GUROBI OPTIMIZER
REFERENCE MANUAL

GUROBI

OPTIMIZATION

]

Contents

1 Introduction 1
2 Detailed Release Notes 10 3
3 C API Overview 10
3.1 Environment Creation and Destruction 15
GRBloadenv 15
GRBemptyenvo 15
GRBstartenv e 15
GRBfreeenv e 16
GRBgetconcurrentenvo Lo oL 16
GRBgetmultiobjenv Lo 17
GRBdiscardconcurrentenvs L0000 oo 18
GRBdiscardmultiobjenvs L oo 18

3.2 Model Creation and Modification 0 19
GRBloadmodel 19
GRBnewmodel 21
GRBcopymodelo 22
GRBaddconstr 22
GRBaddconstrso 23
GRBaddgenconstrXxx Lo 24
GRBaddgenconstrMax L L L o 25
GRBaddgenconstrMino L oo 26
GRBaddgenconstrAbso 27
GRBaddgenconstrAndo 27
GRBaddgenconstrOr 28
GRBaddgenconstrNorm 29
GRBaddgenconstrIndicator 30
GRBaddgenconstrPWL oL 31
GRBaddgenconstrPolyo oo 31
GRBaddgenconstrExpo o 32
GRBaddgenconstrExpAo o 33
GRBaddgenconstrLog oo 34
GRBaddgenconstrLogA 35
GRBaddgenconstrLogistic Lo oo 36
GRBaddgenconstrPow oo 37
GRBaddgenconstrSin oL Lo 37
GRBaddgenconstrCos 38
GRBaddgenconstrTan 39

GRBaddqconstro 40

GRBaddgpterms 41
GRBaddrangeconstr L Lo 42
GRBaddrangeconstrs 43
GRBaddsos 45
GRBaddvar e 46
GRBaddvars 47
GRBchgeoeffs 48
GRBdelconstrs 49
GRBdelgenconstrso 49
GRBdelq e 49
GRBdelqconstrso 50
GRBdelsos 50
GRBdelvars e e 51
GRBsetobjectiven Lo 51
GRBsetpwlobj 52
GRBupdatemodel 53
GRBfreemodel 53
GRBXaddconstrso 54
GRBXaddrangeconstrs 55
GRBXaddvars 56
GRBXchgeoeffso 57
GRBXloadmodel 58
3.3 Model Solution 61
GRBoptimize 61
GRBoptimizeasynco 61
GRBcomputellS 62
GRBfeasrelax e 63
GRBfixmodel 64
GRBreset e 65
GRBsync 65
3.4 Model Queries e 67
GRBgetcoeff 67
GRBgetconstrbyname L 67
GRBgetconstrs 68
GRBgetenv 68
GRBgetgenconstrMax oL L 69
GRBgetgenconstrMino Lo 70
GRBgetgenconstrAbs 71
GRBgetgenconstrAnd Lo 71
GRBgetgenconstrOr 72
GRBgetgenconstrNormo 73
GRBgetgenconstrindicator L 74
GRBgetgenconstrPWL oo 76

GRBgetgenconstrPoly 7

GRBgetgenconstrExp Lo 78

GRBgetgenconstrExpAo oo 78
GRBgetgenconstrLog 79
GRBgetgenconstrLogAo 80
GRBgetgenconstrLogistico o L 80
GRBgetgenconstrPow oL 81
GRBgetgenconstrSino oL 82
GRBgetgenconstrCos 83
GRBgetgenconstrTan L L L oo 83
GRBgetjsonsolutiono 84
GRBgetpwlobjo 84
GRBgetq o 85
GRBgetqconstr oL 86
GRBgetqconstrbynameo 87
GRBgetsos 87
GRBgetvarbynameo 88
GRBgetvars 88
GRBsinglescenariomodel L 89
GRBXgetconstrs oL 90
GRBXgetvars 91
3.5 Input/Output o e 92
GRBreadmodel 92
GRBread 92
GRBwrite e e 93
3.6 Attribute Management oL oL 94
GRBgetattrinfoo 94
GRBgetintattr 94
GRBsetintattro 95
GRBgetintattrelement oL 95
GRBsetintattrelement L Lo 96
GRBgetintattrarrayo 96
GRBsetintattrarrayo 97
GRBgetintattrlisto 98
GRBsetintattrlist 98
GRBgetdblattr 99
GRBsetdblattr 99
GRBgetdblattrelement oL 100
GRBsetdblattrelemento o 100
GRBgetdblattrarray 101
GRBsetdblattrarray 101
GRBgetdblattrlist 102
GRBsetdblattrlist 103
GRBgetcharattrelement 103
GRBsetcharattrelement 104
GRBgetcharattrarray 104

iii

GRBsetcharattrarray L L Lo 105

GRBgetcharattrlist o 105
GRBsetcharattrlist L L L 106
GRBgetstrattr 106
GRBsetstrattro 107
GRBgetstrattrelemento 108
GRBsetstrattrelement L oo 108
GRBgetstrattrarrayo 109
GRBsetstrattrarray Lo 109
GRBgetstrattrlisto 110
GRBsetstrattrlist 111
GRBgetbatchattrinfo o 111
3.7 Parameter Management and Tuning oL 113
GRBtunemodel 113
GRBgettuneresult Lo 113
GRBgetdblparam 114
GRBgetintparamo 114
GRBgetstrparam 115
GRBsetdblparam 115
GRBsetintparam 116
GRBsetstrparam 116
GRBgetdblparaminfo o oo 117
GRBgetintparaminfo oL 118
GRBgetstrparaminfo Lo 118
GRBreadparams 119
GRBwriteparams 119
3.8 Monitoring Progress - Logging and Callbacks 121
GRBmsg 121
GRBsetcallbackfunc oo 121
GRBgetcallbackfunco 122
GRBcbget o 122
GRBversion e e 123
3.9 Modifying Solver Behavior - Callbacks, . 124
GRBcbcut e e 124
GRBcblazy 125
GRBcbsolution 126
GRBcbproceed 126
GRBcbstoponemultiobj oo 127
GRBterminate L 128
3.10 Batch Requests e 129
GRBabortbatch 129
GRBdiscardbatch 129
GRBfreebatch 129
GRBgetbatch 130

GRBgetbatchenv 130

GRBgetbatchintattr oL Lo 131

GRBgetbatchjsonsolution oo 131
GRBgetbatchstrattr L Lo 132
GRBoptimizebatcho 132
GRBretrybatcho 133
GRBupdatebatch 133
GRBwritebatchjsonsolution oL 134

3.11 Error Handling o e 135
GRBgeterrormsgo 135

3.12 Advanced simplex routines.o 136
GRBFSolve 136
GRBBSolve 136
GRBBinvColj 137
GRBBinvRowi 137
GRBgetBasisHead 138

4 C++ API Overview 139
4.1 GRBEnv. 145
GRBEnv() 145
GRBEnv:uget() 146
GRBEnv:getErrorMsg() Lo 147
GRBEnv::getParamInfo() L L 147
GRBEnvimessage()o 148
GRBEnv:readParams() L o 148
GRBEnv:resetParams() Lo o 149
GRBEnv:set() o v o 149
GRBEnvustart() 150
GRBEnv:uwriteParams()o 150

4.2 GRBModel 152
GRBModel() o e 152
GRBModel::addConstr()o 153
GRBModel::addConstrs() o oo 155
GRBModel::addGenConstrXxx()o oo 155
GRBModel::addQConstr() oL 167
GRBModel::addRange() 168
GRBModel::addRanges() 168
GRBModel::addSOS()o 169
GRBModel::addVar() 169
GRBModel::addVars()o oo 170
GRBModel::chgCoeff()o oo 172
GRBModel::chgCoeffs() oo o 172
GRBModel::computellS() oo 173
GRBModel::discardConcurrentEnvs() L. 174
GRBModel::discardMultiobjEnvs() o L. 174
GRBModel::feasRelax() o 174
GRBModel::fixedModel() 176

4.3 GRBVar

4.4 GRBConstr

GRBModel:iget() o 176
GRBModel::getCoeff() o oo 181
GRBModel::getCol()o o 181
GRBModel::getConcurrentEnv() 0oL 181
GRBModel::getConstrByName() 182
GRBModel::getConstrs() o oo 182
GRBModel::getGenConstrXxx() 182
GRBModel::getGenConstrs() oo oo 190
GRBModel::getJSONSolution() 190
GRBModel::getMultiobjEnv() o 191
GRBModel::getObjective() o 191
GRBModel::getPWLODbj() o o oo 192
GRBModel::getQCRow() 192
GRBModel::getQConstrs() oo 192
GRBModel::getRow() 193
GRBModel::getSOS() o oo 193
GRBModel::getSOSs() o o o 193
GRBModel::getTuneResult() 194
GRBModel::getVarByName() 194
GRBModel::getVars()o e 194
GRBModel::optimize() Lo oo 194
GRBModel::optimizeasync() oo 195
GRBModel::optimizeBatch() o L. 195
GRBModel::presolve() o 195
GRBModel:iread() oL 196
GRBModel:itemove() oL 196
GRBModel:reset() oL 197
GRBModel::setCallback() oo oo 197
GRBModel:iset() o oo 198
GRBModel::setObjective() o o oo o 202
GRBModel::setObjectiveN()o oo 202
GRBModel::setPWLObj() o o 0o oo 203
GRBModel::singleScenarioModel() 203
GRBModel:isync() . . o v v oo 204
GRBModel::terminate()o 204
GRBModel::tune() o oo 204
GRBModel::update()o 204
GRBModel::write() . . .« o oo 205
... 206
GRBVar:get() o 206
GRBVarzindex()o L 207
GRBVar:sameAs()o 207
GRBVaruzset() 207
... 209
GRBConstrzget()o 209

GRBConstrzindex() 210

GRBConstrisameAs() oo 210
GRBConstrzset() oL 210
4.5 GRBQConstr e 212
GRBQConstr:get() 212
GRBQConstrset() o 213
4.6 GRBSOS . . . e 214
GRBSOS::get() . . o v o o 214
GRBSOS:set() o oo 214
4.7 GRBGenConstr e 215
GRBGenConstr:get() 215
GRBGenConstrset()o oo o 215
4.8 GRBEXDr 217
GRBExpr::getValue() 217
4.9 GRBLInExpr e 218
GRBLInEXpr() o 218
GRBLinExpr:addTerms()o oo 219
GRBLinExpr:clear() o 219
GRBLinExpr::getConstant() 219
GRBLinExpr::getCoeff() 220
GRBLinExpr:getValue() oo 220
GRBLinExpr:getVar() oo 220
GRBLinExpr::operator=. 220
GRBLinExpr::operator+o oo 221
GRBLinExpr::operator- 221
GRBLinExpr::operator+=.o 221
GRBLinExpr::operator-= 221
GRBLinExpr::operator®*= 222
GRBLinExpriremove() 222
GRBLinExpr:size() o e 222
4.10 GRBQuadExpr e e 223
GRBQuadExpr() 224
GRBQuadExpr:addTerm() 224
GRBQuadExpr::addTerms() 225
GRBQuadExpr:clear() 225
GRBQuadExpr::getCoeff() 225
GRBQuadExpr::getLinExpr() 226
GRBQuadExpr::getValue() 226
GRBQuadExpr:getVarl() 226
GRBQuadExpr::getVar2() 226
GRBQuadExpr::operator= 227
GRBQuadExpr::operator+ oL 227
GRBQuadExpr::operator- 227
GRBQuadExpr::operator+=o 227
GRBQuadExpr::operator-= 228

vii

GRBQuadExpr::operator*= 228

GRBQuadExpriremove() L 228
GRBQuadExpr:size() 228
4.11 GRBTempConstr e 229
4.12 GRBColumn 230
GRBColumn() 230
GRBColumn::addTerm() 230
GRBColumn::addTerms()o o 230
GRBColumn::clear() L 230
GRBColumn::getCoeff() 231
GRBColumn::getConstr() 231
GRBColumn:remove() o oo oo 231
GRBColumn:size() 231
4.13 GRBCallback 232
GRBCallback() 232
GRBCallback::abort() 232
GRBCallback:addCut()o o 232
GRBCallback::addLazy() 233
GRBCallback::getDoublelnfo() 234
GRBCallback::getIntInfo() L o 234
GRBCallback::getNodeRel() L 235
GRBCallback::getSolution() 235
GRBCallback::getStringInfo() oo L 236
GRBCallback::proceed() oL 236
GRBCallback::setSolution() Lo 236
GRBCallback::stopOneMultiObj() o .. 237
GRBCallback::useSolution() oL oo 238
4.14 GRBE=xception 239
GRBException() 239
GRBException::getErrorCode() oo 239
GRBException::getMessage()o 239
4.15 GRBBatch 240
GRBBatch() 240
GRBBatch::abort()o 241
GRBBatch::discard()o 241
GRBBatch::getJSONSolution() o 241
GRBBatch:get() o 241
GRBBatchuretry() . . . o o L 242
GRBBatch:update()o 242
GRBBatch::writeJSONSolution() 243
4.16 Non-Member Functions 244
operator== 244
operator<<= e 244
operator>= 244
Operator+ e e e e 245

viii

operator- oL Lo 246

operator® . ..o L 247

operator/ 249

4.17 Attribute Enumso Lo 250
GRB_ CharAttr e 250

GRB_ DoubleAttr e 250

GRB IntAttr. e 250
GRB_StringAttr 250

4.18 Parameter Enumso 251
GRB DoubleParam 251

GRB IntParam 251

GRB_ StringParam L Lo 251

5 Java API Overview 252
5.1 GRBEnNv. e 258
GRBEDV() .+« o o o e e e e e e e e e e e e 258
GRBEnv.dispose() 259
GRBEnv.get() 259
GRBEnv.getErrorMsg() L 260
GRBEnv.getParamInfo() o o 260
GRBEnv.message() o 261
GRBEnv.readParams() Lo 261
GRBEnv.release() 262
GRBEnv.resetParams() oo 262
GRBEDVSCH() -+« o o o oo e e e e e e e e e e 262
GRBEnv.setLogCallback() 263
GRBEnv.start() 263
GRBEnv.writeParams() o 264

5.2 GRBModel 265
GRBModel()o 265
GRBModel.addConstr() 266
GRBModel.addConstrs()o 268
GRBModel.addGenConstrXxx() Lo 269
GRBModel.addQConstr() L 280
GRBModel.addRange() 282
GRBModel.addRanges() 283
GRBModel.addSOS() oo o 283
GRBModel.addVar() 284
GRBModel.addVars() e 285
GRBModel.chgCoeff() 287
GRBModel.chgCoeffs() 287
GRBModel.computellS() 288
GRBModel.discardConcurrentEnvs() L. 289
GRBModel.discardMultiobjEnvs() 289
GRBModel.dispose()o 289
GRBModel.feasRelax() 290

ix

GRBModel.fixedModel() oo 291

GRBModel.get()« o 292
GRBModel.getCoeff() 306
GRBModel.getCol() o 307
GRBModel.getConcurrentEnv() o L. 307
GRBModel.getConstrByName() 308
GRBModel.getConstrs() 308
GRBModel.getGenConstrXxx() v o v v v v v i 308
GRBModel.getGenConstrs() 316
GRBModel.getJSONSolution() o 316
GRBModel.getMultiobjEnv() o L. 317
GRBModel.getObjective()o 317
GRBModel.getPWLODbj() 318
GRBModel.getQCRow() o o oo 318
GRBModel.getQConstrs()o 318
GRBModel.getRow()o 318
GRBModel.getSOS() o 319
GRBModel.getSOSs() o o oo 319
GRBModel.getTuneResult() 319
GRBModel.getVarByName() 320
GRBModel.getVars() 320
GRBModel.optimize() 320
GRBModel.optimizeasync()o 321
GRBModel.optimizeBatch() Lo 321
GRBModel.presolve() 321
GRBModel.read() 322
GRBModel.remove() 322
GRBModel.reset() 323
GRBModel.setCallback() 323
GRBModel.set()o 324
GRBModel.setLogCallback() 337
GRBModel.setObjective() o o o 337
GRBModel.setObjectiveN() Lo 338
GRBModel.setPWLODj() o oo 338
GRBModel.singleScenarioModel() 339
GRBModel.sync() 339
GRBModel.terminate() 339
GRBModel.tune() 340
GRBModel.update() 340
GRBModel.write() 340
53 GRBVar 341
GRBVar.get() o o 341
GRBVar.index()o o 342
GRBVarssameAs() 342

GRBVarset()o e 342

5.4 GRBConstr 344
GRBConstr.get() o 344
GRBConstrindex() 345
GRBConstr.sameAs() 345
GRBConstrset() 345

5.5 GRBQConstr 347
GRBQConstr.get() 347
GRBQConstr.set() o 348

5.6 GRBSOS 349
GRBSOS.get() . . . v v o o 349
GRBSOS.set() o 349

5.7 GRBGenConstr e 350
GRBGenConstr.get() 350
GRBGenConstr.set()o oL o 350

58 GRBEXDE .« « o o o oo oo e 352
GRBExpr.getValue() 352

5.9 GRBLIinExpr e 353
GRBLInEXpr() o 353
GRBLinExpr.add() 353
GRBLinExpr.addConstant() 354
GRBLinExpr.addTerm() 354
GRBLinExpr.addTerms() 354
GRBLinExpr.clear() 355
GRBLinExpr.getConstant()o 355
GRBLinExpr.getCoeff()o o 355
GRBLinExpr.getValue() 355
GRBLinExpr.getVar() 356
GRBLinExpr.multAdd() 356
GRBLinExpr.remove()o 356
GRBLinExpr.size() o 357

5.10 GRBQuadExpr e 358
GRBQuadExpr() 358
GRBQuadExpradd() 359
GRBQuadExpr.addConstant() 359
GRBQuadExpr.addTerm() 359
GRBQuadExpr.addTerms() o 360
GRBQuadExpr.clear() 361
GRBQuadExpr.getCoeff() 361
GRBQuadExpr.getLinExpr() 362
GRBQuadExpr.getValue() 362
GRBQuadExpr.getVarl() 362
GRBQuadExpr.getVar2() 362
GRBQuadExpr.multAdd() 363
GRBQuadExpr.remove() 363
GRBQuadExpr.size()o o 363

xi

5.11 GRBColumn 364

GRBColumn() 364
GRBColumn.addTerm() 364
GRBColumn.addTerms() 364
GRBColumn.clear() 365
GRBColumn.getCoeff() 365
GRBColumn.getConstr() 365
GRBColumn.remove() o 366
GRBColumn.size() 366
5.12 GRBCallback 367
GRBCallback() 367
GRBCallback.abort() 367
GRBCallback.addCut() 367
GRBCallback.addLazy() 368
GRBCallback.getDoublelnfo() L. 369
GRBCallback.getIntInfo() o 369
GRBCallback.getNodeRel() L. 369
GRBCallback.getSolution() 370
GRBCallback.getStringInfo() o L. 371
GRBCallback.proceed() 371
GRBCallback.setSolution() 371
GRBCallback.stopOneMultiObj() 372
GRBCallback.useSolution() Lo 373
5.13 GRBException e 374
GRBException() 374
GRBException.getErrorCode()o 374
5.14 GRBBatch 375
GRBBatch() 375
GRBBatch.abort() 376
GRBBatch.discard() 376
GRBBatch.dispose() 376
GRBBatch.getJSONSolution() 377
GRBBatch.get() 377
GRBBatch.retry() 377
GRBBatch.update() L 378
GRBBatch.writeJSONSolution() 378
515 GRB . . . L L 379
Constants 379
GRB.CharAttr 385
GRB.DoubleAttr 385
GRB.DoubleParam 385
GRB.IntAttr 385
GRB.IntParam 386
GRB.StringAttr 386
GRB.StringParam oo 386

xii

6 .NET API Overview 387

6.1 GRBEnv. e 393
GRBEDV() .+« o o o oo e e e e e e e e e e 393
GRBEnv.Dispose() 394
GRBEnv.ErrorMsg L 394
GRBEnv.Get() o e 394
GRBEnv.GetParamInfo() 395
GRBEnv.Message() o v v i i 396
GRBEnv.ReadParams() 396
GRBEnv.Release() 397
GRBEnv.ResetParams() Lo 397
GRBEnv.Set() e 397
GRBEnv.Start() 398
GRBEnv.WriteParams() 398

6.2 GRBModel 399
GRBModel() o 399
GRBModel.AddConstr() 400
GRBModel.AddConstrs() o v v it 400
GRBModel.AddGenConstrXxx() o 401
GRBModel.AddQConstr()« v v 412
GRBModel.AddRange() 413
GRBModel.AddRanges() e 414
GRBModel.AddSOS() o oo 414
GRBModel.AddVar() 414
GRBModel.AddVars() 416
GRBModel.ChgCoeff() o o 418
GRBModel.ChgCoeffs() 418
GRBModel.ComputelIS() o 419
GRBModel.DiscardConcurrentEnvs() 419
GRBModel.DiscardMultiobjEnvs() o L. 420
GRBModel.Dispose() 420
GRBModel.FeasRelax() 420
GRBModel.FixedModel() 422
GRBModel.Get() 422
GRBModel.GetCoeff() 434
GRBModel.GetCol()o oo 434
GRBModel.GetConcurrentEnv() L oL 434
GRBModel.GetConstrByName() 435
GRBModel.GetConstrs() o v v v 435
GRBModel.GetGenConstrXxx()o 435
GRBModel.GetGenConstrs()« v oo v i i 442
GRBModel.GetJSONSolution() o 442
GRBModel.GetMultiobjEnv() 443
GRBModel.GetObjective()o 443
GRBModel.GetPWLODbj()o o 443

6.3

6.4

6.5

6.6

6.7

GRBModel.GetQConstr() 444

GRBModel.GetQConstrs() e 444
GRBModel.GetQCRow() 444
GRBModel.GetRow() 445
GRBModel.GetSOS() o 445
GRBModel.GetSOSs() v v v o 445
GRBModel.GetTuneResult() 445
GRBModel.GetVarByName() o 446
GRBModel.GetVars() 446
GRBModel.Optimize() o 446
GRBModel.OptimizeAsync()o 446
GRBModel.OptimizeBatch() 447
GRBModel.Presolve() 447
GRBModel.Read() o 447
GRBModel.Remove() o 448
GRBModel.Reset()o 449
GRBModel.SetCallback() 449
GRBModel.Set() 449
GRBModel.SetObjective()o 461
GRBModel.SetObjectiveN() o 462
GRBModel.SetPWLObj() 462
GRBModel.SingleScenarioModel() o L. 463
GRBModel.Sync() 463
GRBModel. Terminate() o 463
GRBModel. Tune() 463
GRBModel.Update() o 464
GRBModel.Write() 464
GRBVar o e 465
GRBVar.Get() 465
GRBVar.Index 465
GRBVar.SameAs() 466
GRBVar.Set() 466
GRBConstr 467
GRBConstr.Get() 467
GRBConstrIndex 467
GRBConstr.SameAs() 468
GRBConstr.Set() 468
GRBQConstr e e 470
GRBQConstr.Get() o 470
GRBQConstr.Set() o 470
GRBSOS . . . 472
GRBSOS.Get() . . . v v v o 472
GRBSOS.Set()o 472
GRBGenConstr 473
GRBGenConstr.Get() 473

Xiv

GRBGenConstr.Set() 473

6.8 GRBExXpr 475
GRBExpr.Value 475
6.9 GRBLinExpr e 476
GRBLInExpr() 476
GRBLIEXPrAdd() . . o o oo oo e e e e e e e ATT
GRBLinExpr.AddConstant(), . 477
GRBLinExpr.AddTerm() 477
GRBLinExpr.AddTerms() 477
GRBLinExpr.Clear() o 478
GRBLinExpr.Constant 478
GRBLinExpr.GetCoeff() 478
GRBLinExpr.GetVar() 478
GRBLinExpr.MultAdd() 479
GRBLinExpr.Remove() o 479
GRBLinExpr.Size 479
GRBLinExpr.Value 479
6.10 GRBQuadExpr e 480
GRBQuadExpr() 481
GRBQuadExpr.Add() 481
GRBQuadExpr.AddConstant() 481
GRBQuadExpr.AddTerm() 482
GRBQuadExpr.AddTerms() o 482
GRBQuadExpr.Clear() 483
GRBQuadExpr.GetCoeff() oo 483
GRBQuadExpr.GetVarl() 484
GRBQuadExpr.GetVar2() 484
GRBQuadExpr.LinExpr() 484
GRBQuadExpr.MultAdd() 484
GRBQuadExpr.Remove() 485
GRBQuadExpr.Size 485
GRBQuadExpr.Value 485
6.11 GRBTempConstr e e 486
6.12 GRBColumn 487
GRBColumn() 487
GRBColumn.AddTerm() o 487
GRBColumn.AddTerms() 487
GRBColumn.Clear() e 488
GRBColumn.GetCoeff() 488
GRBColumn.GetConstr() 488
GRBColumn.Remove() e 488
GRBColumn.Size L 489
6.13 Overloaded Operators 0 i i it it e e e 490
operator <<= e 490
OPErator >= e e e e e e 490

p.q%

operator ==l 490

operator + L Lo e 491
operator - L e e 492
operator * . . . L 493
operator / 495
implicit cast L e 495
6.14 GRBCallback o 497
GRBCallback() 497
GRBCallback.Abort() 497
GRBCallback.AddCut() 497
GRBCallback.AddLazy()« o 498
GRBCallback.GetDoubleInfo() L. 499
GRBCallback.GetIntInfo() oo 499
GRBCallback.GetNodeRel() oo 499
GRBCallback.GetSolution() 500
GRBCallback.GetStringInfo() oo 500
GRBCallback.Proceed() 501
GRBCallback.SetSolution() 501
GRBCallback.StopOneMultiObj() 501
GRBCallback.UseSolution() Lo 502
6.15 GRBException e 504
GRBException() 504
GRBException.ErrorCode o 504
6.16 GRBBatch e 505
GRBBatch() 505
GRBBatch.Abort() 506
GRBBatch.Discard() 506
GRBBatch.GetJSONSolution() 506
GRBBatch.Get() 506
GRBBatch.Retry() 507
GRBBatch.Update() 507
GRBBatch.WriteJSONSolution() 507
6.17 GRB 508
Constants L 508
GRB.CharAttr o 524
GRB.DoubleAttro 524
GRB.DoubleParam 524
GRB.IntAttr 524
GRB.IntParam 524
GRB.StringAttr 524
GRB.StringParamo o 524

xvi

7 Python API Overview 525

7.1 Global Functions 531
models() 531
disposeDefaultEnv()o 531
multidict() 531
paramHelp() 532
quicksum() 532
read() . ..o 533
readParams() L 533
resetParams() o 533
setParam() 533
system() . ..o 534
writeParams() 534

7.2 Model 535
Model() 535
Model.addConstr() 535
Model.addConstrs() o 536
Model.addGenConstrXxx() v v v v 537
Model.addGenConstrMax() o 538
Model.addGenConstrMin() Lo o 539
Model.addGenConstrAbs() 539
Model.addGenConstrAnd() Lo 540
Model.addGenConstrOr()o 541
Model.addGenConstrNorm() o 541
Model.addGenConstrIndicator() 542
Model.addGenConstrPWL() o 543
Model.addGenConstrPoly() oo 543
Model.addGenConstrExp() L oo 544
Model.addGenConstrExpA() oo 544
Model.addGenConstrLog() 545
Model.addGenConstrLogA() Lo 545
Model.addGenConstrLogistic() 0. 546
Model.addGenConstrPow() o Lo 547
Model.addGenConstrSin() Lo 547
Model.addGenConstrCos() v v v v v v v i 548
Model.addGenConstrTan() o 548
Model.addLConstr() o o 549
Model.addMConstr()o 549
Model.addMQConstr()o 550
Model.addMVar() 551
Model.addQConstr() o v oo 552
Model.addRange() 552
Model.addSOS() 553
Model.addVar() L 553
Model.addVars()« 554

Model.chCut() o 555

Model.cbGet() o o o 556
Model.cbGetNodeRel() 556
Model.cbGetSolution() 557
Model.cbLazy() 557
Model.cbProceed() L 558
Model.cbSetSolution() 559
Model.cbStopOneMultiObj() o 559
Model.cbUseSolution() L 560
Model.chgCoeff() 561
Model.computelIS() 561
Model.copy() v v v 562
Model.discardConcurrentEnvs() oo 562
Model.discardMultiobjEnvs() o 563
Model.dispose() L 563
Model.feasRelaxS() 563
Model.feasRelax() 564
Modelfixed() 565
Model.getA() 566
Model.getAttr() 566
Model.getCoeff() 567
Model.getCol() o o o 567
Model.getConcurrentEnv()o Lo 567
Model.getConstrByName() o 568
Model.getConstrs() 568
Model.getGenConstrMax()o 568
Model.getGenConstrMin() o 569
Model.getGenConstrAbs() o 569
Model.getGenConstrAnd()o 570
Model.getGenConstrOr() 570
Model.getGenConstrNorm() Lo 571
Model.getGenConstrIndicator() oL 571
Model.getGenConstrPWL() o oL 572
Model.getGenConstrPoly() o 572
Model.getGenConstrExp() Lo 573
Model.getGenConstrExpA() oo 573
Model.getGenConstrLog() 573
Model.getGenConstrLogA() 574
Model.getGenConstrLogistic() 574
Model.getGenConstrPow() o Lo 575
Model.getGenConstrSin() oo 575
Model.getGenConstrCos() 576
Model.getGenConstrTan() oo v v 576
Model.getGenConstrs() 577
Model.getJSONSolution() oo 577

xviii

7.4 MVar

Model.getMultiobjEnv() Lo 577

Model.getObjective() v v i o 578
Model.getParamInfo()o o 578
Model.getPWLODbj() o 578
Model.getQConstrs() 579
Model.getQCROW() o o o v 579
Model.getRow() L 579
Model.getSOS() o o o o 580
Model.getSOSs() o oo 580
Model.getTuneResult() o 580
Model.getVarByName() 581
Model.getVars() 581
Model.message() 581
Model.optimize() L 581
Model.optimizeBatch() Lo o 582
Model.presolve() 582
Model.printAttr() L 582
Model.printQuality() 583
Model.printStats() 583
Model.read() 583
Model.relax() o 584
Model.remove() oo 584
Model.reset() 584
Model.resetParams() 585
Model.setAttr() 585
Model.setMObjective() o 585
Model.setObjective() 586
Model.setObjectiveN() 587
Model.setPWLObj()o o 587
Model.setParam() 588
Model.singleScenarioModel() Lo 588
Model.terminate() 589
Model.tune() 589
Model.update() 589
Model.write() . . v v v v v e 589
.. 591
Var.getAttr() 591
VarsameAs()o 591
Varindex 992
VarssetAttr()o 592
.. 593
MVar.copy() o oo 593
MVar.diagonal() 594
MVar.fromlist() 594
MVar.fromvar() L 595

Xix

MVar.getAttr() 595

MVar.item() 595
MVarndim 0 995
MVar.reshape() o 596
MVar.setAttr()o 596
MVar.shape o 597
MVarsize o e 997
MVar.sum() o oo o 597
MVar. To e 598
MVar.tolist() oo 598
MVar.transpose()o 598
7.0 Constr e 599
Constr.getAttr() 599
Constr.index L 599
Constr.sameAs() 600
Constr.setAttr() 600
7.6 MConstr 601
MConstr.tolist() 601
MConstr.getAttr() L 601
MConstr.setAttr() oo 602
7.7 MQConstr e 603
MQConstr.tolist() 603
MQConstr.getAttr() 603
MQConstr.setAttr() 604
7.8 QConstr 605
QConstr.getAttr() 605
QConstr.setAttr() 605
7.9 SOS . . 607
SOS.getAttr() L 607
SOS.setAttr() o o 607
710 GenConstr. 608
GenConstr.getAttr() 608
GenConstr.setAttr() 608
711 LinEXpr . . . 0 0 608
LinExpr() 609
LinExpr.add() 610
LinExpr.addConstant() 610
LinExpr.addTerms()o o 610
LinExpr.clear() oo 611
LinEXpr.copy() . . v v v v v o e e e e e 611
LinExpr.getConstant() 611
LinExpr.getCoeff() 611
LinExpr.getValue() 611
LinExpr.getVar() 612

LinExproremove()o 612

LinExpr.size() 612

LinExpr. eq () . ..o o 612
LinExpr. le (). 613
LinExpr. ge () o 613
712 QuadExXpr L e 614
QuadExXpr() 614
QuadExpr.add() 615
QuadExpr.addConstant() 615
QuadExpr.addTerms()o 615
QuadExpr.clear() 616
QuadExpr.copy() o oo 616
QuadExpr.getCoeff() o 616
QuadExpr.getLinExpr() 616
QuadExpr.getValue() L 617
QuadExpr.getVarl() 617
QuadExpr.getVar2() 617
QuadExpr.oremove() 617
QuadExpr.size() 618
QuadExpr.__eq ()o 618
QuadExpr. le (). 618
QuadExpr. ge () 618
713 GenExpr.o 619
7.14 MLInEXPr o o e 620
MLinExpr.clear() 620
MLInEXPr.copy() - - - - v v o v o 620
MLinExpr.getValue() 621
MLinExpr.item() L 621
MLinExpr.ndimo 621
MLinExpr.shape 622
MLinExpr.size e 622
MLinExpr.sum() 622
MLInEXPr.zeros() o o v v 622
MLIinExpr. eq () . . .« 623
MLinExpr. ge () . .. 623
MLinExpr. getitem () 623
MLinExpr. le (). ... 624
MLinExpr. setitem () 624
7.15 MQuadExpr e 625
MQuadExpr.clear() 625
MQuadEXpr.copy() - « « v v v v o e e e e 625
MQuadExpr.getValue() 626
MQuadExpr.item() 626
MQuadExpr.ndim 626
MQuadExpr.shape e 626
MQuadExpr.size 627

xxi

MQuadExpr.sum() 627

MQuadExpr.zeros() 627
MQuadExpr. eq () 628
MQuadExpr. ge () . .« 628
MQuadExpr. getitem () 628
MQuadExpr. le () 629
MQuadExpr. setitem () 629
7.16 TempConstr o L e 630
717 Column L e 632
Column() o oo 632
Column.addTerms() 632
Column.clear() e 633
Column.copy() v v o 633
Column.getCoeff() 633
Column.getConstr() 633
Column.remove() v 633
Column.size() 634
7.18 Callbacks 635
7.19 GurobiErroro 636
720 Env . oo 637
BV © v vt 637
Env.resetParams()o 638
Env.setParam() Lo 639
Envesstart() 639
Env.writeParams() o 639
Env.dispose() o o o 640
7.21 Batch 641
Batch() 641
Batch.abort() 642
Batch.discard() 642
Batch.dispose() 642
Batch.getJSONSolution() 642
Batch.retry() 643
Batch.update() 643
Batch.writeJSONSolution() 643
722 GRB . . . e 645
Constants L 645
GRB.Attr . . . o 647
GRB.Param 647
7.23 tuplelist 648
tuplelist() o 648
tuplelist.select()o 648
tuplelist.clean() 649
tuplelist. contains () 649
7.24 tupledicto e 650

xxii

tupledict() 650

tupledict.select() L 650
tupledict.sum()o 651
tupledict.prod() 651
tupledict.clean() 652

7.25 General Constraint Helper Functions 653
abs () . . . 653

and () ..o 653

Max_ () ... 653

min_ () ... 654

Or () o 654

NOTIN() « v v v o e 655

8 MATLAB API Overview 656
8.1 Common Arguments 659
The model argument L 659

The params argument Lo 674

8.2 Solvinga Model. 677
gurobi() 677

gurobi dis() 680

gurobi feasrelax() L 682
gurobi_relax() 683

8.3 Input/Output e 684
gurobi read() 684
gurobi_write() 684

8.4 Using Gurobi within MATLAB’s Problem-Based Optimization 685
8.5 Setting up the Gurobi MATLAB interface 687
9 R API Overview 688
9.1 Common Arguments oL e e e 690
The model argument L 690

The params argument L Lo 706

9.2 Solvinga Model. 708
gurobi() 708

gurobi dis() 711
gurobi_feasrelax()o 713
gurobi_relax() 714

9.3 Input/Output 715
gurobi_read() 715
gurobi_write() 715

9.4 Installing the R package 716
10 Variables and Constraints and Objectives 718
10.1 Variables L L 718
10.2 Constraints e 719
10.3 Objectives o o e 727

xxiii

10.4 Tolerances and Ill Conditioning -- A Caveat 733

11 Environments 734
11.1 Session boundaries e e e e e 734
11.2 Configuration parameters e 735
11.3 Algorithmic parameters L 737
11.4 Concurrent environments e e e e 738
11.5 Multi-objective environments L L L oL o 738

12 Attributes 740
12.1 Model Attributes e 746

NumConstrs e 746
NumVars e e 746
NumSOS e 747
NumQConstrs e 747
NumGenConstrs e 747
NumNZs e 747
DNumNZs e 747
NumQNZs 747
NumQCNZSs o 748
NumIntVars 748
NumBinVars 748
NumPWLObDbjVars e 748
ModelName e e 748
ModelSense 748
ObjCon« . . o 749
Fingerprint 749
ObjVal e 749
ObjBound 749
ObjBoundC 749
PoolObjBound 750
PoolObjVal 750
MIPGap o o o 750
Runtime 750
Work . . e 751
Status e 751
SolCount e 751
IterCount e 751
BarlterCount e 751
NodeCount e 751
ConcurrentWinMethod 752
IsMIP . . . e 752
IsSQP . . . e 752
IsSQCP . . . e e 752
IsMultiObj e 752
IISMinimal e 753

xxiv

MaxCoefl e 753

MinCoeff e 753
MaxBound e 753
MinBound 753
MaxObjCoeff o e 753
MinObjCoeff o 754
MaxRHS e 754
MinRHS e 754
MaxQCCoeff e 754
MinQCCoeff 754
MaxQCLCoeff e 754
MinQCLCoeff o e 755
MaxQCRHS e 755
MinQCRHS e 755
MaxQObjCoeff o o 755
MinQObjCoeff o e 755
OpenNodeCount e 755
Kappa o e 756
KappaExact e 756
FarkasProof 756
TuneResultCount e 757
NumStart e 757
LicenseExpiration L o 757
12.2 Variable Attributes 757
LB . e 757
UB . . e e 758
Obj . o 758
VarName 758
VTag . . o e 758
VIType . . o 759
X e 759
XIL oo e e 759
RC . . e 759
BarX . 759
Starto e e 760
VarHintVal e 760
VarHintPri 761
BranchPriority 761
Partition e 762
VBasis e 762
PStart 762
IISLB e e 763
IISLBForce e 763
IISUB . . . e 764
IISUBForce e 764

XXV

Poollgnore e 764

PWLODbJCVX o e e e e e 764
SAODbJLow e 765
SAODbJUp 765
SALBLow e 765
SALBUD . . . 765
SAUBLow e 765
SAUBUD . . . 766
UnbdRay« . o e 766
12.3 Linear Constraint Attributes 766
SENSE . . . L e e e 766
RHS . . . e 766
ConstrName e 766
CTag 767
Pi o 767
Slack e e 768
CBasis e 768
DStart e 768
Lazy o e 769
IISConstr e 769
IISConstrForce e 769
SARHSLow e 770
SARHSUp e 770
FarkasDual 770
12.4 SOS Attributes e 771
IISSOS . . . e 771
IISSOSForce e 771
12.5 Quadratic Constraint Attributes o L oL 772
QCSense 772
QCRHS 772
QCName 772
QCPI . . 772
QCSlack 773
QCTag 773
IISQConstr e 773
IISQConstrForce o 773
12.6 General Constraint Attributes 774
FuncPieceError 774
FuncPieceLength 774
FuncPieceRatio 774
FuncPieces e 774
GenConstrTlype o o o 775
GenConstrName e 775
IISGenConstr e 775
IISGenConstrForce 776

XXVI

12.7 Quality Attributes 776

MaxVIio o o e 776
BoundVio 776
BoundSVio e 7T
BoundViolndex 7T
BoundSViolndex 7T
BoundVioSum 7T
BoundSVioSum 77
ConstrVio e e 7T
ConstrSVio e 778
ConstrViolndex e 778
ConstrSViolndex e 778
ConstrVioSum e e e 778
ConstrSVioSum e 779
ConstrResidual 779
ConstrSResidual 779
ConstrResiduallndex e 779
ConstrSResiduallndexo 779
ConstrResidualSum 780
ConstrSResidualSumo 780
DualVio e 780
DualSVio e 780
DualViolndex 780
DualSViolndex 781
DualVioSum 781
DualSVioSum 781
DualResidual e 781
DualSResidual 781
DualResiduallndex 782
DualSResiduallndex 782
DualResidualSum 782
DualSResidualSum 782
ComplVio 782
ComplViolndex 783
ComplVioSum 783
IntVio 783
IntViolndex 783
IntVioSum 783
12.8 Multi-objective Attributes 783
ObjN . 784
ObjNCon o e 784
ObjNPriority o 784
ObjNWeight 784
ObjNRelTol 785
ObjNADbsTol 785

ObINVAL. « o o oo e 785

ObjNName 786

NumODbj o 786

12.9 Multi-Scenario Attributes L 786
ScenNLB 786

ScenNUB e 787

ScenNODbj o 787

ScenNRHS e 787
ScenNName e 788
ScenNObjBound 788
ScenNODbjValo 788

ScenNX . . L e 788
NumScenarios e e e 789

12.10Batch Attributes L 789
BatchErrorCode e 789
BatchErrorMessage L e 789

BatchID 789
BatchStatus e 790
12.11Attribute Examples 790
C Attribute Examples 791

C++ Attribute Examples 792

C# Attribute Examples L 793

Java Attribute Examples L 793

Python Attribute Examples 794

Visual Basic Attribute Examples oL 794

13 Parameters 796
13.1 Parameter Guidelines e 804
Continuous Models 804

MIP Models 805

13.2 Parameter Descriptions e 808
AggFill . . . o e 808

Aggregate L 809
BarConvTol e 809
BarCorrectors 810
BarHomogeneous Lo 810
BarlterLimit 810

BarOrder e 811
BarQCPConvTol 811
BestBdStopo 812
BestObjStop o 812

BQPCuts e 812

BranchDir 813

CliqueCuts 813
CloudAccessID e 813

CloudHost e 814

xxviii

CloudSecretKey o 814

CloudPool e 814
ComputeServero 815
ConcurrentJobs 815
ConcurrentMIP e 816
ConcurrentSettings oL oL 817
CoverCuts e e 817
CroSSOVET o o i e e e e 818
CrossoverBasis e 818
CSAPIAccessID e 819
CSAPISecret e 819
CSAppName e 819
CSAuthToken e 820
CSBatchMode e 820
CSClientLog o 820
CSGroup o o 821
CSIdleTimeout e e e e 821
CSManager o i e 822
CSPriority 822
CSQueueTimeout L 822
CSRouter e e 823
CSTLSInsecure e e e e 823
CutAggPasses 824
Cutoff e 824
CutPasses e 824
Cuts . . . e 825
DegenMoves L e 825
Disconnected 826
Displaylnterval L e 826
DistributedMIPJobs 826
DualReductions e 827
FeasibilityTol 827
FeasRelaxBigM o 827
FlowCoverCuts e 828
FlowPathCuts e 828
FuncPieceError 828
FuncPieceLength 829
FuncPieceRatio 829
FuncPieces e 829
FuncMaxVal e 830
GomoryPasses 831
GUBCoverCuts e 831
Heuristics e 831
IgnoreNames L 832
IISMethod e 832

ImpliedCuts 832

ImproveStartGap 833
ImproveStartNodes 833
ImproveStartTime 834
InfProofCuts o 834
InfUnbdInfo 834
InputFileo 835
IntegralityFocus L 835
IntFeasTol e 836
IterationLimit 836
JobID . . . e 837
JSONSolDetail e 837
LazyConstraints e 837
LicenseID 838
LiftProjectCuts« . o e 838
LPWarmStart 838
LogFile o o e 839
LogToConsole e 840
MarkowitzTol e 840
MemLimit 840
Method e 841
MinRelNodes 842
MIPFocus e 843
MIPGap o oo 843
MIPGapAbs e 844
MIPSepCuts o o 844
MIQCPMethod e 844
MIRCuts e 845
ModKCuts e 845
MultiObjMethod 846
MultiObjPre 846
MultiObjSettings 846
NetworkAlg o 847
NetworkCuts e 847
NLPHeur e 848
NodefileDir e 848
NodefileStart e 848
NodeLimit e 849
NodeMethod e 849
NonConvex v it e e e e 849
NoRelHeurTime e 850
NoRelHeurWork e 850
NormAdjust e 851
NumericFocus 851

OBBT . . . e 851

ObjNumber 852

ObjScale e 852
OptimalityTol o 853
OutputFlag oo 853
PartitionPlace 853
PerturbValue 854
PoolGap e 854
PoolGapAbs 855
PoolSearchMode 855
PoolSolutions 856
PreCrush e 856
PreDepRow o 856
PreDual e 857
PreMIQCPForm 857
PrePasses e 858
PreQLinearize 858
Presolve 859
PreSOSIBigM 859
PreSOS1Encoding e 859
PreSOS2BigM e 860
PreSOS2Encoding 860
PreSparsify L 861
ProjlmpliedCuts 862
PSDCuts e 862
PSDTol e 862
PumpPasses 863
QCPDual 863
Quad 863
Record 864
ResultFile e 864
RINS . e 865
RelaxLiftCuts e 865
RLTCuts e 866
ScaleFlag 866
ScenarioNumber 866
Seed e 867
ServerPassword 867
ServerTimeout e 868
Sifting 868
SiftMethod e 868
SimplexPricing 869
SoftMemLimit e 869
SolutionLimit 870
SolutionTarget 870
SolFiles e 871

SolutionNumber e 871

StartNodeLimit e 871
StartNumber e 872
StrongCGCuts 872
SubMIPCuts 873
SubMIPNodes e 873
Symmetryo 873
Threads e 874
TimeLimit e 874
TokenServer e 875
TSPort e 875
TuneBaseSettings 876
TuneCleanup 876
TuneCriterion e 876
TuneJobs e 877
TuneMetric e 877
TuneOutput 878
TuneResults 878
TuneTargetMIPGap 878
TuneTargetTime 879
TuneTimeLimit 879
TuneTrials e 879
UpdateMode e 880
UserName e e e 880
VarBranch e 881
WLSAccessID e 881
WLSSecret 881
WLSToken e 882
WLSTokenDuration 882
WLSTokenRefresh 882
WorkerPassword 883
WorkerPool e 883
WorkLimit e 883
ZeroHalfCuts e 884
ZeroObjNodes 884
13.3 Parameter Examples oL Lo 885
C Parameter Examples 885
C++ Parameter Examples Lo oo 886
C# Parameter Examples o 887
Java Parameter Examples o o o0 887
MATLAB Parameter Examples 888
Python Parameter Examples L. 888
R Parameter Examples oo 889
Visual Basic Parameter Examples 889
14 Optimization Status Codes 890

Xxxii

15 Batch Status Codes 892

16 Callback Codes 893
17 Error Codes 898
18 Model File Formats 901
18.1 MPS format e 901
18.2 REW format e 910
18.3 DUA format 910
18.4 LP format e 910
18.5 RLP format e 917
18.6 DLP format e 917
18.7 ILP format e 918
18.8 OPB format e 918
189 MST format e 918
18.10HNT format e 919
18.110RD format e 919
18.12BAS format 920
18.13SOL format e 921
18.14JSON solution format 921
18.15ATTR format e 928
18.16PRM format e 929
19 Logging 930
19.1 Header e 930
19.2 Simplex Logging L 931
19.3 Barrier Logging L 932
19.4 Sifting Logging e 935
19.5 MIP Logging o e 936
19.6 Solution Pool and Multi-Scenario Logging 939
19.7 Multi-Objective Logging 940
19.8 Distributed MIP Logging 941
19.9 TIS Logging o o o e 942
20 Gurobi Command-Line Tool 944
20.1 Solving a Model e 945
20.2 Replaying Recording Files 947
21 Solution Pool 948
21.1 Finding Multiple Solutions L 948
21.2 Retrieving Solutions L 949
21.3 Exampleso Lo 949
21.4 Subtleties and Limitations 951

xxxiii

22 Multiple Objectives
22.1 Specifying Multiple Objectives
22.2 Working With Multiple Objectives
22.3 Additional Details

23 Multiple Scenarios
23.1 Definition of a Multi-Scenario Model oL,
23.2 Specifying Multiple Scenarios Lo
23.3 Logging e
23.4 Retrieving Solutions for Multiple Scenarios
23.5 Tipsand Tricks e
23.6 Limitations and Additional Considerations

24 Batch Optimization
24.1 Setting Up a Batch Environment oL,
24.2 Tagging Variables or Constraints
24.3 Submitting a Batch Optimization Request
24.4 Interacting with Batch Requests
24.5 Interpreting the JSON Solution
24.6 A Complete Example e
24.7 Limitations

25 Recording

API Calls

25.1 Recording L e

25.2 Replay

25.3 Limitations

26 Concurrent Optimizer

27 Parameter

Tuning Tool

27.1 Command-Line Tuning L e
27.2 Tuning APL o L

28 Gurobi Instant Cloud
28.1 Client Setup o o o e e
28.2 Instant Cloud Setup e

29 Guidelines

for Numerical Issues

29.1 Avoid rounding of inputo
29.2 Real numbers are not real Lo Lo
29.3 Tolerances and user-scaling L L L

Models at the edge of infeasibility
Gurobi tolerances and the limitations of double-precision arithmetic
Why scaling and geometry is relevant
Recommended ranges for variables and constraints
Improving ranges for variables and constraints
Advanced user scaling

952
952
953
956

958
958
958
959
960
960
961

962
962
962
963
963
964
965
968

969
970
970
971

972

975
976
979

980
980
981

XXX1V

Avoid hiding large coefficients o oL 991

Dealing with big-M constraints 992
29.4 Does my model have numerical issues? oL 993
29.5 Solver parameters to manage numerical issues 994
Presolve e 994
Choosing the right algorithm 0 0 0. 995
Making the algorithm less sensitive 996
29.6 Instability and the geometry of optimization problems 997
The case of linear systems: oo 997
The geometry of linear optimization problems 998
Multiple optimal solutions oo 999
Dealing with epsilon-optimal solutions 1000
Thin feasible regions Lo 1002
Optimizing over the circle: oo 1003
Optimizing over thin regions: o 1005
Stability and convergence 1006
29.7 Further reading e 1006
Source code for the experiment of optimizing over a circle 1007
Source code for the experiment on a thin feasible region 1008
Source code for the experiment with column scalings 1008
30 Copyright Notices for 3rd Party Libraries 1009

XXXV

Introduction

C++ API Maodel Data

Java AP

NET API
Gurobi
Interactive Python API \

Shell ¥e
MATLAB API AP

Y

Gurobi Algorithms

R API

Gurobi
Command
Line

y
Solution Data

This is the reference manual for the Gurobi™ Optimizer. It contains documentation for the
following Gurobi language interfaces:

e C

o C++

o Java®

e Microsoft® NET

e Python®

« MATLAB®

« R
The Gurobi interactive shell is also documented in the Python section.

The different Gurobi language interfaces share many common features. These are described at
the end of this manual. Two particularly important common features are the Attribute interface

and the Gurobi Parameter set. You may wish to bookmark these pages, since you are likely to refer
to them frequently as you develop applications that use the Gurobi Optimizer.

Additional Topics

This document covers a number of additional topics, which are listed here:
e Detailed Release Notes
e Variables and Constraints and Objectives
e Environments
o Attributes
o Parameters
e Optimization Status Codes
o Callback Codes
e Error Codes
o File Formats
o Logging
e Command-Line Tool
e Solution Pool
e Multiple Objectives
e Multiple Scenarios
e Batch Optimization
e Recording API Calls
e Concurrent Optimizer
e Parameter Tuning Tool
o Instant Cloud
e Guidelines for Numerical Issues

Additional Resources

You can consult the Gurobi Quick Start for a high-level overview of the Gurobi Optimizer, or the
Gurobi Example Tour for a quick tour of the examples provided with the Gurobi distribution, or the
Gurobi Remote Services Reference Manual for an overview of Gurobi Compute Server, Distributed
Algorithms, and Gurobi Remote Services.

Getting Help

If you have a question that is not answered in this document, please visit the Gurobi support site at
https://support.gurobi.com. There, you can read knowledge base articles and join the community
discussion forum. Also, if you have a current maintenance contract, you can use the Gurobi support
site to submit a request to the Gurobi support team.

https://www.gurobi.com/documentation/10.0/quickstart_windows/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html
https://www.gurobi.com/documentation/10.0/remoteservices/remoteservices.html
https://support.gurobi.com

Supported Platforms

Platform (port)

Operating System

Detailed Release Notes for Gurobi 10.0.2

Compiler

Notes

Windows
64-bit (win64)

Windows 10, 11, Windows
Server 2012 R2, 2016, 2019,
2022

Visual Studio 2017-2022

Use gurobi_c++md2017.1ib
(e.g.) for C++

Linux x86-64
64-bit (linux64)

Red Hat Enterprise Linux 7
(and corresponding CentOS
distribution), 8, and 9

SUSE Enterprise Linux 12, 15
Ubuntu 20.04, 22.04*

Amazon Linux 2

GCC >=14.8

Use libgurobi_g++5.2.a
for newer C++ compilers

macOS
64-bit universal2
(macos_ universal2)

11 (Big Sur), 12 (Monterey),
13 (Ventura)

Xcode 12/13

Linux arm64
64-bit (armlinux64)

Red Hat Enterprise Linux 7
(and corresponding CentOS
distribution), 8, and 9

SUSE Enterprise Linux 12, 15
Ubuntu 20.04, 22.04

Amazon Linux 2

GCC >=14.8

AIX
64-bit (power64)

AIX 7.1, 7.2, 7.3

XL C/C++ 9

Due to limited Python sup-
port on AIX, this port
does not include the Inter-
active Shell or the Python

libraries.

*On Ubuntu 22.04 for x86-64, user code that calls dlopen()/dlclose() to load/unload 1ibgurobil00.so is known

to fail. We have investigated the issue, and unfortunately we have not yet found a workaround.

Additional Supported Platform Information

Gurobi 10.0.2 supports the following language/platform versions:

Language Version

Python 3.7, 3.8, 3.9, 3.10, 3.11
MATLAB R2019a-R2022b

R 4.2
JDK 8, 11, 17
NET 6.0

Bug Fixes

All bug fixes listed by version can be found on our website.
NuGet package for .NET

We now provide an official NuGet package for .NET users. You can find the package at https:
//www.nuget .org/packages/Gurobi.0Optimizer. Additional information is available in the .NET
Interface section of the Gurobi Quick Start Guide.

Changed in Gurobi 10.0.1

Changes to the .NET standard library

The .NET standard library is now signed with a strong name. This applies to both the C# library
distributed with the full Gurobi installation and the NuGet package.

Changed in Gurobi 10.0.0

Changes to C API

The parameter for method GRBcbproceed has changed. The signature was:
int GRBcbproceed(GRBmodel *model)

and is now:

int GRBcbproceed(void *cbdata)

Changes to attributes

The VBasis variable attribute for a fixed variable will now return either -1 (non-basic at lower
bound) or -2 (non-basic at upper bound), depending on the sign of the reduced cost (it previously
always returned -1).

Changes to callback
User callbacks could previously be called from a variety of Gurobi methods. They will now only be

called from methods that solve an optimization model. The list of such methods of course includes
optimize, but also feasRelax, computeIIS, and a few others.

Removed in Gurobi 10.0

End of support for Python 2.7

This version has dropped support for Python 2.7.
Only one set of C++ libraries for Windows
We now only ship a single set of C++ libraries (gurobi_c++md2017.1ib, gurobi_c++mdd2017.1ib,

etc.), built with Visual Studio 2017. These are binary compatible with Visual Studio versions 2017-
2022.

Removed attributes
Attributes JobID and ComputeServer are no longer available. The same information can be ob-

tained via the read-only parameters JoblD and ComputeServer, which have been available since
Gurobi 8.0.

https://www.gurobi.com/downloads/recent-bug-fixes-by-version/
https://www.nuget.org/packages/Gurobi.Optimizer
https://www.nuget.org/packages/Gurobi.Optimizer

Removed GRBgetlogfile method

The C API method GRBgetlogfile has been removed. Use the LogFile parameter to obtain the
name of the log file.

Removed legacy methods for creating Compute Server and Instant Cloud environments
The following legacy methods and constructors for creating Compute Server and Instant Cloud
environments have been removed:

e C: GRBloadclientenv, GRBloadcloudenv

e CH++:

GRBEnv(const std::string& logfilename, const std::string& computeserver,
const std::stringk router, const std::string& password,
const std::string& group, int CStlsInsecure, int priority,
double timeout)

GRBEnv(const std::string& logfilename, const std::string& accessID,
const std::string& secretKey, const std::stringk pool,
int priority)

o Java:
GRBEnv(String logFileName, String computeServer, String router,
String password, String group, int CStlsInsecure, int priority,
double timeout)
GRBEnv(String logfilename, String accessID, String secretKey, String pool,
int priority)
« .NET:

GRBEnv(string logfilename, string computeserver, string router,
string password, string group, int CStlsInsecure, int priority,
double timeout)

GRBEnv(string logfilename, string accessID, string secretKey, string pool,
int priority)

e gurobipy: Env.ClientEnv, Env.CloudEnv,

e Matlab and R: The env parameter to the Gurobi functions. See Matlab and R changes below
for conversion details.

You should use the configuration parameters instead, which were introduced in Gurobi 8.0 to
simplify this process.

New features affecting all APls

Licensing

The Gurobi Web License Service (WLS) previously only worked within containerized environments.
With Gurobi 10.0, WLS licenses are also available that work outside of containers (on Windows,
macOS and Linux), as well as in both types of environments.

New parameters

The following parameters are new in Gurobi 10.0:
e NetworkAlg to control the network simplex algorithm.
« OBBT to control the aggressiveness of Optimality-Based Bound Tightening.

o SoftMemLimit to limit the total amount of memory available to an optimization (leading to
a graceful exit when the limit is hit).

o SolutionTarget to specify the solution target for LP.
o WLSTokenRefresh to specify the refresh interval of a Web License Service token.

Logistic General Constraint

Added support for piecewise-linear approximation of the logistic function as a general constraint.
With this feature, you can model the logistic function y = H% on problem variables x and y. As
with all general constraints, you can control how fine-grained the piecewise-linear approximation
should be. See the General Constraint section for more information.

Specific performance improvements

In addition to general performance improvements across all supported problem classes, we have
added the following enhancements for specific problem types:

e Added a network simplex algorithm to speed up the solution of LPs with pure network
structure.

e Added a new QUBO heuristic to improve our ability to quickly find good feasible solutions
for Quadratic Unconstrained Boolean Optimization problems.

e Reorganized the concurrent LP solver to improve performance and reduce memory consump-
tion.

o Significantly improved performance on MIP models that contain constraints that model neural
networks with ReLU activation functions.

Behavior changes affecting the Python matrix-friendly API

With version 10.0 we have extended the capabilities of the existing MVar, MLinExpr, and MQuadExpr
modeling classes and improved their behaviour in many respects. Some of the changes may cause
incompatibilities with existing code that uses these objects, so we suggest that you read the following
summary carefully and adapt your code accordingly.

More arithmetic operations supported

You can now perform point-wise multiplication involving combinations of matrix-friendly modeling
objects and NumPy ndarrays. For example:

a = numpy.random.rand(3)
x = model.addMVar (3)
y = model.addMVar(3)

Add three linear constraints alil*x[i] = y[i]
model.addConstr(a * x == y)

Add three quadratic constraints x[il*y[i] = al[il
model.addConstr(x * y == a)

Arbitrary dimensions now supported

The classes MVar, MLinExpr, and MQuadExpr now support arbitrary numbers of dimensions. For
example, you can now create 2-D matrix linear expressions:

A = numpy.random.rand(4,3)
B = numpy.random.rand(4,2)
X = model.addMVar((3,2))

Add 8 linear constraints A[i, :] @ X[:, j]l == B[i, j]
model .addConstr(A @ X == B)

Dimensionality and consistency

The classes MVar, MLinExpr, and MQuadExpr now behave similarly to NumPy’s ndarray when it
comes to dimension handling. For example:

X = model.addMVar((3,3))

subl = X[:, 1] # Gives 1-D (3,) Mvar
sub2 = X[:, 1:2] # Gives 2-D (3, 1) Mvar
sub3 = X[0, 1] # Gives 0-D () Mvar

In addition, a 0-D MVar object now acts like a “scalar” Var object, but it keeps its dimensionality
properties.

Furthermore, in previous versions all MQuadExpr objects containing just one element had shape
(1,). Such objects now follow the shape rules of Python’s matrix multiplication operator:

Q = np.random.rand((3,3)); Q = Q + Q.T

x = model.addMVar((3,1))
exprl = x.T @ Q @ x # exprl.shape is (1,1)
expr2 = x[:, 0] @ Q @ x[:, 0] # expr2.shape is ()

Arithmetic operations embrace NumPy’s broadcasting rules

The behaviour of arithmetic operations among the matrix friendly modeling objects of different
shapes now follows NumPy’s broadcasting rules. For example:

a = numpy.random.rand(3)
model .addMVar ((3,3))

s}
I

a is broadcast along the first dimension of x; result is (3,3)
expr = a * X

Broadcasting is also applied implicitly when adding broadcastable expressions as constraints:

a = numpy.random.rand(3)
model .addMVar ((3,3))

™
I

a is broadcast along the first dimension of x.
The effect is the same as doing addConstr(x - a == 0)
model.addConstr(x == a)

For detailed information on broadcasting we refer you to NumPy’s documentation.
Other changes
o Creating MVar objects through Model.addMVar is now roughly 40% faster.

e The optional attribute initializers for Model.addMVar now need to be passed in a broad-
castable shape. In older versions, any list with an appropriate number of elements could
be used, which is ambiguous in the case of a multi-dimensional MVar. Please refer to the
documentation of Model.addMVar for details.

e Using the MVar constructor to convert a list of Var objects to an MVar object is deprecated.
A dedicated, faster method (MVar.fromlist) has been introduced for this purpose.

e The method MVar.sum now takes an optional axis argument to select an axis along which
the summation should happen. Also, the shape of the resulting MLinExpr after summing all
elements is now (), (0-D), as opposed to (1,) in older versions.

e The method MLinExpr.copy now returns a deep copy, as opposed to a shallow copy in earlier
versions.

e Invalid or incompatible matrix multiplication invocations now raise a ValueError instead of
a GurobiError.

To check whether your program calls any deprecated methods you can set an appropriate filter
in Python’s warnings module. For example, you can turn all warnings to runtime errors by starting
the Python interpreter with the option -W error.

Changes in the Matlab and R APlIs

The env argument to Matlab and R API functions has been removed. This argument was previously
used to provide the data required to connect to a Compute Server or to Gurobi Instant Cloud. This
information should now be passed through parameters in the params struct.

For example, the new signature of the "gurobi" function is gurobi (model, params). To update
a program that uses the env argument, just set the appropriate parameters in params to match
the fields you previously used in env. The following table shows the correspondence between the
field names of the deprecated env argument and Gurobi parameters:

env params

router CSRouter
password ServerPassword
group CSGroup
priority CSPriority
timeout CSQueueTimeout

accessid CloudAccessID
secretkey CloudSecretKey
pool CloudPool
A client MATLAB program that solves a model on a Compute Server should now look something

like the following;:

m.A = sparse(0,0); % Just a minimal model struct for demonstration
params.Method = 2; Y Use barrier method (for demonstration)
params.ComputeServer = 'myserver.mycompany.com'; % Set server name
params.ServerPassword = 'pass'; % Set password

gurobi(m, params); % Solve model on server with barrier

Similarly for R, client code to solve a model on a Compute Server should look like:

m <- list(A = matrix(0)) # Just a minimal model struct for demonstration
params <- list()

params$Method <- 2 # Use barrier method (for demonstration)
params$ComputeServer <- "myserver.mycompany.com"; # Set server name
params$ServerPassword <- "pass"; # Set password

gurobi(m, params); # Solve model on server with barrier

In summary, this is now the full list of signatures for Matlab and R API functions:

gurobi (model, params)

gurobi_feasrelax(model, relaxobjtype, minrelax, penalties, params)
gurobi_iis(model, params)

gurobi_read(filename, params)

gurobi_relax(model, params)

gurobi_write(model, filename, params)

Compute Server, Cluster Manager, and Instant Cloud

Detailed release notes for Compute Server, Cluster Manager, and Instant Cloud can be found here

https://www.gurobi.com/release-notes/server/v10.0/

This section documents the Gurobi C interface. This manual begins with a quick overview of the
functions in the interface, and continues with detailed descriptions of all of the available interface
routines.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide
or the Example Tour. These documents provide concrete examples of how to use the routines
described here.

Environments

The first step in using the Gurobi C optimizer is to create an environment, using the GRBloadenv
call. The environment acts as a container for all data associated with a set of optimization runs. You
will generally only need one environment in your program, even if you wish to work with multiple
optimization models. Once you are done with an environment, you should call GRBfreeenv to
release the associated resources.

For more advanced use cases, you can use the GRBemptyenv routine to create an uninitialized
environment and then, programmatically, set all required options for your specific requirements.
For further details see the Environment section.

Models

You can create one or more optimization models within an environment. A model consists of a set of
variables, a linear, quadratic, or piecewise-linear objective function on those variables, and a set of
constraints. Fach variable has an associated lower bound, upper bound, type (continuous, binary,
integer, semi-continuous, or semi-integer), and linear objective coefficient. Each linear constraint
has an associated sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side
value. Refer to this section for more information on variables and constraints.

An optimization model may be specified all at once, through the GRBloadmodel routine, or
built incrementally, by first calling GRBnewmodel and then calling GRBaddvars to add variables
and GRBaddconstr, GRBaddqconstr, GRBaddsos, or any of the GRBaddgenconstrXxx methods to
add constraints. Models are dynamic entities; you can always add or delete variables or constraints.

Specific variables and constraints are referred to throughout the Gurobi C interface using their
indices. Variable indices are assigned as variables are added to the model, in a contiguous fashion.
The same is true for constraints. In adherence to C language conventions, indices all start at 0.

We often refer to the class of an optimization model. A model with a linear objective function,
linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic,
the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is
a Quadratically-Constrained Program (QCP). We will sometimes refer to a few special cases of
QCP: QCPs with convex constraints, QCPs with non-convex constraints, bilinear programs, and
Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-continuous
variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the
model is a Mized Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, in-
cluding Mized Integer Linear Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mized

10

C API Overview

https://www.gurobi.com/documentation/10.0/quickstart_windows/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html

Integer Quadratically-Constrained Programs (MIQCP), and Mized Integer Second-Order Cone Pro-
grams (MISOCP). The Gurobi Optimizer handles all of these model classes.

Solving a Model

Once you have built a model, you can call GRBoptimize to compute a solution. By default,
GRBoptimize () will use the concurrent optimizer to solve LP models, the barrier algorithm to
solve QP models with convex objectives and QCP models with convex constraints, and the branch-
and-cut algorithm otherwise. The solution is stored as a set of attributes of the model. The C
interface contains an extensive set of routines for querying these attributes.

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBoptimize ()
will only perform further optimization if relevant data has changed since the model was last op-
timized. If you would like to discard previously computed solution information and restart the
optimization from scratch without changing the model, you can call GRBreset.

After a MIP model has been solved, you can call GRBfixmodel to compute the associated fized
model. This model is identical to the original, except that the integer variables are fixed to their
values in the MIP solution. If your model contains SOS constraints, some continuous variables that
appear in these constraints may be fixed as well. In some applications, it can be useful to compute
information on this fixed model (e.g., dual variables, sensitivity information, etc.), although you
should be careful in how you interpret this information.

Multiple Solutions, Objectives, and Scenarios

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to
a single model with a single objective function. Gurobi provides the following features that allow
you to relax these assumptions:

e Solution Pool: Allows you to find more solutions.
e Multiple Scenarios: Allows you to find solutions to multiple, related models.

e Multiple Objectives: Allows you to specify multiple objective functions and control the trade-
off between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause
of the infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be
useful for diagnosing the cause of an infeasibility, call GRBcomputellS to compute an Irreducible
Inconsistent Subsystem (IIS). This routine can be used for both continuous and MIP models, but
you should be aware that the MIP version can be quite expensive. This routine populates a set of
IIS attributes.

To attempt to repair an infeasibility, call GRBfeasrelax to compute a feasibility relaxation for
the model. This relaxation allows you to find a solution that minimizes the magnitude of the
constraint violation.

Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some
attributes are associated with the variables of the model, some with the constraints of the model,
and some with the model itself. To give a simple example, solving an optimization model causes
the X variable attribute to be populated. Attributes such as X that are computed by the Gurobi

11

optimizer cannot be modified directly by the user, while others, such as the variable lower bound
array (the LB attribute) can.

The Gurobi C interface contains an extensive set of routines for querying or modifying attribute
values. The exact routine to use for a particular attribute depends on the type of the attribute.
As mentioned earlier, attributes can be either variable attributes, constraint attributes, or model
attributes. Variable and constraint attributes are arrays, and use a set of array attribute routines.
Model attributes are scalars, and use a set of scalar routines. Attribute values can additionally be
of type char, int, double, or string (really char *).

Scalar model attributes are accessed through a set of GRBget*attr () routines (e.g., GRBget-
intattr). In addition, those model attributes that can be set directly by the user (e.g., the objective
sense) may be modified through the GRBset*attr () routines (e.g., GRBsetdblattr).

Array attributes are accessed through three sets of routines. The first set, the GRBget*attrarray ()
routines (e.g., GRBgetcharattrarray) return a contiguous sub-array of the attribute array, specified
using the index of the first member and the length of the desired sub-array. The second set, the
GRBget*attrelement () routines (e.g., GRBgetcharattrelement) return a single entry from the at-
tribute array. Finally, the GRBget*attrlist () routines (e.g., GRBgetdblattrlist) retrieve attribute
values for a list of indices.

Array attributes that can be set by the user are modified through the GRBset*attrarray(),
GRBset*attrelement (), and GRBset*attrlist () routines.

The full list of Gurobi attributes can be found in the Attributes section.

Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to
variable bounds, constraint right-hand sides, etc.). The main exceptions are modifications to the
constraints themselves, and to the quadratic and piecewise-linear portions of the objective function.

The constraint matrix can be modified in a few ways. The first is to call GRBchgcoeffs to
change individual matrix coefficients. This routine can be used to modify the value of an existing
non-zero, to set an existing non-zero to zero, or to create a new non-zero. The constraint ma-
trix is also modified when you remove constraints (through GRBdelconstrs) or variables (through
GRBdelvars). The non-zero values associated with the deleted constraints or variables are removed
along with the constraints or variables themselves.

Quadratic objective terms are added to the objective function using the GRBaddqpterms rou-
tine. You can add a list of quadratic terms in one call, or you can add terms incrementally through
multiple calls. The GRBdelq routine allows you to delete all quadratic terms from the model. Note
that quadratic models will typically have both quadratic and linear terms. Linear terms are entered
and modified through the 0bj attribute, in the same way that they are handled for models with
purely linear objective functions.

If your variables have piecewise-linear objectives, you can specify them using the GRBsetpwlobj
routine. Call this routine once for each relevant variable. The Gurobi simplex solver includes
algorithmic support for convex piecewise-linear objective functions, so for continuous models you
should see a substantial performance benefit from using this feature. To clear a previously specified
piecewise-linear objective function, simply set the Obj attribute on the corresponding variable to
0.

12

Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed
in a lazy fashion, meaning that modifications don’t affect the model immediately. Rather, they
are queued and applied later. If your program simply creates a model and solves it, you will
probably never notice this behavior. However, if you ask for information about the model before
your modifications have been applied, the details of the lazy update approach may be relevant to
you.

As we just noted, model modifications (bound changes, right-hand side changes, objective
changes, etc.) are placed in a queue. These queued modifications can be applied to the model
in three different ways. The first is by an explicit call to GRBupdatemodel. The second is by a
call to GRBoptimize. The third is by a call to GRBwrite to write out the model. The first case
gives you fine-grained control over when modifications are applied. The second and third make the
assumption that you want all pending modifications to be applied before you optimize your model
or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is
that this approach makes it much easier to perform multiple modifications to a model, since the
model remains unchanged between modifications. The second is that processing model modifica-
tions can be expensive, particularly in a Compute Server environment, where modifications require
communication between machines. Thus, it is useful to have visibility into exactly when these
modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then
update, then make more modifications, then update again, etc. Updating after each individual
modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value
of the requested data from the point of the last update. If the object you tried to query didn’t
exist then, you’ll get an INDEX_OUT_OF_RANGE error instead.

The semantics of lazy updates have changed since earlier Gurobi versions. While the vast
majority of programs are unaffected by this change, you can use the UpdateMode parameter to
revert to the earlier behavior if you run into an issue.

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of
the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms,
strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi param-
eters before beginning the optimization. Parameters are set using the GRBset*param() routines
(e.g., GRBsetintparam). Current values can be retrieved with the GRBget*param() routines (e.g.,
GRBgetdblparam). Parameters can be of type int, double, or char * (string). You can also read a
set of parameter settings from a file using GRBreadparams, or write the set of changed parameters
using GRBwriteparams.

We also include an automated parameter tuning tool that explores many different sets of pa-
rameter changes in order to find a set that improves performance. You can call GRBtunemodel to
invoke the tuning tool on a model. Refer to the parameter tuning tool section for more information.

One thing we should note is that each model gets its own copy of the environment when it
is created. Parameter changes to the original environment therefore have no effect on existing
models. Use GRBgetenv to retrieve the environment associated with a particular model if you

13

want to change a parameter for that model.

Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will
send output to the screen. A few simple controls are available for modifying the default logging
behavior. If you would like to direct output to a file as well as to the screen, specify the log file
name in GRBloadenv when you create your environment. You can modify the LogFile parameter
if you wish to redirect the log to a different file after creating the environment. The frequency of
logging output can be controlled with the DisplayInterval parameter, and logging can be turned off
entirely with the OutputFlag parameter. A detailed description of the Gurobi log file can be found
in the Logging section.

More detailed progress monitoring can be done through the Gurobi callback function. The
GRBsetcallbackfunc routine allows you to install a function that the Gurobi optimizer will call
regularly during the optimization process. You can call GRBcbget from within the callback to
obtain additional information about the state of the optimization.

Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. If you call routine
GRBterminate from within a callback, for example, the optimizer will terminate at the earliest
convenient point. Routine GRBcbsolution allows you to inject a feasible solution (or partial solu-
tion) during the solution of a MIP model. Routines GRBcbcut and GRBcblazy allow you to add
cutting planes and lazy constraints during a MIP optimization, respectively. Routine GRBcbsto-
ponemultiobj allows you to interrupt the optimization process of one of the optimization steps in
a multi-objective MIP problem without stopping the hierarchical optimization process.

Batch Optimization

Gurobi Compute Server enables programs to offload optimization computations onto dedicated
servers. The Gurobi Cluster Manager adds a number of additional capabilities on top of this.
One important one, batch optimization, allows you to build an optimization model with your client
program, submit it to a Compute Server cluster (through the Cluster Manager), and later check
on the status of the model and retrieve its solution. You can use a Batch object to make it easier
to work with batches. For details on batches, please refer to the Batch Optimization section.

Error Handling

Most of the Gurobi C library routines return an integer error code. A zero return value indicates
that the routine completed successfully, while a non-zero value indicates that an error occurred.
The list of possible error return codes can be found in the Error Codes section.

When an error occurs, additional information on the error can be obtained by calling GRBgeter-
rormsg.

14

3.1 Environment Creation and Destruction

GRBloadenv

int GRBloadenv (GRBenv **xenvP,
const char *logfilename)

Create an environment. Optimization models live within an environment, so this is typically
the first Gurobi routine called in an application.

This routine will also populate any parameter (ComputeServer, TokenServer, ServerPassword,
etc.) specified in your gurobi.lic file. This routine will also check the current working directory
for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.
The file should be in PRM format (briefly, each line should contain a parameter name, followed by
the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Return value:

A non-zero return value indicates that there was a problem creating the environment. Refer
to the Error Code table for a list of possible return values.

Arguments:

envP: The location in which the pointer to the newly created environment should be placed.
logfilename: The name of the log file for this environment. May be NULL (or an empty
string), in which case no log file is created.

GRBemptyenv

‘int GRBemptyenv (GRBenv **envP)

Create an empty environment. Note that you will need to call GRBstartenv before you can use
this environment.

You should use this routine if you want to set parameters before actually starting the environ-
ment. This can be useful if you want to connect to a Compute Server, a Token Server, the Gurobi
Instant Cloud, a Cluster Manager or use a WLS license. See the Environment Section for more
details.

Return value:

A non-zero return value indicates that there was a problem creating the environment. Refer
to the Error Code table for a list of possible return values.

Arguments:

envP: The location in which the pointer to the newly created environment should be placed.

GRBstartenv

‘int GRBstartenv (GRBenv *env)

15

Start an empty environment. This routine starts an empty environment created by GRBemp-
tyenv. If the environment has already been started, this routine will do nothing. If the routine
fails, the environment will have the same state as it had before the call to this function.

This routine will also populate any parameter (ComputeServer, TokenServer, ServerPassword,
etc.) specified in your gurobi.lic file. This routine will also check the current working directory
for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.
The file should be in PRM format (briefly, each line should contain a parameter name, followed by
the desired value for that parameter). After that, it will apply all parameter changes specified by
the user prior to this call. Note that this might overwrite parameters set in the license file, or in
the gurobi.env file, if present.

After all these changes are performed, the code will actually activate the environment, and
make it ready to work with models.

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Return value:

A non-zero return value indicates that there was a problem starting the environment. Refer
to the Error Code table for a list of possible return values.

Arguments:

env: The empty environment to start.

GRBfreeenv

‘void GRBfreeenv (GRBenv *env)

Free an environment that was previously allocated by GRBloadenv, and release the associated
memory. This routine should be called when an environment is no longer needed. In particular, it
should only be called once all models built using the environment have been freed.

Arguments:

env: The environment to be freed.

GRBgetconcurrentenv

GRBenv * GRBgetconcurrentenv (GRBmodel x*model,
int num)

Create/retrieve a concurrent environment for a model.

This routine provides fine-grained control over the concurrent optimizer. By creating your
own concurrent environments and setting appropriate parameters on these environments (e.g., the
Method parameter), you can control exactly which strategies the concurrent optimizer employs.
For example, if you create two concurrent environments, and set Method to primal simplex for
one and dual simplex for the other, subsequent concurrent optimizer runs will use the two simplex
algorithms rather than the default choices.

16

Note that you must create contiguously numbered concurrent environments, starting with
num=0. For example, if you want three concurrent environments, they must be numbered 0, 1,
and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent
optimization on that model. Use GRBdiscardconcurrentenvs to revert back to default concurrent
optimizer behavior.

Return value:

The concurrent environment. A NULL return value indicates that there was a problem
creating the environment.

Arguments:

model: The model for the concurrent environment.
num: The concurrent environment number.

Example usage:

GRBenv *env0 = GRBgetconcurrentenv(model, 0);
GRBenv *envl = GRBgetconcurrentenv(model, 1);

GRBgetmultiobjenv

GRBenv* GRBgetmultiobjenv (GRBmodel *model,
int num)

Create/retrieve a multi-objective environment for the objective with the given index. This
environment enables fine-grained control over the multi-objective optimization process. Specifically,
by changing parameters on this environment, you modify the behavior of the optimization that
occurs during the corresponding pass of the multi-objective optimization.

Each multi-objective environment starts with a copy of the current model environment.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.

Return value:

The environment associated with a given multiobjective number in the model. A NULL
return value indicates that there was a problem retrieving the environment.

Arguments:

model: The model from where we want to retrieve the multiobjecitve environment.
num: The multiobjective number.

Example usage:

GRBenv *env0O = GRBgetmultiobjenv(model,O) ;
GRBenv *envl = GRBgetmultiobjenv(model,1);

GRBsetintparam(envO, "Method", 2);
GRBsetintparam(envl, "Method", 1);

GRBoptimize (model) ;

GRBdiscardmultiobjenvs(model) ;

17

GRBdiscardconcurrentenvs

‘void GRBdiscardconcurrentenvs (GRBmodel * model)

Discard concurrent environments for a model.
The concurrent environments created by GRBgetconcurrentenv will be used by every subsequent
call to the concurrent optimizer until the concurrent environments are discarded.
Arguments:
model: The model for the concurrent environment.
Example usage:

GRBdiscardconcurrentenvs (model) ;

GRBdiscardmultiobjenvs

| void GRBdiscardmultiobjenvs (GRBmodel *model)

Discard all multi-objective environments associated with the model, thus restoring multi objec-
tive optimization to its default behavior.
Please refer to the discussion of Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.
Arguments:
model: The model in which all multi objective environments will be discarded.
Example usage:

GRBenv *env0 = GRBgetmultiobjenv(model,O);
GRBenv *envl = GRBgetmultiobjenv(model,1);

GRBsetintparam(envO, "Method", 2);
GRBsetintparam(envl, "Method", 1);

GRBoptimize (model) ;

GRBdiscardmultiobjenvs (model) ;

18

3.2 Model Creation and Modification

GRBloadmodel

int GRBloadmodel (

GRBenv
GRBmodel
const char
int

int

int

double
double
char
double

int

int

int

double
double
double
char

const char
const char

*env,
*x*modelP,
*Pname,
numvars,
numconstrs,
objsense,
objcon,
*obj,
*sense,
*rhs,
*vbeg,
*vlen,
*vind,
*vval,

*1b,

*ub,
*vtype,
*kyarnames,
*xconstrnames)

Create a new optimization model, using the provided arguments to initialize the model data
(objective function, variable bounds, constraint matrix, etc.). The model is then ready for opti-
mization, or for modification (e.g., addition of variables or constraints, changes to variable types

or bounds, etc.).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXloadmodel variant of this routine.

Return value:

A non-zero return value indicates that a problem occurred while creating the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:

env: The environment in which the new model should be created. Note that the new model
gets a copy of this environment, so subsequent modifications to the original environment
(e.g., parameter changes) won’t affect the new model. Use GRBgetenv to modify the
environment associated with a model.

modelP: The location in which the pointer to the newly created model should be placed.

Pname: The name of the model.

numvars: The number of variables in the model.

numconstrs: The number of constraints in the model.

objsense: The sense of the objective function. Allowed values are 1 (minimization) or -1

(maximization).

objcon: Constant objective offset.

19

obj: Objective coefficients for the new variables. This argument can be NULL, in which case
the objective coefficients are set to 0.0.

sense: The senses of the new constraints. Options are >=’ (equal), ><’ (less-than-or-equal),
or ’>’ (greater-than-or-equal). You can also use constants GRB_EQUAL, GRB_LESS_EQUAL,
or GRB_GREATER_EQUAL.

rhs: Right-hand side values for the new constraints. This argument can be NULL if you are
not adding any constraint.

vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Column (CSC) format. Each column in the constraint matrix is represented as a list of
index-value pairs, where each index entry provides the constraint index for a non-zero
coefficient, and each value entry provides the corresponding non-zero value. Each variable
in the model has a vbeg and vlen value, indicating the start position of the non-zeros for
that variable in the vind and vval arrays, and the number of non-zero values for that
variable, respectively. Thus, for example, if vbeg[2] = 10 and vlen[2] = 2, that would
indicate that variable 2 has two non-zero values associated with it. Their constraint indices
can be found in vind[10] and vind[11], and the numerical values for those non-zeros
can be found in vval[10] and vval[11]. Note that the columns of the matrix must be
ordered from first to last, implying that the values in vbeg must be non-decreasing.

vlen: Number of constraint matrix non-zero values associated with each variable. See the
description of the vbeg argument for more information.

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

1b: Lower bounds for the new variables. This argument can be NULL, in which case all
variables get lower bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

Important notes:
We recommend that you build a model one constraint or one variable at a time, using GRBad-

dconstr or GRBaddvar, rather than using this routine to load the entire constraint matrix at once.
It is much simpler, less error prone, and it introduces no significant overhead.

Example usage:

/* maximize x+ y+2z
subject to x+ 2y + 3z <=4
X+ y >= 1

X, y, z binary */

20

int vars = 3;

int constrs = 2;

int vbegll = {0, 2, 4};

int vlien[]l] = {2, 2, 1};

int vind[]l = {0, 1, 0, 1, 0};

double vval[] = {1.0, 1.0, 2.0, 1.0, 3.0%};

double obj[] = {1.0, 1.0, 2.0%};
char sense[] = {GRB_LESS EQUAL, GRB_GREATER_EQUAL};
double rhs(] = {4.0, 1.0};

char vtypel[l = {GRB_BINARY, GRB_BINARY, GRB_BINARY};

error = GRBloadmodel(env, &model, "example", vars, constrs, -1, 0.0,
obj, sense, rhs, vbeg, vlen, vind, vval,
NULL, NULL, vtype, NULL, NULL);

GRBnewmodel

int GRBnewmodel (GRBenv *env,
GRBmodel *xmodelP,
const char *Pname,

int numvars,
double *obj,
double *1b,
double *ub,
char *vtype,

const char **varnames)
Create a new optimization model. This routine allows you to specify an initial set of vari-
ables (with objective coefficients, bounds, types, and names), but the initial model will have no
constraints. Constraints can be added later with GRBaddconstr or GRBaddconstrs.
Return value:
A non-zero return value indicates that a problem occurred while creating the new model.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
env: The environment in which the new model should be created. Note that the new
model will get a copy of this environment, so subsequent modifications to the original
environment (e.g., parameter changes) won’t affect the new model. Use GRBgetenv to
modify the environment associated with a model.
modelP: The location in which the pointer to the new model should be placed.
Pname: The name of the model.
numvars: The number of variables in the model.
obj: Objective coefficients for the new variables. This argument can be NULL, in which case
the objective coeflicients are set to 0.0.
1b: Lower bounds for the new variables. This argument can be NULL, in which case all
variables get lower bounds of 0.0.

21

ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

Example usage:

double obj[] = {1.0, 1.0};
char *names[] = {"varl", "var2"};
error = GRBnewmodel(env, &model, "New", 2, obj, NULL, NULL, NULL, names);

GRBcopymodel

| GRBmodel * GRBcopymodel (GRBmodel #model)

Create a copy of an existing model. Note that due to the lazy update approach in Gurobi, you
have to call GRBupdatemodel before copying it.
Return value:
A copy of the input model. A NULL return value indicates that a problem was encountered.
Arguments:
model: The model to copy.
Example usage:

GRBupdatemodel (orig); /* if you have unstaged changes in orig */
GRBmodel *copy = GRBcopymodel (orig) ;

GRBaddconstr
int GRBaddconstr (GRBmodel *model,
int numnz,
int *cind,
double *cval,
char sense,
double rhs,

const char *constrname)

Add a new linear constraint to a model. Note that, due to our lazy update approach, the new
constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while adding the constraint.

Refer to the Error Code table for a list of possible return values. Details on the error can

be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new constraint should be added.

numnz: The number of non-zero coefficients in the new constraint.

22

cind: Variable indices for non-zero values in the new constraint.

cval: Numerical values for non-zero values in the new constraint.

sense: Sense for the new constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

rhs: Right-hand side value for the new constraint.

constrname: Name for the new constraint. This argument can be NULL, in which case the
constraint is given a default name.

Example usage:

int ind[] {1, 3, 4};

double vall] {1.0, 2.0, 1.0};

/* x1 + 2 x3 + x4 =1 %/

error = GRBaddconstr(model, 3, ind, val, GRB_EQUAL, 1.0, "New");

GRBaddconstrs

int GRBaddconstrs (GRBmodel *model,
int numconstrs,
int numnz,
int *cbeg,
int *cind,
double *xcval,
char *sense,
double *rhs,

const char **constrnames)
Add new linear constraints to a model. Note that, due to our lazy update approach, the
new constraints won’t actually be added until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

We recommend that you build your model one constraint at a time (using GRBaddconstr),
since it introduces no significant overhead and we find that it produces simpler code. Feel free to
use this routine if you disagree, though.

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXaddconstrs variant of this routine.

Return value:

A non-zero return value indicates that a problem occurred while adding the constraints.

Refer to the Error Code table for a list of possible return values. Details on the error can

be obtained by calling GRBgeterrormsg.
Arguments:

model: The model to which the new constraints should be added.

numconstrs: The number of new constraints to add.

numnz: The total number of non-zero coefficients in the new constraints.

cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse

Row (CSR) format by this routine. Each constraint in the constraint matrix is represented
as a list of index-value pairs, where each index entry provides the variable index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each new
constraint has an associated cbeg value, indicating the start position of the non-zeros for

23

that constraint in the cind and cval arrays. This routine requires that the non-zeros for
constraint i immediately follow those for constraint i-1 in cind and cval. Thus, cbegl[i]
indicates both the index of the first non-zero in constraint i and the end of the non-zeros
for constraint i-1. To give an example of how this representation is used, consider a case
where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has two
non-zero values associated with it. Their variable indices can be found in cind[10] and
cind[11], and the numerical values for those non-zeros can be found in cval[10] and
cvall[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

sense: Sense for the new constraints. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

rhs: Right-hand side values for the new constraints. This argument can be NULL, in which
case the right-hand side values are set to 0.0.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

GRBaddgenconstrXxx

Each of the functions described below adds a new general constraint to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types:
variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and
SOS constraints. These are typically treated directly by the underlying solver (although not always),
and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general
(function) constraints. These are typically not treated directly by the solver. Rather, they are
transformed by presolve into constraints (and variables) chosen from among the fundamental types
listed above. In some cases, the resulting constraint or constraints are mathematically equivalent
to the original; in others, they are approximations. If such constraints appear in your model, but
if you prefer to reformulate them yourself using fundamental constraint types instead, you can
certainly do so. However, note that Gurobi can sometimes exploit information contained in the
other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

o GRBaddgenconstrMax: y = max(x1, 2, ..., c)

o GRBaddgenconstrMin: y = min(x1, x2, ...,)

« GRBaddgenconstrAbs: y = |z|

« GRBaddgenconstrAnd: y = 1 A xa A x3...

o GRBaddgenconstrOr: y = x1 V x93 V x3...

o GRBaddgenconstrNorm: y = norm(z, z2, x3...)

o GRBaddgenconstrIndicator: y =1 — ¢’z < b (an indicator constraint)

24

GRBaddgenconstrPWL: y = pwl(x) (a piecewise-linear function, specified using breakpoints)
GRBaddgenconstrPoly: y = poz? 4+ p1z? ! + ... + pg_12 + pg

GRBaddgenconstrExp: y = e*

GRBaddgenconstrExpA: y = a”

GRBaddgenconstrLog: y = log,(x)

GRBaddgenconstrLogA: y = log, ()

1
14+e—2

GRBaddgenconstrLogistic: y =
GRBaddgenconstrPow: y = x®
GRBaddgenconstrSin: y = sin(x)
GRBaddgenconstrCos: y = cos(z)

GRBaddgenconstrTan: y = tan(z)

Please refer to this section for additional details on general constraints.

GRBaddgenconstrMax

int GRBaddgenconstrMax (GRBmodel *xmodel,

const char *name,

int resvar,
int nvars,
const int *vars,
double constant)

Add a new general constraint of type GRB_GENCONSTR_MAX to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A MAX constraint r = max{z1,...,Z,,c} states that the resultant variable r should be equal
to the maximum of the operand variables x1, ..., x, and the constant c.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

resvar: The index of the resultant variable » whose value will be equal to the max of the
other variables.

nvars: The number n of operand variables over which the max will be taken.

25

vars: An array containing the indices of the operand variables z; over which the max will
be taken.
constant: An additional operand that allows you to include a constant ¢ among the argu-
ments of the max operation.
Example usage:

/* x5 = max(x1, x3, x4, 2.0) */

int ind[] = {1, 3, 4};

error = GRBaddgenconstrMax(model, "maxconstr", 5,
3, ind, 2.0);

GRBaddgenconstrMin

int GRBaddgenconstrMin (GRBmodel *model,
const char *name,
int resvar,
int nvars,
const int *vars,
double constant)

Add a new general constraint of type GRB_GENCONSTR_MIN to a model. = Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A MIN constraint r = min{z1,...,Z,, c} states that the resultant variable r should be equal to
the minimum of the operand variables x1,...,x, and the constant c.
Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.
resvar: The index of the resultant variable » whose value will be equal to the min of the
other variables.
nvars: The number n of operand variables over which the min will be taken.
vars: An array containing the indices of the operand variables x; over which the min will
be taken.
constant: An additional operand that allows you to include a constant ¢ among the argu-
ments of the min operation.
Example usage:

/* x5 = min(x1, x3, x4, 2.0) *x/

int ind[] = {1, 3, 4};

error = GRBaddgenconstrMin(model, "minconstr", 5,
3, ind, 2.0);

26

GRBaddgenconstrAbs

int GRBaddgenconstrAbs (GRBmodel *model,
const char *name,
int resvar,
int argvar)

Add a new general constraint of type GRB_GENCONSTR_ABS to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

An ABS constraint r = abs{z} states that the resultant variable r should be equal to the
absolute value of the argument variable z.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.
resvar: The index of the resultant variable r whose value will be to equal the absolute
value of the argument variable.
argvar: The index of the argument variable x for which the absolute value will be taken.
Example usage:

/* x5 = abs(x1) */
error = GRBaddgenconstrAbs(model, "absconstr", 5, 1);
GRBaddgenconstrAnd

int GRBaddgenconstrAnd (GRBmodel *model,
const char *name,
int resvar,
int nvars,
const int *vars)

Add a new general constraint of type GRB_GENCONSTR_AND to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

An AND constraint » = and{x1, ..., z,} states that the binary resultant variable r should be 1
if and only if all of the operand variables x1, ..., z, are equal to 1. If any of the operand variables
is 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent
of how they were created.

Arguments:

model: The model to which the new general constraint should be added.

27

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.
resvar: The index of the binary resultant variable r whose value will be equal to the AND
concatenation of the other variables.
nvars: The number n of binary operand variables over which the AND will be taken.
vars: An array containing the indices of the binary operand variables x; over which the
AND concatenation will be taken.
Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Example usage:

/* x5 = and(x1, x3, x4) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrAnd(model, "andconstr", 5, 3, ind);

GRBaddgenconstrOr

int GRBaddgenconstrOr (GRBmodel *model,
const char *name,
int resvar,
int nvars,
const int *vars)

Add a new general constraint of type GRB_GENCONSTR_OR to a model. Note that, due to our
lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

An OR constraint r = or{zy,...,z,} states that the binary resultant variable r should be 1 if
and only if any of the operand variables x1, ..., x, is equal to 1. If all operand variables are 0, then
the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent
of how they were created.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

resvar: The index of the binary resultant variable r whose value will be equal to the OR
concatenation of the other variables.

nvars: The number n of binary operand variables over which the OR will be taken.

vars: An array containing the indices of the binary operand variables z; over which the OR
concatenation will be taken.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

28

Example usage:

/* x5 = or(xl, x3, x4) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrOr(model, "orcomnstr", 5, 3, ind);

GRBaddgenconstrNorm

int GRBaddgenconstrNorm (GRBmodel *model,
const char *name,
int resvar,
int nvars,
const int *vars,
double which)

Add a new general constraint of type GRB_GENCONSTR_NORM to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A NORM constraint r = norm{x1, ..., z,} states that the resultant variable r should be equal
to the vector norm of the argument vector z1, ..., z,.
Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

resvar: The index of the resultant variable r whose value will be equal to the NORM of
the other variables.

nvars: The number n of operand variables over which the NORM will be taken.

vars: An array containing the indices of the operand variables x; over which the NORM
will be taken. Note that this array may not contain duplicates.

which: Which norm to use. Options are 0, 1, 2, and GRB_INFINITY.
Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Example usage:

/* x5 = 2-norm(x1, x3, x4) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrNorm(model, "orcomnstr", 5, 3, ind, 2.0);

29

GRBaddgenconstrindicator

int GRBaddgenconstrIndicator (GRBmodel *model,
const char *name,
int binvar,
int binval,
int nvars,
const int *ind,
const double *val,
char sense,
double rhs)

Add a new general constraint of type GRB_GENCONSTR_INDICATOR to a model. Note that, due
to our lazy update approach, the new constraint won’t actually be added until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

An INDICATOR constraint z = f — a”x < b states that if the binary indicator variable z is
equal to f, where f € {0,1}, then the linear constraint a”2 < b should hold. On the other hand,
if z=1— f, the linear constraint may be violated. The sense of the linear constraint can also be
specified to be “=" or “>".

Note that the indicator variable z of a constraint will be forced to be binary, independent of
how it was created.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

binvar: The index of the binary indicator variable z.

binval: The value f for the binary indicator variable that would force the linear constraint
to be satisfied (0 or 1).

nvars: The number n of non-zero coefficients in the linear constraint triggered by the
indicator.

ind: Indices for the variables z; with non-zero values in the linear constraint.

val: Numerical values for non-zero values a; in the linear constraint.

sense: Sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

rhs: Right-hand side value for the linear constraint.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Example usage:

/¥ x7T =1 ->x1 + 2 x3 + x4 =1 %/
int ind[] = {1, 3, 43};
double vall] {1.0, 2.0, 1.03};
error = GRBaddgenconstrIndicator(model, NULL, 7, 1,
3, ind, val, GRB_EQUAL, 1.0);

30

GRBaddgenconstrPWL

int GRBaddgenconstrPWL (GRBmodel *model,
const char *name,
int xvar,
int yvar,
int npts,
double *xpts,
double *xypts)

Add a new general constraint of type GRB_GENCONSTR_PWL to a model. = Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A piecewise-linear (PWL) constraint states that the relationship y = f(z) must hold between
variables x and y, where f is a piecewise-linear function. The breakpoints for f are provided as
arguments. Refer to the description of piecewise-linear objectives for details of how piecewise-linear
functions are defined.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

xvar: The index of variable x.

yvar: The index of variable y.

npts: The number of points that define the piecewise-linear function.

xpts: The x values for the points that define the piecewise-linear function. Must be in
non-decreasing order.

ypts: The y values for the points that define the piecewise-linear function.

Example usage:

double xpts[] = {1, 3, 5};
double ypts[] = {1, 2, 4};
error = GRBaddgenconstr(model, "pwl", xvar, yvar, 3, X, y);

GRBaddgenconstrPoly

int GRBaddgenconstrPoly (GRBmodel *model,
const char *name,

int xvar,
int yvar,
int plen,
double *p,

const char *options)

31

Add a new general constraint of type GRB_GENCONSTR_POLY to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A polynomial function constraint states that the relationship y = pox®+piz® ' +... 4 pg_12+pg
should hold between variables x and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

xvar: The index of variable .

yvar: The index of variable y.

plen: The length of coefficient array p. If % is the highest power term, then plen should
be d+ 1.

p: The coefficients for the polynomial function (starting with the coefficient for the highest
power).

options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Example usage:

/¥ y=3%x4+7Tx+3=3x4+0x"3+0x"2+7zx+3x*/
int plen = 5;
double p[] = {3, 0, 0, 7, 3};

error = GRBaddgenconstrPoly(model, "poly", xvar, yvar, 5, p, "");

GRBaddgenconstrExp

int GRBaddgenconstrExp (GRBmodel *model,
const char *name,
int xvar,
int yvar,
const char *options)
Add a new general constraint of type GRB_GENCONSTR_EXP to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model

32

(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A natural exponential function constraint states that the relationship y = exp(z) should hold
for variables x and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

xvar: The index of variable z.

yvar: The index of variable y.

options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Example usage:

/* y = exp(x) */
error = GRBaddgenconstrExp(model, "exp", xvar, yvar, "");
GRBaddgenconstrExpA

int GRBaddgenconstrExpA (GRBmodel *model,
const char *name,

int xvar,
int yvar,
double a,

const char =*options)

Add a new general constraint of type GRB_GENCONSTR_EXPA to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

An exponential function constraint states that the relationship ¥ = a® should hold for variables
x and y, where a > 0 is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

33

Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.
xvar: The index of variable x.
yvar: The index of variable y.
a: The base of the function, a > 0.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").
Example usage:

/* y = 37x */
error = GRBaddgenconstrExpA(model, "expa", xvar, yvar, 3.0, "");

GRBaddgenconstrLog

int GRBaddgenconstrLog (GRBmodel *model,
const char *name,
int xvar,
int yvar,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_LOG to a model. = Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A natural logarithmic function constraint states that the relationship y = log(z) should hold
for variables x and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

34

xvar: The index of variable z.

yvar: The index of variable y.

options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Example usage:

/* y = log(x) */
error = GRBaddgenconstrLog(model, "log", xvar, yvar, "FuncPieces=-1 FuncPieceError=0.00:
GRBaddgenconstrLogA

int GRBaddgenconstrLogA (GRBmodel xmodel,
const char *name,

int xvar,
int yvar,
double a,

const char *options)
Add a new general constraint of type GRB_GENCONSTR_LOGA to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A logarithmic function constraint states that the relationship y = log,(x) should hold for
variables x and y, where a > 0 is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

xvar: The index of variable .

yvar: The index of variable y.

a: The base of the function, a > 0.

options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

35

Example usage:

/* y = log_10(x) */
error = GRBaddgenconstrLogA(model, "loga", xvar, yvar, 10.0, "");

GRBaddgenconstrLogistic

int GRBaddgenconstrLogistic (GRBmodel *model,
const char *name,
int xvar,
int yvar,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_LOGISTIC to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A logistic function constraint states that the relationship y =
and y.

1

TTe—= should hold for variables x

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.
xvar: The index of variable z.
yvar: The index of variable y.

options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Example usage:

/*y =1/ (1 + exp(-x)) */
error = GRBaddgenconstrLogistic(model, "logistic", xvar, yvar, "");

36

GRBaddgenconstrPow

int GRBaddgenconstrPow (GRBmodel *model,
const char *name,

int xvar,
int yvar,
double a,

const char =*options)

Add a new general constraint of type GRB_GENCONSTR_POW to a model. = Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A power function constraint states that the relationship y = x* should hold for variables x and
y, where a is the (constant) exponent. The lower bound of variable must be nonnegative, even if
a is an integer, and x > 0 if a < 0.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

xvar: The index of variable z.

yvar: The index of variable y.

a: The exponent of the function.

options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Example usage:

/* y = sqrt(x) */
error = GRBaddgenconstrPow(model, "pow", xvar, yvar, 0.5, "");

GRBaddgenconstrSin

int GRBaddgenconstrSin (GRBmodel *model,
const char *name,
int xvar,
int yvar,
const char *options)

37

Add a new general constraint of type GRB_GENCONSTR_SIN to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A sine function constraint states that the relationship y = sin(z) should hold for variables x
and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

xvar: The index of variable x.

yvar: The index of variable y.

options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Example usage:

/* y = sin(x) */
error = GRBaddgenconstrSin(model, "sin", xvar, yvar, "");

GRBaddgenconstrCos

int GRBaddgenconstrCos (GRBmodel *xmodel,
const char *name,
int xvar,
int yvar,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_COS to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A cosine function constraint states that the relationship y = cos(z) should hold for variables x
and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the

38

same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.
Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.
xvar: The index of variable x.
yvar: The index of variable y.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").
Example usage:

/* y = cos(x) */
error = GRBaddgenconstrCos(model, "cos", xvar, yvar, "FuncPieces=-2");

GRBaddgenconstrTan

int GRBaddgenconstrTan (GRBmodel *model,
const char *name,
int xvar,
int yvar,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_TAN to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A tangent function constraint states that the relationship y = tan(z) should hold for variables
x and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

39

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

xvar: The index of variable z.

yvar: The index of variable y.

options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Example usage:

/* y = tan(x) */

error = GRBaddgenconstrTan(model, "tan", xvar, yvar, "");
GRBaddqconstr

int GRBaddqconstr (GRBmodel xmodel,
int numlnz,
int *1ind,
double *1val,
int numqnz,
int *qrow,
int *qcol,
double *qval,
char sense,
double rhs,
const char *constrname)

Add a new quadratic constraint to a model. Note that, due to our lazy update approach,
the new constraint won’t actually be added until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A quadratic constraint consists of a set of quadratic terms, a set of linear terms, a sense, and a
right-hand side value: 7 Qx 4 ¢« < b. The quadratic terms are input through the numgnz, qrow,
gcol, and qval arguments, and the linear terms are input through the numlnz, 1ind, and lval
arguments.

Important note: Gurobi can handle both convex and non-convex quadratic constraints. The
differences between them can be both important and subtle. Refer to this discussion for additional
information.

Return value:

A non-zero return value indicates that a problem occurred while adding the quadratic con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new constraint should be added.
numlnz: The number of linear terms in the new quadratic constraint.
lind: Variable indices associated with linear terms.

1lval: Numerical values associated with linear terms.

40

numglnz: The number of quadratic terms in the new quadratic constraint.

grow: Row indices associated with quadratic terms. A quadratic term is represented using
three values: a pair of indices (stored in qrow and qcol), and a coefficient (stored in qval).
The associated arguments arrays provide the corresponding values for each quadratic term.
To give an example, if you wish to input quadratic terms 23 + zox1 + 2%, you would call
this routine with numgnz=3, qrow[] = {0, 0, 1}, qcol[]l = {0, 1, 1}, and qvall]l =
{2.0, 1.0, 1.0}

gcol: Column indices associated with quadratic terms. See the description of the qrow
argument for more information.

gval: Numerical values associated with quadratic terms. See the description of the qrow
argument for more information.

sense: Sense for the new quadratic constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL,
or GRB_GREATER_EQUAL.

rhs: Right-hand side value for the new quadratic constraint.

constrname: Name for the new quadratic constraint. This argument can be NULL, in which
case the constraint is given a default name.

Example usage:

int lind[] = {1, 2};

double 1lvall[] {2.0, 1.0};

int grow[] = {0, 0, 1};

int qcolll = {0, 1, 1};

double qvall] {2.0, 1.0, 1.03};

/* 2 x072 + x0 x1 + x172 + 2 x1 + x2 <=1 %/

error = GRBaddqconstr(model, 2, lind, 1lval, 3, grow, qcol, qval,
GRB_LESS_EQUAL, 1.0, "New");

GRBaddgpterms
int GRBaddgqpterms (GRBmodel *model,
int numgnz,
int *qrow,
int *qcol,

double xqval)

Add new quadratic objective terms into an existing model. Note that new terms are (numer-
ically) added into existing terms, and that adding a term in row i and column j is equivalent to
adding a term in row j and column i. You can add all quadratic objective terms in a single call,
or you can add them incrementally in multiple calls.

Note that, due to our lazy update approach, the new quadratic terms won’t actually be added
until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize),
or write the model to disk (using GRBwrite).

To build an objective that contains both linear and quadratic terms, use this routine to add the
quadratic terms and use the Obj attribute to add the linear terms.

If you wish to change a quadratic term, you can either add the difference between the current
term and the desired term using this routine, or you can call GRBdelq to delete all quadratic terms,
and then rebuild your new quadratic objective from scratch.

41

Return value:
A non-zero return value indicates that a problem occurred while adding the quadratic terms.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to which the new quadratic objective terms should be added.
numgnz: The number of new quadratic objective terms to add.
grow: Row indices associated with quadratic terms. A quadratic term is represented using
three values: a pair of indices (stored in qrow and qcol), and a coefficient (stored in qval).
The three argument arrays provide the corresponding values for each quadratic term. To
give an example, to represent 222 + xoz1 + 2%, you would have numgnz=3, qrow[] = {0,
0, 1}, qcoll] = {0, 1, 1}, and qval[] = {2.0, 1.0, 1.0}.
gcol: Column indices associated with quadratic terms. See the description of the qrow
argument for more information.
gval: Numerical values associated with quadratic terms. See the description of the qrow
argument for more information.
Important notes:
Note that building quadratic objectives requires some care, particularly if you are migrating

an application from another solver. Some solvers require you to specify the entire () matrix, while
others only accept the lower triangle. In addition, some solvers include an implicit 0.5 multiplier
on @, while others do not. The Gurobi interface is built around quadratic terms, rather than a @
matrix. If your quadratic objective contains a term 2 x y, you can enter it as a single term, 2 x vy,
or as a pair of terms, x y and y x.

Example usage:

int qrow[] = {0, 0, 1};

int qcol[]l = {0, 1, 1};

double gvall] {2.0, 1.0, 3.0%};
/* minimize 2 x72 + x*y + 3 y~2 */

error = GRBaddgpterms(model, 3, qrow, qcol, gval);

GRBaddrangeconstr
int GRBaddrangeconstr (GRBmodel *model,
int numnz,
int *cind,
double *cval,
double lower,
double upper,

const char *constrname)
Add a new range constraint to a model. A range constraint states that the value of the input

expression must be between the specified lower and upper bounds in any solution. Note that,
due to our lazy update approach, the new constraint won’t actually be added until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

Return value:

42

A non-zero return value indicates that a problem occurred while adding the constraint.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new constraint should be added.
numnz: The number of non-zero coefficients in the linear expression.
cind: Variable indices for non-zero values in the linear expression.
cval: Numerical values for non-zero values in the linear expression.
lower: Lower bound on linear expression.
upper: Upper bound on linear expression.
constrname: Name for the new constraint. This argument can be NULL, in which case the
constraint is given a default name.
Important notes:

Note that adding a range constraint to the model adds both a new constraint and a new variable.
If you are keeping a count of the variables in the model, remember to add one whenever you add
a range.

Note also that range constraints are stored internally as equality constraints. We use the
extra variable that is added with a range constraint to capture the range information. Thus, the
Sense attribute on a range constraint will always be GRB_EQUAL. In particular introducing a range
constraint

L<ala<U
is equivalent to adding a slack variable s and the following constraints

ater—s =1
0<s <U-L.

Example usage:

int ind[] {1, 3, 4};

double wvall] {1.0, 2.0, 3.0%};

/* 1 <=x1 + 2 x3 + 3 x4 <=2 %/

error = GRBaddrangeconstr(model, 3, ind, val, 1.0, 2.0, "NewRange");

GRBaddrangeconstrs

int GRBaddrangeconstrs (GRBmodel *model,
int numconstrs,
int numnz,
int *cbeg,
int *cind,
double *cval,
double *lower,
double *upper,

const char **constrnames)
Add new range constraints to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution. Note that,

43

due to our lazy update approach, the new constraints won'’t actually be added until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXaddrangeconstrs variant of this routine.

Return value:

A non-zero return value indicates that a problem occurred while adding the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new constraints should be added.
numconstrs: The number of new constraints to add.
numnz: The total number of non-zero coefficients in the new constraints.

cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Row (CSR) format by this routine. Each constraint in the constraint matrix is represented
as a list of index-value pairs, where each index entry provides the variable index for a non-
zero coeflicient, and each value entry provides the corresponding non-zero value. Each new
constraint has an associated cbeg value, indicating the start position of the non-zeros for
that constraint in the cind and cval arrays. This routine requires that the non-zeros for
constraint i immediately follow those for constraint i-1 in cind and cval. Thus, cbegl[i]
indicates both the index of the first non-zero in constraint i and the end of the non-zeros
for constraint i-1. To give an example of how this representation is used, consider a case
where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has two
non-zero values associated with it. Their variable indices can be found in cind[10] and
cind[11], and the numerical values for those non-zeros can be found in cval[10] and
cvall[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

lower: Lower bounds for the linear expressions.
upper: Upper bounds for the linear expressions.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

Important notes:

Note that adding a range constraint to the model adds both a new constraint and a new
variable. If you are keeping a count of the variables in the model, remember to add one for each
range constraint.

Note also that range constraints are stored internally as equality constraints. We use the extra
variable that is added with a range constraint to capture the range information. Thus, the Sense
attribute on a range constraint will always be GRB_EQUAL.

44

GRBaddsos

int GRBaddsos (GRBmodel *model,

int numsos,

int nummembers,
int *types,

int *beg,

int *ind,

double *weight)

Add new Special Ordered Set (SOS) constraints to a model. Note that, due to our lazy update
approach, the new SOS constraints won’t actually be added until you update the model (using
GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using
GRBwrite).

Please refer to this section for details on SOS constraints.

Return value:

A non-zero return value indicates that a problem occurred while adding the SOS constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new SOSs should be added.

numsos: The number of new SOSs to add.

nummembers: The total number of SOS members in the new SOSs.

types: The types of the SOS sets. SOS sets can be of type GRB_SOS_TYPE1 or GRB_S0S_-
TYPE2.

beg: The members of the added SOS sets are passed into this routine in Compressed Sparse
Row (CSR) format. Each SOS is represented as a list of index-value pairs, where each
index entry provides the variable index for an SOS member, and each value entry provides
the weight of that variable in the corresponding SOS set. Each new SOS has an associated
beg value, indicating the start position of the SOS member list in the ind and weight
arrays. This routine requires that the members for SOS i immediately follow those for
SOS i-1 in ind and weight. Thus, beg[i] indicates both the index of the first non-zero
in constraint i and the end of the non-zeros for constraint i-1. To give an example of
how this representation is used, consider a case where beg[2] = 10 and beg[3] = 12.
This would indicate that SOS number 2 has two members. Their variable indices can be
found in ind[10] and ind[11], and the associated weights can be found in weight [10]
and weight [11].

ind: Variable indices associated with SOS members. See the description of the beg argument
for more information.

weight: Weights associated with SOS members. See the description of the beg argument
for more information.

Example usage:

int typesl] {GRB_SOS_TYPE1, GRB_SOS_TYPE1};

int beg[] {0, 2};

int ind[] ={1, 2, 1, 3};

double weight[] = {1, 2, 1, 2};

error = GRBaddsos(model, 2, 4, types, beg, ind, weight);

45

GRBaddvar

int GRBaddvar (GRBmodel *model,

int numnz,
int *vind,
double *xyval,
double obj,
double 1b,
double ub,
char vtype,

const char *varname)

Add a new variable to a model. Note that, due to our lazy update approach, the new variable
won’t actually be added until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while adding the variable. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new variable should be added.
numnz: The number of non-zero coefficients in the new column.
vind: Constraint indices associated with non-zero values for the new variable.
vval: Numerical values associated with non-zero values for the new variable.
obj: Objective coeflicient for the new variable.
1b: Lower bound for the new variable.
ub: Upper bound for the new variable.

vtype: Type for the new variable. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT.

varname: Name for the new variable. This argument can be NULL, in which case the variable
is given a default name.

Example usage:

int ind[] {1, 3, 4};

double vall] {1.0, 1.0, 1.03};

error = GRBaddvar (model, 3, ind, val, 1.0, 0.0, GRB_INFINITY,
GRB_CONTINUQUS, "New");

46

GRBaddvars

int GRBaddvars (GRBmodel *model,

int numvars,
int numnz,
int *vbeg,
int *vind,
double *vval,
double *obj,
double *1b,
double *ub,
char *vtype,

const char **varnames)

Add new variables to a model. Note that, due to our lazy update approach, the new variables
won’t actually be added until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXaddvars variant of this routine.

Return value:

A non-zero return value indicates that a problem occurred while adding the variables. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new variables should be added.

numvars: The number of new variables to add.

numnz: The total number of non-zero coefficients in the new columns.

vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Column (CSC) format. Each column in the constraint matrix is represented as a list of
index-value pairs, where each index entry provides the constraint index for a non-zero
coefficient, and each value entry provides the corresponding non-zero value. Each variable
in the model has a vbeg, indicating the start position of the non-zeros for that variable
in the vind and vval arrays. This routine requires columns to be stored contiguously,
so the start position for a variable is the end position for the previous variable. To give
an example, if vbeg[2] = 10 and vbeg[3] = 12, that would indicate that variable 2 has
two non-zero values associated with it. Their constraint indices can be found in vind[10]
and vind[11], and the numerical values for those non-zeros can be found in vval[10]
and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

obj: Objective coefficients for the new variables. This argument can be NULL, in which case
the objective coefficients are set to 0.0.

1b: Lower bounds for the new variables. This argument can be NULL, in which case all
variables get lower bounds of 0.0.

47

ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

GRBchgcoeffs
int GRBchgcoeffs (GRBmodel *model,
int numchgs,
int *cind,
int *vind,

double xval)

Change a set of constraint matrix coefficients. This routine can be used to set a non-zero
coefficient to zero, to create a non-zero coefficient where the coefficient is currently zero, or to
change an existing non-zero coefficient to a new non-zero value. If you make multiple changes to
the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the changes won’t actually be integrated into the
model until you update the model (using GRBupdatemodel), optimize the model (using GRBop-
timize), or write the model to disk (using GRBwrite).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXchgcoeffs variant of this routine.

Return value:

A non-zero return value indicates that a problem occurred while performing the modification.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.
numchgs: The number of coefficients to modify.
cind: Constraint indices for the coeflicients to modify.
vind: Variable indices for the coefficients to modify.

val: The new values for the coefficients. For example, if cind[0] = 1, vind[0] = 3, and
val[0] = 2.0, then the coefficient in constraint 1 associated with variable 3 would be
changed to 2.0.

Example usage:

int cind[] = {0, 1};

int vind[] = {0, 0};

double val[] = {1.0, 1.03};

error = GRBchgcoeffs(model, 2, cind, vind, val);

48

GRBdelconstrs

int GRBdelconstrs (GRBmodel x*model,
int numdel,
int *ind)

Delete a list of constraints from an existing model. Note that, due to our lazy update approach,
the constraints won’t actually be removed until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while deleting the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to modify.
numdel: The number of constraints to remove.
ind: The indices of the constraints to remove.

Example usage:

int first_four[] = {0, 1, 2, 3};
error = GRBdelconstrs(model, 4, first_four);

GRBdelgenconstrs
int GRBdelgenconstrs (GRBmodel *model,
int numdel,
int *ind)

Delete a list of general constraints from an existing model. Note that, due to our lazy update
approach, the general constraints won’t actually be removed until you update the model (using
GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using
GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while deleting the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to modify.
numdel: The number of general constraints to remove.
ind: The indices of the general constraints to remove.

Example usage:

int first _four([] = {0, 1, 2, 3};
error = GRBdelgenconstrs(model, 4, first_four);

GRBdelq

| int GRBdelq (GRBmodel #*model)

49

Delete all quadratic objective terms from an existing model. Note that, due to our lazy
update approach, the quadratic terms won’t actually be removed until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while deleting the quadratic
objective terms. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to modify.
Example usage:

error = GRBdelq(model) ;

GRBdelqconstrs

int GRBdelqconstrs (GRBmodel *model,
int numdel,
int *xind)

Delete a list of quadratic constraints from an existing model. Note that, due to our lazy update
approach, the quadratic constraints won’t actually be removed until you update the model (using
GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using
GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while deleting the quadratic
constraints. Refer to the Error Code table for a list of possible return values. Details on
the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to modify.
numdel: The number of quadratic constraints to remove.
ind: The indices of the quadratic constraints remove.

Example usage:

int first_four([] = {0, 1, 2, 3};
error = GRBdelqconstrs(model, 4, first_four);

GRBdelsos
int GRBdelsos (GRBmodel *model,
int numdel,
int *ind)

Delete a list of Special Ordered Set (SOS) constraints from an existing model. Note that, due
to our lazy update approach, the SOS constraints won’t actually be removed until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

Return value:

50

A non-zero return value indicates that a problem occurred while deleting the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.
numdel: The number of SOSs to remove.
ind: The indices of the SOSs to remove.

Example usage:

int first_four[] = {0, 1, 2, 3};
error = GRBdelsos(model, 4, first_four);

GRBdelvars

int GRBdelvars (GRBmodel *model,
int numdel,
int *ind)

Delete a list of variables from an existing model. Note that, due to our lazy update approach,
the variables won’t actually be removed until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while deleting the variables.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to modify.
numdel: The number of variables to remove.
ind: The indices of the variables to remove.

Example usage:

int first_two[] = {0, 1};
error = GRBdelvars(model, 2, first_two);

GRBsetobjectiven

int GRBsetobjectiven (GRBmodel *model,
int index,
int priority,
double weight,
double abstol,
double reltol,
const char *name,
double constant,
int 1nz,
int *1ind,
double *1val)

Set an alternative optimization objective equal to a linear expression.

o1

Please refer to the discussion of Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.

Note that you can also modify an alternative objective using the ObjN variable attribute. If
you wish to mix and match these two approaches, please note that this method replaces the entire
existing objective, while the 0bjN attribute can be used to modify individual terms.

Note that, due to our lazy update approach, the new alternative objective won’t actually be
added until you update the model (using GRBupdatemodel), optimize the model (using GRBopti-
mize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while setting the alternative
objective. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model in which the new alternative objective should be set.

index: Index for new objective. If you use an index of 0, this routine will change the primary
optimization objective.

priority: Priority for the alternative objective. This initializes the ObjNPriority attribute
for this objective.

weight: Weight for the alternative objective. This initializes the ObjNWeight attribute for
this objective.

abstol: Absolute tolerance for the alternative objective. This initializes the ObjNAbsTol
attribute for this objective.

reltol: Relative tolerance for the alternative objective. This initializes the ObjNRelTol
attribute for this objective.

name: Name of the alternative objective. This initializes the ObjNName attribute for this
objective.

constant: Constant part of the linear expression for the new alternative objective.

1nz: Number of non-zero coefficients in new alternative objective.

lind: Variable indices for non-zero values in new alternative objective.

lval: Numerical values for non-zero values in new alternative objective.

Example usage:

int ind[] = {0, 1, 2};

double vall[] = {1.0, 1.0, 1.0};

/* Objective expression: x0 + x1 + x2 */

error = GRBsetobjectiven(model, 0, 1, 0.0, 0.0, 0.0, "primary",
0.0, 3, ind, val);

GRBsetpwlobj
int GRBsetpwlobj (GRBmodel x*model,
int var,
int npoints,
double *X,

double xy)
Set a piecewise-linear objective function for a variable.

52

The arguments to this method specify a list of points that define a piecewise-linear objective
function for a single variable. Specifically, the = and y arguments give coordinates for the vertices
of the function.

For additional details on piecewise-linear objective functions, refer to this discussion.

Note that, due to our lazy update approach, the new piecewise-linear objective won’t actu-
ally be added until you update the model (using GRBupdatemodel), optimize the model (using
GRBoptimize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while setting the piecewise-linear
objective. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to modify.
var: The variable whose objective function is being changed.
npoints: The number of points that define the piecewise-linear function.
x: The x values for the points that define the piecewise-linear function. Must be in non-
decreasing order.
y: The y values for the points that define the piecewise-linear function.
Example usage:

double x[] = {1, 3, B};
double y[1 = {1, 2, 4};
error = GRBsetpwlobj(model, var, 3, x, y);

GRBupdatemodel

| int GRBupdatemodel (GRBmodel #model)

Process any pending model modifications.

Return value:
A non-zero return value indicates that a problem occurred while updating the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: The model to update.

Example usage:

error = GRBupdatemodel (model) ;
GRBfreemodel
| int GRBfreemodel (GRBmodel *model)

Free a model and release the associated memory.
Return value:

93

A non-zero return value indicates that a problem occurred while freeing the model. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:
model: The model to be freed.

Example usage:

error = GRBfreemodel (model);

GRBXaddconstrs

int GRBXaddconstrs (GRBmodel *model,
int numconstrs,
size_t numnz,
size_t *cbeg,
int *cind,
double *xcval,
char *xsense,
double *rhs,
const char **constrnames)

The size_t version of GRBaddconstrs. The two arguments that count non-zero values are of
type size_t in this version to support models with more than 2 billion non-zero values.

Add new linear constraints to a model. Note that, due to our lazy update approach, the
new constraints won’t actually be added until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

We recommend that you build your model one constraint at a time (using GRBaddconstr),
since it introduces no significant overhead and we find that it produces simpler code. Feel free to
use this routine if you disagree, though.

Return value:

A non-zero return value indicates that a problem occurred while adding the constraints
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new constraints should be added.

numconstrs: The number of new constraints to add.

numnz: The total number of non-zero coefficients in the new constraints.

cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Row (CSR) format by this routine. Each constraint in the constraint matrix is represented
as a list of index-value pairs, where each index entry provides the variable index for a non-
zero coeflicient, and each value entry provides the corresponding non-zero value. Each new
constraint has an associated cbeg value, indicating the start position of the non-zeros for
that constraint in the cind and cval arrays. This routine requires that the non-zeros for
constraint i immediately follow those for constraint i-1 in cind and cval. Thus, cbegl[i]
indicates both the index of the first non-zero in constraint i and the end of the non-zeros
for constraint i-1. To give an example of how this representation is used, consider a case
where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has two

54

non-zero values associated with it. Their variable indices can be found in cind[10] and
cind[11], and the numerical values for those non-zeros can be found in cval[10] and
cvall11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

sense: Sense for the new constraints. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

rhs: Right-hand side values for the new constraints. This argument can be NULL, in which
case the right-hand side values are set to 0.0.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

GRBXaddrangeconstrs

int GRBXaddrangeconstrs (GRBmodel xmodel,
int numconstrs,
size_t numnz,
size_t *cbeg,
int *cind,
double *xcval,
double *]lower,
double *upper,

const char **constrnames)

The size_t version of GRBaddrangeconstrs. The argument that counts non-zero values is of
type size_t in this version to support models with more than 2 billion non-zero values.

Add new range constraints to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution. Note that,
due to our lazy update approach, the new constraints won’t actually be added until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while adding the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new constraints should be added.

numconstrs: The number of new constraints to add.

numnz: The total number of non-zero coefficients in the new constraints.

cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Row (CSR) format by this routine. Each constraint in the constraint matrix is represented
as a list of index-value pairs, where each index entry provides the variable index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each new
constraint has an associated cbeg value, indicating the start position of the non-zeros for
that constraint in the cind and cval arrays. This routine requires that the non-zeros for

95

constraint i immediately follow those for constraint i-1 in cind and cval. Thus, cbeg[i]
indicates both the index of the first non-zero in constraint i and the end of the non-zeros
for constraint i-1. To give an example of how this representation is used, consider a case
where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has two
non-zero values associated with it. Their variable indices can be found in cind[10] and
cind[11], and the numerical values for those non-zeros can be found in cval[10] and
cvall[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

lower: Lower bounds for the linear expressions.

upper: Upper bounds for the linear expressions.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

Important notes:

Note that adding a range constraint to the model adds both a new constraint and a new
variable. If you are keeping a count of the variables in the model, remember to add one for each
range constraint.

Note also that range constraints are stored internally as equality constraints. We use the extra
variable that is added with a range constraint to capture the range information. Thus, the Sense
attribute on a range constraint will always be GRB_EQUAL.

GRBXaddvars

int GRBXaddvars (GRBmodel *model,
int numvars,
size_t numnz,
size_t *vbeg,
int *vind,
double *vval,
double *obj,
double *1b,
double *ub,
char *vtype,

const char #**varnames)

The size_t version of GRBaddvars. The two arguments that count non-zero values are of type
size_t in this version to support models with more than 2 billion non-zero values.

Add new variables to a model. Note that, due to our lazy update approach, the new variables
won’t actually be added until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while adding the variables. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:

56

model: The model to which the new variables should be added.

numvars: The number of new variables to add.

numnz: The total number of non-zero coefficients in the new columns.

vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Column (CSC) format. Each column in the constraint matrix is represented as a list of
index-value pairs, where each index entry provides the constraint index for a non-zero
coeflicient, and each value entry provides the corresponding non-zero value. Each variable
in the model has a vbeg, indicating the start position of the non-zeros for that variable
in the vind and vval arrays. This routine requires columns to be stored contiguously,
so the start position for a variable is the end position for the previous variable. To give
an example, if vbeg[2] = 10 and vbeg[3] = 12, that would indicate that variable 2 has
two non-zero values associated with it. Their constraint indices can be found in vind[10]
and vind[11], and the numerical values for those non-zeros can be found in vval[10]
and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

obj: Objective coefficients for the new variables. This argument can be NULL, in which case
the objective coefficients are set to 0.0.

1b: Lower bounds for the new variables. This argument can be NULL, in which case all
variables get lower bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUQUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

GRBXchgcoeffs
int GRBXchgcoeffs (GRBmodel *model,
size_t numchgs,
int *cind,
int *vind,

double *val)

The size_t version of GRBchgcoeffs. The argument that counts non-zero values is of type
size_t in this version to support models with more than 2 billion non-zero values.

Change a set of constraint matrix coefficients. This routine can be used to set a non-zero
coefficient to zero, to create a non-zero coefficient where the coefficient is currently zero, or to
change an existing non-zero coefficient to a new non-zero value. If you make multiple changes to
the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the changes won’t actually be integrated into the
model until you update the model (using GRBupdatemodel), optimize the model (using GRBop-
timize), or write the model to disk (using GRBwrite).

o7

Return value:
A non-zero return value indicates that a problem occurred while performing the modification.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to modify.
numchgs: The number of coefficients to modify
cind: Constraint indices for the coeflicients to modify.
vind: Variable indices for the coefficients to modify.
val: The new values for the coefficients. For example, if cind[0] = 1, vind[0] = 3, and
val[0] = 2.0, then the coefficient in constraint 1 associated with variable 3 would be
changed to 2.0.
Example usage:

int cind[] = {0, 1};
int vind[] = {0, 0};
double vall[]l = {1.0, 1.0%};

error = GRBXchgcoeffs(model, 2, cind, vind, val);

GRBXloadmodel

int GRBXloadmodel (GRBenv *env,
GRBmodel *x*modelP,
const char *Pname,
int numvars,
int numconstrs,
int objsense,
double objcon,
double *obj,
char *xsense,
double *rhs,
size_t *vbeg,
int *vlen,
int *vind,
double *xvval,
double *x1b,
double *ub,
char *vtype,
const char **varnames,
const char *xconstrnames)

The size_t version of GRBloadmodel. The argument that counts non-zero values is of type
size_t in this version to support models with more than 2 billion non-zero values.

Create a new optimization model, using the provided arguments to initialize the model data
(objective function, variable bounds, constraint matrix, etc.). The model is then ready for opti-
mization, or for modification (e.g., addition of variables or constraints, changes to variable types
or bounds, etc.).

58

Return value:

A non-zero return value indicates that a problem occurred while creating the model. Refer

to the Error Code table for a list of possible return values. Details on the error can be

obtained by calling GRBgeterrormsg.

Arguments:

env: The environment in which the new model should be created. Note that the new model
gets a copy of this environment, so subsequent modifications to the original environment
(e.g., parameter changes) won'’t affect the new model. Use GRBgetenv to modify the
environment associated with a model.

modelP: The location in which the pointer to the newly created model should be placed.

Pname: The name of the model.

numvars: The number of variables in the model.

numconstrs: The number of constraints in the model.

objsense: The sense of the objective function. Allowed values are 1 (minimization) or -1
(maximization).

objcon: Constant objective offset.

obj: Objective coefficients for the new variables. This argument can be NULL, in which case
the objective coefficients are set to 0.0.

sense: The senses of the new constraints. Options are *=’ (equal), ’<’ (less-than-or-equal),
or ’>’ (greater-than-or-equal). You can also use constants GRB_EQUAL, GRB_LESS_EQUAL,
or GRB_GREATER_EQUAL.

rhs: Right-hand side values for the new constraints. This argument can be NULL, in which
case the right-hand side values are set to 0.0.

vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Column (CSC) format. Each column in the constraint matrix is represented as a list of
index-value pairs, where each index entry provides the constraint index for a non-zero
coefficient, and each value entry provides the corresponding non-zero value. Each variable
in the model has a vbeg and vlen value, indicating the start position of the non-zeros for
that variable in the vind and vval arrays, and the number of non-zero values for that
variable, respectively. Thus, for example, if vbeg[2] = 10 and vlen[2] = 2, that would
indicate that variable 2 has two non-zero values associated with it. Their constraint indices
can be found in vind[10] and vind[11], and the numerical values for those non-zeros
can be found in vval[10] and vval[11]. Note that the columns of the matrix must be
ordered from first to last, implying that the values in vbeg must be non-decreasing.

vlen: Number of constraint matrix non-zero values associated with each variable. See the
description of the vbeg argument for more information.

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

1b: Lower bounds for the new variables. This argument can be NULL, in which case all
variables get lower bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,

99

GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

Important notes:

We recommend that you build a model one constraint or one variable at a time, using GRBad-
dconstr or GRBaddvar, rather than using this routine to load the entire constraint matrix at once.
It is much simpler, less error prone, and it introduces no significant overhead.

Example usage:

/* maximize X+ y+2z
subject to x+ 2y + 3z <=4
X+ y >= 1

X, y, z binary */

int vars = 3;

int constrs = 2;

size_t vbegl[l = {0, 2, 4};

int vlien[] = {2, 2, 1};

int vind[] = {0, 1, 0, 1, 0};

double vvall]
double obj[]
char sensel[]
double rhs[]
char vtypel]

{1.0, 1.0, 2.0, 1.0, 3.0};

{1.0, 1.0, 2.0%};

{GRB_LESS_EQUAL, GRB_GREATER_EQUAL};
{4.0, 1.03};

{GRB_BINARY, GRB_BINARY, GRB_BINARY};

error = GRBXloadmodel (env, &model, "example", vars, constrs, -1, 0.0,
obj, sense, rhs, vbeg, vlen, vind, vval,
NULL, NULL, vtype, NULL, NULL);

60

3.3 Model Solution
GRBoptimize

‘int GRBoptimize (GRBmodel #*model)

Optimize a model. The algorithm used for the optimization depends on the model type (simplex
or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful completion,
this method will populate the solution related attributes of the model. See the Attributes section
for more information on attributes.

Please consult this section for a discussion of some of the practical issues associated with solving
a precisely defined mathematical model using finite-precision floating-point arithmetic.

Note that this routine will process all pending model modifications.

Return value:

A non-zero return value indicates that a problem occurred while optimizing the model.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to optimize. Note that this routine only reports whether the optimization
ran into an error. Query the Status attribute to determine the result of the optimization
(see the Attributes section for more information on querying attributes).
Example usage:

error = GRBoptimize (model);

GRBoptimizeasync

| int GRBoptimizeasync (GRBmodel #model)

Optimize a model asynchronously. This routine returns immediately. Your program can perform
other computations while optimization proceeds in the background. To check the state of the
asynchronous optimization, query the Status attribute for the model. A value of IN_PROGRESS
indicates that the optimization has not yet completed. When you are done with your foreground
tasks, you must call GRBsync to sync your foreground program with the asynchronous optimization
task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in
the background is severely limited. Specifically, you can only perform attribute queries, and only
for a few attributes (listed below). Any other calls on the running model, or on any other models that
were built within the same Gurobi environment, will fail with error code OPTIMIZATION_IN_PROGRESS.

Note that there are no such restrictions on models built in other environments. Thus, for
example, you could create multiple environments, and then have a single foreground program
launch multiple simultaneous asynchronous optimizations, each in its own environment.

As already noted, you are allowed to query the value of the Status attribute while an asyn-
chronous optimization is in progress. The other attributes that can be queried are: ObjVal, Ob-
jBound, IterCount, NodeCount, and BarlterCount. In each case, the returned value reflects progress
in the optimization to that point. Any attempt to query the value of an attribute not on this list
will return an OPTIMIZATION_IN_PROGRESS error.

61

Return value:
A non-zero return value indicates that a problem occurred while optimizing the model.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to optimize. Note that this routine only reports whether launching the
asynchronous job ran into an error. Query the Status attribute to determine the result of
the optimization (see the Attributes section for more information on querying attributes).
The return value of GRBsync indicates whether the background optimization ran into an
€rTor.
Example usage:

error = GRBoptimizeasync(model);
/* ... perform other compute-intensive tasks... */

error = GRBsync(model) ;

GRBcomputellS

| int GRBcomputeIIS (GRBmodel #model)

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and
variable bounds with the following properties:

o It is still infeasible, and
o If a single constraint or bound is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily
the smallest one; there may exist others with fewer constraints or bounds.

IIS results are returned in a number of attributes: IISConstr, IISLB, IISUB, IISSOS, IISQCon-
str, and IISGenConstr. Each indicates whether the corresponding model element is a member of
the computed IIS.

Note that for models with general function constraints, piecewise-linear approximation of the
constraints may cause unreliable IIS results.

The IIS log provides information about the progress of the algorithm, including a guess at the
eventual IIS size.

If an IIS computation is interrupted before completion, Gurobi will return the smallest infeasible
subsystem found to that point.

The IISConstrForce, IISLBForce, IISUBForce, IISSOSForce, IISQConstrForce, and IISGenCon-
strForce attributes allow you mark model elements to either include or exclude from the computed
IIS. Setting the attribute to 1 forces the corresponding element into the IIS, setting it to 0 forces
it out of the IIS, and setting it to -1 allows the algorithm to decide.

To give an example of when these attributes might be useful, consider the case where an initial
model is known to be feasible, but it becomes infeasible after adding constraints or tightening
bounds. If you are only interested in knowing which of the changes caused the infeasibility, you can

62

force the unmodified bounds and constraints into the IIS. That allows the IIS algorithm to focus
exclusively on the new constraints, which will often be substantially faster.

Note that setting any of the Force attributes to 0 may make the resulting subsystem fea-
sible, which would then make it impossible to construct an IIS. Trying anyway will result in a
GRB_ERROR_IIS_NOT_INFEASIBLE error. Similarly, setting this attribute to 1 may result in an IIS
that is not irreducible. More precisely, the system would only be irreducible with respect to the
model elements that have force values of -1 or 0.

This routine populates the IISConstr, IISGenConstr, IISQConstr, IISSOS, IISLB, and IISUB
attributes. You can also obtain information about the results of the IIS computation by writing a
.ilp format file (see GRBwrite). This file contains only the IIS from the original model.

Use the IISMethod parameter to adjust the behavior of the IIS algorithm.

Note that this routine can be used to compute IISs for both continuous and MIP models.

Return value:

A non-zero return value indicates that a problem occurred while computing the IIS. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:

model: The infeasible model. This routine will return an error if the input model is feasible.

Important note:

This routine only reports whether the computation ran into an error. Query the IISConstr,
IISGenConstr, IISQConstr, IISSOS, IISLB, or IISUB attributes to determine the result of the
computation (see the Attributes section for more information on querying attributes).

Example usage:

error = GRBcomputeIIS(model);

GRBfeasrelax
int GRBfeasrelax (GRBmodel *model,
int relaxobjtype,
int minrelax,

double *1bpen,
double *ubpen,
double *rhspen,
double xfeasobjP)

Modifies the input model to create a feasibility relaxation. Note that you need to call GRBop-
timize on the result to compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the
solution violates the bounds and linear constraints of the original model. This routine provides a
number of options for specifying the relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the
sum of the weighted magnitudes of the bound and constraint violations. The 1bpen, ubpen, and
rhspen arguments specify the cost per unit violation in the lower bounds, upper bounds, and linear
constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the
weighted sum of the squares of the bound and constraint violations. The lbpen, ubpen, and

63

rhspen arguments specify the coefficients on the squares of the lower bound, upper bound, and
linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the
weighted count of bound and constraint violations. The 1bpen, ubpen, and rhspen arguments
specify the cost of violating a lower bound, upper bound, and linear constraint, respectively.

To give an example, a violation of 2.0 on constraint i would contribute 2*rhspen[i] to the
feasibility relaxation objective for relaxobjtype=0, it would contribute 2*2*rhspen([i] for
relaxobjtype=1, and it would contribute rhspen[i] for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is
created. If minrelax=0, optimizing the returned model gives a solution that minimizes the cost of
the violation. If minrelax=1, optimizing the returned model finds a solution that minimizes the
original objective, but only from among those solutions that minimize the cost of the violation. Note
that GRBfeasrelax must solve an optimization problem to find the minimum possible relaxation
for minrelax=1, which can be quite expensive.

In all cases, you can specify a penalty of GRB_INFINITY to indicate that a specific bound or
linear constraint may not be violated.

Note that this is a destructive routine: it modifies the model passed to it. If you don’t want to
modify your original model, use GRBcopymodel to create a copy before calling this routine.

Return value:

A non-zero return value indicates that a problem occurred while computing the feasibility
relaxation. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The original (infeasible) model. The model is modified by this routine.

relaxobjtype: The cost function used when finding the minimum cost relaxation.

minrelax: The type of feasibility relaxation to perform.

lbpen: The penalty associated with violating a lower bound. Can be NULL, in which case
no lower bound violations are allowed.

ubpen: The penalty associated with violating an upper bound. Can be NULL, in which case
no upper bound violations are allowed.

rhspen: The penalty associated with violating a linear constraint. Can be NULL, in which
case no constraint violations are allowed.

feasobjP: When minrelax=1, this returns the objective value for the minimum cost relax-
ation.

Example usage:

double penalties[];
error = GRBfeasrelax(model, 0, O, NULL, NULL, penalties, NULL);
error = GRBoptimize(model) ;

GRBfixmodel

int GRBfixmodel (GRBmodel x*model,
GRBmodel *x*fixedP)

Create the fixed model associated with a MIP model. The MIP model must have a solution
loaded (e.g., after a call to GRBoptimize). In the fixed model, each integer variable is fixed to the

64

value that variable takes in the MIP solution. In addition, continuous variables may be fixed to
satisfy SOS or general constraints. The result is a model without any integrality constraints, SOS
constraints, or general constraints.

Note that, while the fixed problem is always a continuous model, it may contain a non-convex
quadratic objective or non-convex quadratic constraints. As a result, it may still be solved using
the MIP algorithm.

Return value:

A non-zero return value indicates that a problem occurred while creating the fixed model.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The MIP model (with a solution loaded).
fixedP: The computed fixed model.

Example usage:

GRBmodel *xfixed;
error = GRBfixmodel (model, &fixed);

GRBreset

int GRBreset (GRBmodel *model,
int clearall)

Reset the model to an unsolved state, discarding any previously computed solution information.
Return value:
A non-zero return value indicates that a problem occurred while resetting the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: The model to reset.
clearall: A value of 1 discards additional information that affects the solution process but
not the actual model (currently MIP starts, variable hints, branching priorities, lazy flags,
and partition information). Pass 0 to just discard the solution.
Example usage:

error = GRBreset(model, 0);

GRBsync

‘int GRBsync (GRBmodel *model)

Wait for a previous asynchronous optimization call to complete.

Calling GRBoptimizeasync returns control to the calling routine immediately. The caller can
perform other computations while optimization proceeds, and can check on the progress of the opti-
mization by querying various model attributes. The GRBsync call forces the calling program to wait
until the asynchronous optimization completes. You must call GRBsync before the corresponding
model is freed.

65

The GRBsync call returns a non-zero error code if the optimization itself ran into any problems.
In other words, error codes returned by this method are those that GRBoptimize itself would have
returned, had the original method not been asynchronous.
Note that you need to call GRBsync even if you know that the asynchronous optimization has
already completed.
Return value:
A non-zero return value indicates that a problem occurred while solving the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: The model that is currently being solved.
Example usage:

error = GRBoptimizeasync(model) ;
/* ... perform other compute-intensive tasks... */

error = GRBsync(model) ;

66

3.4 Model Queries

While most model related queries are handled through the attribute interface, a few fall outside of
that interface. These are described here.

GRBgetcoeff
int GRBgetcoeff (GRBmodel =*model,
int constrind,
int varind,

double *valP)

Retrieve a single constraint matrix coefficient.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the coefficient.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model from which the coefficient should be retrieved.

constrind: The constraint index for the desired coefficient.

varind: The variable index for the desired coefficient.

valP: The location in which the requested matrix coefficient should be placed.
Example usage:

double A12;
error = GRBgetcoeff (model, 1, 2, &A12);

GRBgetconstrbyname

int GRBgetconstrbyname (GRBmodel *model,
const char *name,
int *constrnumP)

Retrieves a linear constraint from its name. If multiple linear constraints have the same name,
this routine chooses one arbitrarily.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the constraint.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the linear constraint should be retrieved.
name: The name of the desired linear constraint.

constrnumP: Constraint number for a linear constraint with the indicated name. Returns
-1 if no matching name is found.

67

GRBgetconstrs

int GRBgetconstrs (GRBmodel *model,

int *numnzP ,
int *cbeg,
int *cind,
double *xcval,
int start,
int len)

Retrieve the non-zeros for a set of linear constraints from the constraint matrix. Typical usage

is to call this routine twice. In the first call, you specify the requested set of constraints, with
NULL values for cbeg, cind, and cval. The routine returns the number of non-zero values for the
specified constraint range in numnzP. That allows you to make certain that cind and cval are of
sufficient size to hold the result of the second call.

If your constraint matrix may contain more than 2 billion non-zero values, you should consider

using the GRBXgetconstrs variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the constraint
coefficients. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the linear constraints should be retrieved.
numnzP: The number of non-zero values retrieved.
cbeg: Constraint matrix non-zero values are returned in Compressed Sparse Row (CSR) for-

mat. Each constraint in the constraint matrix is represented as a list of index-value pairs,
where each index entry provides the variable index for a non-zero coefficient, and each
value entry provides the corresponding non-zero value. Each constraint has an associated
cbeg value, indicating the start position of the non-zeros for that constraint in the cind
and cval arrays. The non-zeros for constraint i immediately follow those for constraint
i-1 in cind and cval. Thus, cbegl[i] indicates both the index of the first non-zero in
constraint i and the end of the non-zeros for constraint i-1. For example, consider the
case where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has
two non-zero values associated with it. Their variable indices can be found in cind[10]
and cind[11], and the numerical values for those non-zeros can be found in cval[10]
and cvall[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg

argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of

the cbeg argument for more information.

start: The index of the first linear constraint to retrieve.
len: The number of linear constraints to retrieve.

GRBgetenv

| GRBenv * GRBgetenv (GRBmodel #model)

68

Retrieve the environment associated with a model.
Note that this environment is a model environment, not the original environment on which the
model was created. See Algorithmic parameters for more information.

Return value:
The environment associated with the model. A NULL return value indicates that there was
a problem retrieving the environment.

Arguments:
model: The model from which the environment should be retrieved.

Example usage:

GRBenv *env = GRBgetenv(model);

GRBgetgenconstrMax
int GRBgetgenconstrMax (GRBmodel #*model,
int id,
int *xresvarP,
int *nvarsP,
int *vars,
double *constantP)

Retrieve the data associated with a general constraint of type MAX. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in nvarsP. That allows you to make certain
that the vars array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrMax for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general
constraint data. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the resultant variable of the constraint.
nvarsP: The number of operand variables of the constraint.
vars: An array to store the variable indices associated with the variable operands of the
constraint.
constantP: The additional constant operand of the constraint.
Example usage:

int type;

int resvar;
int nvars;
int *vars;

69

double constant;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_MAX) {
error = GRBgetgenconstrMax(model, 3, &resvar, &nvars, NULL, &constant);
/* ...allocate vars to hold 'nvars' values... */
error = GRBgetgenconstrMax(model, 3, NULL, NULL, vars, NULL);

GRBgetgenconstrMin

int GRBgetgenconstrMin (GRBmodel *model,

int id,

int *resvarP,
int *nvarsP,

int *xvars,
double *constantP)

Retrieve the data associated with a general constraint of type MIN. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in nvarsP. That allows you to make certain
that the vars array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrMin for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general
constraint data. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the resultant variable of the constraint.
nvarsP: The number of operand variables of the constraint.
vars: An array to store the variable indices associated with the variable operands of the
constraint.
constantP: The additional constant operand of the constraint.
Example usage:

int type;

int resvar;

int nvars;

int *vars;
double constant;

70

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_MIN) {
error = GRBgetgenconstrMin(model, 3, &resvar, &nvars, NULL, &constant);
/* ...allocate vars to hold 'nvars' values... */
error = GRBgetgenconstrMin(model, 3, NULL, NULL, vars, NULL);

}
GRBgetgenconstrAbs
int GRBgetgenconstrAbs (GRBmodel #*model,
int id,
int *resvarpP,
int xargvarP)

Retrieve the data associated with a general constraint of type ABS. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

See also GRBaddgenconstrAbs for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general
constraint data. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the resultant variable of the constraint.
argvarP: The variable index associated with the argument variable of the constraint.
Example usage:

int type;
int resvar;
int argvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_ABS) {
error = GRBgetgenconstrAbs(model, 3, &resvar, &argvar);

}
GRBgetgenconstrAnd
int GRBgetgenconstrAnd (GRBmodel x*model,
int id,
int *resvarP,
int *nvarsP,
int *xvars)

71

Retrieve the data associated with a general constraint of type AND. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in nvarsP. That allows you to make certain
that the vars array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrAnd for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general
constraint data. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the binary resultant variable of the constraint.
nvarsP: The number of binary operand variables of the constraint.
vars: An array to store the variable indices associated with the binary variable operands of
the constraint.
Example usage:

int type;

int resvar;
int nvars;
int *vars;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_AND) {

error = GRBgetgenconstrAnd(model, 3, &resvar, &nvars, NULL);

/* ...allocate vars to hold 'nvars' values... */

error = GRBgetgenconstrAnd(model, 3, NULL, NULL, vars);

}
GRBgetgenconstrOr
int GRBgetgenconstrOr (GRBmodel #*model,
int id,
int *resvarP,
int *nvarsP,
int *xvars)

Retrieve the data associated with a general constraint of type OR. Calling this method for a gen-
eral constraint of a different type leads to an error return code. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of

72

operand variables in the specified general constraint in nvarsP. That allows you to make certain
that the vars array is of sufficient size to hold the result of the second call.
See also GRBaddgenconstrOr for a description of the semantics of this general constraint type.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the general
constraint data. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the binary resultant variable of the constraint.
nvarsP: The number of binary operand variables of the constraint.
vars: An array to store the variable indices associated with the binary variable operands of
the constraint.
Example usage:

int type;

int resvar;
int nvars;
int *vars;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_OR) {
error = GRBgetgenconstrOr (model, 3, &resvar, &nvars, NULL);

/* ...allocate vars to hold 'mvars' values... */
error = GRBgetgenconstrOr (model, 3, NULL, NULL, vars);
}
GRBgetgenconstrNorm
int GRBgetgenconstrNorm (GRBmodel =*model,

int id,
int *resvarP,
int *nvarsP,
int *vars,

double *whichP)

Retrieve the data associated with a general constraint of type NORM. Calling this method
for a general constraint of a different type leads to an error return code. You can query the
GenConstrType attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in nvarsP. That allows you to make certain
that the vars array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrNorm for a description of the semantics of this general constraint

type.

73

Return value:
A non-zero return value indicates that a problem occurred while retrieving the general
constraint data. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the resultant variable of the constraint.
nvarsP: The number of operand variables of the constraint.
vars: An array to store the variable indices associated with the variable operands of the
constraint.
whichP: Which norm is used. Options are 0, 1, 2, and GRB__INFINITY.
Example usage:
int type;
int resvar;
int nvars;
int *vars;
double which;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRIYPE, 3, &type);
if (type == GRB_GENCONSTR_NORM) {

error = GRBgetgenconstrNorm(model, 3, &resvar, &nvars, NULL, &which);

/* ...allocate vars to hold 'nvars' values... */

error = GRBgetgenconstrNorm(model, 3, NULL, NULL, vars);

GRBgetgenconstrindicator

int GRBgetgenconstrIndicator (GRBmodel *model,

int id,

int *binvarP,
int *binvalP,
int *nvarsP,
int *ind,
double *val,
char *senseP,

double *rhsP)

Retrieve the data associated with a general constraint of type INDICATOR. Calling this method
for a general constraint of a different type leads to an error return code. You can query the
GenConstrType attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with NULL values for the ind and val arguments. The routine returns the total number
of non-zero coefficients in the linear constraint associated with the specified indicator constraint in
nvarsP. That allows you to make certain that the ind and val arrays are of sufficient size to hold
the result of the second call.

74

See also GRBaddgenconstrIndicator for a description of the semantics of this general constraint

type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general
constraint data. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
binvarP: The variable index associated with the binary indicator variable.

binvalP: The value that the indicator variable has to take in order to trigger the linear
constraint.

nvarsP: The number of non-zero coefficients in the linear constraint triggered by the indi-
cator.

ind: An array to store the variable indices for non-zero values in the linear constraint.
val: An array to store the numerical values for non-zero values in the linear constraint.

senseP: Sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

rhsP: Right-hand side value for the linear constraint.

Example usage:

int type;
int binvar;
int binval:
int nvars;
int *ind;
double *val;
char sense;
double rhs;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_INDICATOR) {
error = GRBgetgenconstrIndicator(model, 3, &binvar, &binval, &nvars,
NULL, NULL, &sense, &rhs);
/* ...allocate ind and val to hold 'nvars' values... */
error = GRBgetgenconstrIndicator(model, 3, NULL, NULL, NULL,
ind, val, NULL, NULL);

75

GRBgetgenconstrPWL

int GRBgetgenconstrPWL (GRBmodel

int
int
int
int

double
double

*model,
id,

*xvarP,
*yvarP,
*nptsP,
*xpts,
*xypts)

Retrieve the data associated with a general constraint of type PWL. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the xpts and ypts arguments. The routine returns the length
for the xpts and ypts arrays in nptsP. That allows you to make certain that the xpts and ypts
arrays are of sufficient size to hold the result of the second call.

See also GRBaddgenconstrPWL for a description of the semantics of this general constraint

type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the general
constraint data. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.

xvarP: The index of variable z.
yvarP: The index of variable y.

nptsP: The number of points that define the piecewise-linear function.
xpts: The z values for the points that define the piecewise-linear function.
ypts: The y values for the points that define the piecewise-linear function.

Example usage:

int type;
int xvar;
int yvar;
int npts;
double *xpts;
double *ypts;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);

if (type == GRB_GENCONSTR_PWL) {

error = GRBgetgenconstrPWL(model, 3, &xvar, &yvar, &npts, NULL, NULL);
/* ...allocate xpts and ypts arrays with length npts */
error = GRBgetgenconstrPWL(model, 3, NULL, NULL, NULL, xpts, ypts);

76

GRBgetgenconstrPoly

int GRBgetgenconstrPoly (GRBmodel #*model,
int id,
int *xvarP,
int *yvarP,
int *plenP,
double *p)

Retrieve the data associated with a general constraint of type POLY. Calling this method
for a general constraint of a different type leads to an error return code. You can query the
GenConstrType attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the p argument. The routine returns the length of the p array in
plenP. That allows you to make certain that the p array is of sufficient size to hold the result of
the second call.

See also GRBaddgenconstrPoly for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the general
constraint data. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable z.
yvarP: The index of variable y.

plenP: Pointer to store the array length for p. If 2% is the highest power term, then d + 1
will be returned.

p: The coefficients for polynomial function.

Example usage:

int type;
int xvar;
int yvar;
int plen;
double *p;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_POLY) {

error = GRBgetgenconstrPoly(model, 3, &xvar, &yvar, &plen, NULL);

/* ...allocate p array with length plen */

error = GRBgetgenconstrPoly(model, 3, NULL, NULL, NULL, p);

77

GRBgetgenconstrExp

int GRBgetgenconstrExp (GRBmodel x*model,

int id,
int *xvarP,
int xyvarP)

Retrieve the data associated with a general constraint of type EXP. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

See also GRBaddgenconstrExp for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general
constraint data. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.
Example usage:
int type;
int xvar;
int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTIYPE, 3, &type);
if (type == GRB_GENCONSTR_EXP) {
error = GRBgetgenconstrExp(model, 3, &xvar, &yvar);

}
GRBgetgenconstrExpA
int GRBgetgenconstrExpA (GRBmodel #*model,
int id,
int *xvarP,
int *yvarP,

double *aP)

Retrieve the data associated with a general constraint of type EXPA. Calling this method
for a general constraint of a different type leads to an error return code. You can query the
GenConstrType attribute to determine the type of the general constraint.

See also GRBaddgenconstrExpA for a description of the semantics of this general constraint
type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general
constraint data. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

78

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.
aP: The base of the function.
Example usage:

int type;
int xvar;
int yvar;
double a;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_EXPA) {
error = GRBgetgenconstrExpA(model, 3, &xvar, &yvar, &a);

}
GRBgetgenconstrLog
int GRBgetgenconstrLog (GRBmodel x*model,
int id,
int *xvarP,
int xyvarP)

Retrieve the data associated with a general constraint of type LOG. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

See also GRBaddgenconstrLog for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general
constraint data. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable z.
yvarP: The index of variable y.
Example usage:

int type;
int xvar;
int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);

79

if (type == GRB_GENCONSTR_LOG) {
error = GRBgetgenconstrLog(model, 3, &xvar, &yvar);

}
GRBgetgenconstrLogA
int GRBgetgenconstrLogA (GRBmodel =*model,
int id,
int *xvarP,
int *yvarP,

double *aP)

Retrieve the data associated with a general constraint of type LOGA. Calling this method
for a general constraint of a different type leads to an error return code. You can query the
GenConstrType attribute to determine the type of the general constraint.

See also GRBaddgenconstrLogA for a description of the semantics of this general constraint
type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general
constraint data. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.
aP: The base of the function.
Example usage:

int type;
int xvar;
int yvar;
double a;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRIYPE, 3, &type);
if (type == GRB_GENCONSTR_LOGA) {
error = GRBgetgenconstrLogA(model, 3, &xvar, &yvar, &a);

}

GRBgetgenconstrLogistic

int GRBgetgenconstrLogistic (GRBmodel *model,

int id,
int *xvarP,
int *xyvarP)

80

Retrieve the data associated with a general constraint of type LOGISTIC. Calling this method
for a general constraint of a different type leads to an error return code. You can query the
GenConstrType attribute to determine the type of the general constraint.

See also GRBaddgenconstrLogistic for a description of the semantics of this general constraint
type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general
constraint data. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable z.
yvarP: The index of variable y.
Example usage:

int type;
int xvar;
int yvar;
double a;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_LOGISTIC) {
error = GRBgetgenconstrLogistic(model, 3, &xvar, &yvar);

}
GRBgetgenconstrPow
int GRBgetgenconstrPow (GRBmodel x*model,
int id,
int *xvarP,
int *yvarP,

double *aP)

Retrieve the data associated with a general constraint of type POW. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

See also GRBaddgenconstrPow for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general
constraint data. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.

81

xvarP: The index of variable x.

yvarP: The index of variable y.

aP: The exponent of the function.
Example usage:

int type;
int xvar;
int yvar;
double a;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_POW) {
error = GRBgetgenconstrPow(model, 3, &xvar, &yvar, &a);

}

GRBgetgenconstrSin

int GRBgetgenconstrSin (GRBmodel x*model,

int id,
int *xvarP,
int xyvarP)

Retrieve the data associated with a general constraint of type SIN. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

See also GRBaddgenconstrSin for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general
constraint data. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable z.
yvarP: The index of variable y.
Example usage:

int type;
int xvar;
int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTIYPE, 3, &type);
if (type == GRB_GENCONSTR_SIN) {
error = GRBgetgenconstrSin(model, 3, &xvar, &yvar);

}

82

GRBgetgenconstrCos

int GRBgetgenconstrCos (GRBmodel #*model,

int id,
int *xvarP,
int xyvarP)

Retrieve the data associated with a general constraint of type COS. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

See also GRBaddgenconstrCos for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general
constraint data. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable z.
yvarP: The index of variable y.
Example usage:

int type;
int xvar;
int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_CO0S) {
error = GRBgetgenconstrCos(model, 3, &xvar, &yvar);

+
GRBgetgenconstrTan
int GRBgetgenconstrTan (GRBmodel *model,
int id,
int *xvarP,
int xyvarP)

Retrieve the data associated with a general constraint of type TAN. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

See also GRBaddgenconstrTan for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general
constraint data. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

83

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable z.
yvarP: The index of variable y.
Example usage:

int type;
int xvar;
int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRIYPE, 3, &type);
if (type == GRB_GENCONSTR_TAN) {
error = GRBgetgenconstrTan(model, 3, &xvar, &yvar);

}

GRBgetjsonsolution

int GRBgetjsonsolution (GRBmodel model,
char*x* buffP)

After a call to optimize, this method returns the resulting solution and related model attributes
as a JSON string. Please refer to the JSON solution format section for details.
Return value:
A non-zero return value indicates that there was a problem generating the JSON solution
string. Refer to the Error Code table for a list of possible return values.
Arguments:
model: Model from which to query its current JSON solution string.
buffP: The location in which the pointer to the newly created JSON string should be placed.
Important note:
On Windows, the string returned in buffP is allocated in a different heap from the calling
program. You must call GRBfree to free it.

GRBgetpwlobj
int GRBgetpwlobj (GRBmodel x*model,
int var,
int *npointsP,
double *X,

double xy)

Retrieve the piecewise-linear objective function for a variable. The x and y arguments must
be large enough to hold the result. If either are NULL, then npointsP will contain the number of
points in the function on return.

Refer to this discussion for additional information on what the values in # and y mean.

Return value:

84

A non-zero return value indicates that a problem occurred while retrieving the piecewise-
linear objective function. Refer to the Error Code table for a list of possible return values.
Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the piecewise-linear objective function is being retrieved.
var: The variable whose objective function is being retrieved.
npointsP: The number of points that define the piecewise-linear function.
x: The x values for the points that define the piecewise-linear function. These will always

be in non-decreasing order.

y: The y values for the points that define the piecewise-linear function.

Example usage:

double *x;
double *y;

error = GRBgetpwlobj(model, var, &npoints, NULL, NULL);
/* ...allocate x and y to hold 'npoints' values... */
error = GRBgetpwlobj(model, var, &npoints, x, y);

GRBgetq
int GRBgetq (GRBmodel *model,
int *numqnzP,
int *qrow,
int *qcol,

double xqval)

Retrieve all quadratic objective terms. The grow, qcol, and qval arguments must be large
enough to hold the result. You can query the NumQNZs attribute to determine how many terms
will be returned.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the quadratic
objective terms. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model from which the quadratic objective terms should be retrieved.

numgnzP: The number of quadratic objective terms retrieved.

grow: Row indices associated with quadratic terms. A quadratic term is represented using
three values: a pair of indices (stored in qrow and qcol), and a coefficient (stored in qval).
The three argument arrays provide the corresponding values for each quadratic term. To
give an example, to represent 2;1:3 + xox1 + $%, you would have *numqnzP=3, qrow[] =
{0, 0, 1}, qcol[]l = {0, 1, 1}, and qval[]l = {2.0, 1.0, 1.03}.

gcol: Column indices associated with quadratic terms. See the description of the qrow
argument for more information.

gval: Numerical values associated with quadratic terms. See the description of the qrow
argument for more information.

Example usage:

85

int qnz;
int *gqrow, *qcol;
double *qval;

error = GRBgetdblattr(model, GRB_DBL_ATTR_NUMQNZS, &qnz);
/* ...allocate qrow, qcol, qval to hold 'qnz' values... */
error = GRBgetq(model, &gnz, qrow, qcol, qval);

GRBgetqconstr
int GRBgetqconstr (GRBmodel =*model,
int qconstr,
int *numlnzP,
int *1ind,
double *x1val,
int *numqnzP,
int *qrow,
int *qcol,

double *qval)

Retrieve the linear and quadratic terms associated with a single quadratic constraint. Typical

usage is to call this routine twice. In the first call, you specify the requested quadratic constraint,
with NULL values for the array arguments. The routine returns the total number of linear and
quadratic terms in the specified quadratic constraint in numlnzP and numqnzP, respectively. That
allows you to make certain that 1ind, 1val, qrow, qcol, and gval are of sufficient size to hold the
result of the second call.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the quadratic
constraint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model from which the quadratic constraint should be retrieved.

gconstr: The index of the requested quadratic constraint.

numlnzP: The number of linear terms retrieved for the requested quadratic constraint.

lind: Variable indices associated with linear terms.

lval: Numerical coefficients associated with linear terms.

numqnzP: The number of quadratic terms retrieved for the requested quadratic constraint.

grow: Row indices associated with quadratic terms. A quadratic term is represented using
three values: a pair of indices (stored in qrow and qcol), and a coefficient (stored in qval).
The associated arguments arrays provide the corresponding values for each quadratic term.
To give an example, if the requested quadratic constraint has quadratic terms 23 +zox; +
22, this routine would return *numqnzP=3, qrow[] = {0, 0, 1}, qcol[]l = {0, 1, 1},
and qval[]l = {2.0, 1.0, 1.0}.

gcol: Column indices associated with quadratic terms. See the description of the qrow
argument for more information.

86

gval: Numerical values associated with quadratic terms. See the description of the qrow
argument for more information.

GRBgetqconstrbyname

int GRBgetqconstrbyname (GRBmodel *model,
const char *name,
int *constrnumP)

Retrieves a quadratic constraint from its name. If multiple quadratic constraints have the same
name, this routine chooses one arbitrarily.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the quadratic
constraint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model from which the quadratic constraint should be retrieved.
name: The name of the desired quadratic constraint.
constrnumP: Constraint number for a quadratic constraint with the indicated name. Returns
-1 if no matching name is found.

GRBgetsos

int GRBgetsos (GRBmodel *model,
int *nummembersP,
int *sostype,
int *beg,
int *ind,
double *weight,
int start,
int len)

Retrieve the members and weights of a set of SOS constraints. Typical usage is to call this
routine twice. In the first call, you specify the requested SOS constraints, with NULL values for ind
and weight. The routine returns the total number of members for the specified SOS constraints in
nummembersP. That allows you to make certain that ind and weight are of sufficient size to hold
the result of the second call.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the SOS members.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model from which the SOS constraints should be retrieved.

nummembersP: The total number of SOS members retrieved.

sostype: The types of the SOS constraints. Possible values are GRB_SOS_TYPE1 or GRB_-
S0S_TYPE2

beg: SOS constraints are returned in Compressed Sparse Row (CSR) format. Each SOS
constraint in the model is represented as a list of index-value pairs, where each index

87

entry provides the variable index for an SOS member, and each value entry provides the
corresponding SOS constraint weight. Each SOS constraint has an associated beg value,
indicating the start position of the members of that constraint in the ind and weight
arrays. The members for SOS constraint i immediately follow those for constraint i-1
in ind and weight. Thus, beg[i] indicates both the index of the first member of SOS
constraint i and the end of the member list for SOS constraint i-1. For example, consider
the case where beg[2] = 10 and beg[3] = 12. This would indicate that SOS constraint
2 has two members. Their variable indices can be found in ind[10] and ind[11], and
their SOS weights can be found in weight [10] and weight [11].

ind: Variable indices associated with SOS members. See the description of the beg argument
for more information.

weight: Weights associated with SOS members. See the description of the beg argument
for more information.

start: The index of the first SOS constraint to retrieve.

len: The number of SOS constraints to retrieve.

GRBgetvarbyname

int GRBgetvarbyname (GRBmodel *model,
const char *name,
int *varnumP)

Retrieves a variable from its name. If multiple variables have the same name, this routine
chooses one arbitrarily.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the variable.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: The model from which the variable should be retrieved.
name: The name of the desired variable.
varnumP: Variable number for a variable with the indicated name. Returns -1 if no matching
name is found.

GRBgetvars

int GRBgetvars (GRBmodel *model,
int *numnzP,
int *vbeg,
int *vind,
double *vval,
int start,
int len)

Retrieve the non-zeros for a set of variables from the constraint matrix. Typical usage is to call
this routine twice. In the first call, you specify the requested set of variables, with NULL values for
vbeg, vind, and vval. The routine returns the number of non-zero values for the specified variables

88

in numnzP. That allows you to make certain that vind and vval are of sufficient size to hold the
result of the second call.
If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXgetvars variant of this routine.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the variable
coefficients. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model from which the variables should be retrieved.
numnzP: The number of non-zero values retrieved.
vbeg: Constraint matrix non-zero values are returned in Compressed Sparse Column (CSC)
format by this routine. Each column in the constraint matrix is represented as a list
of index-value pairs, where each index entry provides the constraint index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each
variable has an associated vbeg value, indicating the start position of the non-zeros for
that constraint in the vind and vval arrays. The non-zeros for variable i immediately
follow those for variable i-1 in vind and vval. Thus, vbeg[i] indicates both the index
of the first non-zero in variable i and the end of the non-zeros for variable i-1. For
example, consider the case where vbeg[2] = 10 and vbeg[3] = 12. This would indicate
that variable 2 has two non-zero values associated with it. Their constraint indices can
be found in vind[10] and vind[11], and the numerical values for those non-zeros can be
found in vval[10] and vval[11].
vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.
vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.
start: The index of the first variable to retrieve.
len: The number of variables to retrieve.

GRBsinglescenariomodel

int GRBsinglescenariomodel (GRBmodel #*model,
GRBmodel **singlescenarioP)

Capture a single scenario from a multi-scenario model. Use the ScenarioNumber parameter to
indicate which scenario to capture.

Return value:
A non-zero return value indicates that a problem occurred while extracting the single-
scenario model. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the scenario should be extracted.

singlescenarioP: The location in which the pointer to the requested single-scenario model
should be placed.

89

GRBXgetconstrs

int GRBXgetconstrs (GRBmodel *model,

size_t *numnzP,
size_t *cbeg,
int *cind,
double *xcval,
int start,
int len)

The size_t version of GRBgetconstrs. The two arguments that count non-zero values are of
type size_t in this version to support models with more than 2 billion non-zero values.

Retrieve the non-zeros for a set of linear constraints from the constraint matrix. Typical usage
is to call this routine twice. In the first call, you specify the requested set of constraints, with
NULL values for cbeg, cind, and cval. The routine returns the number of non-zero values for the
specified constraint range in numnzP. That allows you to make certain that cind and cval are of
sufficient size to hold the result of the second call.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the constraint
coefficients. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the constraints should be retrieved.
numnzP: The number of non-zero values retrieved.

cbeg: Constraint matrix non-zero values are returned in Compressed Sparse Row (CSR) for-
mat. Each constraint in the constraint matrix is represented as a list of index-value pairs,
where each index entry provides the variable index for a non-zero coefficient, and each
value entry provides the corresponding non-zero value. Each constraint has an associated
cbeg value, indicating the start position of the non-zeros for that constraint in the cind
and cval arrays. The non-zeros for constraint i immediately follow those for constraint
i-1 in cind and cval. Thus, cbeg[i] indicates both the index of the first non-zero in
constraint i and the end of the non-zeros for constraint i-1. For example, consider the
case where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has
two non-zero values associated with it. Their variable indices can be found in cind[10]
and cind[11], and the numerical values for those non-zeros can be found in cval[10]
and cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

start: The index of the first constraint to retrieve.

len: The number of constraints to retrieve.

90

GRBXgetvars

int GRBXgetvars (GRBmodel *model,

size_t *numnzP,
size_t *vbeg,
int *vind,
double *xvval,
int start,
int len)

The size_t version of GRBgetvars. The two arguments that count non-zero values are of type
size_t in this version to support models with more than 2 billion non-zero values.

Retrieve the non-zeros for a set of variables from the constraint matrix. Typical usage is to call
this routine twice. In the first call, you specify the requested set of variables, with NULL values for
vbeg, vind, and vval. The routine returns the number of non-zero values for the specified variables
in numnzP. That allows you to make certain that vind and vval are of sufficient size to hold the
result of the second call.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the variable
coefficients. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model from which the variables should be retrieved.

numnzP: The number of non-zero values retrieved.

vbeg: Constraint matrix non-zero values are returned in Compressed Sparse Column (CSC)
format by this routine. Each column in the constraint matrix is represented as a list
of index-value pairs, where each index entry provides the constraint index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each
variable has an associated vbeg value, indicating the start position of the non-zeros for
that constraint in the vind and vval arrays. The non-zeros for variable i immediately
follow those for variable i-1 in vind and vval. Thus, vbeg[i] indicates both the index
of the first non-zero in variable i and the end of the non-zeros for variable i-1. For
example, consider the case where vbeg[2] = 10 and vbeg[3] = 12. This would indicate
that variable 2 has two non-zero values associated with it. Their constraint indices can
be found in vind[10] and vind[11], and the numerical values for those non-zeros can be
found in vval[10] and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

start: The index of the first variable to retrieve

len: The number of variables to retrieve.

91

3.5 Input/Output
GRBreadmodel

int GRBreadmodel (GRBenv *env,
const char x*xfilename,
GRBmodel **modelP)

Read a model from a file.
Return value:
A non-zero return value indicates that a problem occurred while reading the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
env: The environment in which to load the new model. This should come from a previous
call to GRBloadenv.
filename: The path to the file to be read. Note that the type of the file is encoded in the
file name suffix. Valid suffixes are .mps, .rew, .1p, .rlp, .dua, .dlp, .ilp, or .opb. The
files can be compressed, so additional suffixes of .zip, .gz, .bz2, or .7z are accepted.
modelP: The location in which the pointer to the model should be placed.
Example usage:

GRBmodel *model;
error = GRBreadmodel(env, "/tmp/model.mps.bz2", &model);

GRBread

int GRBread (GRBmodel *model,
const char *filename)

Import optimization data from a file. This routine is the general entry point for importing data
from a file into a model. It can be used to read start vectors for MIP models, basis files for LP
models, or parameter settings. The type of data read is determined by the file suffix. File formats
are described in the File Format section.

Return value:

A non-zero return value indicates that a problem occurred while reading the file. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:

model: The model that will receive the start vector.
filename: The path to the file to be read. The suffix on the file must be either .mst or
.sol for a MIP start file, .hnt for a MIP hint file, .ord for a priority order file, .bas for
a basis file, or .prm for a parameter file, The suffix may optionally be followed by .zip,
.gz, .bz2, or .7z.
Example usage:

error = GRBread(model, "/tmp/model.mst.bz2");

92

GRBwrite

int GRBwrite (GRBmodel *model,
const char *filename)

This routine is the general entry point for writing optimization data to a file. It can be used
to write optimization models, solutions vectors, basis vectors, start vectors, or parameter settings.
The type of data written is determined by the file suffix. File formats are described in the File
Format section.

Note that writing a model to a file will process all pending model modifications. This is also
true when writing other model information such as solutions, bases, etc.

Note also that when you write a Gurobi parameter file (PRM), both integer or double parameters
not at their default value will be saved, but no string parameter will be saved into the file.

Return value:

A non-zero return value indicates that a problem occurred while writing the file. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:

model: The model containing the data to be written.

filename: The name of the file to be written. The file type is encoded in the file name
suffix. Valid suffixes are .mps, .rew, .lp, or .rlp for writing the model itself, .dua
or .dlp for writing the dualized model (only pure LP), .ilp for writing just the IIS
associated with an infeasible model (see GRBcomputelIS for further information), .sol
for writing the solution selected by the SolutionNumber parameter, .mst for writing a
start vector, .hnt for writing a hint file, .bas for writing an LP basis, .prm for writing
modified parameter settings, .attr for writing model attributes, or .json for writing
solution information in JSON format. If your system has compression utilities installed
(e.g., 7z or zip for Windows, and gzip, bzip2, or unzip for Linux or macOS), then the
files can be compressed, so additional suffixes of .gz, .bz2, or .7z are accepted.

Example usage:

error = GRBwrite(model, "/tmp/model.rlp.gz");

93

3.6 Attribute Management

GRBgetattrinfo

int GRBgetattrinfo (GRBmodel *model,

const char *attrname,

int *datatypeP,
int *attrtypeP,
int x*settableP)

Obtain information about an attribute.
Return value:
A non-zero return value indicates that a problem occurred while obtaining information about
the attribute. Refer to the Error Code table for a list of possible return values. Details on
the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of an attribute. Available attributes are listed and described in the
Attributes section of this document.
datatypeP: On completion, the integer pointed to by this argument will indicate the data
type of the attribute. Possible types are char (0), int (1), double (2), or string(3). This
argument can be NULL.
attrtypeP: On completion, the integer pointed to by this argument will indicate the type
of the attribute. Possible types are model attribute (0), variable attribute (1), linear
constraint attribute (2), (3) SOS constraint attribute, (4) quadratic constraint attribute,
or (5) general constraint attribute. This argument can be NULL.
settableP: On completion, the integer pointed to by this argument will indicate whether
the attribute can be set (1) or not (0). This argument can be NULL.
Example usage:

int datatype, attrtype, settable;
error = GRBgetattrinfo(model, "ModelName", &datatype, &attrtype, &settable);

GRBgetintattr

int GRBgetintattr (GRBmodel *xmodel,

const char *attrname,
int *valueP)

Query the value of an integer-valued model attribute.

Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

94

attrname: The name of an integer-valued model attribute. Available attributes are listed
and described in the Attributes section of this document.
valueP: The location in which the current value of the requested attribute should be placed.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To
query a single element of an array attribute, use GRBgetintattrelement instead.
Example usage:

error = GRBgetintattr (model, "NumBinVars", &numbin);

GRBsetintattr

int GRBsetintattr (GRBmodel *model,
const char *attrname,
int newvalue)

Set the value of an integer-valued model attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of an integer-valued model attribute. Available attributes are listed
and described in the Attributes section of this document.
newvalue: The desired new value of this attribute.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To
modify a single element of an array attribute, use GRBsetintattrelement instead.
Example usage:

error = GRBsetintattr(model, "ModelSense", -1);

GRBgetintattrelement

int GRBgetintattrelement (GRBmodel *model,
const char *attrname,
int element,
int *valueP)

Query a single value from an integer-valued array attribute.

Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

95

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
element: The index of the requested array element.
valueP: A pointer to the location where the requested value should be returned.
Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint
attributes). To query a scalar attribute (i.e., a model attribute), use GRBgetintattr instead.
Example usage:

int first_one;
error = GRBgetintattrelement(model, "VBasis", 0, &first_one);

GRBsetintattrelement

int GRBsetintattrelement (GRBmodel *model,
const char *attrname,
int element,
int newvalue)

Set a single value in an integer-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.
Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint
attributes). To modify a scalar attribute (i.e., a model attribute), use GRBsetintattr instead.
Example usage:

error = GRBsetintattrelement (model, "VBasis", 0, GRB_BASIC);

GRBgetintattrarray

int GRBgetintattrarray (GRBmodel *model,
const char *attrname,

int start,
int len,
int *values)

Query the values of an integer-valued array attribute.

96

Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.

values: A pointer to the location where the array attribute should be returned. Note that
the result array must be as long as the requested sub-array.
Example usage:

int cbasis[NUMCONSTRS] ;
error = GRBgetintattrarray(model, "CBasis", 0, NUMCONSTRS, cbasis);
GRBsetintattrarray

int GRBsetintattrarray (GRBmodel *model,
const char *attrname,

int start,
int len,
int *values)

Set the values of an integer-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer

to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute.
Note that the values array must be as long as the sub-array to be changed.
Example usage:

int cbasis[] = {GRB_BASIC, GRB_BASIC, GRB_NONBASIC_LOWER, GRB_BASIC};
error = GRBsetintattrarray(model, "CBasis", 0, 4, cbasis);

97

GRBgetintattrlist

int GRBgetintattrlist (GRBmodel *model,
const char *attrname,

int len,
int *ind,
int *values)

Query the values of an integer-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
len: The number of attribute elements to retrieve.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned.
Note that the result array must be as long as the requested index list.
Example usage:

int desired[] = {0, 2, 4, 63};
int cbasis[4];
error = GRBgetintattrlist(model, "CBasis", 4, desired, cbasis);

GRBsetintattrlist

int GRBsetintattrlist (GRBmodel *model,
const char *attrname,

int len,
int *ind,
int *values)

Set the values of an integer-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.

98

values: A pointer to the desired new values for the specified elements of the attribute. Note
that the values array must be as long as the list of indices.
Example usage:

int change[] = {0, 1, 3};
int newbas[] {GRB_BASIC, GRB_NONBASIC_LOWER, GRB_NONBASIC_LOWER};
error = GRBsetintattrlist(model, "VBasis", 3, change, newbas);

GRBgetdblattr

int GRBgetdblattr (GRBmodel *xmodel,
const char *attrname,
double *valueP)

Query the value of a double-valued model attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a double-valued model attribute. Available attributes are listed and
described in the Attributes section of this document.
valueP: The location in which the current value of the requested attribute should be placed.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To
query a single element of an array attribute, use GRBgetdblattrelement instead.
Example usage:

error = GRBgetdblattr(model, "ObjCon", &objcon);

GRBsetdblattr

int GRBsetdblattr (GRBmodel *model,
const char *attrname,
double newvalue)

Set the value of a double-valued model attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a double-valued model attribute. Available attributes are listed and
described in the Attributes section of this document.

99

newvalue: The desired new value of this attribute.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To
modify a single element of an array attribute, use GRBsetdblattrelement instead.
Example usage:

error = GRBsetdblattr(model, "ObjCon", 0.0);

GRBgetdblattrelement

int GRBgetdblattrelement (GRBmodel *model,
const char *attrname,
int element,
double *valueP)

Query a single value from a double-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
element: The index of the requested array element.
values: A pointer to the location where the requested value should be returned.
Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint
attributes). To query a scalar attribute (i.e., a model attribute), use GRBgetdblattr instead.
Example usage:

double first_one;
error = GRBgetdblattrelement(model, "X", 0, &first_one);

GRBsetdblattrelement

int GRBsetdblattrelement (GRBmodel *model,
const char *attrname,
int element,
double newvalue)

Set a single value in a double-valued array attribute.

Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:

100

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.
Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint

attributes). To modify a scalar attribute (i.e., a model attribute), use GRBsetdblattr instead.

Example usage:

error = GRBsetdblattrelement(model, "Start", 0, 1.0);

GRBgetdblattrarray

int GRBgetdblattrarray (GRBmodel *model,
const char *attrname,

int start,
int len,
double *values)

Query the values of a double-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.
values: A pointer to the location where the array attribute should be returned. Note that
the result array must be as long as the requested sub-array.
Example usage:

double 1b[NUMVARS];
error = GRBgetdblattrarray(model, "LB", 0, cols, 1lb);

GRBsetdblattrarray

int GRBsetdblattrarray (GRBmodel *model,
const char *attrname,

int start,
int len,
double *values)

Set the values of a double-valued array attribute.

101

Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute.
Note that the values array must be as long as the sub-array to be changed.
Example usage:

double start[] = {1.0, 1.0, 0.0, 1.0%};
error = GRBsetdblattrarray(model, "Start", 0, 4, start);

GRBgetdblattrlist

int GRBgetdblattrlist (GRBmodel *model,
const char *attrname,

int len,
int *ind,
double *values)

Query the values of a double-valued array attribute.

Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
len: The number of attribute elements to retrieve.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned.
Note that the result array must be as long as the requested index list.
Example usage:

int desired[] = {0, 2, 4, 6};
double x[4];
error = GRBgetdblattrlist(model, "X", 4, desired, cbasis);

102

GRBsetdblattrlist

int GRBsetdblattrlist (GRBmodel *model,
const char *attrname,

int len,
int *ind,
double *values)

Set the values of a double-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.
values: A pointer to the desired new values for the specified elements of the attribute. Note
that the values array must be as long as the list of indices.
Example usage:

int change[] = {0, 1, 3};
double start[] = {1.0, 3.0, 2.0};
error = GRBsetdblattrlist(model, "Start", 3, change, start);

GRBgetcharattrelement

int GRBgetcharattrelement (GRBmodel *model,
const char *attrname,
int element,
char *valueP)

Query a single value from a character-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
element: The index of the requested array element.
values: A pointer to the location where the requested value should be returned.
Example usage:

103

char first_one;
error = GRBgetcharattrelement (model, "VType", 0, &first_one);

GRBsetcharattrelement

int GRBsetcharattrelement (GRBmodel *model,
const char *attrname,
int element,
char newvalue)

Set a single value in a character-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.
Example usage:

error = GRBsetcharattrelement (model, "VType", O, GRB_BINARY);

GRBgetcharattrarray

int GRBgetcharattrarray (GRBmodel *model,
const char *attrname,

int start,
int len,
char *values)

Query the values of a character-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.

104

values: A pointer to the location where the array attribute should be returned. Note that
the result array must be as long as the requested sub-array.
Example usage:

char vtypes[NUMVARS];
error = GRBgetcharattrarray(model, "VType", O, NUMVARS, vtypes);
GRBsetcharattrarray

int GRBsetcharattrarray (GRBmodel *model,
const char *attrname,

int start,
int len,
char *values)

Set the values of a character-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute.
Note that the values array must be as long as the sub-array to be changed.
Example usage:

char vtypes[] = {GRB_BINARY, GRB_CONTINUQOUS, GRB_INTEGER, GRB_BINARY};
error = GRBsetcharattrarray(model, "VType", 0, 4, vtypes);

GRBgetcharattrlist

int GRBgetcharattrlist (GRBmodel *model,
const char *attrname,

int len,
int *ind,
char *values)

Query the values of a character-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

105

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

len: The number of attribute elements to retrieve.

ind: The indices of the desired attribute elements.

values: A pointer to the location where the requested attribute elements should be returned.
Note that the result array must be as long as the requested index list.

Example usage:

int desired[] = {0, 2, 4, 6};
char vtypes[4];
error = GRBgetcharattrlist(model, "VType", 4, desired, vtypes);

GRBsetcharattrlist

int GRBsetcharattrlist (GRBmodel *model,
const char *attrname,

int len,
int *ind,
char *values)

Set the values of a character-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.
values: A pointer to the desired new values for the specified elements of the attribute. Note
that the values array must be as long as the list of indices.
Example usage:

int change[] = {0, 1, 3};
char vtypes[] = {GRB_BINARY, GRB_BINARY, GRB_BINARY};
error = GRBsetcharattrlist(model, "Vtype", 3, change, vtypes);

GRBgetstrattr

int GRBgetstrattr (GRBmodel *model,
const char *attrname,
char **valueP)

Query the value of a string-valued model attribute.

106

Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued model attribute. Available attributes are listed and
described in the Attributes section of this document.

valueP: The location in which the current value of the requested attribute should be placed.

Important notes:

Note that all interface routines that return string-valued attributes are returning pointers into
internal Gurobi data structures. The user should copy the contents of the pointer to a different
data structure before the next call to a Gurobi library routine. The user should also be careful to
never modify the data pointed to by the returned character pointer.

Note that this method should be used for scalar attributes only (i.e., model attributes). To
query a single element of an array attribute, use GRBgetstrattrelement instead.

Example usage:

char *modelname;
error = GRBgetstrattr(model, "ModelName", &modelname);

GRBsetstrattr

int GRBsetstrattr (GRBmodel *model,
const char *attrname,
const char *newvalue)

Set the value of a string-valued model attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a string-valued model attribute. Available attributes are listed and
described in the Attributes section of this document.
newvalue: The desired new value of this attribute.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To
modify a single element of an array attribute, use GRBsetstrattrelement instead.
Example usage:

error = GRBsetstrattr(model, "ModelName", "Modified name");

107

GRBgetstrattrelement

int GRBgetstrattrelement (GRBmodel *model,
const char *attrname,
int element,
char **valueP)

Query a single value from a string-valued array attribute.

Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

element: The index of the requested array element.

valueP: A pointer to the location where the requested value should be returned.

Important notes:

Note that all interface routines that return string-valued attributes are returning pointers into
internal Gurobi data structures. The user should copy the contents of the pointer to a different
data structure before the next call to a Gurobi library routine. The user should also be careful to
never modify the data pointed to by the returned character pointer.

Note that this method should be used for array attributes only (i.e., variable or constraint
attributes). To query a scalar attribute (i.e., a model attribute), use GRBgetstrattr instead.

Example usage:

char **varname;
error = GRBgetstrattrelement(model, "VarName", 1, varname);

GRBsetstrattrelement

int GRBsetstrattrelement (GRBmodel *model,
const char *attrname,
int element,
char *newvalue)

Set a single value in a string-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

108

element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.
Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint
attributes). To modify a scalar attribute (i.e., a model attribute), use GRBsetstrattr instead.
Example usage:

error = GRBsetstrattrelement (model, "ConstrName", 0, "NewConstr");

GRBgetstrattrarray

int GRBgetstrattrarray (GRBmodel *model,
const char *attrname,

int start,
int len,
char *xvalues)

Query the values of a string-valued array attribute.

Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

start: The index of the first entry in the array to retrieve.

len: The number of array entries to retrieve.

values: A pointer to the location where the array attribute should be returned. Note that
the result array must be as long as the requested sub-array.

Important notes:

Note that all interface routines that return string-valued attributes are returning pointers into
internal Gurobi data structures. The user should copy the contents of the pointer to a different
data structure before the next call to a Gurobi library routine. The user should also be careful to
never modify the data pointed to by the returned character pointer.

Example usage:

char **varnames [NUMVARS] ;
error = GRBgetstrattrarray(model, "VarName", O, NUMVARS, varnames);
GRBsetstrattrarray

int GRBsetstrattrarray (GRBmodel *model,
const char *attrname,

int start,
int len,
char *xvalues)

109

Set the values of a string-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute.
Note that the values array must be as long as the sub-array to be changed.
Example usage:

char **varnames [NUMVARS] ;
error = GRBsetstrattrarray(model, "VarName", O, NUMVARS, varnames);
GRBgetstrattrlist

int GRBgetstrattrlist (GRBmodel *model,
const char *attrname,

int len,
int *ind,
char **xvalues)

Query the values of a string-valued array attribute.

Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

len: The number of attribute elements to retrieve.

ind: The indices of the desired attribute elements.

values: A pointer to the location where the requested attribute elements should be returned.
Note that the result array must be as long as the requested index list.

Important notes:

Note that all interface routines that return string-valued attributes are returning pointers into
internal Gurobi data structures. The user should copy the contents of the pointer to a different
data structure before the next call to a Gurobi library routine. The user should also be careful to
never modify the data pointed to by the returned character pointer.

Example usage:

110

int desired[] = {0, 2, 4, 6};
char **varnames[4];
error = GRBgetstrattrlist(model, "VarName", 4, desired, varnames);

GRBsetstrattrlist

int GRBsetstrattrlist (GRBmodel *model,
const char *attrname,

int len,
int *ind,
char *xvalues)

Set the values of a string-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.
values: A pointer to the desired new values for the specified elements of the attribute. Note
that the values array must be as long as the list of indices.
Example usage:

int chage[] = {0, 1, 3};
char **varnames[] = {"VarO", "Varl", "Var3"};
error = GRBsetstrattrlist(model, "VarName", 3, change, varnames);

GRBgetbatchattrinfo

int GRBgetbatchattrinfo (GRBbatch xbatch,
const char *attrname,
int *datatypeP,
int *gsettableP)

Obtain information about a Batch attribute.

Return value:
A non-zero return value indicates that a problem occurred while obtaining information about
a batch attribute. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

batch: A batch request handle, typically created by routine GRBgetbatch.

111

attrname: The name of a batch attribute. Available attributes are listed and described in
the Attributes section of this document.

datatypeP: On completion, the integer pointed to by this argument will indicate the data
type of the attribute. Possible types are char (0), int (1), double (2), or string(3). This
argument can be NULL.

settableP: On completion, the integer pointed to by this argument will indicate whether
the attribute can be set (1) or not (0). This argument can be NULL.

Example usage:

int datatype, settable;
error = GRBgetbatchattrinfo(batch, "BatchID", &datatype, &settable);

112

3.7 Parameter Management and Tuning

GRBtunemodel

| int GRBtunemodel (GRBmodel *model)

Perform an automated search for parameter settings that improve performance on a model.
Upon completion, this routine stores the best parameter sets it found. The number of stored
parameter sets can be determined by querying the value of the TuneResultCount attribute. The
actual settings can be retrieved using GRBgettuneresult.

Please refer to the parameter tuning section for details on the tuning tool.

Return value:

A non-zero return value indicates that a problem occurred while tuning the model. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:

model: The model to be tuned.
Example usage:

error = GRBtunemodel (model);
if (error) goto QUIT;

error = GRBgetintattr(model, "TuneResultCount", &nresults);
if (error) goto QUIT;

GRBgettuneresult

int GRBgettuneresult (GRBmodel #*model,
int n)

Use this routine to retrieve the results of a previous GRBtunemodel call. Calling this routine
with argument n causes tuned parameter set n to be copied into the model. Parameter sets are
stored in order of decreasing quality, with parameter set 0 being the best. The number of available
sets is stored in attribute TuneResultCount.

Once you have retrieved a tuning result, you can call GRBoptimize to use these parameter
settings to optimize the model, or GRBwrite to write the changed parameters to a .prm file.

Please refer to the parameter tuning section for details on the tuning tool.

Return value:

A non-zero return value indicates that a problem occurred while retrieving a tuning result.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: A model that has previously been used as the argument of GRBtunemodel.
n: The index of the tuning result to retrieve. The best result is available as index 0. The
number of stored results is available in attribute TuneResultCount.

Example usage:

113

error = GRBtunemodel (model);
if (error) goto QUIT;

error = GRBgetintattr(model, "TuneResultCount", &nresults);
if (error) goto QUIT;

if (nresults > 0) {
error = GRBgettuneresult(model, 0);
if (error) goto QUIT;

}

GRBgetdblparam

int GRBgetdblparam (GRBenv *xenv,
const char *paramname,
double *valueP)

Retrieve the value of a double-valued parameter.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
env: The environment whose parameter value is being queried.
paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.
valueP: The location in which the current value of the requested parameter should be placed.
Example usage:

double cutoff;
error = GRBgetdblparam(GRBgetenv(model), "Cutoff", &cutoff);

GRBgetintparam

int GRBgetintparam (GRBenv *env,
const char *paramname,
int xvalueP)

Retrieve the value of an integer-valued parameter.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being queried.

114

paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

valueP: The location in which the current value of the requested parameter should be placed.

Example usage:

int limit;
error = GRBgetintparam(GRBgetenv(model), "SolutionLimit", &limit);

GRBgetstrparam
int GRBgetstrparam (GRBenv *env,
const char *paramname,
char *value)

Retrieve the value of a string-valued parameter.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being queried.
paramname: The name of the parameter. Please consult the parameter section for a

complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.
value: The location in which the current value of the requested parameter should be placed.
Example usage:

char logfilename [GRB_MAX_STRLEN];
error = GRBgetstrparam(GRBgetenv(model), "LogFile", logfilename);

GRBsetdblparam
int GRBsetdblparam (GRBenv *env,
const char *paramname,
double newvalue)

Modify the value of a double-valued parameter.

Return value:
A non-zero return value indicates that a problem occurred while modifying the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being modified.
paramname: The name of the parameter. Please consult the parameter section for a

complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.
newvalue: The desired new value of the parameter.

115

Important note:

Note that a model gets its own copy of the environment when it is created. Changes to the
original environment have no effect on the copy. Use GRBgetenv to retrieve the environment
associated with a model if you would like a parameter change to affect that model.

Example usage:

error = GRBsetdblparam(GRBgetenv(model), "Cutoff", 100.0);

GRBsetintparam

int GRBsetintparam (GRBenv *xenv,
const char *paramname,
int newvalue)

Modify the value of an integer-valued parameter.

Return value:
A non-zero return value indicates that a problem occurred while modifying the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being modified.
paramname: The name of the parameter. Please consult the parameter section for a

complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.
newvalue: The desired new value of the parameter.

Important note:

Note that a model gets its own copy of the environment when it is created. Changes to the
original environment have no effect on the copy. Use GRBgetenv to retrieve the environment
associated with a model if you would like a parameter change to affect that model.

Example usage:

error = GRBsetintparam(GRBgetenv(model), "SolutionLimit", 5);

GRBsetstrparam

int GRBsetstrparam (GRBenv *env,
const char *paramname,
const char *newvalue)

Modify the value of a string-valued parameter.

Return value:
A non-zero return value indicates that a problem occurred while modifying the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being modified.
paramname: The name of the parameter. Please consult the parameter section for a

complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

116

newvalue: The desired new value of the parameter.
Important note:

Note that a model gets its own copy of the environment when it is created. Changes to the
original environment have no effect on the copy. Use GRBgetenv to retrieve the environment
associated with a model if you would like a parameter change to affect that model.

Example usage:

error = GRBsetstrparam(GRBgetenv(model), "LogFile", "/tmp/new.log");

GRBgetdblparaminfo

int GRBgetdblparaminfo (GRBenv *env,
const char *paramname,
double *valueP,
double *minP,
double *maxP,
double *defaultP)

Retrieve information about a double-valued parameter. Specifically, retrieve the current value
of the parameter, the minimum and maximum allowed values, and the default value.

Return value:

A non-zero return value indicates that a problem occurred while retrieving parameter in-
formation. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter information is being queried.

paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

valueP (optional): The location in which the current value of the specified parameter
should be placed.

minP (optional): The location in which the minimum allowed value of the specified pa-
rameter should be placed.

maxP (optional): The location in which the maximum allowed value of the specified pa-
rameter should be placed.

defaultP (optional): The location in which the default value of the specified parameter
should be placed.

Example usage:

error = GRBgetdblparaminfo (GRBgetenv(model), "MIPGap", ¤tGap,
&minAllowedGap, NULL, &defaultGap);

117

GRBgetintparaminfo

int GRBgetintparaminfo (GRBenv *xenv,
const char *paramname,
int *valueP,
int *minP,
int *maxP,
int xdefaultP)

Retrieve information about an int-valued parameter. Specifically, retrieve the current value of
the parameter, the minimum and maximum allowed values, and the default value.
Return value:
A non-zero return value indicates that a problem occurred while retrieving parameter in-
formation. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Arguments:
env: The environment whose parameter information is being queried.
paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.
valueP (optional): The location in which the current value of the specified parameter
should be placed.
minP (optional): The location in which the minimum allowed value of the specified pa-
rameter should be placed.
maxP (optional): The location in which the maximum allowed value of the specified pa-
rameter should be placed.
defaultP (optional): The location in which the default value of the specified parameter
should be placed.
Example usage:

error = GRBgetintparaminfo(GRBgetenv(model), "SolutionLimit", ¤t,
&minAllowedLimit, NULL, &defaultLimit);

GRBgetstrparaminfo

int GRBgetstrparaminfo (GRBenv *env,
const char *paramname,
char *value,
char xdefault)

Retrieve information about a string-valued parameter. Specifically, retrieve the current and
default values of the parameter.

Return value:
A non-zero return value indicates that a problem occurred while retrieving parameter in-
formation. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter information is being queried.

118

paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

value (optional): The location in which the current value of the specified parameter
should be placed.

default (optional): The location in which the default value of the specified parameter
should be placed.

Example usage:

char defaultval[GRB_MAX_STRLEN];

char currentval [GRB_MAX_STRLEN];

error = GRBgetstrparaminfo(GRBgetenv(model), "LogFile", currentval,
defaultval);

GRBreadparams

int GRBreadparams (GRBenv *env,
const char *filename)

Import a set of parameter modifications from a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

Return value:
A non-zero return value indicates that a problem occurred while reading the parameter file.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment into which the parameter changes should be imported.
filename: The path to the file to be read. The suffix on a parameter file should be .prm,

optionally followed by .zip, .gz, .bz2, or .7z.
Example usage:

error = GRBreadparams(env, "/tmp/model.prm.bz2");

GRBwriteparams

int GRBwriteparams (GRBenv *env,
const char *filename)

Write the set of changed parameter values to a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

Return value:
A non-zero return value indicates that a problem occurred while writing the parameter file.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter changes are being written.

119

filename: The path to the file to be written. The suffix on a parameter file should be .prm,
optionally followed by .gz, .bz2, or .7z.
Example usage:

error = GRBwriteparams(env, "/tmp/model.prm");

120

3.8 Monitoring Progress - Logging and Callbacks

GRBmsg

void GRBmsg (GRBenv *xenv,
const char *message)

Insert a message into the Gurobi log file.

Arguments:
env: The environment whose log file should receive the message.
message: The message to be appended to the log.

Example usage:

error = GRBmsg(env, "Add this message to the log");

GRBsetcallbackfunc

int GRBsetcallbackfunc (GRBmodel x*model,

int (*cb) (GRBmodel *model, void *cbdata, int
where, void *usrdata),
void xusrdata)

Set up a user callback function. Note that a model can only have a single callback method, so

this call will replace an existing callback. To disable a previously set callback, call this function
with a cb argument of NULL.

When solving a model using multiple threads, the user callback is only ever called from a single

thread, so you don’t need to worry about the thread-safety of your callback.

Note that changing parameters from within a callback is not supported, doing so may lead to

undefined behavior.

Return value:
A non-zero return value indicates that a problem occurred while setting the user callback.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: The model in which the callback should be installed.
cb: A function pointer to the user callback function. The callback will be called regularly
from the Gurobi optimizer. The where argument to the callback function will indicate
where in the optimization process the callback was invoked. Possible values are described
in the Callback Codes section. The user callback can then call a number of routines
to retrieve additional details about the state of the optimization (e.g., GRBcbget), or
to inject new information (e.g., GRBcbcut, GRBcbsolution). The user callback function
should return 0 if no error was encountered, or it can return one of the Gurobi Error Codes
if the user callback would like the optimization to stop and return an error result.
usrdata: An optional pointer to user data that will be passed back to the user callback
function each time it is invoked (in the usrdata argument).
Example usage:

int mycallback(GRBmodel #*model, void *cbdata, int where, void *usrdata);
error = GRBsetcallbackfunc(model, mycallback, NULL);

121

GRBgetcallbackfunc

int GRBgetcallbackfunc (GRBmodel *model,

int (**cb) (GRBmodel *model, void *cbdata,
int where, void *usrdata))

Retrieve the current user callback function.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the user callback.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model in which the callback should be installed.
cb: A function pointer to the user callback function.

Example usage:

int (*mycallback) (GRBmodel *model, void *cbdata, int where, void *usrdata);
error = GRBgetcallbackfunc(model, &mycallback);

GRBcbget

int GRBcbget (void *cbdata,
int where,
int what,
void *resultP)

Retrieve additional information about the progress of the optimization. Note that this routine
can only be called from within a user callback function.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the requested
data. Refer to the Error Code table for a list of possible return values. Details on the error
can be obtained by calling GRBgeterrormsg.
Arguments:
cbdata: The cbdata argument that was passed into the user callback by the Gurobi opti-
mizer. This argument must be passed unmodified from the user callback to GRBcbget ().
where: The where argument that was passed into the user callback by the Gurobi optimizer.
This argument must be passed unmodified from the user callback to GRBcbget ().
what: The data requested by the user callback. Valid values are described in the Callback
Codes section.
resultP: The location in which the requested data should be placed.
Example usage:

if (where == GRB_CB_MIP) {
double nodecount;
error = GRBcbget(cbdata, where, GRB_CB_MIP_NODECNT, (void *) &nodecount);
if (error) return O;
printf ("MIP node count is %d\n", nodecount);

122

GRBversion

void GRBversion (int *majorP,
int *minorP,
int *technicalP)

Return the Gurobi library version number (major, minor, and technical).
Arguments:
majorP: The location in which the major version number should be placed. May be NULL.
minorP: The location in which the minor version number should be placed. May be NULL.
technicalP: The location in which the technical version number should be placed. May be
NULL.
Example usage:

int major, minor, technical;
GRBversion(&major, &minor, &technical);
printf ("Gurobi library version %d.%d.%d\n", major, minor, technical);

123

3.9 Modifying Solver Behavior - Callbacks

GRBcbcut
int GRBcbcut (void *cbdata,
int cutlen,
const int *cutind,
const double *cutval,
char cutsense,
double cutrhs)

Add a new cutting plane to the MIP model from within a user callback routine. Note that this
routine can only be called when the where value on the callback routine is GRB_CB_MIPNODE (see
the Callback Codes section for more information).

Cutting planes can be added at any node of the branch-and-cut tree. Note that cuts should be
added sparingly, since they increase the size of the relaxation model that is solved at each node
and can significantly degrade node processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the
relaxation solution at the current node, call GRBcbget with what = GRB_CB_MIPNODE_REL.

You should consider setting parameter PreCrush to value 1 when adding your own cuts. This
setting shuts off a few presolve reductions that can sometimes prevent your cut from being applied
to the presolved model (which would result in your cut being silently ignored).

One very important note: you should only add cuts that are implied by the constraints in your
model. If you cut off an integer solution that is feasible according to the original model constraints,
you are likely to obtain an incorrect solution to your MIP problem.

Return value:

A non-zero return value indicates that a problem occurred while adding the cut. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:

cbdata: The cbdata argument that was passed into the user callback by the Gurobi opti-
mizer. This argument must be passed unmodified from the user callback to GRBcbcut ().

cutlen: The number of non-zero coefficients in the new cutting plane.

cutind: Variable indices for non-zero values in the new cutting plane.

cutval: Numerical values for non-zero values in the new cutting plane.

cutsense: Sense for the new cutting plane. Options are GRB_LESS_EQUAL, GRB_EQUAL, or
GRB_GREATER_EQUAL.

cutrhs: Right-hand side value for the new cutting plane.

Example usage:

if (where == GRB_CB_MIPNODE) {
int cutind[] = {0, 13};
double cutvall[] = {1.0, 1.0};
error = GRBcbcut(cbdata, 2, cutind, cutval, GRB_LESS EQUAL, 1.0);
if (error) return O;

124

GRBcblazy

int GRBcblazy (void xcbdata,
int lazylen,
const int *lazyind,
const double *lazyval,
char lazysense,
double lazyrhs)

Add a new lazy constraint to the MIP model from within a user callback routine. Note that this
routine can only be called when the where value on the callback routine is either GRB_CB_MIPNODE
or GRB_CB_MIPSOL (see the Callback Codes section for more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large
to represent explicitly. By only including the constraints that are actually violated by solutions
found during the branch-and-cut search, it is sometimes possible to find a proven optimal solution
while only adding a fraction of the full set of constraints.

You would typically add a lazy constraint by querying the current node solution (by calling
GRBcbget from a GRB_CB_MIPSOL or GRB_CB_MIPNODE callback, using what=GRB_CB_MIPSOL_SOL
or what=GRB_CB_MIPNODE_REL), and then calling GRBcblazy () to add a constraint that cuts off the
solution. Gurobi guarantees that you will have the opportunity to cut off any solutions that would
otherwise be considered feasible.

MIP solutions may be generated outside of a MIP node. Thus, generating lazy constraints is
optional when the where value in the callback function equals GRB_CB_MIPNODE. To avoid this, we
recommend to always check when the where value equals GRB_CB_MIPSOL.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints,
including those that have already been added. Node solutions will usually respect previously added
lazy constraints, but not always.

Note that you must set the LazyConstraints parameter if you want to use lazy constraints.

Return value:

A non-zero return value indicates that a problem occurred while adding the lazy constraint.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

cbdata: The cbdata argument that was passed into the user callback by the Gurobi opti-
mizer. This argument must be passed unmodified from the user callback to GRBcblazy ().

lazylen: The number of non-zero coefficients in the new lazy constraint.

lazyind: Variable indices for non-zero values in the new lazy constraint.

lazyval: Numerical values for non-zero values in the new lazy constraint.

lazysense: Sense for the new lazy constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL,
or GRB_GREATER_EQUAL.

lazyrhs: Right-hand side value for the new lazy constraint.

Example usage:

if (where == GRB_CB_MIPSOL) {
int lazyind[] = {0, 1};
double lazyvall[] = {1.0, 1.0%};
error = GRBcblazy(cbdata, 2, lazyind, lazyval, GRB_LESS_EQUAL, 1.0);

125

if (error) return O0;

}
GRBcbsolution
int GRBcbsolution (void *cbdata,
const double *solution,
double *objP)

Provide a new feasible solution for a MIP model from within a user callback routine. Note
that this routine can only be called when the where value on the callback routine is GRB_CB_MIP,
GRB_CB_MIPNODE, or GRB_CB_MIPSOL (see the Callback Codes section for more information).

Heuristics solutions are typically built from the current relaxation solution. To retrieve the
relaxation solution at the current node, call GRBcbget with what = GRB_CB_MIPNODE_REL.

When providing a solution, you can specify values for any subset of the variables in the model.
To leave a variable value unspecified, set the variable to GRB_UNDEFINED in the solution vector.
The Gurobi MIP solver will attempt to extend the specified partial solution to a complete solution.

Note that this method is not supported in a Compute Server environment.

Return value:

A non-zero return value indicates that a problem occurred while adding the new solution.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

cbdata: The cbdata argument that was passed into the user callback by the Gurobi opti-
mizer. This argument must be passed unmodified from the user callback to GRBcbsolution().

solution: The solution vector. You must provide one entry for each variable in the model.
Note that you can leave an entry unspecified by setting it to GRB_UNDEFINED. The Gurobi
optimizer will attempt to find appropriate values for the unspecified variables.

objP: Objective value for solution that results from this call. Returns GRB_INFINITY if no
improved solution is found or the function has been called from a callback other than
GRB_CB_MIPNODE.

Example usage:

if (where == GRB_CB_MIPNODE) {
error = GRBcbsolution(cbdata, solution, &obj);
if (error) return 0;

}
GRBcbproceed

| void GRBcbproceed (GRBModel #*model)

Generate a request to proceed to the next phase of the computation. This routine can be called
from any callback. Note that the request is only accepted in a few phases of the algorithm, and it
won’t be acted upon immediately.

126

In the current Gurobi version, this callback allows you to proceed from the NoRel heuristic
to the standard MIP search. You can determine the current algorithm phase using MIP_PHASE,
MIPNODE_PHASE, or MIPSOL_PHASE queries from a callback.

Arguments:

model: The model.
Example usage:

if (solution_objective < target_value) {
GRBcbproceed (model) ;
}

GRBcbstoponemultiobj

int GRBcbstoponemultiobj (GRBmodel x*model,
void* cbdata,
int objnum)

Interrupt the optimization process of one of the optimization steps in a multi-objective MIP
problem without stopping the hierarchical optimization process. Note that this routine can only
be called for multi-objective MIP models and when the where value on the callback routine is not
equal to GRB_CB_MULTIOBJ (see the Callback Codes section for more information)

You would typically stop a multi-objective optimization step by querying the last finished num-
ber of multi-objectives steps, and using that number to stop the current step and move on to the
next hierarchical objective (if any) as shown in the following example:

Example usage:

#include <time.h>
typedef struct {
int objcnt;

time_t starttime;
} usrdata_t;

int mycallback(GRBmodel *model,

void *cbdata,
int where,
void *usrdata)

int error = 0;
usrdata_t *ud = (usrdata_t*)usrdata;

if (where == GRB_CB_MULTIOBJ) {
/* get current objective number */
error = GRBcbget(cbdata, where, MULTIOBJ_OBJCNT, (void#*)&ud->objcnt);
if (error) goto QUIT;

/* reset start time to current time */

127

ud->starttime = time();

} else if (time() - ud->starttime > BIG ||
/* takes too long or good enough */) {
/* stop only this optimization step */
error = GRBcbstoponemultiobj(model, cbdata, ud->objcnt);
if (error) goto QUIT;
}

QUIT:
return error;

}

You should refer to the section on Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.
Return value:
A non-zero return value indicates that a problem occurred while stopping the multi-objective
step specified by objcnt. Refer to the Error Code table for a list of possible return values.
Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model argument that was passed into the user callback by the Gurobi optimizer.
This argument must be passed unmodified from the user callback to GRBcbstoponemultiobj ().
cbdata: The cbdata argument that was passed into the user callback by the Gurobi opti-
mizer. This argument must be passed unmodified from the user callback to GRBcbstoponemultiobj ().
objnum: The number of the multi-objective optimization step to interrupt. For processes

running locally, this argument can have the special value -1, meaning to stop the current
step.

GRBterminate

| void GRBterminate (GRBmodel *model)

Generate a request to terminate the current optimization. This routine can be called at any
time during an optimization (from a callback, from another thread, from an interrupt handler,
etc.). Note that, in general, the request won’t be acted upon immediately.

When the optimization stops, the Status attribute will be equal to GRB_INTERRUPTED.

Arguments:

model: The model to terminate.
Example usage:

if (time_to_quit)
GRBterminate (model) ;

128

3.10 Batch Requests
GRBabortbatch

| int GRBabortbatch (GRBbatch #batch)

This function instructs the Cluster Manager to abort the processing of this batch request,
changing its status to ABORTED. Please refer to the Batch Status Codes section for further details.

Return value:
A non-zero return value indicates that a problem occurred while aborting the batch request.

Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
batch: The batch that will be aborted.

Example usage:
/* request to abort the batch */

error = GRBabortbatch(batch);
if (error) goto QUIT;

GRBdiscardbatch

| int GRBdiscardbatch (GRBbatch #batch)

This function instructs the Cluster Manager to remove all information related to the batch
request in question, including the stored solution if available. Further queries for the associated
batch request will fail with error code GRB_ERROR_DATA_NOT_AVAILABLE. Use this function with
care, as the removed information can not be recovered later on.

Return value:
A non-zero return value indicates that a problem occurred while discarding the batch. Refer

to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
batch: The batch that will be discarded.

Example usage:
/* discard the batch object in the manager x/

error = GRBdiscardbatch(batch);
if (error) goto QUIT;

GRBfreebatch

\int GRBfreebatch (GRBbatch *batch)

Free a batch structure and release the associated memory.

Return value:

129

A non-zero return value indicates that a problem occurred while freeing the batch. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:
batch: The batch structure to be freed.

Example usage:

GRBfreebatch(batch);

GRBgetbatch

int GRBgetbatch (GRBenv *env,
const char *BatchlID,
GRBbatch **xbatchP)

Given a BatchID, as returned by GRBoptimizebatch, and a Gurobi environment that can
connect to the appropriate Cluster Manager (i.e., one where parameters CSManager, UserName,
and ServerPassword have been set appropriately), this function returns a GRBbatch structure.
With it, you can query the current status of the associated batch request and, once the batch
request has been processed, you can query its solution. Please refer to the Batch Optimization
section for details and examples.

Return value:

A non-zero return value indicates that a problem occurred while creating a GRBbatch struc-
ture. Refer to the Error Code table for a list of possible return values. Details on the error
can be obtained by calling GRBgeterrormsg.

Arguments:

env: The environment in which the new batch structure should be created.
BatchID: ID of the batch you want to access.
batchP: The location in which the pointer to the batch structure should be placed.
Example usage:
/* create batch-object */

error = GRBgetbatch(env, BatchID, &batch);
if (error) goto QUIT;

GRBgetbatchenv

| GRBenv * GRBgetbatchenv (GRBbatch #batch)

Retrieve the environment associated with a batch.

Return value:
The environment associated with the batch. A NULL return value indicates that there was
a problem retrieving the environment.

Arguments:
batch: The batch from which the environment should be retrieved.

Example usage:

GRBenv *env = GRBgetbatchenv(batch);

130

GRBgetbatchintattr

int GRBgetbatchintattr (GRBbatch *batch,
const char *attrname,
int *valueP)

Query the value of an integer-valued batch attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
batch: A batch structure, typically created by routine GRBgetbatch.
attrname: The name of an integer-valued batch attribute. Available attributes are listed
and described in the Attributes section of this document.
valueP: The location in which the current value of the requested attribute should be placed.
Example usage:

/* query the last error code x*/
error = GRBgetbatchintattr (batch, "BatchErrorCode", &errorCode);
if (error || !errorCode) goto QUIT;

Important notes:

Note that all Batch attributes are cached locally, and are only updated when you create a
client-side batch object or when you explicitly update this cache (by calling the appropriate update
function - GRBupdatebatch for C, update for Python, etc.).

GRBgetbatchjsonsolution

int GRBgetbatchjsonsolution (GRBbatch *batch,
char*x jsonsolP)

This function retrieves the solution of a completed batch request from a Cluster Manager. The
solution is returned as a JSON solution string. For this call to succeed, the status of the batch
request must be COMPLETED. Please refer to the Batch Status Codes section for further details.

Return value:

A non-zero return value indicates that a problem occurred while querying the batch solution.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

batch: The batch to query.
jsonsolP: The location in which the pointer to the newly created JSON string should be
placed.

Important note:

On Windows, the string returned in buffP is allocated in a different heap from the calling
program. You must call GRBfree to free it.

Example usage:

131

/* print JSON solution into string */

error = GRBgetbatchjsonsolution(batch, &jsonsol);
if (error) goto QUIT;

printf ("JSON solution: %s\n", jsonsol);

GRBgetbatchstrattr

int GRBgetbatchstrattr (GRBbatch *batch,
const char *attrname,
char **xvalueP)

Query the value of a string-valued batch attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
batch: A batch structure, typically created by routine GRBgetbatch.
attrname: The name of a string-valued batch attribute. Available attributes are listed and
described in the Attributes section of this document.
valueP: The location in which the current value of the requested attribute should be placed.
Example usage:

/* query the last error message */
error = GRBgetbatchstrattr (batch, "BatchErrorMessage", &errorMsg);
if (error) goto QUIT;

Important notes:

Note that all interface routines that return string-valued attributes are returning pointers into
internal Gurobi data structures. The user should copy the contents of the pointer to a different
data structure before the next call to a Gurobi library routine. The user should also be careful to
never modify the data pointed to by the returned character pointer.

Note that all Batch attributes are cached locally, and are only updated when you create a
client-side batch object or when you explicitly update this cache (by calling the appropriate update
function - GRBupdatebatch for C, update for Python, etc.).

GRBoptimizebatch

int GRBoptimizebatch (GRBmodel *model,
char *BatchID)

Submit a new batch request to the Cluster Manager. Returns the BatchID (a string), which
uniquely identifies the job in the Cluster Manager and can be used to query the status of this
request (from this program or from any other). Once the request has completed, the BatchID can
also be used to retrieve the associated solution. To submit a batch request, you must tag at least
one element of the model by setting one of the VTag, CTag or QCTag attributes. For more details
on batch optimization, please refer to the Batch Optimization section.

Note that this routine will process all pending model modifications.

132

Return value:
A non-zero return value indicates that a problem occurred while submit a batch request.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to optimize in batch mode. Note that this routine only reports whether
the batch request ran into an error.
BatchID: On success, the location in which the BatchID of the newly created batch request
should be stored. The pointer must point to a string of length GRB_MAX_STRLEN+1 or more.
Example usage:
/* submit batch request to the Manager */

error = GRBoptimizebatch(model, BatchID);
if (error) goto QUIT;

GRBretrybatch

| int GRBretrybatch (GRBbatch #batch)

This function instructs the Cluster Manager to retry optimization of a failed or aborted batch
request, changing its status to SUBMITTED. Please refer to the Batch Status Codes section for further
details.

Return value:

A non-zero return value indicates that a problem occurred while retrying the batch. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:

batch: The batch to retry.

Example usage:

/* retry the batch request */

error = GRBretrybatch(batch);
if (error) goto QUIT;

GRBupdatebatch

| int GRBupdatebatch (GRBbatch *batch)

All Batch attribute values are cached locally, so queries return the value received during the last
communication with the Cluster Manager. This function refreshes the values of all attributes with
the values currently available in the Cluster Manager (which involves network communication).

Return value:

A non-zero return value indicates that a problem occurred while updating the batch request.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

batch: The batch that will be updated.
Example usage:

133

/* update local attributes */
error = GRBupdatebatch(batch);
if (error) goto QUIT;

GRBwritebatchjsonsolution

int GRBwritebatchjsonsolution (GRBbatch xbatch,
const char*x filename)

This function returns the stored solution of a completed batch request from a Cluster Manager.
The solution is returned in a gzip-compressed JSON file. The file name you provide must end with
a .json.gz extension. The JSON format is described in the JSON solution format section. Note
that for this call to succeed, the status of the batch request must be COMPLETED. Please refer to the
Batch Status Codes section for further details.

Return value:

A non-zero return value indicates that a problem occurred while writing the JSON solution
string into the given filename. Refer to the Error Code table for a list of possible return
values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

batch: The batch request from ghere to query its solution.
filename: The name of the file in which to store the JSON solution. It must be a file name
ending with the . json.gz extension.

Example usage:

/* save solution into a file */
error = GRBwritebatchjsonsolution(batch, "batch-sol.json.gz");
if (error) goto QUIT;

134

3.11 Error Handling
GRBgeterrormsg

| char * GRBgeterrormsg (GRBenv *env)

Retrieve the error message associated with the most recent error that occurred in an environ-
ment.
Return value:
A string containing the error message.
Arguments:
env: The environment in which the error occurred.
Example usage:

error = GRBgetintattr(model, "DOES_NOT_EXIST", &attr);
if (error)
printf("%s\n", GRBgeterrormsg(env));

135

3.12 Advanced simplex routines

This section describes a set of advanced basis routines. These routines allow you to compute
solutions to various linear systems involving the simplex basis matrix. Note that these should only
be used by advanced users. We provide no technical support for these routines.
Before describing the routines, we should first describe the GRBsvec data structure that is used
to input or return sparse vectors:
typedef struct SVector {

int len;
int *ind;
double *val;
} GRBsvec;

The len field gives the number of non-zero values in the vector. The ind and val fields
give the index and value for each non-zero, respectively. Indices are zero-based. To give an ex-
ample, the sparse vector [0, 2.0, 0, 1.0] would be represented as len=2, ind = [1, 3], and
val = [2.0, 1.0].

The user is responsible for allocating and freeing the ind and val fields. The length of the
result vector for these routines is not known in advance, so the user must allocate these arrays to
hold the longest possible result (whose length is noted in the documentation for each routine).

GRBFSolve

int GRBFSolve (GRBmodel *model,
GRBsvec *b,
GRBsvec *x)

Computes the solution to the linear system Bx = b, where B is the current simplex basis matrix,
b is an input vector, and x is the result vector.
Return value:
A non-zero return value indicates that a problem occurred while computing the desired
vector. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.
b: The sparse right-hand side vector. It should contain one entry for each non-zero value in
the input.
x: The sparse result vector. The user is responsible for allocating the ind and val fields to
be large enough to hold as many as one non-zero entry per constraint in the model.

GRBBSolve

int GRBBSolve (GRBmodel *model,
GRBsvec *b,
GRBsvec *xX)

Computes the solution to the linear system BTz = b, where B” is the transpose of the current
simplex basis matrix, b is an input vector, and z is the result vector.

136

Return value:
A non-zero return value indicates that a problem occurred while computing the desired
vector. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.
b: The sparse right-hand side vector. It should contain one entry for each non-zero value in
the input.
x: The sparse result vector. The user is responsible for allocating the ind and val fields to
be large enough to hold as many as one non-zero entry per constraint in the model.

GRBBinvColj

int GRBBinvColj (GRBmodel *model,
int J»
GRBsvec *x)
Computes the solution to the linear system Bx = A;, where B is the current simplex basis
matrix and A; is the column of the constraint matrix A associated with variable j.
Return value:
A non-zero return value indicates that a problem occurred while computing the desired
vector. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.
j: Indicates the index of the column of A to use as the right-hand side for the linear solve.
The index j must be between 0 and cols-1, where cols is the number of columns in the
model.
x: The sparse result vector. The user is responsible for allocating the ind and val fields to
be large enough to hold as many as one non-zero entry per constraint in the model.

GRBBinvRowi

int GRBBinvRowi (GRBmodel #*model,
int i,
GRBsvec *x)

Computes a single tableau row. More precisely, this routine returns row ¢ from the matrix
B7'A, where B! is the inverse of the basis matrix and A is the constraint matrix. Note that
the tableau will contain columns corresponding to the variables in the model, and also columns
corresponding to artificial and slack variables associated with constraints.

Return value:

A non-zero return value indicates that a problem occurred while computing the desired
vector. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

137

Arguments:

model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.

i: The index of the desired tableau row.

x: The result vector. The result will contain one entry for each non-zero value. Note that
the result may contain values for slack variables; the slack on row i will have index cols+i,
where cols is the number of columns in the model. The user is responsible for allocating
the ind and val fields to be large enough to hold the largest possible result. For this
routine, the result could have one entry for each variable in the model, plus one entry for
each constraint.

GRBgetBasisHead

int GRBgetBasisHead (GRBmodel *model,

int xbhead)

Returns the indices of the variables that make up the current basis matrix.
Return value:
A non-zero return value indicates that a problem occurred while extracting the basis. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.
bhead: The constraint matrix columns that make up the current basis. The result contains
one entry per constraint in A. If bhead[i]=j, then column i in the basis matrix B
is column j from the constraint matrix A. Note that the basis may contain slack or
artificial variables. If bhead[i] is greater than or equal to cols (the number of columns
in A), then the corresponding basis column is the artificial or slack variable from row
bhead[i]-cols.

138

This section documents the Gurobi C++ interface. This manual begins with a quick overview of
the classes exposed in the interface and the most important methods on those classes. It then
continues with a comprehensive presentation of all of the available classes and methods.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide
or the Example Tour. These documents provide concrete examples of how to use the classes and
methods described here.

Environments

The first step in using the Gurobi C++ interface is to create an environment object. Environments
are represented using the GRBEnv class. An environment acts as the container for all data associ-
ated with a set of optimization runs. You will generally only need one environment object in your
program.

For more advanced use cases, you can use an empty environment to create an uninitialized
environment and then, programmatically, set all required options for your specific requirements.
For further details see the Environment section.

Models

You can create one or more optimization models within an environment. Each model is repre-
sented as an object of class GRBModel. A model consists of a set of decision variables (objects of
class GRBVar), a linear or quadratic objective function on those variables (specified using GRB-
Model::setObjective), and a set of constraints on these variables (objects of class GRBConstr,
GRBQConstr, GRBSOS, or GRBGenConstr). Each variable has an associated lower bound, upper
bound, and type (continuous, binary, etc.). Each linear or quadratic constraint has an associated
sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side value. Refer to this
section for more information on variables, constraints, and objectives.

Linear constraints are specified by building linear expressions (objects of class GRBLinExpr),
and then specifying relationships between these expressions (for example, requiring that one expres-
sion be equal to another). Quadratic constraints are built in a similar fashion, but using quadratic
expressions (objects of class GRBQuadExpr) instead.

An optimization model may be specified all at once, by loading the model from a file (using the
appropriate GRBModel constructor), or built incrementally, by first constructing an empty object of
class GRBModel and then subsequently calling GRBModel::addVar or GRBModel::add Vars to add
additional variables, and GRBModel::addConstr, GRBModel::addQConstr, GRBModel::addSOS,
or any of the GRBModel::addGenConstrXxx methods to add constraints. Models are dynamic
entities; you can always add or remove variables or constraints.

We often refer to the class of an optimization model. A model with a linear objective function,
linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic,
the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is
a Quadratically-Constrained Program (QCP). We will sometimes refer to a few special cases of
QCP: QCPs with convex constraints, QCPs with non-convex constraints, bilinear programs, and

139

C++ API Overview

https://www.gurobi.com/documentation/10.0/quickstart_windows/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html

Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-continuous
variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the
model is a Mized Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, in-
cluding Mized Integer Linear Programs (MILP), Mized Integer Quadratic Programs (MIQP), Mized
Integer Quadratically-Constrained Programs (MIQCP), and Mized Integer Second-Order Cone Pro-
grams (MISOCP). The Gurobi Optimizer handles all of these model classes.

Solving a Model

Once you have built a model, you can call GRBModel::optimize to compute a solution. By default,
optimize will use the concurrent optimizer to solve LP models, the barrier algorithm to solve QP
models with convex objectives and QCP models with convex constraints, and the branch-and-cut
algorithm otherwise. The solution is stored in a set of attributes of the model. These attributes
can be queried using a set of attribute query methods on the GRBModel, GRBVar, GRBConstr,
GRBQConstr, GRBSOS, and GRBGenConstr classes.

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBModel::optimize
will only perform further optimization if relevant data has changed since the model was last op-
timized. If you would like to discard previously computed solution information and restart the
optimization from scratch without changing the model, you can call GRBModel::reset.

After a MIP model has been solved, you can call GRBModel::fixedModel to compute the as-
sociated fized model. This model is identical to the original, except that the integer variables are
fixed to their values in the MIP solution. If your model contains SOS constraints, some continuous
variables that appear in these constraints may be fixed as well. In some applications, it can be
useful to compute information on this fixed model (e.g., dual variables, sensitivity information,
etc.), although you should be careful in how you interpret this information.

Multiple Solutions, Objectives, and Scenarios

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to
a single model with a single objective function. Gurobi provides the following features that allow
you to relax these assumptions:

e Solution Pool: Allows you to find more solutions.
e Multiple Scenarios: Allows you to find solutions to multiple, related models.

e Multiple Objectives: Allows you to specify multiple objective functions and control the trade-
off between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the
infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be useful
for diagnosing the cause of an infeasibility, call GRBModel::computellS to compute an Irreducible
Inconsistent Subsystem (IIS). This method can be used for both continuous and MIP models, but
you should be aware that the MIP version can be quite expensive. This method populates a set of
IIS attributes.

To attempt to repair an infeasibility, call GRBModel::feasRelax to compute a feasibility relax-
ation for the model. This relaxation allows you to find a solution that minimizes the magnitude of
the constraint violation.

140

Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some
attributes are associated with the variables of the model, some with the constraints of the model,
and some with the model itself. To give a simple example, solving an optimization model causes
the X variable attribute to be populated. Attributes such as X that are computed by the Gurobi
optimizer cannot be modified directly by the user, while others, such as the variable lower bound
(the LB attribute) can.

Attributes are queried using GRBVar::get, GRBConstr::get, GRBQConstr::get, GRBSOS::get,
GRBGenConstr::get, or GRBModel::get, and modified using GRBVar::set, GRBConstr::set, GR-
BQConstr::set, GRBGenConstr::set, or GRBModel::set. Attributes are grouped into a set of enums
by type (GRB_ CharAttr, GRB_DoubleAttr, GRB_ IntAttr, GRB_ StringAttr). The get() and
set () methods are overloaded, so the type of the attribute determines the type of the returned
value. Thus, constr.get (GRB.DoubleAttr.RHS) returns a double, while
constr.get (GRB.CharAttr.Sense) returns a char.

If you wish to retrieve attribute values for a set of variables or constraints, it is usually more
efficient to use the array methods on the associated GRBModel object. Method GRBModel::get
includes signatures that allow you to query or modify attribute values for arrays of variables or
constraints.

The full list of attributes can be found in the Attributes section.

Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to
variable bounds, constraint right-hand sides, etc.). The main exceptions are modifications to the
constraint matrix and the objective function.

The constraint matrix can be modified in a few ways. The first is to call the chgCoeffs method
on a GRBModel object to change individual matrix coefficients. This method can be used to
modify the value of an existing non-zero, to set an existing non-zero to zero, or to create a new
non-zero. The constraint matrix is also modified when you remove a variable or constraint from the
model (through the GRBModel::remove method). The non-zero values associated with the deleted
constraint or variable are removed along with the constraint or variable itself.

The model objective function can also be modified in a few ways. The easiest is to build an
expression that captures the objective function (a GRBLinExpr or GRBQuadExpr object), and
then pass that expression to method GRBModel::setObjective. If you wish to modify the objective,
you can simply call setObjective again with a new GRBLinExpr or GRBQuadExpr object.

For linear objective functions, an alternative to setObjective is to use the Obj variable attribute
to modify individual linear objective coefficients.

If your variables have piecewise-linear objectives, you can specify them using the
GRBModel::set PWLObj method. Call this method once for each relevant variable. The Gurobi
simplex solver includes algorithmic support for convex piecewise-linear objective functions, so for
continuous models you should see a substantial performance benefit from using this feature. To
clear a previously specified piecewise-linear objective function, simply set the 0bj attribute on the
corresponding variable to 0.

Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed
in a lazy fashion, meaning that modifications don’t affect the model immediately. Rather, they

141

are queued and applied later. If your program simply creates a model and solves it, you will
probably never notice this behavior. However, if you ask for information about the model before
your modifications have been applied, the details of the lazy update approach may be relevant to
you.

As we just noted, model modifications (bound changes, right-hand side changes, objective
changes, etc.) are placed in a queue. These queued modifications can be applied to the model
in three different ways. The first is by an explicit call to GRBModel::update. The second is by a
call to GRBModel::optimize. The third is by a call to GRBModel::write to write out the model.
The first case gives you fine-grained control over when modifications are applied. The second
and third make the assumption that you want all pending modifications to be applied before you
optimize your model or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is
that this approach makes it much easier to perform multiple modifications to a model, since the
model remains unchanged between modifications. The second is that processing model modifica-
tions can be expensive, particularly in a Compute Server environment, where modifications require
communication between machines. Thus, it is useful to have visibility into exactly when these
modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then
update, then make more modifications, then update again, etc. Updating after each individual
modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value
of the requested data from the point of the last update. If the object you tried to query didn’t
exist then, you’ll get a NOT_IN_MODEL exception instead.

The semantics of lazy updates have changed since earlier Gurobi versions. While the vast
majority of programs are unaffected by this change, you can use the UpdateMode parameter to
revert to the earlier behavior if you run into an issue.

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of
the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms,
strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters
before beginning the optimization. Parameters can be of type int, double, or string.

The simplest way to set parameters is through the GRBModel::set method on the model object.
Similarly, parameter values can be queried with GRBModel::get.

Parameters can also be set on the Gurobi environment object, using GRBEnv::set. Note that
each model gets its own copy of the environment when it is created, so parameter changes to the
original environment have no effect on existing models.

You can read a set of parameter settings from a file using GRBEnv::readParams, or write the
set of changed parameters using GRBEnv::writeParams.

We also include an automated parameter tuning tool that explores many different sets of pa-
rameter changes in order to find a set that improves performance. You can call GRBModel::tune to
invoke the tuning tool on a model. Refer to the parameter tuning tool section for more information.

The full list of Gurobi parameters can be found in the Parameters section.

142

Memory Management

Memory management must always be considered in C++ programs. In particular, the Gurobi
library and the user program share the same C++ heap, so the user must be aware of certain
aspects of how the Gurobi library uses this heap. The basic rules for managing memory when using
the Gurobi optimizer are as follows:

o As with other dynamically allocated C++ objects, GRBEnv or GRBModel objects should be
freed using the associated destructors. In other words, given a GRBModel object m, you should
call delete m when you are no longer using m.

o Objects that are associated with a model (e.g., GRBConstr, GRBQConstr, GRBSOS, GRB-
GenConstr, and GRBVar objects) are managed by the model. In particular, deleting a model
will delete all of the associated objects. Similarly, removing an object from a model (using
GRBModel::remove) will also delete the object.

e Some Gurobi methods return an array of objects or values. For example, GRBModel::addVars
returns an array of GRBVar objects. It is the user’s responsibility to free the returned array
(using delete[]). The reference manual indicates when a method returns a heap-allocated
result.

One consequence of these rules is that you must be careful not to use an object once it has been
freed. This is no doubt quite clear for environments and models, where you call the destructors
explicitly, but may be less clear for constraints and variables, which are implicitly deleted when the
associated model is deleted.

Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will
send output to the screen. A few simple controls are available for modifying the default logging
behavior. If you would like to direct output to a file as well as to the screen, specify the log file
name in the GRBEnv constructor. You can modify the LogFile parameter if you wish to redirect
the log to a different file after creating the environment object. The frequency of logging output can
be controlled with the DisplayInterval parameter, and logging can be turned off entirely with the
OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging
section.

More detailed progress monitoring can be done through the GRBCallback class. The GRB-
Model::setCallback method allows you to receive a periodic callback from the Gurobi optimizer.
You do this by sub-classing the GRBCallback abstract class, and writing your own callback()
method on this class. You can call GRBCallback::getDoublelnfo, GRBCallback::getIntInfo, GRB-
Callback::getStringInfo, or GRBCallback::getSolution from within the callback to obtain additional
information about the state of the optimization.

Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. The simplest control
callback is GRBCallback::abort, which asks the optimizer to terminate at the earliest convenient
point. Method GRBCallback::setSolution allows you to inject a feasible solution (or partial solution)
during the solution of a MIP model. Methods GRBCallback::addCut and GRBCallback::addLazy
allow you to add cutting planes and lazy constraints during a MIP optimization, respectively.

143

Method GRBCallback::stopOneMultiObj allows you to interrupt the optimization process of one
of the optimization steps in a multi-objective MIP problem without stopping the hierarchical opti-
mization process.

Batch Optimization

Gurobi Compute Server enables programs to offload optimization computations onto dedicated
servers. The Gurobi Cluster Manager adds a number of additional capabilities on top of this.
One important one, batch optimization, allows you to build an optimization model with your client
program, submit it to a Compute Server cluster (through the Cluster Manager), and later check
on the status of the model and retrieve its solution. You can use a Batch object to make it easier
to work with batches. For details on batches, please refer to the Batch Optimization section.

Error Handling

All of the methods in the Gurobi C++ library can throw an exception of type GRBException.
When an exception occurs, additional information on the error can be obtained by retrieving the
error code (using method GRBException: :getErrorCode), or by retrieving the exception message
(using method GRBException: :getMessage). The list of possible error return codes can be found
in the Error Codes section.

144

4.1 GRBEnv

Gurobi environment object. Gurobi models are always associated with an environment. You must
create an environment before can you create and populate a model. You will generally only need
a single environment object in your program.

The methods on environment objects are mainly used to manage Gurobi parameters (e.g., get,
getParamlInfo, set).

GRBEnv()

Constructor for GRBEnv object. You have the option of constructing either a local environment,
which solves Gurobi models on the local machine, a client environment for a Gurobi Compute
Server, which will solve Gurobi models on a server machine, or an Instant Cloud environment,
which will launch a Gurobi Cloud server and solve models on that server. Choose the appropriate
signature for the type of environment you wish to launch.

| GRBEnv GRBEnv ()

Create a Gurobi environment (with logging disabled). This method will also populate any
parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified in your gurobi.lic
file. This method will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM
format (briefly, each line should contain a parameter name, followed by the desired value for that
parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Return value:

An environment object (with no associated log file).

‘GRBEnv GRBEnv (bool empty)

Create an empty Gurobi environment. Use GRBEnv::start to start the environment.

If the environment is not empty, This method will also populate any parameter (ComputeServer,
TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check
the current working directory for a file named gurobi.env, and it will attempt to read parameter
settings from this file if it exists. The file should be in PRM format (briefly, each line should contain
a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Arguments:

145

empty: Indicates whether the environment should be empty. You should use empty=true if
you want to set parameters before actually starting the environment. This can be useful
if you want to connect to a Compute Server, a Token Server, the Gurobi Instant Cloud, a
Cluster Manager or use a WLS license. See the Environment Section for more details.
Return value:
An environment object.

‘ GRBEnv GRBEnv (const string& logFileName)

Create a Gurobi environment (with logging enabled). This method will also populate any
parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified in your gurobi.lic
file. This method will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM
format (briefly, each line should contain a parameter name, followed by the desired value for that
parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Arguments:

logFileName: The desired log file name.
Return value:
An environment object.

GRBEnv::get()

Query the value of a parameter.

‘double get (GRB_DoubleParam param)

Query the value of a double-valued parameter.
Arguments:
param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
Return value:
The current value of the requested parameter.

‘int get (GRB_IntParam param)

Query the value of an int-valued parameter.
Arguments:

146

param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
Return value:
The current value of the requested parameter.

‘string get (GRB_StringParam param)

Query the value of a string-valued parameter.
Arguments:
param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
Return value:
The current value of the requested parameter.

GRBEnv::getErrorMsg()

Query the error message for the most recent exception associated with this environment.

| const string getErrorMsg ()
Return value:
The error string.

GRBEnv::getParamlinfo()

Obtain information about a parameter.

void getParamInfo (GRB_DoubleParam param,

doublex* valP,
doublex* minP,
doublex* maxP,
doublex* *defP)
Obtain detailed information about a double parameter.

Arguments:

param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

valP: The current value of the parameter.

minP: The minimum allowed value of the parameter.

maxP: The maximum allowed value of the parameter.

defP: The default value of the parameter.

147

void getParamInfo (GRB_IntParam param,

intx* valP,

int* minP,

intx* maxP,

int* defP)
Obtain detailed information about an integer parameter.

Arguments:

param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

valP: The current value of the parameter.

minP: The minimum allowed value of the parameter.

maxP: The maximum allowed value of the parameter.

defP: The default value of the parameter.

void getParamInfo (GRB_StringParam param,

string* valP,
string* defP)
Obtain detailed information about a string parameter.

Arguments:
param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
valP: The current value of the parameter.
defP: The default value of the parameter.

GRBEnv::message()

Write a message to the console and the log file.

‘void message (const string& message)

Arguments:
message: Print a message to the console and to the log file. Note that this call has no effect
unless the OutputFlag parameter is set.

GRBEnv::readParams()

Read new parameter settings from a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

void readParams (const string& paramfile)

148

Arguments:
paramfile: Name of the file containing parameter settings. Parameters should be listed
one per line, with the parameter name first and the desired value second. For example:

Gurobi parameter file
Threads 1
MIPGap O

Blank lines and lines that begin with the hash symbol are ignored.

GRBEnv::resetParams()

Reset all parameters to their default values.
Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

| void resetParams ()

GRBEnv::set()

Set the value of a parameter.

Important notes:

Note that a model gets its own copy of the environment when it is created. Changes to the
original environment have no effect on the copy. Use GRBModel::set to change a parameter on an
existing model.

void set (GRB_DoubleParam param,
double newvalue)
Set the value of a double-valued parameter.
Arguments:
param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
newvalue: The desired new value of the parameter.

void set (GRB_IntParam param,
int newvalue)
Set the value of an int-valued parameter.
Arguments:
param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
newvalue: The desired new value of the parameter.

void set (GRB_StringParam param,
const string& newvalue)

149

Set the value of a string-valued parameter.
Arguments:
param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
newvalue: The desired new value of the parameter.

void set (const string& param,
const string& newvalue)
Set the value of any parameter using strings alone.
Arguments:
param: The name of the parameter being modified. Please consult the parameter section
for a complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.
newvalue: The desired new value of the parameter.

GRBEnv::start()

Start an empty environment. If the environment has already been started, this method will do
nothing. If the call fails, the environment will have the same state as it had before the call to this
method.

This method will also populate any parameter (ComputeServer, TokenServer, ServerPassword,
etc.) specified in your gurobi.lic file. This method will also check the current working directory
for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.
The file should be in PRM format (briefly, each line should contain a parameter name, followed by
the desired value for that parameter). After that, it will apply all parameter changes specified by
the user prior to this call. Note that this might overwrite parameters set in the license file, or in
the gurobi.env file, if present.

After all these changes are performed, the code will actually activate the environment, and
make it ready to work with models.

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

‘ void start ()

GRBEnv::writeParams()

Write all non-default parameter settings to a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

150

| void writeParams (const string% paramfile)

Arguments:
paramfile: Name of the file to which non-default parameter settings should be written.
The previous contents are overwritten.

151

4.2 GRBModel

Gurobi model object. Commonly used methods include addVar (adds a new decision variable to the
model), addConstr (adds a new constraint to the model), optimize (optimizes the current model),
and get (retrieves the value of an attribute).

GRBModel()

Constructor for GRBModel. The simplest version creates an empty model. You can then call
addVar and addConstr to populate the model with variables and constraints. The more complex
constructors can read a model from a file, or make a copy of an existing model.

‘ GRBModel GRBModel (const GRBEnv& env)

Model constructor.
Arguments:
env: Environment for new model.
Return value:
New model object. Model initially contains no variables or constraints.

GRBModel GRBModel (const GRBEnv& env,
const string& filename)

Read a model from a file. Note that the type of the file is encoded in the file name suffix. Valid
suffixes are .mps, .rew, .1lp, .rlp, .dua, .dlp, .ilp, or .opb. The files can be compressed, so
additional suffixes of .zip, .gz, .bz2, or .7z are accepted.

Arguments:

env: Environment for new model.

modelname: Name of the file containing the model.
Return value:

New model object.

‘ GRBModel GRBModel (const GRBModel& model)

Create a copy of an existing model. Note that due to the lazy update approach in Gurobi, you
have to call update before copying it.
Arguments:
model: Model to copy.
Return value:
New model object. Model is a clone of the input model.

152

GRBModel::addConstr()

Add a single linear constraint to a model. Multiple signatures are available.

GRBConstr addConstr (const GRBLinExpr& lhsExpr,

char sense,

const GRBLinExpr& rhsExpr,

string name="")
Add a single linear constraint to a model.

Arguments:
lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).
rhsExpr: Right-hand side expression for new linear constraint.
name (optional): Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr (const GRBLinExpr& lhsExpr,

char sense,

GRBVar rhsVar,

string name="")
Add a single linear constraint to a model.

Arguments:
lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).
rhsVar: Right-hand side variable for new linear constraint.
name (optional): Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr (const GRBLinExpr& lhsExpr,

char sense,

double rhsVal,

string name="")
Add a single linear constraint to a model.

Arguments:
lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).
rhsVal: Right-hand side value for new linear constraint.
name (optional): Name for new constraint.
Return value:

153

New constraint object.

GRBConstr addConstr (GRBVar 1lhsVar,

char sense,
GRBVar rhsVar,
string name="")

Add a single linear constraint to a model.
Arguments:
lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).
rhsVar: Right-hand side variable for new linear constraint.
name (optional): Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr (GRBVar 1lhsVar,

char sense,
double rhsVal,
string name="")

Add a single linear constraint to a model.
Arguments:
lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).
rhsVal: Right-hand side value for new linear constraint.
name (optional): Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr (GRBTempConstr& tc,
string name="")

Add a single linear constraint to a model.
Arguments:
tc: Temporary constraint object, created using an overloaded comparison operator. See
GRBTempConstr for more information.
name (optional): Name for new constraint.
Return value:
New constraint object.

154

GRBModel::addConstrs()

Add new linear constraints to a model.

We recommend that you build your model one constraint at a time (using addConstr), since it
introduces no significant overhead and we find that it produces simpler code. Feel free to use these
methods if you disagree, though.

‘GRBConstr* addConstrs (int count)

Add count new linear constraints to a model.
Arguments:
count: Number of constraints to add to the model. The new constraints are all of the form
0 <= 0.
Return value:
Array of new constraint objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBConstr* addConstrs (const GRBLinExpr* lhsExprs,

const charx senses,

const double* rhsVals,

const string* names,

int count)
Add count new linear constraints to a model.

Arguments:
lhsExprs: Left-hand side expressions for the new linear constraints.
senses: Senses for new linear constraints (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).
rhsVals: Right-hand side values for the new linear constraints.
names: Names for new constraints.
count: Number of constraints to add.
Return value:
Array of new constraint objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBModel::addGenConstrXxx()

Each of the functions described below adds a new general constraint to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types:
variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and
SOS constraints. These are typically treated directly by the underlying solver (although not always),
and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general
(function) constraints. These are typically not treated directly by the solver. Rather, they are
transformed by presolve into constraints (and variables) chosen from among the fundamental types
listed above. In some cases, the resulting constraint or constraints are mathematically equivalent

155

to the original; in others, they are approximations. If such constraints appear in your model, but
if you prefer to reformulate them yourself using fundamental constraint types instead, you can
certainly do so. However, note that Gurobi can sometimes exploit information contained in the
other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

addGenConstrMax: y = max(z1, 2, ..., ¢)

addGenConstrMin: y = min(z1,x2, ..., ¢)

addGenConstrAbs: y = |x|

addGenConstrAnd: y = x1 A 22 A x3...

addGenConstrOr: y = x1 V 22 V T3...

addGenConstrNorm: y = norm(z1, x2, x3...)
addGenConstrIndicator: y =1 — ¢’z < b (an indicator constraint)
addGenConstrPWL: y = pwl(x) (a piecewise-linear function, specified using breakpoints)
addGenConstrPoly: y = pox? + p12® ! + ... + pg_12 + py
addGenConstrExp: y = e*

addGenConstrExpA: y = a”

addGenConstrLog: y = log,(z)

addGenConstrLogA: y = log, ()

1

addGenConstrLogistic: y = 17—

addGenConstrPow: y = x®
addGenConstrSin: y = sin(z)
addGenConstrCos: y = cos(x)

addGenConstrTan: y = tan(x)

Please refer to this section for additional details on general constraints.

156

GRBModel::addGenConstrMax()
Add a new general constraint of type GRB_GENCONSTR_MAX to a model.

A MAX constraint r = max{z1,...,Z,,c} states that the resultant variable r should be equal
to the maximum of the operand variables x1,...,x, and the constant c.
GRBGenConstr addGenConstrMax (GRBVar resvar,

const GRBVar* vars,
int len,
double constant=-GRB_INFINITY,
string name="")

Arguments:

resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
constant (optional): The additional constant operand of the new constraint.
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrMin()
Add a new general constraint of type GRB_GENCONSTR_MIN to a model.

A MIN constraint r = min{z1,...,Z,, c} states that the resultant variable r should be equal to
the minimum of the operand variables x1,...,x, and the constant c.
GRBGenConstr addGenConstrMin (GRBVar resvar,
const GRBVar* vars,
int len,
double constant=GRB_INFINITY,
string name="")
Arguments:

resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
constant (optional): The additional constant operand of the new constraint.
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrAbs()

Add a new general constraint of type GRB_GENCONSTR_ABS to a model.
An ABS constraint r = abs{z} states that the resultant variable r should be equal to the
absolute value of the argument variable z.

157

GRBGenConstr addGenConstrAbs (GRBVar resvar,
GRBVar argvar,
string name="")

Arguments:
resvar: The resultant variable of the new constraint.
argvar: The argument variable of the new constraint.
name (optional): Name for the new general constraint.
Return value:
New general constraint.

GRBModel::addGenConstrAnd()

Add a new general constraint of type GRB_GENCONSTR_AND to a model.

An AND constraint » = and{x1, ..., z,} states that the binary resultant variable r should be 1
if and only if all of the operand variables z1, ..., z, are equal to 1. If any of the operand variables
is 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent
of how they were created.

GRBGenConstr addGenConstrAnd (GRBVar resvar,
const GRBVar* vars,
int len,
string name="")
Arguments:

resvar: The resultant binary variable of the new constraint.
vars: Array of binary variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrOr()

Add a new general constraint of type GRB_GENCONSTR_OR to a model.

An OR constraint r = or{zy,...,z,} states that the binary resultant variable r should be 1 if
and only if any of the operand variables x1, ..., x, is equal to 1. If all operand variables are 0, then
the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent
of how they were created.

GRBGenConstr addGenConstrOr (GRBVar resvar,
const GRBVar* vars,
int len,
string name="")
Arguments:

158

resvar: The resultant binary variable of the new constraint.
vars: Array of binary variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrNorm()
Add a new general constraint of type GRB_GENCONSTR_NORM to a model.

A NORM constraint r = norm{x1, ..., z,} states that the resultant variable r should be equal
to the vector norm of the argument vector z1, ..., z,.
GRBGenConstr addGenConstrNorm (GRBVar resvar,

const GRBVar* vars,
int len,
double which,
string name="")

Arguments:

resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint. Note that this array
may not contain duplicates.
len: Number of operands in the new constraint (length of vars array).
which: Which norm to use. Options are 0, 1, 2, and GRB_INFINITY.
name (optional): Name for the new general constraint.
Return value:
New general constraint.

GRBModel::addGenConstrindicator()

Add a new general constraint of type GRB_GENCONSTR_INDICATOR to a model.

An INDICATOR constraint z = f — a”x < b states that if the binary indicator variable z is
equal to f, where f € {0,1}, then the linear constraint a”2 < b should hold. On the other hand,
if z =1 — f, the linear constraint may be violated. The sense of the linear constraint can also be
specified to be = or >.

Note that the indicator variable z of a constraint will be forced to be binary, independent of
how it was created.

Multiple signatures are available.

GRBGenConstr addGenConstrIndicator (GRBVar binvar,
int binval,
const GRBLinExpr& expr,
char sense,
double rhs,
string name="")

159

Arguments:
binvar: The binary indicator variable.
binval: The value for the binary indicator variable that would force the linear constraint
to be satisfied (0 or 1).
expr: Left-hand side expression for the linear constraint triggered by the indicator.
sense: Sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.
rhs: Right-hand side value for the linear constraint.
name (optional): Name for the new general constraint.
Return value:
New general constraint.

GRBGenConstr addGenConstrIndicator (GRBVar binvar,
int binval,
const GRBTempConstr& constr,
string name="")

Arguments:

binvar: The binary indicator variable.

binval: The value for the binary indicator variable that would force the linear constraint
to be satisfied (0 or 1).

constr: Temporary constraint object defining the linear constraint that is triggered by the
indicator. The temporary constraint object is created using an overloaded comparison
operator. See GRBTempConstr for more information.

name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrPWL()

Add a new general constraint of type GRB_GENCONSTR_PWL to a model.

A piecewise-linear (PWL) constraint states that the relationship y = f(z) must hold between
variables x and y, where f is a piecewise-linear function. The breakpoints for f are provided as
arguments. Refer to the description of piecewise-linear objectives for details of how piecewise-linear
functions are defined.

GRBGenConstr addGenConstrPWL (GRBVar xvar,
GRBVar yvar,
int npts,

const doublex xpts,
const double* ypts,
std: :string name="")

Arguments:
xvar: The x variable.
yvar: The y variable.
npts: The number of points that define the piecewise-linear function.

160

xpts: The x values for the points that define the piecewise-linear function. Must be in
non-decreasing order.
ypts: The y values for the points that define the piecewise-linear function.
name (optional): Name for the new general constraint.
Return value:
New general constraint.

GRBModel::addGenConstrPoly()

Add a new general constraint of type GRB_GENCONSTR_POLY to a model.

A polynomial function constraint states that the relationship y = pox®+piz® ' +...+ pg_12+pg
should hold between variables z and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrPoly (GRBVar xvar,
GRBVar yvar,
int plen,
const doublex p,
std::string name="",
std::string options="")
Arguments:

xvar: The z variable.

yvar: The y variable.

plen: The length of coefficient array p. If % is the highest power term, then plen should
be d + 1.

p: The coefficients for the polynomial function (starting with the coefficient for the highest
power).

name (optional): Name for the new general constraint.

options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addGenConstrExp()

Add a new general constraint of type GRB_GENCONSTR_EXP to a model.

A natural exponential function constraint states that the relationship y = exp(z) should hold
for variables x and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the

161

same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrExp (GRBVar xvar,
GRBVar yvar,
std::string mname="",
std::string options="")

Arguments:

xvar: The z variable.

yvar: The y variable.

name (optional): Name for the new general constraint.

options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addGenConstrExpA()

Add a new general constraint of type GRB_GENCONSTR_EXPA to a model.

An exponential function constraint states that the relationship y = a” should hold for variables
x and y, where a > 0 is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrExpA (GRBVar xvar,
GRBVar yvar,
double a,
std::string name="",
std::string options="")
Arguments:

xvar: The z variable.

yvar: The y variable.

a: The base of the function, a > 0.

name (optional): Name for the new general constraint.

options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

162

GRBModel::addGenConstrLog()

Add a new general constraint of type GRB_GENCONSTR_LOG to a model.

A natural logarithmic function constraint states that the relationship y = log(z) should hold
for variables x and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrLog (GRBVar xvar,
GRBVar yvar,
std::string mname="",
std::string options="")
Arguments:

xvar: The z variable.

yvar: The y variable.

name (optional): Name for the new general constraint.

options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addGenConstrLogA()

Add a new general constraint of type GRB_GENCONSTR_LOGA to a model.

A logarithmic function constraint states that the relationship y = log,(x) should hold for
variables « and y, where a > 0 is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrLogA (GRBVar xvar,
GRBVar yvar,
double a,
std::string mname="",
std::string options="")
Arguments:

xvar: The x variable.

yvar: The y variable.

a: The base of the function, a > 0.

name (optional): Name for the new general constraint.

163

options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").
Return value:
New general constraint.

GRBModel::addGenConstrLogistic()

Add a new general constraint of type GRB_GENCONSTR_LOGISTIC to a model.

A logistic function constraint states that the relationship y = i_
and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

— should hold for variables x

1+

GRBGenConstr addGenConstrLogistic (GRBVar xvar,
GRBVar yvar,
std::string name="",
std::string options="")
Arguments:

xvar: The z variable.

yvar: The y variable.

name (optional): Name for the new general constraint.

options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addGenConstrPow()

Add a new general constraint of type GRB_GENCONSTR_POW to a model.

A power function constraint states that the relationship y = x® should hold for variables x and
y, where a is the (constant) exponent. The lower bound of variable must be nonnegative, even if
a is an integer, and x > 0 if a < 0.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

164

GRBGenConstr addGenConstrPow (GRBVar xvar,
GRBVar yvar,
double a,
std::string name="",
std::string options="")
Arguments:
xvar: The x variable.
yvar: The y variable.
a: The exponent of the function.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").
Return value:
New general constraint.

GRBModel::addGenConstrSin()

Add a new general constraint of type GRB_GENCONSTR_SIN to a model.

A sine function constraint states that the relationship y = sin(z) should hold for variables x
and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrSin (GRBVar xvar,
GRBVar yvar,
std::string name="",
std::string options="")
Arguments:
xvar: The x variable.
yvar: The y variable.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").
Return value:
New general constraint.

165

GRBModel::addGenConstrCos()

Add a new general constraint of type GRB_GENCONSTR_COS to a model.

A cosine function constraint states that the relationship y = cos(z) should hold for variables x
and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrCos (GRBVar xvar,
GRBVar yvar,
std::string mname="",
std::string options="")
Arguments:

xvar: The x variable.

yvar: The y variable.

name (optional): Name for the new general constraint.

options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addGenConstrTan()

Add a new general constraint of type GRB_GENCONSTR_TAN to a model.

A tangent function constraint states that the relationship y = tan(z) should hold for variables
z and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrTan (GRBVar xvar,
GRBVar yvar,
std::string mname="",
std::string options="")
Arguments:

xvar: The z variable.

yvar: The y variable.

name (optional): Name for the new general constraint.

166

options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").
Return value:
New general constraint.

GRBModel::addQConstr()

Add a quadratic constraint to a model. Multiple signatures are available.

Important note: Gurobi can handle both convex and non-convex quadratic constraints. The
differences between them can be both important and subtle. Refer to this discussion for additional
information.

GRBQConstr addQConstr (const GRBQuadExpr& 1lhsExpr,

char sense,

const GRBQuadExpr& rhsExpr,

string name="")
Add a quadratic constraint to a model.

Arguments:
lhsExpr: Left-hand side expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).
rhsExpr: Right-hand side expression for new quadratic constraint.
name (optional): Name for new constraint.
Return value:
New quadratic constraint object.

GRBQConstr addQConstr (const GRBQuadExpr& 1lhsExpr,

char sense,

GRBVar rhsVar,

string name="")
Add a quadratic constraint to a model.

Arguments:
lhsExpr: Left-hand side expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).
rhsVar: Right-hand side variable for new quadratic constraint.
name (optional): Name for new constraint.
Return value:
New quadratic constraint object.

GRBQConstr addQConstr (GRBTempConstr& tc,
string name="")

167

Add a quadratic constraint to a model.
Arguments:
tc: Temporary constraint object, created using an overloaded comparison operator. See
GRBTempConstr for more information.
name (optional): Name for new constraint.
Return value:
New quadratic constraint object.

GRBModel::addRange()

Add a single range constraint to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution.

Note that range constraints are stored internally as equality constraints. We add an extra
variable to the model to capture the range information. Thus, the Sense attribute on a range
constraint will always be GRB_EQUAL. In particular introducing a range constraint

L<dlx<U
is equivalent to adding a slack variable s and the following constraints

afe—s =1L

0<s <U-L.

GRBConstr addRange (const GRBLinExpr& expr,

double lower,
double upper,
string name="")

Arguments:
expr: Linear expression for new range constraint.
lower: Lower bound for linear expression.
upper: Upper bound for linear expression.
name (optional): Name for new constraint.
Return value:
New constraint object.

GRBModel::addRanges()

Add new range constraints to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution.

GRBConstr* addRanges (const GRBLinExpr* exprs,

const doublex* lower,
const doublex* upper,
const string* names,
int count)

168

Arguments:
exprs: Linear expressions for the new range constraints.
lower: Lower bounds for linear expressions.
upper: Upper bounds for linear expressions.
name: Names for new range constraints.
count: Number of range constraints to add.
Return value:
Array of new constraint objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBModel::addSOS()

Add an SOS constraint to the model. Please refer to this section for details on SOS constraints.

GRBSOS addS0S (const GRBVar* vars,
const double* weights,
int len,
int type)
Arguments:
vars: Array of variables that participate in the SOS constraint.
weights: Weights for the variables in the SOS constraint.
len: Number of members in the new SOS set (length of vars and weights arrays).
type: SOS type (can be GRB_SOS_TYPE1 or GRB_SOS_TYPE2).
Return value:
New SOS constraint.

GRBModel::addVar()

Add a single decision variable to a model.

GRBVar addVar (double 1b,

double ub,
double obj,
char type,
string name="")
Add a variable; non-zero entries will be added later.

Arguments:
1b: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coeflicient for new variable.
type: Variable type for new variable (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_-
SEMICONT,OTGRB_SEMIINT)
name (optional): Name for new variable.
Return value:
New variable object.

169

GRBVar addVar (double 1b,

double ub,

double obj,

char type,

int numnz,

const GRBConstr* constrs,

const double* coeffs,

string name="")
Add a variable, and the associated non-zero coefficients.

Arguments:
1b: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coeflicient for new variable.
type: Variable type for new variable (GRB_CONTINUQUS, GRB_BINARY, GRB_INTEGER, GRB_-
SEMICONT,OIGRB_SEMIINT)
numnz: Number of constraints in which this new variable participates.
constrs: Array of constraints in which the variable participates.
coeffs: Array of coefficients for each constraint in which the variable participates.
name (optional): Name for new variable.
Return value:
New variable object.

GRBVar addVar (double 1b,

double ub,

double obj,

char type,

const GRBColumn& col,

string name="")
Add a variable, and the associated non-zero coefficients.
Arguments:

1b: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_-
SEMICONT, or GRB_SEMIINT).
col: GRBColumn object for specifying a set of constraints to which new variable belongs.
name (optional): Name for new variable.
Return value:
New variable object.

GRBModel::addVars()

Add new decision variables to a model.

GRBVar* addVars (int count,
char type=GRB_CONTINUOUS)

170

Add count new decision variables to a model. All associated attributes take their default values,
except the variable type, which is specified as an argument.
Arguments:
count: Number of variables to add.
type (optional): Variable type for new variables (GRB_CONTINUQUS, GRB_BINARY, GRB_-
INTEGER,GRB_SEMICONT,OrGRB_SEMIINT)
Return value:
Array of new variable objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBVar* addVars (const doublex 1b,
const double* ub,
const doublex obj,

const charx* type,
const string* names,
int count)

Add count new decision variables to a model. This signature allows you to use arrays to hold
the various variable attributes (lower bound, upper bound, etc.).
Arguments:
1b: Lower bounds for new variables. Can be NULL, in which case the variables get lower
bounds of 0.0.
ub: Upper bounds for new variables. Can be NULL, in which case the variables get infinite
upper bounds.
obj: Objective coefficients for new variables. Can be NULL, in which case the variables get
objective coeflicients of 0.0.
type: Variable types for new variables (GRB_CONTINUQUS, GRB_BINARY, GRB_INTEGER, GRB_-
SEMICONT, or GRB_SEMIINT). Can be NULL, in which case the variables are assumed to be
continuous.
names: Names for new variables. Can be NULL, in which case all variables are given default
names.
count: The number of variables to add.
Return value:
Array of new variable objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBVar* addVars (const doublex 1b,
const double* ub,
const doublex* obj,
const charx* type,
const string* names,
const GRBColumn* cols,
int count)

Add new decision variables to a model. This signature allows you to specify the set of constraints
to which each new variable belongs using an array of GRBColumn objects.

171

Arguments:

1b: Lower bounds for new variables. Can be NULL, in which case the variables get lower
bounds of 0.0.

ub: Upper bounds for new variables. Can be NULL, in which case the variables get infinite
upper bounds.

obj: Objective coefficients for new variables. Can be NULL, in which case the variables get
objective coefficients of 0.0.

type: Variable types for new variables (GRB_CONTINUQOUS, GRB_BINARY, GRB_INTEGER, GRB_-
SEMICONT, or GRB_SEMIINT). Can be NULL, in which case the variables are assumed to be
continuous.

names: Names for new variables. Can be NULL, in which case all variables are given default
names.

cols: GRBColumn objects for specifying a set of constraints to which each new column
belongs.

count: The number of variables to add.

Return value:

Array of new variable objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBModel::chgCoeff()

Change one coefficient in the model. The desired change is captured using a GRBVar object, a
GRBConstr object, and a desired coefficient for the specified variable in the specified constraint. If
you make multiple changes to the same coeflicient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you
update the model (using GRBModel::update), optimize the model (using GRBModel::optimize),
or write the model to disk (using GRBModel::write).

void chgCoeff (GRBConstr constr,
GRBVar var,
double newvalue)
Arguments:

constr: Constraint for coefficient to be changed.
var: Variable for coefficient to be changed.
newvalue: Desired new value for coefficient.

GRBModel::chgCoeffs()

Change a list of coefficients in the model. Each desired change is captured using a GRBVar object,
a GRBConstr object, and a desired coefficient for the specified variable in the specified constraint.
The entries in the input arrays each correspond to a single desired coefficient change. If you make
multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you
update the model (using GRBModel::update), optimize the model (using GRBModel::optimize),
or write the model to disk (using GRBModel::write).

172

void chgCoeffs (const GRBConstr* constrs,

const GRBVar* vars,
const doublex vals,
int len)

Arguments:
constrs: Constraints for coefficients to be changed.
vars: Variables for coefficients to be changed.
vals: Desired new values for coefficients.
len: Number of coefficients to change (length of vars, constrs, and vals arrays).

GRBModel::computellS()

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and
variable bounds with the following properties:

e It is still infeasible, and

e If a single constraint or bound is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily
the smallest one; there may exist others with fewer constraints or bounds.

IIS results are returned in a number of attributes: IISConstr, IISLB, IISUB, IISSOS, IISQCon-
str, and IISGenConstr. Each indicates whether the corresponding model element is a member of
the computed IIS.

Note that for models with general function constraints, piecewise-linear approximation of the
constraints may cause unreliable IIS results.

The IIS log provides information about the progress of the algorithm, including a guess at the
eventual IIS size.

If an IIS computation is interrupted before completion, Gurobi will return the smallest infeasible
subsystem found to that point.

The IISConstrForce, IISLBForce, IISUBForce, IISSOSForce, IISQConstrForce, and IISGenCon-
strForce attributes allow you mark model elements to either include or exclude from the computed
IIS. Setting the attribute to 1 forces the corresponding element into the IIS, setting it to 0 forces
it out of the IIS, and setting it to -1 allows the algorithm to decide.

To give an example of when these attributes might be useful, consider the case where an initial
model is known to be feasible, but it becomes infeasible after adding constraints or tightening
bounds. If you are only interested in knowing which of the changes caused the infeasibility, you can
force the unmodified bounds and constraints into the IIS. That allows the IIS algorithm to focus
exclusively on the new constraints, which will often be substantially faster.

Note that setting any of the Force attributes to 0 may make the resulting subsystem fea-
sible, which would then make it impossible to construct an IIS. Trying anyway will result in a
GRB_ERROR_IIS_NOT_INFEASIBLE error. Similarly, setting this attribute to 1 may result in an IIS
that is not irreducible. More precisely, the system would only be irreducible with respect to the
model elements that have force values of -1 or 0.

This method populates the IISConstr, IISQConstr, and IISGenConstr constraint attributes, the
IISSOS, SOS attribute, and the IISLB and IISUB variable attributes. You can also obtain informa-
tion about the results of the IIS computation by writing a .ilp format file (see GRBModel::write).
This file contains only the IIS from the original model.

173

Use the IISMethod parameter to adjust the behavior of the IIS algorithm.
Note that this method can be used to compute IISs for both continuous and MIP models.

| void computeIIS ()

GRBModel::discardConcurrentEnvs()

Discard concurrent environments for a model.
The concurrent environments created by getConcurrentEnv will be used by every subsequent
call to the concurrent optimizer until the concurrent environments are discarded.

| void discardConcurrentEnvs ()

GRBModel::discardMultiobjEnvs()

Discard all multi-objective environments associated with the model, thus restoring multi objective
optimization to its default behavior.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.

Use getMultiobjEnv to create a multi-objective environment.

| void discardMultiobjEnvs ()

GRBModel::feasRelax()

Modifies the GRBModel object to create a feasibility relaxation. Note that you need to call optimize
on the result to compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the
solution violates the bounds and linear constraints of the original model. This method provides a
number of options for specifying the relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the
sum of the weighted magnitudes of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the cost per unit violation in the lower bounds, upper bounds, and linear
constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the
weighted sum of the squares of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the coefficients on the squares of the lower bound, upper bound, and
linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the
weighted count of bound and constraint violations. The 1bpen, ubpen, and rhspen arguments
specify the cost of violating a lower bound, upper bound, and linear constraint, respectively.

To give an example, if a constraint with rhspen value p is violated by 2.0, it would con-
tribute 2*p to the feasibility relaxation objective for relaxobjtype=0, it would contribute 2*2xp
for relaxobjtype=1, and it would contribute p for relaxobjtype=2.

174

The minrelax argument is a boolean that controls the type of feasibility relaxation that is
created. If minrelax=false, optimizing the returned model gives a solution that minimizes the
cost of the violation. If minrelax=true, optimizing the returned model finds a solution that
minimizes the original objective, but only from among those solutions that minimize the cost of the
violation. Note that feasRelax must solve an optimization problem to find the minimum possible
relaxation when minrelax=true, which can be quite expensive.

There are two signatures for this method. The more complex one takes a list of variables
and constraints, as well as penalties associated with relaxing the corresponding lower bounds,
upper bounds, and constraints. If a variable or constraint is not included in one of these lists,
the associated bounds or constraints may not be violated. The simpler signature takes a pair of
boolean arguments, vrelax and crelax, that indicate whether variable bounds and/or constraints
can be violated. If vrelax/crelax is true, then every bound/constraint is allowed to be violated,
respectively, and the associated cost is 1.0.

Note that this is a destructive method: it modifies the model on which it is invoked. If you
don’t want to modify your original model, use the GRBModel constructor to create a copy before
invoking this method.

double feasRelax (int relaxobjtype,

bool minrelax,
int vlen,
const GRBVar* vars,
const doublex* lbpen,
const doublex* ubpen,
int clen,
const GRBConstr* constrs,
const doublex* rhspen)

Create a feasibility relaxation model.

Arguments:

relaxobjtype: The cost function used when finding the minimum cost relaxation.

minrelax: The type of feasibility relaxation to perform.

vlen: The length of the list of variables whose bounds are allowed to be violated.

vars: Variables whose bounds are allowed to be violated.

lbpen: Penalty for violating a variable lower bound. One entry for each variable in argument
vars.

ubpen: Penalty for violating a variable upper bound. One entry for each variable in argument
vars.

clen: The length of the list of linear constraints that are allowed to be violated.

constrs: Linear constraints that are allowed to be violated.

rhspen: Penalty for violating a linear constraint. One entry for each constraint in argument
constrs.

Return value:

Zero if minrelax is false. If minrelax is true, the return value is the objective value for

the relaxation performed. If the value is less than 0, it indicates that the method failed to

create the feasibility relaxation.

175

double feasRelax (int relaxobjtype,
bool minrelax,
bool vrelax,
bool crelax)
Simplified method for creating a feasibility relaxation model.
Arguments:
relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vrelax: Indicates whether variable bounds can be relaxed (with a cost of 1.0 for any viola-

tions.
crelax: Indicates whether linear constraints can be relaxed (with a cost of 1.0 for any
violations.

Return value:
Zero if minrelax is false. If minrelax is true, the return value is the objective value for
the relaxation performed. If the value is less than 0, it indicates that the method failed to
create the feasibility relaxation.

GRBModel::fixedModel()

Create the fixed model associated with a MIP model. The MIP model must have a solution loaded
(e.g., after a call to the optimize method). In the fixed model, each integer variable is fixed to the
value that variable takes in the MIP solution. In addition, continuous variables may be fixed to
satisfy SOS or general constraints. The result is a model without any integrality constraints, SOS
constraints, or general constraints.

Note that, while the fixed problem is always a continuous model, it may contain a non-convex
quadratic objective or non-convex quadratic constraints. As a result, it may still be solved using
the MIP algorithm.

GRBModel fixedModel ()
Return value:
Fixed model associated with calling object.

GRBModel::get()

Query the value(s) of a parameter or attribute. Use this method for parameters, for scalar model
attributes, or for arrays of constraint or variable attributes.

‘double get (GRB_DoubleParam param)

Query the value of a double-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

176

| int get (GRB_IntParam param)

Query the value of an int-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

‘string get (GRB_StringParam param)

Query the value of a string-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

char* get (GRB_CharAttr attr,
const GRBVar* vars,
int count)
Query a char-valued variable attribute for an array of variables.
Arguments:
attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.
Return value:
The current values of the requested attribute for each input variable. Note that the result
is heap-allocated, and must be returned to the heap by the user.

charx get (GRB_CharAttr attr,
const GRBConstr* constrs,
int count)
Query a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.
Return value:
The current values of the requested attribute for each input constraint. Note that the result
is heap-allocated, and must be returned to the heap by the user.

char* get (GRB_CharAttr attr,
const GRBQConstr* qconstrs,
int count)

177

Query a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:
attr: The attribute being queried.
constrs: An array of quadratic constraints whose attribute values are being queried.
count: The number of quadratic constraint attributes to retrieve.
Return value:
The current values of the requested attribute for each input quadratic constraint. Note that
the result is heap-allocated, and must be returned to the heap by the user.

| double get (GRB_DoubleAttr attr)

Query the value of a double-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

doublex get (GRB_DoubleAttr attr,
const GRBVar* vars,
int count)
Query a double-valued variable attribute for an array of variables.
Arguments:
attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.
Return value:
The current values of the requested attribute for each input variable. Note that the result
is heap-allocated, and must be returned to the heap by the user.

doublex get (GRB_DoubleAttr attr,
const GRBConstr* constrs,
int count)
Query a double-valued constraint attribute for an array of constraints.
Arguments:
attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.
Return value:
The current values of the requested attribute for each input constraint. Note that the result
is heap-allocated, and must be returned to the heap by the user.

doublex get (GRB_DoubleAttr attr,
const GRBQConstr* qconstrs,
int count)

178

Query a double-valued quadratic constraint attribute for an array of quadratic constraints.

Arguments:

attr: The attribute being queried.

constrs: An array of quadratic constraints whose attribute values are being queried.
count: The number of quadratic constraint attributes to retrieve.

Return value:

The current values of the requested attribute for each input quadratic constraint. Note that
the result is heap-allocated, and must be returned to the heap by the user.

| int get (GRB_IntAttr attr)

Query the value of an int-valued model attribute.

Arguments:

intx*

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

get (

GRB_IntAttr attr,
const GRBVar* vars,
int count)

Query an int-valued variable attribute for an array of variables.

Arguments:

intx*

attr: The attribute being queried.

vars: An array of variables whose attribute values are being queried.

count: The number of variable attributes to retrieve.

Return value:

The current values of the requested attribute for each input variable. Note that the result
is heap-allocated, and must be returned to the heap by the user.

get (

GRB_IntAttr attr,
const GRBConstr* constrs,
int count)

Query an int-valued constraint attribute for an array of constraints.

Arguments:
attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.

count: The number of constraint attributes to retrieve.
Return value:

The current values of the requested attribute for each input constraint. Note that the result
is heap-allocated, and must be returned to the heap by the user.

string get (

GRB_StringAttr attr)

179

Query the value of a string-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

string* get (GRB_StringAttr attr,
const GRBVar* vars,
int count)
Query a string-valued variable attribute for an array of variables.
Arguments:
attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.
Return value:
The current values of the requested attribute for each input variable. Note that the result
is heap-allocated, and must be returned to the heap by the user.

string* get (GRB_StringAttr attr,
const GRBConstr* constrs,
int count)
Query a string-valued constraint attribute for an array of constraints.
Arguments:
attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.
Return value:
The current values of the requested attribute for each input constraint. Note that the result
is heap-allocated, and must be returned to the heap by the user.

string* get (GRB_StringAttr attr,
const GRBQConstr* qconstrs,
int count)

Query a string-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:
attr: The attribute being queried.
constrs: An array of quadratic constraints whose attribute values are being queried.
count: The number of quadratic constraint attributes to retrieve.
Return value:
The current values of the requested attribute for each input quadratic constraint. Note that
the result is heap-allocated, and must be returned to the heap by the user.

180

GRBModel::getCoeff()

Query the coefficient of variable var in linear constraint constr (note that the result can be zero).

double getCoeff (GRBConstr constr,
GRBVar var)
Arguments:
constr: The requested constraint.
var: The requested variable.
Return value:
The current value of the requested coefficient.

GRBModel::getCol()

Retrieve the list of constraints in which a variable participates, and the associated coefficients. The
result is returned as a GRBColumn object.

| GRBColumn getCol (GRBVar var)

Arguments:
var: The variable of interest.
Return value:
A GRBColumn object that captures the set of constraints in which the variable participates.

GRBModel::getConcurrentEnv()

Create/retrieve a concurrent environment for a model.

This method provides fine-grained control over the concurrent optimizer. By creating your
own concurrent environments and setting appropriate parameters on these environments (e.g., the
Method parameter), you can control exactly which strategies the concurrent optimizer employs.
For example, if you create two concurrent environments, and set Method to primal simplex for
one and dual simplex for the other, subsequent concurrent optimizer runs will use the two simplex
algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with
num=0. For example, if you want three concurrent environments, they must be numbered 0, 1,
and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent
optimization on that model. Use discardConcurrentEnvs to revert back to default concurrent
optimizer behavior.

| GRBEnv getConcurrentEnv (int num)

Arguments:

num: The concurrent environment number.
Return value:

The concurrent environment for the model.

181

GRBModel::getConstrByName()

Retrieve a linear constraint from its name. If multiple linear constraints have the same name, this
method chooses one arbitrarily.

| GRBConstr getConstrByName (const string& name)

Arguments:

name: The name of the desired linear constraint.
Return value:

The requested linear constraint.

GRBModel::getConstrs()

Retrieve an array of all linear constraints in the model.

| GRBConstr* getConstrs ()
Return value:
An array of all linear constraints in the model. Note that this array is heap-allocated, and
must be returned to the heap by the user.

GRBModel::getGenConstrXxx()

The following methods allow you to retrieve general constraints from your model.

GRBModel::getGenConstrMax

Retrieve the data associated with a general constraint of type MAX. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in 1enP. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrMax for a description of the semantics of this general constraint type.

void getGenConstrMax (GRBGenConstr genc,

GRBVarx* resvarP,
GRBVarx* vars,

intx* lenP,
doublex* constantP)

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.

182

vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.
constantP: Pointer to store the additional constant operand of the constraint.

GRBModel::getGenConstrMin

Retrieve the data associated with a general constraint of type MIN. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in 1enP. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrMin for a description of the semantics of this general constraint type.

void getGenConstrMin (GRBGenConstr genc,

GRBVarx* resvarP,
GRBVarx* vars,

intx* lenP,
doublex* constantP)

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.
constantP: Pointer to store the additional constant operand of the constraint.

GRBModel::getGenConstrAbs

Retrieve the data associated with a general constraint of type ABS. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrAbs for a description of the semantics of this general constraint type.

void getGenConstrAbs (GRBGenConstr genc,
GRBVarx* resvarP,
GRBVar* argvarP)
Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
argvarP: Pointer to store the argument variable of the constraint.

183

GRBModel::getGenConstrAnd

Retrieve the data associated with a general constraint of type AND. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in 1enP. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrAnd for a description of the semantics of this general constraint type.

void getGenConstrAnd (GRBGenConstr genc,

GRBVarx* resvarP,
GRBVarx* vars,
int* lenP)

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.

GRBModel::getGenConstrOr

Retrieve the data associated with a general constraint of type OR. Calling this method for a general
constraint of a different type leads to an exception. You can query the GenConstrType attribute
to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in 1lenP. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrOr for a description of the semantics of this general constraint type.

void getGenConstrOr (GRBGenConstr genc,

GRBVarx* resvarP,
GRBVarx* vars,
intx* lenP)

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.

184

GRBModel::getGenConstrNorm

Retrieve the data associated with a general constraint of type NORM. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in 1enP. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrNorm for a description of the semantics of this general constraint type.

void getGenConstrNorm (GRBGenConstr genc,

GRBVarx* resvarP,
GRBVarx* vars,
intx* lenP,
doublex* whichP)

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.
whichP: Pointer to store the norm type (possible values are 0, 1, 2, or GRB__INFINITY).

GRBModel::getGenConstrindicator

Retrieve the data associated with a general constraint of type INDICATOR. Calling this method
for a general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrIndicator for a description of the semantics of this general constraint

type.

void getGenConstrIndicator (GRBGenConstr genc,
GRBVarx binvarP,
int* binvalP,
GRBLinExpr* exprP,
charx senseP,
double* rhsP)

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
binvarP: Pointer to store the binary indicator variable of the constraint.
binvalP: Pointer to store the value that the indicator variable has to take in order to trigger
the linear constraint.
exprP: Pointer to a GRBLinExpr object to store the left-hand side expression of the linear
constraint that is triggered by the indicator.

185

senseP: Pointer to store the sense for the linear constraint. Options are GRB_LESS_EQUAL,
GRB_EQUAL, or GRB_GREATER_EQUAL.
rhsP: Pointer to store the right-hand side value for the linear constraint.

GRBModel::getGenConstrPWL

Retrieve the data associated with a general constraint of type PWL. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the xpts and ypts arguments. The routine returns the length
for the xpts and ypts arrays in nptsP. That allows you to make certain that the xpts and ypts
arrays are of sufficient size to hold the result of the second call.

See also addGenConstrPWL for a description of the semantics of this general constraint type.

void getGenConstrPWL (GRBGenConstr genc,
GRBVarx* xvarP,
GRBVarx* yvarP,
int* nptsP,
doublex* xpts,
doublex* ypts)

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.
nptsP: Pointer to store the number of points that define the piecewise-linear function.
xpts: The z values for the points that define the piecewise-linear function.
ypts: The y values for the points that define the piecewise-linear function.

GRBModel::getGenConstrPoly

Retrieve the data associated with a general constraint of type POLY. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the p argument. The routine returns the length of the p array in
plenP. That allows you to make certain that the p array is of sufficient size to hold the result of
the second call.

See also addGenConstrPoly for a description of the semantics of this general constraint type.

void getGenConstrPoly (GRBGenConstr genc,

GRBVarx* xvarP,
GRBVarx* yvarP,
intx* plenP,
doublex* p)

186

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.
plenP: Pointer to store the array length for p. If 2 is the highest power term, then d + 1
will be returned.
p: The coeflicients for polynomial function.

GRBModel::getGenConstrExp

Retrieve the data associated with a general constraint of type EXP. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrExp for a description of the semantics of this general constraint type.

void getGenConstrExp (GRBGenConstr genc,
GRBVarx* xvarP,
GRBVarx* yvarP)
Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.

GRBModel::getGenConstrExpA

Retrieve the data associated with a general constraint of type EXPA. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrExpA for a description of the semantics of this general constraint type.

void getGenConstrExpA (GRBGenConstr genc,

GRBVarx* xvarP,
GRBVarx* yvarP,
doublex* aP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.
aP: Pointer to store the base of the function.

187

GRBModel::getGenConstrLog

Retrieve the data associated with a general constraint of type LOG. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrLog for a description of the semantics of this general constraint type.

void getGenConstrLog (GRBGenConstr genc,
GRBVarx* xvarP,
GRBVarx* yvarP)
Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.

GRBModel::getGenConstrLogA

Retrieve the data associated with a general constraint of type LOGA. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrLogA for a description of the semantics of this general constraint type.

void getGenConstrLogA (GRBGenConstr genc,

GRBVarx* xvarP,
GRBVar* yvarP,
doublex* aP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.
aP: Pointer to store the base of the function.

GRBModel::getGenConstrLogistic

Retrieve the data associated with a general constraint of type LOGISTIC. Calling this method for
a general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrLogistic for a description of the semantics of this general constraint type.

void getGenConstrLogistic (GRBGenConstr genc,
GRBVarx xvarP,
GRBVarx yvarP)
Arguments:

188

genc: The general constraint object.
Any of the following arguments can be NULL.

xvarP: Pointer to store the x variable.

yvarP: Pointer to store the y variable.

GRBModel::getGenConstrPow

Retrieve the data associated with a general constraint of type POW. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrPow for a description of the semantics of this general constraint type.

void getGenConstrPow (GRBGenConstr genc,

GRBVarx* xvarP,
GRBVarx* yvarP,
doublex* aP)

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.
aP: Pointer to store the exponent of the function.

GRBModel::getGenConstrSin

Retrieve the data associated with a general constraint of type SIN. Calling this method for a general
constraint of a different type leads to an exception. You can query the GenConstrType attribute
to determine the type of the general constraint.

See also addGenConstrSin for a description of the semantics of this general constraint type.

void getGenConstrSin (GRBGenConstr genc,
GRBVarx* xvarP,
GRBVarx* yvarP)
Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.

GRBModel::getGenConstrCos

Retrieve the data associated with a general constraint of type COS. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrCos for a description of the semantics of this general constraint type.

189

void getGenConstrCos (GRBGenConstr genc,
GRBVarx* xvarP,
GRBVarx* yvarP)
Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.

GRBModel::getGenConstrTan

Retrieve the data associated with a general constraint of type TAN. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrTan for a description of the semantics of this general constraint type.

void getGenConstrTan (GRBGenConstr genc,
GRBVarx* xvarP,
GRBVarx* yvarP)
Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.

GRBModel::getGenConstrs()

Retrieve an array of all general constraints in the model.

| GRBGenConstr* getGenConstrs ()
Return value:
An array of all general constraints in the model. Note that this array is heap-allocated, and
must be returned to the heap by the user.

GRBModel::getJSONSolution()

After a call to optimize, this method returns the resulting solution and related model attributes as
a JSON string. Please refer to the JSON solution format section for details.

| getJSONSolution GRBModel ()
Return value:
A JSON string.

190

GRBModel::getMultiobjEnv()

Create/retrieve a multi-objective environment for the objective with the given index. This envi-
ronment enables fine-grained control over the multi-objective optimization process. Specifically, by
changing parameters on this environment, you modify the behavior of the optimization that occurs
during the corresponding pass of the multi-objective optimization.

Each multi-objective environment starts with a copy of the current model environment.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.

Use discardMultiobjEnvs to discard multi-objective environments and return to standard be-
havior.

| GRBEnv getMultiobjEnv (int index)

Arguments:
index: The objective index.
Return value:
The multi-objective environment for the model.

GRBModel::getObjective()

Retrieve the optimization objective(s).

| GRBQuadExpr getObjective ()
Retrieve the optimization objective.
Note that the constant and linear portions of the objective can also be retrieved using the
ObjCon and Obj attributes.
Return value:
The model objective.

| GRBLinExpr getObjective (int index)

Retrieve an alternative optimization objective. Alternative objectives will always be linear. You
can also use this routine to retrieve the primary objective (using index = 0), but you will get an
exception if the primary objective contains quadratic terms.

Please refer to the discussion of Multiple Objectives for more information on the use of alter-
native objectives.

Note that alternative objectives can also be retrieved using the ObjNCon and ObjN attributes.

Arguments:

index: The index for the requested alternative objective.
Return value:
The requested alternate objective.

191

GRBMaodel::getPWLObj()

Retrieve the piecewise-linear objective function for a variable. The return value gives the number
of points that define the function, and the x and y arguments give the coordinates of the points,
respectively. The x and y arguments must be large enough to hold the result. Call this method
with NULL values for x and y if you just want the number of points.

Refer to this discussion for additional information on what the values in z and y mean.

int getPWLObj (GRBVar var,
double[] x,
double[] 1y)
Arguments:
var: The variable whose objective function is being retrieved.
x: The x values for the points that define the piecewise-linear function. These will always
be in non-decreasing order.
y: The y values for the points that define the piecewise-linear function.
Return value:
The number of points that define the piecewise-linear objective function.

GRBModel::getQCRow()

Retrieve the left-hand side expression from a quadratic constraint. The result is returned as a
GRBQuadExpr object.

‘GRBQuadExpr getQCRow (GRBQConstr qconstr)

Arguments:
gconstr: The quadratic constraint of interest.
Return value:
A GRBQuadExpr object that captures the left-hand side of the quadratic constraint.

GRBModel::getQConstrs()

Retrieve an array of all quadratic constraints in the model.

‘ GRBQConstr* getQConstrs ()
Return value:

An array of all quadratic constraints in the model. Note that this array is heap-allocated,
and must be returned to the heap by the user.

192

GRBModel::getRow()

Retrieve a list of variables that participate in a constraint, and the associated coefficients. The
result is returned as a GRBLinExpr object.

GRBLinExpr getRow (GRBConstr constr)

Arguments:
constr: The constraint of interest. A GRBConstr object, typically obtained from addConstr
or getConstrs.
Return value:
A GRBLinExpr object that captures the set of variables that participate in the constraint.

GRBModel::getSOS()

Retrieve the list of variables that participate in an SOS constraint, and the associated coeflicients.
The return value is the length of this list. If you would like to allocate space for the result before
retrieving the result, call the method first with NULL array arguments to determine the appropriate
array lengths.

int getSOS (GRBSOS sos,
GRBVar* vars,
double* weights,
int* typeP)
Arguments:
sos: The SOS set of interest.
vars: A list of variables that participate in sos.
weights: The SOS weights for each participating variable.
typeP: The type of the SOS set (either GRB_SOS_TYPE1 or GRB_SOS_TYPE2).
Return value:
The length of the result arrays.

GRBModel::getSOSs()

Retrieve an array of all SOS constraints in the model.

| GRBSOS* getS0Ss ()
Return value:
An array of all SOS constraints in the model. Note that this array is heap-allocated, and
must be returned to the heap by the user.

193

GRBModel::get TuneResult()

Use this method to retrieve the results of a previous tune call. Calling this method with argument
n causes tuned parameter set n to be copied into the model. Parameter sets are stored in order of
decreasing quality, with parameter set 0 being the best. The number of available sets is stored in
attribute TuneResultCount.

Once you have retrieved a tuning result, you can call optimize to use these parameter settings
to optimize the model, or write to write the changed parameters to a .prm file.

Please refer to the parameter tuning section for details on the tuning tool.

void getTuneResult (int =n)

n: The index of the tuning result to retrieve. The best result is available as index 0. The
number of stored results is available in attribute TuneResultCount.

GRBModel::getVarByName()

Retrieve a variable from its name. If multiple variables have the same name, this method chooses
one arbitrarily.

| GRBVar getVarByName (const string& name)

Arguments:

name: The name of the desired variable.
Return value:

The requested variable.

GRBModel::getVars()

Retrieve an array of all variables in the model.

| GRBVar* getVars ()
Return value:
An array of all variables in the model. Note that this array is heap-allocated, and must be
returned to the heap by the user.

GRBModel::optimize()

Optimize the model. The algorithm used for the optimization depends on the model type (simplex
or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful completion,
this method will populate the solution related attributes of the model. See the Attributes section
for more information on attributes.

Please consult this section for a discussion of some of the practical issues associated with solving
a precisely defined mathematical model using finite-precision floating-point arithmetic.

Note that this method will process all pending model modifications.

194

| void optimize ()

GRBModel::optimizeasync()

Optimize a model asynchronously. This routine returns immediately. Your program can perform
other computations while optimization proceeds in the background. To check the state of the
asynchronous optimization, query the Status attribute for the model. A value of IN_PROGRESS
indicates that the optimization has not yet completed. When you are done with your foreground
tasks, you must call sync to sync your foreground program with the asynchronous optimization
task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in
the background is severely limited. Specifically, you can only perform attribute queries, and only
for a few attributes (listed below). Any other calls on the running model, or on any other models that
were built within the same Gurobi environment, will fail with error code OPTIMIZATION_IN_PROGRESS.

Note that there are no such restrictions on models built in other environments. Thus, for
example, you could create multiple environments, and then have a single foreground program
launch multiple simultaneous asynchronous optimizations, each in its own environment.

As already noted, you are allowed to query the value of the Status attribute while an asyn-
chronous optimization is in progress. The other attributes that can be queried are: ObjVal, Ob-
jBound, IterCount, NodeCount, and BarlterCount. In each case, the returned value reflects progress
in the optimization to that point. Any attempt to query the value of an attribute not on this list
will return an OPTIMIZATION_IN_PROGRESS error.

| void optimizeasync ()

GRBModel::optimizeBatch()

Submit a new batch request to the Cluster Manager. Returns the BatchID (a string), which
uniquely identifies the job in the Cluster Manager and can be used to query the status of this
request (from this program or from any other). Once the request has completed, the BatchID can
also be used to retrieve the associated solution. To submit a batch request, you must tag at least
one element of the model by setting one of the VTag, CTag or QCTag attributes. For more details
on batch optimization, please refer to the Batch Optimization section.

Note that this routine will process all pending model modifications.

| string optimizeBatch ()
Example usage:

// submit batch request
batchID = model->optimizeBatch();

GRBModel::presolve()

Perform presolve on a model.

195

| GRBModel presolve ()
Return value:
Presolved version of original model.

GRBModel::read()

This method is the general entry point for importing data from a file into a model. It can be used
to read basis files for continuous models, start vectors for MIP models, or parameter settings. The
type of data read is determined by the file suffix. File formats are described in the File Format
section.

Note that this is not the method to use if you want to read a new model from a file. For that,
use the GRBModel constructor. One variant of the constructor takes the name of the file that
contains the new model as its argument.

‘ void read (const string& filename)

Arguments:
filename: Name of the file to read. The suffix on the file must be either .bas (for an LP
basis), .mst or .sol (for a MIP start), .hnt (for MIP hints), .ord (for a priority order),
or .prm (for a parameter file). The suffix may optionally be followed by .zip, .gz, .bz2,

or .7z.

GRBModel::remove()

Remove a variable, constraint, or SOS from a model.

‘void remove (GRBConstr constr)

Remove a linear constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel::update), optimize
the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

Arguments:

constr: The linear constraint to remove.

‘void remove (GRBGenConstr genconstr)

Remove a general constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel::update), optimize
the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

Arguments:

genconstr: The general constraint to remove.

‘void remove (GRBQConstr qconstr)

196

Remove a quadratic constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel::update), optimize
the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

Arguments:

gconstr: The quadratic constraint to remove.

‘void remove (GRBSOS sos)

Remove an SOS constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel::update), optimize
the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

Arguments:

sos: The SOS constraint to remove.

‘void remove (GRBVar var)

Remove a variable from the model. Note that, due to our lazy update approach, the change
won’t actually take effect until you update the model (using GRBModel::update), optimize the
model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

Arguments:

var: The variable to remove.

GRBModel::reset()

| void reset (int clearall=0)

Reset the model to an unsolved state, discarding any previously computed solution information.
Note that, due to our lazy update approach, the change won’t actually take effect until you update
the model (using GRBModel::update), optimize the model (using GRBModel::optimize), or write
the model to disk (using GRBModel::write).

clearall (optional): A value of 1 discards additional information that affects the solution
process but not the actual model (currently MIP starts, variable hints, branching priorities,
lazy flags, and partition information). The default value of 0 just discards the solution.

Arguments:

GRBModel::setCallback()

Set the callback object for a model. The callback() method on this object will be called period-
ically from the Gurobi solver. You will have the opportunity to obtain more detailed information
about the state of the optimization from this callback. See the documentation for GRBCallback
for additional information.

Note that a model can only have a single callback method, so this call will replace an existing
callback. To disable a previously set callback, call this method with a NULL argument.

197

| void setCallback (GRBCallback* cb)

GRBModel::set()

Set the value(s) of a parameter or attribute. Use this method for parameters, for scalar model
attributes, and for arrays of constraint or variable attributes.

void set (GRB_DoubleParam param,
double newvalue)

Set the value of a double-valued parameter.

The difference between setting a parameter on a model and setting it on an environment (i.e.,
through GRBEnv::set) is that the former modifies the parameter for a single model, while the
latter modifies the parameter for every model that is subsequently built using that environment
(and leaves the parameter unchanged for models that were previously built using that environment).

Arguments:

param: The parameter being modified.
newvalue: The desired new value for the parameter.

void set (GRB_IntParam param,
int newvalue)

Set the value of an int-valued parameter.

The difference between setting a parameter on a model and setting it on an environment (i.e.,
through GRBEnv::set) is that the former modifies the parameter for a single model, while the
latter modifies the parameter for every model that is subsequently built using that environment
(and leaves the parameter unchanged for models that were previously built using that environment).

Arguments:

param: The parameter being modified.
newvalue: The desired new value for the parameter.

void set (GRB_StringParam param,
string newvalue)

Set the value of a string-valued parameter.

The difference between setting a parameter on a model and setting it on an environment (i.e.,
through GRBEnv::set) is that the former modifies the parameter for a single model, while the
latter modifies the parameter for every model that is subsequently built using that environment
(and leaves the parameter unchanged for models that were previously built using that environment).

Arguments:

param: The parameter being modified.
newvalue: The desired new value for the parameter.

void set (GRB_CharAttr attr,
const GRBVar* vars,
charx* newvalues,
int count)

198

Set a char-valued variable attribute for an array of variables.

Arguments:
attr: The attribute being modified.
vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

void set (GRB_CharAttr attr,
const GRBConstr* constrs,
charx newvalues,
int count)
Set a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.

constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

void set (GRB_CharAttr attr,
const GRBQConstr* qconstrs,
charx* newvalues,
int count)

Set a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:
attr: The attribute being modified.
constrs: An array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
count: The number of quadratic constraint attributes to set.

void set (GRB DoubleAttr attr,
double newvalue)
Set the value of a double-valued model attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void set (GRB_DoubleAttr attr,
const GRBVar* vars,

doublex* newvalues,
int count)
Set a double-valued variable attribute for an array of variables.

Arguments:
attr: The attribute being modified.
vars: An array of variables whose attribute values are being modified.

199

newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

void set (GRB_DoubleAttr attr,
const GRBConstr* constrs,

doublex* newvalues,
int count)
Set a double-valued constraint attribute for an array of constraints.

Arguments:
attr: The attribute being modified.
constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

void set (GRB_DoubleAttr attr,
const GRBQConstr* qconstrs,
doublex* newvalues,
int count)
Set a double-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.

constrs: An array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
count: The number of quadratic constraint attributes to set.

void set (GRB_IntAttr attr,
int newvalue)
Set the value of an int-valued model attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void set (GRB_IntAttr attr,
const GRBVar* vars,

intx* newvalues,
int count)
Set an int-valued variable attribute for an array of variables.

Arguments:
attr: The attribute being modified.
vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

200

void

set (GRB_IntAttr attr,
const GRBConstr* constrs,
intx* newvalues,
int count)

Set an int-valued constraint attribute for an array of constraints.
Arguments:

void

attr: The attribute being modified.

constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

set (GRB_StringAttr attr,
string newvalue)

Set the value of a string-valued model attribute.
Arguments:

void

attr: The attribute being modified.
newvalue: The desired new value for the attribute.

set (GRB_StringAttr attr,
const GRBVar* vars,
string* newvalues,
int count)

Set a string-valued variable attribute for an array of variables.
Arguments:

void

attr: The attribute being modified.

vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

set (GRB_StringAttr attr,
const GRBConstr* constrs,
string* newvalues,
int count)

Set a string-valued constraint attribute for an array of constraints.
Arguments:

void

attr: The attribute being modified.

constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

set (GRB_StringAttr attr,
const GRBQConstr* qconstrs,
stringk* newvalues,
int count)

201

Set a string-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:
attr: The attribute being modified.
constrs: An array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
count: The number of quadratic constraint attributes to set.

GRBModel::setObjective()

Set the model objective equal to a linear or quadratic expression (for multi-objective optimization,
see setObjectiveN).

Note that you can also modify the linear portion of a model objective using the Obj variable
attribute. If you wish to mix and match these two approaches, please note that this method replaces
the entire existing objective, while the 0bj attribute can be used to modify individual linear terms.

void setObjective (GRBLinExpr linexpr,
int sense=0)
Arguments:
linexpr: New linear model objective.
sense (optional): Optimization sense (GRB_MINIMIZE for minimization, GRB_MAXIMIZE
for maximization). Omit this argument to use the ModelSense attribute value to determine
the sense.

void setObjective (GRBQuadExpr quadexpr,
int sense=0)
Arguments:
quadexpr: New quadratic model objective.
sense (optional): Optimization sense (GRB_MINIMIZE for minimization, GRB_MAXIMIZE
for maximization). Omit this argument to use the ModelSense attribute value.

GRBModel::setObjectiveN()

void setObjectiveN (GRBLinExpr expr,
int index,
int priority=0,
double weight=1,
double abstol=0,
double reltol=0,
string name="")

Set an alternative optimization objective equal to a linear expression.
Please refer to the discussion of Multiple Objectives for more information on the use of alter-
native objectives.

202

Note that you can also modify an alternative objective using the ObjN variable attribute. If
you wish to mix and match these two approaches, please note that this method replaces the entire
existing objective, while the 0bjN attribute can be used to modify individual terms.

Arguments:

expr: New alternative objective.

index: Index for new objective. If you use an index of 0, this routine will change the primary
optimization objective.

priority: Priority for the alternative objective. This initializes the ObjNPriority attribute
for this objective.

weight: Weight for the alternative objective. This initializes the ObjNWeight attribute for
this objective.

abstol: Absolute tolerance for the alternative objective. This initializes the ObjNAbsTol
attribute for this objective.

reltol: Relative tolerance for the alternative objective. This initializes the ObjNRelTol
attribute for this objective.

name: Name of the alternative objective. This initializes the ObjNName attribute for this
objective.

GRBModel::setPWLObj()

Set a piecewise-linear objective function for a variable.

The arguments to this method specify a list of points that define a piecewise-linear objective
function for a single variable. Specifically, the x and y arguments give coordinates for the vertices
of the function.

For additional details on piecewise-linear objective functions, refer to this discussion.

void setPWLObj (GRBvar var,
int npoints,
double[] x,
double[] 1y)
Set the piecewise-linear objective function for a variable.
Arguments:
var: The variable whose objective function is being set.
npoints: Number of points that define the piecewise-linear function.
x: The x values for the points that define the piecewise-linear function. Must be in non-
decreasing order.
y: The y values for the points that define the piecewise-linear function.

GRBModel::singleScenarioModel()

Capture a single scenario from a multi-scenario model. Use the ScenarioNumber parameter to
indicate which scenario to capture.

The model on which this method is invoked must be a multi-scenario model, and the result will
be a single-scenario model.

203

GRBModel singleScenarioModel ()
Return value:
Model for a single scenario.

GRBModel::sync()

Wait for a previous asynchronous optimization call to complete.

Calling optimizeasync returns control to the calling routine immediately. The caller can perform
other computations while optimization proceeds, and can check on the progress of the optimization
by querying various model attributes. The sync call forces the calling program to wait until the
asynchronous optimization call completes. You must call sync before the corresponding model
object is deleted.

The sync call throws an exception if the optimization itself ran into any problems. In other
words, exceptions thrown by this method are those that optimize itself would have thrown, had
the original method not been asynchronous.

Note that you need to call sync even if you know that the asynchronous optimization has
already completed.

| void sync ()

GRBModel::terminate()

Generate a request to terminate the current optimization. This method can be called at any time
during an optimization (from a callback, from another thread, from an interrupt handler, etc.).
Note that, in general, the request won’t be acted upon immediately.

When the optimization stops, the Status attribute will be equal to GRB_INTERRUPTED.

‘ void terminate ()

GRBModel::tune()

Perform an automated search for parameter settings that improve performance. Upon completion,
this method stores the best parameter sets it found. The number of stored parameter sets can be
determined by querying the value of the TuneResultCount attribute. The actual settings can be
retrieved using getTuneResult.

Please refer to the parameter tuning section for details on the tuning tool.

‘ void tune ()

GRBModel::update()

Process any pending model modifications.

void wupdate ()

204

GRBModel::write()

This method is the general entry point for writing optimization data to a file. It can be used to
write optimization models, solutions vectors, basis vectors, start vectors, or parameter settings.
The type of data written is determined by the file suffix. File formats are described in the File
Format section.

Note that writing a model to a file will process all pending model modifications. This is also
true when writing other model information such as solutions, bases, etc.

Note also that when you write a Gurobi parameter file (PRM), both integer or double parameters
not at their default value will be saved, but no string parameter will be saved into the file.

| void write (const string& filename)

Arguments:

filename: The name of the file to be written. The file type is encoded in the file name
suffix. Valid suffixes are .mps, .rew, .1p, or .rlp for writing the model itself, .dua or .d1lp
for writing the dualized model (only pure LP), .ilp for writing just the IIS associated
with an infeasible model (see GRBModel::computellS for further information), .sol for
writing the solution selected by the SolutionNumber parameter, .mst for writing a start
vector, .hnt for writing a hint file, .bas for writing an LP basis, . prm for writing modified
parameter settings, .attr for writing model attributes, or .json for writing solution
information in JSON format. If your system has compression utilities installed (e.g., 7z
or zip for Windows, and gzip, bzip2, or unzip for Linux or macOS), then the files can
be compressed, so additional suffixes of .gz, .bz2, or .7z are accepted.

205

4.3 GRBVar

Gurobi variable object. Variables are always associated with a particular model. You create a
variable object by adding a variable to a model (using GRBModel::addVar), rather than by using
a GRBVar constructor.

The methods on variable objects are used to get and set variable attributes. For example,
solution information can be queried by calling get(GRB_DoubleAttr_X). Note that you can also
query attributes for a set of variables at once. This is done using the attribute query method on
the GRBModel object (GRBModel::get).

GRBVar::get()

Query the value of a variable attribute.

| char get (GRB_CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| double get (GRB_DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| int get (GRB_IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| string get (GRB_StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

206

GRBVar::index()

| int index ()

This method returns the current index, or order, of the variable in the underlying constraint

matrix.
Return value:

-2: removed, -1: not in model, otherwise: index of the variable in the model
Note that the index of a variable may change after subsequent model modifications.

GRBVar::sameAs()

‘bool sameAs (GRBVar var2)

Check whether two variable objects refer to the same variable.

Arguments:
var2: The other variable.
Return value:

Boolean result indicates whether the two variable objects refer to the same model variable.

GRBVar::set()

Set the value of a variable attribute.

void set (GRB_CharAttr attr,
char newvalue)
Set the value of a char-valued attribute.
Arguments:
attr: The attribute being modified.

newvalue: The desired new value of the attribute.

void set (GRB_DoubleAttr attr,
double newvalue)
Set the value of a double-valued attribute.
Arguments:
attr: The attribute being modified.

newvalue: The desired new value of the attribute.

int newvalue)
Set the value of an int-valued attribute.
Arguments:
attr: The attribute being modified.

void set (GRB_IntAttr attr,

207

newvalue: The desired new value of the attribute.

void set (GRB_StringAttr attr,
const string& newvalue)
Set the value of a string-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

208

4.4 GRBConstr

Gurobi constraint object. Constraints are always associated with a particular model. You create
a constraint object by adding a constraint to a model (using GRBModel::addConstr), rather than

by using a GRBConstr constructor.

The methods on constraint objects are used to get and set constraint attributes. For example,
constraint right-hand sides can be queried by calling get(GRB_DoubleAttr_RHS). Note that you
can also query attributes for a set of constraints at once. This is done using the attribute query

method on the GRBModel object (GRBModel::get).

GRBConstr::get()

Query the value of a constraint attribute.

| char get (GRB_CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| double get (GRB_DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| int get (GRB_IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| string get (GRB_StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

209

GRBConstr::index()

| int index ()
This method returns the current index, or order, of the constraint in the underlying constraint
matrix.
Note that the index of a constraint may change after subsequent model modifications.
Return value:
-2: removed, -1: not in model, otherwise: index of the constraint in the model

GRBConstr::sameAs()

‘bool sameAs (GRBConstr constr2)

Check whether two constraint objects refer to the same constraint.

Arguments:
constr2: The other constraint.

Return value:
Boolean result indicates whether the two constraint objects refer to the same model con-
straint.

GRBConstr::set()

Set the value of a constraint attribute.

void set (GRB_CharAttr attr,
char newvalue)
Set the value of a char-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_DoubleAttr attr,
double newvalue)
Set the value of a double-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_IntAttr attr,
int newvalue)
Set the value of an int-valued attribute.
Arguments:

210

attr: The attribute being modified.

newvalue: The desired new value of the attribute.

void set (GRB_StringAttr attr,
const string& newvalue)
Set the value of a string-valued attribute.
Arguments:
attr: The attribute being modified.

newvalue: The desired new value of the attribute.

211

4.5 GRBQConstr

Gurobi quadratic constraint object. Quadratic constraints are always associated with a partic-
ular model. You create a quadratic constraint object by adding a constraint to a model (using
GRBModel::addQConstr), rather than by using a GRBQConstr constructor.

The methods on quadratic constraint objects are used to get and set quadratic constraint
attributes. For example, quadratic constraint right-hand sides can be queried by calling
get(GRB_DoubleAttr_QCRHS). Note, however, that it is generally more efficient to query attributes
for a set of constraints at once. This is done using the attribute query method on the GRBModel
object (GRBModel::get).

GRBQConstr::get()

Query the value of a quadratic constraint attribute.

‘char get (GRB_CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| double get (GRB_DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| int get (GRB_IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

‘string get (GRB_StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

212

attr: The attribute being queried.
Return value:
The current value of the requested attribute.

GRBQConstr::set()

Set the value of a quadratic constraint attribute.

void set (GRB_CharAttr attr,
char newvalue)
Set the value of a char-valued attribute.
Arguments:
attr: The attribute being modified.

newvalue: The desired new value of the attribute.

void set (GRB_DoubleAttr attr,
double newvalue)
Set the value of a double-valued attribute.
Arguments:
attr: The attribute being modified.

newvalue: The desired new value of the attribute.

void set (GRB_IntAttr attr,
int newvalue)
Set the value of an int-valued attribute.
Arguments:
attr: The attribute being modified.

newvalue: The desired new value of the attribute.

void set (GRB_StringAttr attr,
const string& newvalue)
Set the value of a string-valued attribute.
Arguments:
attr: The attribute being modified.

newvalue: The desired new value of the attribute.

213

4.6 GRBSOS

Gurobi SOS constraint object. SOS constraints are always associated with a particular model.
You create an SOS object by adding an SOS constraint to a model (using GRBModel::addSOS),
rather than by using a GRBSOS constructor. Similarly, SOS constraints are removed using the
GRBModel::remove method.

An SOS constraint can be of type 1 or 2 (GRB_SOS_TYPE1 or GRB_SOS_TYPE2). A type 1 SOS
constraint is a set of variables for which at most one variable in the set may take a value other than
zero. A type 2 SOS constraint is an ordered set of variables where at most two variables in the set
may take non-zero values. If two take non-zero values, they must be contiguous in the ordered set.

SOS constraint objects have one attribute, IISS0S, which can be queried with the GRBSOS::get
method.

GRBSO0S::get()
Query the value of an SOS attribute.

| int get (GRB_IntAttr attr)

Arguments:
attr: The attribute being queried.
Return value:
The current value of the requested attribute.

GRBSOS::set()

Set the value of an SOS attribute.

void set (GRB_IntAttr attr,
int newvalue)
Set the value of an int-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

214

4.7 GRBGenConstr

Gurobi general constraint object. General constraints are always associated with a particular
model. You create a general constraint object by adding a constraint to a model (using one of the

GRBModel::addGenConstrXxx methods), rather than by using a GRBGenConstr constructor.

The methods on general constraint objects are used to get and set general constraint attributes.

For example, general constraint types can be queried by calling

get(GRB_IntAttr_GenConstrType). Note, however, that it is generally more efficient to query
attributes for a set of constraints at once. This is done using the attribute query method on the

GRBModel object (GRBModel::get).

GRBGenConstr::get()

Query the value of a general constraint attribute.

| double get (GRB_DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| int get (GRB_IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

‘string get (GRB_StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBGenConstr::set()

Set the value of a general constraint attribute.

void set (GRB_DoubleAttr attr,
double newvalue)

215

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.

newvalue: The desired new value of the attribute.

void set (GRB_IntAttr attr,
int newvalue)
Set the value of an int-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_StringAttr attr,
const string& newvalue)
Set the value of a string-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

216

4.8 GRBExpr

Abstract base class for the GRBLinExpr and GRBQuadExpr classes. Expressions are used to build
objectives and constraints. They are temporary objects that typically have short lifespans.

GRBExpr::getValue()

Compute the value of an expression for the current solution.

| double getValue ()
Return value:
Value of the expression for the current solution.

217

4.9 GRBLinExpr

Gurobi linear expression object. A linear expression consists of a constant term, plus a list of
coefficient-variable pairs that capture the linear terms. Linear expressions are used to build con-
straints. They are temporary objects that typically have short lifespans.

The GRBLinExpr class is a sub-class of the abstract base class GRBExpr.

You generally build linear expressions using overloaded operators. For example, if x is a GRB-
Var object, then x + 1 is a GRBLinExpr object. Expressions can be built from constants (e.g.,
expr = 0), variables (e.g.,expr = 1 * x + 2 * y), or from other expressions (e.g., expr2 = 2 * exprl + x,
or expr3 = exprl + 2 * expr2). You can also modify existing expressions (e.g., expr += x, or
expr2 -= exprl).

Another option for building expressions is to use the addTerms method, which adds an array
of new terms at once. Terms can also be removed from an expression, using remove.

Note that the cost of building expressions depends heavily on the approach you use. While
you can generally ignore this issue when building small expressions, you should be aware of a few
efficiency issues when building large expressions:

e You should avoid using expr = expr + xin aloop. It will lead to runtimes that are quadratic
in the number of terms in the expression.

o Using expr += x (or expr -= x) is much more efficient than expr = expr + x. Building a
large expression by looping over += statements is reasonably efficient, but it isn’t the most
efficient approach.

e The most efficient way to build a large expression is to make a single call to addTerms.

To add a linear constraint to your model, you generally build one or two linear expression
objects (exprl and expr2) and then use an overloaded comparison operator to build an argument
for GRBModel::addConstr. To give a few examples:

model.addConstr(exprl <= expr2)
model.addConstr(exprl == 1)
model.addConstr(2 x x + 3 xy <= 4)

Once you add a constraint to your model, subsequent changes to the expression object you used to
build the constraint will not change the constraint (you would use GRBModel::chgCoeff for that).
Individual terms in a linear expression can be queried using the getVar, getCoeff, and getCon-
stant methods. You can query the number of terms in the expression using the size method.
Note that a linear expression may contain multiple terms that involve the same variable. These
duplicate terms are merged when creating a constraint from an expression, but they may be visible
when inspecting individual terms in the expression (e.g., when using getVar).

GRBLinExpr()

Linear expression constructor. Create a constant expression or an expression with one term.

GRBLinExpr GRBLinExpr (double constant=0.0)

218

Create a constant linear expression.
Arguments:

constant (optional): Constant value for expression.
Return value:

A constant expression object.

GRBLinExpr GRBLinExpr (GRBVar var,
double coeff=1.0)

Create an expression with one term.
Arguments:

var: Variable for expression term.

coeff (optional): Coefficient for expression term.
Return value:

An expression object containing one linear term.

GRBLinExpr::addTerms()

Add new terms into a linear expression.

void addTerms (const double* coeffs,
const GRBVar* vars,
int count)
Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.
count: Number of terms to add to the expression.

GRBLinExpr::clear()

Set a linear expression to 0.
You should use the overloaded expr = 0 instead. The clear method is mainly included for
consistency with our interfaces to non-overloaded languages.

‘ void clear ()

GRBLinExpr::getConstant()

Retrieve the constant term from a linear expression.

| double getConstant ()
Return value:
Constant from expression.

219

GRBLinExpr::getCoeff()

Retrieve the coefficient from a single term of the expression.

| double getCoeff (int i)

Arguments:
i: Index for coefficient of interest.
Return value:
Coefficient for the term at index i in the expression.

GRBLinExpr::getValue()

Compute the value of a linear expression for the current solution.

| double getValue ()
Return value:
Value of the expression for the current solution.

GRBLinExpr::getVar()

Retrieve the variable object from a single term of the expression.

‘GRBVar getVar (int i)

Arguments:
i: Index for term of interest.
Return value:
Variable for the term at index i in the expression.

GRBLinExpr::operator=

Set an expression equal to another expression.

| GRBLinExpr operator= (const GRBLinExpr& rhs)

Arguments:

rhs: Source expression.
Return value:

New expression object.

220

GRBLinExpr::operator+

Add one expression into another, producing a result expression.

‘ GRBLinExpr operator+ (const GRBLinExpr& rhs)

Arguments:
rhs: Expression to add.

Return value:
Expression object which is equal the sum of the invoking expression and the argument
expression.

GRBLinExpr::operator-

Subtract one expression from another, producing a result expression.

‘ GRBLinExpr operator—- (const GRBLinExpr& rhs)
Arguments:
rhs: Expression to subtract.

Return value:
Expression object which is equal the invoking expression minus the argument expression.

GRBLinExpr::operator+=

Add an expression into the invoking expression.

‘ void operator+= (const GRBLinExpr& expr)

Arguments:
expr: Expression to add.

GRBLinExpr::operator-=

Subtract an expression from the invoking expression.

‘ void operator-= (const GRBLinExpr& expr)

Arguments:
expr: Expression to subtract.

221

GRBLinExpr::operator*=

Multiply the invoking expression by a constant.

| void operator*= (double multiplier)

Arguments:
multiplier: Constant multiplier.

GRBLinExpr::remove()

Remove a term from a linear expression.

| void remove (int i)

Remove the term stored at index i of the expression.
Arguments:
i: The index of the term to be removed.

‘boolean remove (GRBVar var)

Remove all terms associated with variable var from the expression.
Arguments:
var: The variable whose term should be removed.
Return value:
Returns true if the variable appeared in the linear expression (and was removed).

GRBLinExpr::size()

Retrieve the number of terms in the linear expression (not including the constant).

| unsigned int size ()
Return value:
Number of terms in the expression.

222

4.10 GRBQuadExpr

Gurobi quadratic expression object. A quadratic expression consists of a linear expression, plus a
list of coeflicient-variable-variable triples that capture the quadratic terms. Quadratic expressions
are used to build quadratic objective functions and quadratic constraints. They are temporary
objects that typically have short lifespans.

The GRBQuadExpr class is a sub-class of the abstract base class GRBExpr.

You generally build quadratic expressions using overloaded operators. For example, if x is a
GRBVar object, then x * x is a GRBQuadExpr object. Expressions can be built from constants
(e.g., expr = 0), variables (e.g., expr = 1 * x *x + 2 * x * y), or from other expressions (e.g.,
expr2 = 2 * exprl + x * x, or expr3 = exprl + 2 x expr2). You can also modify existing
expressions (e.g., expr += x * X, or expr2 -= exprl).

The other option for building expressions is to start with an empty expression (using the GRB-
QuadExpr constructor), and then add terms. Terms can be added individually (using addTerm)
or in groups (using addTerms). Terms can also be removed from an expression (using remove).

Note that the cost of building expressions depends heavily on the approach you use. While
you can generally ignore this issue when building small expressions, you should be aware of a few
efficiency issues when building large expressions:

e You should avoid using expr = expr + x*x in a loop. It will lead to runtimes that are
quadratic in the number of terms in the expression.

o Using expr += x*x (or expr -= x*x) is much more efficient than expr = expr + x*x. Build-
ing a large expression by looping over += statements is reasonably efficient, but it isn’t the
most efficient approach.

e The most efficient way to build a large expression is to make a single call addTerms.

To add a quadratic constraint to your model, you generally build one or two quadratic expression
objects (gexprl and gexpr2) and then use an overloaded comparison operator to build an argument
for GRBModel::addQConstr. To give a few examples:

model.addQConstr(gexprl <= gexpr2)
model.addQConstr(gexprl == 1)
model.addQConstr(2 «x x x x + 3xyxy <= 4)

Once you add a constraint to your model, subsequent changes to the expression object you used to
build the constraint will have no effect on that constraint.

Individual terms in a quadratic expression can be queried using the getVarl, getVar2, and
getCoeff methods. You can query the number of quadratic terms in the expression using the size
method. To query the constant and linear terms associated with a quadratic expression, first obtain
the linear portion of the quadratic expression using getLinExpr, and then use the getConstant,
getCoeff, or getVar on the resulting GRBLinExpr object.

Note that a quadratic expression may contain multiple terms that involve the same variable
pair. These duplicate terms are merged when creating the model objective from an expression, but
they may be visible when inspecting individual terms in the expression (e.g., when using getVarl
and getVar2).

223

GRBQuadExpr()

Quadratic expression constructor. Create a constant expression or an expression with one term.

‘GRBQuadExpr GRBQuadExpr (double constant=0.0)

Create a constant quadratic expression.
Arguments:

constant (optional): Constant value for expression.
Return value:

A constant expression object.

GRBQuadExpr GRBQuadExpr (GRBVar var,
double coeff=1.0)

Create an expression with one term.
Arguments:

var: Variable for expression term.

coeff (optional): Coefficient for expression term.
Return value:

An expression object containing one quadratic term.

‘GRBQuadExpr GRBQuadExpr (GRBLinExpr linexpr)

Initialize a quadratic expression from an existing linear expression.
Arguments:
orig: Existing linear expression to copy.
Return value:
Quadratic expression object whose initial value is taken from the input linear expression.

GRBQuadExpr::addTerm()

Add a single new term into a quadratic expression.

void addTerm (double coeff,
GRBVar var)
Add a new linear term into a quadratic expression.
Arguments:
coeff: Coeflicient for new linear term.
var: Variable for new linear term.

void addTerm (double coeff,
GRBVar wvarl,
GRBVar var?2)

224

Add a new quadratic term into a quadratic expression.
Arguments:

coeff: Coefficient for new quadratic term.

varl: Variable for new quadratic term.

var2: Variable for new quadratic term.

GRBQuadExpr::addTerms()

Add new terms into a quadratic expression.

void addTerms (const doublex coeffs,
const GRBVar* vars,
int count)
Add new linear terms into a quadratic expression.
Arguments:
coeffs: Coefficients for new linear terms.
vars: Variables for new linear terms.
count: Number of linear terms to add to the quadratic expression.

void addTerms (const doublex coeffs,
const GRBVar* varsl,
const GRBVar* vars2,
int count)
Add new quadratic terms into a quadratic expression.
Arguments:
coeffs: Coeflicients for new quadratic terms.
varsl: First variables for new quadratic terms.
vars2: Second variables for new quadratic terms.
count: Number of quadratic terms to add to the quadratic expression.

GRBQuadExpr::clear()

Set a quadratic expression to 0.
You should use the overloaded expr = 0 instead. The clear method is mainly included for
consistency with our interfaces to non-overloaded languages.

‘ void clear ()

GRBQuadExpr::getCoeff()

Retrieve the coefficient from a single quadratic term of the quadratic expression.

| double getCoeff (int i)

225

Arguments:
i: Index for coefficient of interest.
Return value:
Coefficient for the quadratic term at index i in the quadratic expression.

GRBQuadExpr::getLinExpr()

A quadratic expression is represented as a linear expression, plus a list of quadratic terms. This
method retrieves the linear expression associated with the quadratic expression.

| GRBLinExpr getLinExpr ()
Return value:
Linear expression associated with the quadratic expression.

GRBQuadExpr::getValue()

Compute the value of a quadratic expression for the current solution.

| double getValue ()
Return value:
Value of the expression for the current solution.

GRBQuadExpr::getVarl()

Retrieve the first variable object associated with a single quadratic term from the expression.

| GRBVar getVarl (int i)

Arguments:
i: Index for term of interest.
Return value:
First variable for the quadratic term at index i in the quadratic expression.

GRBQuadExpr::getVar2()

Retrieve the second variable object associated with a single quadratic term from the expression.

‘GRBVar getVar2 (int i)

Arguments:
i: Index for term of interest.
Return value:
Second variable for the quadratic term at index i in the quadratic expression.

226

GRBQuadExpr::operator=

Set a quadratic expression equal to another quadratic expression.

‘ GRBQuadExpr operator= (const GRBQuadExpr& rhs)

Arguments:

rhs: Source quadratic expression.
Return value:

New quadratic expression object.

GRBQuadExpr::operator+

Add one expression into another, producing a result expression.

‘ GRBQuadExpr operator+ (const GRBQuadExpr& rhs)

Arguments:
rhs: Expression to add.

Return value:
Expression object which is equal the sum of the invoking expression and the argument
expression.

GRBQuadExpr::operator-

Subtract one expression from another, producing a result expression.

‘GRBQuadExpr operator- (const GRBQuadExpr& rhs)

Arguments:
rhs: Expression to subtract.
Return value:
Expression object which is equal the invoking expression minus the argument expression.

GRBQuadExpr::operator+=

Add an expression into the invoking expression.

| void operator+= (const GRBQuadExpr& expr)

Arguments:
expr: Expression to add.

227

GRBQuadExpr::operator-=

Subtract an expression from the invoking expression.

‘ void operator-= (const GRBQuadExpr& expr)

Arguments:
expr: Expression to subtract.

GRBQuadExpr::operator*=

Multiply the invoking expression by a constant.

void operator*= (double multiplier)

Arguments:
multiplier: Constant multiplier.

GRBQuadExpr::remove()

Remove a quadratic term from a quadratic expression.

| void remove (int i)

Remove the quadratic term stored at index i of the expression.
Arguments:
i: The index of the term to be removed.

\boolean remove (GRBVar var)

Remove all quadratic terms associated with variable var from the quadratic expression.
Arguments:

var: The variable whose term should be removed.
Return value:

Returns true if the variable appeared in the quadratic expression (and was removed).

GRBQuadExpr::size()

Retrieve the number of quadratic terms in the quadratic expression.

| unsigned int size ()
Return value:
Number of quadratic terms in the expression.

228

4.11 GRBTempConstr

Gurobi temporary constraint object. Objects of this class are created as intermediate results when
building constraints using overloaded operators. There are no member functions on this class.
Instead, GRBTempConstr objects are created by a set of non-member functions: ==, <=, and >=.
You will generally never store objects of this class in your own variables.

Consider the following examples:

model.addConstr(x + y <= 1);
model.addQConstr(x*x + y*y <= 1);

The overloaded <= operator creates an object of type GRBTempContr, which is then immediately
passed to method GRBModel::addConstr or GRBModel::addQConstr.

229

4.12 GRBColumn

Gurobi column object. A column consists of a list of coefficient, constraint pairs. Columns are used
to represent the set of constraints in which a variable participates, and the associated coefficients.
They are temporary objects that typically have short lifespans.

You generally build columns by starting with an empty column (using the GRBColumn con-
structor), and then adding terms. Terms can be added individually, using addTerm, or in groups,
using addTerms. Terms can also be removed from a column, using remove.

Individual terms in a column can be queried using the getConstr, and getCoeff methods. You
can query the number of terms in the column using the size method.

GRBColumn()

Column constructor. Create an empty column.

| GRBColumn GRBColumn ()
Return value:
An empty column object.

GRBColumn::addTerm()

Add a single term into a column.

void addTerm (double coeff,
GRBConstr constr)
Arguments:
coeff: Coefficient for new term.
constr: Constraint for new term.

GRBColumn::addTerms()

Add new terms into a column.

void addTerms (const doublex coeffs,
const GRBConstr* constrs,
int count)
Add a list of terms into a column.
Arguments:

coeffs: Coefficients for new terms.
constrs: Constraints for new terms.
count: Number of terms to add to the column.

GRBColumn::clear()

Remove all terms from a column.

| void clear ()

230

GRBColumn::getCoeff()

Retrieve the coefficient from a single term in the column.

| double getCoeff (int i)

Return value:
Coefficient for the term at index i in the column.

GRBColumn::getConstr()

Retrieve the constraint object from a single term in the column.

| GRBConstr getConstr (int i)

Return value:
Constraint for the term at index i in the column.

GRBColumn::remove()

Remove a single term from a column.

| void remove (int i)

Remove the term stored at index i of the column.
Arguments:
i: The index of the term to be removed.

‘boolean remove (GRBConstr constr)

Remove the term associated with constraint constr from the column.
Arguments:

constr: The constraint whose term should be removed.
Return value:

Returns true if the constraint appeared in the column (and was removed).

GRBColumn::size()

Retrieve the number of terms in the column.

| unsigned int size ()
Return value:
Number of terms in the column.

231

4.13 GRBCallback

Gurobi callback class. This is an abstract class. To implement a callback, you should create a
subclass of this class and implement a callback() method. If you pass an object of this subclass
to method GRBModel::setCallback before calling GRBModel::optimize or GRBModel::computellS,
the callback() method of the class will be called periodically. Depending on where the callback
is called from, you can obtain various information about the progress of the optimization.

Note that this class contains one protected int member variable: where. You can query this
variable from your callback() method to determine where the callback was called from.

Gurobi callbacks can be used both to monitor the progress of the optimization and to modify
the behavior of the Gurobi optimizer. A simple user callback function might call the GRBCall-
back::getIntInfo or GRBCallback::getDoublelnfo methods to produce a custom display, or perhaps
to terminate optimization early (using GRBCallback::abort) or to proceed to the next phase of
the computation (using GRBCallback::proceed). More sophisticated MIP callbacks might use GR-
BCallback::getNodeRel or GRBCallback::getSolution to retrieve values from the solution to the
current node, and then use GRBCallback::addCut or GRBCallback::addLazy to add a constraint
to cut off that solution, or GRBCallback::setSolution to import a heuristic solution built from that
solution. For multi-objective problems, you might use GRBCallback::stopOneMultiObj to inter-
rupt the optimization process of one of the optimization steps in a multi-objective MIP problem
without stopping the hierarchical optimization process.

When solving a model using multiple threads, the user callback is only ever called from a single
thread, so you don’t need to worry about the thread-safety of your callback.

Note that changing parameters from within a callback is not supported, doing so may lead to
undefined behavior.

You can look at the callback_c++.cpp example for details of how to use Gurobi callbacks.

GRBCallback()

Callback constructor.

| GRBCallback GRBCallback ()
Return value:
A callback object.
GRBCallback::abort()

Abort optimization. When the optimization stops, the Status attribute will be equal to
GRB_INTERRUPTED.

| void abort ()

GRBCallback::addCut()

Add a cutting plane to the MIP model from within a callback function. Note that this method can
only be invoked when the where member variable is equal to GRB_CB_MIPNODE (see the Callback
Codes section for more information).

232

Cutting planes can be added at any node of the branch-and-cut tree. However, they should be
added sparingly, since they increase the size of the relaxation model that is solved at each node
and can significantly degrade node processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the
relaxation solution at the current node, you should first call getNodeRel.

You should consider setting parameter PreCrush to value 1 when adding your own cuts. This
setting shuts off a few presolve reductions that can sometimes prevent your cut from being applied
to the presolved model (which would result in your cut being silently ignored).

Note that cutting planes added through this method must truly be cutting planes -- they can
cut off continuous solutions, but they may not cut off integer solutions that respect the original
constraints of the model. Ignoring this restriction will lead to incorrect solutions.

void addCut (const GRBLinExpr& lhsExpr,
char sense,
double rhsVal)
Arguments:
lhsExpr: Left-hand side expression for new cutting plane.
sense: Sense for new cutting plane (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsVal: Right-hand side value for new cutting plane.

| void addCut (GRBTempConstr& tc)

Arguments:
tc: Temporary constraint object, created using an overloaded comparison operator. See
GRBTempConstr for more information.

GRBCallback::addLazy()

Add a lazy constraint to the MIP model from within a callback function. Note that this method can
only be invoked when the where member variable is equal to GRB_CB_MIPNODE or GRB_CB_MIPSOL
(see the Callback Codes section for more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large
to represent explicitly. By only including the constraints that are actually violated by solutions
found during the branch-and-cut search, it is sometimes possible to find a proven optimal solution
while only adding a fraction of the full set of constraints.

You would typically add a lazy constraint by first querying the current node solution (by calling
getSolution from a GRB_CB_MIPSOL callback, or getNodeRel from a GRB_CB_MIPNODE callback), and
then calling addLazy () to add a constraint that cuts off the solution. Gurobi guarantees that you
will have the opportunity to cut off any solutions that would otherwise be considered feasible.

MIP solutions may be generated outside of a MIP node. Thus, generating lazy constraints is
optional when the where value in the callback function equals GRB_CB_MIPNODE. To avoid this, we
recommend to always check when the where value equals GRB_CB_MIPSOL.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints,
including those that have already been added. Node solutions will usually respect previously added
lazy constraints, but not always.

233

Note that you must set the LazyConstraints parameter if you want to use lazy constraints.

void addLazy (const GRBLinExpr& 1lhsExpr,
char sense,
double rhsVal)
Arguments:
lhsExpr: Left-hand side expression for new lazy constraint.
sense: Sense for new lazy constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).
rhsVal: Right-hand side value for new lazy constraint.

| void addLazy (GRBTempConstr& tc)

Arguments:
tc: Temporary constraint object, created using an overloaded comparison operator. See
GRBTempConstr for more information.

GRBCallback::getDoublelnfo()

Request double-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the double-valued information
that can be queried for different values of where, please refer to the Callback section.

‘double getDoubleInfo (int what)

Arguments:

what: Information requested (refer the list of Gurobi Callback Codes for possible values).
Return value:

Value of requested callback information.

GRBCallback::getIntinfo()

Request int-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the int-valued information that
can be queried for different values of where, please refer to the Callback section.

| int getIntInfo (int what)

Arguments:

what: Information requested (refer to the list of Gurobi Callback Codes for possible values).
Return value:

Value of requested callback information.

234

GRBCallback::getNodeRel()

Retrieve values from the node relaxation solution at the current node. Only available when the
where member variable is equal to GRB_CB_MIPNODE, and GRB_CB_MIPNODE_STATUS is equal to
GRB_OPTIMAL.

| double getNodeRel (GRBVar v)

Arguments:
v: The variable whose value is desired.
Return value:
The value of the specified variable in the node relaxation for the current node.

doublex getNodeRel (const GRBVar* xvars,
int len)

Arguments:
xvars: The list of variables whose values are desired.
len: The number of variables in the list.

Return value:
The values of the specified variables in the node relaxation for the current node. Note that
the result is heap-allocated, and must be returned to the heap by the user.

GRBCallback::getSolution()

Retrieve values from the current solution vector. Only available when the where member variable
is equal to GRB_CB_MIPSOL or GRB_CB_MULTIOBJ.

| double getSolution (GRBVar v)

Arguments:
v: The variable whose value is desired.
Return value:
The value of the specified variable in the current solution vector.

doublex getSolution (const GRBVar* xvars,
int len)

Arguments:
xvars: The list of variables whose values are desired.
len: The number of variables in the list.

Return value:
The values of the specified variables in the current solution. Note that the result is heap-
allocated, and must be returned to the heap by the user.

235

GRBCallback::getStringinfo()

Request string-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the string-valued information
that can be queried for different values of where, please refer to the Callback section.

string getStringInfo (int what)

Arguments:

what: Information requested (refer to the list of Gurobi Callback Codes for possible values).
Return value:

Value of requested callback information.

GRBCallback::proceed()

Generate a request to proceed to the next phase of the computation. Note that the request is only
accepted in a few phases of the algorithm, and it won’t be acted upon immediately.

In the current Gurobi version, this callback allows you to proceed from the NoRel heuristic
to the standard MIP search. You can determine the current algorithm phase using MIP_PHASE,
MIPNODE_PHASE, or MIPSOL_PHASE queries from a callback.

| void proceed ()

GRBCallback::setSolution()

Import solution values for a heuristic solution. Only available when the where member variable
is equal to GRB_CB_MIP, GRB_CB_MIPNODE, or GRB_CB_MIPSOL (see the Callback Codes section for
more information).

When you specify a heuristic solution from a callback, variables initially take undefined values.
You should use this method to specify variable values. You can make multiple calls to setSolution
from one callback invocation to specify values for multiple sets of variables. After the callback, if
values have been specified for any variables, the Gurobi optimizer will try to compute a feasible
solution from the specified values, possibly filling in values for variables whose values were left unde-
fined. You can also optionally call useSolution within your callback function to try to immediately
compute a feasible solution from the specified values.

Note that this method is not supported in a Compute Server environment.

void setSolution (GRBVar v,
double val)
Arguments:
v: The variable whose values is being set.
val: The value of the variable in the new solution.

void setSolution (const GRBVar* xvars,
const double* sol,
int len)

236

Arguments:
xvars: The variables whose values are being set.
sol: The values of the variables in the new solution.
len: The number of variables.

GRBCallback::stopOneMultiObj()

Interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem
without stopping the hierarchical optimization process. Only available for multi-objective MIP
models and when the where member variable is not equal to GRB_CB_MULTIOBJ (see the Callback
Codes section for more information).

You would typically stop a multi-objective optimization step by querying the last finished num-
ber of multi-objectives steps, and using that number to stop the current step and move on to the
next hierarchical objective (if any) as shown in the following example:

Example usage:

##include <ctime>

class mycallback: public GDBCallback

{
public:
int objcnt = 0;
time_t starttime = time();
protected:
void callback () {
if (where == GRB_CB_MULTIOBJ) {
/* get current objective number */
objcnt = getIntInfo(GRB_CB_MULTIOBJ_OBJCNT) ;
/* reset start time to current time */
starttime = time();
} else if (time() - startime > BIG ||
/* takes too long or good enough */) {
/* stop only this optimization step */
stopOneMultiObj(objcnt) ;
}
}
}

You should refer to the section on Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.

‘void stopOneMultiObj (int objcnt)

Arguments:

237

objnum: The number of the multi-objective optimization step to interrupt. For processes
running locally, this argument can have the special value -1, meaning to stop the current
step.

GRBCallback::useSolution()

Once you have imported solution values using setSolution, you can optionally call useSolution in
a GRB_CB_MIPNODE callback to immediately use these values to try to compute a heuristic solution.
Alternatively, you can call useSolution in a GRB_CB_MIP or GRB_CB_MIPSOL callback, which will
store the solution until it can be processed internally.

| double useSolution ()
Return value:
The objective value for the solution obtained from your solution values. It equals GRB_-
INFINITY if no improved solution is found or the method has been called from a callback
other than GRB_CB_MIPNODE.

238

4.14 GRBException

Gurobi exception object. Exceptions can be thrown by nearly every method in the Gurobi C++
APL

GRBEXxception()

Exception constructor.

‘GRBException GRBException (int errcode=0)

Create a Gurobi exception.
Arguments:

errcode (optional): Error code for exception.
Return value:

An exception object.

GRBException GRBException (string errmsg,
int errcode=0)

Create a Gurobi exception.
Arguments:

errmsg: Error message for exception.

errcode (optional): Error code for exception.
Return value:

An exception object.

GRBException::getErrorCode()

Retrieve the error code associated with a Gurobi exception.

| int getErrorCode ()
Return value:
The error code associated with the exception.

GRBException::getMessage()

Retrieve the error message associated with a Gurobi exception.

‘ const string getMessage ()
Return value:
The error message associated with the exception.

239

4.15 GRBBatch

Gurobi batch object. Batch optimization is a feature available with the Gurobi Cluster Manager.
It allows a client program to build an optimization model, submit it to a Compute Server cluster
(through a Cluster Manager), and later check on the status of the model and retrieve its solution.
For more information, please refer to the Batch Optimization section.

Commonly used methods on batch objects include update (refresh attributes from the Cluster
Manager), abort (abort execution of a batch request), retry (retry optimization for an interrupted
or failed batch), discard (remove the batch request and all related information from the Cluster
Manager), and getJSONSolution (query solution information for the batch request).

These methods are built on top of calls to the Cluster Manager REST API. They are meant to
simplify such calls, but note that you always have the option of calling the REST API directly.

Batch objects have four attributes:

e BatchID: Unique ID for the batch request.
o BatchStatus: Last batch status.

e BatchErrorCode: Last error code.

o BatchErrorMessage: Last error message.

You can access their values by using get. Note that all Batch attributes are locally cached, and are
only updated when you create a client-side batch object or when you explicitly update this cache,
which can done by calling update.

GRBBatch()

Constructor for GRBBatch.

Given a BatchID, as returned by optimizeBatch, and a Gurobi environment that can connect to
the appropriate Cluster Manager (i.e., one where parameters CSManager, UserName, and Server-
Password have been set appropriately), this function returns a GRBBatch object. With it, you
can query the current status of the associated batch request and, once the batch request has been
processed, you can query its solution. Please refer to the Batch Optimization section for details
and examples.

GRBBatch GRBBatch (GRBEnv& env,
string& batchID)

Arguments:

env: The environment in which the new batch object should be created.

batchID: ID of the batch request for which you want to access status and other information.
Return value:

New batch object.
Example usage:

GRBBatch batch = GRBBatch(env, batchID);

240

GRBBatch::abort()

This method instructs the Cluster Manager to abort the processing of this batch request, chang-
ing its status to ABORTED. Please refer to the Batch Status Codes section for further details.
| void abort ()

Example usage:

// Abort this batch if it is taking too long
time_t curtime = time (NULL);

if (curtime - starttime > maxwaittime) {
batch->abort ();
break;

}

GRBBatch::discard()

This method instructs the Cluster Manager to remove all information related to the batch request
in question, including the stored solution if available. Further queries for the associated batch
request will fail with error code GRB_ERROR_DATA_NOT_AVAILABLE. Use this function with care, as
the removed information can not be recovered later on. ‘ void discard ()

Example usage:

void
batchdiscard (string batchID)

GRBBatch::getJSONSolution()

This method retrieves the solution of a completed batch request from a Cluster Manager. The
solution is returned as a JSON solution string. For this call to succeed, the status of the batch
request must be COMPLETED. Please refer to the Batch Status Codes section for further details.
| string getJSONSolution () Return value:

The requested solution in JSON format.
Example usage:

// Pretty printing the general solution information
cout << "JSON solution:" << batch->getJSONSolution() << endl;

GRBBatch::get()

Query the value of an attribute.

| int get (GRB_IntAttr attr)

241

Query the value of an int-valued batch attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| string get (GRB_StringAttr attr)

Query the value of a string-valued batch attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBBatch::retry()

This method instructs the Cluster Manager to retry optimization of a failed or aborted batch
request, changing its status to SUBMITTED. Please refer to the Batch Status Codes section for
further details. ‘ void retry ()

Example usage:

// If the batch failed, we try again
if (BatchStatus == GRB_BATCH_FAILED)
batch->retry ();

GRBBatch::update()

All Batch attribute values are cached locally, so queries return the value received during the last
communication with the Cluster Manager. This method refreshes the values of all attributes with
the values currently available in the Cluster Manager (which involves network communication).
| void wupdate ()

Example usage:

// Update the resident attribute cache of the Batch object with the
// latest values from the cluster manager.

batch->update ();

BatchStatus = batch->get (GRB_IntAttr_BatchStatus);

242

GRBBatch::writeJSONSolution()

This method returns the stored solution of a completed batch request from a Cluster Manager. The
solution is returned in a gzip-compressed JSON file. The file name you provide must end with a
.json. gz extension. The JSON format is described in the JSON solution format section. Note that
for this call to succeed, the status of the batch request must be COMPLETED. Please refer to the Batch
Status Codes section for further details. ‘ void writeJSONSolution (string& filename)

Arguments:
filename: Name of file where the solution should be stored (in JSON format).
Example usage:

// Write the full JSON solution string to a file
batch->writeJSONSolution("batch-sol. json.gz");

243

4.16 Non-Member Functions

Several Gurobi C++4 interface functions aren’t member functions on a particular object.

operator==

Create an equality constraint

GRBTempConstr operator== GRBQuadExpr lhsExpr,
GRBQuadExpr rhsExpr)

Arguments:
lhsExpr: Left-hand side of equality constraint.
rhsExpr: Right-hand side of equality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to GRB-
Model::addConstr.

operator<=

Create an inequality constraint

GRBTempConstr operator<= (GRBQuadExpr 1lhsExpr,
GRBQuadExpr rhsExpr)

Arguments:
lhsExpr: Left-hand side of inequality constraint.
rhsExpr: Right-hand side of inequality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to GRB-
Model::addConstr or GRBModel::addQConstr.

operator>=

Create an inequality constraint

GRBTempConstr operator>= (GRBQuadExpr 1lhsExpr,
GRBQuadExpr rhsExpr)
Arguments:
lhsExpr: Left-hand side of inequality constraint.
rhsExpr: Right-hand side of inequality constraint.
Return value:

A constraint of type GRBTempConstr. The result is typically immediately passed to GRB-
Model::addConstr or GRBModel::addQConstr.

244

operator+-

Overloaded operator on expression objects.

GRBLinExpr operator+ (const GRBLinExpr& exprl,
const GRBLinExpr& expr2)
Add a pair of expressions.
Arguments:
exprl: First expression to be added.
expr2: Second expression to be added.
Return value:
Sum expression.

‘ GRBLinExpr operator+ (const GRBLinExpr& expr)

Allow plus sign to be used before an expression.
Arguments:

expr: Expression.
Return value:

Result expression.

GRBLinExpr operator+ (GRBVar x,
GRBVar y)

Add a pair of variables.
Arguments:

x: First variable to be added.

y: Second variable to be added.
Return value:

Sum expression.

GRBQuadExpr operator+ (const GRBQuadExpr& expril,
const GRBQuadExpr& expr2)
Add a pair of expressions.
Arguments:
exprl: First expression to be added.
expr2: Second expression to be added.
Return value:
Sum expression.

‘ GRBQuadExpr operator+ (const GRBQuadExpr& expr)

Allow plus sign to be used before an expression.
Arguments:

245

expr: Expression.
Return value:
Result expression.

operator-

Overloaded operator on expression objects.

GRBLinExpr operator- (const GRBLinExpr& exprl,
const GRBLinExpr& expr2)
Subtract one expression from another.
Arguments:
exprl: Start expression.
expr2: Expression to be subtracted.
Return value:
Difference expression.

‘ GRBLinExpr operator- (const GRBLinExpr& expr)

Negate an expression.
Arguments:

expr: Expression.
Return value:

Negation of expression.

GRBQuadExpr operator- (const GRBQuadExpr& expril,
const GRBQuadExpr& expr2)
Subtract one expression from another.
Arguments:
exprl: Start expression.
expr2: Expression to be subtracted.
Return value:
Difference expression.

‘GRBQuadEXpr operator- (const GRBQuadExpr& expr)

Negate an expression.
Arguments:

expr: Expression.
Return value:

Negation of expression.

246

operator*

Overloaded operator on expression objects.

GRBLinExpr operator* (GRBVar x,

double a)
Multiply a variable and a constant.
Arguments:
x: Variable.

a: Constant multiplier.
Return value:
Expression that represents the result of multiplying the variable by a constant.

GRBLinExpr operator* (double a,

GRBVar x)
Multiply a variable and a constant.
Arguments:
a: Constant multiplier.
x: Variable.

Return value:
Expression that represents the result of multiplying the variable by a constant.

GRBLinExpr operator* (const GRBLinExpr& expr,
double a)
Multiply an expression and a constant.
Arguments:
expr: Expression.
a: Constant multiplier.
Return value:
Expression that represents the result of multiplying the expression by a constant.

GRBLinExpr operator* (double a,
const GRBLinExpr& expr)
Multiply an expression and a constant.
Arguments:
a: Constant multiplier.
expr: Expression.
Return value:
Expression that represents the result of multiplying the expression by a constant.

GRBQuadExpr operator* (const GRBQuadExpr& expr,
double a)
Multiply an expression and a constant.

247

Arguments:
expr: Expression.
a: Constant multiplier.
Return value:
Expression that represents the result of multiplying the expression by a constant.

GRBQuadExpr operator* (double a,
const GRBQuadExpr& expr)
Multiply an expression and a constant.
Arguments:
a: Constant multiplier.
expr: Expression.
Return value:
Expression that represents the result of multiplying the expression by a constant.

GRBQuadExpr operator* (GRBVar x,
GRBVar 1y)
Multiply a pair of variables.
Arguments:
x: First variable.
y: Second variable.
Return value:
Expression that represents the result of multiplying the argument variables.

GRBQuadExpr operator* (GRBVar var,
const GRBLinExpr& expr)
Multiply an expression and a variable.
Arguments:
var: Variable.
expr: Expression.
Return value:
Expression that represents the result of multiplying the expression by a variable.

GRBQuadExpr operator* (const GRBLinExpr& expr,
GRBVar var)
Multiply an expression and a variable.
Arguments:
var: Variable.
expr: Expression.
Return value:
Expression that represents the result of multiplying the expression by a variable.

GRBQuadExpr operator* (const GRBLinExpr& exprl,
const GRBLinExpr& expr2)

248

Multiply a pair of expressions.
Arguments:
exprl: First expression.
expr2: Second expression.
Return value:
Expression that represents the result of multiplying the argument expressions.

operator/

Overloaded operator to divide a variable or expression by a constant.

GRBLinExpr operator/ (GRBVar x,
double a)
Arguments:
x: Variable.
a: Constant divisor.
Return value:
Expression that represents the result of dividing the variable by a constant.

GRBLinExpr operator/ (const GRBLinExpr& expr,
double a)
Arguments:
expr: Expression.
a: Constant divisor.
Return value:
Expression that represents the result of dividing the expression by a constant.

GRBLinExpr operator/ (const GRBQuadExpr& expr,
double a)
Arguments:
expr: Expression.
a: Constant divisor.
Return value:
Expression that represents the result of dividing the expression by a constant.

249

4.17 Attribute Enums

These enums are used to get or set Gurobi attributes. The complete list of attributes can be found
in the Attributes section.

GRB_CharAttr

This enum is used to get or set char-valued attributes (through GRBModel::get or GRBModel::set).
Please refer to the Attributes section to see a list of all char attributes and their functions.
GRB_DoubleAttr

This enum is used to get or set double-valued attributes (through GRBModel::get or GRBModel::set).
Please refer to the Attributes section to see a list of all double attributes and their functions.
GRB_IntAttr

This enum is used to get or set int-valued attributes (through GRBModel::get or GRBModel::set).
Please refer to the Attributes section to see a list of all int attributes and their functions.
GRB_StringAttr

This enum is used to get or set string-valued attributes (through GRBModel::get or GRBModel::set).
Please refer to the Attributes section to see a list of all string attributes and their functions.

250

4.18 Parameter Enums

These enums are used to get or set Gurobi parameters. The complete of parameters can be found
in the Parameters section.

GRB_DoubleParam

This enum is used to get or set double-valued parameters (through GRBModel::get, GRBModel::set.
GRBEnv::get, or GRBEnv::set). Please refer to the Parameters section to see a list of all double
parameters and their functions.

GRB_IntParam

This enum is used to get or set int-valued parameters (through GRBModel::get, GRBModel::set.
GRBEnv::get, or GRBEnv:set). Please refer to the Parameters section to see a list of all int
parameters and their functions.

GRB_StringParam

This enum is used to get or set string-valued parameters (through GRBModel::get, GRBModel::set,
GRBEnv::get, or GRBEnv:set). Please refer to the Parameters section to see a list of all int
parameters and their functions.

251

This section documents the Gurobi Java interface. This manual begins with a quick overview of
the classes exposed in the interface and the most important methods on those classes. It then
continues with a comprehensive presentation of all of the available classes and methods.

If you prefer Javadoc format, documentation for the Gurobi Java interface is also available in file
gurobi-javadoc.jar. Javadoc format is particularly helpful when used from an integrated devel-
opment environment like Eclipse®. Please consult the documentation for your IDE for information
on how to import Javadoc files.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide
or the Example Tour. These documents provide concrete examples of how to use the classes and
methods described here.

Environments

The first step in using the Gurobi Java interface is to create an environment object. Environments
are represented using the GRBEnv class. An environment acts as the container for all data associ-
ated with a set of optimization runs. You will generally only need one environment object in your
program.

For more advanced usecases, you can use an empty environment to create an uninitialized
environment and then, programmatically, set all required options for your specific requirements.
For further details see the Environment section.

Models

You can create one or more optimization models within an environment. Each model is repre-
sented as an object of class GRBModel. A model consists of a set of decision variables (objects of
class GRBVar), a linear or quadratic objective function on these variables (specified using GRB-
Model.setObjective), and a set of constraints on these variables (objects of class GRBConstr, GR-
BQConstr, GRBSOS, or GRBGenConstr). Each variable has an associated lower bound, upper
bound, and type (continuous, binary, etc.). Each linear or quadratic constraint has an associated
sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side value. Refer to this
section in the Reference Manual for more information on variables, constraints, and objectives.

Linear constraints are specified by building linear expressions (objects of class GRBLinExpr),
and then specifying relationships between these expressions (for example, requiring that one expres-
sion be equal to another). Quadratic constraints are built in a similar fashion, but using quadratic
expressions (objects of class GRBQuadExpr) instead.

An optimization model may be specified all at once, by loading the model from a file (using the
appropriate GRBModel constructor), or built incrementally, by first constructing an empty object
of class GRBModel and then subsequently calling GRBModel.addVar or GRBModel.add Vars to add
additional variables, and GRBModel.addConstr, GRBModel.addQConstr, GRBModel.addSOS, or
any of the GRBModel.addGenConstrXxx methods to add additional constraints. Models are dy-
namic entities; you can always add or remove variables or constraints.

We often refer to the class of an optimization model. A model with a linear objective function,

252

Java API Overview

https://www.gurobi.com/documentation/10.0/quickstart_windows/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html

linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic,
the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is
a Quadratically-Constrained Program (QCP). We will sometimes refer to a few special cases of
QCP: QCPs with convex constraints, QCPs with non-convex constraints, bilinear programs, and
Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-continuous
variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the
model is a Mized Integer Program (MIP). We'll also sometimes discuss special cases of MIP, in-
cluding Mized Integer Linear Programs (MILP), Mized Integer Quadratic Programs (MIQP), Mized
Integer Quadratically-Constrained Programs (MIQCP), and Mized Integer Second-Order Cone Pro-
grams (MISOCP). The Gurobi Optimizer handles all of these model classes.

Solving a Model

Once you have built a model, you can call GRBModel.optimize to compute a solution. By default,
optimize will use the concurrent optimizer to solve LP models, the barrier algorithm to solve QP
models with convex objectives and QCP models with convex constraints, and the branch-and-cut
algorithm otherwise. The solution is stored in a set of attributes of the model. These attributes
can be queried using a set of attribute query methods on the GRBModel, GRBVar, GRBConstr,
GRBQConstr, GRBSOS, and GRBGenConstr, and classes.

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBModel.optimize
will only perform further optimization if relevant data has changed since the model was last op-
timized. If you would like to discard previously computed solution information and restart the
optimization from scratch without changing the model, you can call GRBModel.reset.

After a MIP model has been solved, you can call GRBModel.fixedModel to compute the asso-
ciated fired model. This model is identical to the original, except that the integer variables are
fixed to their values in the MIP solution. If your model contains SOS constraints, some continuous
variables that appear in these constraints may be fixed as well. In some applications, it can be
useful to compute information on this fixed model (e.g., dual variables, sensitivity information,
etc.), although you should be careful in how you interpret this information.

Multiple Solutions, Objectives, and Scenarios

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to
a single model with a single objective function. Gurobi provides the following features that allow
you to relax these assumptions:

¢ Solution Pool: Allows you to find more solutions.
e Multiple Scenarios: Allows you to find solutions to multiple, related models.

e Multiple Objectives: Allows you to specify multiple objective functions and control the trade-
off between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the
infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be useful
for diagnosing the cause of an infeasibility, call GRBModel.computellS to compute an Irreducible
Inconsistent Subsystem (IIS). This method can be used for both continuous and MIP models, but
you should be aware that the MIP version can be quite expensive. This method populates a set of
IIS attributes.

253

To attempt to repair an infeasibility, call GRBModel.feasRelax to compute a feasibility relax-
ation for the model. This relaxation allows you to find a solution that minimizes the magnitude of
the constraint violation.

Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some
attributes are associated with the variables of the model, some with the constraints of the model,
and some with the model itself. To give a simple example, solving an optimization model causes
the X variable attribute to be populated. Attributes such as X that are computed by the Gurobi
optimizer cannot be modified directly by the user, while others, such as the variable lower bound
(the LB attribute) can.

Attributes are queried using GRBVar.get, GRBConstr.get, GRBQConstr.get, GRBSOS.get,
GRBGenConstr.get, or GRBModel.get, and modified using GRBVar.set, GRBConstr.set, GRBQ-
Constr.set, GRBGenConstr.set, or GRBModel.set. Attributes are grouped into a set of enums by
type (GRB.CharAttr, GRB.DoubleAttr, GRB.IntAttr,

GRB.StringAttr). The get() and set() methods are overloaded, so the type of the attribute
determines the type of the returned value. Thus, constr.get (GRB.DoubleAttr .RHS) returns a
double, while constr.get (GRB.CharAttr.Sense) returns a char.

If you wish to retrieve attribute values for a set of variables or constraints, it is usually more
efficient to use the array methods on the associated GRBModel object. Method GRBModel.get
includes signatures that allow you to query or modify attribute values for one-, two-, and three-
dimensional arrays of variables or constraints.

The full list of attributes can be found in the Attributes section.

Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to
variable bounds, constraint right-hand sides, etc.). The main exceptions are modifications to the
constraint matrix and to the objective function.

The constraint matrix can be modified in a few ways. The first is to call the chgCoeff method
on a GRBModel object to change individual matrix coefficients. This method can be used to
modify the value of an existing non-zero, to set an existing non-zero to zero, or to create a new
non-zero. The constraint matrix is also modified when you remove a variable or constraint from the
model (through the GRBModel.remove method). The non-zero values associated with the deleted
constraint or variable are removed along with the constraint or variable itself.

The model objective function can also be modified in a few ways. The easiest is to build an
expression that captures the objective function (a GRBLinExpr or GRBQuadExpr object), and
then pass that expression to method GRBModel.setObjective. If you wish to modify the objective,
you can simply call setObjective again with a new GRBLinExpr or GRBQuadExpr object.

For linear objective functions, an alternative to setObjective is to use the Obj variable attribute
to modify individual linear objective coefficients.

If your variables have piecewise-linear objectives, you can specify them using the
GRBModel.setPWLObj method. Call this method once for each relevant variable. The Gurobi
simplex solver includes algorithmic support for convex piecewise-linear objective functions, so for
continuous models you should see a substantial performance benefit from using this feature. To
clear a previously specified piecewise-linear objective function, simply set the 0bj attribute on the
corresponding variable to 0.

254

Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed
in a lazy fashion, meaning that modifications don’t affect the model immediately. Rather, they
are queued and applied later. If your program simply creates a model and solves it, you will
probably never notice this behavior. However, if you ask for information about the model before
your modifications have been applied, the details of the lazy update approach may be relevant to
you.

As we just noted, model modifications (bound changes, right-hand side changes, objective
changes, etc.) are placed in a queue. These queued modifications can be applied to the model
in three different ways. The first is by an explicit call to GRBModel.update. The second is by a
call to GRBModel.optimize. The third is by a call to GRBModel.write to write out the model. The
first case gives you fine-grained control over when modifications are applied. The second and third
make the assumption that you want all pending modifications to be applied before you optimize
your model or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is
that this approach makes it much easier to perform multiple modifications to a model, since the
model remains unchanged between modifications. The second is that processing model modifica-
tions can be expensive, particularly in a Compute Server environment, where modifications require
communication between machines. Thus, it is useful to have visibility into exactly when these
modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then
update, then make more modifications, then update again, etc. Updating after each individual
modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value
of the requested data from the point of the last update. If the object you tried to query didn’t
exist then, you’ll get a NOT_IN_MODEL exception instead.

The semantics of lazy updates have changed since earlier Gurobi versions. While the vast
majority of programs are unaffected by this change, you can use the UpdateMode parameter to
revert to the earlier behavior if you run into an issue.

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of
the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms,
strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters
before beginning the optimization. Parameters can be of type int, double, or string.

The simplest way to set parameters is through the GRBModel.set method on the model object.
Similarly, parameter values can be queried with GRBModel.get.

Parameters can also be set on the Gurobi environment object, using GRBEnv.set. Note that
each model gets its own copy of the environment when it is created, so parameter changes to the
original environment have no effect on existing models.

You can read a set of parameter settings from a file using GRBEnv.readParams, or write the
set of changed parameters using GRBEnv.writeParams.

We also include an automated parameter tuning tool that explores many different sets of pa-
rameter changes in order to find a set that improves performance. You can call GRBModel.tune to
invoke the tuning tool on a model. Refer to the parameter tuning tool section for more information.

255

The full list of Gurobi parameters can be found in the Parameters section.
Memory Management

Users typically do not need to concern themselves with memory management in Java, since it
is handled automatically by the garbage collector. The Gurobi Java interface utilizes the same
garbage collection mechanism as other Java programs, but there are a few specifics of our memory
management that users should be aware of.

In general, Gurobi objects live in the same Java heap as other Java objects. When they are
no longer referenced, they become candidates for garbage collection, and are returned to the pool
of free space at the next invocation of the garbage collector. Two important exceptions are the
GRBEnv and GRBModel objects. A GRBModel object has a small amount of memory associated
with it in the Java heap, but the majority of the space associated with a model lives in the heap
of the Gurobi native code library (the Gurobi DLL in Windows, or the Gurobi shared library in
Linux or Mac). The Java heap manager is unaware of the memory associated with the model in
the native code library, so it does not consider this memory usage when deciding whether to invoke
the garbage collector. When the garbage collector eventually collects the Java GRBModel object,
the memory associated with the model in the Gurobi native code library will be freed, but this
collection may come later than you might want. Similar considerations apply to the GRBEnv object.

If you are writing a Java program that makes use of multiple Gurobi models or environments,
we recommend that you call GRBModel.dispose when you are done using the associated GRBModel
object, and GRBEnv.dispose when you are done using the associated GRBEnv object and after you
have called GRBModel.dispose on all of the models created using that GRBEnv object.

Native Code

As noted earlier, the Gurobi Java interface is a thin layer that sits on top of our native code
library (the Gurobi DLL on Windows, and the Gurobi shared library on Linux or Mac). Thus, an
application that uses the Gurobi Java library will load the Gurobi native code library at runtime.
In order for this happen, you need to make sure that two things are true. First, you need to make
sure that the native code library is available in the search path of the target machine (PATH on
Windows, LD_LIBRARY_PATH on Linux, or DYLD_LIBRARY_PATH on Mac). These paths are set up
as part of the installation of the Gurobi Optimizer, but may not be configured appropriately on a
machine where the full Gurobi Optimizer has not been installed. Second, you need to be sure that
the Java JVM and the Gurobi native library use the same object format. In particular, you need
to use a 64-bit Java JVM to use the 64-bit Gurobi native library.

Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will
send output to the screen. A few simple controls are available for modifying the default logging
behavior. If you would like to direct output to a file as well as to the screen, specify the log file
name in the GRBEnv constructor. You can modify the LogFile parameter if you wish to redirect
the log to a different file after creating the environment object. The frequency of logging output can
be controlled with the Displaylnterval parameter, and logging can be turned off entirely with the
OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging
section.

More detailed progress monitoring can be done through the GRBCallback class. The GRB-
Model.setCallback method allows you to receive a periodic callback from the Gurobi optimizer.

256

You do this by sub-classing the GRBCallback abstract class, and writing your own Callback()
method on this class. You can call GRBCallback.getDoublelnfo, GRBCallback.getIntInfo, GRB-
Callback.getStringInfo, or GRBCallback.getSolution from within the callback to obtain additional
information about the state of the optimization.

In addition, you can add a logging callback function to an environment object (GRBEnv.setLogCallback)
or a model object (GRBModelEnv.setLogCallback). With that you catch output posted by an en-
vironment object or a model object.

Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. The simplest control
callback is GRBCallback.abort, which asks the optimizer to terminate at the earliest convenient
point. Method GRBCallback.setSolution allows you to inject a feasible solution (or partial solution)
during the solution of a MIP model. Methods GRBCallback.addCut and GRBCallback.addLazy al-
low you to add cutting planes and lazy constraints during a MIP optimization, respectively. Method
GRBCallback.stopOneMultiObj allows you to interrupt the optimization process of one of the op-
timization steps in a multi-objective MIP problem without stopping the hierarchical optimization
process.

Batch Optimization

Gurobi Compute Server enables programs to offload optimization computations onto dedicated
servers. The Gurobi Cluster Manager adds a number of additional capabilities on top of this.
One important one, batch optimization, allows you to build an optimization model with your client
program, submit it to a Compute Server cluster (through the Cluster Manager), and later check
on the status of the model and retrieve its solution. You can use a Batch object to make it easier
to work with batches. For details on batches, please refer to the Batch Optimization section.

Error Handling

All of the methods in the Gurobi Java library can throw an exception of type GRBException.
When an exception occurs, additional information on the error can be obtained by retrieving the
error code (using method GRBException.getErrorCode), or by retrieving the exception message
(using method GRBException.getMessage from the parent class). The list of possible error return
codes can be found in the Error Codes section.

257

5.1 GRBEnv

Gurobi environment object. Gurobi models are always associated with an environment. You must
create an environment before can you create and populate a model. You will generally only need
a single environment object in your program.

The methods on environment objects are mainly used to manage Gurobi parameters (e.g., get,
getParamlInfo, set).

While the Java garbage collector will eventually collect an unused GRBEnv object, an environment
will hold onto resources (Gurobi licenses, file descriptors, etc.) until that collection occurs. If your
program creates multiple GRBEnv objects, we recommend that you call GRBEnv.dispose when you
are done using one.

GRBEnv()

Constructor for GRBEnv object. You have the option of constructing either a local environment,
which solves Gurobi models on the local machine, or a client environment for a Gurobi Compute
Server, which will solve Gurobi models on a server machine. For the latter, choose the signature that
allows you to specify the names of the Gurobi Compute Servers and the priority of the associated
job.

| GRBEnv GRBEnv ()

Create a Gurobi environment (with logging disabled). This method will also populate any
parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified in your gurobi.lic
file. This method will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM
format (briefly, each line should contain a parameter name, followed by the desired value for that
parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Return value:

An environment object (with no associated log file).

‘GRBEnv GRBEnv (boolean empty)

Create an empty Gurobi environment. Use start to start the environment.

If the environment is not empty, This method will also populate any parameter (ComputeServer,
TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check
the current working directory for a file named gurobi.env, and it will attempt to read parameter
settings from this file if it exists. The file should be in PRM format (briefly, each line should contain
a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating

258

and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.
Arguments:
empty: Indicates whether the environment should be empty. You should use empty=true if
you want to set parameters before actually starting the environment. This can be useful
if you want to connect to a Compute Server, a Token Server, the Gurobi Instant Cloud, a
Cluster Manager or use a WLS license. See the Environment Section for more details.
Return value:
An environment object.

| GRBEnv GRBEnv (String logFileName)

Create a Gurobi environment (with logging enabled). This method will also populate any
parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified in your gurobi.lic
file. This method will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM
format (briefly, each line should contain a parameter name, followed by the desired value for that
parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Arguments:

logFileName: The desired log file name.
Return value:
An environment object.

GRBEnv.dispose()

Release the resources associated with a GRBEnv object. While the Java garbage collector will
eventually reclaim these resources, we recommend that you call the dispose method when you are
done using an environment if your program creates more than one.

The dispose method on a GRBEnv should be called only after you have called dispose on all
of the models that were created within that environment. You should not attempt to use a GRBEnv
object after calling dispose.

| void dispose ()

GRBEnv.get()

Query the value of a parameter.

259

| double get (GRB.DoubleParam param)

Query the value of a double-valued parameter.
Arguments:
param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
Return value:
The current value of the requested parameter.

| int get (GRB.IntParam param)

Query the value of an int-valued parameter.
Arguments:
param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
Return value:
The current value of the requested parameter.

| String get (GRB.StringParam param)

Query the value of a string-valued parameter.
Arguments:
param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
Return value:
The current value of the requested parameter.

GRBEnv.getErrorMsg()

Query the error message for the most recent exception associated with this environment.

| String getErrorMsg ()
Return value:
The error string.

GRBEnv.getParamlinfo()

Obtain information about a parameter.

void getParamInfo (GRB.DoubleParam param,
double[] info)

260

Obtain detailed information about a double parameter.
Arguments:
param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
info: The returned information. The result will contain four entries: the current value of
the parameter, the minimum allowed value, the maximum allowed value, and the default
value.

void getParamInfo (GRB.IntParam param,
int] info)
Obtain detailed information about an integer parameter.
Arguments:
param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
info: The returned information. The result will contain four entries: the current value of
the parameter, the minimum allowed value, the maximum allowed value, and the default
value.

void getParamInfo (GRB.StringParam param,
String[] info)
Obtain detailed information about a string parameter.
Arguments:
param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
info: The returned information. The result will contain two entries: the current value of
the parameter and the default value.

GRBEnv.message()

Write a message to the console and the log file.

| void message (String message)

Arguments:
message: Print a message to the console and to the log file. Note that this call has no effect
unless the OutputFlag parameter is set.

GRBEnv.readParams()

Read new parameter settings from a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

261

| void readParams (String paramFile)

Arguments:
paramFile: Name of the file containing parameter settings. Parameters should be listed
one per line, with the parameter name first and the desired value second. For example:

Gurobi parameter file
Threads 1
MIPGap O

Blank lines and lines that begin with the hash symbol are ignored.

GRBEnv.release()

Release the license associated with this environment. You will no longer be able to call optimize
on models created with this environment after the license has been released.

| void release ()

GRBEnv.resetParams()

Reset all parameters to their default values.
Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

| void resetParams ()

GRBEnv.set()

Set the value of a parameter.

Important notes:

Note that a model gets its own copy of the environment when it is created. Changes to the
original environment have no effect on the copy. Use GRBModel.set to change a parameter on an
existing model.

void set (GRB.DoubleParam param,
double newval)
Set the value of a double-valued parameter.
Arguments:
param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
newval: The desired new value of the parameter.

void set (GRB.IntParam param,
int newval)

262

Set the value of an int-valued parameter.
Arguments:
param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
newval: The desired new value of the parameter.

void set (GRB.StringParam param,
String newval)
Set the value of a string-valued parameter.
Arguments:
param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
newval: The desired new value of the parameter.

void set (String param,
String newval)
Set the value of any parameter using strings alone.
Arguments:
param: The name of the parameter being modified. Please consult the parameter section
for a complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.
newval: The desired new value of the parameter.

GRBEnv.setLogCallback()

Sets a logging callback function to query all output posted by the environment object. Can be set
after an empty environment was created.

‘void setLogCallback (java.util.function.Consumer<String> logCallback)

Arguments:
logCallback: The logging callback function.

GRBEnv.start()

Start an empty environment. If the environment has already been started, this method will do
nothing. If the call fails, the environment will have the same state as it had before the call to this
method.

This method will also populate any parameter (ComputeServer, TokenServer, ServerPassword,
etc.) specified in your gurobi.lic file. This method will also check the current working directory
for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.
The file should be in PRM format (briefly, each line should contain a parameter name, followed by

263

the desired value for that parameter). After that, it will apply all parameter changes specified by
the user prior to this call. Note that this might overwrite parameters set in the license file, or in
the gurobi.env file, if present.

After all these changes are performed, the code will actually activate the environment, and
make it ready to work with models.

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

| void start ()

GRBEnv.writeParams()

Write all non-default parameter settings to a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

void writeParams (String paramFile)

Arguments:
paramFile: Name of the file to which non-default parameter settings should be written.
The previous contents are overwritten.

264

5.2 GRBModel

Gurobi model object. Commonly used methods include addVar (adds a new decision variable to the
model), addConstr (adds a new constraint to the model), optimize (optimizes the current model),
and get (retrieves the value of an attribute).

While the Java garbage collector will eventually collect an unused GRBModel object, the vast
majority of the memory associated with a model is stored outside of the Java heap. As a result,
the garbage collector can’t see this memory usage, and thus it can’t take this quantity into account
when deciding whether collection is necessary. We recommend that you call GRBModel.dispose
when you are done using a model.

GRBModel()

Constructor for GRBModel. The simplest version creates an empty model. You can then call
addVar and addConstr to populate the model with variables and constraints. The more complex
constructors can read a model from a file, or make a copy of an existing model.

| GRBModel GRBModel (GRBEnv env)

Model constructor.
Arguments:
env: Environment for new model.
