL,
GRB.EQUAL, or GRB.GREATER_EQUAL.

rhs: Store the right-hand-side value for the linear constraint at rhs[0].

GRBModel.getGenConstrs()

Retrieve an array of all general constraints in the model.

| GRBGenConstr[] getGenConstrs ()
Return value:
All general constraints in the model.

GRBModel.getObjective()

Retrieve the model objective.
Note that the constant and linear portions of the objective can also be retrieved using the
ObjCon and 0bj attributes.

‘ GRBExpr getObjective ()
Return value:
The model objective.

GRBModel.getPWLODbj()

Retrieve the piecewise-linear objective function for a variable. The return value gives the number
of points that define the function, and the z and y arguments give the coordinates of the points,
respectively. The x and y arguments must be large enough to hold the result. Call this method
with null values for x and y if you just want the number of points.

Refer to the description of setPWLOD] for additional information on what the values in and
Yy mean.

int getPWLObj (GRBVar var,
double[] x,
double[] 1y)
Arguments:
var: The variable whose objective function is being retrieved.
x: The x values for the points that define the piecewise-linear function. These will always
be in non-decreasing order.
y: The y values for the points that define the piecewise-linear function.
Return value:
The number of points that define the piecewise-linear objective function.

266

GRBModel.getQConstr()

Retrieve the left-hand side expression from a quadratic constraint. The result is returned as a
GRBQuadExpr object.

‘GRBQuadExpr getQConstr (GRBQConstr qconstr)

Arguments:
gconstr: The quadratic constraint of interest.
Return value:
A GRBQuadExpr object that captures the left-hand side of the quadratic constraint.

GRBModel.getQConstrs()

Retrieve an array of all quadratic constraints in the model.

| GRBQConstr[] getQConstrs ()
Return value:
All quadratic constraints in the model.

GRBModel.getRow()

Retrieve a list of variables that participate in a constraint, and the associated coefficients. The
result is returned as a GRBLinExpr object.

‘GRBLinEXpr getRow (GRBConstr constr)

Arguments:
constr: The constraint of interest.
Return value:
A GRBLinExpr object that captures the set of variables that participate in the constraint.

GRBModel.getSOS()

Retrieve the list of variables that participate in an SOS constraint, and the associated coefficients.
The return value is the length of this list. Note that the argument arrays must be long enough to
accomodate the result. Call the method with null array arguments to determine the appropriate
array lengths.

int getSOS (GRBSOS sos,
GRBVar[] vars,
double[] weights,
int [] type)
Arguments:

267

sos: The SOS set of interest.
vars: A list of variables that participate in sos. Can be null.
weights: The SOS weights for each participating variable. Can be null.
type: The type of the SOS set (either GRB.SOS_TYPE1 or GRB.SOS_TYPE2) is returned in
type[0].
Return value:
The number of entries placed in the output arrays. Note that you should consult the return
value to determine the length of the result; the arrays sizes won’t necessarily match the
result size.

GRBModel.getSOSs()

Retrieve an array of all SOS constraints in the model.

| GRBSOS[] getS0Ss ()
Return value:
All SOS constraints in the model.

GRBModel.getTuneResult()

Use this method to retrieve the results of a previous tune call. Calling this method with argument
n causes tuned parameter set n to be copied into the model. Parameter sets are stored in order of
decreasing quality, with parameter set 0 being the best. The number of available sets is stored in
attribute TuneResultCount.

Once you have retrieved a tuning result, you can call optimize to use these parameter settings
to optimize the model, or write to write the changed parameters to a .prm file.

Please refer to the parameter tuning section for details on the tuning tool.

void getTuneResult (int n)

n: The index of the tuning result to retrieve. The best result is available as index 0. The
number of stored results is available in attribute TuneResultCount.

GRBModel.getVarByName()

Retrieve a variable from its name. If multiple variables have the same name, this method chooses
one arbitrarily. Returns null if no variable has that name.

| GRBVar getVarByName (String name)

Arguments:

name: The name of the desired variable.
Return value:

The requested variable.

268

GRBModel.getVars()

Retrieve an array of all variables in the model.

| GRBVar[] getVars ()
Return value:
All variables in the model.

GRBModel.optimize()

Optimize the model. The algorithm used for the optimization depends on the model type (simplex
or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful completion,
this method will populate the solution related attributes of the model. See the Attributes section
for more information on attributes.

Please consult this section for a discussion of some of the practical issues associated with solving
a precisely defined mathematical model using finite-precision floating-point arithmetic.

Note that this method will process all pending model modifications.

| void optimize ()

GRBModel.optimizeasync()

Optimize a model asynchronously. This routine returns immediately. Your program can perform
other computations while optimization proceeds in the background. To check the state of the
asynchronous optimization, query the Status attribute for the model. A value of IN_PROGRESS
indicates that the optimization has not yet completed. When you are done with your foreground
tasks, you must call sync to sync your foreground program with the asynchronous optimization
task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in
the background is severely limited. Specifically, you can only perform attribute queries, and only
for a few attributes (listed below). Any other calls on the running model, or on any other models that
were built within the same Gurobi environment, will fail with error code OPTIMIZATION _IN_PROGRESS.

Note that there are no such restrictions on models built in other environments. Thus, for
example, you could create multiple environments, and then have a single foreground program
launch multiple simultaneous asynchronous optimizations, each in its own environment.

As already noted, you are allowed to query the value of the Status attribute while an asyn-
chronous optimization is in progress. The other attributes that can be queried are: ObjVal, Ob-
jBound, IterCount, NodeCount, and BarlterCount. In each case, the returned value reflects progress
in the optimization to that point. Any attempt to query the value of an attribute not on this list
will return an OPTIMIZATION_IN_PROGRESS error.

void optimizeasync ()

269

GRBModel.presolve()

Perform presolve on a model.

| GRBModel presolve ()
Return value:
Presolved version of original model.

GRBModel.read()

This method is the general entry point for importing data from a file into a model. It can be used
to read basis files for continuous models, start vectors for MIP models, or parameter settings. The
type of data read is determined by the file suffix. File formats are described in the File Format
section.

Note that this is not the method to use if you want to read a new model from a file. For that,
use the GRBModel constructor. One variant of the constructor takes the name of the file that
contains the new model as its argument.

void read (String filename)

Arguments:
filename: Name of the file to read. The suffix on the file must be either .bas (for an LP
basis), .mst or .sol (for a MIP start), .hnt (for MIP hints), .ord (for a priority order),
or .prm (for a parameter file). The suffix may optionally be followed by .zip, .gz, .bz2,

or .7z.

GRBModel.remove()

Remove a variable, constraint, or SOS from a model.

‘void remove (GRBConstr constr)

Remove a linear constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel.update), optimize
the model (using GRBModel.optimize), or write the model to disk (using GRBModel.write).

Arguments:

constr: The linear constraint to remove.

‘void remove (GRBGenConstr genconstr)

Remove a general constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel.update), optimize
the model (using GRBModel.optimize), or write the model to disk (using GRBModel.write).

Arguments:

270

genconstr: The general constraint to remove.

| void remove (GRBQConstr qconstr)

Remove a quadratic constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel.update), optimize
the model (using GRBModel.optimize), or write the model to disk (using GRBModel.write).

Arguments:

gconstr: The quadratic constraint to remove.

| void remove (GRBSOS sos)

Remove an SOS constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel.update), optimize
the model (using GRBModel.optimize), or write the model to disk (using GRBModel.write).

Arguments:

sos: The SOS constraint to remove.

| void remove (GRBVar var)

Remove a variable from the model. Note that, due to our lazy update approach, the change
won’t actually take effect until you update the model (using GRBModel.update), optimize the
model (using GRBModel.optimize), or write the model to disk (using GRBModel.write).

Arguments:

var: The variable to remove.

GRBModel.reset()

Reset the model to an unsolved state, discarding any previously computed solution information.

| void reset ()

GRBModel.setCallback()

Set the callback object for a model. The callback() method on this object will be called period-
ically from the Gurobi solver. You will have the opportunity to obtain more detailed information
about the state of the optimization from this callback. See the documentation for GRBCallback
for additional information.

Note that a model can only have a single callback method, so this call will replace an existing
callback. To disable a previously set callback, call this method with a null argument.

| void setCallback (GRBCallback cb)

271

GRBModel.set()

Set the value(s) of a parameter or attribute. Use this method for parameters, for scalar model
attributes, or for arrays of constraint or variable attributes.

void set (GRB.DoubleParam param,
double newvalue)

Set the value of a double-valued parameter.

The difference between setting a parameter on a model and setting it on an environment (i.e.,
through GRBEnv.set) is that the former modifies the parameter for a single model, while the latter
modifies the parameter for every model that is subsequently built using that environment (and
leaves the parameter unchanged for models that were previously built using that environment).

Arguments:

param: The parameter being modified.
newvalue: The desired new value for the parameter.

void set (GRB.IntParam param,
int newvalue)

Set the value of an int-valued parameter.

The difference between setting a parameter on a model and setting it on an environment (i.e.,
through GRBEnv.set) is that the former modifies the parameter for a single model, while the latter
modifies the parameter for every model that is subsequently built using that environment (and
leaves the parameter unchanged for models that were previously built using that environment).

Arguments:

param: The parameter being modified.
newvalue: The desired new value for the parameter.

void set (GRB.StringParam param,
String newvalue)

Set the value of a string-valued parameter.

The difference between setting a parameter on a model and setting it on an environment (i.e.,
through GRBEnv.set) is that the former modifies the parameter for a single model, while the latter
modifies the parameter for every model that is subsequently built using that environment (and
leaves the parameter unchanged for models that were previously built using that environment).

Arguments:

param: The parameter being modified.
newvalue: The desired new value for the parameter.

void set (String param,
String newvalue)
Set the value of any parameter using strings alone.
The difference between setting a parameter on a model and setting it on an environment (i.e.,
through GRBEnv.set) is that the former modifies the parameter for a single model, while the latter

272

modifies the parameter for every model that is subsequently built using that environment (and
leaves the parameter unchanged for models that were previously built using that environment).
Arguments:
param: The name of the parameter being modified.
newvalue: The desired new value for the parameter.

void set (GRB.CharAttr attr,

GRBVar[] vars,
char[] newvalues)
Set a char-valued variable attribute for an array of variables.

Arguments:
attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void set (GRB.CharAttr attr,

GRBVar [] vars,
char[] newvalues,
int start,
int len)
Set a char-valued variable attribute for a sub-array of variables.

Arguments:
attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

void set (GRB.CharAttr attr,
GRBVar[] [] vars,
char[][] newvalues)
Set a char-valued variable attribute for a two-dimensional array of variables.
Arguments:
attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void set (GRB.CharAttr attr,
GRBVar[I[1[] vars,
char[][][] newvalues)
Set a char-valued variable attribute for a three-dimensional array of variables.
Arguments:
attr: The attribute being modified.

273

vars: A three-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void set (GRB.CharAttr attr,
GRBConstr[] constrs,
char[] newvalues)
Set a char-valued constraint attribute for an array of constraints.
Arguments:
attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void set (GRB.CharAttr attr,
GRBConstr[] constrs,

char[] newvalues,
int start,
int len)
Set a char-valued constraint attribute for a sub-array of constraints.

Arguments:
attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

void set (GRB.CharAttr attr,
GRBConstr[][] comnstrs,
char[][] newvalues)
Set a char-valued constraint attribute for a two-dimensional array of constraints.
Arguments:
attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void set (GRB.CharAttr attr,
GRBConstr[]J[1[] constrs,
char[][][] newvalues)
Set a char-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

274

void set (GRB.CharAttr attr,
GRBQConstr[] qgconstrs,
char[] newvalues)
Set a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:
attr: The attribute being modified.
gconstrs: The quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.CharAttr attr,
GRBQConstr[] qconstrs,

char[] newvalues,
int start,
int len)
Set a char-valued quadratic constraint attribute for a sub-array of quadratic constraints.

Arguments:
attr: The attribute being modified.
gconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

void set (GRB.CharAttr attr,
GRBQConstr[][] qconstrs,
char[][] newvalues)
Set a char-valued quadratic constraint attribute for a two-dimensional array of quadratic con-
straints.
Arguments:
attr: The attribute being modified.
qgconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.CharAttr attr,
GRBQConstr[]1[1[] qconstrs,
char[][1[] newvalues)

Set a char-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.
Arguments:
attr: The attribute being modified.
qgconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

275

void set (GRB.DoubleAttr attr,
double newvalue)
Set the value of a double-valued model attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void set (GRB.DoubleAttr attr,

GRBVar[] vars,
double[] newvalues)
Set a double-valued variable attribute for an array of variables.

Arguments:
attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void set (GRB.DoubleAttr attr,

GRBVar[] vars,
doublel[] newvalues,
int start,
int len)
Set a double-valued variable attribute for a sub-array of variables.

Arguments:
attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

void set (GRB.DoubleAttr attr,

GRBVar[] [] vars,
double[][] newvalues)
Set a double-valued variable attribute for a two-dimensional array of variables.

Arguments:
attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void set (GRB.DoubleAttr attr,
GRBVar[] [][] vars,
double[] [][] newvalues)
Set a double-valued variable attribute for a three-dimensional array of variables.
Arguments:
attr: The attribute being modified.

276

vars: A three-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void set (GRB.DoubleAttr attr,

GRBConstr[] constrs,
double[] newvalues)
Set a double-valued constraint attribute for an array of constraints.

Arguments:
attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void set (GRB.DoubleAttr attr,

GRBConstr[] constrs,
double[] newvalues,
int start,
int len)
Set a double-valued constraint attribute for a sub-array of constraints.

Arguments:
attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
start: The first constraint of interest in the list.
len: The number of constraints.

void set (GRB.DoubleAttr attr,
GRBConstr[] [] constrs,
double[] [] newvalues)
Set a double-valued constraint attribute for a two-dimensional array of constraints.
Arguments:
attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void set (GRB.DoubleAttr attr,
GRBConstr[]J[1[] constrs,
double[] [][] newvalues)
Set a double-valued constraint attribute for a three-dimensional array of constraints.
Arguments:
attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

277

void set (GRB.DoubleAttr attr,

GRBQConstr[] gconstrs,
double[] newvalues)
Set a double-valued quadratic constraint attribute for an array of quadratic constraints.

Arguments:
attr: The attribute being modified.
gconstrs: The quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.DoubleAttr attr,

GRBQConstr[] gconstrs,
double[] newvalues,
int start,
int len)
Set a double-valued quadratic constraint attribute for a sub-array of quadratic constraints.

Arguments:
attr: The attribute being modified.
gconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
start: The first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

void set (GRB.DoubleAttr attr,
GRBQConstr[][] qconstrs,
double[][] newvalues)
Set a double-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.
Arguments:
attr: The attribute being modified.
qgconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.DoubleAttr attr,
GRBQConstr[]1[1[] qconstrs,
double[][1[] newvalues)
Set a double-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.
Arguments:
attr: The attribute being modified.
qgconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

278

void set (GRB.IntAttr attr,
int newvalue)
Set the value of an int-valued model attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void set (GRB.IntAttr attr,

GRBVar[] vars,
int[] newvalues)
Set an int-valued variable attribute for an array of variables.

Arguments:
attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void set (GRB.IntAttr attr,

GRBVar[] vars,
int [] newvalues,
int start,
int len)
Set an int-valued variable attribute for a sub-array of variables.

Arguments:
attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

void set (GRB.IntAttr attr,
GRBVar[] [] vars,
int[1[] newvalues)
Set an int-valued variable attribute for a two-dimensional array of variables.
Arguments:
attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void set (GRB.IntAttr attr,
GRBVar[][][] wvars,
int[10][] newvalues)
Set an int-valued variable attribute for a three-dimensional array of variables.
Arguments:
attr: The attribute being modified.

279

vars: A three-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void set (GRB.IntAttr attr,
GRBConstr[] constrs,
int[] newvalues)
Set an int-valued constraint attribute for an array of constraints.
Arguments:
attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void set (GRB.IntAttr attr,
GRBConstr[] constrs,

int [] newvalues,
int start,
int len)
Set an int-valued constraint attribute for a sub-array of constraints.

Arguments:
attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

void set (GRB.IntAttr attr,
GRBConstr[][] comnstrs,
int[][] newvalues)
Set an int-valued constraint attribute for a two-dimensional array of constraints.
Arguments:
attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void set (GRB.IntAttr attr,
GRBConstr[]J[1[] constrs,
int[10][] newvalues)
Set an int-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

280

void set (GRB.StringAttr attr,
String newvalue)
Set the value of a String-valued model attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void set (GRB.StringAttr attr,

GRBVar[] vars,
Stringl[] newvalues)
Set a String-valued variable attribute for an array of variables.

Arguments:
attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void set (GRB.StringAttr attr,

GRBVar[] vars,
Stringl[] newvalues,
int start,
int len)
Set a String-valued variable attribute for a sub-array of variables.

Arguments:
attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

void set (GRB.StringAttr attr,

GRBVar[] [] vars,
String[][] newvalues)
Set a String-valued variable attribute for a two-dimensional array of variables.

Arguments:
attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void set (GRB.StringAttr attr,
GRBVar[] [][] vars,
String[][][] newvalues)
Set a String-valued variable attribute for a three-dimensional array of variables.
Arguments:
attr: The attribute being modified.

281

vars: A three-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void set (GRB.StringAttr attr,

GRBConstr[] constrs,
Stringl[] newvalues)
Set a String-valued constraint attribute for an array of constraints.

Arguments:
attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void set (GRB.StringAttr attr,

GRBConstr[] constrs,
Stringl[] newvalues,
int start,
int len)
Set a String-valued constraint attribute for a sub-array of constraints.

Arguments:
attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

void set (GRB.StringAttr attr,
GRBConstr[] [] constrs,
Stringl[] [] newvalues)
Set a String-valued constraint attribute for a two-dimensional array of constraints.
Arguments:
attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void set (GRB.StringAttr attr,
GRBConstr[]J[1[] constrs,
String[][][] newvalues)
Set a String-valued constraint attribute for a three-dimensional array of constraints.
Arguments:
attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

282

void set (GRB.StringAttr attr,

GRBQConstr[] gconstrs,
Stringl[] newvalues)
Set a String-valued quadratic constraint attribute for an array of quadratic constraints.

Arguments:
attr: The attribute being modified.
gconstrs: The quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.StringAttr attr,

GRBQConstr[] gconstrs,
String(] newvalues,
int start,
int len)
Set a String-valued quadratic constraint attribute for a sub-array of quadratic constraints.

Arguments:
attr: The attribute being modified.
gconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

void set (GRB.StringAttr attr,
GRBQConstr[][] qconstrs,
String[][] newvalues)
Set a String-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.
Arguments:
attr: The attribute being modified.
qgconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.StringAttr attr,
GRBQConstr[]1[1[] qconstrs,
String[][]1[] newvalues)
Set a String-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.
Arguments:
attr: The attribute being modified.
qgconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

283

void set (GRB.StringAttr attr,
GRBGenConstr[] genconstrs,
Stringl[] newvalues)
Set a String-valued general constraint attribute for an array of general constraints.
Arguments:
attr: The attribute being modified.
genconstrs: The general constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input general constraint.

void set (GRB.StringAttr attr,
GRBGenConstr[] genconstrs,

String(] newvalues,
int start,
int len)
Set a String-valued general constraint attribute for a sub-array of general constraints.

Arguments:
attr: The attribute being modified.
genconstrs: A one-dimensional array of general constraints whose attribute values are
being modified.
newvalues: The desired new values for the attribute for each input general constraint.
start: The index of the first general constraint of interest in the list.
len: The number of general constraints.

void set (GRB.StringAttr attr,
GRBGenConstr[][] genconstrs,
String[][] newvalues)
Set a String-valued general constraint attribute for a two-dimensional array of general con-
straints.
Arguments:
attr: The attribute being modified.
genconstrs: A two-dimensional array of general constraints whose attribute values are
being modified.
newvalues: The desired new values for the attribute for each input general constraint.

void set (GRB.StringAttr attr,
GRBGenConstr([] [J[] genconstrs,
String[][1[] newvalues)

Set a String-valued general constraint attribute for a three-dimensional array of general con-
straints.
Arguments:
attr: The attribute being modified.
genconstrs: A three-dimensional array of general constraints whose attribute values are
being modified.
newvalues: The desired new values for the attribute for each input general constraint.

284

GRBModel.setObjective()

Set the model objective equal to a linear or quadratic expression.

Note that you can also modify the linear portion of a model objective using the Obj variable
attribute. If you wish to mix and match these two approaches, please note that this method replaces
the entire existing objective, while the 0bj attribute can be used to modify individual linear terms.

void setObjective (GRBExpr expr,
int sense)
Set the model objective, and the objective sense (GRB.MINIMIZE for minimization, GRB.MAXIMIZE
for maximization).
Arguments:
expr: New model objective.
sense: New optimization sense (GRB.MINIMIZE for minimization, GRB.MAXIMIZE for maxi-
mization).

‘void setObjective (GRBExpr expr)

Set the model objective. The sense of the objective is determined by the value of the ModelSense
attribute.
Arguments:
expr: New model objective.

GRBModel.setPWLODbj()

Set a piecewise-linear objective function for a variable.

The arguments to this method specify a list of points that define a piecewise-linear objective
function for a single variable. Specifically, the z and y arguments give coordinates for the vertices
of the function.

For example, suppose we want to define the function f(x) shown below:

285

The vertices of the function occur at the points (1, 1), (3,2) and (5,4), so z is {1, 3, 5} and y is {1,
2, 4}. With these arguments we define f(1) = 1, f(3) = 2 and f(5) = 4. Other objective values
are linearly interpolated between neighboring points. The first pair and last pair of points each
define a ray, so values outside the specified z values are extrapolated from these points. Thus, in
our example, f(—1) =0 and f(6) = 5.

More formally, a set of n points

x={z1,...,zn}, y={v1,---,Un}

define the following piecewise-linear function:

y1 + 272 (v — 1), if v <,
fv) = yi—l—%(v—xi), ifv>x;and v < @jyq,
Yp + L=l (y — 3y, if v > @,

Tn—Tn—1

The x entries must appear in non-decreasing order. Two points can have the same x coordinate
— this can be useful for specifying a discrete jump in the objective function.

Note that a piecewise-linear objective can change the type of a model. Specifically, including
a non-convex piecewise linear objective function in a continuous model will transform that model
into a MIP. This can significantly increase the cost of solving the model.

Setting a piecewise-linear objective for a variable will set the Obj attribute on that variable to
0. Similarly, setting the 0bj attribute will delete the piecewise-linear objective on that variable.

Each variable can have its own piecewise-linear objective function. They must be specified
individually, even if multiple variables share the same function.

void setPWLObj (GRBvar var,
double[] x,
double[] 1y)
Set the piecewise-linear objective function for a variable.
Arguments:
var: The variable whose objective function is being set.
x: The x values for the points that define the piecewise-linear function. Must be in non-
decreasing order.
y: The y values for the points that define the piecewise-linear function.

GRBModel.terminate()

Generate a request to terminate the current optimization. This method can be called at any time
during an optimization.

| void terminate ()

286

GRBModel.tune()

Perform an automated search for parameter settings that improve performance. Upon completion,
this method stores the best parameter sets it found. The number of stored parameter sets can be
determined by querying the value of the TuneResultCount attribute. The actual settings can be
retrieved using getTuneResult

Please refer to the parameter tuning section for details on the tuning tool.

| void tune ()

GRBModel.update()

Process any pending model modifications.

| void wupdate ()

GRBModel.write()

This method is the general entry point for writing model data to a file. It can be used to write
optimization models, IIS submodels, solutions, basis vectors, MIP start vectors, or parameter
settings. The type of file is determined by the file suffix. File formats are described in the File
Format section.

Note that writing a model to a file will process all pending model modifications. However,
writing other model information (solutions, bases, etc.) will not.

| void write (String filename)

Arguments:
filename: Name of the file to write. The file type is encoded in the file name suffix. Valid
suffixes for writing the model itself are .mps, .rew, .1p, or .rlp. An IIS can be written
by using an .ilp suffix. Use .sol for a solution file, .mst for a MIP start, .hnt for MIP
hints, .bas for a basis file, or .prm for a parameter file. The suffix may optionally be
followed by .gz, .bz2, or .7z, which produces a compressed result.

287

4.3 GRBVar

Gurobi variable object. Variables are always associated with a particular model. You create a
variable object by adding a variable to a model (using GRBModel.addVar), rather than by using a
GRBVar constructor.

The methods on variable objects are used to get and set variable attributes. For example,
solution information can be queried by calling get(GRB.DoubleAttr.X). Note, however, that it is
generally more efficient to query attributes for a set of variables at once. This is done using the
attribute query method on the GRBModel object (GRBModel.get).

GRBVar.get()

Query the value of a variable attribute.

| char get (GRB.CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| double get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| int get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| String get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

288

GRBVar.sameAs()

‘boolean sameAs (GRBVar var2)

Check whether two variable objects refer to the same variable.
Arguments:
var2: The other variable.
Return value:
Boolean result indicates whether the two variable objects refer to the same model variable.

GRBVar.set()

Set the value of a variable attribute.

void set (GRB.CharAttr attr,
char newvalue)
Set the value of a char-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB.DoubleAttr attr,
double newvalue)
Set the value of a double-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB.IntAttr attr,
int newvalue)
Set the value of an int-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB.StringAttr attr,
String newvalue)
Set the value of a string-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

289

4.4 GRBConstr

Gurobi constraint object. Constraints are always associated with a particular model. You create a
constraint object by adding a constraint to a model (using GRBModel.addConstr), rather than by
using a GRBConstr constructor.

The methods on constraint objects are used to get and set constraint attributes. For example,
constraint right-hand sides can be queried by calling get(GRB.DoubleAttr.RHS). Note, however,
that it is generally more efficient to query attributes for a set of constraints at once. This is done
using the attribute query method on the GRBModel object (GRBModel.get).

GRBConstr.get()

Query the value of a constraint attribute.

| char get (GRB.CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| double get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| int get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| String get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

290

GRBConstr.sameAs()

‘boolean sameAs (GRBConstr constr2)

Check whether two constraint objects refer to the same constraint.

Arguments:
constr2: The other constraint.

Return value:
Boolean result indicates whether the two constraint objects refer to the same model con-
straint.

GRBConstr.set()

Set the value of a constraint attribute.

void set (GRB.CharAttr attr,
char newvalue)
Set the value of a char-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB.DoubleAttr attr,
double newvalue)
Set the value of a double-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB.IntAttr attr,
int newvalue)
Set the value of an int-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB.StringAttr attr,
String newvalue)
Set the value of a string-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

291

4.5 GRBQConstr

Gurobi quadratic constraint object. Quadratic constraints are always associated with a particular
model. You create a quadratic constraint object by adding a quadratic constraint to a model (using
GRBModel.addQConstr), rather than by using a GRBQConstr constructor.

The methods on quadratic constraint objects are used to get and set constraint attributes. For
example, quadratic constraint right-hand sides can be queried by calling get(GRB.DoubleAttr.QCRHS).
Note, however, that it is generally more efficient to query attributes for a set of constraints at once.
This is done using the attribute query method on the GRBModel object (GRBModel.get).

GRBQConstr.get()

Query the value of a quadratic constraint attribute.

| char get (GRB.CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| double get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| int get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| String get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

292

GRBQConstr.set()

Set the value of a quadratic constraint attribute.

void set (GRB.CharAttr attr,
char newvalue)
Set the value of a char-valued attribute.
Arguments:
attr: The attribute being modified.

newvalue: The desired new value of the attribute.

void set (GRB.DoubleAttr attr,
double newvalue)
Set the value of a double-valued attribute.
Arguments:
attr: The attribute being modified.

newvalue: The desired new value of the attribute.

void set (GRB.StringAttr attr,
String newvalue)
Set the value of a string-valued attribute.
Arguments:
attr: The attribute being modified.

newvalue: The desired new value of the attribute.

293

4.6 GRBSOS

Gurobi SOS constraint object. SOS constraints are always associated with a particular model.
You create an SOS object by adding an SOS constraint to a model (using GRBModel.addSOS),
rather than by using a GRBSOS constructor. Similarly, SOS constraints are removed using the
GRBModel.remove method.

An SOS constraint can be of type 1 or 2 (GRB.SOS_TYPE1 or GRB.SOS_TYPE2). A type 1 SOS
constraint is a set of variables for which at most one variable in the set may take a value other than
zero. A type 2 SOS constraint is an ordered set of variables where at most two variables in the set
may take non-zero values. If two take non-zero values, they must be contiguous in the ordered set.

SOS constraint objects have one attribute, IISS0S, which can be queried with the GRBSOS.get
method.

GRBSO0S.get()
Query the value of an SOS attribute.

| int get (GRB.IntAttr attr)

Arguments:
attr: The attribute being queried.
Return value:
The current value of the requested attribute.

294

4.7 GRBGenConstr

Gurobi general constraint object. General constraints are always associated with a particular
model. You create a general constraint object by adding a general constraint to a model (using
GRBModel.addGenConstr), rather than by using a GRBGenConstr constructor.

The methods on general constraint objects are used to get and set constraint attributes. For
example, general constraint types can be queried by calling get(GRB.IntAttr.GenConstrType).
Note, however, that it is generally more efficient to query attributes for a set of constraints at once.
This is done using the attribute query method on the GRBModel object (GRBModel.get).

GRBGenConstr.get()

Query the value of a general constraint attribute.

| int get (GRB.IntAttr attr)

Query the value of a int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

‘String get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBGenConstr.set()

Set the value of a general constraint attribute.

void set (GRB.StringAttr attr,
String newvalue)
Set the value of a string-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

295

4.8 GRBExpr

Abstract base class for the GRBLinExpr and GRBQuadExpr classes. Expressions are used to build
objectives and constraints. They are temporary objects that typically have short lifespans.

GRBExpr.getValue()

Compute the value of an expression for the current solution.

| double getValue ()
Return value:
Value of the expression for the current solution.

296

4.9 GRBLinExpr

Gurobi linear expression object. A linear expression consists of a constant term, plus a list of
coefficient-variable pairs that capture the linear terms. Linear expressions are used to build con-
straints. They are temporary objects that typically have short lifespans.

The GRBLinExpr class is a sub-class of the abstract base class GRBExpr.

You generally build linear expressions by starting with an empty expression (using the GRB-
LinExpr constructor), and then adding terms. Terms can be added individually, using addTerm,
or in groups, using addTerms, or multAdd. Terms can also be removed from an expression, using
remove.

Individual terms in a linear expression can be queried using the getVar, getCoeff, and getCon-
stant methods. You can query the number of terms in the expression using the size method.

Note that a linear expression may contain multiple terms that involve the same variable. These
duplicate terms are merged when creating a constraint from an expression, but they may be visible
when inspecting individual terms in the expression (e.g., when using getVar).

GRBLinExpr()

Linear expression constructor. Create an empty linear expression, or copy an existing expression.

| GRBLinExpr GRBLinExpr ()
Create an empty linear expression.
Return value:
An empty expression object.

| GRBLinExpr GRBLinExpr (GRBLinExpr orig)

Copy an existing linear expression.
Arguments:

orig: Existing expression to copy.
Return value:

A copy of the input expression object.

GRBLinExpr.add()

Add one linear expression into another. Upon completion, the invoking linear expression will be
equal to the sum of itself and the argument expression.
‘ void add (GRBLinExpr 1le)

Arguments:
le: Linear expression to add.

297

GRBLinExpr.addConstant()

Add a constant into a linear expression.

‘void addConstant (double c)

Arguments:
c: Constant to add to expression.

GRBLinExpr.addTerm()

Add a single term into a linear expression.

void addTerm (double coeff,
GRBVar var)
Arguments:
coeff: Coefficient for new term.
var: Variable for new term.

GRBLinExpr.addTerms()

Add new terms into a linear expression.

void addTerms (double[] coeffs,
GRBVar[] vars)
Add a list of terms into a linear expression. Note that the lengths of the two argument arrays
must be equal.
Arguments:
coeffs: Coeflicients for new terms.
vars: Variables for new terms.

void addTerms (double[] coeffs,
GRBVar[] vars,
int start,
int len)

Add new terms into a linear expression. This signature allows you to use arrays to hold the
coefficients and variables that describe the terms in an array without being forced to add a term
for each entry in the array. The start and len arguments allow you to specify which terms to add.

Arguments:

coeffs: Coefficients for new terms.
vars: Variables for new terms.

start: The first term in the list to add.
len: The number of terms to add.

298

GRBLinExpr.clear()

Set a linear expression to 0.

| void clear ()

GRBLinExpr.getConstant()

Retrieve the constant term from a linear expression.

| double getConstant ()
Return value:
Constant from expression.

GRBLinExpr.getCoeff()

Retrieve the coefficient from a single term of the expression.

| double getCoeff (int i)

Return value:
Coefficient for the term at index i in the expression.

GRBLinExpr.getValue()

Compute the value of a linear expression for the current solution.

| double getValue ()
Return value:
Value of the expression for the current solution.

GRBLinExpr.getVar()

Retrieve the variable object from a single term of the expression.

| GRBVar getVar (int i)

Return value:
Variable for the term at index i in the expression.

299

GRBLinExpr.multAdd()

Add a constant multiple of one linear expression into another. Upon completion, the invoking linear
expression is equal the sum of itself and the constant times the argument expression.

void multAdd (double m,
GRBLinExpr 1le)
Arguments:
m: Constant multiplier for added expression.
le: Linear expression to add.

GRBLinExpr.remove()

Remove a term from a linear expression.

| void remove (int i)

Remove the term stored at index i of the expression.
Arguments:
i: The index of the term to be removed.

\boolean remove (GRBVar var)

Remove all terms associated with variable var from the expression.
Arguments:
var: The variable whose term should be removed.
Return value:
Returns true if the variable appeared in the linear expression (and was removed).

GRBLinExpr.size()

Retrieve the number of terms in the linear expression (not including the constant).

| int size ()
Return value:
Number of terms in the expression.

300

4.10 GRBQuadExpr

Gurobi quadratic expression object. A quadratic expression consists of a linear expression, plus a
list of coeflicient-variable-variable triples that capture the quadratic terms. Quadratic expressions
are used to build quadratic objective functions and quadratic constraints. They are temporary
objects that typically have short lifespans.

The GRBQuadExpr class is a sub-class of the abstract base class GRBExpr.

You generally build quadratic expressions by starting with an empty expression (using the
GRBQuadExpr constructor), and then adding terms. Terms can be added individually, using
addTerm, or in groups, using addTerms, or multAdd. Quadratic terms can be removed from a
quadratic expression using remove.

Individual quadratic terms in a quadratic expression can be queried using the getVarl, getVar2,
and getCoeff methods. You can query the number of quadratic terms in the expression using the
size method. To query the constant and linear terms associated with a quadratic expression,
first obtain the linear portion of the quadratic expression using getLinExpr, and then use the
getConstant, getCoeff, and getVar methods on the resulting GRBLinExpr object.

Note that a quadratic expression may contain multiple terms that involve the same variable
pair. These duplicate terms are merged when creating the model objective from an expression, but
they may be visible when inspecting individual quadratic terms in the expression (e.g., when using
getVarl and getVar2).

GRBQuadExpr()

Quadratic expression constructor. Create an empty quadratic expression, or copy an existing
expression.

| GRBQuadExpr GRBQuadExpr ()
Create an empty quadratic expression.
Return value:
An empty expression object.

‘GRBQuadExpr GRBQuadExpr (GRBLinExpr orig)

Initialize a quadratic expression from an existing linear expression.
Arguments:
orig: Existing linear expression to copy.
Return value:
Quadratic expression object whose initial value is taken from the input linear expression.

| GRBQuadExpr GRBQuadExpr (GRBQuadExpr orig)

Copy an existing quadratic expression.
Arguments:

orig: Existing expression to copy.
Return value:

A copy of the input expression object.

301

GRBQuadExpr.add()

Add an expression into a quadratic expression. Upon completion, the invoking quadratic expression
will be equal to the sum of itself and the argument expression.

| void add (GRBLinExpr le)

Add a linear expression.
Arguments:
le: Linear expression to add.

| void add (GRBQuadExpr qe)

Add a quadratic expression.
Arguments:
ge: Quadratic expression to add.

GRBQuadExpr.addConstant()

Add a constant into a quadratic expression.

| void addConstant (double c)

Arguments:
c: Constant to add to expression.

GRBQuadExpr.addTerm()

Add a single term into a quadratic expression.

void addTerm (double coeff,
GRBVar var)
Add a single linear term (coeff*var) into a quadratic expression.
Arguments:
coeff: Coefficient for new term.
var: Variable for new term.

void addTerm (double coeff,
GRBVar varl,
GRBVar var2)
Add a single quadratic term (coeff*varil*var2) into a quadratic expression.
Arguments:
coeff: Coefficient for new quadratic term.
varl: First variable for new quadratic term.
var2: Second variable for new quadratic term.

302

GRBQuadExpr.addTerms()

Add new terms into a quadratic expression.

void addTerms (double[] coeffs,
GRBVar[] vars)
Add a list of linear terms into a quadratic expression. Note that the lengths of the two argument
arrays must be equal.
Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.

void addTerms (double[] <coeffs,
GRBVar[] vars,
int start,
int len)

Add new linear terms into a quadratic expression. This signature allows you to use arrays to
hold the coefficients and variables that describe the linear terms in an array without being forced
to add a term for each entry in the array. The start and len arguments allow you to specify which
terms to add.

Arguments:

coeffs: Coefficients for new terms.
vars: Variables for new terms.

start: The first term in the list to add.
len: The number of terms to add.

void addTerms (double[] coeffs,
GRBVar[] wvarsi,
GRBVar[] wvars2)
Add a list of quadratic terms into a quadratic expression. Note that the lengths of the three
argument arrays must be equal.
Arguments:
coeffs: Coefficients for new quadratic terms.
varsl: First variables for new quadratic terms.
vars2: Second variables for new quadratic terms.

void addTerms (double[] coeffs,
GRBVar[] wvarsi,
GRBVar[] vars2,
int start,
int len)
Add new quadratic terms into a quadratic expression. This signature allows you to use arrays
to hold the coefficients and variables that describe the terms in an array without being forced to

303

add a term for each entry in the array. The start and len arguments allow you to specify which
terms to add.
Arguments:

coeffs: Coefficients for new quadratic terms.

varsl: First variables for new quadratic terms.

vars2: Second variables for new quadratic terms.

start: The first term in the list to add.

len: The number of terms to add.

GRBQuadExpr.clear()

Set a quadratic expression to 0.

‘ void clear ()

GRBQuadExpr.getCoeff()

Retrieve the coefficient from a single quadratic term of the quadratic expression.

‘double getCoeff (int i)

Return value:
Coefficient for the quadratic term at index i in the expression.

GRBQuadExpr.getLinExpr()

A quadratic expression is represented as a linear expression, plus a list of quadratic terms. This
method retrieves the linear expression associated with the quadratic expression.

| GRBLinExpr getLinExpr ()
Return value:
Linear expression associated with the quadratic expression.

GRBQuadExpr.getValue()

Compute the value of a quadratic expression for the current solution.

| double getValue ()
Return value:
Value of the expression for the current solution.

304

GRBQuadExpr.getVarl()

Retrieve the first variable object associated with a single quadratic term from the expression.

| GRBVar getVarl (int i)

Return value:
First variable for the quadratic term at index i in the quadratic expression.

GRBQuadExpr.getVar2()

Retrieve the second variable object associated with a single quadratic term from the expression.

‘GRBVar getVar2 (int i)

Return value:
Second variable for the quadratic term at index i in the quadratic expression.

GRBQuadExpr.multAdd()

Add a constant multiple of one quadratic expression into another. Upon completion, the invoking
quadratic expression is equal the sum of itself and the constant times the argument expression.

void multAdd (double m,
GRBLinExpr 1le)
Add a linear expression into a quadratic expression.
Arguments:
m: Constant multiplier for added expression.
le: Linear expression to add.

void multAdd (double m,
GRBQuadExpr qe)
Add a quadratic expression into a quadratic expression.
Arguments:
m: Constant multiplier for added expression.
ge: Quadratic expression to add.

GRBQuadExpr.remove()

Remove a term from a quadratic expression.

‘void remove (int i)

Remove the quadratic term stored at index i of the expression.

305

Arguments:
i: The index of the quadratic term to be removed.

‘boolean remove (GRBVar var)

Remove all quadratic terms associated with variable var from the expression.
Arguments:

var: The variable whose quadratic term should be removed.
Return value:

Returns true if the variable appeared in the quadratic expression (and was removed).

GRBQuadExpr.size()

Retrieve the number of quadratic terms in the quadratic expression. Use GRBQuadExpr.getLinExpr
to retrieve constant or linear terms from the quadratic expression.

int size ()
Return value:
Number of quadratic terms in the expression.

306

4.11 GRBColumn

Gurobi column object. A column consists of a list of coefficient, constraint pairs. Columns are used
to represent the set of constraints in which a variable participates, and the associated coefficients.
They are temporary objects that typically have short lifespans.

You generally build columns by starting with an empty column (using the GRBColumn con-
structor), and then adding terms. Terms can be added individually, using addTerm, or in groups,
using addTerms. Terms can also be removed from a column, using remove.

Individual terms in a column can be queried using the getConstr, and getCoeff methods. You
can query the number of terms in the column using the size method.

GRBColumn()

Column constructor. Create an empty column, or copy an existing column.

| GRBColumn GRBColumn ()
Create an empty column.
Return value:
An empty column object.

| GRBColumn GRBColumn (GRBColumn orig)

Copy an existing column.
Return value:
A copy of the input column object.

GRBColumn.addTerm()

Add a single term into a column.

void addTerm (double coeff,
GRBConstr constr)
Arguments:
coeff: Coeflicient for new term.
constr: Constraint for new term.

GRBColumn.addTerms()

Add new terms into a column.

void addTerms (doublel[] coeffs,
GRBConstr[] constrs)
Add a list of terms into a column. Note that the lengths of the two argument arrays must be
equal.

307

Arguments:
coeffs: Coeflicients for added constraints.
constrs: Constraints to add to column.

void addTerms (doublel] coeffs,
GRBConstr[] constrs,
int start,
int len)

Add new terms into a column. This signature allows you to use arrays to hold the coefficients
and constraints that describe the terms in an array without being forced to add an term for each
member in the array. The start and len arguments allow you to specify which terms to add.

Arguments:

coeffs: Coefficients for added constraints.
constrs: Constraints to add to column.
start: The first term in the list to add.
len: The number of terms to add.

GRBColumn.clear()

Remove all terms from a column.

| void clear ()

GRBColumn.getCoeff()

Retrieve the coefficient from a single term in the column.

| double getCoeff (int i)

Return value:
Coefficient for the term at index i in the column.

GRBColumn.getConstr()

Retrieve the constraint object from a single term in the column.

| GRBConstr getConstr (int i)

Return value:
Constraint for the term at index i in the column.

308

GRBColumn.remove()

Remove a single term from a column.

| GRBConstr remove (int i)

Remove the term stored at index i of the column.

Arguments:
i: The index of the term to be removed.

Return value:
The constraint whose term was removed from the column. Returns null if the specified
index is out of range.

‘boolean remove (GRBConstr constr)

Remove the term associated with constraint constr from the column.
Arguments:

constr: The constraint whose term should be removed.
Return value:

Returns true if the constraint appeared in the column (and was removed).

GRBColumn.size()

Retrieve the number of terms in the column.

| int size ()
Return value:
Number of terms in the column.

309

4.12 GRBCallback

Gurobi callback class. This is an abstract class. To implement a callback, you should create a
subclass of this class and implement a callback() method. If you pass an object of this subclass
to method GRBModel.setCallback before calling GRBModel.optimize, the callback() method of
the class will be called periodically. Depending on where the callback is called from, you will be
able to obtain various information about the progress of the optimization.

Note that this class contains one protected int member variable: where. You can query this
variable from your callback() method to determine where the callback was called from.

Gurobi callbacks can be used both to monitor the progress of the optimization and to modify
the behavior of the Gurobi optimizer. A simple user callback function might call the GRBCall-
back.getIntInfo or GRBCallback.getDoubleInfo methods to produce a custom display, or perhaps to
terminate optimization early (using GRBCallback.abort). More sophisticated MIP callbacks might
use GRBCallback.getNodeRel or GRBCallback.getSolution to retrieve values from the solution to
the current node, and then use GRBCallback.addCut or GRBCallback.addLazy to add a constraint
to cut off that solution, or GRBCallback.setSolution to import a heuristic solution built from that
solution.

When solving a model using multiple threads, note that the user callback is only ever called
from a single thread, so you don’t need to worry about the thread-safety of your callback.

You can look at the Callback. java example for details of how to use Gurobi callbacks.

GRBCallback()

Callback constructor.

| GRBCallback GRBCallback ()
Return value:
A callback object.

GRBCallback.abort()

Abort optimization. When the optimization stops, the Status attribute will be equal to GRB.Status . INTERRUPTED.

‘ void abort ()

GRBCallback.addCut()

Add a cutting plane to the MIP model from within a callback function. Note that this method can
only be invoked when the where member variable is equal to GRB.CB_MIPNODE (see the Callback
Codes section for more information).

Cutting planes can be added at any node of the branch-and-cut tree. However, they should be
added sparingly, since they increase the size of the relaxation model that is solved at each node
and can significantly degrade node processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the
relaxation solution at the current node, you should first call getNodeRel.

310

When adding your own cuts, you must set parameter PreCrush to value 1. This setting shuts
off a few presolve reductions that sometimes prevent cuts on the original model from being applied
to the presolved model.

Note that cutting planes added through this method must truly be cutting planes — they can
cut off continuous solutions, but they may not cut off integer solutions that respect the original
constraints of the model. Ignoring this restriction will lead to incorrect solutions.

void addCut (GRBLinExpr 1lhsExpr,
char sense,
double rhsVal)
Arguments:
lhsExpr: Left-hand side expression for new cutting plane.
sense: Sense for new cutting plane (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsVal: Right-hand side value for new cutting plane.

GRBCallback.addLazy()

Add a lazy constraint to the MIP model from within a callback function. Note that this method can
only be invoked when the where member variable is equal to GRB.CB_MIPNODE or GRB.CB_MIPSOL
(see the Callback Codes section for more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large
to represent explicitly. By only including the constraints that are actually violated by solutions
found during the branch-and-cut search, it is sometimes possible to find a proven optimal solution
while only adding a fraction of the full set of constraints.

You would typically add a lazy constraint by first querying the current node solution (by calling
getSolution from a GRB.CB_MIPSOL callback, or getNodeRel from a GRB.CB_MIPNODE callback), and
then calling addLazy () to add a constraint that cuts off the solution. Gurobi guarantees that you
will have the opportunity to cut off any solutions that would otherwise be considered feasible.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints,
including those that have already been added. Node solutions will usually respect previously added
lazy constraints, but not always.

Note that you must set the LazyConstraints parameter if you want to use lazy constraints.

void addLazy (GRBLinExpr lhsExpr,
char sense,
double rhsVal)
Arguments:
lhsExpr: Left-hand side expression for new lazy constraint.
sense: Sense for new lazy constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).
rhsVal: Right-hand side value for new lazy constraint.

311

GRBCallback.getDoublelnfo()

Request double-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the double-valued information
that can be queried for different values of where, please refer to the Callback section.

| double getDoubleInfo (int what)

Arguments:

what: Information requested (refer the list of Gurobi Callback Codes for possible values).
Return value:

Value of requested callback information.

GRBCallback.getIntInfo()

Request int-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the int-valued information that
can be queried for different values of where, please refer to the Callback section.

| int getIntInfo (int what)

Arguments:

what: Information requested (refer the list of Gurobi Callback Codes for possible values).
Return value:

Value of requested callback information.

GRBCallback.getNodeRel()

Retrieve node relaxation solution values at the current node. Only available when the where mem-
ber variable is equal to GRB.CB_MIPNODE, and GRB.CB_MIPNODE_STATUS is equal to GRB.Status.0PTIMAL.

| double getNodeRel (GRBVar v)

Arguments:
v: The variable whose value is desired.
Return value:
The value of the specified variable in the node relaxation for the current node.

‘double[] getNodeRel (GRBVar[] xvars)

Arguments:
xvars: The list of variables whose values are desired.
Return value:
The values of the specified variables in the node relaxation for the current node.

312

| double[1[] getNodeRel (GRBVar[][] =xvars)

Arguments:
xvars: The array of variables whose values are desired.
Return value:
The values of the specified variables in the node relaxation for the current node.

GRBCallback.getSolution()

Retrieve values from the current solution vector. Only available when the where member variable
is equal to GRB.CB_MIPSOL.

| double getSolution (GRBVar v)

Arguments:
v: The variable whose value is desired.
Return value:
The value of the specified variable in the current solution vector.

‘double[] getSolution (GRBVar[] xvars)

Arguments:

xvars: The list of variables whose values are desired.
Return value:

The values of the specified variables in the current solution.

| double[1[]1 getSolution (GRBVar[1[] =xvars)

Arguments:

xvars: The array of variables whose values are desired.
Return value:

The values of the specified variables in the current solution.

GRBCallback.getStringinfo()

Request string-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the string-valued information
that can be queried for different values of where, please refer to the Callback section.

| String getStringInfo (int what)

Arguments:

what: Information requested (refer the list of Gurobi Callback Codes for possible values).
Return value:

Value of requested callback information.

313

GRBCallback.setSolution()

Import solution values for a heuristic solution. Only available when the where member variable is
equal to GRB.CB_MIPNODE.

When you specify a heuristic solution from a callback, variables initially take undefined values.
You should use this method to specify variable values. You can make multiple calls to setSolution
from one callback invocation to specify values for multiple sets of variables. At the end of the
callback, if values have been specified for any variables, the Gurobi optimizer will try to compute a
feasible solution from the specified values, possibly filling in values for variables whose values were
left undefined.

void setSolution (GRBVar v,
double val)

Arguments:
v: The variable whose values is being set.
val: The value of the variable in the new solution.

void setSolution (GRBVar[] =xvars,
double[] sol)
Arguments:
xvars: The variables whose values are being set.
sol: The desired values of the specified variables in the new solution.

314

4.13 GRBException

Gurobi exception object. This is a sub-class of the Java Exception class. A number of useful
methods, including getMessage() and printStackTrace(), are inherited from the parent class.
For a list of parent class methods in Java 1.5, visit this site.

GRBException()

Exception constructor.

‘GRBException GRBException (int errcode)

Create a Gurobi exception.
Arguments:

errcode: Error code for exception.
Return value:

An exception object.

‘GRBException GRBException (String errmsg)

Create a Gurobi exception.
Arguments:

errmsg: Error message for exception.
Return value:

An exception object.

GRBException GRBException (String errmsg,
int errcode)
Create a Gurobi exception.
Arguments:
errmsg: Krror message for exception.
errcode: Error code for exception.
Return value:
An exception object.

GRBException.getErrorCode()

Retrieve the error code associated with a Gurobi exception.

| int getErrorCode ()
Return value:
The error code associated with the exception.

315

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html

4.14 GRB

Class for Java enums and constants. The enums are used to get or set Gurobi attributes or

parameters.

Constants

The following list contains the set of constants needed by the Gurobi Java interface. You would
refer to them using a GRB. prefix (e.g., GRB.Status.0PTIMAL).

// Model status codes (after call to optimize())

public class Status {

public
public
public
public
public
public
public
public
public
public
public
public
public
public
public

// Basis

public static
public static
public static
public static

// Constraint
public static

public static
public static

static
static
static
static
static
static
static
static
static
static
static
static
static
static
static

status

final
final
final
final

final
final
final
final
final
final
final
final
final
final
final
final
final
final
final

info

senses

// Variable types

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

int BASIC

int NONBASIC_LOWER
int NONBASIC_UPPER = -2;
int SUPERBASIC

LOADED =
OPTIMAL =
INFEASIBLE
INF_OR_UNBD
UNBOUNDED
CUTOFF =
ITERATION LIMIT
NODE_LIMIT
TIME_LIMIT
SOLUTION_LIMIT
INTERRUPTED
NUMERIC
SUBOPTIMAL
INPROGRESS
USER_OBJ_LIMIT

] nn
e we we e e we we

-

]
© 0 N O O W N+~

-

wnn
e e e
a s W NN = O

[
el
[

]
|
w

final char LESS_EQUAL = <,
final char GREATER_EQUAL = ’>’;
final char EQUAL = =7,

316

public
public
public
public
public

static
static
static
static
static

final
final
final
final
final

// Objective sense

public
public

// S08

public
public

static
static

types

static
static

final
final

final
final

char
char
char
char
char

int
int

int
int

CONTINUOUS
BINARY
INTEGER
SEMICONT
SEMIINT

MINIMIZE =
MAXIMIZE

|
[
.-

S0S_TYPE1
S0S_TYPE2

// General constraint types

public
public
public
public
public
public

// Numeric constants

static
static
static
static
static
static

final
final
final
final
final
final

int
int
int
int
int
int

GENCONSTR_MAX
GENCONSTR_MIN
GENCONSTR_ABS
GENCONSTR_AND
GENCONSTR_OR

GENCONSTR_INDICATOR =

public static final double INFINITY
public static final double UNDEFINED

// Callback constants

public class Callback {

public
public
public
public
public
public
public
public
public
public
public
public

s