
GUROBI OPTIMIZER
REFERENCE MANUAL

Version 7.5, Copyright c© 2017, Gurobi Optimization, Inc.

Contents

1 Introduction 29

2 C API Overview 31
2.1 Environment Creation and Destruction . 36

GRBloadenv . 36
GRBloadclientenv . 36
GRBloadcloudenv . 37
GRBfreeenv . 38
GRBgetconcurrentenv . 38
GRBgetmultiobjenv . 39
GRBdiscardconcurrentenvs . 40
GRBdiscardmultiobjenvs . 40

2.2 Model Creation and Modification . 41
GRBloadmodel . 41
GRBnewmodel . 43
GRBcopymodel . 44
GRBaddconstr . 44
GRBaddconstrs . 45
GRBaddgenconstrXxx . 46
GRBaddgenconstrMax . 47
GRBaddgenconstrMin . 47
GRBaddgenconstrAbs . 48
GRBaddgenconstrAnd . 49
GRBaddgenconstrOr . 49
GRBaddgenconstrIndicator . 50
GRBaddqconstr . 51
GRBaddqpterms . 53
GRBaddrangeconstr . 54
GRBaddrangeconstrs . 55
GRBaddsos . 56
GRBaddvar . 57
GRBaddvars . 58
GRBchgcoeffs . 59
GRBdelconstrs . 60
GRBdelgenconstrs . 60
GRBdelq . 60
GRBdelqconstrs . 61
GRBdelsos . 61
GRBdelvars . 62

2

GRBsetobjectiven . 62
GRBsetpwlobj . 63
GRBupdatemodel . 65
GRBfreemodel . 65
GRBXaddconstrs . 66
GRBXaddrangeconstrs . 67
GRBXaddvars . 68
GRBXchgcoeffs . 69
GRBXloadmodel . 70

2.3 Model Solution . 73
GRBoptimize . 73
GRBoptimizeasync . 73
GRBcomputeIIS . 74
GRBfeasrelax . 75
GRBfixedmodel . 76
GRBresetmodel . 76
GRBsync . 76

2.4 Model Queries . 78
GRBgetcoeff . 78
GRBgetconstrbyname . 78
GRBgetconstrs . 79
GRBgetenv . 79
GRBgetgenconstrMax . 80
GRBgetgenconstrMin . 81
GRBgetgenconstrAbs . 82
GRBgetgenconstrAnd . 82
GRBgetgenconstrOr . 83
GRBgetgenconstrIndicator . 84
GRBgetpwlobj . 85
GRBgetq . 86
GRBgetqconstr . 87
GRBgetsos . 88
GRBgetvarbyname . 89
GRBgetvars . 89
GRBXgetconstrs . 90
GRBXgetvars . 91

2.5 Input/Output . 93
GRBreadmodel . 93
GRBread . 93
GRBwrite . 94

2.6 Attribute Management . 95
GRBgetattrinfo . 95
GRBgetintattr . 95
GRBsetintattr . 96
GRBgetintattrelement . 96

3

GRBsetintattrelement . 97
GRBgetintattrarray . 97
GRBsetintattrarray . 98
GRBgetintattrlist . 99
GRBsetintattrlist . 99
GRBgetdblattr . 100
GRBsetdblattr . 100
GRBgetdblattrelement . 101
GRBsetdblattrelement . 101
GRBgetdblattrarray . 102
GRBsetdblattrarray . 102
GRBgetdblattrlist . 103
GRBsetdblattrlist . 103
GRBgetcharattrelement . 104
GRBsetcharattrelement . 104
GRBgetcharattrarray . 105
GRBsetcharattrarray . 106
GRBgetcharattrlist . 106
GRBsetcharattrlist . 107
GRBgetstrattr . 107
GRBsetstrattr . 108
GRBgetstrattrelement . 108
GRBsetstrattrelement . 109
GRBgetstrattrarray . 110
GRBsetstrattrarray . 110
GRBgetstrattrlist . 111
GRBsetstrattrlist . 112

2.7 Parameter Management and Tuning . 113
GRBtunemodel . 113
GRBgettuneresult . 113
GRBgetdblparam . 114
GRBgetintparam . 114
GRBgetstrparam . 115
GRBsetdblparam . 115
GRBsetintparam . 116
GRBsetstrparam . 116
GRBgetdblparaminfo . 117
GRBgetintparaminfo . 117
GRBgetstrparaminfo . 118
GRBreadparams . 119
GRBwriteparams . 119

2.8 Monitoring Progress - Logging and Callbacks . 120
GRBmsg . 120
GRBsetcallbackfunc . 120
GRBgetcallbackfunc . 121

4

GRBcbget . 121
GRBversion . 122

2.9 Modifying Solver Behavior - Callbacks . 123
GRBcbcut . 123
GRBcblazy . 124
GRBcbsolution . 125
GRBterminate . 125

2.10 Error Handling . 126
GRBgeterrormsg . 126

2.11 Advanced simplex routines . 127
GRBFSolve . 127
GRBBSolve . 127
GRBBinvColj . 128
GRBBinvRowi . 128
GRBgetBasisHead . 129

3 C++ API Overview 130
3.1 GRBEnv . 135

GRBEnv() . 135
GRBEnv::get() . 137
GRBEnv::getErrorMsg() . 137
GRBEnv::getParamInfo() . 138
GRBEnv::message() . 139
GRBEnv::readParams() . 139
GRBEnv::resetParams() . 139
GRBEnv::set() . 139
GRBEnv::writeParams() . 140

3.2 GRBModel . 141
GRBModel() . 141
GRBModel::addConstr() . 141
GRBModel::addConstrs() . 143
GRBModel::addGenConstrXxx() . 144
GRBModel::addQConstr() . 148
GRBModel::addRange() . 149
GRBModel::addRanges() . 150
GRBModel::addSOS() . 150
GRBModel::addVar() . 151
GRBModel::addVars() . 152
GRBModel::chgCoeff() . 153
GRBModel::chgCoeffs() . 154
GRBModel::computeIIS() . 154
GRBModel::discardConcurrentEnvs() . 155
GRBModel::discardMultiobjEnvs() . 155
GRBModel::feasRelax() . 155
GRBModel::fixedModel() . 157
GRBModel::get() . 157

5

GRBModel::getCoeff() . 162
GRBModel::getCol() . 162
GRBModel::getConcurrentEnv() . 162
GRBModel::getConstrByName() . 163
GRBModel::getConstrs() . 163
GRBModel::getEnv() . 163
GRBModel::getGenConstrMax() . 163
GRBModel::getGenConstrMin() . 164
GRBModel::getGenConstrAbs() . 164
GRBModel::getGenConstrAnd() . 165
GRBModel::getGenConstrOr() . 165
GRBModel::getGenConstrIndicator() . 166
GRBModel::getGenConstrs() . 166
GRBModel::getMultiobjEnv() . 167
GRBModel::getObjective() . 167
GRBModel::getPWLObj() . 168
GRBModel::getQCRow() . 168
GRBModel::getQConstrs() . 168
GRBModel::getRow() . 169
GRBModel::getSOS() . 169
GRBModel::getSOSs() . 169
GRBModel::getTuneResult() . 170
GRBModel::getVarByName() . 170
GRBModel::getVars() . 170
GRBModel::optimize() . 170
GRBModel::optimizeasync() . 171
GRBModel::presolve() . 171
GRBModel::read() . 171
GRBModel::remove() . 172
GRBModel::reset() . 173
GRBModel::setCallback() . 173
GRBModel::set() . 173
GRBModel::setObjective() . 177
GRBModel.setObjectiveN() . 178
GRBModel::setPWLObj() . 179
GRBModel::sync() . 180
GRBModel::terminate() . 180
GRBModel::tune() . 180
GRBModel::update() . 181
GRBModel::write() . 181

3.3 GRBVar . 182
GRBVar::get() . 182
GRBVar::sameAs() . 183
GRBVar::set() . 183

3.4 GRBConstr . 184

6

GRBConstr::get() . 184
GRBConstr::sameAs() . 185
GRBConstr::set() . 185

3.5 GRBQConstr . 186
GRBQConstr::get() . 186
GRBQConstr::set() . 187

3.6 GRBSOS . 188
GRBSOS::get() . 188

3.7 GRBGenConstr . 189
GRBGenConstr::get() . 189
GRBGenConstr::set() . 189

3.8 GRBExpr . 190
GRBExpr::getValue() . 190

3.9 GRBLinExpr . 191
GRBLinExpr() . 191
GRBLinExpr::addTerms() . 192
GRBLinExpr::clear() . 192
GRBLinExpr::getConstant() . 192
GRBLinExpr::getCoeff() . 192
GRBLinExpr::getValue() . 193
GRBLinExpr::getVar() . 193
GRBLinExpr::operator= . 193
GRBLinExpr::operator+ . 193
GRBLinExpr::operator- . 194
GRBLinExpr::operator+= . 194
GRBLinExpr::operator-= . 194
GRBLinExpr::operator*= . 194
GRBLinExpr::remove() . 195
GRBLinExpr::size() . 195

3.10 GRBQuadExpr . 196
GRBQuadExpr() . 196
GRBQuadExpr::addTerm() . 197
GRBQuadExpr::addTerms() . 198
GRBQuadExpr::clear() . 198
GRBQuadExpr::getCoeff() . 198
GRBQuadExpr::getLinExpr() . 199
GRBQuadExpr::getValue() . 199
GRBQuadExpr::getVar1() . 199
GRBQuadExpr::getVar2() . 199
GRBQuadExpr::operator= . 200
GRBQuadExpr::operator+ . 200
GRBQuadExpr::operator- . 200
GRBQuadExpr::operator+= . 200
GRBQuadExpr::operator-= . 201
GRBQuadExpr::operator*= . 201

7

GRBQuadExpr::remove() . 201
GRBQuadExpr::size() . 201

3.11 GRBTempConstr . 202
3.12 GRBColumn . 203

GRBColumn() . 203
GRBColumn::addTerm() . 203
GRBColumn::addTerms() . 203
GRBColumn::clear() . 203
GRBColumn::getCoeff() . 204
GRBColumn::getConstr() . 204
GRBColumn::remove() . 204
GRBColumn::size() . 204

3.13 GRBCallback . 205
GRBCallback() . 205
GRBCallback::abort() . 205
GRBCallback::addCut() . 205
GRBCallback::addLazy() . 206
GRBCallback::getDoubleInfo() . 207
GRBCallback::getIntInfo() . 207
GRBCallback::getNodeRel() . 207
GRBCallback::getSolution() . 208
GRBCallback::getStringInfo() . 208
GRBCallback::setSolution() . 209
GRBCallback::useSolution() . 209

3.14 GRBException . 210
GRBException() . 210
GRBException::getErrorCode() . 210
GRBException::getMessage() . 210

3.15 Non-Member Functions . 211
operator== . 211
operator<= . 211
operator>= . 211
operator+ . 212
operator- . 213
operator* . 214
operator/ . 216

3.16 Attribute Enums . 217
GRB_CharAttr . 217
GRB_DoubleAttr . 217
GRB_IntAttr . 217
GRB_StringAttr . 217

3.17 Parameter Enums . 218
GRB_DoubleParam . 218
GRB_IntParam . 218
GRB_StringParam . 218

8

4 Java API Overview 219
4.1 GRBEnv . 225

GRBEnv() . 225
GRBEnv.dispose() . 227
GRBEnv.get() . 227
GRBEnv.getErrorMsg() . 228
GRBEnv.getParamInfo() . 228
GRBEnv.message() . 229
GRBEnv.readParams() . 229
GRBEnv.release() . 229
GRBEnv.resetParams() . 230
GRBEnv.set() . 230
GRBEnv.writeParams() . 231

4.2 GRBModel . 232
GRBModel() . 232
GRBModel.addConstr() . 233
GRBModel.addConstrs() . 235
GRBModel.addGenConstrXxx() . 236
GRBModel.addQConstr() . 240
GRBModel.addRange() . 242
GRBModel.addRanges() . 243
GRBModel.addSOS() . 243
GRBModel.addVar() . 243
GRBModel.addVars() . 245
GRBModel.chgCoeff() . 247
GRBModel.chgCoeffs() . 247
GRBModel.computeIIS() . 248
GRBModel.discardConcurrentEnvs() . 248
GRBModel.discardMultiobjEnvs() . 248
GRBModel.dispose() . 248
GRBModel.feasRelax() . 249
GRBModel.fixedModel() . 250
GRBModel.get() . 251
GRBModel.getCoeff() . 265
GRBModel.getCol() . 266
GRBModel.getConcurrentEnv() . 266
GRBModel.getConstrByName() . 266
GRBModel.getConstrs() . 267
GRBModel.getEnv() . 267
GRBModel.getGenConstrMax() . 267
GRBModel.getGenConstrMin() . 268
GRBModel.getGenConstrAbs() . 268
GRBModel.getGenConstrAnd() . 268
GRBModel.getGenConstrOr() . 269
GRBModel.getGenConstrIndicator() . 269

9

GRBModel.getGenConstrs() . 270
GRBModel.getMultiobjEnv() . 270
GRBModel.getObjective() . 271
GRBModel.getPWLObj() . 271
GRBModel.getQCRow() . 272
GRBModel.getQConstrs() . 272
GRBModel.getRow() . 272
GRBModel.getSOS() . 272
GRBModel.getSOSs() . 273
GRBModel.getTuneResult() . 273
GRBModel.getVarByName() . 273
GRBModel.getVars() . 274
GRBModel.optimize() . 274
GRBModel.optimizeasync() . 274
GRBModel.presolve() . 275
GRBModel.read() . 275
GRBModel.remove() . 275
GRBModel.reset() . 276
GRBModel.setCallback() . 276
GRBModel.set() . 277
GRBModel.setObjective() . 290
GRBModel.setObjectiveN() . 291
GRBModel.setPWLObj() . 291
GRBModel.sync() . 293
GRBModel.terminate() . 293
GRBModel.tune() . 293
GRBModel.update() . 293
GRBModel.write() . 294

4.3 GRBVar . 295
GRBVar.get() . 295
GRBVar.sameAs() . 296
GRBVar.set() . 296

4.4 GRBConstr . 297
GRBConstr.get() . 297
GRBConstr.sameAs() . 298
GRBConstr.set() . 298

4.5 GRBQConstr . 299
GRBQConstr.get() . 299
GRBQConstr.set() . 300

4.6 GRBSOS . 301
GRBSOS.get() . 301

4.7 GRBGenConstr . 302
GRBGenConstr.get() . 302
GRBGenConstr.set() . 302

4.8 GRBExpr . 303

10

GRBExpr.getValue() . 303
4.9 GRBLinExpr . 304

GRBLinExpr() . 304
GRBLinExpr.add() . 304
GRBLinExpr.addConstant() . 305
GRBLinExpr.addTerm() . 305
GRBLinExpr.addTerms() . 305
GRBLinExpr.clear() . 306
GRBLinExpr.getConstant() . 306
GRBLinExpr.getCoeff() . 306
GRBLinExpr.getValue() . 306
GRBLinExpr.getVar() . 306
GRBLinExpr.multAdd() . 307
GRBLinExpr.remove() . 307
GRBLinExpr.size() . 307

4.10 GRBQuadExpr . 308
GRBQuadExpr() . 308
GRBQuadExpr.add() . 309
GRBQuadExpr.addConstant() . 309
GRBQuadExpr.addTerm() . 309
GRBQuadExpr.addTerms() . 310
GRBQuadExpr.clear() . 311
GRBQuadExpr.getCoeff() . 311
GRBQuadExpr.getLinExpr() . 311
GRBQuadExpr.getValue() . 311
GRBQuadExpr.getVar1() . 312
GRBQuadExpr.getVar2() . 312
GRBQuadExpr.multAdd() . 312
GRBQuadExpr.remove() . 313
GRBQuadExpr.size() . 313

4.11 GRBColumn . 314
GRBColumn() . 314
GRBColumn.addTerm() . 314
GRBColumn.addTerms() . 314
GRBColumn.clear() . 315
GRBColumn.getCoeff() . 315
GRBColumn.getConstr() . 315
GRBColumn.remove() . 316
GRBColumn.size() . 316

4.12 GRBCallback . 317
GRBCallback() . 317
GRBCallback.abort() . 317
GRBCallback.addCut() . 317
GRBCallback.addLazy() . 318
GRBCallback.getDoubleInfo() . 319

11

GRBCallback.getIntInfo() . 319
GRBCallback.getNodeRel() . 319
GRBCallback.getSolution() . 320
GRBCallback.getStringInfo() . 321
GRBCallback.setSolution() . 321
GRBCallback.useSolution() . 321

4.13 GRBException . 323
GRBException() . 323
GRBException.getErrorCode() . 323

4.14 GRB . 324
Constants . 324
GRB.CharAttr . 328
GRB.DoubleAttr . 328
GRB.DoubleParam . 328
GRB.IntAttr . 328
GRB.IntParam . 328
GRB.StringAttr . 328
GRB.StringParam . 328

5 .NET API Overview 329
5.1 GRBEnv . 335

GRBEnv() . 335
GRBEnv.Dispose() . 337
GRBEnv.ErrorMsg . 337
GRBEnv.Get() . 337
GRBEnv.GetParamInfo() . 338
GRBEnv.Message() . 339
GRBEnv.ReadParams() . 339
GRBEnv.Release() . 339
GRBEnv.ResetParams() . 339
GRBEnv.Set() . 339
GRBEnv.WriteParams() . 340

5.2 GRBModel . 341
GRBModel() . 341
GRBModel.AddConstr() . 342
GRBModel.AddConstrs() . 342
GRBModel.AddGenConstrXxx() . 343
GRBModel.AddQConstr() . 347
GRBModel.AddRange() . 348
GRBModel.AddRanges() . 349
GRBModel.AddSOS() . 349
GRBModel.AddVar() . 349
GRBModel.AddVars() . 351
GRBModel.ChgCoeff() . 353
GRBModel.ChgCoeffs() . 353
GRBModel.ComputeIIS() . 354

12

GRBModel.DiscardConcurrentEnvs() . 354
GRBModel.DiscardMultiobjEnvs() . 354
GRBModel.Dispose() . 354
GRBModel.FeasRelax() . 354
GRBModel.FixedModel() . 356
GRBModel.Get() . 356
GRBModel.GetCoeff() . 368
GRBModel.GetCol() . 368
GRBModel.GetConcurrentEnv() . 368
GRBModel.GetConstrByName() . 369
GRBModel.GetConstrs() . 369
GRBModel.GetEnv() . 369
GRBModel.GetGenConstrMax() . 370
GRBModel.GetGenConstrMin() . 370
GRBModel.GetGenConstrAbs() . 370
GRBModel.GetGenConstrAnd() . 371
GRBModel.GetGenConstrOr() . 371
GRBModel.GetGenConstrIndicator() . 371
GRBModel.GetGenConstrs() . 372
GRBModel.GetMultiobjEnv() . 372
GRBModel.GetObjective() . 372
GRBModel.GetPWLObj() . 373
GRBModel.GetQConstr() . 373
GRBModel.GetQConstrs() . 374
GRBModel.GetQCRow() . 374
GRBModel.GetRow() . 374
GRBModel.GetSOS() . 374
GRBModel.GetSOSs() . 375
GRBModel.GetTuneResult() . 375
GRBModel.GetVarByName() . 375
GRBModel.GetVars() . 375
GRBModel.Optimize() . 376
GRBModel::OptimizeAsync() . 376
GRBModel.Presolve() . 376
GRBModel.Read() . 376
GRBModel.Remove() . 377
GRBModel.Reset() . 378
GRBModel.SetCallback() . 378
GRBModel.Set() . 378
GRBModel.SetObjective() . 390
GRBModel.SetObjectiveN() . 391
GRBModel.SetPWLObj() . 391
GRBModel.Terminate() . 393
GRBModel.Tune() . 393
GRBModel.Update() . 393

13

GRBModel.Write() . 393
5.3 GRBVar . 394

GRBVar.Get() . 394
GRBVar.SameAs() . 394
GRBVar.Set() . 395

5.4 GRBConstr . 396
GRBConstr.Get() . 396
GRBConstr.SameAs() . 396
GRBConstr.Set() . 397

5.5 GRBQConstr . 398
GRBQConstr.Get() . 398
GRBQConstr.Set() . 398

5.6 GRBSOS . 400
GRBSOS.Get() . 400

5.7 GRBGenConstr . 401
GRBGenConstr.Get() . 401
GRBGenConstr.Set() . 401

5.8 GRBExpr . 402
GRBExpr.Value . 402

5.9 GRBLinExpr . 403
GRBLinExpr() . 403
GRBLinExpr.Add() . 404
GRBLinExpr.AddConstant() . 404
GRBLinExpr.AddTerm() . 404
GRBLinExpr.AddTerms() . 404
GRBLinExpr.Clear() . 405
GRBLinExpr.Constant . 405
GRBLinExpr.GetCoeff() . 405
GRBLinExpr.GetVar() . 405
GRBLinExpr.MultAdd() . 405
GRBLinExpr.Remove() . 406
GRBLinExpr.Size . 406
GRBLinExpr.Value . 406

5.10 GRBQuadExpr . 407
GRBQuadExpr() . 407
GRBQuadExpr.Add() . 408
GRBQuadExpr.AddConstant() . 408
GRBQuadExpr.AddTerm() . 408
GRBQuadExpr.AddTerms() . 409
GRBQuadExpr.Clear() . 410
GRBQuadExpr.GetCoeff() . 410
GRBQuadExpr.GetVar1() . 410
GRBQuadExpr.GetVar2() . 411
GRBQuadExpr.LinExpr() . 411
GRBQuadExpr.MultAdd() . 411

14

GRBQuadExpr.Remove() . 411
GRBQuadExpr.Size . 412
GRBQuadExpr.Value . 412

5.11 GRBTempConstr . 413
5.12 GRBColumn . 414

GRBColumn() . 414
GRBColumn.AddTerm() . 414
GRBColumn.AddTerms() . 414
GRBColumn.Clear() . 415
GRBColumn.GetCoeff() . 415
GRBColumn.GetConstr() . 415
GRBColumn.Remove() . 415
GRBColumn.Size . 416

5.13 Overloaded Operators . 417
operator <= . 417
operator >= . 417
operator == . 417
operator + . 418
operator - . 419
operator * . 420
operator / . 422
implicit cast . 422

5.14 GRBCallback . 424
GRBCallback() . 424
GRBCallback.Abort() . 424
GRBCallback.AddCut() . 424
GRBCallback.AddLazy() . 425
GRBCallback.GetDoubleInfo() . 426
GRBCallback.GetIntInfo() . 426
GRBCallback.GetNodeRel() . 426
GRBCallback.GetSolution() . 427
GRBCallback.GetStringInfo() . 427
GRBCallback.SetSolution() . 427
GRBCallback.UseSolution() . 428

5.15 GRBException . 429
GRBException() . 429
GRBException.ErrorCode . 429

5.16 GRB . 430
Constants . 430
GRB.CharAttr . 434
GRB.DoubleAttr . 434
GRB.DoubleParam . 434
GRB.IntAttr . 434
GRB.IntParam . 434
GRB.StringAttr . 434

15

GRB.StringParam . 434

6 Python API Overview 435
6.1 Global Functions . 440

models() . 440
disposeDefaultEnv() . 440
multidict() . 440
paramHelp() . 441
quicksum() . 441
read() . 441
readParams() . 442
resetParams() . 442
setParam() . 442
system() . 443
writeParams() . 443

6.2 Model . 444
Model() . 444
Model.addConstr() . 444
Model.addConstrs() . 445
Model.addGenConstrXxx() . 446
Model.addGenConstrMax() . 447
Model.addGenConstrMin() . 448
Model.addGenConstrAbs() . 448
Model.addGenConstrAnd() . 449
Model.addGenConstrOr() . 449
Model.addGenConstrIndicator() . 450
Model.addQConstr() . 451
Model.addRange() . 452
Model.addSOS() . 452
Model.addVar() . 453
Model.addVars() . 453
Model.cbCut() . 454
Model.cbGet() . 455
Model.cbGetNodeRel() . 456
Model.cbGetSolution() . 456
Model.cbLazy() . 456
Model.cbSetSolution() . 457
Model.cbUseSolution() . 458
Model.chgCoeff() . 458
Model.computeIIS() . 458
Model.copy() . 459
Model.discardConcurrentEnvs() . 459
Model.discardMultiobjEnvs() . 460
Model.feasRelaxS() . 460
Model.feasRelax() . 461
Model.fixed() . 462

16

Model.getAttr() . 462
Model.getCoeff() . 463
Model.getCol() . 463
Model.getConcurrentEnv() . 463
Model.getConstrByName() . 464
Model.getConstrs() . 464
Model.getGenConstrMax() . 465
Model.getGenConstrMin() . 465
Model.getGenConstrAbs() . 465
Model.getGenConstrAnd() . 466
Model.getGenConstrOr() . 466
Model.getGenConstrIndicator() . 466
Model.getGenConstrs() . 467
Model.getMultiobjEnv() . 467
Model.getObjective() . 468
Model.getParamInfo() . 468
Model.getPWLObj() . 468
Model.getQConstrs() . 469
Model.getQCRow() . 469
Model.getRow() . 469
Model.getSOS() . 470
Model.getSOSs() . 470
Model.getTuneResult() . 470
Model.getVarByName() . 471
Model.getVars() . 471
Model.message() . 471
Model.optimize() . 471
Model.presolve() . 472
Model.printAttr() . 472
Model.printQuality() . 472
Model.printStats() . 473
Model.read() . 473
Model.relax() . 473
Model.remove() . 474
Model.reset() . 474
Model.resetParams() . 474
Model.setAttr() . 474
Model.setObjective() . 475
Model.setObjectiveN() . 475
Model.setPWLObj() . 476
Model.setParam() . 477
Model.terminate() . 478
Model.tune() . 478
Model.update() . 478
Model.write() . 478

17

6.3 Var . 480
Var.getAttr() . 480
Var.sameAs() . 480
Var.setAttr() . 481

6.4 Constr . 482
Constr.getAttr() . 482
Constr.sameAs() . 482
Constr.setAttr() . 483

6.5 QConstr . 484
QConstr.getAttr() . 484
QConstr.setAttr() . 484

6.6 SOS . 486
SOS.getAttr() . 486

6.7 GenConstr . 487
GenConstr.getAttr() . 487
GenConstr.setAttr() . 487

6.8 LinExpr . 487
LinExpr() . 488
LinExpr.add() . 489
LinExpr.addConstant() . 489
LinExpr.addTerms() . 489
LinExpr.clear() . 489
LinExpr.copy() . 490
LinExpr.getConstant() . 490
LinExpr.getCoeff() . 490
LinExpr.getValue() . 490
LinExpr.getVar() . 491
LinExpr.remove() . 491
LinExpr.size() . 491
LinExpr.__eq__() . 491
LinExpr.__le__() . 492
LinExpr.__ge__() . 492

6.9 QuadExpr . 493
QuadExpr() . 493
QuadExpr.add() . 494
QuadExpr.addConstant() . 494
QuadExpr.addTerms() . 494
QuadExpr.clear() . 495
QuadExpr.copy() . 495
QuadExpr.getCoeff() . 495
QuadExpr.getLinExpr() . 495
QuadExpr.getValue() . 496
QuadExpr.getVar1() . 496
QuadExpr.getVar2() . 496
QuadExpr.remove() . 496

18

QuadExpr.size() . 497
QuadExpr.__eq__() . 497
QuadExpr.__le__() . 497
QuadExpr.__ge__() . 497

6.10 GenExpr . 498
6.11 TempConstr . 499
6.12 Column . 501

Column() . 501
Column.addTerms() . 501
Column.clear() . 501
Column.copy() . 502
Column.getCoeff() . 502
Column.getConstr() . 502
Column.remove() . 502
Column.size() . 503

6.13 Callbacks . 504
6.14 GurobiError . 505
6.15 Env . 506

Env() . 506
Env.ClientEnv() . 506
Env.CloudEnv() . 507
Env.resetParams() . 508
Env.setParam() . 508
Env.writeParams() . 509

6.16 GRB . 510
Constants . 510
GRB.Attr . 512
GRB.Param . 512

6.17 tuplelist . 513
tuplelist() . 513
tuplelist.select() . 513
tuplelist.clean() . 514
tuplelist.__contains__() . 514

6.18 tupledict . 515
tupledict() . 515
tupledict.select() . 515
tupledict.sum() . 516
tupledict.prod() . 516
tupledict.clean() . 517

6.19 General Constraint Helper Functions . 518
abs_() . 518
and_() . 518
max_() . 518
min_() . 519
or_() . 519

19

7 MATLAB API Overview 520
7.1 Solving models with the Gurobi MATLAB interface 521

gurobi() . 521
7.2 Reading and writing models with the Gurobi MATLAB interface 526

gurobi_read() . 526
gurobi_write() . 526

7.3 Computing an IIS with the Gurobi MATLAB interface 527
gurobi_iis() . 527

7.4 Setting up the Gurobi MATLAB interface . 529

8 R API Overview 530
8.1 Solving models with the Gurobi R interface . 531
8.2 Writing models with the Gurobi R interface . 536
8.3 Installing the R package . 537

9 Variables and Constraints 538
9.1 Variables . 538
9.2 Constraints . 539
9.3 Tolerances and Ill Conditioning - A Caveat . 543

10 Attributes 544
10.1 Model Attributes . 553

NumConstrs . 553
NumVars . 553
NumSOS . 553
NumQConstrs . 554
NumGenConstrs . 554
NumNZs . 554
DNumNZs . 554
NumQNZs . 554
NumQCNZs . 554
NumIntVars . 555
NumBinVars . 555
NumPWLObjVars . 555
ModelName . 555
ModelSense . 555
ObjCon . 555
ObjVal . 556
ObjBound . 556
ObjBoundC . 556
PoolObjBound . 556
PoolObjVal . 557
MIPGap . 557
Runtime . 557
Status . 557
SolCount . 557

20

IterCount . 557
BarIterCount . 558
NodeCount . 558
IsMIP . 558
IsQP . 558
IsQCP . 558
IsMultiObj . 558
IISMinimal . 559
MaxCoeff . 559
MinCoeff . 559
MaxBound . 559
MinBound . 559
MaxObjCoeff . 559
MinObjCoeff . 560
MaxRHS . 560
MinRHS . 560
MaxQCCoeff . 560
MinQCCoeff . 560
MaxQCLCoeff . 560
MinQCLCoeff . 561
MaxQCRHS . 561
MinQCRHS . 561
MaxQObjCoeff . 561
MinQObjCoeff . 561
Kappa . 561
KappaExact . 561
FarkasProof . 562
TuneResultCount . 562
LicenseExpiration . 562

10.2 Variable Attributes . 563
LB . 563
UB . 563
Obj . 563
VType . 563
VarName . 564
X . 564
Xn . 564
RC . 564
BarX . 564
Start . 565
VarHintVal . 565
VarHintPri . 566
BranchPriority . 566
VBasis . 566
PStart . 567

21

IISLB . 567
IISUB . 567
PWLObjCvx . 567
SAObjLow . 568
SAObjUp . 568
SALBLow . 568
SALBUp . 568
SAUBLow . 568
SAUBUp . 568
UnbdRay . 569

10.3 Linear Constraint Attributes . 569
Sense . 569
RHS . 569
ConstrName . 569
Pi . 570
Slack . 570
CBasis . 570
DStart . 571
Lazy . 571
IISConstr . 571
SARHSLow . 572
SARHSUp . 572
FarkasDual . 572

10.4 SOS Attributes . 572
IISSOS . 573

10.5 Quadratic Constraint Attributes . 573
QCSense . 573
QCRHS . 573
QCName . 573
QCPi . 574
QCSlack . 574
IISQConstr . 574

10.6 General Constraint Attributes . 574
GenConstrType . 574
GenConstrName . 574
IISGenConstr . 575

10.7 Quality Attributes . 575
BoundVio . 575
BoundSVio . 575
BoundVioIndex . 575
BoundSVioIndex . 575
BoundVioSum . 576
BoundSVioSum . 576
ConstrVio . 576
ConstrSVio . 576

22

ConstrVioIndex . 576
ConstrSVioIndex . 577
ConstrVioSum . 577
ConstrSVioSum . 577
ConstrResidual . 577
ConstrSResidual . 577
ConstrResidualIndex . 578
ConstrSResidualIndex . 578
ConstrResidualSum . 578
ConstrSResidualSum . 578
DualVio . 578
DualSVio . 579
DualVioIndex . 579
DualSVioIndex . 579
DualVioSum . 579
DualSVioSum . 579
DualResidual . 580
DualSResidual . 580
DualResidualIndex . 580
DualSResidualIndex . 580
DualResidualSum . 580
DualSResidualSum . 581
ComplVio . 581
ComplVioIndex . 581
ComplVioSum . 581
IntVio . 581
IntVioIndex . 582
IntVioSum . 582

10.8 Multi-objective Attributes . 582
ObjN . 582
ObjNCon . 582
ObjNPriority . 583
ObjNWeight . 583
ObjNRelTol . 583
ObjNAbsTol . 583
ObjNVal . 584
ObjNName . 584
NumObj . 584

10.9 Attribute Examples . 585
C Attribute Examples . 586
C++ Attribute Examples . 587
C# Attribute Examples . 588
Java Attribute Examples . 588
Python Attribute Examples . 589
Visual Basic Attribute Examples . 589

23

11 Parameters 591
11.1 Parameter Guidelines . 596

Continuous Models . 596
MIP Models . 598

11.2 Parameter Descriptions . 600
AggFill . 600
Aggregate . 600
BarConvTol . 600
BarCorrectors . 601
BarHomogeneous . 601
BarOrder . 601
BarQCPConvTol . 602
BarIterLimit . 602
BestBdStop . 602
BestObjStop . 603
BranchDir . 603
DegenMoves . 604
CliqueCuts . 604
ConcurrentJobs . 604
ConcurrentMIP . 605
ConcurrentSettings . 605
CoverCuts . 606
Crossover . 606
CrossoverBasis . 607
Cutoff . 607
CutAggPasses . 607
CutPasses . 608
Cuts . 608
Disconnected . 608
DisplayInterval . 609
DistributedMIPJobs . 609
DualReductions . 609
FeasibilityTol . 610
FeasRelaxBigM . 610
FlowCoverCuts . 610
FlowPathCuts . 610
GomoryPasses . 611
GUBCoverCuts . 611
Heuristics . 611
IISMethod . 612
ImpliedCuts . 612
ImproveStartGap . 612
ImproveStartNodes . 613
ImproveStartTime . 613
InfProofCuts . 613

24

InfUnbdInfo . 614
InputFile . 614
IntFeasTol . 614
IterationLimit . 615
LazyConstraints . 615
LogFile . 615
LogToConsole . 615
MarkowitzTol . 616
Method . 616
MinRelNodes . 617
MIPFocus . 617
MIPGap . 617
MIPGapAbs . 618
MIPSepCuts . 618
MIQCPMethod . 618
MIRCuts . 619
ModKCuts . 619
MultiObjMethod . 619
MultiObjPre . 620
NetworkCuts . 620
NodefileDir . 620
NodefileStart . 620
NodeLimit . 621
NodeMethod . 621
IgnoreNames . 622
NormAdjust . 622
NumericFocus . 622
ObjScale . 623
OptimalityTol . 623
ObjNumber . 623
OutputFlag . 624
PerturbValue . 624
PoolGap . 624
PoolSearchMode . 624
PoolSolutions . 625
PreCrush . 625
PreDepRow . 626
PreDual . 626
PreMIQCPForm . 626
PrePasses . 627
PreQLinearize . 627
Presolve . 627
PreSOS1BigM . 627
PreSOS2BigM . 628
PreSparsify . 628

25

ProjImpliedCuts . 629
PSDTol . 629
PumpPasses . 629
QCPDual . 630
Quad . 630
Record . 630
ResultFile . 631
RINS . 631
ScaleFlag . 631
Seed . 632
Sifting . 632
SiftMethod . 632
SimplexPricing . 633
SolutionLimit . 633
SolutionNumber . 633
StartNodeLimit . 633
StrongCGCuts . 634
SubMIPCuts . 634
SubMIPNodes . 634
Symmetry . 635
Threads . 635
TimeLimit . 635
TuneCriterion . 636
TuneJobs . 636
TuneOutput . 636
TuneResults . 637
TuneTimeLimit . 637
TuneTrials . 637
UpdateMode . 637
VarBranch . 638
WorkerPassword . 638
WorkerPool . 639
WorkerPort . 639
ZeroHalfCuts . 639
ZeroObjNodes . 640

11.3 Parameter Examples . 640
C Parameter Examples . 641
C++ Parameter Examples . 641
C# Parameter Examples . 642
Java Parameter Examples . 642
MATLAB Parameter Examples . 643
Python Parameter Examples . 643
R Parameter Examples . 644
Visual Basic Parameter Examples . 644

12 Optimization Status Codes 645

26

13 Callback Codes 647

14 Error Codes 650

15 Model File Formats 653
15.1 MPS format . 653
15.2 REW format . 659
15.3 LP format . 659
15.4 RLP format . 664
15.5 ILP format . 664
15.6 OPB format . 664
15.7 MST format . 665
15.8 HNT format . 666
15.9 ORD format . 666
15.10BAS format . 666
15.11SOL format . 667
15.12PRM format . 667

16 Logging 669
16.1 Simplex Logging . 669
16.2 Barrier Logging . 670
16.3 Sifting Logging . 673
16.4 MIP Logging . 674
16.5 Multi-Objective Logging . 676
16.6 Distributed MIP Logging . 677

17 Gurobi Command-Line Tool 679
17.1 Solving a Model . 680
17.2 Replaying Recording Files . 681
17.3 Gurobi Remote Services and Compute Server Administration 682

18 Solution Pool 684
18.1 Finding Multiple Solutions . 684
18.2 Examples . 685
18.3 Retrieving Solutions . 685
18.4 Subtleties and Limitations . 685

19 Multiple Objectives 687
19.1 Specifying Multiple Objectives . 687
19.2 Working With Multiple Objective . 688
19.3 Additional Details . 690

20 Recording API Calls 692
20.1 Recording . 692
20.2 Replay . 693
20.3 Limitations . 693

27

21 Concurrent Optimizer 694

22 Parameter Tuning Tool 697
22.1 Command-Line Tuning . 698
22.2 Tuning API . 700

23 Gurobi Remote Services 701
23.1 Setting Up and Administering Gurobi Remote Services 701

Gurobi Remote Services Parameters . 701
Firewalls . 702
Administrative Commands . 702
Copyright Notice for 3rd Party Library . 703

24 Distributed Parallel Algorithms 704
24.1 Configuring a Distributed Worker Pool . 704
24.2 Writing Your Own Distributed Algorithms . 708
24.3 Distributed Algorithm Considerations . 708

25 Gurobi Compute Server 709
25.1 Setting Up and Administering a Gurobi Compute Server 711
25.2 Compute Server Usage . 711

Client Configuration . 711
Job Priorities . 712
Performance Considerations on a Wide-Area Network (WAN) 712
Callbacks . 713
Developing for Compute Server . 713
Acknowledgement of 3rd Party Icons . 714

26 Gurobi Instant Cloud 715
26.1 Client Setup . 715
26.2 Instant Cloud Setup . 716
26.3 Copyright Notice for 3rd Party Libraries . 717

28

Introduction

Gurobi

Interactive

Shell

Python API

C API

.NET API

Java API

C++ API

MATLAB API

R API

Gurobi

Command

Line

Gurobi Algorithms

Model Data

Solution Data

This is the reference manual for the GurobiTM Optimizer. It contains documentation for the
following Gurobi language interfaces:

• C

• C++

• Java R©

• Microsoft R©.NET

• Python R©

• MATLAB R©

• R

The Gurobi interactive shell is also documented in the Python section.
The different Gurobi language interfaces share many common features. These are described at

the end of this manual. Two particularly important common features are the Attribute interface
and the Gurobi Parameter set. You may wish to bookmark these pages, since you are likely to refer
to them frequently as you develop applications that use the Gurobi Optimizer.
Additional Topics

This document covers a number of additional topics, which are listed here:

• Variables and Constraints

• Attributes

• Parameters

29

• Optimization Status Codes

• Callback Codes

• Error Codes

• File Formats

• Logging

• Command-Line Tool

• Solution Pool

• Multiple Objectives

• Recording API Calls

• Concurrent Optimizer

• Parameter Tuning Tool

• Remote Services

• Distributed Parallel Algorithms

• Compute Server

• Instant Cloud

Additional Resources

You can consult the Gurobi Quick Start for a high-level overview of the Gurobi Optimizer, or the
Gurobi Example Tour for a quick tour of the examples provided with the Gurobi distribution.
Getting Help

If you have a question that is not answered in this document, you can post it to the Gurobi
Google Group. If you have a current maintenance contract with us, you can send your question to
support@gurobi.com.

30

http://www.gurobi.com/documentation/{7}.{5}/quick-start-guide/
http://www.gurobi.com/documentation/{7}.{5}/examples/index.html
http://groups.google.com/group/gurobi
http://groups.google.com/group/gurobi

C API Overview

This section documents the Gurobi C interface. This manual begins with a quick overview of the
functions in the interface, and continues with detailed descriptions of all of the available interface
routines.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide
or the Example Tour. These documents provide concrete examples of how to use the routines
described here.

Environments

The first step in using the Gurobi C optimizer is to create an environment, using the GRBloadenv
call. The environment acts as a container for all data associated with a set of optimization runs. You
will generally only need one environment in your program, even if you wish to work with multiple
optimization models. Once you are done with an environment, you should call GRBfreeenv to
release the associated resources.

Models

You can create one or more optimization models within an environment. A model consists of a set of
variables, a linear, quadratic, or piecewise-linear objective function on those variables, and a set of
constraints. Each variable has an associated lower bound, upper bound, type (continuous, binary,
integer, semi-continuous, or semi-integer), and linear objective coefficient. Each linear constraint
has an associated sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side
value. Refer to this section for more information on variables and constraints.

An optimization model may be specified all at once, through the GRBloadmodel routine, or
built incrementally, by first calling GRBnewmodel and then calling GRBaddvars to add variables
and GRBaddconstr, GRBaddqconstr, GRBaddsos, or any of the GRBaddgenconstrXxx methods to
add constraints. Models are dynamic entities; you can always add or delete variables or constraints.

Specific variables and constraints are referred to throughout the Gurobi C interface using their
indices. Variable indices are assigned as variables are added to the model, in a contiguous fashion.
The same is true for constraints. In adherence to C language conventions, indices all start at 0.

We often refer to the class of an optimization model. A model with a linear objective function,
linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic,
the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is a
Quadratically-Constrained Program (QCP). We’ll sometimes also discuss a special case of QCP, the
Second-Order Cone Program (SOCP). If the model contains any integer variables, semi-continuous
variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the
model is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, in-
cluding Mixed Integer Linear Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed
Integer Quadratically-Constrained Programs (MIQCP), and Mixed Integer Second-Order Cone Pro-
grams (MISOCP). The Gurobi Optimizer handles all of these model classes.

31

http://www.gurobi.com/documentation/{7}.{5}/quick-start-guide/
http://www.gurobi.com/documentation/{7}.{5}/examples/index.html

Solving a Model

Once you have built a model, you can call GRBoptimize to compute a solution. By default,
GRBoptimize() will use the concurrent optimizer to solve LP models, the barrier algorithm to
solve QP and QCP models, and the branch-and-cut algorithm to solve mixed integer models. The
solution is stored as a set of attributes of the model. The C interface contains an extensive set of
routines for querying these attributes.

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBoptimize()
will only perform further optimization if relevant data has changed since the model was last op-
timized. If you would like to discard previously computed solution information and restart the
optimization from scratch without changing the model, you can call GRBresetmodel.

After a MIP model has been solved, you can call GRBfixedmodel to compute the associated
fixed model. This model is identical to the input model, except that all integer variables are fixed
to their values in the MIP solution. In some applications, it is useful to compute information on
this continuous version of the MIP model (e.g., dual variables, sensitivity information, etc.).
Multiple Solutions and Multiple Objectives

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to
a model with a single objective function. Gurobi provides features that allow you to relax either
of these assumptions. You should refer to the section on Solution Pools for information on how to
request more than one solution, or the section on Multiple Objectives for information on how to
specify multiple objective functions and control the tradeoff between them.
Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause
of the infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be
useful for diagnosing the cause of an infeasibility, call GRBcomputeIIS to compute an Irreducible
Inconsistent Subsystem (IIS). This routine can be used for both continuous and MIP models, but
you should be aware that the MIP version can be quite expensive. This routine populates a set of
IIS attributes.

To attempt to repair an infeasibility, call GRBfeasrelax to compute a feasibility relaxation for
the model. This relaxation allows you to find a solution that minimizes the magnitude of the
constraint violation.
Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some
attributes are associated with the variables of the model, some with the constraints of the model,
and some with the model itself. To give a simple example, solving an optimization model causes
the X variable attribute to be populated. Attributes such as X that are computed by the Gurobi
optimizer cannot be modified directly by the user, while others, such as the variable lower bound
array (the LB attribute) can.

The Gurobi C interface contains an extensive set of routines for querying or modifying attribute
values. The exact routine to use for a particular attribute depends on the type of the attribute.
As mentioned earlier, attributes can be either variable attributes, constraint attributes, or model
attributes. Variable and constraint attributes are arrays, and use a set of array attribute routines.
Model attributes are scalars, and use a set of scalar routines. Attribute values can additionally be
of type char , int, double, or string (really char *).

32

Scalar model attributes are accessed through a set of GRBget*attr() routines (e.g., GRBget-
intattr). In addition, those model attributes that can be set directly by the user (e.g., the objective
sense) may be modified through the GRBset*attr() routines (e.g., GRBsetdblattr).

Array attributes are accessed through three sets of routines. The first set, the GRBget*attrarray()
routines (e.g., GRBgetcharattrarray) return a contiguous sub-array of the attribute array, specified
using the index of the first member and the length of the desired sub-array. The second set, the
GRBget*attrelement() routines (e.g., GRBgetcharattrelement) return a single entry from the at-
tribute array. Finally, the GRBget*attrlist() routines (e.g., GRBgetdblattrlist) retrieve attribute
values for a list of indices.

Array attributes that can be set by the user are modified through the GRBset*attrarray(),
GRBset*attrelement(), and GRBset*attrlist() routines.

The full list of Gurobi attributes can be found in the Attributes section.
Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to
variable bounds, constraint right-hand sides, etc.). The main exceptions are modifications to the
constraints themselves, and to the quadratic and piecewise-linear portions of the objective function.

The constraint matrix can be modified in a few ways. The first is to call GRBchgcoeffs to
change individual matrix coefficients. This routine can be used to modify the value of an existing
non-zero, to set an existing non-zero to zero, or to create a new non-zero. The constraint ma-
trix is also modified when you remove constraints (through GRBdelconstrs) or variables (through
GRBdelvars). The non-zero values associated with the deleted constraints or variables are removed
along with the constraints or variables themselves.

Quadratic objective terms are added to the objective function using the GRBaddqpterms rou-
tine. You can add a list of quadratic terms in one call, or you can add terms incrementally through
multiple calls. The GRBdelq routine allows you to delete all quadratic terms from the model. Note
that quadratic models will typically have both quadratic and linear terms. Linear terms are entered
and modified through the Obj attribute, in the same way that they are handled for models with
purely linear objective functions.

If your variables have piecewise-linear objectives, you can specify them using the GRBsetpwlobj
routine. Call this routine once for each relevant variable. The Gurobi simplex solver includes
algorithmic support for convex piecewise-linear objective functions, so for continuous models you
should see a substantial performance benefit from using this feature. To clear a previously specified
piecewise-linear objective function, simply set the Obj attribute on the corresponding variable to
0.
Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed
in a lazy fashion, meaning that modifications don’t affect the model immediately. Rather, they
are queued and applied later. If your program simply creates a model and solves it, you will
probably never notice this behavior. However, if you ask for information about the model before
your modifications have been applied, the details of the lazy update approach may be relevant to
you.

As we just noted, model modifications (bound changes, right-hand side changes, objective
changes, etc.) are placed in a queue. These queued modifications can be applied to the model
in three different ways. The first is by an explicit call to GRBupdatemodel. The second is by a

33

call to GRBoptimize. The third is by a call to GRBwrite to write out the model. The first case
gives you fine-grained control over when modifications are applied. The second and third make the
assumption that you want all pending modifications to be applied before you optimize your model
or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is
that this approach makes it much easier to perform multiple modifications to a model, since the
model remains unchanged between modifications. The second is that processing model modifica-
tions can be expensive, particularly in a Compute Server environment, where modifications require
communication between machines. Thus, it is useful to have visibility into exactly when these
modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then
update, then make more modifications, then update again, etc. Updating after each individual
modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value
of the requested data from the point of the last update. If the object you tried to query didn’t
exist then, you’ll get an INDEX_OUT_OF_RANGE error instead.

The semantics of lazy updates have changed in this release. While the vast majority of programs
will continue to work unmodified, you can use the UpdateMode parameter to revert to the previous
behavior if you run into an issue.
Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of
the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms,
strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi param-
eters before beginning the optimization. Parameters are set using the GRBset*param() routines
(e.g., GRBsetintparam). Current values can be retrieved with the GRBget*param() routines (e.g.,
GRBgetdblparam). Parameters can be of type int, double, or char * (string). You can also read a
set of parameter settings from a file using GRBreadparams, or write the set of changed parameters
using GRBwriteparams.

We also include an automated parameter tuning tool that explores many different sets of pa-
rameter changes in order to find a set that improves performance. You can call GRBtunemodel to
invoke the tuning tool on a model. Refer to the parameter tuning tool section for more information.

One thing we should note is that each model gets its own copy of the environment when it
is created. Parameter changes to the original environment therefore have no effect on existing
models. Use GRBgetenv to retrieve the environment associated with a particular model if you
want to change a parameter for that model.
Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will
send output to the screen. A few simple controls are available for modifying the default logging
behavior. If you would like to direct output to a file as well as to the screen, specify the log file
name in GRBloadenv when you create your environment. You can modify the LogFile parameter
if you wish to redirect the log to a different file after creating the environment. The frequency of
logging output can be controlled with the DisplayInterval parameter, and logging can be turned off
entirely with the OutputFlag parameter. A detailed description of the Gurobi log file can be found
in the Logging section.

34

More detailed progress monitoring can be done through the Gurobi callback function. The
GRBsetcallbackfunc routine allows you to install a function that the Gurobi optimizer will call
regularly during the optimization process. You can call GRBcbget from within the callback to
obtain additional information about the state of the optimization.
Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. If you call routine
GRBterminate from within a callback, for example, the optimizer will terminate at the earliest
convenient point. Routine GRBcbsolution allows you to inject a feasible solution (or partial solu-
tion) during the solution of a MIP model. Routines GRBcbcut and GRBcblazy allow you to add
cutting planes and lazy constraints during a MIP optimization, respectively.
Error Handling

Most of the Gurobi C library routines return an integer error code. A zero return value indicates
that the routine completed successfully, while a non-zero value indicates that an error occurred.
The list of possible error return codes can be found in the Error Codes section.

When an error occurs, additional information on the error can be obtained by calling GRBgeter-
rormsg.

35

2.1 Environment Creation and Destruction
GRBloadenv

int GRBloadenv (GRBenv **envP,
const char *logfilename)

Create an environment. Optimization models live within an environment, so this is typically
the first Gurobi routine called in an application.

In addition to creating a new environment, this routine will also check the current working
directory for a file named gurobi.env, and it will attempt to read parameter settings from this file
if it exists. The file should be in PRM format (briefly, each line should contain a parameter name,
followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments.

Return value:
A non-zero return value indicates that there was a problem creating the environment. Refer
to the Error Code table for a list of possible return values.

Arguments:
envP: The location in which the pointer to the newly created environment should be placed.
logfilename: The name of the log file for this environment. May be NULL (or an empty
string), in which case no log file is created.

GRBloadclientenv

int GRBloadclientenv (GRBenv **envP,
const char *logfilename,
const char *computeserver,
int port,
const char *password,
int priority,
double timeout)

Create a client environment on a compute server. Optimization models live within an environ-
ment, so this is typically the first Gurobi routine called in an application. This call specifies the
compute server on which those optimization models will be solved, as well as the priority of the
associated jobs.

In addition to creating a new environment, this routine will also check the current working
directory for a file named gurobi.env, and it will attempt to read parameter settings from this file
if it exists. The file should be in PRM format (briefly, each line should contain a parameter name,
followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments.

Return value:
A non-zero return value indicates that there was a problem creating the environment. Refer
to the Error Code table for a list of possible return values.

36

Arguments:
envP: The location in which the pointer to the newly created environment should be placed.
logfilename: The name of the log file for this environment. May be NULL (or an empty
string), in which case no log file is created.

computeserver: A comma-separated list of Gurobi compute servers. You can refer to
compute server machines using their names or their IP addresses.

port: The port number used to connect to the compute server. You should pass a -1 value,
which indicates that the default port should be used, unless your server administrator has
changed our recommended port settings.

password: The password for gaining access to the specified compute servers. Pass an empty
string if no password is required.

priority: The priority of the job. Priorities must be between -100 and 100, with a default
value of 0 (by convention). Higher priority jobs are chosen from the server job queue
before lower priority jobs. A job with priority 100 runs immediately, bypassing the job
queue and ignoring the job limit on the server. You should exercise caution with priority
100 jobs, since they can severely overload a server, which can cause jobs to fail, and in
extreme cases can cause the server to crash.

timeout: Job timeout (in seconds). If the job doesn’t reach the front of the queue before
the specified timeout, the call will exit with a JOB_REJECTED error. Use a negative value
to indicate that the call should never timeout.

Example usage:
GRBenv *env;
error = GRBloadclientenv(&env, "gurobi.log",

"server1.mydomain.com,server2.mydomain.com", -1,
"", 5, -1.0);

GRBloadcloudenv

int GRBloadcloudenv (GRBenv **envP,
const char *logfilename,
const char *accessID,
const char *secretKey,
const char *pool)

Create a Gurobi Instant Cloud environment. Optimization models live within an environment,
so this is typically the first Gurobi routine called in an application. This call will use an existing
Instant Cloud machine if one is currently running within the specified machine pool, and it will
launch a new one otherwise. Note that launching a new machine can take a few minutes.

You should visit the Gurobi Instant Cloud site to obtain your accessID and secretKey, con-
figure your machine pools, and perform other cloud setup and maintenance tasks.

You should keep your secretKey private. Sharing it with others will allow them to launch
Instant Cloud instances in your account.

In addition to creating a new environment, this routine will also check the current working
directory for a file named gurobi.env, and it will attempt to read parameter settings from this file
if it exists. The file should be in PRM format (briefly, each line should contain a parameter name,
followed by the desired value for that parameter).

37

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments.

Return value:
A non-zero return value indicates that there was a problem creating the environment. Refer
to the Error Code table for a list of possible return values.

Arguments:
envP: The location in which the pointer to the newly created environment should be placed.
logfilename: The name of the log file for this environment. May be NULL (or an empty
string), in which case no log file is created.

accessID: The access ID for your Gurobi Instant Cloud license. This can be retrieved from
the Gurobi Instant Cloud website. When used in combination with your secretKey, this
allows you to launch Instant Cloud instances and submit jobs to them.

secretKey: The secret key for your Gurobi Instant Cloud license. This can be retrieved
from the Gurobi Instant Cloud website. When used in combination with your accessID,
this allows you to launch Instant Cloud instances and submit jobs to them. Note that you
should keep your secret key private.

pool: The machine pool. Machine pools allow you to create fixed configurations on the
Instant Cloud website (capturing things like type of machine, geographic region, etc.),
and then launch and share machines from client programs without having to restarte the
configuration information each time you launch a machine. May be NULL (or an empty
string), in which case your job will be launched in the default pool associated with your
cloud license.

Example usage:
GRBenv *env;
error = GRBloadcloudenv(&env, "gurobi.log",

"3d1ecef9-dfad-eff4-b3fa", "ae6L23alJe3+fas", "");

GRBfreeenv

void GRBfreeenv (GRBenv *env)

Free an environment that was previously allocated by GRBloadenv, and release the associated
memory. This routine should be called when an environment is no longer needed. In particular, it
should only be called once all models built using the environment have been freed.

Arguments:
env: The environment to be freed.

GRBgetconcurrentenv

GRBenv * GRBgetconcurrentenv (GRBmodel *model,
int num)

Create/retrieve a concurrent environment for a model.
This routine provides fine-grained control over the concurrent optimizer. By creating your

own concurrent environments and setting appropriate parameters on these environments (e.g., the
Method parameter), you can control exactly which strategies the concurrent optimizer employs.

38

For example, if you create two concurrent environments, and set Method to primal simplex for
one and dual simplex for the other, subsequent concurrent optimizer runs will use the two simplex
algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with
num=0. For example, if you want three concurrent environments, they must be numbered 0, 1,
and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent
optimization on that model. Use GRBdiscardconcurrentenvs to revert back to default concurrent
optimizer behavior.

Return value:
The concurrent environment. A NULL return value indicates that there was a problem
creating the environment.

Arguments:
model: The model for the concurrent environment.
num: The concurrent environment number.

Example usage:
GRBenv *env0 = GRBgetconcurrentenv(model, 0);
GRBenv *env1 = GRBgetconcurrentenv(model, 1);

GRBgetmultiobjenv

GRBenv* GRBgetmultiobjenv (GRBmodel *model,
int num)

Create/retrieve a multi-objective environment for the objective with the given index. This
environment enables fine-grained control over the multi-objective optimization process. Specifically,
by changing parameters on this environment, you modify the behavior of the optimization that
occurs during the corresponding pass of the multi-objective optimization.

Each multi-objective environment starts with a copy of the current model environment.
Please refer to the discussion of Multiple Objectives for information on how to specify multiple

objective functions and control the tradeoff between them.
Return value:

The environment associated with a given multiobjective number in the model. A NULL
return value indicates that there was a problem retrieving the environment.

Arguments:
model: The model from where we want to retrieve the multiobjecitve environment.
num: The multiobjective number.

Example usage:
GRBenv *env0 = GRBgetmultiobjenv(model,0);
GRBenv *env1 = GRBgetmultiobjenv(model,1);

GRBsetintparam(env0, "Method", 2);
GRBsetintparam(env1, "Method", 1);

GRBoptimize(model);

GRBdiscardmultiobjenvs(model);

39

GRBdiscardconcurrentenvs

void GRBdiscardconcurrentenvs (GRBmodel * model)

Discard concurrent environments for a model.
The concurrent environments created by GRBgetconcurrentenv will be used by every subsequent

call to the concurrent optimizer until the concurrent environments are discarded.
Arguments:

model: The model for the concurrent environment.
Example usage:

GRBdiscardconcurrentenvs(model);

GRBdiscardmultiobjenvs

void GRBdiscardmultiobjenvs (GRBmodel *model)

Discard all multi-objective environments associated with the model, thus restoring multi objec-
tive optimization to its default behavior.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple
objective functions and control the tradeoff between them.

Arguments:
model: The model in which all multi objective environments will be discarded.

Example usage:
GRBenv *env0 = GRBgetmultiobjenv(model,0);
GRBenv *env1 = GRBgetmultiobjenv(model,1);

GRBsetintparam(env0, "Method", 2);
GRBsetintparam(env1, "Method", 1);

GRBoptimize(model);

GRBdiscardmultiobjenvs(model);

40

2.2 Model Creation and Modification

GRBloadmodel

int GRBloadmodel (GRBenv *env,
GRBmodel **modelP,
const char *Pname,
int numvars,
int numconstrs,
int objsense,
double objcon,
double *obj,
char *sense,
double *rhs,
int *vbeg,
int *vlen,
int *vind,
double *vval,
double *lb,
double *ub,
char *vtype,
const char **varnames,
const char **constrnames)

Create a new optimization model, using the provided arguments to initialize the model data
(objective function, variable bounds, constraint matrix, etc.). The model is then ready for opti-
mization, or for modification (e.g., addition of variables or constraints, changes to variable types
or bounds, etc.).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXloadmodel variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while creating the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
env: The environment in which the new model should be created. Note that the new model
gets a copy of this environment, so subsequent modifications to the original environment
(e.g., parameter changes) won’t affect the new model. Use GRBgetenv to modify the
environment associated with a model.

modelP: The location in which the pointer to the newly created model should be placed.
Pname: The name of the model.
numvars: The number of variables in the model.
numconstrs: The number of constraints in the model.
objsense: The sense of the objective function. Allowed values are 1 (minimization) or -1
(maximization).

objcon: Constant objective offset.

41

obj: Objective coefficients for the new variables. This argument can be NULL, in which case
the objective coefficients are set to 0.0.

sense: The senses of the new constraints. Options are ’=’ (equal), ’<’ (less-than-or-equal),
or ’>’ (greater-than-or-equal). You can also use constants GRB_EQUAL, GRB_LESS_EQUAL,
or GRB_GREATER_EQUAL.

rhs: Right-hand-side values for the new constraints. This argument can be NULL if you are
not adding any constraint.

vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Column (CSC) format. Each column in the constraint matrix is represented as a list of
index-value pairs, where each index entry provides the constraint index for a non-zero
coefficient, and each value entry provides the corresponding non-zero value. Each variable
in the model has a vbeg and vlen value, indicating the start position of the non-zeros for
that variable in the vind and vval arrays, and the number of non-zero values for that
variable, respectively. Thus, for example, if vbeg[2] = 10 and vlen[2] = 2, that would
indicate that variable 2 has two non-zero values associated with it. Their constraint indices
can be found in vind[10] and vind[11], and the numerical values for those non-zeros
can be found in vval[10] and vval[11].

vlen: Number of constraint matrix non-zero values associated with each variable. See the
description of the vbeg argument for more information.

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

lb: Lower bounds for the new variables. This argument can be NULL, in which case all
variables get lower bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

Important notes:
We recommend that you build a model one constraint or one variable at a time, using GRBad-

dconstr or GRBaddvar, rather than using this routine to load the entire constraint matrix at once.
It is much simpler, less error prone, and it introduces no significant overhead.

Example usage:
/* maximize x + y + 2 z

subject to x + 2 y + 3 z <= 4
x + y >= 1

x, y, z binary */

int vars = 3;
int constrs = 2;

42

int vbeg[] = {0, 2, 4};
int vlen[] = {2, 2, 1};
int vind[] = {0, 1, 0, 1, 0};
double vval[] = {1.0, 1.0, 2.0, 1.0, 3.0};
double obj[] = {1.0, 1.0, 2.0};
char sense[] = {GRB_LESS_EQUAL, GRB_GREATER_EQUAL};
double rhs[] = {4.0, 1.0};
char vtype[] = {GRB_BINARY, GRB_BINARY, GRB_BINARY};

error = GRBloadmodel(env, &model, "example", vars, constrs, -1, 0.0,
obj, sense, rhs, vbeg, vlen, vind, vval,
NULL, NULL, vtype, NULL, NULL);

GRBnewmodel

int GRBnewmodel (GRBenv *env,
GRBmodel **modelP,
const char *Pname,
int numvars,
double *obj,
double *lb,
double *ub,
char *vtype,
const char **varnames)

Create a new optimization model. This routine allows you to specify an initial set of vari-
ables (with objective coefficients, bounds, types, and names), but the initial model will have no
constraints. Constraints can be added later with GRBaddconstr or GRBaddconstrs.

Return value:
A non-zero return value indicates that a problem occurred while creating the new model.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment in which the new model should be created. Note that the new
model will get a copy of this environment, so subsequent modifications to the original
environment (e.g., parameter changes) won’t affect the new model. Use GRBgetenv to
modify the environment associated with a model.

modelP: The location in which the pointer to the new model should be placed.
Pname: The name of the model.
numvars: The number of variables in the model.
obj: Objective coefficients for the new variables. This argument can be NULL, in which case
the objective coefficients are set to 0.0.

lb: Lower bounds for the new variables. This argument can be NULL, in which case all
variables get lower bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

43

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

Example usage:
double obj[] = {1.0, 1.0};
char *names[] = {"var1", "var2"};
error = GRBnewmodel(env, &model, "New", 2, obj, NULL, NULL, NULL, names);

GRBcopymodel

GRBmodel * GRBcopymodel (GRBmodel *model)

Create a copy of an existing model.
Return value:

A copy of the input model. A NULL return value indicates that a problem was encountered.
Arguments:

model: The model to copy.
Example usage:

GRBmodel *copy = GRBcopymodel(orig);

GRBaddconstr

int GRBaddconstr (GRBmodel *model,
int numnz,
int *cind,
double *cval,
char sense,
double rhs,
const char *constrname)

Add a new linear constraint to a model. Note that, due to our lazy update approach, the new
constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while adding the constraint.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new constraint should be added.
numnz: The number of non-zero coefficients in the new constraint.
cind: Variable indices for non-zero values in the new constraint.
cval: Numerical values for non-zero values in the new constraint.
sense: Sense for the new constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

rhs: Right-hand-side value for the new constraint.

44

constrname: Name for the new constraint. This argument can be NULL, in which case the
constraint is given a default name.

Example usage:
int ind[] = {1, 3, 4};
double val[] = {1.0, 2.0, 1.0};
/* x1 + 2 x3 + x4 = 1 */
error = GRBaddconstr(model, 3, ind, val, GRB_EQUAL, 1.0, "New");

GRBaddconstrs

int GRBaddconstrs (GRBmodel *model,
int numconstrs,
int numnz,
int *cbeg,
int *cind,
double *cval,
char *sense,
double *rhs,
const char **constrnames)

Add new linear constraints to a model. Note that, due to our lazy update approach, the
new constraints won’t actually be added until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

We recommend that you build your model one constraint at a time (using GRBaddconstr),
since it introduces no significant overhead and we find that it produces simpler code. Feel free to
use this routine if you disagree, though.

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXaddconstrs variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while adding the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new constraints should be added.
numconstrs: The number of new constraints to add.
numnz: The total number of non-zero coefficients in the new constraints.
cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Row (CSR) format by this routine. Each constraint in the constraint matrix is represented
as a list of index-value pairs, where each index entry provides the variable index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each new
constraint has an associated cbeg value, indicating the start position of the non-zeros for
that constraint in the cind and cval arrays. This routine requires that the non-zeros for
constraint i immediately follow those for constraint i-1 in cind and cval. Thus, cbeg[i]
indicates both the index of the first non-zero in constraint i and the end of the non-zeros
for constraint i-1. To give an example of how this representation is used, consider a case
where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has two
non-zero values associated with it. Their variable indices can be found in cind[10] and

45

cind[11], and the numerical values for those non-zeros can be found in cval[10] and
cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

sense: Sense for the new constraints. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

rhs: Right-hand-side values for the new constraints. This argument can be NULL, in which
case the right-hand-side values are set to 0.0.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

GRBaddgenconstrXxx
Each of the functions described below adds a new general constraint to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types:
variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and
SOS constraints. These are typically treated directly by the underlying solver (although not always),
and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general
constraints. These are typically not treated directly by the solver. Rather, they are transformed
by presolve into mathematically equivalent sets of constraints (and variables), chosen from among
the fundamental types listed above. These general constraints are provided as a convenience to
users. If such constraints appear in your model, but if you prefer to reformulate them yourself
using fundamental constraint types instead, you can certainly do so. However, note that Gurobi
can sometimes exploit information contained in the other constraints in the model to build a more
efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

• MAX (GRBaddgenconstrMax): set a decision variable equal to the maximum value from
among a set of decision variables

• MIN (GRBaddgenconstrMin): set a decision variable equal to the minimum value from among
a set of decision variables

• ABS (GRBaddgenconstrAbs): set a decision variable equal to the absolute value of some
other decision variable

• AND (GRBaddgenconstrAnd): set a binary variable equal to one if and only if all of a set of
binary decision variables are equal to one

• OR (GRBaddgenconstrOr): set a binary variable equal to one if and only if at least one
variable out of a set of binary decision variables is equal to one

• INDICATOR (GRBaddgenconstrIndicator): a given binary variable may only take a certain
value if a given linear constraint is satisfied

Please refer to this section for additional details on general constraints.

46

GRBaddgenconstrMax

int GRBaddgenconstrMax (GRBmodel *model,
const char *name,
int resvar,
int nvars,
int* vars,
double constant)

Add a new general constraint of type GRB_GENCONSTR_MAX to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A MAX constraint r = max{x1, . . . , xn, c} states that the resultant variable r should be equal
to the maximum of the operand variables x1, . . . , xn and the constant c.

Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

int resvar: The index of the resultant variable r whose value will be equal to the max of
the other variables.

int nvars: The number n of operand variables over which the max will be taken.
const int *vars: An array containing the indices of the operand variables xj over which
the max will be taken.

double constant: An additional operand that allows you to include a constant c among
the arguments of the max operation.

Example usage:
/* x5 = max(x1, x3, x4, 2.0) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrMax(model, "maxconstr", 5,

3, ind, 2.0);

GRBaddgenconstrMin

int GRBaddgenconstrMin (GRBmodel *model,
const char *name,
int resvar,
int nvars,
int* vars,
double constant)

Add a new general constraint of type GRB_GENCONSTR_MIN to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

47

A MIN constraint r = min{x1, . . . , xn, c} states that the resultant variable r should be equal to
the minimum of the operand variables x1, . . . , xn and the constant c.

Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

int resvar: The index of the resultant variable r whose value will be equal to the min of
the other variables.

int nvars: The number n of operand variables over which the min will be taken.
const int *vars: An array containing the indices of the operand variables xj over which
the min will be taken.

double constant: An additional operand that allows you to include a constant c among
the arguments of the min operation.

Example usage:
/* x5 = min(x1, x3, x4, 2.0) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrMin(model, "minconstr", 5,

3, ind, 2.0);

GRBaddgenconstrAbs

int GRBaddgenconstrAbs (GRBmodel *model,
const char *name,
int resvar,
int argvar)

Add a new general constraint of type GRB_GENCONSTR_ABS to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

An ABS constraint r = abs{x} states that the resultant variable r should be equal to the
absolute value of the argument variable x.

Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

int resvar: The index of the resultant variable r whose value will be to equal the absolute
value of the argument variable.

48

int argvar: The index of the argument variable x for which the absolute value will be
taken.

Example usage:
/* x5 = abs(x1) */
error = GRBaddgenconstrAbs(model, "absconstr", 5, 1);

GRBaddgenconstrAnd

int GRBaddgenconstrAnd (GRBmodel *model,
const char *name,
int resvar,
int nvars,
int* vars)

Add a new general constraint of type GRB_GENCONSTR_AND to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

An AND constraint r = and{x1, . . . , xn} states that the binary resultant variable r should be 1
if and only if all of the operand variables x1, . . . , xn are equal to 1. If any of the operand variables
is 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary; indepen-
dently of how they were created.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

int resvar: The index of the binary resultant variable r whose value will be equal to the
AND concatenation of the other variables.

int nvars: The number n of binary operand variables over which the AND will be taken.
const int *vars: An array containing the indices of the binary operand variables xj over
which the AND concatenation will be taken.

Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Example usage:
/* x5 = and(x1, x3, x4) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrAnd(model, "andconstr", 5, 3, ind);

GRBaddgenconstrOr

int GRBaddgenconstrOr (GRBmodel *model,
const char *name,
int resvar,
int nvars,
int* vars)

49

Add a new general constraint of type GRB_GENCONSTR_OR to a model. Note that, due to our
lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

An OR constraint r = or{x1, . . . , xn} states that the binary resultant variable r should be 1 if
and only if any of the operand variables x1, . . . , xn is equal to 1. If all operand variables are 0, then
the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary; indepen-
dently of how they were created.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

int resvar: The index of the binary resultant variable r whose value will be equal to the
OR concatenation of the other variables.

int nvars: The number n of binary operand variables over which the OR will be taken.
const int *vars: An array containing the indices of the binary operand variables xj over
which the OR concatenation will be taken.

Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Example usage:
/* x5 = or(x1, x3, x4) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrOr(model, "orconstr", 5, 3, ind);

GRBaddgenconstrIndicator

int GRBaddgenconstrIndicator (GRBmodel *model,
const char *name,
int binvar,
int binval,
int nvars,
int* ind,
double* val,
char sense,
double rhs)

Add a new general constraint of type GRB_GENCONSTR_INDICATOR to a model. Note that, due
to our lazy update approach, the new constraint won’t actually be added until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

An INDICATOR constraint z = f → aTx ≤ b states that if the binary indicator variable z is
equal to f ∈ {0, 1}, then the linear constraint aTx ≤ b should hold. On the other hand, if z = 1−f ,
the linear constraint may be violated. The sense of the linear constraint can also be specified to be
“=” or “≥”.

50

Note that the indicator variable z of a constraint will be forced to be binary; independently of
how it was created.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

int binvar: The index of the binary indicator variable z.
int binval: The value f for the binary indicator variable that would force the linear
constraint to be satisfied (0 or 1).

int nvars: The number n of non-zero coefficients in the linear constraint triggered by the
indicator.

const int *ind: Indices for the variables xj with non-zero values in the linear constraint.
const double *val: Numerical values for non-zero values aj in the linear constraint.
char sense: Sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or
GRB_GREATER_EQUAL.

double rhs: Right-hand-side value for the linear constraint.
Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Example usage:
/* x7 = 1 -> x1 + 2 x3 + x4 = 1 */
int ind[] = {1, 3, 4};
double val[] = {1.0, 2.0, 1.0};
error = GRBaddgenconstrIndicator(model, NULL, 7, 1,

3, ind, val, GRB_EQUAL, 1.0);

GRBaddqconstr

int GRBaddqconstr (GRBmodel *model,
int numlnz,
int *lind,
double *lval,
int numqnz,
int *qrow,
int *qcol,
double *qval,
char sense,
double rhs,
const char *constrname)

Add a new quadratic constraint to a model. Note that, due to our lazy update approach,
the new constraint won’t actually be added until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A quadratic constraint consists of a set of quadratic terms, a set of linear terms, a sense, and a
right-hand side value: xTQx+ qTx ≤ b. The quadratic terms are input through the numqnz, qrow,

51

qcol, and qval arguments, and the linear terms are input through the numlnz, lind, and lval
arguments.

Important note: the algorithms Gurobi uses to solve quadratically constrained problems can
only handle certain types of quadratic constraints. Constraints of the following forms are always
accepted:

• xTQx+ qTx ≤ b, where Q is Positive Semi-Definite (PSD)

• xTx ≤ y2, where x is a vector of variables, and y is a non-negative variable (a Second-Order
Cone)

• xTx ≤ yz, where x is a vector of variables, and y and z are non-negative variables (a rotated
Second-Order Cone)

If you add a constraint that isn’t in one of these forms (and Gurobi presolve is unable to transform
the constraint into one of these forms), you’ll get an error when you try to solve the model.
Constraints where the quadratic terms only involve binary variables will always be transformed
into one of these forms.

Return value:
A non-zero return value indicates that a problem occurred while adding the quadratic con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new constraint should be added.
numlnz: The number of linear terms in the new quadratic constraint.
lind: Variable indices associated with linear terms.
lval: Numerical values associated with linear terms.
numqlnz: The number of quadratic terms in the new quadratic constraint.
qrow: Row indices associated with quadratic terms. A quadratic term is represented using
three values: a pair of indices (stored in qrow and qcol), and a coefficient (stored in qval).
The associated arguments arrays provide the corresponding values for each quadratic term.
To give an example, if you wish to input quadratic terms 2x2

0 + x0x1 + x2
1, you would call

this routine with numqnz=3, qrow[] = {0, 0, 1}, qcol[] = {0, 1, 1}, and qval[] =
{2.0, 1.0, 1.0}.

qcol: Column indices associated with quadratic terms. See the description of the qrow
argument for more information.

qval: Numerical values associated with quadratic terms. See the description of the qrow
argument for more information.

sense: Sense for the new quadratic constraint. Options are GRB_LESS_EQUAL or GRB_-
GREATER_EQUAL.

rhs: Right-hand-side value for the new quadratic constraint.
constrname: Name for the new quadratic constraint. This argument can be NULL, in which
case the constraint is given a default name.

Example usage:
int lind[] = {1, 2};
double lval[] = {2.0, 1.0};
int qrow[] = {0, 0, 1};

52

int qcol[] = {0, 1, 1};
double qval[] = {2.0, 1.0, 1.0};
/* 2 x0^2 + x0 x1 + x1^2 + 2 x1 + x2 <= 1 */
error = GRBaddqconstr(model, 2, lind, lval, 3, qrow, qcol, qval,

GRB_LESS_EQUAL, 1.0, "New");

GRBaddqpterms

int GRBaddqpterms (GRBmodel *model,
int numqnz,
int *qrow,
int *qcol,
double *qval)

Add new quadratic objective terms into an existing model. Note that new terms are (numer-
ically) added into existing terms, and that adding a term in row i and column j is equivalent to
adding a term in row j and column i. You can add all quadratic objective terms in a single call,
or you can add them incrementally in multiple calls.

Note that, due to our lazy update approach, the new quadratic terms won’t actually be added
until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize),
or write the model to disk (using GRBwrite).

To build an objective that contains both linear and quadratic terms, use this routine to add the
quadratic terms and use the Obj attribute to add the linear terms.

If you wish to change a quadratic term, you can either add the difference between the current
term and the desired term using this routine, or you can call GRBdelq to delete all quadratic terms,
and then rebuild your new quadratic objective from scratch.

Return value:
A non-zero return value indicates that a problem occurred while adding the quadratic terms.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new quadratic objective terms should be added.
numqnz: The number of new quadratic objective terms to add.
qrow: Row indices associated with quadratic terms. A quadratic term is represented using
three values: a pair of indices (stored in qrow and qcol), and a coefficient (stored in qval).
The three argument arrays provide the corresponding values for each quadratic term. To
give an example, to represent 2x2

0 + x0x1 + x2
1, you would have numqnz=3, qrow[] = {0,

0, 1}, qcol[] = {0, 1, 1}, and qval[] = {2.0, 1.0, 1.0}.
qcol: Column indices associated with quadratic terms. See the description of the qrow
argument for more information.

qval: Numerical values associated with quadratic terms. See the description of the qrow
argument for more information.

Important notes:
Note that building quadratic objectives requires some care, particularly if you are migrating

an application from another solver. Some solvers require you to specify the entire Q matrix, while
others only accept the lower triangle. In addition, some solvers include an implicit 0.5 multipler
on Q, while others do not. The Gurobi interface is built around quadratic terms, rather than a Q

53

matrix. If your quadratic objective contains a term 2 x y, you can enter it as a single term, 2 x y,
or as a pair of terms, x y and y x.

Example usage:
int qrow[] = {0, 0, 1};
int qcol[] = {0, 1, 1};
double qval[] = {2.0, 1.0, 3.0};
/* minimize 2 x^2 + x*y + 3 y^2 */
error = GRBaddqpterms(model, 3, qrow, qcol, qval);

GRBaddrangeconstr

int GRBaddrangeconstr (GRBmodel *model,
int numnz,
int *cind,
double *cval,
double lower,
double upper,
const char *constrname)

Add a new range constraint to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution. Note that,
due to our lazy update approach, the new constraint won’t actually be added until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while adding the constraint.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new constraint should be added.
numnz: The number of non-zero coefficients in the linear expression.
cind: Variable indices for non-zero values in the linear expression.
cval: Numerical values for non-zero values in the linear expression.
lower: Lower bound on linear expression.
upper: Upper bound on linear expression.
constrname: Name for the new constraint. This argument can be NULL, in which case the
constraint is given a default name.

Important notes:
Note that adding a range constraint to the model adds both a new constraint and a new variable.

If you are keeping a count of the variables in the model, remember to add one whenever you add
a range.

Note also that range constraints are stored internally as equality constraints. We use the extra
variable that is added with a range constraint to capture the range information. Thus, the Sense
attribute on a range constraint will always be GRB_EQUAL.

Example usage:
int ind[] = {1, 3, 4};
double val[] = {1.0, 2.0, 3.0};

54

/* 1 <= x1 + 2 x3 + 3 x4 <= 2 */
error = GRBaddrangeconstr(model, 3, ind, val, 1.0, 2.0, "NewRange");

GRBaddrangeconstrs

int GRBaddrangeconstrs (GRBmodel *model,
int numconstrs,
int numnz,
int *cbeg,
int *cind,
double *cval,
double *lower,
double *upper,
const char **constrnames)

Add new range constraints to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution. Note that,
due to our lazy update approach, the new constraints won’t actually be added until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXaddrangeconstrs variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while adding the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new constraints should be added.
numconstrs: The number of new constraints to add.
numnz: The total number of non-zero coefficients in the new constraints.
cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Row (CSR) format by this routine. Each constraint in the constraint matrix is represented
as a list of index-value pairs, where each index entry provides the variable index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each new
constraint has an associated cbeg value, indicating the start position of the non-zeros for
that constraint in the cind and cval arrays. This routine requires that the non-zeros for
constraint i immediately follow those for constraint i-1 in cind and cval. Thus, cbeg[i]
indicates both the index of the first non-zero in constraint i and the end of the non-zeros
for constraint i-1. To give an example of how this representation is used, consider a case
where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has two
non-zero values associated with it. Their variable indices can be found in cind[10] and
cind[11], and the numerical values for those non-zeros can be found in cval[10] and
cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

55

lower: Lower bounds for the linear expressions.
upper: Upper bounds for the linear expressions.
constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

Important notes:
Note that adding a range constraint to the model adds both a new constraint and a new

variable. If you are keeping a count of the variables in the model, remember to add one for each
range constraint.

Note also that range constraints are stored internally as equality constraints. We use the extra
variable that is added with a range constraint to capture the range information. Thus, the Sense
attribute on a range constraint will always be GRB_EQUAL.

GRBaddsos

int GRBaddsos (GRBmodel *model,
int numsos,
int nummembers,
int *types,
int *beg,
int *ind,
double *weight)

Add new Special Ordered Set (SOS) constraints to a model. Note that, due to our lazy update
approach, the new SOS constraints won’t actually be added until you update the model (using
GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using
GRBwrite).

Please refer to this section for details on SOS constraints.
Return value:

A non-zero return value indicates that a problem occurred while adding the SOS constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new SOSs should be added.
numsos: The number of new SOSs to add.
nummembers: The total number of SOS members in the new SOSs.
types: The types of the SOS sets. SOS sets can be of type GRB_SOS_TYPE1 or GRB_SOS_-
TYPE2.

beg: The members of the added SOS sets are passed into this routine in Compressed Sparse
Row (CSR) format. Each SOS is represented as a list of index-value pairs, where each
index entry provides the variable index for an SOS member, and each value entry provides
the weight of that variable in the corresponding SOS set. Each new SOS has an associated
beg value, indicating the start position of the SOS member list in the ind and weight
arrays. This routine requires that the members for SOS i immediately follow those for
SOS i-1 in ind and weight. Thus, beg[i] indicates both the index of the first non-zero
in constraint i and the end of the non-zeros for constraint i-1. To give an example of
how this representation is used, consider a case where beg[2] = 10 and beg[3] = 12.
This would indicate that SOS number 2 has two members. Their variable indices can be

56

found in ind[10] and ind[11], and the associated weights can be found in weight[10]
and weight[11].

ind: Variable indices associated with SOS members. See the description of the beg argument
for more information.

weight: Weights associated with SOS members. See the description of the beg argument
for more information.

Example usage:
int types[] = {GRB_SOS_TYPE1, GRB_SOS_TYPE1};
int beg[] = {0, 2};
int ind[] = {1, 2, 1, 3};
double weight[] = {1, 2, 1, 2};
error = GRBaddsos(model, 2, 4, types, beg, ind, weight);

GRBaddvar

int GRBaddvar (GRBmodel *model,
int numnz,
int *vind,
double *vval,
double obj,
double lb,
double ub,
char vtype,
const char *varname)

Add a new variable to a model. Note that, due to our lazy update approach, the new variable
won’t actually be added until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while adding the variable. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new variable should be added.
numnz: The number of non-zero coefficients in the new column.
vind: Constraint indices associated with non-zero values for the new variable.
vval: Numerical values associated with non-zero values for the new variable.
obj: Objective coefficient for the new variable.
lb: Lower bound for the new variable.
ub: Upper bound for the new variable.
vtype: Type for the new variable. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT.

varname: Name for the new variable. This argument can be NULL, in which case the variable
is given a default name.

Example usage:
int ind[] = {1, 3, 4};
double val[] = {1.0, 1.0, 1.0};

57

error = GRBaddvar(model, 3, ind, val, 1.0, 0.0, GRB_INFINITY,
GRB_CONTINUOUS, "New");

GRBaddvars

int GRBaddvars (GRBmodel *model,
int numvars,
int numnz,
int *vbeg,
int *vind,
double *vval,
double *obj,
double *lb,
double *ub,
char *vtype,
const char **varnames)

Add new variables to a model. Note that, due to our lazy update approach, the new variables
won’t actually be added until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXaddvars variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while adding the variables. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new variables should be added.
numvars: The number of new variables to add.
numnz: The total number of non-zero coefficients in the new columns.
vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Column (CSC) format. Each column in the constraint matrix is represented as a list of
index-value pairs, where each index entry provides the constraint index for a non-zero
coefficient, and each value entry provides the corresponding non-zero value. Each variable
in the model has a vbeg, indicating the start position of the non-zeros for that variable
in the vind and vval arrays. This routine requires columns to be stored contiguously,
so the start position for a variable is the end position for the previous variable. To give
an example, if vbeg[2] = 10 and vbeg[3] = 12, that would indicate that variable 2 has
two non-zero values associated with it. Their constraint indices can be found in vind[10]
and vind[11], and the numerical values for those non-zeros can be found in vval[10]
and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

obj: Objective coefficients for the new variables. This argument can be NULL, in which case
the objective coefficients are set to 0.0.

58

lb: Lower bounds for the new variables. This argument can be NULL, in which case all
variables get lower bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

GRBchgcoeffs

int GRBchgcoeffs (GRBmodel *model,
int numchgs,
int *cind,
int *vind,
double *val)

Change a set of constraint matrix coefficients. This routine can be used to set a non-zero
coefficient to zero, to create a non-zero coefficient where the coefficient is currently zero, or to
change an existing non-zero coefficient to a new non-zero value. If you make multiple changes to
the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the changes won’t actually be integrated into the
model until you update the model (using GRBupdatemodel), optimize the model (using GRBop-
timize), or write the model to disk (using GRBwrite).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXchgcoeffs variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while performing the modification.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.
numchgs: The number of coefficients to modify.
cind: Constraint indices for the coefficients to modify.
vind: Variable indices for the coefficients to modify.
val: The new values for the coefficients. For example, if cind[0] = 1, vind[0] = 3, and
val[0] = 2.0, then the coefficient in constraint 1 associated with variable 3 would be
changed to 2.0.

Example usage:
int cind[] = {0, 1};
int vind[] = {0, 0};
double val[] = {1.0, 1.0};
error = GRBchgcoeffs(model, 2, cind, vind, val);

59

GRBdelconstrs

int GRBdelconstrs (GRBmodel *model,
int numdel,
int *ind)

Delete a list of constraints from an existing model. Note that, due to our lazy update approach,
the constraints won’t actually be removed until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while deleting the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.
numdel: The number of constraints to remove.
ind: The indices of the constraints to remove.

Example usage:
int first_four[] = {0, 1, 2, 3};
error = GRBdelconstrs(model, 4, first_four);

GRBdelgenconstrs

int GRBdelgenconstrs (GRBmodel *model,
int numdel,
int *ind)

Delete a list of general constraints from an existing model. Note that, due to our lazy update
approach, the general constraints won’t actually be removed until you update the model (using
GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using
GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while deleting the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.
numdel: The number of general constraints to remove.
ind: The indices of the general constraints to remove.

Example usage:
int first_four[] = {0, 1, 2, 3};
error = GRBdelgenconstrs(model, 4, first_four);

GRBdelq

int GRBdelq (GRBmodel *model)

60

Delete all quadratic objective terms from an existing model. Note that, due to our lazy
update approach, the quadratic terms won’t actually be removed until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while deleting the quadratic
objective terms. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.

Example usage:
error = GRBdelq(model);

GRBdelqconstrs

int GRBdelqconstrs (GRBmodel *model,
int numdel,
int *ind)

Delete a list of quadratic constraints from an existing model. Note that, due to our lazy update
approach, the quadratic constraints won’t actually be removed until you update the model (using
GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using
GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while deleting the quadratic
constraints. Refer to the Error Code table for a list of possible return values. Details on
the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.
numdel: The number of quadratic constraints to remove.
ind: The indices of the quadratic constraints remove.

Example usage:
int first_four[] = {0, 1, 2, 3};
error = GRBdelqconstrs(model, 4, first_four);

GRBdelsos

int GRBdelsos (GRBmodel *model,
int numdel,
int *ind)

Delete a list of Special Ordered Set (SOS) constraints from an existing model. Note that, due
to our lazy update approach, the SOS constraints won’t actually be removed until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

Return value:

61

A non-zero return value indicates that a problem occurred while deleting the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.
numdel: The number of SOSs to remove.
ind: The indices of the SOSs to remove.

Example usage:
int first_four[] = {0, 1, 2, 3};
error = GRBdelsos(model, 4, first_four);

GRBdelvars

int GRBdelvars (GRBmodel *model,
int numdel,
int *ind)

Delete a list of variables from an existing model. Note that, due to our lazy update approach,
the variables won’t actually be removed until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while deleting the variables.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.
numdel: The number of variables to remove.
ind: The indices of the variables to remove.

Example usage:
int first_two[] = {0, 1};
error = GRBdelvars(model, 2, first_two);

GRBsetobjectiven

int GRBsetobjectiven (GRBmodel *model,
int index,
int priority,
double weight,
double abstol,
double reltol,
const char *name,
double constant,
int lnz,
int *lind,
double *lval)

Set an alternative optimization objective equal to a linear expression.

62

Please refer to the discussion of Multiple Objectives for information on how to specify multiple
objective functions and control the tradeoff between them.

Note that you can also modify an alternative objective using the ObjN variable attribute. If
you wish to mix and match these two approaches, please note that this method replaces the entire
existing objective, while the ObjN attribute can be used to modify individual terms.

Note that, due to our lazy update approach, the new alternative objective won’t actually be
added until you update the model (using GRBupdatemodel), optimize the model (using GRBopti-
mize), or write the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while setting the alternative
objective. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model in which the new alternative objective should be set.
index: Index for new objective. If you use an index of 0, this routine will change the primary
optimization objective.

priority: Priority for the alternative objective. This initializes the ObjNPriority attribute
for this objective.

weight: Weight for the alternative objective. This initializes the ObjNWeight attribute for
this objective.

abstol: Absolute tolerance for the alternative objective. This initializes the ObjNAbsTol
attribute for this objective.

reltol: Relative tolerance for the alternative objective. This initializes the ObjNRelTol
attribute for this objective.

name: Name of the alternative objective. This initializes the ObjNName attribute for this
objective.

constant: Constant part of the linear expression for the new alternative objective.
lnz: Number of non-zero coefficients in new alternative objective.
lind: Variable indices for non-zero values in new alternative objective.
lval: Numerical values for non-zero values in new alternative objective.

Example usage:
int ind[] = {0, 1, 2};
double val[] = {1.0, 1.0, 1.0};
/* Objective expression: x0 + x1 + x2 */
error = GRBsetobjectiven(model, 0, 1, 0.0, 0.0, 0.0, "primary",

0.0, 3, ind, val);

GRBsetpwlobj

int GRBsetpwlobj (GRBmodel *model,
int var,
int npoints,
double *x,
double *y)

Set a piecewise-linear objective function for a variable.

63

The arguments to this method specify a list of points that define a piecewise-linear objective
function for a single variable. Specifically, the x and y arguments give coordinates for the vertices
of the function.

For example, suppose we want to define the function f(x) shown below:

(1, 1)

(3, 2)

(5, 4)

x[0] x[1] x[2]

y[0]

y[1]

y[2]

The vertices of the function occur at the points (1, 1), (3, 2) and (5, 4), so npoints is 3, x is {1, 3,
5}, and y is {1, 2, 4}. With these arguments we define f(1) = 1, f(3) = 2 and f(5) = 4. Other
objective values are linearly interpolated between neighboring points. The first pair and last pair
of points each define a ray, so values outside the specified x values are extrapolated from these
points. Thus, in our example, f(−1) = 0 and f(6) = 5.

More formally, a set of n points

x = {x1, . . . , xn}, y = {y1, . . . , yn}

define the following piecewise-linear function:

f(v) =


y1 + y2−y1

x2−x1
(v − x1), if v ≤ x1,

yi + yi+1−yi

xi+1−xi
(v − xi), if v ≥ xi and v ≤ xi+1,

yn + yn−yn−1
xn−xn−1

(v − xn), if v ≥ xn.

The x entries must appear in non-decreasing order. Two points can have the same x coordinate
— this can be useful for specifying a discrete jump in the objective function.

Note that a piecewise-linear objective can change the type of a model. Specifically, including
a non-convex piecewise linear objective function in a continuous model will transform that model
into a MIP. This can significantly increase the cost of solving the model.

Setting a piecewise-linear objective for a variable will set the Obj attribute on that variable to
0. Similarly, setting the Obj attribute will delete the piecewise-linear objective on that variable.

Each variable can have its own piecewise-linear objective function. They must be specified
individually, even if multiple variables share the same function.

Note that, due to our lazy update approach, the new piecewise-linear objective won’t actu-
ally be added until you update the model (using GRBupdatemodel), optimize the model (using
GRBoptimize), or write the model to disk (using GRBwrite).

64

Return value:
A non-zero return value indicates that a problem occurred while setting the piecewise-linear
objective. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.
var: The variable whose objective function is being changed.
npoints: The number of points that define the piecewise-linear function.
x: The x values for the points that define the piecewise-linear function. Must be in non-
decreasing order.

y: The y values for the points that define the piecewise-linear function.
Example usage:

double x[] = {1, 3, 5};
double y[] = {1, 2, 4};
error = GRBsetpwlobj(model, var, 3, x, y);

GRBupdatemodel

int GRBupdatemodel (GRBmodel *model)

Process any pending model modifications.
Return value:

A non-zero return value indicates that a problem occurred while updating the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: The model to update.

Example usage:
error = GRBupdatemodel(model);

GRBfreemodel

int GRBfreemodel (GRBmodel *model)

Free a model and release the associated memory.
Return value:

A non-zero return value indicates that a problem occurred while freeing the model. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:
model: The model to be freed.

Example usage:
error = GRBfreemodel(model);

65

GRBXaddconstrs

int GRBXaddconstrs (GRBmodel *model,
int numconstrs,
size_t numnz,
size_t *cbeg,
int *cind,
double *cval,
char *sense,
double *rhs,
const char **constrnames)

The size_t version of GRBaddconstrs. The two arguments that count non-zero values are of
type size_t in this version to support models with more than 2 billion non-zero values.

Add new linear constraints to a model. Note that, due to our lazy update approach, the
new constraints won’t actually be added until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

We recommend that you build your model one constraint at a time (using GRBaddconstr),
since it introduces no significant overhead and we find that it produces simpler code. Feel free to
use this routine if you disagree, though.

Return value:
A non-zero return value indicates that a problem occurred while adding the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new constraints should be added.
numconstrs: The number of new constraints to add.
numnz: The total number of non-zero coefficients in the new constraints.
cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Row (CSR) format by this routine. Each constraint in the constraint matrix is represented
as a list of index-value pairs, where each index entry provides the variable index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each new
constraint has an associated cbeg value, indicating the start position of the non-zeros for
that constraint in the cind and cval arrays. This routine requires that the non-zeros for
constraint i immediately follow those for constraint i-1 in cind and cval. Thus, cbeg[i]
indicates both the index of the first non-zero in constraint i and the end of the non-zeros
for constraint i-1. To give an example of how this representation is used, consider a case
where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has two
non-zero values associated with it. Their variable indices can be found in cind[10] and
cind[11], and the numerical values for those non-zeros can be found in cval[10] and
cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

sense: Sense for the new constraints. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

66

rhs: Right-hand-side values for the new constraints. This argument can be NULL, in which
case the right-hand-side values are set to 0.0.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

GRBXaddrangeconstrs

int GRBXaddrangeconstrs (GRBmodel *model,
int numconstrs,
size_t numnz,
size_t *cbeg,
int *cind,
double *cval,
double *lower,
double *upper,
const char **constrnames)

The size_t version of GRBaddrangeconstrs. The argument that counts non-zero values is of
type size_t in this version to support models with more than 2 billion non-zero values.

Add new range constraints to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution. Note that,
due to our lazy update approach, the new constraints won’t actually be added until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while adding the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new constraints should be added.
numconstrs: The number of new constraints to add.
numnz: The total number of non-zero coefficients in the new constraints.
cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Row (CSR) format by this routine. Each constraint in the constraint matrix is represented
as a list of index-value pairs, where each index entry provides the variable index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each new
constraint has an associated cbeg value, indicating the start position of the non-zeros for
that constraint in the cind and cval arrays. This routine requires that the non-zeros for
constraint i immediately follow those for constraint i-1 in cind and cval. Thus, cbeg[i]
indicates both the index of the first non-zero in constraint i and the end of the non-zeros
for constraint i-1. To give an example of how this representation is used, consider a case
where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has two
non-zero values associated with it. Their variable indices can be found in cind[10] and
cind[11], and the numerical values for those non-zeros can be found in cval[10] and
cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

67

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

lower: Lower bounds for the linear expressions.
upper: Upper bounds for the linear expressions.
constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

Important notes:
Note that adding a range constraint to the model adds both a new constraint and a new

variable. If you are keeping a count of the variables in the model, remember to add one for each
range constraint.

Note also that range constraints are stored internally as equality constraints. We use the extra
variable that is added with a range constraint to capture the range information. Thus, the Sense
attribute on a range constraint will always be GRB_EQUAL.

GRBXaddvars

int GRBXaddvars (GRBmodel *model,
int numvars,
size_t numnz,
size_t *vbeg,
int *vind,
double *vval,
double *obj,
double *lb,
double *ub,
char *vtype,
const char **varnames)

The size_t version of GRBaddvars. The two arguments that count non-zero values are of type
size_t in this version to support models with more than 2 billion non-zero values.

Add new variables to a model. Note that, due to our lazy update approach, the new variables
won’t actually be added until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while adding the variables. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new variables should be added.
numvars: The number of new variables to add.
numnz: The total number of non-zero coefficients in the new columns.
vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Column (CSC) format. Each column in the constraint matrix is represented as a list of
index-value pairs, where each index entry provides the constraint index for a non-zero
coefficient, and each value entry provides the corresponding non-zero value. Each variable
in the model has a vbeg, indicating the start position of the non-zeros for that variable
in the vind and vval arrays. This routine requires columns to be stored contiguously,

68

so the start position for a variable is the end position for the previous variable. To give
an example, if vbeg[2] = 10 and vbeg[3] = 12, that would indicate that variable 2 has
two non-zero values associated with it. Their constraint indices can be found in vind[10]
and vind[11], and the numerical values for those non-zeros can be found in vval[10]
and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

obj: Objective coefficients for the new variables. This argument can be NULL, in which case
the objective coefficients are set to 0.0.

lb: Lower bounds for the new variables. This argument can be NULL, in which case all
variables get lower bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

GRBXchgcoeffs

int GRBXchgcoeffs (GRBmodel *model,
size_t numchgs,
int *cind,
int *vind,
double *val)

The size_t version of GRBchgcoeffs. The argument that counts non-zero values is of type
size_t in this version to support models with more than 2 billion non-zero values.

Change a set of constraint matrix coefficients. This routine can be used to set a non-zero
coefficient to zero, to create a non-zero coefficient where the coefficient is currently zero, or to
change an existing non-zero coefficient to a new non-zero value. If you make multiple changes to
the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the changes won’t actually be integrated into the
model until you update the model (using GRBupdatemodel), optimize the model (using GRBop-
timize), or write the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while performing the modification.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.
numchgs: The number of coefficients to modify.
cind: Constraint indices for the coefficients to modify.
vind: Variable indices for the coefficients to modify.

69

val: The new values for the coefficients. For example, if cind[0] = 1, vind[0] = 3, and
val[0] = 2.0, then the coefficient in constraint 1 associated with variable 3 would be
changed to 2.0.

Example usage:
int cind[] = {0, 1};
int vind[] = {0, 0};
double val[] = {1.0, 1.0};
error = GRBXchgcoeffs(model, 2, cind, vind, val);

GRBXloadmodel

int GRBXloadmodel (GRBenv *env,
GRBmodel **modelP,
const char *Pname,
int numvars,
int numconstrs,
int objsense,
double objcon,
double *obj,
char *sense,
double *rhs,
size_t *vbeg,
int *vlen,
int *vind,
double *vval,
double *lb,
double *ub,
char *vtype,
const char **varnames,
const char **constrnames)

The size_t version of GRBloadmodel. The argument that counts non-zero values is of type
size_t in this version to support models with more than 2 billion non-zero values.

Create a new optimization model, using the provided arguments to initialize the model data
(objective function, variable bounds, constraint matrix, etc.). The model is then ready for opti-
mization, or for modification (e.g., addition of variables or constraints, changes to variable types
or bounds, etc.).

Return value:
A non-zero return value indicates that a problem occurred while creating the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
env: The environment in which the new model should be created. Note that the new model
gets a copy of this environment, so subsequent modifications to the original environment
(e.g., parameter changes) won’t affect the new model. Use GRBgetenv to modify the
environment associated with a model.

modelP: The location in which the pointer to the newly created model should be placed.

70

Pname: The name of the model.
numvars: The number of variables in the model.
numconstrs: The number of constraints in the model.
objsense: The sense of the objective function. Allowed values are 1 (minimization) or -1
(maximization).

objcon: Constant objective offset.
obj: Objective coefficients for the new variables. This argument can be NULL, in which case
the objective coefficients are set to 0.0.

sense: The senses of the new constraints. Options are ’=’ (equal), ’<’ (less-than-or-equal),
or ’>’ (greater-than-or-equal). You can also use constants GRB_EQUAL, GRB_LESS_EQUAL,
or GRB_GREATER_EQUAL.

rhs: Right-hand-side values for the new constraints. This argument can be NULL, in which
case the right-hand-side values are set to 0.0.

vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Column (CSC) format. Each column in the constraint matrix is represented as a list of
index-value pairs, where each index entry provides the constraint index for a non-zero
coefficient, and each value entry provides the corresponding non-zero value. Each variable
in the model has a vbeg and vlen value, indicating the start position of the non-zeros for
that variable in the vind and vval arrays, and the number of non-zero values for that
variable, respectively. Thus, for example, if vbeg[2] = 10 and vlen[2] = 2, that would
indicate that variable 2 has two non-zero values associated with it. Their constraint indices
can be found in vind[10] and vind[11], and the numerical values for those non-zeros
can be found in vval[10] and vval[11].

vlen: Number of constraint matrix non-zero values associated with each variable. See the
description of the vbeg argument for more information.

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

lb: Lower bounds for the new variables. This argument can be NULL, in which case all
variables get lower bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

Important notes:
We recommend that you build a model one constraint or one variable at a time, using GRBad-

dconstr or GRBaddvar, rather than using this routine to load the entire constraint matrix at once.
It is much simpler, less error prone, and it introduces no significant overhead.

Example usage:

71

/* maximize x + y + 2 z
subject to x + 2 y + 3 z <= 4

x + y >= 1
x, y, z binary */

int vars = 3;
int constrs = 2;
size_t vbeg[] = {0, 2, 4};
int vlen[] = {2, 2, 1};
int vind[] = {0, 1, 0, 1, 0};
double vval[] = {1.0, 1.0, 2.0, 1.0, 3.0};
double obj[] = {1.0, 1.0, 2.0};
char sense[] = {GRB_LESS_EQUAL, GRB_GREATER_EQUAL};
double rhs[] = {4.0, 1.0};
char vtype[] = {GRB_BINARY, GRB_BINARY, GRB_BINARY};

error = GRBXloadmodel(env, &model, "example", vars, constrs, -1, 0.0,
obj, sense, rhs, vbeg, vlen, vind, vval,
NULL, NULL, vtype, NULL, NULL);

72

2.3 Model Solution
GRBoptimize

int GRBoptimize (GRBmodel *model)

Optimize a model. The algorithm used for the optimization depends on the model type (simplex
or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful completion,
this method will populate the solution related attributes of the model. See the Attributes section
for more information on attributes.

Please consult this section for a discussion of some of the practical issues associated with solving
a precisely defined mathematical model using finite-precision floating-point arithmetic.

Note that this routine will process all pending model modifications.
Return value:

A non-zero return value indicates that a problem occurred while optimizing the model.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to optimize. Note that this routine only reports whether the optimization
ran into an error. Query the Status attribute to determine the result of the optimization
(see the Attributes section for more information on querying attributes).

Example usage:
error = GRBoptimize(model);

GRBoptimizeasync

int GRBoptimizeasync (GRBmodel *model)

Optimize a model asynchronously. This routine returns immediately. Your program can perform
other computations while optimization proceeds in the background. To check the state of the
asynchronous optimization, query the Status attribute for the model. A value of IN_PROGRESS
indicates that the optimization has not yet completed. When you are done with your foreground
tasks, you must call GRBsync to sync your foreground program with the asynchronous optimization
task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in
the background is severely limited. Specifically, you can only perform attribute queries, and only
for a few attributes (listed below). Any other calls on the running model, or on any other models that
were built within the same Gurobi environment, will fail with error code OPTIMIZATION_IN_PROGRESS.

Note that there are no such restrictions on models built in other environments. Thus, for
example, you could create multiple environments, and then have a single foreground program
launch multiple simultaneous asynchronous optimizations, each in its own environment.

As already noted, you are allowed to query the value of the Status attribute while an asyn-
chronous optimization is in progress. The other attributes that can be queried are: ObjVal, Ob-
jBound, IterCount, NodeCount, and BarIterCount. In each case, the returned value reflects progress
in the optimization to that point. Any attempt to query the value of an attribute not on this list
will return an OPTIMIZATION_IN_PROGRESS error.

73

Return value:
A non-zero return value indicates that a problem occurred while optimizing the model.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to optimize. Note that this routine only reports whether launching the
asynchronous job ran into an error. Query the Status attribute to determine the result of
the optimization (see the Attributes section for more information on querying attributes).
The return value of GRBsync indicates whether the background optimization ran into an
error.

Example usage:
error = GRBoptimizeasync(model);

/* ... perform other compute-intensive tasks... */

error = GRBsync(model);

GRBcomputeIIS

int GRBcomputeIIS (GRBmodel *model)

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and
variable bounds with the following properties:

• the subsystem represented by the IIS is infeasible, and

• if any of the constraints or bounds of the IIS is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily
one of minimal cardinality. Thus, there may exist other IISs with fewer constraints or bounds.

If an IIS computation is interrupted before completion, Gurobi will internally store the best
available IIS found so far.

This routine populates the IISConstr, IISGenConstr, IISQConstr, IISSOS, IISLB, and IISUB
attributes. You can also obtain information about the results of the IIS computation by writing a
.ilp format file (see GRBwrite). This file contains only the IIS from the original model.

Note that this routine can be used to compute IISs for both continuous and MIP models.
Return value:

A non-zero return value indicates that a problem occurred while computing the IIS. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: The infeasible model. This routine will return an error if the input model is feasible.

Important note:
This routine only reports whether the computation ran into an error. Query the IISConstr,

IISGenConstr, IISQConstr, IISSOS, IISLB, or IISUB attributes to determine the result of the
computation (see the Attributes section for more information on querying attributes).

Example usage:
error = GRBcomputeIIS(model);

74

GRBfeasrelax

int GRBfeasrelax (GRBmodel *model,
int relaxobjtype,
int minrelax,
double *lbpen,
double *ubpen,
double *rhspen,
double *feasobjP)

Modifies the input model to create a feasibility relaxation. Note that you need to call GRBop-
timize on the result to compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the
solution violates the bounds and linear constraints of the original model. This routine provides a
number of options for specifying the relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the
sum of the weighted magnitudes of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the cost per unit violation in the lower bounds, upper bounds, and linear
constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the
weighted sum of the squares of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the coefficients on the squares of the lower bound, upper bound, and
linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the
weighted count of bound and constraint violations. The lbpen, ubpen, and rhspen arguments
specify the cost of violating a lower bound, upper bound, and linear constraint, respectively.

To give an example, a violation of 2.0 on constraint i would contribute 2*rhspen[i] to the
feasibility relaxation objective for relaxobjtype=0, it would contribute 2*2*rhspen[i] for
relaxobjtype=1, and it would contribute rhspen[i] for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is
created. If minrelax=0, optimizing the returned model gives a solution that minimizes the cost of
the violation. If minrelax=1, optimizing the returned model finds a solution that minimizes the
original objective, but only from among those solutions that minimize the cost of the violation. Note
that GRBfeasrelax must solve an optimization problem to find the minimum possible relaxation
for minrelax=1, which can be quite expensive.

In all cases, you can specify a penalty of GRB_INFINITY to indicate that a specific bound or
linear constraint may not be violated.

Note that this is a destructive routine: it modifies the model passed to it. If you don’t want to
modify your original model, use GRBcopymodel to create a copy before calling this routine.

Return value:
A non-zero return value indicates that a problem occurred while computing the feasibility
relaxation. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The original (infeasible) model. The model is modified by this routine.
relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.

75

lbpen: The penalty associated with violating a lower bound. Can be NULL, in which case
no lower bound violations are allowed.

ubpen: The penalty associated with violating an upper bound. Can be NULL, in which case
no upper bound violations are allowed.

rhspen: The penalty associated with violating a linear constraint. Can be NULL, in which
case no constraint violations are allowed.

feasobjP: When minrelax=1, this returns the objective value for the minimum cost relax-
ation.

Example usage:
double penalties[];
error = GRBfeasrelax(model, 0, 0, NULL, NULL, penalties, NULL);
error = GRBoptimize(model);

GRBfixedmodel

GRBmodel * GRBfixedmodel (GRBmodel *model)

Create the fixed model associated with a MIP model. The MIP model must have a solution
loaded (e.g., after a call to GRBoptimize). In the fixed model, each integer variable is fixed to the
value that variable takes in the MIP solution.

Return value:
This routine returns the computed model. If there is a problem, the routine returns NULL.

Arguments:
model: The MIP model (with a solution loaded).

Example usage:
GRBmodel *fixed = GRBfixedmodel(model);

GRBresetmodel

int GRBresetmodel (GRBmodel *model)

Reset the model to an unsolved state, discarding any previously computed solution information.
Return value:

A non-zero return value indicates that a problem occurred while resetting the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: The model to reset.

Example usage:
error = GRBresetmodel(model);

GRBsync

int GRBsync (GRBmodel *model)

Wait for a previous asynchronous optimization call to complete.

76

Calling GRBoptimizeasync returns control to the calling routine immediately. The caller can
perform other computations while optimization proceeds, and can check on the progress of the opti-
mization by querying various model attributes. The GRBsync call forces the calling program to wait
until the asynchronous optimization completes. You must call GRBsync before the corresponding
model is freed.

The GRBsync call returns a non-zero error code if the optimization itself ran into any problems.
In other words, error codes returned by this method are those that GRBoptimize itself would have
returned, had the original method not been asynchronous.

Note that you need to call GRBsync even if you know that the asynchronous optimization has
already completed.

Return value:
A non-zero return value indicates that a problem occurred while solving the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: The model that is currently being solved.

Example usage:
error = GRBoptimizeasync(model);

/* ... perform other compute-intensive tasks... */

error = GRBsync(model);

77

2.4 Model Queries
While most model related queries are handled through the attribute interface, a few fall outside of
that interface. These are described here.

GRBgetcoeff

int GRBgetcoeff (GRBmodel *model,
int constrind,
int varind,
double *valP)

Retrieve a single constraint matrix coefficient.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the coefficient.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the coefficient should be retrieved.
constrind: The constraint index for the desired coefficient.
varind: The variable index for the desired coefficient.
valP: The location in which the requested matrix coefficient should be placed.

Example usage:

double A12;
error = GRBgetcoeff(model, 1, 2, &A12);

GRBgetconstrbyname

int GRBgetconstrbyname (GRBmodel *model,
const char *name,
int *constrnumP)

Retrieves a linear constraint from its name. If multiple linear constraints have the same name,
this routine chooses one arbitrarily.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the constraint.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the linear constraint should be retrieved.
name: The name of the desired linear constraint.
constrnumP: Constraint number for a linear constraint with the indicated name. Returns
-1 if no matching name is found.

78

GRBgetconstrs

int GRBgetconstrs (GRBmodel *model,
int *numnzP,
int *cbeg,
int *cind,
double *cval,
int start,
int len)

Retrieve the non-zeros for a set of linear constraints from the constraint matrix. Typical usage
is to call this routine twice. In the first call, you specify the requested set of constraints, with
NULL values for cbeg, cind, and cval. The routine returns the number of non-zero values for the
specified constraint range in numnzP. That allows you to make certain that cind and cval are of
sufficient size to hold the result of the second call.

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXgetconstrs variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the constraint
coefficients. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the linear constraints should be retrieved.
numnzP: The number of non-zero values retrieved.
cbeg: Constraint matrix non-zero values are returned in Compressed Sparse Row (CSR) for-
mat. Each constraint in the constraint matrix is represented as a list of index-value pairs,
where each index entry provides the variable index for a non-zero coefficient, and each
value entry provides the corresponding non-zero value. Each constraint has an associated
cbeg value, indicating the start position of the non-zeros for that constraint in the cind
and cval arrays. The non-zeros for constraint i immediately follow those for constraint
i-1 in cind and cval. Thus, cbeg[i] indicates both the index of the first non-zero in
constraint i and the end of the non-zeros for constraint i-1. For example, consider the
case where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has
two non-zero values associated with it. Their variable indices can be found in cind[10]
and cind[11], and the numerical values for those non-zeros can be found in cval[10]
and cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

start: The index of the first linear constraint to retrieve.
len: The number of linear constraints to retrieve.

GRBgetenv

GRBenv * GRBgetenv (GRBmodel *model)

79

Retrieve the environment associated with a model.
Return value:

The environment associated with the model. A NULL return value indicates that there was
a problem retrieving the environment.

Arguments:
model: The model from which the environment should be retrieved.

Example usage:
GRBenv *env = GRBgetenv(model);

GRBgetgenconstrMax

int GRBgetgenconstrMax (GRBmodel *model,
int id,
int* resvarP,
int* nvarsP,
int* vars,
double* constantP)

Retrieve the data of a general constraint of type MAX. Calling this function for a general
constraint of different type leads to an error return code. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in nvarsP. That allows you to make certain
that the vars array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrMax for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.

Note that any combination of the following arguments can be NULL.
int *resvarP: The variable index associated with the resultant variable of the constraint.
int *nvarsP: The number of operand variables of the constraint.
int *vars: An array to store the variable indices associated with the variable operands of
the constraint.

double *constantP: The additional constant operand of the constraint.
Example usage:

int type;
int resvar;
int nvars;
int *vars;
double constant;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);

80

if (type == GRB_GENCONSTR_MAX) {
error = GRBgetgenconstrMax(model, 3, &resvar, &nvars, NULL, &constant);
/* ...allocate vars to hold ’nvars’ values... */
error = GRBgetgenconstrMax(model, 3, NULL, NULL, vars, NULL);

}

GRBgetgenconstrMin

int GRBgetgenconstrMin (GRBmodel *model,
int id,
int* resvarP,
int* nvarsP,
int* vars,
double* constantP)

Retrieve the data of a general constraint of type MIN. Calling this function for a general
constraint of different type leads to an error return code. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in nvarsP. That allows you to make certain
that the vars array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrMin for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.

Note that any combination of the following arguments can be NULL.
int *resvarP: The variable index associated with the resultant variable of the constraint.
int *nvarsP: The number of operand variables of the constraint.
int *vars: An array to store the variable indices associated with the variable operands of
the constraint.

double *constantP: The additional constant operand of the constraint.
Example usage:

int type;
int resvar;
int nvars;
int *vars;
double constant;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_MIN) {

error = GRBgetgenconstrMin(model, 3, &resvar, &nvars, NULL, &constant);
/* ...allocate vars to hold ’nvars’ values... */

81

error = GRBgetgenconstrMin(model, 3, NULL, NULL, vars, NULL);
}

GRBgetgenconstrAbs

int GRBgetgenconstrAbs (GRBmodel *model,
int id,
int* resvarP,
int* argvarP)

Retrieve the data of a general constraint of type ABS. Calling this function for a general
constraint of different type leads to an error return code. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also GRBaddgenconstrAbs for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.

Note that any combination of the following arguments can be NULL.
int *resvarP: The variable index associated with the resultant variable of the constraint.
int *argvarP: The variable index associated with the argument variable of the constraint.

Example usage:
int type;
int resvar;
int argvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_ABS) {

error = GRBgetgenconstrAbs(model, 3, &resvar, &argvar);
}

GRBgetgenconstrAnd

int GRBgetgenconstrAnd (GRBmodel *model,
int id,
int* resvarP,
int* nvarsP,
int* vars)

Retrieve the data of a general constraint of type AND. Calling this function for a general
constraint of different type leads to an error return code. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of

82

operand variables in the specified general constraint in nvarsP. That allows you to make certain
that the vars array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrAnd for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.

Note that any combination of the following arguments can be NULL.
int *resvarP: The variable index associated with the binary resultant variable of the con-
straint.

int *nvarsP: The number of binary operand variables of the constraint.
int *vars: An array to store the variable indices associated with the binary variable
operands of the constraint.

Example usage:
int type;
int resvar;
int nvars;
int *vars;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_AND) {

error = GRBgetgenconstrAnd(model, 3, &resvar, &nvars, NULL);
/* ...allocate vars to hold ’nvars’ values... */
error = GRBgetgenconstrAnd(model, 3, NULL, NULL, vars);

}

GRBgetgenconstrOr

int GRBgetgenconstrOr (GRBmodel *model,
int id,
int* resvarP,
int* nvarsP,
int* vars)

Retrieve the data of a general constraint of type OR. Calling this function for a general constraint
of different type leads to an error return code. You can query the GenConstrType attribute to
determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in nvarsP. That allows you to make certain
that the vars array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrOr for a description of the semantics of this general constraint type.
Return value:

83

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.

Note that any combination of the following arguments can be NULL.
int *resvarP: The variable index associated with the binary resultant variable of the con-
straint.

int *nvarsP: The number of binary operand variables of the constraint.
int *vars: An array to store the variable indices associated with the binary variable
operands of the constraint.

Example usage:
int type;
int resvar;
int nvars;
int *vars;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_OR) {

error = GRBgetgenconstrOr(model, 3, &resvar, &nvars, NULL);
/* ...allocate vars to hold ’nvars’ values... */
error = GRBgetgenconstrOr(model, 3, NULL, NULL, vars);

}

GRBgetgenconstrIndicator

int GRBgetgenconstrIndicator (GRBmodel *model,
int id,
int* binvarP,
int* binvalP,
int* nvarsP,
int* ind,
double* val,
char* senseP,
double* rhsP)

Retrieve the data of a general constraint of type INDICATOR. Calling this function for a general
constraint of different type leads to an error return code. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with NULL values for the ind and val arguments. The routine returns the total number
of non-zero coefficients in the linear constraint associated with the specified indicator constraint in
nvarsP. That allows you to make certain that the ind and val arrays are of sufficient size to hold
the result of the second call.

See also GRBaddgenconstrIndicator for a description of the semantics of this general constraint
type.

84

Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.

Note that any combination of the following arguments can be NULL.
int *binvarP: The variable index associated with the binary indicator variable.
int *binvalP: The value that the indicator variable has to take in order to trigger the
linear constraint.

int *nvarsP: The number of non-zero coefficients in the linear constraint triggered by the
indicator.

int *ind: An array to store the variable indices for non-zero values in the linear constraint.
double *val: An array to store the numerical values for non-zero values in the linear
constraint.

char *senseP: Sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL,
or GRB_GREATER_EQUAL.

double *rhsP: Right-hand-side value for the linear constraint.
Example usage:

int type;
int binvar;
int binval:
int nvars;
int *ind;
double *val;
char sense;
double rhs;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_INDICATOR) {

error = GRBgetgenconstrIndicator(model, 3, &binvar, &binval, &nvars,
NULL, NULL, &sense, &rhs);

/* ...allocate ind and val to hold ’nvars’ values... */
error = GRBgetgenconstrIndicator(model, 3, NULL, NULL, NULL,

ind, val, NULL, NULL);
}

GRBgetpwlobj

int GRBgetpwlobj (GRBmodel *model,
int var,
int *npointsP,
double *x,
double *y)

85

Retrieve the piecewise-linear objective function for a variable. The x and y arguments must
be large enough to hold the result. If either are NULL, then npointsP will contain the number of
points in the function on return.

Refer to the description of GRBsetpwlobj for additional information on what the values in x
and y mean.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the piecewise-
linear objective function. Refer to the Error Code table for a list of possible return values.
Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the piecewise-linear objective function is being retrieved.
var: The variable whose objective function is being retrieved.
npointsP: The number of points that define the piecewise-linear function.
x: The x values for the points that define the piecewise-linear function. These will always
be in non-decreasing order.

y: The y values for the points that define the piecewise-linear function.
Example usage:

double *x;
double *y;

error = GRBgetpwlobj(model, var, &npoints, NULL, NULL);
/* ...allocate x and y to hold ’npoints’ values... */
error = GRBgetpwlobj(model, var, &npoints, x, y);

GRBgetq

int GRBgetq (GRBmodel *model,
int *numqnzP,
int *qrow,
int *qcol,
double *qval)

Retrieve all quadratic objective terms. The qrow, qcol, and qval arguments must be large
enough to hold the result. You can query the NumQNZs attribute to determine how many terms
will be returned.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the quadratic
objective terms. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the quadratic objective terms should be retrieved.
numqnzP: The number of quadratic objective terms retrieved.
qrow: Row indices associated with quadratic terms. A quadratic term is represented using
three values: a pair of indices (stored in qrow and qcol), and a coefficient (stored in qval).
The three argument arrays provide the corresponding values for each quadratic term. To
give an example, to represent 2x2

0 + x0x1 + x2
1, you would have *numqnzP=3, qrow[] =

{0, 0, 1}, qcol[] = {0, 1, 1}, and qval[] = {2.0, 1.0, 1.0}.

86

qcol: Column indices associated with quadratic terms. See the description of the qrow
argument for more information.

qval: Numerical values associated with quadratic terms. See the description of the qrow
argument for more information.

Example usage:
int qnz;
int *qrow, *qcol;
double *qval;

error = GRBgetdblattr(model, GRB_DBL_ATTR_NUMQNZS, &qnz);
/* ...allocate qrow, qcol, qval to hold ’qnz’ values... */
error = GRBgetq(model, &qnz, qrow, qcol, qval);

GRBgetqconstr

int GRBgetqconstr (GRBmodel *model,
int qconstr,
int *numlnzP,
int *lind,
double *lval,
int *numqnzP,
int *qrow,
int *qcol,
double *qval)

Retrieve the linear and quadratic terms associated with a single quadratic constraint. Typical
usage is to call this routine twice. In the first call, you specify the requested quadratic constraint,
with NULL values for the array arguments. The routine returns the total number of linear and
quadratic terms in the specified quadratic constraint in numlnzP and numqnzP, respectively. That
allows you to make certain that lind, lval, qrow, qcol, and qval are of sufficient size to hold the
result of the second call.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the quadratic
constraint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the quadratic constraint should be retrieved.
qconstr: The index of the requested quadratic constraint.
numlnzP: The number of linear terms retrieved for the requested quadratic constraint.
lind: Variable indices associated with linear terms.
lval: Numerical coefficients associated with linear terms.
numqnzP: The number of quadratic terms retrieved for the requested quadratic constraint.
qrow: Row indices associated with quadratic terms. A quadratic term is represented using
three values: a pair of indices (stored in qrow and qcol), and a coefficient (stored in qval).
The associated arguments arrays provide the corresponding values for each quadratic term.
To give an example, if the requested quadratic constraint has quadratic terms 2x2

0 +x0x1 +

87

x2
1, this routine would return *numqnzP=3, qrow[] = {0, 0, 1}, qcol[] = {0, 1, 1},

and qval[] = {2.0, 1.0, 1.0}.
qcol: Column indices associated with quadratic terms. See the description of the qrow
argument for more information.

qval: Numerical values associated with quadratic terms. See the description of the qrow
argument for more information.

GRBgetsos

int GRBgetsos (GRBmodel *model,
int *nummembersP,
int *sostype,
int *beg,
int *ind,
double *weight,
int start,
int len)

Retrieve the members and weights of a set of SOS constraints. Typical usage is to call this
routine twice. In the first call, you specify the requested SOS constraints, with NULL values for ind
and weight. The routine returns the total number of members for the specified SOS constraints in
nummembersP. That allows you to make certain that ind and weight are of sufficient size to hold
the result of the second call.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the SOS members.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the SOS constraints should be retrieved.
nummembersP: The total number of SOS members retrieved.
sostype: The types of the SOS constraints. Possible values are GRB_SOS_TYPE1 or GRB_-
SOS_TYPE2

beg: SOS constraints are returned in Compressed Sparse Row (CSR) format. Each SOS
constraint in the model is represented as a list of index-value pairs, where each index
entry provides the variable index for an SOS member, and each value entry provides the
corresponding SOS constraint weight. Each SOS constraint has an associated beg value,
indicating the start position of the members of that constraint in the ind and weight
arrays. The members for SOS constraint i immediately follow those for constraint i-1
in ind and weight. Thus, beg[i] indicates both the index of the first member of SOS
constraint i and the end of the member list for SOS constraint i-1. For example, consider
the case where beg[2] = 10 and beg[3] = 12. This would indicate that SOS constraint
2 has two members. Their variable indices can be found in ind[10] and ind[11], and
their SOS weights can be found in weight[10] and weight[11].

ind: Variable indices associated with SOS members. See the description of the beg argument
for more information.

weight: Weights associated with SOS members. See the description of the beg argument
for more information.

88

start: The index of the first SOS constraint to retrieve.
len: The number of SOS constraints to retrieve.

GRBgetvarbyname

int GRBgetvarbyname (GRBmodel *model,
const char *name,
int *varnumP)

Retrieves a variable from its name. If multiple variables have the same name, this routine
chooses one arbitrarily.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the variable.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the variable should be retrieved.
name: The name of the desired variable.
varnumP: Variable number for a variable with the indicated name. Returns -1 if no matching
name is found.

GRBgetvars

int GRBgetvars (GRBmodel *model,
int *numnzP,
int *vbeg,
int *vind,
double *vval,
int start,
int len)

Retrieve the non-zeros for a set of variables from the constraint matrix. Typical usage is to call
this routine twice. In the first call, you specify the requested set of variables, with NULL values for
vbeg, vind, and vval. The routine returns the number of non-zero values for the specified variables
in numnzP. That allows you to make certain that vind and vval are of sufficient size to hold the
result of the second call.

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXgetvars variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the variable
coefficients. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the variables should be retrieved.
numnzP: The number of non-zero values retrieved.
vbeg: Constraint matrix non-zero values are returned in Compressed Sparse Column (CSC)
format by this routine. Each column in the constraint matrix is represented as a list

89

of index-value pairs, where each index entry provides the constraint index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each
variable has an associated vbeg value, indicating the start position of the non-zeros for
that constraint in the vind and vval arrays. The non-zeros for variable i immediately
follow those for variable i-1 in vind and vval. Thus, vbeg[i] indicates both the index
of the first non-zero in variable i and the end of the non-zeros for variable i-1. For
example, consider the case where vbeg[2] = 10 and vbeg[3] = 12. This would indicate
that variable 2 has two non-zero values associated with it. Their constraint indices can
be found in vind[10] and vind[11], and the numerical values for those non-zeros can be
found in vval[10] and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

start: The index of the first variable to retrieve.
len: The number of variables to retrieve.

GRBXgetconstrs

int GRBXgetconstrs (GRBmodel *model,
size_t *numnzP,
size_t *cbeg,
int *cind,
double *cval,
int start,
int len)

The size_t version of GRBgetconstrs. The two arguments that count non-zero values are of
type size_t in this version to support models with more than 2 billion non-zero values.

Retrieve the non-zeros for a set of linear constraints from the constraint matrix. Typical usage
is to call this routine twice. In the first call, you specify the requested set of constraints, with
NULL values for cbeg, cind, and cval. The routine returns the number of non-zero values for the
specified constraint range in numnzP. That allows you to make certain that cind and cval are of
sufficient size to hold the result of the second call.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the constraint
coefficients. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the constraints should be retrieved.
numnzP: The number of non-zero values retrieved.
cbeg: Constraint matrix non-zero values are returned in Compressed Sparse Row (CSR) for-
mat. Each constraint in the constraint matrix is represented as a list of index-value pairs,
where each index entry provides the variable index for a non-zero coefficient, and each
value entry provides the corresponding non-zero value. Each constraint has an associated
cbeg value, indicating the start position of the non-zeros for that constraint in the cind
and cval arrays. The non-zeros for constraint i immediately follow those for constraint

90

i-1 in cind and cval. Thus, cbeg[i] indicates both the index of the first non-zero in
constraint i and the end of the non-zeros for constraint i-1. For example, consider the
case where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has
two non-zero values associated with it. Their variable indices can be found in cind[10]
and cind[11], and the numerical values for those non-zeros can be found in cval[10]
and cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

start: The index of the first constraint to retrieve.
len: The number of constraints to retrieve.

GRBXgetvars

int GRBXgetvars (GRBmodel *model,
size_t *numnzP,
size_t *vbeg,
int *vind,
double *vval,
int start,
int len)

The size_t version of GRBgetvars. The two arguments that count non-zero values are of type
size_t in this version to support models with more than 2 billion non-zero values.

Retrieve the non-zeros for a set of variables from the constraint matrix. Typical usage is to call
this routine twice. In the first call, you specify the requested set of variables, with NULL values for
vbeg, vind, and vval. The routine returns the number of non-zero values for the specified variables
in numnzP. That allows you to make certain that vind and vval are of sufficient size to hold the
result of the second call.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the variable
coefficients. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the variables should be retrieved.
numnzP: The number of non-zero values retrieved.
vbeg: Constraint matrix non-zero values are returned in Compressed Sparse Column (CSC)
format by this routine. Each column in the constraint matrix is represented as a list
of index-value pairs, where each index entry provides the constraint index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each
variable has an associated vbeg value, indicating the start position of the non-zeros for
that constraint in the vind and vval arrays. The non-zeros for variable i immediately
follow those for variable i-1 in vind and vval. Thus, vbeg[i] indicates both the index
of the first non-zero in variable i and the end of the non-zeros for variable i-1. For
example, consider the case where vbeg[2] = 10 and vbeg[3] = 12. This would indicate
that variable 2 has two non-zero values associated with it. Their constraint indices can

91

be found in vind[10] and vind[11], and the numerical values for those non-zeros can be
found in vval[10] and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

start: The index of the first variable to retrieve.
len: The number of variables to retrieve.

92

2.5 Input/Output

GRBreadmodel

int GRBreadmodel (GRBenv *env,
const char *filename,
GRBmodel **modelP)

Read a model from a file.
Return value:

A non-zero return value indicates that a problem occurred while reading the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
env: The environment in which to load the new model. This should come from a previous
call to GRBloadenv.

filename: The path to the file to be read. Note that the type of the file is encoded in the
file name suffix. Valid suffixes are .mps, .rew, .lp, .rlp, .ilp, or .opb. The files can be
compressed, so additional suffixes of .zip, .gz, .bz2, or .7z are accepted.

modelP: The location in which the pointer to the model should be placed.
Example usage:

GRBmodel *model;
error = GRBreadmodel(env, "/tmp/model.mps.bz2", &model);

GRBread

int GRBread (GRBmodel *model,
const char *filename)

Import optimization data from a file. This routine is the general entry point for importing data
from a file into a model. It can be used to read start vectors for MIP models, basis files for LP
models, or parameter settings. The type of data read is determined by the file suffix. File formats
are described in the File Format section.

Return value:
A non-zero return value indicates that a problem occurred while reading the file. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:
model: The model that will receive the start vector.
filename: The path to the file to be read. The suffix on the file must be either .mst or
.sol for a MIP start file, .hnt for a MIP hint file, .ord for a priority order file, .bas for
a basis file, or .prm for a parameter file, The suffix may optionally be followed by .zip,
.gz, .bz2, or .7z.

Example usage:
error = GRBread(model, "/tmp/model.mst.bz2");

93

GRBwrite

int GRBwrite (GRBmodel *model,
const char *filename)

This routine is the general entry point for writing optimization data to a file. It can be used
to write optimization models, solutions vectors, basis vectors, start vectors, or parameter settings.
The type of data written is determined by the file suffix. File formats are described in the File
Format section.

Note that writing a model to a file will process all pending model modifications. However,
writing other model information (solutions, bases, etc.) will not.

Return value:
A non-zero return value indicates that a problem occurred while writing the file. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:
model: The model containing the data to be written.
filename: The name of the file to be written. The file type is encoded in the file name suffix.
Valid suffixes are .mps, .rew, .lp, or .rlp for writing the model itself, .ilp for writing just
the IIS associated with an infeasible model (see GRBcomputeIIS for further information),
.sol for writing the current solution, .mst for writing a start vector, .hnt for writing a
hint file, .bas for writing an LP basis, or .prm for writing modified parameter settings.
The files can be compressed, so additional suffixes of .gz, .bz2, or .7z are accepted.

Example usage:
error = GRBwrite(model, "/tmp/model.rlp.gz");

94

2.6 Attribute Management
GRBgetattrinfo

int GRBgetattrinfo (GRBmodel *model,
const char *attrname,
int *datatypeP,
int *attrtypeP,
int *settableP)

Obtain information about an attribute.
Return value:

A non-zero return value indicates that a problem occurred while obtaining information about
the attribute. Refer to the Error Code table for a list of possible return values. Details on
the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of an attribute. Available attributes are listed and described in the
Attributes section of this document.

datatypeP: On completion, the integer pointed to by this argument will indicate the data
type of the attribute. Possible types are char (0), int (1), double (2), or string(3). This
argument can be NULL.

attrtypeP: On completion, the integer pointed to by this argument will indicate the type
of the attribute. Possible types are model attribute (0), variable attribute (1), linear
constraint attribute (2), (3) SOS constraint attribute, (4) quadratic constraint attribute,
or (5) general constraint attribute. This argument can be NULL.

settableP: On completion, the integer pointed to by this argument will indicate whether
the attribute can be set (1) or not (0). This argument can be NULL.

Example usage:
int datatype, attrtype, settable;
error = GRBgetattrinfo(model, "ModelName", &datatype, &attrtype, &settable);

GRBgetintattr

int GRBgetintattr (GRBmodel *model,
const char *attrname,
int *valueP)

Query the value of an integer-valued model attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

95

attrname: The name of an integer-valued model attribute. Available attributes are listed
and described in the Attributes section of this document.

valueP: The location in which the current value of the requested attribute should be placed.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To

query a single element of an array attribute, use GRBgetintattrelement instead.
Example usage:

error = GRBgetintattr(model, "NumBinVars", &numbin);

GRBsetintattr

int GRBsetintattr (GRBmodel *model,
const char *attrname,
int newvalue)

Set the value of an integer-valued model attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of an integer-valued model attribute. Available attributes are listed
and described in the Attributes section of this document.

newvalue: The desired new value of this attribute.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To

modify a single element of an array attribute, use GRBsetintattrelement instead.
Example usage:

error = GRBsetintattr(model, "ModelSense", -1);

GRBgetintattrelement

int GRBgetintattrelement (GRBmodel *model,
const char *attrname,
int element,
int *valueP)

Query a single value from an integer-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

96

attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

element: The index of the requested array element.
valueP: A pointer to the location where the requested value should be returned.

Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint

attributes). To query a scalar attribute (i.e., a model attribute), use GRBgetintattr instead.
Example usage:

int first_one;
error = GRBgetintattrelement(model, "VBasis", 0, &first_one);

GRBsetintattrelement

int GRBsetintattrelement (GRBmodel *model,
const char *attrname,
int element,
int newvalue)

Set a single value in an integer-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.

Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint

attributes). To modify a scalar attribute (i.e., a model attribute), use GRBsetintattr instead.
Example usage:

error = GRBsetintattrelement(model, "VBasis", 0, GRB_BASIC);

GRBgetintattrarray

int GRBgetintattrarray (GRBmodel *model,
const char *attrname,
int start,
int len,
int *values)

Query the values of an integer-valued array attribute.
Return value:

97

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.
values: A pointer to the location where the array attribute should be returned. Note that
the result array must be as long as the requested sub-array.

Example usage:

int cbasis[NUMCONSTRS];
error = GRBgetintattrarray(model, "CBasis", 0, NUMCONSTRS, cbasis);

GRBsetintattrarray

int GRBsetintattrarray (GRBmodel *model,
const char *attrname,
int start,
int len,
int *values)

Set the values of an integer-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute.
Note that the values array must be as long as the sub-array to be changed.

Example usage:

int cbasis[] = {GRB_BASIC, GRB_BASIC, GRB_NONBASIC_LOWER, GRB_BASIC};
error = GRBsetintattrarray(model, "CBasis", 0, 4, cbasis);

98

GRBgetintattrlist

int GRBgetintattrlist (GRBmodel *model,
const char *attrname,
int len,
int *ind,
int *values)

Query the values of an integer-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

len: The number of attribute elements to retrive.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned.
Note that the result array must be as long as the requested index list.

Example usage:
int desired[] = {0, 2, 4, 6};
int cbasis[4];
error = GRBgetintattrlist(model, "CBasis", 4, desired, cbasis);

GRBsetintattrlist

int GRBsetintattrlist (GRBmodel *model,
const char *attrname,
int len,
int *ind,
int *values)

Set the values of an integer-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.

99

values: A pointer to the desired new values for the specified elements of the attribute. Note
that the values array must be as long as the list of indices.

Example usage:
int change[] = {0, 1, 3};
int newbas[] = {GRB_BASIC, GRB_NONBASIC_LOWER, GRB_NONBASIC_LOWER};
error = GRBsetintattrlist(model, "VBasis", 3, change, newbas);

GRBgetdblattr

int GRBgetdblattr (GRBmodel *model,
const char *attrname,
double *valueP)

Query the value of a double-valued model attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a double-valued model attribute. Available attributes are listed and
described in the Attributes section of this document.

valueP: The location in which the current value of the requested attribute should be placed.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To

query a single element of an array attribute, use GRBgetdblattrelement instead.
Example usage:

error = GRBgetdblattr(model, "ObjCon", &objcon);

GRBsetdblattr

int GRBsetdblattr (GRBmodel *model,
const char *attrname,
double newvalue)

Set the value of a double-valued model attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a double-valued model attribute. Available attributes are listed and
described in the Attributes section of this document.

newvalue: The desired new value of this attribute.

100

Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To

modify a single element of an array attribute, use GRBsetdblattrelement instead.
Example usage:

error = GRBsetdblattr(model, "ObjCon", 0.0);

GRBgetdblattrelement

int GRBgetdblattrelement (GRBmodel *model,
const char *attrname,
int element,
double *valueP)

Query a single value from a double-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

element: The index of the requested array element.
values: A pointer to the location where the requested value should be returned.

Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint

attributes). To query a scalar attribute (i.e., a model attribute), use GRBgetdblattr instead.
Example usage:

double first_one;
error = GRBgetdblattrelement(model, "X", 0, &first_one);

GRBsetdblattrelement

int GRBsetdblattrelement (GRBmodel *model,
const char *attrname,
int element,
double newvalue)

Set a single value in a double-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

101

attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.

Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint

attributes). To modify a scalar attribute (i.e., a model attribute), use GRBsetdblattr instead.
Example usage:

error = GRBsetdblattrelement(model, "Start", 0, 1.0);

GRBgetdblattrarray

int GRBgetdblattrarray (GRBmodel *model,
const char *attrname,
int start,
int len,
double *values)

Query the values of a double-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.
values: A pointer to the location where the array attribute should be returned. Note that
the result array must be as long as the requested sub-array.

Example usage:
double lb[NUMVARS];
error = GRBgetdblattrarray(model, "LB", 0, cols, lb);

GRBsetdblattrarray

int GRBsetdblattrarray (GRBmodel *model,
const char *attrname,
int start,
int len,
double *values)

Set the values of a double-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

102

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute.
Note that the values array must be as long as the sub-array to be changed.

Example usage:
double start[] = {1.0, 1.0, 0.0, 1.0};
error = GRBsetdblattrarray(model, "Start", 0, 4, start);

GRBgetdblattrlist

int GRBgetdblattrlist (GRBmodel *model,
const char *attrname,
int len,
int *ind,
double *values)

Query the values of a double-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

len: The number of attribute elements to retrive.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned.
Note that the result array must be as long as the requested index list.

Example usage:
int desired[] = {0, 2, 4, 6};
double x[4];
error = GRBgetdblattrlist(model, "X", 4, desired, cbasis);

GRBsetdblattrlist

int GRBsetdblattrlist (GRBmodel *model,
const char *attrname,
int len,
int *ind,
double *values)

103

Set the values of a double-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.
values: A pointer to the desired new values for the specified elements of the attribute. Note
that the values array must be as long as the list of indices.

Example usage:
int change[] = {0, 1, 3};
double start[] = {1.0, 3.0, 2.0};
error = GRBsetdblattrlist(model, "Start", 3, change, start);

GRBgetcharattrelement

int GRBgetcharattrelement (GRBmodel *model,
const char *attrname,
int element,
char *valueP)

Query a single value from a character-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

element: The index of the requested array element.
values: A pointer to the location where the requested value should be returned.

Example usage:
char first_one;
error = GRBgetcharattrelement(model, "VType", 0, &first_one);

GRBsetcharattrelement

int GRBsetcharattrelement (GRBmodel *model,
const char *attrname,
int element,
char newvalue)

104

Set a single value in a character-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.

Example usage:

error = GRBsetcharattrelement(model, "VType", 0, GRB_BINARY);

GRBgetcharattrarray

int GRBgetcharattrarray (GRBmodel *model,
const char *attrname,
int start,
int len,
char *values)

Query the values of a character-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.
values: A pointer to the location where the array attribute should be returned. Note that
the result array must be as long as the requested sub-array.

Example usage:

char vtypes[NUMVARS];
error = GRBgetcharattrarray(model, "VType", 0, NUMVARS, vtypes);

105

GRBsetcharattrarray

int GRBsetcharattrarray (GRBmodel *model,
const char *attrname,
int start,
int len,
char *values)

Set the values of a character-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute.
Note that the values array must be as long as the sub-array to be changed.

Example usage:
char vtypes[] = {GRB_BINARY, GRB_CONTINUOUS, GRB_INTEGER, GRB_BINARY};
error = GRBsetcharattrarray(model, "VType", 0, 4, vtypes);

GRBgetcharattrlist

int GRBgetcharattrlist (GRBmodel *model,
const char *attrname,
int len,
int *ind,
char *values)

Query the values of a character-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

len: The number of attribute elements to retrive.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned.
Note that the result array must be as long as the requested index list.

Example usage:

106

int desired[] = {0, 2, 4, 6};
char vtypes[4];
error = GRBgetcharattrlist(model, "VType", 4, desired, vtypes);

GRBsetcharattrlist

int GRBsetcharattrlist (GRBmodel *model,
const char *attrname,
int len,
int *ind,
char *values)

Set the values of a character-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.
values: A pointer to the desired new values for the specified elements of the attribute. Note
that the values array must be as long as the list of indices.

Example usage:
int change[] = {0, 1, 3};
char vtypes[] = {GRB_BINARY, GRB_BINARY, GRB_BINARY};
error = GRBsetcharattrlist(model, "Vtype", 3, change, vtypes);

GRBgetstrattr

int GRBgetstrattr (GRBmodel *model,
const char *attrname,
char **valueP)

Query the value of a string-valued model attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued model attribute. Available attributes are listed and
described in the Attributes section of this document.

107

valueP: The location in which the current value of the requested attribute should be placed.
Important notes:
Note that all interface routines that return string-valued attributes are returning pointers into

internal Gurobi data structures. The user should copy the contents of the pointer to a different
data structure before the next call to a Gurobi library routine. The user should also be careful to
never modify the data pointed to by the returned character pointer.

Note that this method should be used for scalar attributes only (i.e., model attributes). To
query a single element of an array attribute, use GRBgetstrattrelement instead.

Example usage:
char *modelname;
error = GRBgetstrattr(model, "ModelName", &modelname);

GRBsetstrattr

int GRBsetstrattr (GRBmodel *model,
const char *attrname,
const char *newvalue)

Set the value of a string-valued model attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued model attribute. Available attributes are listed and
described in the Attributes section of this document.

newvalue: The desired new value of this attribute.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To

modify a single element of an array attribute, use GRBsetstrattrelement instead.
Example usage:

error = GRBsetstrattr(model, "ModelName", "Modified name");

GRBgetstrattrelement

int GRBgetstrattrelement (GRBmodel *model,
const char *attrname,
int element,
char **valueP)

Query a single value from a string-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

108

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

element: The index of the requested array element.
valueP: A pointer to the location where the requested value should be returned.

Important notes:
Note that all interface routines that return string-valued attributes are returning pointers into

internal Gurobi data structures. The user should copy the contents of the pointer to a different
data structure before the next call to a Gurobi library routine. The user should also be careful to
never modify the data pointed to by the returned character pointer.

Note that this method should be used for array attributes only (i.e., variable or constraint
attributes). To query a scalar attribute (i.e., a model attribute), use GRBgetstrattr instead.

Example usage:

char **varname;
error = GRBgetstrattrelement(model, "VarName", 1, varname);

GRBsetstrattrelement

int GRBsetstrattrelement (GRBmodel *model,
const char *attrname,
int element,
char *newvalue)

Set a single value in a string-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.

Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint

attributes). To modify a scalar attribute (i.e., a model attribute), use GRBsetstrattr instead.
Example usage:

error = GRBsetstrattrelement(model, "ConstrName", 0, "NewConstr");

109

GRBgetstrattrarray

int GRBgetstrattrarray (GRBmodel *model,
const char *attrname,
int start,
int len,
char **values)

Query the values of a string-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.
values: A pointer to the location where the array attribute should be returned. Note that
the result array must be as long as the requested sub-array.

Important notes:
Note that all interface routines that return string-valued attributes are returning pointers into

internal Gurobi data structures. The user should copy the contents of the pointer to a different
data structure before the next call to a Gurobi library routine. The user should also be careful to
never modify the data pointed to by the returned character pointer.

Example usage:
char **varnames[NUMVARS];
error = GRBgetstrattrarray(model, "VarName", 0, NUMVARS, varnames);

GRBsetstrattrarray

int GRBsetstrattrarray (GRBmodel *model,
const char *attrname,
int start,
int len,
char **values)

Set the values of a string-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

110

attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute.
Note that the values array must be as long as the sub-array to be changed.

Example usage:

char **varnames[NUMVARS];
error = GRBsetstrattrarray(model, "VarName", 0, NUMVARS, varnames);

GRBgetstrattrlist

int GRBgetstrattrlist (GRBmodel *model,
const char *attrname,
int len,
int *ind,
char **values)

Query the values of a string-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

len: The number of attribute elements to retrive.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned.
Note that the result array must be as long as the requested index list.

Important notes:
Note that all interface routines that return string-valued attributes are returning pointers into

internal Gurobi data structures. The user should copy the contents of the pointer to a different
data structure before the next call to a Gurobi library routine. The user should also be careful to
never modify the data pointed to by the returned character pointer.

Example usage:

int desired[] = {0, 2, 4, 6};
char **varnames[4];
error = GRBgetstrattrlist(model, "VarName", 4, desired, varnames);

111

GRBsetstrattrlist

int GRBsetstrattrlist (GRBmodel *model,
const char *attrname,
int len,
int *ind,
char **values)

Set the values of a string-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.
values: A pointer to the desired new values for the specified elements of the attribute. Note
that the values array must be as long as the list of indices.

Example usage:
int chage[] = {0, 1, 3};
char **varnames[] = {"Var0", "Var1", "Var3"};
error = GRBsetstrattrlist(model, "VarName", 3, change, varnames);

112

2.7 Parameter Management and Tuning
GRBtunemodel

int GRBtunemodel (GRBmodel *model)

Perform an automated search for parameter settings that improve performance on a model.
Upon completion, this routine stores the best parameter sets it found. The number of stored
parameter sets can be determined by querying the value of the TuneResultCount attribute. The
actual settings can be retrieved using GRBgettuneresult

Please refer to the parameter tuning section for details on the tuning tool.
Return value:

A non-zero return value indicates that a problem occurred while tuning the model. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:
model: The model to be tuned.

Example usage:
error = GRBtunemodel(model);
if (error) goto QUIT;

error = GRBgetintattr(model, "TuneResultCount", &nresults);
if (error) goto QUIT;

GRBgettuneresult

int GRBgettuneresult (GRBmodel *model,
int n)

Use this routine to retrieve the results of a previous GRBtunemodel call. Calling this routine
with argument n causes tuned parameter set n to be copied into the model. Parameter sets are
stored in order of decreasing quality, with parameter set 0 being the best. The number of available
sets is stored in attribute TuneResultCount.

Once you have retrieved a tuning result, you can call GRBoptimize to use these parameter
settings to optimize the model, or GRBwrite to write the changed parameters to a .prm file.

Please refer to the parameter tuning section for details on the tuning tool.
Return value:

A non-zero return value indicates that a problem occurred while retrieving a tuning result.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A model that has previously been used as the argument of GRBtunemodel.
n: The index of the tuning result to retrieve. The best result is available as index 0. The
number of stored results is available in attribute TuneResultCount.

Example usage:
error = GRBtunemodel(model);
if (error) goto QUIT;

113

error = GRBgetintattr(model, "TuneResultCount", &nresults);
if (error) goto QUIT;

if (nresults > 0) {
error = GRBgettuneresult(model, 0);
if (error) goto QUIT;

}

GRBgetdblparam

int GRBgetdblparam (GRBenv *env,
const char *paramname,
double *valueP)

Retrieve the value of a double-valued parameter.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being queried.
paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

valueP: The location in which the current value of the requested parameter should be placed.
Example usage:

double cutoff;
error = GRBgetdblparam(GRBgetenv(model), "Cutoff", &cutoff);

GRBgetintparam

int GRBgetintparam (GRBenv *env,
const char *paramname,
int *valueP)

Retrieve the value of an integer-valued parameter.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being queried.
paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

valueP: The location in which the current value of the requested parameter should be placed.
Example usage:

114

int limit;
error = GRBgetintparam(GRBgetenv(model), "SolutionLimit", &limit);

GRBgetstrparam

int GRBgetstrparam (GRBenv *env,
const char *paramname,
char *value)

Retrieve the value of a string-valued parameter.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being queried.
paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

value: The location in which the current value of the requested parameter should be placed.
Example usage:

char logfilename[GRB_MAX_STRLEN];
error = GRBgetstrparam(GRBgetenv(model), "LogFile", logfilename);

GRBsetdblparam

int GRBsetdblparam (GRBenv *env,
const char *paramname,
double newvalue)

Modify the value of a double-valued parameter.
Return value:

A non-zero return value indicates that a problem occurred while modifying the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being modified.
paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

newvalue: The desired new value of the parameter.
Important note:
Note that a model gets its own copy of the environment when it is created. Changes to the

original environment have no effect on the copy. Use GRBgetenv to retrieve the environment
associated with a model if you would like a parameter change to affect that model.

Example usage:
error = GRBsetdblparam(GRBgetenv(model), "Cutoff", 100.0);

115

GRBsetintparam

int GRBsetintparam (GRBenv *env,
const char *paramname,
int newvalue)

Modify the value of an integer-valued parameter.
Return value:

A non-zero return value indicates that a problem occurred while modifying the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being modified.
paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

newvalue: The desired new value of the parameter.
Important note:
Note that a model gets its own copy of the environment when it is created. Changes to the

original environment have no effect on the copy. Use GRBgetenv to retrieve the environment
associated with a model if you would like a parameter change to affect that model.

Example usage:
error = GRBsetintparam(GRBgetenv(model), "SolutionLimit", 5);

GRBsetstrparam

int GRBsetstrparam (GRBenv *env,
const char *paramname,
const char *newvalue)

Modify the value of a string-valued parameter.
Return value:

A non-zero return value indicates that a problem occurred while modifying the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being modified.
paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

newvalue: The desired new value of the parameter.
Important note:
Note that a model gets its own copy of the environment when it is created. Changes to the

original environment have no effect on the copy. Use GRBgetenv to retrieve the environment
associated with a model if you would like a parameter change to affect that model.

Example usage:
error = GRBsetstrparam(GRBgetenv(model), "LogFile", "/tmp/new.log");

116

GRBgetdblparaminfo

int GRBgetdblparaminfo (GRBenv *env,
const char *paramname,
double *valueP,
double *minP,
double *maxP,
double *defaultP)

Retrieve information about a double-valued parameter. Specifically, retrieve the current value
of the parameter, the minimum and maximum allowed values, and the default value.

Return value:
A non-zero return value indicates that a problem occurred while retrieving parameter in-
formation. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter information is being queried.
paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

valueP (optional): The location in which the current value of the specified parameter
should be placed.

minP (optional): The location in which the minimum allowed value of the specified pa-
rameter should be placed.

maxP (optional): The location in which the maximum allowed value of the specified pa-
rameter should be placed.

defaultP (optional): The location in which the default value of the specified parameter
should be placed.

Example usage:
error = GRBgetdblparaminfo(GRBgetenv(model), "MIPGap", ¤tGap,

&minAllowedGap, NULL, &defaultGap);

GRBgetintparaminfo

int GRBgetintparaminfo (GRBenv *env,
const char *paramname,
int *valueP,
int *minP,
int *maxP,
int *defaultP)

Retrieve information about an int-valued parameter. Specifically, retrieve the current value of
the parameter, the minimum and maximum allowed values, and the default value.

Return value:
A non-zero return value indicates that a problem occurred while retrieving parameter in-
formation. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

117

env: The environment whose parameter information is being queried.
paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

valueP (optional): The location in which the current value of the specified parameter
should be placed.

minP (optional): The location in which the minimum allowed value of the specified pa-
rameter should be placed.

maxP (optional): The location in which the maximum allowed value of the specified pa-
rameter should be placed.

defaultP (optional): The location in which the default value of the specified parameter
should be placed.

Example usage:

error = GRBgetintparaminfo(GRBgetenv(model), "SolutionLimit", ¤t,
&minAllowedLimit, NULL, &defaultLimit);

GRBgetstrparaminfo

int GRBgetstrparaminfo (GRBenv *env,
const char *paramname,
char *value,
char *default)

Retrieve information about a string-valued parameter. Specifically, retrieve the current and
default values of the parameter.

Return value:
A non-zero return value indicates that a problem occurred while retrieving parameter in-
formation. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter information is being queried.
paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

value (optional): The location in which the current value of the specified parameter
should be placed.

default (optional): The location in which the default value of the specified parameter
should be placed.

Example usage:

char defaultval[GRB_MAX_STRLEN];
char currentval[GRB_MAX_STRLEN];
error = GRBgetstrparaminfo(GRBgetenv(model), "LogFile", currentval,

defaultval);

118

GRBreadparams

int GRBreadparams (GRBenv *env,
const char *filename)

Import a set of parameter modifications from a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-

scriptions of their purposes and their minimum, maximum, and default values.
Return value:

A non-zero return value indicates that a problem occurred while reading the parameter file.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment into which the parameter changes should be imported.
filename: The path to the file to be read. The suffix on a parameter file should be .prm,
optionally followed by .zip, .gz, .bz2, or .7z.

Example usage:
error = GRBreadparams(env, "/tmp/model.prm.bz2");

GRBwriteparams

int GRBwriteparams (GRBenv *env,
const char *filename)

Write the set of changed parameter values to a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-

scriptions of their purposes and their minimum, maximum, and default values.
Return value:

A non-zero return value indicates that a problem occurred while writing the parameter file.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter changes are being written.
filename: The path to the file to be written. The suffix on a parameter file should be .prm,
optionally followed by .gz, .bz2, or .7z.

Example usage:
error = GRBwriteparams(env, "/tmp/model.prm");

119

2.8 Monitoring Progress - Logging and Callbacks
GRBmsg

void GRBmsg (GRBenv *env,
const char *message)

Insert a message into the Gurobi log file.
Arguments:

env: The environment whose log file should receive the message.
message: The message to be appended to the log.

Example usage:
error = GRBmsg(env, "Add this message to the log");

GRBsetcallbackfunc

int GRBsetcallbackfunc (GRBmodel *model,
int (*cb)(GRBmodel *model, void *cbdata, int

where, void *usrdata),
void *usrdata)

Set up a user callback function. Note that a model can only have a single callback function, so
this call will replace an existing callback.

Note that a model can only have a single callback method, so this call will replace an existing
callback. To disable a previously set callback, call this function with a cb argument of NULL.

When solving a model using multiple threads, note that the user callback is only ever called
from a single thread, so you don’t need to worry about the thread-safety of your callback.

Return value:
A non-zero return value indicates that a problem occurred while setting the user callback.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model in which the callback should be installed.
cb: A function pointer to the user callback function. The callback will be called regularly
from the Gurobi optimizer. The where argument to the callback function will indicate
where in the optimization process the callback was invoked. Possible values are described
in the Callback Codes section. The user callback can then call a number of routines
to retrieve additional details about the state of the optimization (e.g., GRBcbget), or
to inject new information (e.g., GRBcbcut, GRBcbsolution). The user callback function
should return 0 if no error was encountered, or it can return one of the Gurobi Error Codes
if the user callback would like the optimization to stop and return an error result.

usrdata: An optional pointer to user data that will be passed back to the user callback
function each time it is invoked (in the usrdata argument).

Example usage:
int mycallback(GRBmodel *model, void *cbdata, int where, void *usrdata);
error = GRBsetcallbackfunc(model, mycallback, NULL);

120

GRBgetcallbackfunc

int GRBgetcallbackfunc (GRBmodel *model,
int (**cb)(GRBmodel *model, void *cbdata,

int where, void *usrdata))

Retrieve the current user callback function.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the user callback.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model in which the callback should be installed.
cb: A function pointer to the user callback function.

Example usage:
int (*mycallback)(GRBmodel *model, void *cbdata, int where, void *usrdata);
error = GRBgetcallbackfunc(model, &mycallback);

GRBcbget

int GRBcbget (void *cbdata,
int where,
int what,
void *resultP)

Retrieve additional information about the progress of the optimization. Note that this routine
can only be called from within a user callback function.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the requested
data. Refer to the Error Code table for a list of possible return values. Details on the error
can be obtained by calling GRBgeterrormsg.

Arguments:
cbdata: The cbdata argument that was passed into the user callback by the Gurobi opti-
mizer. This argument must be passed unmodified from the user callback to GRBcbget().

where: The where argument that was passed into the user callback by the Gurobi optimizer.
This argument must be passed unmodified from the user callback to GRBcbget().

what: The data requested by the user callback. Valid values are described in the Callback
Codes section.

resultP: The location in which the requested data should be placed.
Example usage:

if (where == GRB_CB_MIP) {
double nodecount;
error = GRBcbget(cbdata, where, GRB_CB_MIP_NODECNT, (void *) &nodecount);
if (error) return 0;
printf("MIP node count is %d\n", nodecount);

}

121

GRBversion

void GRBversion (int *majorP,
int *minorP,
int *technicalP)

Return the Gurobi library version number (major, minor, and technical).
Arguments:

majorP: The location in which the major version number should be placed. May be NULL.
minorP: The location in which the minor version number should be placed. May be NULL.
technicalP: The location in which the technical version number should be placed. May be
NULL.

Example usage:
int major, minor, technical;
GRBversion(&major, &minor, &technical);
printf("Gurobi library version %d.%d.%d\n", major, minor, technical);

122

2.9 Modifying Solver Behavior - Callbacks

GRBcbcut

int GRBcbcut (void *cbdata,
int cutlen,
const int *cutind,
const double *cutval,
char cutsense,
double cutrhs)

Add a new cutting plane to the MIP model from within a user callback routine. Note that this
routine can only be called when the where value on the callback routine is GRB_CB_MIPNODE (see
the Callback Codes section for more information).

Cutting planes can be added at any node of the branch-and-cut tree. Note that cuts should be
added sparingly, since they increase the size of the relaxation model that is solved at each node
and can significantly degrade node processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the
relaxation solution at the current node, call GRBcbget with what = GRB_CB_MIPNODE_REL.

When adding your own cuts, you must set parameter PreCrush to value 1. This setting shuts
off a few presolve reductions that sometimes prevent cuts on the original model from being applied
to the presolved model.

One very important note: you should only add cuts that are implied by the constraints in your
model. If you cut off an integer solution that is feasible according to the original model constraints,
you are likely to obtain an incorrect solution to your MIP problem.

Return value:
A non-zero return value indicates that a problem occurred while adding the cut. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:
cbdata: The cbdata argument that was passed into the user callback by the Gurobi opti-
mizer. This argument must be passed unmodified from the user callback to GRBcbcut().

cutlen: The number of non-zero coefficients in the new cutting plane.
cutind: Variable indices for non-zero values in the new cutting plane.
cutval: Numerical values for non-zero values in the new cutting plane.
cutsense: Sense for the new cutting plane. Options are GRB_LESS_EQUAL, GRB_EQUAL, or
GRB_GREATER_EQUAL.

cutrhs: Right-hand-side value for the new cutting plane.
Example usage:

if (where == GRB_CB_MIPNODE) {
int cutind[] = {0, 1};
double cutval[] = {1.0, 1.0};
error = GRBcbcut(cbdata, 2, cutind, cutval, GRB_LESS_EQUAL, 1.0);
if (error) return 0;

}

123

GRBcblazy

int GRBcblazy (void *cbdata,
int lazylen,
const int *lazyind,
const double *lazyval,
char lazysense,
double lazyrhs)

Add a new lazy constraint to the MIP model from within a user callback routine. Note that this
routine can only be called when the where value on the callback routine is either GRB_CB_MIPNODE
or GRB_CB_MIPSOL (see the Callback Codes section for more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large
to represent explicitly. By only including the constraints that are actually violated by solutions
found during the branch-and-cut search, it is sometimes possible to find a proven optimal solution
while only adding a fraction of the full set of constraints.

You would typically add a lazy constraint by querying the current node solution (by calling
GRBcbget from a GRB_CB_MIPSOL or GRB_CB_MIPNODE callback, using what=GRB_CB_MIPSOL_SOL
or what=GRB_CB_MIPNODE_REL), and then calling GRBcblazy() to add a constraint that cuts off the
solution. Gurobi guarantees that you will have the opportunity to cut off any solutions that would
otherwise be considered feasible.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints,
including those that have already been added. Node solutions will usually respect previously added
lazy constraints, but not always.

Note that you must set the LazyConstraints parameter if you want to use lazy constraints.
Return value:

A non-zero return value indicates that a problem occurred while adding the lazy constraint.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
cbdata: The cbdata argument that was passed into the user callback by the Gurobi opti-
mizer. This argument must be passed unmodified from the user callback to GRBcblazy().

lazylen: The number of non-zero coefficients in the new lazy constraint.
lazyind: Variable indices for non-zero values in the new lazy constraint.
lazyval: Numerical values for non-zero values in the new lazy constraint.
lazysense: Sense for the new lazy constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL,
or GRB_GREATER_EQUAL.

lazyrhs: Right-hand-side value for the new lazy constraint.
Example usage:

if (where == GRB_CB_MIPSOL) {
int lazyind[] = {0, 1};
double lazyval[] = {1.0, 1.0};
error = GRBcblazy(cbdata, 2, lazyind, lazyval, GRB_LESS_EQUAL, 1.0);
if (error) return 0;

}

124

GRBcbsolution

int GRBcbsolution (void *cbdata,
const double *solution,
double *objP)

Provide a new feasible solution for a MIP model from within a user callback routine. Note that
this routine can only be called when the where value on the callback routine is GRB_CB_MIPNODE
(see the Callback Codes section for more information).

Heuristics solutions are typically built from the current relaxation solution. To retrieve the
relaxation solution at the current node, call GRBcbget with what = GRB_CB_MIPNODE_REL.

When providing a solution, you can specify values for any subset of the variables in the model.
To leave a variable value unspecified, set the variable to GRB_UNDEFINED in the solution vector.
The Gurobi MIP solver will attempt to extend the specified partial solution to a complete solution.

Return value:
A non-zero return value indicates that a problem occurred while adding the new solution.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
cbdata: The cbdata argument that was passed into the user callback by the Gurobi opti-
mizer. This argument must be passed unmodified from the user callback to GRBcbsolution().

solution: The solution vector. You must provide one entry for each variable in the model.
Note that you can leave an entry unspecified by setting it to GRB_UNDEFINED. The Gurobi
optimizer will attempt to find appropriate values for the unspecified variables.

objP: Objective value for solution that results from this call. Returns GRB_INFINITY if no
solution is found.

Example usage:
if (where == GRB_CB_MIPNODE) {

error = GRBcbsolution(cbdata, solution, &obj);
if (error) return 0;

}

GRBterminate

void GRBterminate (GRBmodel *model)

Generate a request to terminate the current optimization. This routine can be called at any
time during an optimization. When the optimization stops, the Status attribute will be equal to
GRB_INTERRUPTED.

Arguments:
model: The model to terminate.

Example usage:
if (time_to_quit)

GRBterminate(model);

125

2.10 Error Handling
GRBgeterrormsg

char * GRBgeterrormsg (GRBenv *env)

Retrieve the error message associated with the most recent error that occurred in an environ-
ment.

Return value:
A string containing the error message.

Arguments:
env: The environment in which the error occurred.

Example usage:
error = GRBgetintattr(model, "DOES_NOT_EXIST", &attr);
if (error)

printf("%s\n", GRBgeterrormsg(env));

126

2.11 Advanced simplex routines
This section describes a set of advanced basis routines. These routines allow you to compute
solutions to various linear systems involving the simplex basis matrix. Note that these should only
be used by advanced users. We provide no technical support for these routines.

Before describing the routines, we should first describe the GRBsvec data structure that is used
to input or return sparse vectors:

typedef struct SVector {
int len;
int *ind;
double *val;
} GRBsvec;

The len field gives the number of non-zero values in the vector. The ind and val fields
give the index and value for each non-zero, respectively. Indices are zero-based. To give an ex-
ample, the sparse vector [0, 2.0, 0, 1.0] would be represented as len=2, ind = [1, 3], and
val = [2.0, 1.0].

The user is responsible for allocating and freeing the ind and val fields. The length of the
result vector for these routines is not known in advance, so the user must allocate these arrays to
hold the longest possible result (whose length is noted in the documentation for each routine).

GRBFSolve

int GRBFSolve (GRBmodel *model,
GRBsvec *b,
GRBsvec *x)

Computes the solution to the linear system Bx = b, where B is the current simplex basis matrix,
b is an input vector, and x is the result vector.

Return value:
A non-zero return value indicates that a problem occurred while computing the desired
vector. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.

b: The sparse right-hand side vector. It should contain one entry for each non-zero value in
the input.

x: The sparse result vector. The user is responsible for allocating the ind and val fields to
be large enough to hold as many as one non-zero entry per constraint in the model.

GRBBSolve

int GRBBSolve (GRBmodel *model,
GRBsvec *b,
GRBsvec *x)

Computes the solution to the linear system BTx = b, where BT is the transpose of the current
simplex basis matrix, b is an input vector, and x is the result vector.

127

Return value:
A non-zero return value indicates that a problem occurred while computing the desired
vector. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.

b: The sparse right-hand side vector. It should contain one entry for each non-zero value in
the input.

x: The sparse result vector. The user is responsible for allocating the ind and val fields to
be large enough to hold as many as one non-zero entry per constraint in the model.

GRBBinvColj

int GRBBinvColj (GRBmodel *model,
int j,
GRBsvec *x)

Computes the solution to the linear system Bx = Aj , where B is the current simplex basis
matrix and Aj is the column of the constraint matrix A associated with variable j.

Return value:
A non-zero return value indicates that a problem occurred while computing the desired
vector. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.

j: Indicates the index of the column of A to use as the right-hand side for the linear solve.
The index j must be between 0 and cols-1, where cols is the number of columns in the
model.

x: The sparse result vector. The user is responsible for allocating the ind and val fields to
be large enough to hold as many as one non-zero entry per constraint in the model.

GRBBinvRowi

int GRBBinvRowi (GRBmodel *model,
int i,
GRBsvec *x)

Computes a single tableau row. More precisely, this routine returns row i from the matrix B−1A,
where B−1 is the inverse of the basis matrix and A is the constaint matrix. Note that the tableau
will contain columns corresponding to the variables in the model, and also columns corresponding
to artificial and slack variables associated with constraints.

Return value:
A non-zero return value indicates that a problem occurred while computing the desired
vector. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

128

Arguments:
model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.

i: The index of the desired tableau row.
x: The result vector. The result will contain one entry for each non-zero value. Note that
the result may contain values for slack variables; the slack on row i will have index cols+i,
where cols is the number of columns in the model. The user is responsible for allocating
the ind and val fields to be large enough to hold the largest possible result. For this
routine, the result could have one entry for each variable in the model, plus one entry for
each constraint.

GRBgetBasisHead

int GRBgetBasisHead (GRBmodel *model,
int *bhead)

Returns the indices of the variables that make up the current basis matrix.
Return value:

A non-zero return value indicates that a problem occurred while extracting the basis. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.

bhead: The constraint matrix columns that make up the current basis. The result contains
one entry per constraint in A. If bhead[i]=j, then column i in the basis matrix B is
column j from the constraint matrix A. Note that the basis may contain slack or articifial
variables. If bhead[i] is greater than or equal to cols (the number of columns in A), then
the corresponding basis column is the articial or slack variable from row bhead[i]-cols.

129

C++ API Overview

This section documents the Gurobi C++ interface. This manual begins with a quick overview of
the classes exposed in the interface and the most important methods on those classes. It then
continues with a comprehensive presentation of all of the available classes and methods.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide
or the Example Tour. These documents provide concrete examples of how to use the classes and
methods described here.
Environments

The first step in using the Gurobi C++ interface is to create an environment object. Environments
are represented using the GRBEnv class. An environment acts as the container for all data associ-
ated with a set of optimization runs. You will generally only need one environment object in your
program.
Models

You can create one or more optimization models within an environment. Each model is repre-
sented as an object of class GRBModel. A model consists of a set of decision variables (objects of
class GRBVar), a linear or quadratic objective function on those variables (specified using GRB-
Model::setObjective), and a set of constraints on these variables (objects of class GRBConstr,
GRBQConstr, GRBSOS, or GRBGenConstr). Each variable has an associated lower bound, upper
bound, and type (continuous, binary, etc.). Each linear or quadratic constraint has an associated
sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side value. Refer to this
section for more information on variables and constraints.

Linear constraints are specified by building linear expressions (objects of class GRBLinExpr),
and then specifying relationships between these expressions (for example, requiring that one expres-
sion be equal to another). Quadratic constraints are built in a similar fashion, but using quadratic
expressions (objects of class GRBQuadExpr) instead.

An optimization model may be specified all at once, by loading the model from a file (using the
appropriate GRBModel constructor), or built incrementally, by first constructing an empty object of
class GRBModel and then subsequently calling GRBModel::addVar or GRBModel::addVars to add
additional variables, and GRBModel::addConstr, GRBModel::addQConstr, GRBModel::addSOS,
or any of the GRBModel::addGenConstrXxx methods to add constraints. Models are dynamic
entities; you can always add or remove variables or constraints.

We often refer to the class of an optimization model. A model with a linear objective function,
linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic,
the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is a
Quadratically-Constrained Program (QCP). We’ll sometimes also discuss a special case of QCP, the
Second-Order Cone Program (SOCP). If the model contains any integer variables, semi-continuous
variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the
model is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, in-
cluding Mixed Integer Linear Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed

130

http://www.gurobi.com/documentation/{7}.{5}/quick-start-guide/
http://www.gurobi.com/documentation/{7}.{5}/examples/index.html

Integer Quadratically-Constrained Programs (MIQCP), and Mixed Integer Second-Order Cone Pro-
grams (MISOCP). The Gurobi Optimizer handles all of these model classes.
Solving a Model

Once you have built a model, you can call GRBModel::optimize to compute a solution. By default,
optimize will use the concurrent optimizer to solve LP models, the barrier algorithm to solve
QP and QCP models, and the branch-and-cut algorithm to solve mixed integer models. The
solution is stored in a set of attributes of the model. These attributes can be queried using a set of
attribute query methods on the GRBModel, GRBVar, GRBConstr, GRBQConstr, GRBSOS, and
GRBGenConstr classes.

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBModel::optimize
will only perform further optimization if relevant data has changed since the model was last op-
timized. If you would like to discard previously computed solution information and restart the
optimization from scratch without changing the model, you can call GRBModel::reset.

After a MIP model has been solved, you can call GRBModel::fixedModel to compute the asso-
ciated fixed model. This model is identical to the input model, except that all integer variables are
fixed to their values in the MIP solution. In some applications, it is useful to compute information
on this continuous version of the MIP model (e.g., dual variables, sensitivity information, etc.).
Multiple Solutions and Multiple Objectives

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to
a model with a single objective function. Gurobi provides features that allow you to relax either
of these assumptions. You should refer to the section on Solution Pools for information on how to
request more than one solution, or the section on Multiple Objectives for information on how to
specify multiple objective functions and control the tradeoff between them.
Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the
infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be useful
for diagnosing the cause of an infeasibility, call GRBModel::computeIIS to compute an Irreducible
Inconsistent Subsystem (IIS). This method can be used for both continuous and MIP models, but
you should be aware that the MIP version can be quite expensive. This method populates a set of
IIS attributes.

To attempt to repair an infeasibility, call GRBModel::feasRelax to compute a feasibility relax-
ation for the model. This relaxation allows you to find a solution that minimizes the magnitude of
the constraint violation.
Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some
attributes are associated with the variables of the model, some with the constraints of the model,
and some with the model itself. To give a simple example, solving an optimization model causes
the X variable attribute to be populated. Attributes such as X that are computed by the Gurobi
optimizer cannot be modified directly by the user, while others, such as the variable lower bound
(the LB attribute) can.

Attributes are queried using GRBVar::get, GRBConstr::get, GRBQConstr::get, GRBSOS::get,
GRBGenConstr::get, or GRBModel::get, and modified using GRBVar::set, GRBConstr::set, GR-
BQConstr::set, GRBGenConstr::set, or GRBModel::set. Attributes are grouped into a set of enums

131

by type (GRB_CharAttr, GRB_DoubleAttr, GRB_IntAttr, GRB_StringAttr). The get() and
set() methods are overloaded, so the type of the attribute determines the type of the returned
value. Thus, constr.get(GRB.DoubleAttr.RHS) returns a double, while constr.get(GRB.CharAttr.Sense)
returns a char.

If you wish to retrieve attribute values for a set of variables or constraints, it is usually more
efficient to use the array methods on the associated GRBModel object. Method GRBModel::get
includes signatures that allow you to query or modify attribute values for arrays of variables or
constraints.

The full list of attributes can be found in the Attributes section.
Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to
variable bounds, constraint right-hand sides, etc.). The main exceptions are modifications to the
constraint matrix and the objective function.

The constraint matrix can be modified in a few ways. The first is to call the chgCoeffs method
on a GRBModel object to change individual matrix coefficients. This method can be used to
modify the value of an existing non-zero, to set an existing non-zero to zero, or to create a new
non-zero. The constraint matrix is also modified when you remove a variable or constraint from the
model (through the GRBModel::remove method). The non-zero values associated with the deleted
constraint or variable are removed along with the constraint or variable itself.

The model objective function can also be modified in a few ways. The easiest is to build an
expression that captures the objective function (a GRBLinExpr or GRBQuadExpr object), and
then pass that expression to method GRBModel::setObjective. If you wish to modify the objective,
you can simply call setObjective again with a new GRBLinExpr or GRBQuadExpr object.

For linear objective functions, an alternative to setObjective is to use the Obj variable attribute
to modify individual linear objective coefficients.

If your variables have piecewise-linear objectives, you can specify them using the GRBModel::setPWLObj
method. Call this method once for each relevant variable. The Gurobi simplex solver includes al-
gorithmic support for convex piecewise-linear objective functions, so for continuous models you
should see a substantial performance benefit from using this feature. To clear a previously specified
piecewise-linear objective function, simply set the Obj attribute on the corresponding variable to
0.
Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed
in a lazy fashion, meaning that modifications don’t affect the model immediately. Rather, they
are queued and applied later. If your program simply creates a model and solves it, you will
probably never notice this behavior. However, if you ask for information about the model before
your modifications have been applied, the details of the lazy update approach may be relevant to
you.

As we just noted, model modifications (bound changes, right-hand side changes, objective
changes, etc.) are placed in a queue. These queued modifications can be applied to the model
in three different ways. The first is by an explicit call to GRBModel::update. The second is by a
call to GRBModel::optimize. The third is by a call to GRBModel::write to write out the model.
The first case gives you fine-grained control over when modifications are applied. The second
and third make the assumption that you want all pending modifications to be applied before you

132

optimize your model or write it to disk.
Why does the Gurobi interface behave in this manner? There are a few reasons. The first is

that this approach makes it much easier to perform multiple modifications to a model, since the
model remains unchanged between modifications. The second is that processing model modifica-
tions can be expensive, particularly in a Compute Server environment, where modifications require
communication between machines. Thus, it is useful to have visibility into exactly when these
modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then
update, then make more modifications, then update again, etc. Updating after each individual
modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value
of the requested data from the point of the last update. If the object you tried to query didn’t
exist then, you’ll get a NOT_IN_MODEL exception instead.

The semantics of lazy updates have changed in this release. While the vast majority of programs
will continue to work unmodified, you can use the UpdateMode parameter to revert to the previous
behavior if you run into an issue.

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of
the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms,
strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters
before beginning the optimization. Parameters can be of type int, double, or string.

The simplest way to set parameters is through the GRBModel::set method on the model object.
Similarly, parameter values can be queried with GRBModel::get.

Parameters can also be set on the Gurobi environment object, using GRBEnv::set. Note that
each model gets its own copy of the environment when it is created, so parameter changes to the
original environment have no effect on existing models.

You can read a set of parameter settings from a file using GRBEnv::readParams, or write the
set of changed parameters using GRBEnv::writeParams.

We also include an automated parameter tuning tool that explores many different sets of pa-
rameter changes in order to find a set that improves performance. You can call GRBModel::tune to
invoke the tuning tool on a model. Refer to the parameter tuning tool section for more information.

The full list of Gurobi parameters can be found in the Parameters section.

Memory Management

Memory management must always be considered in C++ programs. In particular, the Gurobi
library and the user program share the same C++ heap, so the user must be aware of certain
aspects of how the Gurobi library uses this heap. The basic rules for managing memory when using
the Gurobi optimizer are as follows:

• As with other dynamically allocated C++ objects, GRBEnv or GRBModel objects should be
freed using the associated destructors. In other words, given a GRBModel object m, you should
call delete m when you are no longer using m.

• Objects that are associated with a model (e.g., GRBConstr, GRBQConstr, GRBSOS, GRB-
GenConstr, and GRBVar objects) are managed by the model. In particular, deleting a model

133

will delete all of the associated objects. Similarly, removing an object from a model (using
GRBModel::remove) will also delete the object.

• Some Gurobi methods return an array of objects or values. For example, GRBModel::addVars
returns an array of GRBVar objects. It is the user’s responsibility to free the returned array
(using delete[]). The reference manual indicates when a method returns a heap-allocated
result.

One consequence of these rules is that you must be careful not to use an object once it has been
freed. This is no doubt quite clear for environments and models, where you call the destructors
explicitly, but may be less clear for constraints and variables, which are implicitly deleted when the
associated model is deleted.
Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will
send output to the screen. A few simple controls are available for modifying the default logging
behavior. If you would like to direct output to a file as well as to the screen, specify the log file
name in the GRBEnv constructor. You can modify the LogFile parameter if you wish to redirect
the log to a different file after creating the environment object. The frequency of logging output can
be controlled with the DisplayInterval parameter, and logging can be turned off entirely with the
OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging
section.

More detailed progress monitoring can be done through the GRBCallback class. The GRB-
Model::setCallback method allows you to receive a periodic callback from the Gurobi optimizer.
You do this by sub-classing the GRBCallback abstract class, and writing your own callback()
method on this class. You can call GRBCallback::getDoubleInfo, GRBCallback::getIntInfo, GRB-
Callback::getStringInfo, or GRBCallback::getSolution from within the callback to obtain additional
information about the state of the optimization.
Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. The simplest control
callback is GRBCallback::abort, which asks the optimizer to terminate at the earliest convenient
point. Method GRBCallback::setSolution allows you to inject a feasible solution (or partial solution)
during the solution of a MIP model. Methods GRBCallback::addCut and GRBCallback::addLazy
allow you to add cutting planes and lazy constraints during a MIP optimization, respectively.
Error Handling

All of the methods in the Gurobi C++ library can throw an exception of type GRBException.
When an exception occurs, additional information on the error can be obtained by retrieving the
error code (using method GRBException::getErrorCode), or by retrieving the exception message
(using method GRBException::getMessage). The list of possible error return codes can be found
in the Error Codes section.

134

3.1 GRBEnv
Gurobi environment object. Gurobi models are always associated with an environment. You must
create an environment before can you create and populate a model. You will generally only need
a single environment object in your program.

The methods on environment objects are mainly used to manage Gurobi parameters (e.g., get,
getParamInfo, set).

GRBEnv()

Constructor for GRBEnv object. If the constructor is called with no arguments, no log file will be
written for the environment.

You have the option of constructing either a local environment, which solves Gurobi models on
the local machine, a client environment for a Gurobi compute server, which will solve Gurobi models
on a server machine, or an Instant Cloud environment, which will launch a Gurobi Cloud server
and solve models on that server. Choose the appropriate signature for the type of environment you
wish to launch.

Note that the GRBEnv constructor will check the current working directory for a file named
gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file
should be in PRM format (briefly, each line should contain a parameter name, followed by the
desired value for that parameter).

In general, you should aim to create a single Gurobi environment object in your program, even
if you plan to work with multiple models. Reusing one environment is much more efficient than
creating and destroying multiple environments.

GRBEnv GRBEnv ()
Create a Gurobi environment (with logging disabled).
Return value:

An environment object (with no associated log file).

GRBEnv GRBEnv (const string& logFileName)

Create a Gurobi environment (with logging enabled).
Arguments:

logFileName: The desired log file name.
Return value:

An environment object.

GRBEnv GRBEnv (const string& logFileName,
const string& computeserver,
int port,
const string& password,
int priority,
double timeout)

135

Create a client Gurobi environment on a compute server.
Arguments:

logFileName: The name of the log file for this environment. Pass an empty string for no
log file.

computeserver: A comma-separated list of Gurobi compute servers. You can refer to
compute server machines using their names or their IP addresses.

port: The port number used to connect to the compute server. You should pass a -1 value,
which indicates that the default port should be used, unless your server administrator has
changed our recommended port settings.

password: The password for gaining access to the specified compute servers. Pass an empty
string if no password is required.

priority: The priority of the job. Priorities must be between -100 and 100, with a default
value of 0 (by convention). Higher priority jobs are chosen from the server job queue
before lower priority jobs. A job with priority 100 runs immediately, bypassing the job
queue and ignoring the job limit on the server. You should exercise caution with priority
100 jobs, since they can severely overload a server, which can cause jobs to fail, and in
extreme cases can cause the server to crash.

timeout: Job timeout (in seconds). If the job doesn’t reach the front of the queue before the
specified timeout, the constructor will throw a JOB_REJECTED exception. Use a negative
value to indicate that the call should never timeout.

Return value:
An environment object.

GRBEnv GRBEnv (const string& logFileName,
const string& accessID,
const string& secretKey,
const string& pool)

Create a Gurobi Instant Cloud environment.
Arguments:

logfilename: The name of the log file for this environment. May be NULL (or an empty
string), in which case no log file is created.

accessID: The access ID for your Gurobi Instant Cloud license. This can be retrieved from
the Gurobi Instant Cloud website. When used in combination with your secretKey, this
allows you to launch Instant Cloud instances and submit jobs to them.

secretKey: The secret key for your Gurobi Instant Cloud license. This can be retrieved
from the Gurobi Instant Cloud website. When used in combination with your accessID,
this allows you to launch Instant Cloud instances and submit jobs to them. Note that you
should keep your secret key private.

pool: The machine pool. Machine pools allow you to create fixed configurations on the
Instant Cloud website (capturing things like type of machine, geographic region, etc.),
and then launch and share machines from client programs without having to restarte the
configuration information each time you launch a machine. May be NULL (or an empty
string), in which case your job will be launched in the default pool associated with your
cloud license.

Return value:

136

An environment object.

GRBEnv::get()

Query the value of a parameter.

double get (GRB_DoubleParam param)

Query the value of a double-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

Return value:
The current value of the requested parameter.

int get (GRB_IntParam param)

Query the value of an int-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

Return value:
The current value of the requested parameter.

const string get (GRB_StringParam param)

Query the value of a string-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

Return value:
The current value of the requested parameter.

GRBEnv::getErrorMsg()

Query the error message for the most recent exception associated with this environment.

const string getErrorMsg ()
Return value:

The error string.

137

GRBEnv::getParamInfo()

Obtain information about a parameter.

void getParamInfo (GRB_DoubleParam param,
double* valP,
double* minP,
double* maxP,
double* *defP)

Obtain detailed information about a double parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

valP: The current value of the parameter.
minP: The minimum allowed value of the parameter.
maxP: The maximum allowed value of the parameter.
defP: The default value of the parameter.

void getParamInfo (GRB_IntParam param,
int* valP,
int* minP,
int* maxP,
int* defP)

Obtain detailed information about an integer parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

valP: The current value of the parameter.
minP: The minimum allowed value of the parameter.
maxP: The maximum allowed value of the parameter.
defP: The default value of the parameter.

void getParamInfo (GRB_StringParam param,
string* valP,
string* defP)

Obtain detailed information about a string parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

valP: The current value of the parameter.
defP: The default value of the parameter.

138

GRBEnv::message()
Write a message to the console and the log file.

void message (const string& message)

Arguments:
message: Print a message to the console and to the log file. Note that this call has no effect
unless the OutputFlag parameter is set.

GRBEnv::readParams()
Read new parameter settings from a file.

Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

void readParams (const string& paramfile)

Arguments:
paramfile: Name of the file containing parameter settings. Parameters should be listed
one per line, with the parameter name first and the desired value second. For example:

Gurobi parameter file
Threads 1
MIPGap 0

Blank lines and lines that begin with the hash symbol are ignored.

GRBEnv::resetParams()
Reset all parameters to their default values.

Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

void resetParams ()

GRBEnv::set()
Set the value of a parameter.

Important notes:
Note that a model gets its own copy of the environment when it is created. Changes to the

original environment have no effect on the copy. Use GRBModel::set to change a parameter on an
existing model.

void set (GRB_DoubleParam param,
double newvalue)

139

Set the value of a double-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

newvalue: The desired new value of the parameter.

void set (GRB_IntParam param,
int newvalue)

Set the value of an int-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

newvalue: The desired new value of the parameter.

void set (GRB_StringParam param,
const string& newvalue)

Set the value of a string-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

newvalue: The desired new value of the parameter.

void set (const string& param,
const string& newvalue)

Set the value of any parameter using strings alone.
Arguments:

param: The name of the parameter being modified. Please consult the parameter section
for a complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

newvalue: The desired new value of the parameter.

GRBEnv::writeParams()
Write all non-default parameter settings to a file.

Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

void writeParams (const string& paramfile)

Arguments:
paramfile: Name of the file to which non-default parameter settings should be written.
The previous contents are overwritten.

140

3.2 GRBModel
Gurobi model object. Commonly used methods include addVar (adds a new decision variable to the
model), addConstr (adds a new constraint to the model), optimize (optimizes the current model),
and get (retrieves the value of an attribute).

GRBModel()

Constructor for GRBModel. The simplest version creates an empty model. You can then call
addVar and addConstr to populate the model with variables and constraints. The more complex
constructors can read a model from a file, or make a copy of an existing model.

GRBModel GRBModel (const GRBEnv& env)

Model constructor.
Arguments:

env: Environment for new model.
Return value:

New model object. Model initially contains no variables or constraints.

GRBModel GRBModel (const GRBEnv& env,
const string& filename)

Read a model from a file. Note that the type of the file is encoded in the file name suffix.
Valid suffixes are .mps, .rew, .lp, .rlp, .ilp, or .opb. The files can be compressed, so additional
suffixes of .zip, .gz, .bz2, or .7z are accepted.

Arguments:
env: Environment for new model.
modelname: Name of the file containing the model.

Return value:
New model object.

GRBModel GRBModel (const GRBModel& model)

Create a copy of an existing model.
Arguments:

model: Model to copy.
Return value:

New model object. Model is a clone of the input model.

GRBModel::addConstr()

Add a single linear constraint to a model. Multiple signatures are available.

141

GRBConstr addConstr (const GRBLinExpr& lhsExpr,
char sense,
const GRBLinExpr& rhsExpr,
string name="")

Add a single linear constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).

rhsExpr: Right-hand side expression for new linear constraint.
name (optional): Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (const GRBLinExpr& lhsExpr,
char sense,
GRBVar rhsVar,
string name="")

Add a single linear constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).

rhsVar: Right-hand side variable for new linear constraint.
name (optional): Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (const GRBLinExpr& lhsExpr,
char sense,
double rhsVal,
string name="")

Add a single linear constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).

rhsVal: Right-hand side value for new linear constraint.
name (optional): Name for new constraint.

Return value:
New constraint object.

142

GRBConstr addConstr (GRBVar lhsVar,
char sense,
GRBVar rhsVar,
string name="")

Add a single linear constraint to a model.
Arguments:

lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).

rhsVar: Right-hand side variable for new linear constraint.
name (optional): Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (GRBVar lhsVar,
char sense,
double rhsVal,
string name="")

Add a single linear constraint to a model.
Arguments:

lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).

rhsVal: Right-hand side value for new linear constraint.
name (optional): Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (GRBTempConstr& tc,
string name="")

Add a single linear constraint to a model.
Arguments:

tc: Temporary constraint object, created using an overloaded comparison operator. See
GRBTempConstr for more information.

name (optional): Name for new constraint.
Return value:

New constraint object.

GRBModel::addConstrs()

Add new linear constraints to a model.
We recommend that you build your model one constraint at a time (using addConstr), since it

introduces no significant overhead and we find that it produces simpler code. Feel free to use these
methods if you disagree, though.

143

GRBConstr* addConstrs (int count)

Add count new linear constraints to a model.
Arguments:

count: Number of constraints to add to the model. The new constraints are all of the form
0 <= 0.

Return value:
Array of new constraint objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBConstr* addConstrs (const GRBLinExpr* lhsExprs,
const char* senses,
const double* rhsVals,
const string* names,
int count)

Add count new linear constraints to a model.
Arguments:

lhsExprs: Left-hand side expressions for the new linear constraints.
senses: Senses for new linear constraints (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).

rhsVals: Right-hand side values for the new linear constraints.
names: Names for new constraints.
count: Number of constraints to add.

Return value:
Array of new constraint objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBModel::addGenConstrXxx()
Each of the functions described below adds a new general constraint to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types:
variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and
SOS constraints. These are typically treated directly by the underlying solver (although not always),
and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general
constraints. These are typically not treated directly by the solver. Rather, they are transformed
by presolve into mathematically equivalent sets of constraints (and variables), chosen from among
the fundamental types listed above. These general constraints are provided as a convenience to
users. If such constraints appear in your model, but if you prefer to reformulate them yourself
using fundamental constraint types instead, you can certainly do so. However, note that Gurobi
can sometimes exploit information contained in the other constraints in the model to build a more
efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

• MAX (addGenConstrMax): set a decision variable equal to the maximum value from among
a set of decision variables

144

• MIN (addGenConstrMin): set a decision variable equal to the minimum value from among a
set of decision variables

• ABS (addGenConstrAbs): set a decision variable equal to the absolute value of some other
decision variable

• AND (addGenConstrAnd): set a binary variable equal to one if and only if all of a set of
binary decision variables are equal to one

• OR (addGenConstrOr): set a binary variable equal to one if and only if at least one variable
out of a set of binary decision variables is equal to one

• INDICATOR (addGenConstrIndicator): a given binary variable may only take a certain value
if a given linear constraint is satisfied

Please refer to this section for additional details on general constraints.

GRBModel::addGenConstrMax()

Add a new general constraint of type GRB_GENCONSTR_MAX to a model.
A MAX constraint r = max{x1, . . . , xn, c} states that the resultant variable r should be equal

to the maximum of the operand variables x1, . . . , xn and the constant c.

GRBGenConstr addGenConstrMax (GRBVar resvar,
const GRBVar* vars,
int len,
double constant=-GRB_INFINITY,
string name="")

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
constant (optional): The additional constant operand of the new constraint.
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrMin()

Add a new general constraint of type GRB_GENCONSTR_MIN to a model.
A MIN constraint r = min{x1, . . . , xn, c} states that the resultant variable r should be equal to

the minimum of the operand variables x1, . . . , xn and the constant c.

GRBGenConstr addGenConstrMin (GRBVar resvar,
const GRBVar* vars,
int len,
double constant=GRB_INFINITY,
string name="")

145

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
constant (optional): The additional constant operand of the new constraint.
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrAbs()

Add a new general constraint of type GRB_GENCONSTR_ABS to a model.
An ABS constraint r = abs{x} states that the resultant variable r should be equal to the

absolute value of the argument variable x.

GRBGenConstr addGenConstrAbs (GRBVar resvar,
GRBVar argvar,
string name="")

Arguments:
resvar: The resultant variable of the new constraint.
argvar: The argument variable of the new constraint.
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrAnd()

Add a new general constraint of type GRB_GENCONSTR_AND to a model.
An AND constraint r = and{x1, . . . , xn} states that the binary resultant variable r should be 1

if and only if all of the operand variables x1, . . . , xn are equal to 1. If any of the operand variables
is 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary; indepen-
dently of how they were created.

GRBGenConstr addGenConstrAnd (GRBVar resvar,
const GRBVar* vars,
int len,
string name="")

Arguments:
resvar: The resultant binary variable of the new constraint.
vars: Array of binary variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
name (optional): Name for the new general constraint.

Return value:
New general constraint.

146

GRBModel::addGenConstrOr()

Add a new general constraint of type GRB_GENCONSTR_OR to a model.
An OR constraint r = or{x1, . . . , xn} states that the binary resultant variable r should be 1 if

and only if any of the operand variables x1, . . . , xn is equal to 1. If all operand variables are 0, then
the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary; indepen-
dently of how they were created.

GRBGenConstr addGenConstrOr (GRBVar resvar,
const GRBVar* vars,
int len,
string name="")

Arguments:
resvar: The resultant binary variable of the new constraint.
vars: Array of binary variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrIndicator()

Add a new general constraint of type GRB_GENCONSTR_INDICATOR to a model.
An INDICATOR constraint z = f → aTx ≤ b states that if the binary indicator variable z is

equal to f ∈ {0, 1}, then the linear constraint aTx ≤ b should hold. On the other hand, if z = 1−f ,
the linear constraint may be violated. The sense of the linear constraint can also be specified to be
= or ≥.

Note that the indicator variable z of a constraint will be forced to be binary; independently of
how it was created.

Multiple signatures are available.

GRBGenConstr addGenConstrIndicator (GRBVar binvar,
int binval,
const GRBLinExpr& expr,
char sense,
double rhs,
string name="")

Arguments:
binvar: The binary indicator variable.
binval: The value for the binary indicator variable that would force the linear constraint
to be satisfied (0 or 1).

expr: Left-hand side expression for the linear constraint triggered by the indicator.
sense: Sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

147

rhs: Right-hand-side value for the linear constraint.
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBGenConstr addGenConstrIndicator (GRBVar binvar,
int binval,
const GRBTempConstr& constr,
string name="")

Arguments:
binvar: The binary indicator variable.
binval: The value for the binary indicator variable that would force the linear constraint
to be satisfied (0 or 1).

constr: Temporary constraint object defining the linear constraint that is triggered by the
indicator. The temporary constraint object is created using an overloaded comparison
operator. See GRBTempConstr for more information.

name (optional): Name for the new general constraint.
Return value:

New general constraint.

GRBModel::addQConstr()

Add a quadratic constraint to a model. Multiple signatures are available.
Important note: the algorithms that Gurobi uses to solve quadratically constrained problems

can only handle certain types of quadratic constraints. Constraints of the following forms are always
accepted:

• xTQx+ qTx ≤ b, where Q is Positive Semi-Definite (PSD)

• xTx ≤ y2, where x is a vector of variables, and y is a non-negative variable (a Second-Order
Cone)

• xTx ≤ yz, where x is a vector of variables, and y and z are non-negative variables (a rotated
Second-Order Cone)

If you add a constraint that isn’t in one of these forms (and Gurobi presolve is unable to transform
the constraint into one of these forms), you’ll get an error when you try to solve the model.
Constraints where the quadratic terms only involve binary variables will always be transformed
into one of these forms.

GRBQConstr addQConstr (const GRBQuadExpr& lhsExpr,
char sense,
const GRBQuadExpr& rhsExpr,
string name="")

Add a quadratic constraint to a model.
Arguments:

148

lhsExpr: Left-hand side expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB_LESS_EQUAL or GRB_GREATER_EQUAL).
rhsExpr: Right-hand side expression for new quadratic constraint.
name (optional): Name for new constraint.

Return value:
New quadratic constraint object.

GRBQConstr addQConstr (const GRBQuadExpr& lhsExpr,
char sense,
GRBVar rhsVar,
string name="")

Add a quadratic constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB_LESS_EQUAL or GRB_GREATER_EQUAL).
rhsVar: Right-hand side variable for new quadratic constraint.
name (optional): Name for new constraint.

Return value:
New quadratic constraint object.

GRBQConstr addQConstr (GRBTempConstr& tc,
string name="")

Add a quadratic constraint to a model.
Arguments:

tc: Temporary constraint object, created using an overloaded comparison operator. See
GRBTempConstr for more information.

name (optional): Name for new constraint.
Return value:

New quadratic constraint object.

GRBModel::addRange()
Add a single range constraint to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution.

Note that range constraints are stored internally as equality constraints. We add an extra
variable to the model to capture the range information. Thus, the Sense attribute on a range
constraint will always be GRB_EQUAL.

GRBConstr addRange (const GRBLinExpr& expr,
double lower,
double upper,
string name="")

Arguments:
expr: Linear expression for new range constraint.

149

lower: Lower bound for linear expression.
upper: Upper bound for linear expression.
name (optional): Name for new constraint.

Return value:
New constraint object.

GRBModel::addRanges()

Add new range constraints to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution.

GRBConstr* addRanges (const GRBLinExpr* exprs,
const double* lower,
const double* upper,
const string* names,
int count)

Arguments:
exprs: Linear expressions for the new range constraints.
lower: Lower bounds for linear expressions.
upper: Upper bounds for linear expressions.
name: Names for new range constraints.
count: Number of range constraints to add.

Return value:
Array of new constraint objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBModel::addSOS()

Add an SOS constraint to the model. Please refer to this section for details on SOS constraints.

GRBSOS addSOS (const GRBVar* vars,
const double* weights,
int len,
int type)

Arguments:
vars: Array of variables that participate in the SOS constraint.
weights: Weights for the variables in the SOS constraint.
len: Number of members in the new SOS set (length of vars and weights arrays).
type: SOS type (can be GRB_SOS_TYPE1 or GRB_SOS_TYPE2).

Return value:
New SOS constraint.

150

GRBModel::addVar()

Add a single decision variable to a model.

GRBVar addVar (double lb,
double ub,
double obj,
char type,
string name="")

Add a variable; non-zero entries will be added later.
Arguments:

lb: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_-
SEMICONT, or GRB_SEMIINT).

name (optional): Name for new variable.
Return value:

New variable object.

GRBVar addVar (double lb,
double ub,
double obj,
char type,
int numnz,
const GRBConstr* constrs,
const double* coeffs,
string name="")

Add a variable, and the associated non-zero coefficients.
Arguments:

lb: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_-
SEMICONT, or GRB_SEMIINT).

numnz: Number of constraints in which this new variable participates.
constrs: Array of constraints in which the variable participates.
coeffs: Array of coefficients for each constraint in which the variable participates.
name (optional): Name for new variable.

Return value:
New variable object.

151

GRBVar addVar (double lb,
double ub,
double obj,
char type,
const GRBColumn& col,
string name="")

Add a variable, and the associated non-zero coefficients.
Arguments:

lb: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_-
SEMICONT, or GRB_SEMIINT).

col: GRBColumn object for specifying a set of constraints to which new variable belongs.
name (optional): Name for new variable.

Return value:
New variable object.

GRBModel::addVars()
Add new decision variables to a model.

GRBVar* addVars (int count,
char type=GRB_CONTINUOUS)

Add count new decision variables to a model. All associated attributes take their default values,
except the variable type, which is specified as an argument.

Arguments:
count: Number of variables to add.
type (optional): Variable type for new variables (GRB_CONTINUOUS, GRB_BINARY, GRB_-
INTEGER, GRB_SEMICONT, or GRB_SEMIINT).

Return value:
Array of new variable objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBVar* addVars (const double* lb,
const double* ub,
const double* obj,
const char* type,
const string* names,
int count)

Add count new decision variables to a model. This signature allows you to use arrays to hold
the various variable attributes (lower bound, upper bound, etc.).

Arguments:
lb: Lower bounds for new variables. Can be NULL, in which case the variables get lower
bounds of 0.0.

152

ub: Upper bounds for new variables. Can be NULL, in which case the variables get infinite
upper bounds.

obj: Objective coefficients for new variables. Can be NULL, in which case the variables get
objective coefficients of 0.0.

type: Variable types for new variables (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_-
SEMICONT, or GRB_SEMIINT). Can be NULL, in which case the variables are assumed to be
continuous.

names: Names for new variables. Can be NULL, in which case all variables are given default
names.

count: The number of variables to add.
Return value:

Array of new variable objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBVar* addVars (const double* lb,
const double* ub,
const double* obj,
const char* type,
const string* names,
const GRBColumn* cols,
int count)

Add new decision variables to a model. This signature allows you to specify the set of constraints
to which each new variable belongs using an array of GRBColumn objects.

Arguments:
lb: Lower bounds for new variables. Can be NULL, in which case the variables get lower
bounds of 0.0.

ub: Upper bounds for new variables. Can be NULL, in which case the variables get infinite
upper bounds.

obj: Objective coefficients for new variables. Can be NULL, in which case the variables get
objective coefficients of 0.0.

type: Variable types for new variables (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_-
SEMICONT, or GRB_SEMIINT). Can be NULL, in which case the variables are assumed to be
continuous.

names: Names for new variables. Can be NULL, in which case all variables are given default
names.

cols: GRBColumn objects for specifying a set of constraints to which each new column
belongs.

count: The number of variables to add.
Return value:

Array of new variable objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBModel::chgCoeff()
Change one coefficient in the model. The desired change is captured using a GRBVar object, a
GRBConstr object, and a desired coefficient for the specified variable in the specified constraint. If

153

you make multiple changes to the same coefficient, the last one will be applied.
Note that, due to our lazy update approach, the change won’t actually take effect until you

update the model (using GRBModel::update), optimize the model (using GRBModel::optimize),
or write the model to disk (using GRBModel::write).

void chgCoeff (GRBConstr constr,
GRBVar var,
double newvalue)

Arguments:
constr: Constraint for coefficient to be changed.
var: Variable for coefficient to be changed.
newvalue: Desired new value for coefficient.

GRBModel::chgCoeffs()
Change a list of coefficients in the model. Each desired change is captured using a GRBVar object,
a GRBConstr object, and a desired coefficient for the specified variable in the specified constraint.
The entries in the input arrays each correspond to a single desired coefficient change. If you make
multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you
update the model (using GRBModel::update), optimize the model (using GRBModel::optimize),
or write the model to disk (using GRBModel::write).

void chgCoeffs (const GRBConstr* constrs,
const GRBVar* vars,
const double* vals,
int len)

Arguments:
constrs: Constraints for coefficients to be changed.
vars: Variables for coefficients to be changed.
vals: Desired new values for coefficients.
len: Number of coefficients to change (length of vars, constrs, and vals arrays).

GRBModel::computeIIS()
Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and
variable bounds with the following properties:

• the subsystem represented by the IIS is infeasible, and

• if any of the constraints or bounds of the IIS is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily
one of minimal cardinality. Thus, there may exist other IISs with fewer constraints or bounds.

If an IIS computation is interrupted before completion, Gurobi will internally store the best
available IIS found so far.

154

This method populates the IISCONSTR, IISQCONSTR, and IISGENCONSTR constraint attributes,
the IISSOS SOS attribute, and the IISLB, and IISUB variable attributes. You can also obtain
information about the results of the IIS computation by writing a .ilp format file (see GRB-
Model::write). This file contains only the IIS from the original model.

Note that this method can be used to compute IISs for both continuous and MIP models.

void computeIIS ()

GRBModel::discardConcurrentEnvs()

Discard concurrent environments for a model.
The concurrent environments created by getConcurrentEnv will be used by every subsequent

call to the concurrent optimizer until the concurrent environments are discarded.

void discardConcurrentEnvs ()

GRBModel::discardMultiobjEnvs()

Discard all multi-objective environments associated with the model, thus restoring multi objective
optimization to its default behavior.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple
objective functions and control the tradeoff between them.

Use getMultiobjEnv to create a multi-objective environment.

void discardMultiobjEnvs ()

GRBModel::feasRelax()

Modifies the GRBModel object to create a feasibility relaxation. Note that you need to call optimize
on the result to compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the
solution violates the bounds and linear constraints of the original model. This method provides a
number of options for specifying the relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the
sum of the weighted magnitudes of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the cost per unit violation in the lower bounds, upper bounds, and linear
constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the
weighted sum of the squares of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the coefficients on the squares of the lower bound, upper bound, and
linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the
weighted count of bound and constraint violations. The lbpen, ubpen, and rhspen arguments
specify the cost of violating a lower bound, upper bound, and linear constraint, respectively.

155

To give an example, if a constraint with rhspen value p is violated by 2.0, it would con-
tribute 2*p to the feasibility relaxation objective for relaxobjtype=0, it would contribute 2*2*p
for relaxobjtype=1, and it would contribute p for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is
created. If minrelax=false, optimizing the returned model gives a solution that minimizes the
cost of the violation. If minrelax=true, optimizing the returned model finds a solution that
minimizes the original objective, but only from among those solutions that minimize the cost of the
violation. Note that feasRelax must solve an optimization problem to find the minimum possible
relaxation when minrelax=true, which can be quite expensive.

There are two signatures for this method. The more complex one takes a list of variables
and constraints, as well as penalties associated with relaxing the corresponding lower bounds,
upper bounds, and constraints. If a variable or constraint is not included in one of these lists,
the associated bounds or constraints may not be violated. The simpler signature takes a pair of
boolean arguments, vrelax and crelax, that indicate whether variable bounds and/or constraints
can be violated. If vrelax/crelax is true, then every bound/constraint is allowed to be violated,
respectively, and the associated cost is 1.0.

Note that this is a destructive method: it modifies the model on which it is invoked. If you
don’t want to modify your original model, use the GRBModel constructor to create a copy before
invoking this method.

double feasRelax (int relaxobjtype,
bool minrelax,
int vlen,
const GRBVar* vars,
const double* lbpen,
const double* ubpen,
int clen,
const GRBConstr* constr,
const double* rhspen)

Create a feasibility relaxation model.
Arguments:

relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vlen: The length of the list of variables whose bounds are allowed to be violated.
vars: Variables whose bounds are allowed to be violated.
lbpen: Penalty for violating a variable lower bound. One entry for each variable in argument
vars.

ubpen: Penalty for violating a variable upper bound. One entry for each variable in argument
vars.

clen: The length of the list of linear contraints that are allowed to be violated.
constr: Linear constraints that are allowed to be violated.
rhspen: Penalty for violating a linear constraint. One entry for each variable in argument
constr.

Return value:

156

Zero if minrelax is false. If minrelax is true, the return value is the objective value for
the relaxation performed. If the value is less than 0, it indicates that the method failed to
create the feasibility relaxation.

double feasRelax (int relaxobjtype,
bool minrelax,
bool vrelax,
bool crelax)

Simplified method for creating a feasibility relaxation model.
Arguments:

relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vrelax: Indicates whether variable bounds can be relaxed (with a cost of 1.0 for any viola-
tions.

crelax: Indicates whether linear constraints can be relaxed (with a cost of 1.0 for any
violations.

Return value:
Zero if minrelax is false. If minrelax is true, the return value is the objective value for
the relaxation performed. If the value is less than 0, it indicates that the method failed to
create the feasibility relaxation.

GRBModel::fixedModel()

Create the fixed model associated with a MIP model. The MIP model must have a solution loaded
(e.g., after a call to the optimize method). In the fixed model, each integer variable is fixed to the
value that variable takes in the MIP solution.

GRBModel fixedModel ()
Return value:

Fixed model associated with calling object.

GRBModel::get()

Query the value(s) of a parameter or attribute. Use this method for parameters, for scalar model
attributes, or for arrays of constraint or variable attributes.

double get (GRB_DoubleParam param)

Query the value of a double-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

157

int get (GRB_IntParam param)

Query the value of an int-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

string get (GRB_StringParam param)

Query the value of a string-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

char* get (GRB_CharAttr attr,
const GRBVar* vars,
int count)

Query a char-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.

Return value:
The current values of the requested attribute for each input variable. Note that the result
is heap-allocated, and must be returned to the heap by the user.

char* get (GRB_CharAttr attr,
const GRBConstr* constrs,
int count)

Query a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input constraint. Note that the result
is heap-allocated, and must be returned to the heap by the user.

char* get (GRB_CharAttr attr,
const GRBQConstr* qconstrs,
int count)

158

Query a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of quadratic constraints whose attribute values are being queried.
count: The number of quadratic constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input quadratic constraint. Note that
the result is heap-allocated, and must be returned to the heap by the user.

double get (GRB_DoubleAttr attr)

Query the value of a double-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double* get (GRB_DoubleAttr attr,
const GRBVar* vars,
int count)

Query a double-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.

Return value:
The current values of the requested attribute for each input variable. Note that the result
is heap-allocated, and must be returned to the heap by the user.

double* get (GRB_DoubleAttr attr,
const GRBConstr* constrs,
int count)

Query a double-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input constraint. Note that the result
is heap-allocated, and must be returned to the heap by the user.

double* get (GRB_DoubleAttr attr,
const GRBQConstr* qconstrs,
int count)

159

Query a double-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of quadratic constraints whose attribute values are being queried.
count: The number of quadratic constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input quadratic constraint. Note that
the result is heap-allocated, and must be returned to the heap by the user.

int get (GRB_IntAttr attr)

Query the value of an int-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int* get (GRB_IntAttr attr,
const GRBVar* vars,
int count)

Query an int-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.

Return value:
The current values of the requested attribute for each input variable. Note that the result
is heap-allocated, and must be returned to the heap by the user.

int* get (GRB_IntAttr attr,
const GRBConstr* constrs,
int count)

Query an int-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input constraint. Note that the result
is heap-allocated, and must be returned to the heap by the user.

string get (GRB_StringAttr attr)

160

Query the value of a string-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

string* get (GRB_StringAttr attr,
const GRBVar* vars,
int count)

Query a string-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.

Return value:
The current values of the requested attribute for each input variable. Note that the result
is heap-allocated, and must be returned to the heap by the user.

string* get (GRB_StringAttr attr,
const GRBConstr* constrs,
int count)

Query a string-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input constraint. Note that the result
is heap-allocated, and must be returned to the heap by the user.

string* get (GRB_StringAttr attr,
const GRBQConstr* qconstrs,
int count)

Query a string-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of quadratic constraints whose attribute values are being queried.
count: The number of quadratic constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input quadratic constraint. Note that
the result is heap-allocated, and must be returned to the heap by the user.

161

GRBModel::getCoeff()
Query the coefficient of variable var in linear constraint constr (note that the result can be zero).

double getCoeff (GRBConstr constr,
GRBVar var)

Arguments:
constr: The requested constraint.
var: The requested variable.

Return value:
The current value of the requested coefficient.

GRBModel::getCol()
Retrieve the list of constraints in which a variable participates, and the associated coefficients. The
result is returned as a GRBColumn object.

GRBColumn getCol (GRBVar var)

Arguments:
var: The variable of interest.

Return value:
A GRBColumn object that captures the set of constraints in which the variable participates.

GRBModel::getConcurrentEnv()
Create/retrieve a concurrent environment for a model.

This method provides fine-grained control over the concurrent optimizer. By creating your
own concurrent environments and setting appropriate parameters on these environments (e.g., the
Method parameter), you can control exactly which strategies the concurrent optimizer employs.
For example, if you create two concurrent environments, and set Method to primal simplex for
one and dual simplex for the other, subsequent concurrent optimizer runs will use the two simplex
algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with
num=0. For example, if you want three concurrent environments, they must be numbered 0, 1,
and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent
optimization on that model. Use discardConcurrentEnvs to revert back to default concurrent
optimizer behavior.

GRBEnv getConcurrentEnv (int num)

Arguments:
num: The concurrent environment number.

Return value:
The concurrent environment for the model.

162

GRBModel::getConstrByName()

Retrieve a linear constraint from its name. If multiple linear constraints have the same name, this
method chooses one arbitrarily.

GRBConstr getConstrByName (const string& name)

Arguments:
name: The name of the desired linear constraint.

Return value:
The requested linear constraint.

GRBModel::getConstrs()

Retrieve an array of all linear constraints in the model.

GRBConstr* getConstrs ()
Return value:

An array of all linear constraints in the model. Note that this array is heap-allocated, and
must be returned to the heap by the user.

GRBModel::getEnv()

Query the environment associated with the model. Note that each model makes its own copy of
the environment when it is created. To change parameters for a model, for example, you should
use this method to obtain the appropriate environment object.

GRBEnv getEnv ()
Return value:

The environment for the model.

GRBModel::getGenConstrMax()

Retrieve the data of a general constraint of type MAX. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in lenP. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrMax for a description of the semantics of this general constraint type.

163

void getGenConstrMax (GRBGenConstr genc,
GRBVar* resvarP,
GRBVar* vars,
int* lenP,
double* constantP)

Arguments:
genc: The index of the general constraint.

Any combination of the following four arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.
constantP: Pointer to store the additional constant operand of the constraint.

GRBModel::getGenConstrMin()

Retrieve the data of a general constraint of type MIN. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in lenP. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrMin for a description of the semantics of this general constraint type.

void getGenConstrMin (GRBGenConstr genc,
GRBVar* resvarP,
GRBVar* vars,
int* lenP,
double* constantP)

Arguments:
genc: The index of the general constraint.

Any combination of the following four arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.
constantP: Pointer to store the additional constant operand of the constraint.

GRBModel::getGenConstrAbs()

Retrieve the data of a general constraint of type ABS. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

See also addGenConstrAbs for a description of the semantics of this general constraint type.

164

void getGenConstrAbs (GRBGenConstr genc,
GRBVar* resvarP,
GRBVar* argvarP)

Arguments:
genc: The index of the general constraint.

Any combination of the following two arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
argvarP: Pointer to store the argument variable of the constraint.

GRBModel::getGenConstrAnd()
Retrieve the data of a general constraint of type AND. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in lenP. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrAnd for a description of the semantics of this general constraint type.

void getGenConstrAnd (GRBGenConstr genc,
GRBVar* resvarP,
GRBVar* vars,
int* lenP)

Arguments:
genc: The index of the general constraint.

Any combination of the following three arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.

GRBModel::getGenConstrOr()
Retrieve the data of a general constraint of type OR. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in lenP. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrOr for a description of the semantics of this general constraint type.

void getGenConstrOr (GRBGenConstr genc,
GRBVar* resvarP,
GRBVar* vars,
int* lenP)

165

Arguments:
genc: The index of the general constraint.

Any combination of the following three arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.

GRBModel::getGenConstrIndicator()

Retrieve the data of a general constraint of type INDICATOR. Calling this function for a general
constraint of different type leads to an exception. You can query the GenConstrType attribute to
determine the type of the general constraint.

See also addGenConstrIndicator for a description of the semantics of this general constraint
type.

void getGenConstrIndicator (GRBGenConstr genc,
GRBVar* binvarP,
int* binvalP,
GRBLinExpr* exprP,
char* senseP,
double* rhsP)

Arguments:
genc: The index of the general constraint.

Any combination of the following five arguments can be NULL.
binvarP: Pointer to store the binary indicator variable of the constraint.
binvalP: Pointer to store the value that the indicator variable has to take in order to trigger
the linear constraint.

exprP: Pointer to a GRBLinExpr object to store the left-hand-side expression of the linear
constraint that is triggered by the indicator.

senseP: Pointer to store the sense for the linear constraint. Options are GRB_LESS_EQUAL,
GRB_EQUAL, or GRB_GREATER_EQUAL.

rhsP: Pointer to store the right-hand-side value for the linear constraint.

GRBModel::getGenConstrs()

Retrieve an array of all general constraints in the model.

GRBGenConstr* getGenConstrs ()
Return value:

An array of all general constraints in the model. Note that this array is heap-allocated, and
must be returned to the heap by the user.

166

GRBModel::getMultiobjEnv()

Create/retrieve a multi-objective environment for the objective with the given index. This envi-
ronment enables fine-grained control over the multi-objective optimization process. Specifically, by
changing parameters on this environment, you modify the behavior of the optimization that occurs
during the corresponding pass of the multi-objective optimization.

Each multi-objective environment starts with a copy of the current model environment.
Please refer to the discussion of Multiple Objectives for information on how to specify multiple

objective functions and control the tradeoff between them.
Use discardMultiobjEnvs to discard multi-objective environments and return to standard be-

havior.

GRBEnv getMultiobjEnv (int index)

Arguments:
index: The objective index.

Return value:
The multi-objective environment for the model.

GRBModel::getObjective()

Retrieve the optimization objective(s).

GRBQuadExpr getObjective ()
Retrieve the optimization objective.
Note that the constant and linear portions of the objective can also be retrieved using the

ObjCon and Obj attributes.
Return value:

The model objective.

GRBLinExpr getObjective (int index)

Retrieve an alternative optimization objective. Alternative objectives will always be linear. You
can also use this routine to retrieve the primary objective (using index = 0), but you will get an
exception if the primary objective contains quadratic terms.

Please refer to the discussion of Multiple Objectives for more information on the use of alter-
native objectives.

Note that alterative objectives can also be retrieved using the ObjNCon and ObjN attributes.
Arguments:

index: The index for the requested alternative objective.
Return value:

The requested alternate objective.

167

GRBModel::getPWLObj()

Retrieve the piecewise-linear objective function for a variable. The return value gives the number
of points that define the function, and the x and y arguments give the coordinates of the points,
respectively. The x and y arguments must be large enough to hold the result. Call this method
with NULL values for x and y if you just want the number of points.

Refer to the description of setPWLObj for additional information on what the values in x and
y mean.

int getPWLObj (GRBVar var,
double[] x,
double[] y)

Arguments:
var: The variable whose objective function is being retrieved.
x: The x values for the points that define the piecewise-linear function. These will always
be in non-decreasing order.

y: The y values for the points that define the piecewise-linear function.
Return value:

The number of points that define the piecewise-linear objective function.

GRBModel::getQCRow()

Retrieve the left-hand side expression from a quadratic constraint. The result is returned as a
GRBQuadExpr object.

GRBQuadExpr getQCRow (GRBQConstr qconstr)

Arguments:
qconstr: The quadratic constraint of interest.

Return value:
A GRBQuadExpr object that captures the left-hand side of the quadratic constraint.

GRBModel::getQConstrs()

Retrieve an array of all quadratic constraints in the model.

GRBQConstr* getQConstrs ()
Return value:

An array of all quadratic constraints in the model. Note that this array is heap-allocated,
and must be returned to the heap by the user.

168

GRBModel::getRow()

Retrieve a list of variables that participate in a constraint, and the associated coefficients. The
result is returned as a GRBLinExpr object.

GRBLinExpr getRow (GRBConstr constr)

Arguments:
constr: The constraint of interest.

Return value:
A GRBLinExpr object that captures the set of variables that participate in the constraint.

GRBModel::getSOS()

Retrieve the list of variables that participate in an SOS constraint, and the associated coefficients.
The return value is the length of this list. If you would like to allocate space for the result before
retrieving the result, call the method first with NULL array arguments to determine the appropriate
array lengths.

int getSOS (GRBSOS sos,
GRBVar* vars,
double* weights,
int* typeP)

Arguments:
sos: The SOS set of interest.
vars: A list of variables that participate in sos.
weights: The SOS weights for each participating variable.
typeP: The type of the SOS set (either GRB_SOS_TYPE1 or GRB_SOS_TYPE2).

Return value:
The length of the result arrays.

GRBModel::getSOSs()

Retrieve an array of all SOS constraints in the model.

GRBSOS* getSOSs ()
Return value:

An array of all SOS constraints in the model. Note that this array is heap-allocated, and
must be returned to the heap by the user.

169

GRBModel::getTuneResult()
Use this method to retrieve the results of a previous tune call. Calling this method with argument
n causes tuned parameter set n to be copied into the model. Parameter sets are stored in order of
decreasing quality, with parameter set 0 being the best. The number of available sets is stored in
attribute TuneResultCount.

Once you have retrieved a tuning result, you can call optimize to use these parameter settings
to optimize the model, or write to write the changed parameters to a .prm file.

Please refer to the parameter tuning section for details on the tuning tool.

void getTuneResult (int n)

n: The index of the tuning result to retrieve. The best result is available as index 0. The
number of stored results is available in attribute TuneResultCount.

GRBModel::getVarByName()
Retrieve a variable from its name. If multiple variables have the same name, this method chooses
one arbitrarily.

GRBVar getVarByName (const string& name)

Arguments:
name: The name of the desired variable.

Return value:
The requested variable.

GRBModel::getVars()
Retrieve an array of all variables in the model.

GRBVar* getVars ()
Return value:

An array of all variables in the model. Note that this array is heap-allocated, and must be
returned to the heap by the user.

GRBModel::optimize()
Optimize the model. The algorithm used for the optimization depends on the model type (simplex
or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful completion,
this method will populate the solution related attributes of the model. See the Attributes section
for more information on attributes.

Please consult this section for a discussion of some of the practical issues associated with solving
a precisely defined mathematical model using finite-precision floating-point arithmetic.

Note that this method will process all pending model modifications.

170

void optimize ()

GRBModel::optimizeasync()
Optimize a model asynchronously. This routine returns immediately. Your program can perform
other computations while optimization proceeds in the background. To check the state of the
asynchronous optimization, query the Status attribute for the model. A value of IN_PROGRESS
indicates that the optimization has not yet completed. When you are done with your foreground
tasks, you must call sync to sync your foreground program with the asynchronous optimization
task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in
the background is severely limited. Specifically, you can only perform attribute queries, and only
for a few attributes (listed below). Any other calls on the running model, or on any other models that
were built within the same Gurobi environment, will fail with error code OPTIMIZATION_IN_PROGRESS.

Note that there are no such restrictions on models built in other environments. Thus, for
example, you could create multiple environments, and then have a single foreground program
launch multiple simultaneous asynchronous optimizations, each in its own environment.

As already noted, you are allowed to query the value of the Status attribute while an asyn-
chronous optimization is in progress. The other attributes that can be queried are: ObjVal, Ob-
jBound, IterCount, NodeCount, and BarIterCount. In each case, the returned value reflects progress
in the optimization to that point. Any attempt to query the value of an attribute not on this list
will return an OPTIMIZATION_IN_PROGRESS error.

void optimizeasync ()

GRBModel::presolve()
Perform presolve on a model.

GRBModel presolve ()
Return value:

Presolved version of original model.

GRBModel::read()
This method is the general entry point for importing data from a file into a model. It can be used
to read basis files for continuous models, start vectors for MIP models, or parameter settings. The
type of data read is determined by the file suffix. File formats are described in the File Format
section.

Note that this is not the method to use if you want to read a new model from a file. For that,
use the GRBModel constructor. One variant of the constructor takes the name of the file that
contains the new model as its argument.

void read (const string& filename)

171

Arguments:
filename: Name of the file to read. The suffix on the file must be either .bas (for an LP
basis), .mst or .sol (for a MIP start), .hnt (for MIP hints), .ord (for a priority order),
or .prm (for a parameter file). The suffix may optionally be followed by .zip, .gz, .bz2,
or .7z.

GRBModel::remove()

Remove a variable, constraint, or SOS from a model.

void remove (GRBConstr constr)

Remove a linear constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel::update), optimize
the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

Arguments:
constr: The linear constraint to remove.

void remove (GRBGenConstr genconstr)

Remove a general constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel::update), optimize
the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

Arguments:
genconstr: The general constraint to remove.

void remove (GRBQConstr qconstr)

Remove a quadratic constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel::update), optimize
the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

Arguments:
qconstr: The quadratic constraint to remove.

void remove (GRBSOS sos)

Remove an SOS constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel::update), optimize
the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

Arguments:
sos: The SOS constraint to remove.

172

void remove (GRBVar var)

Remove a variable from the model. Note that, due to our lazy update approach, the change
won’t actually take effect until you update the model (using GRBModel::update), optimize the
model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

Arguments:
var: The variable to remove.

GRBModel::reset()
Reset the model to an unsolved state, discarding any previously computed solution information.

void reset ()

GRBModel::setCallback()
Set the callback object for a model. The callback() method on this object will be called period-
ically from the Gurobi solver. You will have the opportunity to obtain more detailed information
about the state of the optimization from this callback. See the documentation for GRBCallback
for additional information.

Note that a model can only have a single callback method, so this call will replace an existing
callback. To disable a previously set callback, call this method with a NULL argument.

void setCallback (GRBCallback* cb)

GRBModel::set()
Set the value(s) of a parameter or attribute. Use this method for parameters, for scalar model
attributes, and for arrays of constraint or variable attributes.

void set (GRB_DoubleParam param,
double newvalue)

Set the value of a double-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e.,

through GRBEnv::set) is that the former modifies the parameter for a single model, while the
latter modifies the parameter for every model that is subsequently built using that environment
(and leaves the parameter unchanged for models that were previously built using that environment).

Arguments:
param: The parameter being modified.
newvalue: The desired new value for the parameter.

void set (GRB_IntParam param,
int newvalue)

173

Set the value of an int-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e.,

through GRBEnv::set) is that the former modifies the parameter for a single model, while the
latter modifies the parameter for every model that is subsequently built using that environment
(and leaves the parameter unchanged for models that were previously built using that environment).

Arguments:
param: The parameter being modified.
newvalue: The desired new value for the parameter.

void set (GRB_StringParam param,
string newvalue)

Set the value of a string-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e.,

through GRBEnv::set) is that the former modifies the parameter for a single model, while the
latter modifies the parameter for every model that is subsequently built using that environment
(and leaves the parameter unchanged for models that were previously built using that environment).

Arguments:
param: The parameter being modified.
newvalue: The desired new value for the parameter.

void set (GRB_CharAttr attr,
const GRBVar* vars,
char* newvalues,
int count)

Set a char-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

void set (GRB_CharAttr attr,
const GRBConstr* constrs,
char* newvalues,
int count)

Set a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

174

void set (GRB_CharAttr attr,
const GRBQConstr* qconstrs,
char* newvalues,
int count)

Set a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
constrs: An array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
count: The number of quadratic constraint attributes to set.

void set (GRB_DoubleAttr attr,
double newvalue)

Set the value of a double-valued model attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void set (GRB_DoubleAttr attr,
const GRBVar* vars,
double* newvalues,
int count)

Set a double-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

void set (GRB_DoubleAttr attr,
const GRBConstr* constrs,
double* newvalues,
int count)

Set a double-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

void set (GRB_DoubleAttr attr,
const GRBQConstr* qconstrs,
double* newvalues,
int count)

175

Set a double-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
constrs: An array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
count: The number of quadratic constraint attributes to set.

void set (GRB_IntAttr attr,
int newvalue)

Set the value of an int-valued model attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void set (GRB_IntAttr attr,
const GRBVar* vars,
int* newvalues,
int count)

Set an int-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

void set (GRB_IntAttr attr,
const GRBConstr* constrs,
int* newvalues,
int count)

Set an int-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

void set (GRB_StringAttr attr,
string newvalue)

Set the value of a string-valued model attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value for the attribute.

176

void set (GRB_StringAttr attr,
const GRBVar* vars,
string* newvalues,
int count)

Set a string-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

void set (GRB_StringAttr attr,
const GRBConstr* constrs,
string* newvalues,
int count)

Set a string-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

void set (GRB_StringAttr attr,
const GRBQConstr* qconstrs,
string* newvalues,
int count)

Set a string-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
constrs: An array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
count: The number of quadratic constraint attributes to set.

GRBModel::setObjective()

Set the model objective equal to a linear or quadratic expression.
Note that you can also modify the linear portion of a model objective using the Obj variable

attribute. If you wish to mix and match these two approaches, please note that this method replaces
the entire existing objective, while the Obj attribute can be used to modify individual linear terms.

void setObjective (GRBLinExpr linexpr,
int sense=0)

Arguments:
linexpr: New linear model objective.

177

sense (optional): Optimization sense (GRB_MINIMIZE for minimization, GRB_MAXIMIZE
for maximization). Omit this argument to use the ModelSense attribute value to determine
the sense.

void setObjective (GRBQuadExpr quadexpr,
int sense=0)

Arguments:
quadexpr: New quadratic model objective.
sense (optional): Optimization sense (GRB_MINIMIZE for minimization, GRB_MAXIMIZE
for maximization). Omit this argument to use the ModelSense attribute value.

GRBModel.setObjectiveN()

void setObjectiveN (GRBLinExpr expr,
int index,
int priority=0,
double weight=1,
double abstol=0,
double reltol=0,
string name="")

Set an alternative optimization objective equal to a linear expression.
Please refer to the discussion of Multiple Objectives for more information on the use of alter-

native objectives.
Note that you can also modify an alternative objective using the ObjN variable attribute. If

you wish to mix and match these two approaches, please note that this method replaces the entire
existing objective, while the ObjN attribute can be used to modify individual terms.

Arguments:
expr: New alternative objective.
index: Index for new objective. If you use an index of 0, this routine will change the primary
optimization objective.

priority: Priority for the alternative objective. This initializes the ObjNPriority attribute
for this objective.

weight: Weight for the alternative objective. This initializes the ObjNWeight attribute for
this objective.

abstol: Absolute tolerance for the alternative objective. This initializes the ObjNAbsTol
attribute for this objective.

reltol: Relative tolerance for the alternative objective. This initializes the ObjNRelTol
attribute for this objective.

name: Name of the alternative objective. This initializes the ObjNName attribute for this
objective.

178

GRBModel::setPWLObj()

Set a piecewise-linear objective function for a variable.
The arguments to this method specify a list of points that define a piecewise-linear objective

function for a single variable. Specifically, the x and y arguments give coordinates for the vertices
of the function.

For example, suppose we want to define the function f(x) shown below:

(1, 1)

(3, 2)

(5, 4)

x[0] x[1] x[2]

y[0]

y[1]

y[2]

The vertices of the function occur at the points (1, 1), (3, 2) and (5, 4), so npoints is 3, x is {1, 3,
5}, and y is {1, 2, 4}. With these arguments we define f(1) = 1, f(3) = 2 and f(5) = 4. Other
objective values are linearly interpolated between neighboring points. The first pair and last pair
of points each define a ray, so values outside the specified x values are extrapolated from these
points. Thus, in our example, f(−1) = 0 and f(6) = 5.

More formally, a set of n points

x = {x1, . . . , xn}, y = {y1, . . . , yn}

define the following piecewise-linear function:

f(v) =


y1 + y2−y1

x2−x1
(v − x1), if v ≤ x1,

yi + yi+1−yi

xi+1−xi
(v − xi), if v ≥ xi and v ≤ xi+1,

yn + yn−yn−1
xn−xn−1

(v − xn), if v ≥ xn.

The x entries must appear in non-decreasing order. Two points can have the same x coordinate
— this can be useful for specifying a discrete jump in the objective function.

Note that a piecewise-linear objective can change the type of a model. Specifically, including
a non-convex piecewise linear objective function in a continuous model will transform that model
into a MIP. This can significantly increase the cost of solving the model.

Setting a piecewise-linear objective for a variable will set the Obj attribute on that variable to
0. Similarly, setting the Obj attribute will delete the piecewise-linear objective on that variable.

179

Each variable can have its own piecewise-linear objective function. They must be specified
individually, even if multiple variables share the same function.

void setPWLObj (GRBvar var,
int npoints,
double[] x,
double[] y)

Set the piecewise-linear objective function for a variable.
Arguments:

var: The variable whose objective function is being set.
npoints: Number of points that define the piecewise-linear function.
x: The x values for the points that define the piecewise-linear function. Must be in non-
decreasing order.

y: The y values for the points that define the piecewise-linear function.

GRBModel::sync()

Wait for a previous asynchronous optimization call to complete.
Calling optimizeasync returns control to the calling routine immediately. The caller can perform

other computations while optimization proceeds, and can check on the progress of the optimization
by querying various model attributes. The sync call forces the calling program to wait until the
asynchronous optimization call completes. You must call sync before the corresponding model
object is deleted.

The sync call throws an exception if the optimization itself ran into any problems. In other
words, exceptions thrown by this method are those that optimize itself would have thrown, had
the original method not been asynchronous.

Note that you need to call sync even if you know that the asynchronous optimization has
already completed.

void sync ()

GRBModel::terminate()

Generate a request to terminate the current optimization. This method can be called at any time
during an optimization.

void terminate ()

GRBModel::tune()

Perform an automated search for parameter settings that improve performance. Upon completion,
this method stores the best parameter sets it found. The number of stored parameter sets can be
determined by querying the value of the TuneResultCount attribute. The actual settings can be
retrieved using getTuneResult

180

Please refer to the parameter tuning section for details on the tuning tool.

void tune ()

GRBModel::update()
Process any pending model modifications.

void update ()

GRBModel::write()
This method is the general entry point for writing model data to a file. It can be used to write
optimization models, IIS submodels, solutions, basis vectors, MIP start vectors, or parameter
settings. The type of file written is determined by the file suffix. File formats are described in the
File Format section.

Note that writing a model to a file will process all pending model modifications. However,
writing other model information (solutions, bases, etc.) will not.

void write (const string& filename)

Arguments:
filename: Name of the file to write. The file type is encoded in the file name suffix. Valid
suffixes for writing the model itself are .mps, .rew, .lp, or .rlp. An IIS can be written
by using an .ilp suffix. Use .sol for a solution file, .mst for a MIP start, .hnt for MIP
hints, .bas for a basis file, or .prm for a parameter file. The suffix may optionally be
followed by .gz, .bz2, or .7z, which produces a compressed result.

181

3.3 GRBVar
Gurobi variable object. Variables are always associated with a particular model. You create a
variable object by adding a variable to a model (using GRBModel::addVar), rather than by using
a GRBVar constructor.

The methods on variable objects are used to get and set variable attributes. For example,
solution information can be queried by calling get(GRB_DoubleAttr_X). Note that you can also
query attributes for a set of variables at once. This is done using the attribute query method on
the GRBModel object (GRBModel::get).

GRBVar::get()
Query the value of a variable attribute.

char get (GRB_CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double get (GRB_DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int get (GRB_IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

string get (GRB_StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

182

GRBVar::sameAs()

bool sameAs (GRBVar var2)

Check whether two variable objects refer to the same variable.
Arguments:

var2: The other variable.
Return value:

Boolean result indicates whether the two variable objects refer to the same model variable.

GRBVar::set()
Set the value of a variable attribute.

void set (GRB_CharAttr attr,
char newvalue)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_DoubleAttr attr,
double newvalue)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_IntAttr attr,
int newvalue)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_StringAttr attr,
const string& newvalue)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

183

3.4 GRBConstr
Gurobi constraint object. Constraints are always associated with a particular model. You create
a constraint object by adding a constraint to a model (using GRBModel::addConstr), rather than
by using a GRBConstr constructor.

The methods on constraint objects are used to get and set constraint attributes. For example,
constraint right-hand sides can be queried by calling get(GRB_DoubleAttr_RHS). Note that you
can also query attributes for a set of constraints at once. This is done using the attribute query
method on the GRBModel object (GRBModel::get).

GRBConstr::get()
Query the value of a constraint attribute.

char get (GRB_CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double get (GRB_DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int get (GRB_IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

string get (GRB_StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

184

GRBConstr::sameAs()

bool sameAs (GRBConstr constr2)

Check whether two constraint objects refer to the same constraint.
Arguments:

constr2: The other constraint.
Return value:

Boolean result indicates whether the two constraint objects refer to the same model con-
straint.

GRBConstr::set()
Set the value of a constraint attribute.

void set (GRB_CharAttr attr,
char newvalue)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_DoubleAttr attr,
double newvalue)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_IntAttr attr,
int newvalue)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_StringAttr attr,
const string& newvalue)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

185

3.5 GRBQConstr
Gurobi quadratic constraint object. Quadratic constraints are always associated with a partic-
ular model. You create a quadratic constraint object by adding a constraint to a model (using
GRBModel::addQConstr), rather than by using a GRBQConstr constructor.

The methods on quadratic constraint objects are used to get and set quadratic constraint
attributes. For example, quadratic constraint right-hand sides can be queried by calling
get(GRB_DoubleAttr_QCRHS). Note, however, that it is generally more efficient to query attributes
for a set of constraints at once. This is done using the attribute query method on the GRBModel
object (GRBModel::get).

GRBQConstr::get()

Query the value of a quadratic constraint attribute.

char get (GRB_CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double get (GRB_DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int get (GRB_IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

string get (GRB_StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

186

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBQConstr::set()
Set the value of a quadratic constraint attribute.

void set (GRB_CharAttr attr,
char newvalue)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_DoubleAttr attr,
double newvalue)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_StringAttr attr,
const string& newvalue)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

187

3.6 GRBSOS
Gurobi SOS constraint object. SOS constraints are always associated with a particular model.
You create an SOS object by adding an SOS constraint to a model (using GRBModel::addSOS),
rather than by using a GRBSOS constructor. Similarly, SOS constraints are removed using the
GRBModel::remove method.

An SOS constraint can be of type 1 or 2 (GRB_SOS_TYPE1 or GRB_SOS_TYPE2). A type 1 SOS
constraint is a set of variables for which at most one variable in the set may take a value other than
zero. A type 2 SOS constraint is an ordered set of variables where at most two variables in the set
may take non-zero values. If two take non-zero values, they must be contiguous in the ordered set.

SOS constraint objects have one attribute, IISSOS, which can be queried with the GRBSOS::get
method.

GRBSOS::get()
Query the value of an SOS attribute.

int get (GRB_IntAttr attr)

Arguments:
attr: The attribute being queried.

Return value:
The current value of the requested attribute.

188

3.7 GRBGenConstr
Gurobi general constraint object. General constraints are always associated with a particular
model. You create a general constraint object by adding a constraint to a model (using one of the
GRBModel::addGenConstrXxx) methods, rather than by using a GRBGenConstr constructor.

The methods on general constraint objects are used to get and set general constraint attributes.
For example, general constraint types can be queried by calling
get(GRB_IntAttr_GenConstrType). Note, however, that it is generally more efficient to query
attributes for a set of constraints at once. This is done using the attribute query method on the
GRBModel object (GRBModel::get).

GRBGenConstr::get()
Query the value of a general constraint attribute.

int get (GRB_IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

string get (GRB_StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBGenConstr::set()
Set the value of a general constraint attribute.

void set (GRB_StringAttr attr,
const string& newvalue)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

189

3.8 GRBExpr
Abstract base class for the GRBLinExpr and GRBQuadExpr classes. Expressions are used to build
objectives and constraints. They are temporary objects that typically have short lifespans.

GRBExpr::getValue()
Compute the value of an expression for the current solution.

double getValue ()
Return value:

Value of the expression for the current solution.

190

3.9 GRBLinExpr
Gurobi linear expression object. A linear expression consists of a constant term, plus a list of
coefficient-variable pairs that capture the linear terms. Linear expressions are used to build con-
straints. They are temporary objects that typically have short lifespans.

The GRBLinExpr class is a sub-class of the abstract base class GRBExpr.
You generally build linear expressions using overloaded operators. For example, if x is a GRB-

Var object, then x + 1 is a GRBLinExpr object. Expressions can be built from constants (e.g.,
expr = 0), variables (e.g., expr = 1 * x + 2 * y), or from other expressions (e.g., expr2 = 2
* expr1 + x, or expr3 = expr1 + 2 * expr2). You can also modify existing expressions (e.g.,
expr += x, or expr2 -= expr1).

Another option for building expressions is to use the addTerms method, which adds an array
of new terms at once. Terms can also be removed from an expression, using remove.

Note that the cost of building expressions depends heavily on the approach you use. While
you can generally ignore this issue when building small expressions, you should be aware of a few
efficiency issues when building large expressions:

• You should avoid using expr = expr + x in a loop. It will lead to runtimes that are quadratic
in the number of terms in the expression.

• Using expr += x (or expr -= x) is much more efficient than expr = expr + x. Building a
large expression by looping over += statements is reasonably efficient, but it isn’t the most
efficient approach.

• The most efficient way to build a large expression is to make a single call to addTerms.

Individual terms in a linear expression can be queried using the getVar, getCoeff, and getCon-
stant methods. You can query the number of terms in the expression using the size method.

Note that a linear expression may contain multiple terms that involve the same variable. These
duplicate terms are merged when creating a constraint from an expression, but they may be visible
when inspecting individual terms in the expression (e.g., when using getVar).

GRBLinExpr()

Linear expression constructor. Create a constant expression or an expression with one term.

GRBLinExpr GRBLinExpr (double constant=0.0)

Create a constant linear expression.
Arguments:

constant (optional): Constant value for expression.
Return value:

A constant expression object.

GRBLinExpr GRBLinExpr (GRBVar var,
double coeff=1.0)

191

Create an expression with one term.
Arguments:

var: Variable for expression term.
coeff (optional): Coefficient for expression term.

Return value:
An expression object containing one linear term.

GRBLinExpr::addTerms()
Add new terms into a linear expression.

void addTerms (const double* coeffs,
const GRBVar* vars,
int count)

Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.
count: Number of terms to add to the expression.

GRBLinExpr::clear()
Set a linear expression to 0.

You should use the overloaded expr = 0 instead. The clear method is mainly included for
consistency with our interfaces to non-overloaded languages.

void clear ()

GRBLinExpr::getConstant()
Retrieve the constant term from a linear expression.

double getConstant ()
Return value:

Constant from expression.

GRBLinExpr::getCoeff()
Retrieve the coefficient from a single term of the expression.

double getCoeff (int i)

Arguments:
i: Index for coefficient of interest.

Return value:
Coefficient for the term at index i in the expression.

192

GRBLinExpr::getValue()

Compute the value of a linear expression for the current solution.

double getValue ()
Return value:

Value of the expression for the current solution.

GRBLinExpr::getVar()

Retrieve the variable object from a single term of the expression.

GRBVar getVar (int i)

Arguments:
i: Index for term of interest.

Return value:
Variable for the term at index i in the expression.

GRBLinExpr::operator=

Set an expression equal to another expression.

GRBLinExpr operator= (const GRBLinExpr& rhs)

Arguments:
rhs: Source expression.

Return value:
New expression object.

GRBLinExpr::operator+

Add one expression into another, producing a result expression.

GRBLinExpr operator+ (const GRBLinExpr& rhs)

Arguments:
rhs: Expression to add.

Return value:
Expression object which is equal the sum of the invoking expression and the argument
expression.

193

GRBLinExpr::operator-

Subtract one expression from another, producing a result expression.

GRBLinExpr operator- (const GRBLinExpr& rhs)

Arguments:
rhs: Expression to subtract.

Return value:
Expression object which is equal the invoking expression minus the argument expression.

GRBLinExpr::operator+=

Add an expression into the invoking expression.

void operator+= (const GRBLinExpr& expr)

Arguments:
expr: Expression to add.

GRBLinExpr::operator-=

Subtract an expression from the invoking expression.

void operator-= (const GRBLinExpr& expr)

Arguments:
expr: Expression to subtract.

GRBLinExpr::operator*=

Multiply the invoking expression by a constant.

void operator*= (double multiplier)

Arguments:
multiplier: Constant multiplier.

194

GRBLinExpr::remove()
Remove a term from a linear expression.

void remove (int i)

Remove the term stored at index i of the expression.
Arguments:

i: The index of the term to be removed.

boolean remove (GRBVar var)

Remove all terms associated with variable var from the expression.
Arguments:

var: The variable whose term should be removed.
Return value:

Returns true if the variable appeared in the linear expression (and was removed).

GRBLinExpr::size()
Retrieve the number of terms in the linear expression (not including the constant).

unsigned int size ()
Return value:

Number of terms in the expression.

195

3.10 GRBQuadExpr
Gurobi quadratic expression object. A quadratic expression consists of a linear expression, plus a
list of coefficient-variable-variable triples that capture the quadratic terms. Quadratic expressions
are used to build quadratic objective functions and quadratic constraints. They are temporary
objects that typically have short lifespans.

The GRBQuadExpr class is a sub-class of the abstract base class GRBExpr.
You generally build quadratic expressions using overloaded operators. For example, if x is a

GRBVar object, then x * x is a GRBQuadExpr object. Expressions can be built from constants
(e.g., expr = 0), variables (e.g., expr = 1 * x *x + 2 * x * y), or from other expressions (e.g.,
expr2 = 2 * expr1 + x * x, or expr3 = expr1 + 2 * expr2). You can also modify existing
expressions (e.g., expr += x * x, or expr2 -= expr1).

The other option for building expressions is to start with an empty expression (using the GRB-
QuadExpr constructor), and then add terms. Terms can be added individually (using addTerm)
or in groups (using addTerms). Terms can also be removed from an expression (using remove).

Note that the cost of building expressions depends heavily on the approach you use. While
you can generally ignore this issue when building small expressions, you should be aware of a few
efficiency issues when building large expressions:

• You should avoid using expr = expr + x*x in a loop. It will lead to runtimes that are
quadratic in the number of terms in the expression.

• Using expr += x*x (or expr -= x*x) is much more efficient than expr = expr + x*x. Build-
ing a large expression by looping over += statements is reasonably efficient, but it isn’t the
most efficient approach.

• The most efficient way to build a large expression is to make a single call addTerms.

Individual terms in a quadratic expression can be queried using the getVar1, getVar2, and
getCoeff methods. You can query the number of quadratic terms in the expression using the size
method. To query the constant and linear terms associated with a quadratic expression, first obtain
the linear portion of the quadratic expression using getLinExpr, and then use the getConstant,
getCoeff, or getVar on the resulting GRBLinExpr object.

Note that a quadratic expression may contain multiple terms that involve the same variable
pair. These duplicate terms are merged when creating the model objective from an expression, but
they may be visible when inspecting individual terms in the expression (e.g., when using getVar1
and getVar2).

GRBQuadExpr()
Quadratic expression constructor. Create a constant expression or an expression with one term.

GRBQuadExpr GRBQuadExpr (double constant=0.0)

Create a constant quadratic expression.
Arguments:

constant (optional): Constant value for expression.

196

Return value:
A constant expression object.

GRBQuadExpr GRBQuadExpr (GRBVar var,
double coeff=1.0)

Create an expression with one term.
Arguments:

var: Variable for expression term.
coeff (optional): Coefficient for expression term.

Return value:
An expression object containing one quadratic term.

GRBQuadExpr GRBQuadExpr (GRBLinExpr linexpr)

Initialize a quadratic expression from an existing linear expression.
Arguments:

orig: Existing linear expression to copy.
Return value:

Quadratic expression object whose initial value is taken from the input linear expression.

GRBQuadExpr::addTerm()

Add a single new term into a quadratic expression.

void addTerm (double coeff,
GRBVar var)

Add a new linear term into a quadratic expression.
Arguments:

coeff: Coefficient for new linear term.
var: Variable for new linear term.

void addTerm (double coeff,
GRBVar var1,
GRBVar var2)

Add a new quadratic term into a quadratic expression.
Arguments:

coeff: Coefficient for new quadratic term.
var1: Variable for new quadratic term.
var2: Variable for new quadratic term.

197

GRBQuadExpr::addTerms()

Add new terms into a quadratic expression.

void addTerms (const double* coeffs,
const GRBVar* vars,
int count)

Add new linear terms into a quadratic expression.
Arguments:

coeffs: Coefficients for new linear terms.
vars: Variables for new linear terms.
count: Number of linear terms to add to the quadratic expression.

void addTerms (const double* coeffs,
const GRBVar* vars1,
const GRBVar* vars2,
int count)

Add new quadratic terms into a quadratic expression.
Arguments:

coeffs: Coefficients for new quadratic terms.
vars1: First variables for new quadratic terms.
vars2: Second variables for new quadratic terms.
count: Number of quadratic terms to add to the quadratic expression.

GRBQuadExpr::clear()

Set a quadratic expression to 0.
You should use the overloaded expr = 0 instead. The clear method is mainly included for

consistency with our interfaces to non-overloaded languages.

void clear ()

GRBQuadExpr::getCoeff()

Retrieve the coefficient from a single quadratic term of the quadratic expression.

double getCoeff (int i)

Arguments:
i: Index for coefficient of interest.

Return value:
Coefficient for the quadratic term at index i in the quadratic expression.

198

GRBQuadExpr::getLinExpr()

A quadratic expression is represented as a linear expression, plus a list of quadratic terms. This
method retrieves the linear expression associated with the quadratic expression.

GRBLinExpr getLinExpr ()
Return value:

Linear expression associated with the quadratic expression.

GRBQuadExpr::getValue()

Compute the value of a quadratic expression for the current solution.

double getValue ()
Return value:

Value of the expression for the current solution.

GRBQuadExpr::getVar1()

Retrieve the first variable object associated with a single quadratic term from the expression.

GRBVar getVar1 (int i)

Arguments:
i: Index for term of interest.

Return value:
First variable for the quadratic term at index i in the quadratic expression.

GRBQuadExpr::getVar2()

Retrieve the second variable object associated with a single quadratic term from the expression.

GRBVar getVar2 (int i)

Arguments:
i: Index for term of interest.

Return value:
Second variable for the quadratic term at index i in the quadratic expression.

199

GRBQuadExpr::operator=

Set a quadratic expression equal to another quadratic expression.

GRBQuadExpr operator= (const GRBQuadExpr& rhs)

Arguments:
rhs: Source quadratic expression.

Return value:
New quadratic expression object.

GRBQuadExpr::operator+

Add one expression into another, producing a result expression.

GRBQuadExpr operator+ (const GRBQuadExpr& rhs)

Arguments:
rhs: Expression to add.

Return value:
Expression object which is equal the sum of the invoking expression and the argument
expression.

GRBQuadExpr::operator-

Subtract one expression from another, producing a result expression.

GRBQuadExpr operator- (const GRBQuadExpr& rhs)

Arguments:
rhs: Expression to subtract.

Return value:
Expression object which is equal the invoking expression minus the argument expression.

GRBQuadExpr::operator+=

Add an expression into the invoking expression.

void operator+= (const GRBQuadExpr& expr)

Arguments:
expr: Expression to add.

200

GRBQuadExpr::operator-=
Subtract an expression from the invoking expression.

void operator-= (const GRBQuadExpr& expr)

Arguments:
expr: Expression to subtract.

GRBQuadExpr::operator*=
Multiply the invoking expression by a constant.

void operator*= (double multiplier)

Arguments:
multiplier: Constant multiplier.

GRBQuadExpr::remove()
Remove a quadratic term from a quadratic expression.

void remove (int i)

Remove the quadratic term stored at index i of the expression.
Arguments:

i: The index of the term to be removed.

boolean remove (GRBVar var)

Remove all quadratic terms associated with variable var from the quadratic expression.
Arguments:

var: The variable whose term should be removed.
Return value:

Returns true if the variable appeared in the quadratic expression (and was removed).

GRBQuadExpr::size()
Retrieve the number of quadratic terms in the quadratic expression.

unsigned int size ()
Return value:

Number of quadratic terms in the expression.

201

3.11 GRBTempConstr
Gurobi temporary constraint object. Objects of this class are created as intermediate results when
building constraints using overloaded operators. There are no member functions on this class.
Instead, GRBTempConstr objects are created by a set of non-member functions: ==, <=, and >=.
You will generally never store objects of this class in your own variables.

Consider the following examples:

model.addConstr(x + y <= 1);
model.addQConstr(x*x + y*y <= 1);

The overloaded <= operator creates an object of type GRBTempContr, which is then immediately
passed to method GRBModel::addConstr or GRBModel::addQConstr.

202

3.12 GRBColumn
Gurobi column object. A column consists of a list of coefficient, constraint pairs. Columns are used
to represent the set of constraints in which a variable participates, and the associated coefficients.
They are temporary objects that typically have short lifespans.

You generally build columns by starting with an empty column (using the GRBColumn con-
structor), and then adding terms. Terms can be added individually, using addTerm, or in groups,
using addTerms. Terms can also be removed from a column, using remove.

Individual terms in a column can be queried using the getConstr, and getCoeff methods. You
can query the number of terms in the column using the size method.

GRBColumn()
Column constructor. Create an empty column.

GRBColumn GRBColumn ()
Return value:

An empty column object.

GRBColumn::addTerm()
Add a single term into a column.

void addTerm (double coeff,
GRBConstr constr)

Arguments:
coeff: Coefficient for new term.
constr: Constraint for new term.

GRBColumn::addTerms()
Add new terms into a column.

void addTerms (const double* coeffs,
const GRBConstr* constrs,
int count)

Add a list of terms into a column.
Arguments:

coeffs: Coefficients for new terms.
constrs: Constraints for new terms.
count: Number of terms to add to the column.

GRBColumn::clear()
Remove all terms from a column.

void clear ()

203

GRBColumn::getCoeff()
Retrieve the coefficient from a single term in the column.

double getCoeff (int i)

Return value:
Coefficient for the term at index i in the column.

GRBColumn::getConstr()
Retrieve the constraint object from a single term in the column.

GRBConstr getConstr (int i)

Return value:
Constraint for the term at index i in the column.

GRBColumn::remove()
Remove a single term from a column.

void remove (int i)

Remove the term stored at index i of the column.
Arguments:

i: The index of the term to be removed.

boolean remove (GRBConstr constr)

Remove the term associated with constraint constr from the column.
Arguments:

constr: The constraint whose term should be removed.
Return value:

Returns true if the constraint appeared in the column (and was removed).

GRBColumn::size()
Retrieve the number of terms in the column.

unsigned int size ()
Return value:

Number of terms in the column.

204

3.13 GRBCallback
Gurobi callback class. This is an abstract class. To implement a callback, you should create a
subclass of this class and implement a callback() method. If you pass an object of this subclass
to method GRBModel::setCallback before calling GRBModel::optimize, the callback() method
of the class will be called periodically. Depending on where the callback is called from, you can
obtain various information about the progress of the optimization.

Note that this class contains one protected int member variable: where. You can query this
variable from your callback() method to determine where the callback was called from.

Gurobi callbacks can be used both to monitor the progress of the optimization and to modify
the behavior of the Gurobi optimizer. A simple user callback function might call the GRBCall-
back::getIntInfo or GRBCallback::getDoubleInfo methods to produce a custom display, or perhaps
to terminate optimization early (using GRBCallback::abort). More sophisticated MIP callbacks
might use GRBCallback::getNodeRel or GRBCallback::getSolution to retrieve values from the so-
lution to the current node, and then use GRBCallback::addCut or GRBCallback::addLazy to add
a constraint to cut off that solution, or GRBCallback::setSolution to import a heuristic solution
built from that solution.

When solving a model using multiple threads, note that the user callback is only ever called
from a single thread, so you don’t need to worry about the thread-safety of your callback.

You can look at the callback_c++.cpp example for details of how to use Gurobi callbacks.

GRBCallback()
Callback constructor.

GRBCallback GRBCallback ()
Return value:

A callback object.

GRBCallback::abort()
Abort optimization. When the optimization stops, the Status attribute will be equal to GRB_-
INTERRUPTED.

void abort ()

GRBCallback::addCut()
Add a cutting plane to the MIP model from within a callback function. Note that this method can
only be invoked when the where member variable is equal to GRB_CB_MIPNODE (see the Callback
Codes section for more information).

Cutting planes can be added at any node of the branch-and-cut tree. However, they should be
added sparingly, since they increase the size of the relaxation model that is solved at each node
and can significantly degrade node processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the
relaxation solution at the current node, you should first call getNodeRel.

205

When adding your own cuts, you must set parameter PreCrush to value 1. This setting shuts
off a few presolve reductions that sometimes prevent cuts on the original model from being applied
to the presolved model.

Note that cutting planes added through this method must truly be cutting planes — they can
cut off continuous solutions, but they may not cut off integer solutions that respect the original
constraints of the model. Ignoring this restriction will lead to incorrect solutions.

void addCut (const GRBLinExpr& lhsExpr,
char sense,
double rhsVal)

Arguments:
lhsExpr: Left-hand side expression for new cutting plane.
sense: Sense for new cutting plane (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsVal: Right-hand side value for new cutting plane.

void addCut (GRBTempConstr& tc)

Arguments:
tc: Temporary constraint object, created using an overloaded comparison operator. See
GRBTempConstr for more information.

GRBCallback::addLazy()
Add a lazy constraint to the MIP model from within a callback function. Note that this method can
only be invoked when the where member variable is equal to GRB_CB_MIPNODE or GRB_CB_MIPSOL
(see the Callback Codes section for more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large
to represent explicitly. By only including the constraints that are actually violated by solutions
found during the branch-and-cut search, it is sometimes possible to find a proven optimal solution
while only adding a fraction of the full set of constraints.

You would typically add a lazy constraint by first querying the current node solution (by calling
getSolution from a GRB_CB_MIPSOL callback, or getNodeRel from a GRB_CB_MIPNODE callback), and
then calling addLazy() to add a constraint that cuts off the solution. Gurobi guarantees that you
will have the opportunity to cut off any solutions that would otherwise be considered feasible.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints,
including those that have already been added. Node solutions will usually respect previously added
lazy constraints, but not always.

Note that you must set the LazyConstraints parameter if you want to use lazy constraints.

void addLazy (const GRBLinExpr& lhsExpr,
char sense,
double rhsVal)

Arguments:
lhsExpr: Left-hand side expression for new lazy constraint.

206

sense: Sense for new lazy constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).

rhsVal: Right-hand side value for new lazy constraint.

void addLazy (GRBTempConstr& tc)

Arguments:
tc: Temporary constraint object, created using an overloaded comparison operator. See
GRBTempConstr for more information.

GRBCallback::getDoubleInfo()
Request double-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the double-valued information
that can be queried for different values of where, please refer to the Callback section.

double getDoubleInfo (int what)

Arguments:
what: Information requested (refer the list of Gurobi Callback Codes for possible values).

Return value:
Value of requested callback information.

GRBCallback::getIntInfo()
Request int-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the int-valued information that
can be queried for different values of where, please refer to the Callback section.

int getIntInfo (int what)

Arguments:
what: Information requested (refer to the list of Gurobi Callback Codes for possible values).

Return value:
Value of requested callback information.

GRBCallback::getNodeRel()
Retrieve values from the node relaxation solution at the current node. Only available when the
where member variable is equal to GRB_CB_MIPNODE, and GRB_CB_MIPNODE_STATUS is equal to
GRB_OPTIMAL.

double getNodeRel (GRBVar v)

207

Arguments:
v: The variable whose value is desired.

Return value:
The value of the specified variable in the node relaxation for the current node.

double* getNodeRel (const GRBVar* xvars,
int len)

Arguments:
xvars: The list of variables whose values are desired.
len: The number of variables in the list.

Return value:
The values of the specified variables in the node relaxation for the current node. Note that
the result is heap-allocated, and must be returned to the heap by the user.

GRBCallback::getSolution()
Retrieve values from the current solution vector. Only available when the where member variable
is equal to GRB_CB_MIPSOL.

double getSolution (GRBVar v)

Arguments:
v: The variable whose value is desired.

Return value:
The value of the specified variable in the current solution vector.

double* getSolution (const GRBVar* xvars,
int len)

Arguments:
xvars: The list of variables whose values are desired.
len: The number of variables in the list.

Return value:
The values of the specified variables in the current solution. Note that the result is heap-
allocated, and must be returned to the heap by the user.

GRBCallback::getStringInfo()
Request string-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the string-valued information
that can be queried for different values of where, please refer to the Callback section.

string getStringInfo (int what)

Arguments:

208

what: Information requested (refer to the list of Gurobi Callback Codes for possible values).
Return value:

Value of requested callback information.

GRBCallback::setSolution()
Import solution values for a heuristic solution. Only available when the where member variable is
equal to GRB_CB_MIPNODE.

When you specify a heuristic solution from a callback, variables initially take undefined values.
You should use this method to specify variable values. You can make multiple calls to setSolution
from one callback invocation to specify values for multiple sets of variables. After the callback, if
values have been specified for any variables, the Gurobi optimizer will try to compute a feasible
solution from the specified values, possibly filling in values for variables whose values were left unde-
fined. You can also optionally call useSolution within your callback function to try to immediately
compute a feasible solution from the specified values.

void setSolution (GRBVar v,
double val)

Arguments:
v: The variable whose values is being set.
val: The value of the variable in the new solution.

void setSolution (const GRBVar* xvars,
const double* sol,
int len)

Arguments:
xvars: The variables whose values are being set.
sol: The values of the variables in the new solution.
len: The number of variables.

GRBCallback::useSolution()
Once you have imported solution values using setSolution, you can optionally call useSolution to
immediately use these values to try to compute a heuristic solution.

double useSolution ()
Return value:

The objective value for the solution obtained from your solution values (or GRB_INFINITY
if no improved solution is found).

209

3.14 GRBException
Gurobi exception object. Exceptions can be thrown by nearly every method in the Gurobi C++
API.

GRBException()
Exception constructor.

GRBException GRBException (int errcode=0)

Create a Gurobi exception.
Arguments:

errcode (optional): Error code for exception.
Return value:

An exception object.

GRBException GRBException (string errmsg,
int errcode=0)

Create a Gurobi exception.
Arguments:

errmsg: Error message for exception.
errcode (optional): Error code for exception.

Return value:
An exception object.

GRBException::getErrorCode()
Retrieve the error code associated with a Gurobi exception.

int getErrorCode ()
Return value:

The error code associated with the exception.

GRBException::getMessage()
Retrieve the error message associated with a Gurobi exception.

const string getMessage ()
Return value:

The error message associated with the exception.

210

3.15 Non-Member Functions
Several Gurobi C++ interface functions aren’t member functions on a particular object.

operator==

Create an equality constraint

GRBTempConstr operator== (GRBQuadExpr lhsExpr,
GRBQuadExpr rhsExpr)

Arguments:
lhsExpr: Left-hand side of equality constraint.
rhsExpr: Right-hand side of equality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to GRB-
Model::addConstr.

operator<=

Create an inequality constraint

GRBTempConstr operator<= (GRBQuadExpr lhsExpr,
GRBQuadExpr rhsExpr)

Arguments:
lhsExpr: Left-hand side of inequality constraint.
rhsExpr: Right-hand side of inequality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to GRB-
Model::addConstr or GRBModel::addQConstr.

operator>=

Create an inequality constraint

GRBTempConstr operator>= (GRBQuadExpr lhsExpr,
GRBQuadExpr rhsExpr)

Arguments:
lhsExpr: Left-hand side of inequality constraint.
rhsExpr: Right-hand side of inequality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to GRB-
Model::addConstr or GRBModel::addQConstr.

211

operator+
Overloaded operator on expression objects.

GRBLinExpr operator+ (const GRBLinExpr& expr1,
const GRBLinExpr& expr2)

Add a pair of expressions.
Arguments:

expr1: First expression to be added.
expr2: Second expression to be added.

Return value:
Sum expression.

GRBLinExpr operator+ (const GRBLinExpr& expr)

Allow plus sign to be used before an expression.
Arguments:

expr: Expression.
Return value:

Result expression.

GRBLinExpr operator+ (GRBVar x,
GRBVar y)

Add a pair of variables.
Arguments:

x: First variable to be added.
y: Second variable to be added.

Return value:
Sum expression.

GRBQuadExpr operator+ (const GRBQuadExpr& expr1,
const GRBQuadExpr& expr2)

Add a pair of expressions.
Arguments:

expr1: First expression to be added.
expr2: Second expression to be added.

Return value:
Sum expression.

GRBQuadExpr operator+ (const GRBQuadExpr& expr)

Allow plus sign to be used before an expression.
Arguments:

212

expr: Expression.
Return value:

Result expression.

operator-

Overloaded operator on expression objects.

GRBLinExpr operator- (const GRBLinExpr& expr1,
const GRBLinExpr& expr2)

Subtract one expression from another.
Arguments:

expr1: Start expression.
expr2: Expression to be subtracted.

Return value:
Difference expression.

GRBLinExpr operator- (const GRBLinExpr& expr)

Negate an expression.
Arguments:

expr: Expression.
Return value:

Negation of expression.

GRBQuadExpr operator- (const GRBQuadExpr& expr1,
const GRBQuadExpr& expr2)

Subtract one expression from another.
Arguments:

expr1: Start expression.
expr2: Expression to be subtracted.

Return value:
Difference expression.

GRBQuadExpr operator- (const GRBQuadExpr& expr)

Negate an expression.
Arguments:

expr: Expression.
Return value:

Negation of expression.

213

operator*
Overloaded operator on expression objects.

GRBLinExpr operator* (GRBVar x,
double a)

Multiply a variable and a constant.
Arguments:

x: Variable.
a: Constant multiplier.

Return value:
Expression that represents the result of multiplying the variable by a constant.

GRBLinExpr operator* (double a,
GRBVar x)

Multiply a variable and a constant.
Arguments:

a: Constant multiplier.
x: Variable.

Return value:
Expression that represents the result of multiplying the variable by a constant.

GRBLinExpr operator* (const GRBLinExpr& expr,
double a)

Multiply an expression and a constant.
Arguments:

expr: Expression.
a: Constant multiplier.

Return value:
Expression that represents the result of multiplying the expression by a constant.

GRBLinExpr operator* (double a,
const GRBLinExpr& expr)

Multiply an expression and a constant.
Arguments:

a: Constant multiplier.
expr: Expression.

Return value:
Expression that represents the result of multiplying the expression by a constant.

GRBQuadExpr operator* (const GRBQuadExpr& expr,
double a)

Multiply an expression and a constant.

214

Arguments:
expr: Expression.
a: Constant multiplier.

Return value:
Expression that represents the result of multiplying the expression by a constant.

GRBQuadExpr operator* (double a,
const GRBQuadExpr& expr)

Multiply an expression and a constant.
Arguments:

a: Constant multiplier.
expr: Expression.

Return value:
Expression that represents the result of multiplying the expression by a constant.

GRBQuadExpr operator* (GRBVar x,
GRBVar y)

Multiply a pair of variables.
Arguments:

x: First variable.
y: Second variable.

Return value:
Expression that represents the result of multiplying the argument variables.

GRBQuadExpr operator* (GRBVar var,
const GRBLinExpr& expr)

Multiply an expression and a variable.
Arguments:

var: Variable.
expr: Expression.

Return value:
Expression that represents the result of multiplying the expression by a variable.

GRBQuadExpr operator* (const GRBLinExpr& expr,
GRBVar var)

Multiply an expression and a variable.
Arguments:

var: Variable.
expr: Expression.

Return value:
Expression that represents the result of multiplying the expression by a variable.

GRBQuadExpr operator* (const GRBLinExpr& expr1,
const GRBLinExpr& expr2)

215

Multiply a pair of expressions.
Arguments:

expr1: First expression.
expr2: Second expression.

Return value:
Expression that represents the result of multiplying the argument expressions.

operator/
Overloaded operator to divide a variable or expression by a constant.

GRBLinExpr operator/ (GRBVar x,
double a)

Arguments:
x: Variable.
a: Constant divisor.

Return value:
Expression that represents the result of dividing the variable by a constant.

GRBLinExpr operator/ (const GRBLinExpr& expr,
double a)

Arguments:
expr: Expression.
a: Constant divisor.

Return value:
Expression that represents the result of dividing the expression by a constant.

GRBLinExpr operator/ (const GRBQuadExpr& expr,
double a)

Arguments:
expr: Expression.
a: Constant divisor.

Return value:
Expression that represents the result of dividing the expression by a constant.

216

3.16 Attribute Enums
These enums are used to get or set Gurobi attributes. The complete list of attributes can be found
in the Attributes section.

GRB_CharAttr
This enum is used to get or set char-valued attributes (through GRBModel::get or GRBModel::set).
Please refer to the Attributes section to see a list of all char attributes and their functions.

GRB_DoubleAttr
This enum is used to get or set double-valud attributes (through GRBModel::get or GRBModel::set).
Please refer to the Attributes section to see a list of all double attributes and their functions.

GRB_IntAttr
This enum is used to get or set int-valued attributes (through GRBModel::get or GRBModel::set).
Please refer to the Attributes section to see a list of all int attributes and their functions.

GRB_StringAttr
This enum is used to get or set string-valued attributes (through GRBModel::get or GRBModel::set).
Please refer to the Attributes section to see a list of all string attributes and their functions.

217

3.17 Parameter Enums
These enums are used to get or set Gurobi parameters. The complete of parameters can be found
in the Parameters section.

GRB_DoubleParam
This enum is used to get or set double-valued parameters (through GRBModel::get, GRBModel::set.
GRBEnv::get, or GRBEnv::set). Please refer to the Parameters section to see a list of all double
parameters and their functions.

GRB_IntParam
This enum is used to get or set int-valued parameters (through GRBModel::get, GRBModel::set.
GRBEnv::get, or GRBEnv::set). Please refer to the Parameters section to see a list of all int
parameters and their functions.

GRB_StringParam
This enum is used to get or set string-valued parameters (through GRBModel::get, GRBModel::set,
GRBEnv::get, or GRBEnv::set). Please refer to the Parameters section to see a list of all int
parameters and their functions.

218

Java API Overview

This section documents the Gurobi Java interface. This manual begins with a quick overview of
the classes exposed in the interface and the most important methods on those classes. It then
continues with a comprehensive presentation of all of the available classes and methods.

If you prefer Javadoc format, documentation for the Gurobi Java interface is also available in file
gurobi-javadoc.jar. Javadoc format is particularly helpful when used from an integrated devel-
opment environment like Eclipse R©. Please consult the documentation for your IDE for information
on how to import Javadoc files.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide
or the Example Tour. These documents provide concrete examples of how to use the classes and
methods described here.
Environments

The first step in using the Gurobi Java interface is to create an environment object. Environments
are represented using the GRBEnv class. An environment acts as the container for all data associ-
ated with a set of optimization runs. You will generally only need one environment object in your
program.
Models

You can create one or more optimization models within an environment. Each model is repre-
sented as an object of class GRBModel. A model consists of a set of decision variables (objects of
class GRBVar), a linear or quadratic objective function on these variables (specified using GRB-
Model.setObjective), and a set of constraints on these variables (objects of class GRBConstr, GR-
BQConstr, GRBSOS, or GRBGenConstr). Each variable has an associated lower bound, upper
bound, and type (continuous, binary, etc.). Each linear or quadratic constraint has an associated
sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side value. Please refer
to the Variables and Constraints section in the Reference Manual for more information.

Linear constraints are specified by building linear expressions (objects of class GRBLinExpr),
and then specifying relationships between these expressions (for example, requiring that one expres-
sion be equal to another). Quadratic constraints are built in a similar fashion, but using quadratic
expressions (objects of class GRBQuadExpr) instead.

An optimization model may be specified all at once, by loading the model from a file (using the
appropriate GRBModel constructor), or built incrementally, by first constructing an empty object
of class GRBModel and then subsequently calling GRBModel.addVar or GRBModel.addVars to add
additional variables, and GRBModel.addConstr, GRBModel.addQConstr, GRBModel.addSOS, or
any of the GRBModel.addGenConstrXxx methods to add additional constraints. Models are dy-
namic entities; you can always add or remove variables or constraints.

We often refer to the class of an optimization model. A model with a linear objective function,
linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic,
the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is a
Quadratically-Constrained Program (QCP). We’ll sometimes also discuss a special case of QCP, the

219

http://www.gurobi.com/documentation/{7}.{5}/quick-start-guide/
http://www.gurobi.com/documentation/{7}.{5}/examples/index.html

Second-Order Cone Program (SOCP). If the model contains any integer variables, semi-continuous
variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the
model is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, in-
cluding Mixed Integer Linear Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed
Integer Quadratically-Constrained Programs (MIQCP), and Mixed Integer Second-Order Cone Pro-
grams (MISOCP). The Gurobi Optimizer handles all of these model classes.

Solving a Model

Once you have built a model, you can call GRBModel.optimize to compute a solution. By default,
optimize will use the concurrent optimizer to solve LP models, the barrier algorithm to solve
QP and QCP models, and the branch-and-cut algorithm to solve mixed integer models. The
solution is stored in a set of attributes of the model. These attributes can be queried using a set of
attribute query methods on the GRBModel, GRBVar, GRBConstr, GRBQConstr, GRBSOS, and
GRBGenConstr, and classes.

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBModel.optimize
will only perform further optimization if relevant data has changed since the model was last op-
timized. If you would like to discard previously computed solution information and restart the
optimization from scratch without changing the model, you can call GRBModel.reset.

After a MIP model has been solved, you can call GRBModel.fixedModel to compute the asso-
ciated fixed model. This model is identical to the input model, except that all integer variables are
fixed to their values in the MIP solution. In some applications, it is useful to compute information
on this continuous version of the MIP model (e.g., dual variables, sensitivity information, etc.).

Multiple Solutions and Multiple Objectives

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to
a model with a single objective function. Gurobi provides features that allow you to relax either
of these assumptions. You should refer to the section on Solution Pools for information on how to
request more than one solution, or the section on Multiple Objectives for information on how to
specify multiple objective functions and control the tradeoff between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the
infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be useful
for diagnosing the cause of an infeasibility, call GRBModel.computeIIS to compute an Irreducible
Inconsistent Subsystem (IIS). This method can be used for both continuous and MIP models, but
you should be aware that the MIP version can be quite expensive. This method populates a set of
IIS attributes.

To attempt to repair an infeasibility, call GRBModel.feasRelax to compute a feasibility relax-
ation for the model. This relaxation allows you to find a solution that minimizes the magnitude of
the constraint violation.

Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some
attributes are associated with the variables of the model, some with the constraints of the model,
and some with the model itself. To give a simple example, solving an optimization model causes
the X variable attribute to be populated. Attributes such as X that are computed by the Gurobi

220

optimizer cannot be modified directly by the user, while others, such as the variable lower bound
(the LB attribute) can.

Attributes are queried using GRBVar.get, GRBConstr.get, GRBQConstr.get, GRBSOS.get,
GRBGenConstr.get, or GRBModel.get, and modified using GRBVar.set, GRBConstr.set, GRBQ-
Constr.set, GRBGenConstr.set, or GRBModel.set. Attributes are grouped into a set of enums by
type (GRB.CharAttr, GRB.DoubleAttr, GRB.IntAttr,
GRB.StringAttr). The get() and set() methods are overloaded, so the type of the attribute
determines the type of the returned value. Thus, constr.get(GRB.DoubleAttr.RHS) returns a
double, while constr.get(GRB.CharAttr.Sense) returns a char.

If you wish to retrieve attribute values for a set of variables or constraints, it is usually more
efficient to use the array methods on the associated GRBModel object. Method GRBModel.get
includes signatures that allow you to query or modify attribute values for one-, two-, and three-
dimensional arrays of variables or constraints.

The full list of attributes can be found in the Attributes section.
Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to
variable bounds, constraint right-hand sides, etc.). The main exceptions are modifications to the
constraint matrix and to the objective function.

The constraint matrix can be modified in a few ways. The first is to call the chgCoeff method
on a GRBModel object to change individual matrix coefficients. This method can be used to
modify the value of an existing non-zero, to set an existing non-zero to zero, or to create a new
non-zero. The constraint matrix is also modified when you remove a variable or constraint from the
model (through the GRBModel.remove method). The non-zero values associated with the deleted
constraint or variable are removed along with the constraint or variable itself.

The model objective function can also be modified in a few ways. The easiest is to build an
expression that captures the objective function (a GRBLinExpr or GRBQuadExpr object), and
then pass that expression to method GRBModel.setObjective. If you wish to modify the objective,
you can simply call setObjective again with a new GRBLinExpr or GRBQuadExpr object.

For linear objective functions, an alternative to setObjective is to use the Obj variable attribute
to modify individual linear objective coefficients.

If your variables have piecewise-linear objectives, you can specify them using the GRBModel.setPWLObj
method. Call this method once for each relevant variable. The Gurobi simplex solver includes al-
gorithmic support for convex piecewise-linear objective functions, so for continuous models you
should see a substantial performance benefit from using this feature. To clear a previously specified
piecewise-linear objective function, simply set the Obj attribute on the corresponding variable to
0.
Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed
in a lazy fashion, meaning that modifications don’t affect the model immediately. Rather, they
are queued and applied later. If your program simply creates a model and solves it, you will
probably never notice this behavior. However, if you ask for information about the model before
your modifications have been applied, the details of the lazy update approach may be relevant to
you.

As we just noted, model modifications (bound changes, right-hand side changes, objective

221

changes, etc.) are placed in a queue. These queued modifications can be applied to the model
in three different ways. The first is by an explicit call to GRBModel.update. The second is by a
call to GRBModel.optimize. The third is by a call to GRBModel.write to write out the model. The
first case gives you fine-grained control over when modifications are applied. The second and third
make the assumption that you want all pending modifications to be applied before you optimize
your model or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is
that this approach makes it much easier to perform multiple modifications to a model, since the
model remains unchanged between modifications. The second is that processing model modifica-
tions can be expensive, particularly in a Compute Server environment, where modifications require
communication between machines. Thus, it is useful to have visibility into exactly when these
modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then
update, then make more modifications, then update again, etc. Updating after each individual
modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value
of the requested data from the point of the last update. If the object you tried to query didn’t
exist then, you’ll get a NOT_IN_MODEL exception instead.

The semantics of lazy updates have changed in this release. While the vast majority of programs
will continue to work unmodified, you can use the UpdateMode parameter to revert to the previous
behavior if you run into an issue.
Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of
the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms,
strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters
before beginning the optimization. Parameters can be of type int, double, or string.

The simplest way to set parameters is through the GRBModel.set method on the model object.
Similarly, parameter values can be queried with GRBModel.get.

Parameters can also be set on the Gurobi environment object, using GRBEnv.set. Note that
each model gets its own copy of the environment when it is created, so parameter changes to the
original environment have no effect on existing models.

You can read a set of parameter settings from a file using GRBEnv.readParams, or write the
set of changed parameters using GRBEnv.writeParams.

We also include an automated parameter tuning tool that explores many different sets of pa-
rameter changes in order to find a set that improves performance. You can call GRBModel.tune to
invoke the tuning tool on a model. Refer to the parameter tuning tool section for more information.

The full list of Gurobi parameters can be found in the Parameters section.
Memory Management

Users typically do not need to concern themselves with memory management in Java, since it
is handled automatically by the garbage collector. The Gurobi Java interface utilizes the same
garbage collection mechanism as other Java programs, but there are a few specifics of our memory
management that users should be aware of.

In general, Gurobi objects live in the same Java heap as other Java objects. When they are
no longer referenced, they become candidates for garbage collection, and are returned to the pool

222

of free space at the next invocation of the garbage collector. Two important exceptions are the
GRBEnv and GRBModel objects. A GRBModel object has a small amount of memory associated
with it in the Java heap, but the majority of the space associated with a model lives in the heap
of the Gurobi native code library (the Gurobi DLL in Windows, or the Gurobi shared library in
Linux or Mac). The Java heap manager is unaware of the memory associated with the model in
the native code library, so it does not consider this memory usage when deciding whether to invoke
the garbage collector. When the garbage collector eventually collects the Java GRBModel object,
the memory associated with the model in the Gurobi native code library will be freed, but this
collection may come later than you might want. Similar considerations apply to the GRBEnv object.

If you are writing a Java program that makes use of multiple Gurobi models or environments,
we recommend that you call GRBModel.dispose when you are done using the associated GRBModel
object, and GRBEnv.dispose when you are done using the associated GRBEnv object and after you
have called GRBModel.dispose on all of the models created using that GRBEnv object.

Native Code

As noted earlier, the Gurobi Java interface is a thin layer that sits on top of our native code
library (the Gurobi DLL on Windows, and the Gurobi shared library on Linux or Mac). Thus, an
application that uses the Gurobi Java library will load the Gurobi native code library at runtime.
In order for this happen, you need to make sure that two things are true. First, you need to make
sure that the native code library is available in the search path of the target machine (PATH on
Windows, LD_LIBRARY_PATH on Linux, or DYLD_LIBRARY_PATH on Mac). These paths are set up
as part of the installation of the Gurobi Optimizer, but may not be configured appropriately on a
machine where the full Gurobi Optimizer has not been installed. Second, you need to be sure that
the Java JVM and the Gurobi native library use the same object format. In particular, you need
to use the 32-bit Gurobi native library with a 32-bit Java JVM, and similarly the 64-bit Gurobi
native library with a 64-bit Java JVM.

Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will
send output to the screen. A few simple controls are available for modifying the default logging
behavior. If you would like to direct output to a file as well as to the screen, specify the log file
name in the GRBEnv constructor. You can modify the LogFile parameter if you wish to redirect
the log to a different file after creating the environment object. The frequency of logging output can
be controlled with the DisplayInterval parameter, and logging can be turned off entirely with the
OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging
section.

More detailed progress monitoring can be done through the GRBCallback class. The GRB-
Model.setCallback method allows you to receive a periodic callback from the Gurobi optimizer.
You do this by sub-classing the GRBCallback abstract class, and writing your own Callback()
method on this class. You can call GRBCallback.getDoubleInfo, GRBCallback.getIntInfo, GRB-
Callback.getStringInfo, or GRBCallback.getSolution from within the callback to obtain additional
information about the state of the optimization.

Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. The simplest control
callback is GRBCallback.abort, which asks the optimizer to terminate at the earliest convenient

223

point. Method GRBCallback.setSolution allows you to inject a feasible solution (or partial solution)
during the solution of a MIP model. Methods GRBCallback.addCut and GRBCallback.addLazy
allow you to add cutting planes and lazy constraints during a MIP optimization, respectively.
Error Handling

All of the methods in the Gurobi Java library can throw an exception of type GRBException.
When an exception occurs, additional information on the error can be obtained by retrieving the
error code (using method GRBException.getErrorCode), or by retrieving the exception message
(using method GRBException.getMessage from the parent class). The list of possible error return
codes can be found in the Error Codes section.

224

4.1 GRBEnv
Gurobi environment object. Gurobi models are always associated with an environment. You must
create an environment before can you create and populate a model. You will generally only need
a single environment object in your program.

The methods on environment objects are mainly used to manage Gurobi parameters (e.g., get,
getParamInfo, set).

While the Java garbage collector will eventually collect an unused GRBEnv object, an environment
will hold onto resources (Gurobi licenses, file descriptors, etc.) until that collection occurs. If your
program creates multiple GRBEnv objects, we recommend that you call GRBEnv.dispose when you
are done using one.

GRBEnv()

Environment constructor.
Constructor for GRBEnv object. If the constructor is called with no arguments, no log file will

be written for the environment.
You have the option of constructing either a local environment, which solves Gurobi models on

the local machine, or a client environment for a Gurobi compute server, which will solve Gurobi
models on a server machine. For the latter, choose the signature that allows you to specify the
names of the Gurobi compute servers and the priority of the associated job.

Note that the GRBEnv constructor will check the current working directory for a file named
gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file
should be in PRM format (briefly, each line should contain a parameter name, followed by the
desired value for that parameter).

In general, you should aim to create a single Gurobi environment object in your program, even
if you plan to work with multiple models. Reusing one environment is much more efficient than
creating and destroying multiple environments.

GRBEnv GRBEnv ()
Create a Gurobi environment (with logging disabled).
Return value:

An environment object (with no associated log file).

GRBEnv GRBEnv (String logFileName)

Create a Gurobi environment (with logging enabled).
Arguments:

logFileName: The desired log file name.
Return value:

An environment object.

225

GRBEnv GRBEnv (String logFileName,
String computeServer,
int port,
String password,
int priority,
double timeout)

Create a client Gurobi environment on a compute server.
Arguments:

logFileName: The name of the log file for this environment. Pass an empty string for no
log file.

computeServer: A comma-separated list of Gurobi compute servers. You can refer to
compute server machines using their names or their IP addresses.

port: The port number used to connect to the compute server. You should pass a -1 value,
which indicates that the default port should be used, unless your server administrator has
changed our recommended port settings.

password: The password for gaining access to the specified compute servers. Pass an empty
string if no password is required.

priority: The priority of the job. Priorities must be between -100 and 100, with a default
value of 0 (by convention). Higher priority jobs are chosen from the server job queue
before lower priority jobs. A job with priority 100 runs immediately, bypassing the job
queue and ignoring the job limit on the server. You should exercise caution with priority
100 jobs, since they can severely overload a server, which can cause jobs to fail, and in
extreme cases can cause the server to crash.

timeout: Job timeout (in seconds). If the job doesn’t reach the front of the queue before the
specified timeout, the constructor will throw a JOB_REJECTED exception. Use a negative
value to indicate that the call should never timeout.

Return value:
An environment object.

GRBEnv GRBEnv (String logfilename,
String accessID,
String secretKey,
String pool)

Create a Gurobi environment on Gurobi Instant Cloud
Arguments:

logfilename: The name of the log file for this environment. May be NULL (or an empty
string), in which case no log file is created.

accessID: The access ID for your Gurobi Instant Cloud license. This can be retrieved from
the Gurobi Instant Cloud website. When used in combination with your secretKey, this
allows you to launch Instant Cloud instances and submit jobs to them.

secretKey: The secret key for your Gurobi Instant Cloud license. This can be retrieved
from the Gurobi Instant Cloud website. When used in combination with your accessID,
this allows you to launch Instant Cloud instances and submit jobs to them. Note that you
should keep your secret key private.

226

pool: The machine pool. Machine pools allow you to create fixed configurations on the
Instant Cloud website (capturing things like type of machine, geographic region, etc.),
and then launch and share machines from client programs without having to restate the
configuration information each time you launch a machine. May be null (or an empty
string), in which case your job will be launched in the default pool associated with your
cloud license.

Return value:
An environment object.

GRBEnv.dispose()

Release the resources associated with a GRBEnv object. While the Java garbage collector will
eventually reclaim these resources, we recommend that you call the dispose method when you are
done using an environment if your program creates more than one.

The dispose method on a GRBEnv should be called only after you have called dispose on all
of the models that were created within that environment. You should not attempt to use a GRBEnv
object after calling dispose.

void dispose ()

GRBEnv.get()

Query the value of a parameter.

double get (GRB.DoubleParam param)

Query the value of a double-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

Return value:
The current value of the requested parameter.

int get (GRB.IntParam param)

Query the value of an int-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

Return value:
The current value of the requested parameter.

227

String get (GRB.StringParam param)

Query the value of a string-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

Return value:
The current value of the requested parameter.

GRBEnv.getErrorMsg()

Query the error message for the most recent exception associated with this environment.

String getErrorMsg ()
Return value:

The error string.

GRBEnv.getParamInfo()

Obtain information about a parameter.

void getParamInfo (GRB.DoubleParam param,
double[] info)

Obtain detailed information about a double parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

info: The returned information. The result will contain four entries: the current value of
the parameter, the minimum allowed value, the maximum allowed value, and the default
value.

void getParamInfo (GRB.IntParam param,
int[] info)

Obtain detailed information about an integer parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

info: The returned information. The result will contain four entries: the current value of
the parameter, the minimum allowed value, the maximum allowed value, and the default
value.

228

void getParamInfo (GRB.StringParam param,
String[] info)

Obtain detailed information about a string parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

info: The returned information. The result will contain two entries: the current value of
the parameter and the default value.

GRBEnv.message()

Write a message to the console and the log file.

void message (String message)

Arguments:
message: Print a message to the console and to the log file. Note that this call has no effect
unless the OutputFlag parameter is set.

GRBEnv.readParams()

Read new parameter settings from a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-

scriptions of their purposes and their minimum, maximum, and default values.

void readParams (String paramFile)

Arguments:
paramFile: Name of the file containing parameter settings. Parameters should be listed
one per line, with the parameter name first and the desired value second. For example:

Gurobi parameter file
Threads 1
MIPGap 0

Blank lines and lines that begin with the hash symbol are ignored.

GRBEnv.release()

Release the license associated with this environment. You will no longer be able to call optimize
on models created with this environment after the license has been released.

void release ()

229

GRBEnv.resetParams()

Reset all parameters to their default values.
Please consult the parameter section for a complete list of Gurobi parameters, including de-

scriptions of their purposes and their minimum, maximum, and default values.

void resetParams ()

GRBEnv.set()

Set the value of a parameter.
Important notes:
Note that a model gets its own copy of the environment when it is created. Changes to the

original environment have no effect on the copy. Use GRBModel.set to change a parameter on an
existing model.

void set (GRB.DoubleParam param,
double newval)

Set the value of a double-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

newval: The desired new value of the parameter.

void set (GRB.IntParam param,
int newval)

Set the value of an int-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

newval: The desired new value of the parameter.

void set (GRB.StringParam param,
String newval)

Set the value of a string-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

newval: The desired new value of the parameter.

230

void set (String param,
String newval)

Set the value of any parameter using strings alone.
Arguments:

param: The name of the parameter being modified. Please consult the parameter section
for a complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

newval: The desired new value of the parameter.

GRBEnv.writeParams()
Write all non-default parameter settings to a file.

Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

void writeParams (String paramFile)

Arguments:
paramFile: Name of the file to which non-default parameter settings should be written.
The previous contents are overwritten.

231

4.2 GRBModel
Gurobi model object. Commonly used methods include addVar (adds a new decision variable to the
model), addConstr (adds a new constraint to the model), optimize (optimizes the current model),
and get (retrieves the value of an attribute).

While the Java garbage collector will eventually collect an unused GRBModel object, the vast
majority of the memory associated with a model is stored outside of the Java heap. As a result,
the garbage collector can’t see this memory usage, and thus it can’t take this quantity into account
when deciding whether collection is necessary. We recommend that you call GRBModel.dispose
when you are done using a model.

GRBModel()

Constructor for GRBModel. The simplest version creates an empty model. You can then call
addVar and addConstr to populate the model with variables and constraints. The more complex
constructors can read a model from a file, or make a copy of an existing model.

GRBModel GRBModel (GRBEnv env)

Model constructor.
Arguments:

env: Environment for new model.
Return value:

New model object. Model initially contains no variables or constraints.

GRBModel GRBModel (GRBEnv env,
String filename)

Read a model from a file. Note that the type of the file is encoded in the file name suffix.
Valid suffixes are .mps, .rew, .lp, .rlp, .ilp, or .opb. The files can be compressed, so additional
suffixes of .zip, .gz, .bz2, or .7z are accepted.

Arguments:
env: Environment for new model.
filename: Name of the file containing the model.

Return value:
New model object.

GRBModel GRBModel (GRBModel model)

Create a copy of an existing model.
Arguments:

model: Model to copy.
Return value:

New model object. Model is a clone of the input model.

232

GRBModel.addConstr()

Add a single linear constraint to a model. Multiple signatures are available.

GRBConstr addConstr (GRBLinExpr lhsExpr,
char sense,
GRBLinExpr rhsExpr,
String name)

Add a single linear constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhsExpr: Right-hand side expression for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (GRBLinExpr lhsExpr,
char sense,
GRBVar rhsVar,
String name)

Add a single linear constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhsVar: Right-hand side variable for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (GRBLinExpr lhsExpr,
char sense,
double rhs,
String name)

Add a single linear constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhs: Right-hand side value for new linear constraint.
name: Name for new constraint.

Return value:

233

New constraint object.

GRBConstr addConstr (GRBVar lhsVar,
char sense,
GRBLinExpr rhsExpr,
String name)

Add a single linear constraint to a model.
Arguments:

lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhsExpr: Right-hand side expression for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (GRBVar lhsVar,
char sense,
GRBVar rhsVar,
String name)

Add a single linear constraint to a model.
Arguments:

lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhsVar: Right-hand side variable for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (GRBVar lhsVar,
char sense,
double rhs,
String name)

Add a single linear constraint to a model.
Arguments:

lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhs: Right-hand side value for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

234

GRBConstr addConstr (double lhs,
char sense,
GRBVar rhsVar,
String name)

Add a single linear constraint to a model.
Arguments:

lhs: Left-hand side value for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhsVar: Right-hand side variable for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (double lhs,
char sense,
GRBLinExpr rhsExpr,
String name)

Add a single linear constraint to a model.
Arguments:

lhs: Left-hand side value for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhsExpr: Right-hand side expression for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

GRBModel.addConstrs()

Add new linear constraints to a model.
We recommend that you build your model one constraint at a time (using addConstr), since it

introduces no significant overhead and we find that it produces simpler code. Feel free to use these
methods if you disagree, though.

GRBConstr[] addConstrs (int count)

Add count new linear constraints to a model. The new constraints are all of the form 0 <= 0.
Arguments:

count: Number of constraints to add.
Return value:

Array of new constraint objects.

235

GRBConstr[] addConstrs (GRBLinExpr[] lhsExprs,
char[] senses,
double[] rhss,
String[] names)

Add new linear constraints to a model. The number of added constraints is determined by the
length of the input arrays (which must be consistent across all arguments).

Arguments:
lhsExprs: Left-hand side expressions for the new linear constraints.
senses: Senses for new linear constraints (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhss: Right-hand side values for the new linear constraints.
names: Names for new constraints.

Return value:
Array of new constraint objects.

GRBConstr[] addConstrs (GRBLinExpr[] lhsExprs,
char[] senses,
double[] rhss,
String[] names,
int start,
int len)

Add new linear constraints to a model. This signature allows you to use arrays to hold the
various constraint attributes (left-hand side, sense, etc.), without forcing you to add one constraint
for each entry in the array. The start and len arguments allow you to specify which constraints
to add.

Arguments:
lhsExprs: Left-hand side expressions for the new linear constraints.
senses: Senses for new linear constraints (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhss: Right-hand side values for the new linear constraints.
names: Names for new constraints.
start: The first constraint in the list to add.
len: The number of constraints to add.

Return value:
Array of new constraint objects.

GRBModel.addGenConstrXxx()

Each of the functions described below adds a new general constraint to a model.
Mathematical programming has traditionally defined a set of fundamental constraint types:

variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and
SOS constraints. These are typically treated directly by the underlying solver (although not always),
and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general
constraints. These are typically not treated directly by the solver. Rather, they are transformed

236

by presolve into mathematically equivalent sets of constraints (and variables), chosen from among
the fundamental types listed above. These general constraints are provided as a convenience to
users. If such constraints appear in your model, but if you prefer to reformulate them yourself
using fundamental constraint types instead, you can certainly do so. However, note that Gurobi
can sometimes exploit information contained in the other constraints in the model to build a more
efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

• MAX (addGenConstrMax): set a decision variable equal to the maximum value from among
a set of decision variables

• MIN (addGenConstrMin): set a decision variable equal to the minimum value from among a
set of decision variables

• ABS (addGenConstrAbs): set a decision variable equal to the absolute value of some other
decision variable

• AND (addGenConstrAnd): set a binary variable equal to one if and only if all of a set of
binary decision variables are equal to one

• OR (addGenConstrOr): set a binary variable equal to one if and only if at least one variable
out of a set of binary decision variables is equal to one

• INDICATOR (addGenConstrIndicator): a given binary variable may only take a certain value
if a given linear constraint is satisfied

For additional details please refer to the General Constraints section in the Reference Manual.

GRBModel.addGenConstrMax()

Add a new general constraint of type GRB.GENCONSTR_MAX to a model.
A MAX constraint r = max{x1, . . . , xn, c} states that the resultant variable r should be equal

to the maximum of the operand variables x1, . . . , xn and the constant c.

GRBGenConstr addGenConstrMax (GRBVar resvar,
GRBVar[] vars,
double constant,
String name)

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
constant: The additional constant operand of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

237

GRBModel.addGenConstrMin()

Add a new general constraint of type GRB.GENCONSTR_MIN to a model.
A MIN constraint r = min{x1, . . . , xn, c} states that the resultant variable r should be equal to

the minimum of the operand variables x1, . . . , xn and the constant c.

GRBGenConstr addGenConstrMin (GRBVar resvar,
GRBVar[] vars,
double constant,
String name)

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
constant: The additional constant operand of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.addGenConstrAbs()

Add a new general constraint of type GRB.GENCONSTR_ABS to a model.
An ABS constraint r = abs{x} states that the resultant variable r should be equal to the

absolute value of the argument variable x.

GRBGenConstr addGenConstrAbs (GRBVar resvar,
GRBVar argvar,
String name)

Arguments:
resvar: The resultant variable of the new constraint.
argvar: The argument variable of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.addGenConstrAnd()

Add a new general constraint of type GRB.GENCONSTR_AND to a model.
An AND constraint r = and{x1, . . . , xn} states that the binary resultant variable r should be 1

if and only if all of the operand variables x1, . . . , xn are equal to 1. If any of the operand variables
is 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary; indepen-
dently of how they were created.

GRBGenConstr addGenConstrAnd (GRBVar resvar,
GRBVar[] vars,
String name)

238

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.addGenConstrOr()

Add a new general constraint of type GRB.GENCONSTR_OR to a model.
An OR constraint r = or{x1, . . . , xn} states that the binary resultant variable r should be 1 if

and only if any of the operand variables x1, . . . , xn is equal to 1. If all operand variables are 0, then
the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary; indepen-
dently of how they were created.

GRBGenConstr addGenConstrOr (GRBVar resvar,
GRBVar[] vars,
String name)

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.addGenConstrIndicator()

Add a new general constraint of type GRB.GENCONSTR_INDICATOR to a model.
An INDICATOR constraint z = f → aTx ≤ b states that if the binary indicator variable z is

equal to f ∈ {0, 1}, then the linear constraint aTx ≤ b should hold. On the other hand, if z = 1−f ,
the linear constraint may be violated. The sense of the linear constraint can also be specified to be
= or ≥.

Note that the indicator variable z of a constraint will be forced to be binary; independently of
how it was created.

GRBGenConstr addGenConstrIndicator (GRBVar binvar,
int binval,
GRBLinExpr expr,
char sense,
double rhs,
String name)

Arguments:
binvar: The binary indicator variable.
binval: The value for the binary indicator variable that would force the linear constraint
to be satisfied (0 or 1).

239

expr: Left-hand side expression for the linear constraint triggered by the indicator.
sense: Sense for the linear constraint. Options are GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL.

rhs: Right-hand-side value for the linear constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.addQConstr()

Add a quadratic constraint to a model. Multiple signatures are available.
Important note: the algorithms that Gurobi uses to solve quadratically constrained problems

can only handle certain types of quadratic constraints. Constraints of the following forms are always
accepted:

• xTQx+ qTx ≤ b, where Q is Positive Semi-Definite (PSD)

• xTx ≤ y2, where x is a vector of variables, and y is a non-negative variable (a Second-Order
Cone)

• xTx ≤ yz, where x is a vector of variables, and y and z are non-negative variables (a rotated
Second-Order Cone)

If you add a constraint that isn’t in one of these forms (and Gurobi presolve is unable to transform
the constraint into one of these forms), you’ll get an error when you try to solve the model.
Constraints where the quadratic terms only involve binary variables will always be transformed
into one of these forms.

GRBQConstr addQConstr (GRBQuadExpr lhsExpr,
char sense,
GRBQuadExpr rhsExpr,
String name)

Add a quadratic constraint to a model.
Arguments:

lhsExpr: Left-hand side quadratic expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side quadratic expression for new quadratic constraint.
name: Name for new constraint.

Return value:
New quadratic constraint object.

GRBQConstr addQConstr (GRBQuadExpr lhsExpr,
char sense,
GRBVar rhsVar,
String name)

Add a quadratic constraint to a model.

240

Arguments:
lhsExpr: Left-hand side quadratic expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhsVar: Right-hand side variable for new quadratic constraint.
name: Name for new constraint.

Return value:
New quadratic constraint object.

GRBQConstr addQConstr (GRBQuadExpr lhsExpr,
char sense,
GRBLinExpr rhsExpr,
String name)

Add a quadratic constraint to a model.
Arguments:

lhsExpr: Left-hand side quadratic expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side linear expression for new quadratic constraint.
name: Name for new constraint.

Return value:
New quadratic constraint object.

GRBQConstr addQConstr (GRBQuadExpr lhsExpr,
char sense,
double rhs,
String name)

Add a quadratic constraint to a model.
Arguments:

lhsExpr: Left-hand side quadratic expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhs: Right-hand side value for new quadratic constraint.
name: Name for new constraint.

Return value:
New quadratic constraint object.

GRBQConstr addQConstr (GRBLinExpr lhsExpr,
char sense,
GRBQuadExpr rhsExpr,
String name)

Add a quadratic constraint to a model.
Arguments:

lhsExpr: Left-hand side linear expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side quadratic expression for new quadratic constraint.
name: Name for new constraint.

241

Return value:
New quadratic constraint object.

GRBQConstr addQConstr (GRBVar lhsVar,
char sense,
GRBQuadExpr rhsExpr,
String name)

Add a quadratic constraint to a model.
Arguments:

lhsVar: Left-hand side variable for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side quadratic expression for new quadratic constraint.
name: Name for new constraint.

Return value:
New quadratic constraint object.

GRBQConstr addQConstr (double lhs,
char sense,
GRBQuadExpr rhsExpr,
String name)

Add a quadratic constraint to a model.
Arguments:

lhs: Left-hand side value for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side quadratic expression for new quadratic constraint.
name: Name for new constraint.

Return value:
New quadratic constraint object.

GRBModel.addRange()
Add a single range constraint to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution.

Note that range constraints are stored internally as equality constraints. We add an extra
variable to the model to capture the range information. Thus, the Sense attribute on a range
constraint will always be GRB.EQUAL.

GRBConstr addRange (GRBLinExpr expr,
double lower,
double upper,
String name)

Arguments:
expr: Linear expression for new range constraint.
lower: Lower bound for linear expression.

242

upper: Upper bound for linear expression.
name: Name for new constraint.

Return value:
New constraint object.

GRBModel.addRanges()
Add new range constraints to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution.

GRBConstr[] addRanges (GRBLinExpr[] exprs,
double[] lower,
double[] upper,
String[] names)

Arguments:
exprs: Linear expressions for the new range constraints.
lower: Lower bounds for linear expressions.
upper: Upper bounds for linear expressions.
names: Names for new range constraints.

Return value:
Array of new constraint objects.

GRBModel.addSOS()
Add an SOS constraint to the model. Please refer to the SOS Constraints section in the Reference
Manual for additional details.

GRBSOS addSOS (GRBVar[] vars,
double[] weights,
int type)

Arguments:
vars: Array of variables that participate in the SOS constraint.
weights: Weights for the variables in the SOS constraint.
type: SOS type (can be GRB.SOS_TYPE1 or GRB.SOS_TYPE2).

Return value:
New SOS constraint.

GRBModel.addVar()
Add a single decision variable to a model.

GRBVar addVar (double lb,
double ub,
double obj,
char type,
String name)

243

Add a variable to a model; non-zero entries will be added later.
Arguments:

lb: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).

name: Name for new variable.
Return value:

New variable object.

GRBVar addVar (double lb,
double ub,
double obj,
char type,
GRBConstr[] constrs,
double[] coeffs,
String name)

Add a variable to a model, and the associated non-zero coefficients.
Arguments:

lb: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).

constrs: Array of constraints in which the variable participates.
coeffs: Array of coefficients for each constraint in which the variable participates. The
lengths of the constrs and coeffs arrays must be identical.

name: Name for new variable.
Return value:

New variable object.

GRBVar addVar (double lb,
double ub,
double obj,
char type,
GRBColumn col,
String name)

Add a variable to a model. This signature allows you to specify the set of constraints to which
the new variable belongs using a GRBColumn object.

Arguments:
lb: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.

244

type: Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).

col: GRBColumn object for specifying a set of constraints to which new variable belongs.
name: Name for new variable.

Return value:
New variable object.

GRBModel.addVars()

Add new decision variables to a model.

GRBVar[] addVars (int count,
char type)

Add count new decision variables to a model. All associated attributes take their default values,
except the variable type, which is specified as an argument.

Arguments:
count: Number of variables to add.
type: Variable type for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).

Return value:
Array of new variable objects.

GRBVar[] addVars (double[] lb,
double[] ub,
double[] obj,
char[] type,
String[] names)

Add new decision variables to a model. The number of added variables is determined by the
length of the input arrays (which must be consistent across all arguments).

Arguments:
lb: Lower bounds for new variables. Can be null, in which case the variables get lower
bounds of 0.0.

ub: Upper bounds for new variables. Can be null, in which case the variables get infinite
upper bounds.

obj: Objective coefficients for new variables. Can be null, in which case the variables get
objective coefficients of 0.0.

type: Variable types for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed
to be continuous.

names: Names for new variables. Can be null, in which case all variables are given default
names.

Return value:
Array of new variable objects.

245

GRBVar[] addVars (double[] lb,
double[] ub,
double[] obj,
char[] type,
String[] names,
int start,
int len)

Add new decision variables to a model. This signature allows you to use arrays to hold the
various variable attributes (lower bound, upper bound, etc.), without forcing you to add a variable
for each entry in the array. The start and len arguments allow you to specify which variables to
add.

Arguments:
lb: Lower bounds for new variables. Can be null, in which case the variables get lower
bounds of 0.0.

ub: Upper bounds for new variables. Can be null, in which case the variables get infinite
upper bounds.

obj: Objective coefficients for new variables. Can be null, in which case the variables get
objective coefficients of 0.0.

type: Variable types for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed
to be continuous.

names: Names for new variables. Can be null, in which case all variables are given default
names.

start: The first variable in the list to add.
len: The number of variables to add.

Return value:
Array of new variable objects.

GRBVar[] addVars (double[] lb,
double[] ub,
double[] obj,
char[] type,
String[] names,
GRBColumn[] cols)

Add new decision variables to a model. This signature allows you to specify the list of constraints
to which each new variable belongs using an array of GRBColumn objects.

Arguments:
lb: Lower bounds for new variables. Can be null, in which case the variables get lower
bounds of 0.0.

ub: Upper bounds for new variables. Can be null, in which case the variables get infinite
upper bounds.

obj: Objective coefficients for new variables. Can be null, in which case the variables get
objective coefficients of 0.0.

type: Variable types for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed

246

to be continuous.
names: Names for new variables. Can be null, in which case all variables are given default
names.

cols: GRBColumn objects for specifying a set of constraints to which each new column
belongs.

Return value:
Array of new variable objects.

GRBModel.chgCoeff()

Change one coefficient in the model. The desired change is captured using a GRBVar object, a
GRBConstr object, and a desired coefficient for the specified variable in the specified constraint. If
you make multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you
update the model (using GRBModel.update), optimize the model (using GRBModel.optimize), or
write the model to disk (using GRBModel.write).

void chgCoeff (GRBConstr constr,
GRBVar var,
double newval)

Arguments:
constr: Constraint for coefficient to be changed.
var: Variable for coefficient to be changed.
newval: Desired new value for coefficient.

GRBModel.chgCoeffs()

Change a list of coefficients in the model. Each desired change is captured using a GRBVar object,
a GRBConstr object, and a desired coefficient for the specified variable in the specified constraint.
The entries in the input arrays each correspond to a single desired coefficient change. The lengths
of the input arrays must all be the same. If you make multiple changes to the same coefficient, the
last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you
update the model (using GRBModel.update), optimize the model (using GRBModel.optimize), or
write the model to disk (using GRBModel.write).

void chgCoeffs (GRBConstr[] constrs,
GRBVar[] vars,
double[] newvals)

Arguments:
constrs: Constraints for coefficients to be changed.
vars: Variables for coefficients to be changed.
newvals: Desired new values for coefficients.

247

GRBModel.computeIIS()
Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and
variable bounds with the following properties:
• the subsystem represented by the IIS is infeasible, and

• if any of the constraints or bounds of the IIS is removed, the subsystem becomes feasible.
Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily
one of minimal cardinality. Thus, there may exist other IISs with fewer constraints or bounds.

If an IIS computation is interrupted before completion, Gurobi will internally store the best
available IIS found so far.

This method populates the IISCONSTR, IISQCONSTR, and IISGENCONSTR constraint attributes,
the IISSOS SOS attribute, and the IISLB, and IISUB variable attributes. You can also obtain
information about the results of the IIS computation by writing a .ilp format file (see GRB-
Model.write). This file contains only the IIS from the original model.

Note that this method can be used to compute IISs for both continuous and MIP models.

void computeIIS ()

GRBModel.discardConcurrentEnvs()
Discard concurrent environments for a model.

The concurrent environments created by getConcurrentEnv will be used by every subsequent
call to the concurrent optimizer until the concurrent environments are discarded.

Use getMultiobjEnv to create a multi-objective environment.

void discardConcurrentEnvs ()

GRBModel.discardMultiobjEnvs()
Discard all multi-objective environments associated with the model, thus restoring multi objective
optimization to its default behavior.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple
objective functions and control the tradeoff between them.

Use getMultiobjEnv to create a multi-objective environments.

void discardMultiobjEnvs ()

GRBModel.dispose()
Release the resources associated with a GRBModel object. While the Java garbage collector will
eventually reclaim these resources, we recommend that you call the dispose method when you are
done using a model.

You should not attempt to use a GRBModel object after calling dispose on it.

void dispose ()

248

GRBModel.feasRelax()

Modifies the GRBModel object to create a feasibility relaxation. Note that you need to call optimize
on the result to compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the
solution violates the bounds and linear constraints of the original model. This method provides a
number of options for specifying the relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the
sum of the weighted magnitudes of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the cost per unit violation in the lower bounds, upper bounds, and linear
constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the
weighted sum of the squares of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the coefficients on the squares of the lower bound, upper bound, and
linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the
weighted count of bound and constraint violations. The lbpen, ubpen, and rhspen arguments
specify the cost of violating a lower bound, upper bound, and linear constraint, respectively.

To give an example, if a constraint with rhspen value p is violated by 2.0, it would con-
tribute 2*p to the feasibility relaxation objective for relaxobjtype=0, it would contribute 2*2*p
for relaxobjtype=1, and it would contribute p for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is
created. If minrelax=false, optimizing the returned model gives a solution that minimizes the
cost of the violation. If minrelax=true, optimizing the returned model finds a solution that
minimizes the original objective, but only from among those solutions that minimize the cost of the
violation. Note that feasRelax must solve an optimization problem to find the minimum possible
relaxation when minrelax=true, which can be quite expensive.

There are two signatures for this method. The more complex one takes a list of variables
and constraints, as well as penalties associated with relaxing the corresponding lower bounds,
upper bounds, and constraints. If a variable or constraint is not included in one of these lists,
the associated bounds or constraints may not be violated. The simpler signature takes a pair of
boolean arguments, vrelax and crelax, that indicate whether variable bounds and/or constraints
can be violated. If vrelax/crelax is true, then every bound/constraint is allowed to be violated,
respectively, and the associated cost is 1.0.

Note that this is a destructive method: it modifies the model on which it is invoked. If you
don’t want to modify your original model, use the GRBModel constructor to create a copy before
invoking this method.

double feasRelax (int relaxobjtype,
boolean minrelax,
GRBVar[] vars,
double[] lbpen,
double[] ubpen,
GRBConstr[] constrs,
double[] rhspen)

249

Create a feasibility relaxation model.
Arguments:

relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vars: Variables whose bounds are allowed to be violated.
lbpen: Penalty for violating a variable lower bound. One entry for each variable in argument
vars.

ubpen: Penalty for violating a variable upper bound. One entry for each variable in argument
vars.

constrs: Linear constraints that are allowed to be violated.
rhspen: Penalty for violating a linear constraint. One entry for each variable in argument
constr.

Arguments:
Return value:

Zero if minrelax is false. If minrelax is true, the return value is the objective value for
the relaxation performed. If the value is less than 0, it indicates that the method failed to
create the feasibility relaxation.

double feasRelax (int relaxobjtype,
boolean minrelax,
boolean vrelax,
boolean crelax)

Simplified method for creating a feasibility relaxation model.
Arguments:

relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vrelax: Indicates whether variable bounds can be relaxed (with a cost of 1.0 for any viola-
tions.

crelax: Indicates whether linear constraints can be relaxed (with a cost of 1.0 for any
violations.

Return value:
Zero if minrelax is false. If minrelax is true, the return value is the objective value for
the relaxation performed. If the value is less than 0, it indicates that the method failed to
create the feasibility relaxation.

GRBModel.fixedModel()

Create the fixed model associated with a MIP model. The MIP model must have a solution loaded
(e.g., after a call to the optimize method). In the fixed model, each integer variable is fixed to the
value that variable takes in the MIP solution.

GRBModel fixedModel ()
Return value:

Fixed model associated with calling object.

250

GRBModel.get()
Query the value(s) of a parameter or attribute. Use this method for parameters, for scalar model
attributes, and for arrays of constraint or variable attributes.

double get (GRB.DoubleParam param)

Query the value of a double-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

int get (GRB.IntParam param)

Query the value of an int-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

String get (GRB.StringParam param)

Query the value of a string-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

char[] get (GRB.CharAttr attr,
GRBVar[] vars)

Query a char-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

char[] get (GRB.CharAttr attr,
GRBVar[] vars,
int start,
int len)

Query a char-valued variable attribute for a sub-array of variables.

251

Arguments:
attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

char[][] get (GRB.CharAttr attr,
GRBVar[][] vars)

Query a char-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

char[][][] get (GRB.CharAttr attr,
GRBVar[][][] vars)

Query a char-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

char[] get (GRB.CharAttr attr,
GRBConstr[] constrs)

Query a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

char[] get (GRB.CharAttr attr,
GRBConstr[] constrs,
int start,
int len)

Query a char-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.

252

start: The index of the first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

char[][] get (GRB.CharAttr attr,
GRBConstr[][] constrs)

Query a char-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

char[][][] get (GRB.CharAttr attr,
GRBConstr[][][] constrs)

Query a char-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

char[] get (GRB.CharAttr attr,
GRBQConstr[] qconstrs)

Query a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: The quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

char[] get (GRB.CharAttr attr,
GRBQConstr[] qconstrs,
int start,
int len)

Query a char-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being queried.

start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

253

Return value:
The current values of the requested attribute for each input quadratic constraint.

char[][] get (GRB.CharAttr attr,
GRBQConstr[][] qconstrs)

Query a char-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

char[][][] get (GRB.CharAttr attr,
GRBQConstr[][][] qconstrs)

Query a char-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

double get (GRB.DoubleAttr attr)

Query the value of a double-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double[] get (GRB.DoubleAttr attr,
GRBVar[] vars)

Query a double-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

254

double[] get (GRB.DoubleAttr attr,
GRBVar[] vars,
int start,
int len)

Query a double-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

double[][] get (GRB.DoubleAttr attr,
GRBVar[][] vars)

Query a double-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

double[][][] get (GRB.DoubleAttr attr,
GRBVar[][][] vars)

Query a double-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

double[] get (GRB.DoubleAttr attr,
GRBConstr[] constrs)

Query a double-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

double[] get (GRB.DoubleAttr attr,
GRBConstr[] constrs,
int start,
int len)

255

Query a double-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

double[][] get (GRB.DoubleAttr attr,
GRBConstr[][] constrs)

Query a double-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

double[][][] get (GRB.DoubleAttr attr,
GRBConstr[][][] constrs)

Query a double-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

double[] get (GRB.DoubleAttr attr,
GRBQConstr[] qconstrs)

Query a double-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: The quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

double[] get (GRB.DoubleAttr attr,
GRBQConstr[] qconstrs,
int start,
int len)

Query a double-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being queried.

256

qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being queried.

start: The first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

Return value:
The current values of the requested attribute for each input quadratic constraint.

double[][] get (GRB.DoubleAttr attr,
GRBQConstr[][] qconstrs)

Query a double-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

double[][][] get (GRB.DoubleAttr attr,
GRBQConstr[][][] qconstrs)

Query a double-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

int get (GRB.IntAttr attr)

Query the value of an int-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int[] get (GRB.IntAttr attr,
GRBVar[] vars)

Query an int-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

257

Return value:
The current values of the requested attribute for each input variable.

int[] get (GRB.IntAttr attr,
GRBVar[] vars,
int start,
int len)

Query an int-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

int[][] get (GRB.IntAttr attr,
GRBVar[][] vars)

Query an int-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

int[][][] get (GRB.IntAttr attr,
GRBVar[][][] vars)

Query an int-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

int[] get (GRB.IntAttr attr,
GRBConstr[] constrs)

Query an int-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

258

int[] get (GRB.IntAttr attr,
GRBConstr[] constrs,
int start,
int len)

Query an int-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

int[][] get (GRB.IntAttr attr,
GRBConstr[][] constrs)

Query an int-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

int[][][] get (GRB.IntAttr attr,
GRBConstr[][][] constrs)

Query an int-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

int[] get (GRB.IntAttr attr,
GRBQConstr[] qconstrs)

Query an int-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: The quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

int[] get (GRB.IntAttr attr,
GRBQConstr[] qconstrs,
int start,
int len)

259

Query an int-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being queried.

start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

Return value:
The current values of the requested attribute for each input quadratic constraint.

int[][] get (GRB.IntAttr attr,
GRBQConstr[][] qconstrs)

Query an int-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

int[][][] get (GRB.IntAttr attr,
GRBQConstr[][][] qconstrs)

Query an int-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

int[] get (GRB.IntAttr attr,
GRBGenConstr[] genconstrs)

Query an int-valued general constraint attribute for an array of general constraints.
Arguments:

attr: The attribute being queried.
genconstrs: The general constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input general constraint.

int[] get (GRB.IntAttr attr,
GRBGenConstr[] genconstrs,
int start,
int len)

260

Query an int-valued general constraint attribute for a sub-array of general constraints.
Arguments:

attr: The attribute being queried.
genconstrs: A one-dimensional array of general constraints whose attribute values are
being queried.

start: The index of the first general constraint of interest in the list.
len: The number of general constraints.

Return value:
The current values of the requested attribute for each input general constraint.

int[][] get (GRB.IntAttr attr,
GRBGenConstr[][] genconstrs)

Query an int-valued general constraint attribute for a two-dimensional array of general con-
straints.

Arguments:
attr: The attribute being queried.
genconstrs: A two-dimensional array of general constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input general constraint.

int[][][] get (GRB.IntAttr attr,
GRBGenConstr[][][] genconstrs)

Query an int-valued general constraint attribute for a three-dimensional array of general con-
straints.

Arguments:
attr: The attribute being queried.
genconstrs: A three-dimensional array of general constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input general constraint.

String get (GRB.StringAttr attr)

Query the value of a string-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

String[] get (GRB.StringAttr attr,
GRBVar[] vars)

Query a String-valued variable attribute for an array of variables.

261

Arguments:
attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

String[] get (GRB.StringAttr attr,
GRBVar[] vars,
int start,
int len)

Query a String-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

String[][] get (GRB.StringAttr attr,
GRBVar[][] vars)

Query a String-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

String[][][] get (GRB.StringAttr attr,
GRBVar[][][] vars)

Query a String-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

String[] get (GRB.StringAttr attr,
GRBConstr[] constrs)

Query a String-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

262

Return value:
The current values of the requested attribute for each input constraint.

String[] get (GRB.StringAttr attr,
GRBConstr[] constrs,
int start,
int len)

Query a String-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

String[][] get (GRB.StringAttr attr,
GRBConstr[][] constrs)

Query a String-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

String[][][] get (GRB.StringAttr attr,
GRBConstr[][][] constrs)

Query a String-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

String[] get (GRB.StringAttr attr,
GRBQConstr[] qconstrs)

Query a String-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: The quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

263

String[] get (GRB.StringAttr attr,
GRBQConstr[] qconstrs,
int start,
int len)

Query a String-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being queried.

start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

Return value:
The current values of the requested attribute for each input quadratic constraint.

String[][] get (GRB.StringAttr attr,
GRBQConstr[][] qconstrs)

Query a String-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

String[][][] get (GRB.StringAttr attr,
GRBQConstr[][][] qconstrs)

Query a String-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

String[] get (GRB.StringAttr attr,
GRBGenConstr[] genconstrs)

Query a String-valued general constraint attribute for an array of general constraints.
Arguments:

attr: The attribute being queried.
genconstrs: The general constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input general constraint.

264

String[] get (GRB.StringAttr attr,
GRBGenConstr[] genconstrs,
int start,
int len)

Query a String-valued general constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
genconstrs: A one-dimensional array of general constraints whose attribute values are
being queried.

start: The index of the first general constraint of interest in the list.
len: The number of general constraints.

Return value:
The current values of the requested attribute for each input general constraint.

String[][] get (GRB.StringAttr attr,
GRBGenConstr[][] genconstrs)

Query a String-valued constraint attribute for a two-dimensional array of general constraints.
Arguments:

attr: The attribute being queried.
genconstrs: A two-dimensional array of general constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input general constraint.

String[][][] get (GRB.StringAttr attr,
GRBGenConstr[][][] genconstrs)

Query a String-valued constraint attribute for a three-dimensional array of general constraints.
Arguments:

attr: The attribute being queried.
genconstrs: A three-dimensional array of general constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input general constraint.

GRBModel.getCoeff()
Query the coefficient of variable var in linear constraint constr (note that the result can be zero).

double getCoeff (GRBConstr constr,
GRBVar var)

Arguments:
constr: The requested constraint.
var: The requested variable.

Return value:
The current value of the requested coefficient.

265

GRBModel.getCol()
Retrieve the list of constraints in which a variable participates, and the associated coefficients. The
result is returned as a GRBColumn object.

GRBColumn getCol (GRBVar var)

Arguments:
var: The variable of interest.

Return value:
A GRBColumn object that captures the set of constraints in which the variable participates.

GRBModel.getConcurrentEnv()
Create/retrieve a concurrent environment for a model.

This method provides fine-grained control over the concurrent optimizer. By creating your
own concurrent environments and setting appropriate parameters on these environments (e.g., the
Method parameter), you can control exactly which strategies the concurrent optimizer employs.
For example, if you create two concurrent environments, and set Method to primal simplex for
one and dual simplex for the other, subsequent concurrent optimizer runs will use the two simplex
algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with
num=0. For example, if you want three concurrent environments, they must be numbered 0, 1,
and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent
optimization on that model. Use discardConcurrentEnvs to revert back to default concurrent
optimizer behavior.

GRBEnv getConcurrentEnv (int num)

Arguments:
num: The concurrent environment number.

Return value:
The concurrent environment for the model.

GRBModel.getConstrByName()
Retrieve a linear constraint from its name. If multiple linear constraints have the same name, this
method chooses one arbitrarily. Returns null if no constraint has that name.

GRBConstr getConstrByName (String name)

Arguments:
name: The name of the desired linear constraint.

Return value:
The requested linear constraint.

266

GRBModel.getConstrs()

Retrieve an array of all linear constraints in the model.

GRBConstr[] getConstrs ()
Return value:

All linear constraints in the model.

GRBModel.getEnv()

Query the environment associated with the model. Note that each model makes its own copy of
the environment when it is created. To change parameters for a model, for example, you should
use this method to obtain the appropriate environment object.

GRBEnv getEnv ()
Return value:

The environment for the model.

GRBModel.getGenConstrMax()

Retrieve the data of a general constraint of type MAX. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a null value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in len. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrMax for a description of the semantics of this general constraint type.

void getGenConstrMax (GRBGenConstr genc,
GRBVar[] resvar,
GRBVar[] vars,
int[] len,
double[] constant)

Arguments:
genc: The index of the general constraint.

Any combination of the following four arguments can be null.
resvar: Store the resultant variable of the constraint at resvar[0].
vars: Array to store the operand variables of the constraint.
len: Store the number of operand variables of the constraint at len[0].
constant: Store the additional constant operand of the constraint at constant[0].

267

GRBModel.getGenConstrMin()

Retrieve the data of a general constraint of type MIN. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a null value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in len. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrMin for a description of the semantics of this general constraint type.

void getGenConstrMin (GRBGenConstr genc,
GRBVar[] resvar,
GRBVar[] vars,
int[] len,
double[] constant)

Arguments:
genc: The index of the general constraint.

Any combination of the following four arguments can be null.
resvar: Store the resultant variable of the constraint at resvar[0].
vars: Array to store the operand variables of the constraint.
len: Store the number of operand variables of the constraint at len[0].
constant: Store the additional constant operand of the constraint at constant[0].

GRBModel.getGenConstrAbs()

Retrieve the data of a general constraint of type ABS. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

See also addGenConstrAbs for a description of the semantics of this general constraint type.

void getGenConstrAbs (GRBGenConstr genc,
GRBVar[] resvar,
GRBVar[] argvar)

Arguments:
genc: The index of the general constraint.

Any combination of the following two arguments can be null.
resvar: Store the resultant variable of the constraint at resvar[0].
argvar: Store the argument variable of the constraint at resvar[0].

GRBModel.getGenConstrAnd()

Retrieve the data of a general constraint of type AND. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

268

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a null value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in len. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrAnd for a description of the semantics of this general constraint type.

void getGenConstrAnd (GRBGenConstr genc,
GRBVar[] resvar,
GRBVar[] vars,
int[] len)

Arguments:
genc: The index of the general constraint.

Any combination of the following four arguments can be null.
resvar: Store the resultant variable of the constraint at resvar[0].
vars: Array to store the operand variables of the constraint.
len: Store the number of operand variables of the constraint at len[0].

GRBModel.getGenConstrOr()

Retrieve the data of a general constraint of type OR. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a null value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in len. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrOr for a description of the semantics of this general constraint type.

void getGenConstrOr (GRBGenConstr genc,
GRBVar[] resvar,
GRBVar[] vars,
int[] len)

Arguments:
genc: The index of the general constraint.

Any combination of the following four arguments can be null.
resvar: Store the resultant variable of the constraint at resvar[0].
vars: Array to store the operand variables of the constraint.
len: Store the number of operand variables of the constraint at len[0].

GRBModel.getGenConstrIndicator()

Retrieve the data of a general constraint of type INDICATOR. Calling this function for a general
constraint of different type leads to an exception. You can query the GenConstrType attribute to
determine the type of the general constraint.

269

See also addGenConstrIndicator for a description of the semantics of this general constraint
type.

void getGenConstrIndicator (GRBGenConstr genc,
GRBVar[] binvar,
int[] binval,
GRBLinExpr[] expr,
char[] sense,
double[] rhs)

Arguments:
genc: The index of the general constraint.

Any combination of the following five arguments can be null.
binvar: Store the binary indicator variable of the constraint at binvar[0].
binval: Store the value that the indicator variable has to take in order to trigger the linear
constraint at binval[0].

expr: Create a GRBLinExpr object to store the left-hand-side expression of the linear
constraint that is triggered by the indicator at expr[0].

sense: Store the sense for the linear constraint at sense[0]. Options are GRB.LESS_EQUAL,
GRB.EQUAL, or GRB.GREATER_EQUAL.

rhs: Store the right-hand-side value for the linear constraint at rhs[0].

GRBModel.getGenConstrs()
Retrieve an array of all general constraints in the model.

GRBGenConstr[] getGenConstrs ()
Return value:

All general constraints in the model.

GRBModel.getMultiobjEnv()
Create/retrieve a multi-objective environment for the objective with the given index. This envi-
ronment enables fine-grained control over the multi-objective optimization process. Specifically, by
changing parameters on this environment, you modify the behavior of the optimization that occurs
during the corresponding pass of the multi-objective optimization.

Each multi-objective environment starts with a copy of the current model environment.
Please refer to the discussion of Multiple Objectives for information on how to specify multiple

objective functions and control the tradeoff between them.
Use discardMultiobjEnvs to discard multi-objective environments and return to standard be-

havior.

GRBEnv getMultiobjEnv (int index)

Arguments:

270

index: The objective index.
Return value:

The multi-objective environment for the model.

GRBModel.getObjective()
Retrieve the model objective(s).

GRBExpr getObjective ()
Retrieve the optimization objective.
Note that the constant and linear portions of the objective can also be retrieved using the

ObjCon and Obj attributes.
Return value:

The model objective.

GRBLinExpr getObjective (int index)

Retrieve an alternative optimization objective. Alternative objectives will always be linear. You
can also use this routine to retrieve the primary objective (using index = 0), but you will get an
exception if the primary objective contains quadratic terms.

Please refer to the discussion of Multiple Objectives for more information on the use of alter-
native objectives.

Note that alterative objectives can also be retrieved using the ObjNCon and ObjN attributes.
Arguments:

index: The index for the requested alternative objective.
Return value:

The requested alternative objective.

GRBModel.getPWLObj()
Retrieve the piecewise-linear objective function for a variable. The return value gives the number
of points that define the function, and the x and y arguments give the coordinates of the points,
respectively. The x and y arguments must be large enough to hold the result. Call this method
with null values for x and y if you just want the number of points.

Refer to the description of setPWLObj for additional information on what the values in x and
y mean.

int getPWLObj (GRBVar var,
double[] x,
double[] y)

Arguments:
var: The variable whose objective function is being retrieved.
x: The x values for the points that define the piecewise-linear function. These will always
be in non-decreasing order.

271

y: The y values for the points that define the piecewise-linear function.
Return value:

The number of points that define the piecewise-linear objective function.

GRBModel.getQCRow()

Retrieve the left-hand side expression from a quadratic constraint. The result is returned as a
GRBQuadExpr object.

GRBQuadExpr getQCRow (GRBQConstr qc)

Arguments:
qc: The quadratic constraint of interest.

Return value:
A GRBQuadExpr object that captures the left-hand side of the quadratic constraint.

GRBModel.getQConstrs()

Retrieve an array of all quadratic constraints in the model.

GRBQConstr[] getQConstrs ()
Return value:

All quadratic constraints in the model.

GRBModel.getRow()

Retrieve a list of variables that participate in a constraint, and the associated coefficients. The
result is returned as a GRBLinExpr object.

GRBLinExpr getRow (GRBConstr constr)

Arguments:
constr: The constraint of interest.

Return value:
A GRBLinExpr object that captures the set of variables that participate in the constraint.

GRBModel.getSOS()

Retrieve the list of variables that participate in an SOS constraint, and the associated coefficients.
The return value is the length of this list. Note that the argument arrays must be long enough to
accomodate the result. Call the method with null array arguments to determine the appropriate
array lengths.

272

int getSOS (GRBSOS sos,
GRBVar[] vars,
double[] weights,
int[] type)

Arguments:
sos: The SOS set of interest.
vars: A list of variables that participate in sos. Can be null.
weights: The SOS weights for each participating variable. Can be null.
type: The type of the SOS set (either GRB.SOS_TYPE1 or GRB.SOS_TYPE2) is returned in
type[0].

Return value:
The number of entries placed in the output arrays. Note that you should consult the return
value to determine the length of the result; the arrays sizes won’t necessarily match the
result size.

GRBModel.getSOSs()

Retrieve an array of all SOS constraints in the model.

GRBSOS[] getSOSs ()
Return value:

All SOS constraints in the model.

GRBModel.getTuneResult()

Use this method to retrieve the results of a previous tune call. Calling this method with argument
n causes tuned parameter set n to be copied into the model. Parameter sets are stored in order of
decreasing quality, with parameter set 0 being the best. The number of available sets is stored in
attribute TuneResultCount.

Once you have retrieved a tuning result, you can call optimize to use these parameter settings
to optimize the model, or write to write the changed parameters to a .prm file.

Please refer to the Parameter Tuning section in the Reference Manual for details on the tuning
tool.

void getTuneResult (int i)

i: The index of the tuning result to retrieve. The best result is available as index 0. The
number of stored results is available in attribute TuneResultCount.

GRBModel.getVarByName()

Retrieve a variable from its name. If multiple variables have the same name, this method chooses
one arbitrarily. Returns null if no variable has that name.

273

GRBVar getVarByName (String name)

Arguments:
name: The name of the desired variable.

Return value:
The requested variable.

GRBModel.getVars()
Retrieve an array of all variables in the model.

GRBVar[] getVars ()
Return value:

All variables in the model.

GRBModel.optimize()
Optimize the model. The algorithm used for the optimization depends on the model type (simplex
or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful completion,
this method will populate the solution related attributes of the model. See the Attributes section
in the Reference Manual for more information on attributes.

Please consult the Variables and Constraints section in the Reference Manual for a discussion of
some of the practical issues associated with solving a precisely defined mathematical model using
finite-precision floating-point arithmetic.

Note that this method will process all pending model modifications.

void optimize ()

GRBModel.optimizeasync()
Optimize a model asynchronously. This routine returns immediately. Your program can perform
other computations while optimization proceeds in the background. To check the state of the
asynchronous optimization, query the Status attribute for the model. A value of IN_PROGRESS
indicates that the optimization has not yet completed. When you are done with your foreground
tasks, you must call sync to sync your foreground program with the asynchronous optimization
task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in
the background is severely limited. Specifically, you can only perform attribute queries, and only
for a few attributes (listed below). Any other calls on the running model, or on any other models that
were built within the same Gurobi environment, will fail with error code OPTIMIZATION_IN_PROGRESS.

Note that there are no such restrictions on models built in other environments. Thus, for
example, you could create multiple environments, and then have a single foreground program
launch multiple simultaneous asynchronous optimizations, each in its own environment.

As already noted, you are allowed to query the value of the Status attribute while an asyn-
chronous optimization is in progress. The other attributes that can be queried are: ObjVal, Ob-
jBound, IterCount, NodeCount, and BarIterCount. In each case, the returned value reflects progress

274

in the optimization to that point. Any attempt to query the value of an attribute not on this list
will return an OPTIMIZATION_IN_PROGRESS error.

void optimizeasync ()

GRBModel.presolve()

Perform presolve on a model.

GRBModel presolve ()
Return value:

Presolved version of original model.

GRBModel.read()

This method is the general entry point for importing data from a file into a model. It can be used
to read basis files for continuous models, start vectors for MIP models, or parameter settings. The
type of data read is determined by the file suffix. File formats are described in the File Formats
section of the Reference Manual.

Note that this is not the method to use if you want to read a new model from a file. For that,
use the GRBModel constructor. One variant of the constructor takes the name of the file that
contains the new model as its argument.

void read (String filename)

Arguments:
filename: Name of the file to read. The suffix on the file must be either .bas (for an LP
basis), .mst or .sol (for a MIP start), .hnt (for MIP hints), .ord (for a priority order),
or .prm (for a parameter file). The suffix may optionally be followed by .zip, .gz, .bz2,
or .7z.

GRBModel.remove()

Remove a variable, constraint, or SOS from a model.

void remove (GRBConstr constr)

Remove a linear constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel.update), optimize
the model (using GRBModel.optimize), or write the model to disk (using GRBModel.write).

Arguments:
constr: The linear constraint to remove.

275

void remove (GRBGenConstr genconstr)

Remove a general constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel.update), optimize
the model (using GRBModel.optimize), or write the model to disk (using GRBModel.write).

Arguments:
genconstr: The general constraint to remove.

void remove (GRBQConstr qconstr)

Remove a quadratic constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel.update), optimize
the model (using GRBModel.optimize), or write the model to disk (using GRBModel.write).

Arguments:
qconstr: The quadratic constraint to remove.

void remove (GRBSOS sos)

Remove an SOS constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel.update), optimize
the model (using GRBModel.optimize), or write the model to disk (using GRBModel.write).

Arguments:
sos: The SOS constraint to remove.

void remove (GRBVar var)

Remove a variable from the model. Note that, due to our lazy update approach, the change
won’t actually take effect until you update the model (using GRBModel.update), optimize the
model (using GRBModel.optimize), or write the model to disk (using GRBModel.write).

Arguments:
var: The variable to remove.

GRBModel.reset()
Reset the model to an unsolved state, discarding any previously computed solution information.

void reset ()

GRBModel.setCallback()
Set the callback object for a model. The callback() method on this object will be called period-
ically from the Gurobi solver. You will have the opportunity to obtain more detailed information
about the state of the optimization from this callback. See the documentation for GRBCallback
for additional information.

276

Note that a model can only have a single callback method, so this call will replace an existing
callback.

void setCallback (GRBCallback cb)

Arguments:
cb: New callback object. To disable a previously set callback, call this method with a null
argument.

GRBModel.set()

Set the value(s) of a parameter or attribute. Use this method for parameters, for scalar model
attributes, or for arrays of constraint or variable attributes.

void set (GRB.DoubleParam param,
double newval)

Set the value of a double-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e.,

through GRBEnv.set) is that the former modifies the parameter for a single model, while the latter
modifies the parameter for every model that is subsequently built using that environment (and
leaves the parameter unchanged for models that were previously built using that environment).

Arguments:
param: The parameter being modified.
newval: The desired new value for the parameter.

void set (GRB.IntParam param,
int newval)

Set the value of an int-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e.,

through GRBEnv.set) is that the former modifies the parameter for a single model, while the latter
modifies the parameter for every model that is subsequently built using that environment (and
leaves the parameter unchanged for models that were previously built using that environment).

Arguments:
param: The parameter being modified.
newval: The desired new value for the parameter.

void set (GRB.StringParam param,
String newval)

Set the value of a string-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e.,

through GRBEnv.set) is that the former modifies the parameter for a single model, while the latter
modifies the parameter for every model that is subsequently built using that environment (and
leaves the parameter unchanged for models that were previously built using that environment).

277

Arguments:
param: The parameter being modified.
newval: The desired new value for the parameter.

void set (String param,
String newval)

Set the value of any parameter using strings alone.
The difference between setting a parameter on a model and setting it on an environment (i.e.,

through GRBEnv.set) is that the former modifies the parameter for a single model, while the latter
modifies the parameter for every model that is subsequently built using that environment (and
leaves the parameter unchanged for models that were previously built using that environment).

Arguments:
param: The name of the parameter being modified.
newval: The desired new value for the parameter.

void set (GRB.CharAttr attr,
GRBVar[] vars,
char[] newvals)

Set a char-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.CharAttr attr,
GRBVar[] vars,
char[] newvals,
int start,
int len)

Set a char-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

void set (GRB.CharAttr attr,
GRBVar[][] vars,
char[][] newvals)

Set a char-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being modified.

278

vars: A two-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.CharAttr attr,
GRBVar[][][] vars,
char[][][] newvals)

Set a char-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.CharAttr attr,
GRBConstr[] constrs,
char[] newvals)

Set a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.CharAttr attr,
GRBConstr[] constrs,
char[] newvals,
int start,
int len)

Set a char-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

void set (GRB.CharAttr attr,
GRBConstr[][] constrs,
char[][] newvals)

Set a char-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

279

void set (GRB.CharAttr attr,
GRBConstr[][][] constrs,
char[][][] newvals)

Set a char-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.CharAttr attr,
GRBQConstr[] qconstrs,
char[] newvals)

Set a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: The quadratic constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.CharAttr attr,
GRBQConstr[] qconstrs,
char[] newvals,
int start,
int len)

Set a char-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being modified.

newvals: The desired new values for the attribute for each input quadratic constraint.
start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

void set (GRB.CharAttr attr,
GRBQConstr[][] qconstrs,
char[][] newvals)

Set a char-valued quadratic constraint attribute for a two-dimensional array of quadratic con-
straints.

Arguments:
attr: The attribute being modified.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being modified.

newvals: The desired new values for the attribute for each input quadratic constraint.

280

void set (GRB.CharAttr attr,
GRBQConstr[][][] qconstrs,
char[][][] newvals)

Set a char-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being modified.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being modified.

newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.DoubleAttr attr,
double newval)

Set the value of a double-valued model attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value for the attribute.

void set (GRB.DoubleAttr attr,
GRBVar[] vars,
double[] newvals)

Set a double-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.DoubleAttr attr,
GRBVar[] vars,
double[] newvals,
int start,
int len)

Set a double-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

void set (GRB.DoubleAttr attr,
GRBVar[][] vars,
double[][] newvals)

Set a double-valued variable attribute for a two-dimensional array of variables.

281

Arguments:
attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.DoubleAttr attr,
GRBVar[][][] vars,
double[][][] newvals)

Set a double-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.DoubleAttr attr,
GRBConstr[] constrs,
double[] newvals)

Set a double-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.DoubleAttr attr,
GRBConstr[] constrs,
double[] newvals,
int start,
int len)

Set a double-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.
start: The first constraint of interest in the list.
len: The number of constraints.

void set (GRB.DoubleAttr attr,
GRBConstr[][] constrs,
double[][] newvals)

Set a double-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.

282

newvals: The desired new values for the attribute for each input constraint.

void set (GRB.DoubleAttr attr,
GRBConstr[][][] constrs,
double[][][] newvals)

Set a double-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.DoubleAttr attr,
GRBQConstr[] qconstrs,
double[] newvals)

Set a double-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: The quadratic constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.DoubleAttr attr,
GRBQConstr[] qconstrs,
double[] newvals,
int start,
int len)

Set a double-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being modified.

newvals: The desired new values for the attribute for each input quadratic constraint.
start: The first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

void set (GRB.DoubleAttr attr,
GRBQConstr[][] qconstrs,
double[][] newvals)

Set a double-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being modified.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being modified.

283

newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.DoubleAttr attr,
GRBQConstr[][][] qconstrs,
double[][][] newvals)

Set a double-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being modified.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being modified.

newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.IntAttr attr,
int newval)

Set the value of an int-valued model attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value for the attribute.

void set (GRB.IntAttr attr,
GRBVar[] vars,
int[] newvals)

Set an int-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.IntAttr attr,
GRBVar[] vars,
int[] newvals,
int start,
int len)

Set an int-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

284

void set (GRB.IntAttr attr,
GRBVar[][] vars,
int[][] newvals)

Set an int-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.IntAttr attr,
GRBVar[][][] vars,
int[][][] newvals)

Set an int-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.IntAttr attr,
GRBConstr[] constrs,
int[] newvals)

Set an int-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.IntAttr attr,
GRBConstr[] constrs,
int[] newvals,
int start,
int len)

Set an int-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

void set (GRB.IntAttr attr,
GRBConstr[][] constrs,
int[][] newvals)

Set an int-valued constraint attribute for a two-dimensional array of constraints.

285

Arguments:
attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.IntAttr attr,
GRBConstr[][][] constrs,
int[][][] newvals)

Set an int-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.StringAttr attr,
String newval)

Set the value of a String-valued model attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value for the attribute.

void set (GRB.StringAttr attr,
GRBVar[] vars,
String[] newvals)

Set a String-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.StringAttr attr,
GRBVar[] vars,
String[] newvals,
int start,
int len)

Set a String-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

286

void set (GRB.StringAttr attr,
GRBVar[][] vars,
String[][] newvals)

Set a String-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.StringAttr attr,
GRBVar[][][] vars,
String[][][] newvals)

Set a String-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.StringAttr attr,
GRBConstr[] constrs,
String[] newvals)

Set a String-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.StringAttr attr,
GRBConstr[] constrs,
String[] newvals,
int start,
int len)

Set a String-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

void set (GRB.StringAttr attr,
GRBConstr[][] constrs,
String[][] newvals)

Set a String-valued constraint attribute for a two-dimensional array of constraints.

287

Arguments:
attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.StringAttr attr,
GRBConstr[][][] constrs,
String[][][] newvals)

Set a String-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.StringAttr attr,
GRBQConstr[] qconstrs,
String[] newvals)

Set a String-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: The quadratic constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.StringAttr attr,
GRBQConstr[] qconstrs,
String[] newvals,
int start,
int len)

Set a String-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being modified.

newvals: The desired new values for the attribute for each input quadratic constraint.
start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

void set (GRB.StringAttr attr,
GRBQConstr[][] qconstrs,
String[][] newvals)

Set a String-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.

Arguments:

288

attr: The attribute being modified.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being modified.

newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.StringAttr attr,
GRBQConstr[][][] qconstrs,
String[][][] newvals)

Set a String-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being modified.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being modified.

newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.StringAttr attr,
GRBGenConstr[] genconstrs,
String[] newvals)

Set a String-valued general constraint attribute for an array of general constraints.
Arguments:

attr: The attribute being modified.
genconstrs: The general constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input general constraint.

void set (GRB.StringAttr attr,
GRBGenConstr[] genconstrs,
String[] newvals,
int start,
int len)

Set a String-valued general constraint attribute for a sub-array of general constraints.
Arguments:

attr: The attribute being modified.
genconstrs: A one-dimensional array of general constraints whose attribute values are
being modified.

newvals: The desired new values for the attribute for each input general constraint.
start: The index of the first general constraint of interest in the list.
len: The number of general constraints.

void set (GRB.StringAttr attr,
GRBGenConstr[][] genconstrs,
String[][] newvals)

Set a String-valued general constraint attribute for a two-dimensional array of general con-
straints.

289

Arguments:
attr: The attribute being modified.
genconstrs: A two-dimensional array of general constraints whose attribute values are
being modified.

newvals: The desired new values for the attribute for each input general constraint.

void set (GRB.StringAttr attr,
GRBGenConstr[][][] genconstrs,
String[][][] newvals)

Set a String-valued general constraint attribute for a three-dimensional array of general con-
straints.

Arguments:
attr: The attribute being modified.
genconstrs: A three-dimensional array of general constraints whose attribute values are
being modified.

newvals: The desired new values for the attribute for each input general constraint.

GRBModel.setObjective()

Set the model objective equal to a linear or quadratic expression.
Note that you can also modify the linear portion of a model objective using the Obj variable

attribute. If you wish to mix and match these two approaches, please note that this method replaces
the entire existing objective, while the Obj attribute can be used to modify individual linear terms.

void setObjective (GRBExpr expr,
int sense)

Set the model objective, and the objective sense (GRB.MINIMIZE for minimization, GRB.MAXIMIZE
for maximization).

Arguments:
expr: New model objective.
sense: New optimization sense (GRB.MINIMIZE for minimization, GRB.MAXIMIZE for maxi-
mization).

void setObjective (GRBExpr expr)

Set the model objective. The sense of the objective is determined by the value of the ModelSense
attribute.

Arguments:
expr: New model objective.

290

GRBModel.setObjectiveN()

void setObjectiveN (GRBLinExpr expr,
int index,
int priority,
double weight,
double abstol,
double reltol,
String name)

Set an alternative optimization objective equal to a linear expression.
Please refer to the discussion of Multiple Objectives for more information on the use of alter-

native objectives.
Note that you can also modify an alternative objective using the ObjN variable attribute. If

you wish to mix and match these two approaches, please note that this method replaces the entire
existing objective, while the ObjN attribute can be used to modify individual terms.

Arguments:
expr: New alternative objective.
index: Index for new objective. If you use an index of 0, this routine will change the primary
optimization objective.

priority: Priority for the alternative objective. This initializes the ObjNPriority attribute
for this objective.

weight: Weight for the alternative objective. This initializes the ObjNWeight attribute for
this objective.

abstol: Absolute tolerance for the alternative objective. This initializes the ObjNAbsTol
attribute for this objective.

reltol: Relative tolerance for the alternative objective. This initializes the ObjNRelTol
attribute for this objective.

name: Name of the alternative objective. This initializes the ObjNName attribute for this
objective.

GRBModel.setPWLObj()

Set a piecewise-linear objective function for a variable.
The arguments to this method specify a list of points that define a piecewise-linear objective

function for a single variable. Specifically, the x and y arguments give coordinates for the vertices
of the function.

For example, suppose we want to define the function f(x) shown below:

291

(1, 1)

(3, 2)

(5, 4)

x[0] x[1] x[2]

y[0]

y[1]

y[2]

The vertices of the function occur at the points (1, 1), (3, 2) and (5, 4), so x is {1, 3, 5} and y is {1,
2, 4}. With these arguments we define f(1) = 1, f(3) = 2 and f(5) = 4. Other objective values
are linearly interpolated between neighboring points. The first pair and last pair of points each
define a ray, so values outside the specified x values are extrapolated from these points. Thus, in
our example, f(−1) = 0 and f(6) = 5.

More formally, a set of n points

x = {x1, . . . , xn}, y = {y1, . . . , yn}

define the following piecewise-linear function:

f(v) =


y1 + y2−y1

x2−x1
(v − x1), if v ≤ x1,

yi + yi+1−yi

xi+1−xi
(v − xi), if v ≥ xi and v ≤ xi+1,

yn + yn−yn−1
xn−xn−1

(v − xn), if v ≥ xn.

The x entries must appear in non-decreasing order. Two points can have the same x coordinate
— this can be useful for specifying a discrete jump in the objective function.

Note that a piecewise-linear objective can change the type of a model. Specifically, including
a non-convex piecewise linear objective function in a continuous model will transform that model
into a MIP. This can significantly increase the cost of solving the model.

Setting a piecewise-linear objective for a variable will set the Obj attribute on that variable to
0. Similarly, setting the Obj attribute will delete the piecewise-linear objective on that variable.

Each variable can have its own piecewise-linear objective function. They must be specified
individually, even if multiple variables share the same function.

void setPWLObj (GRBVar var,
double[] x,
double[] y)

Set the piecewise-linear objective function for a variable.
Arguments:

292

var: The variable whose objective function is being set.
x: The x values for the points that define the piecewise-linear function. Must be in non-
decreasing order.

y: The y values for the points that define the piecewise-linear function.

GRBModel.sync()
Wait for a previous asynchronous optimization call to complete.

Calling optimizeasync returns control to the calling routine immediately. The caller can perform
other computations while optimization proceeds, and can check on the progress of the optimization
by querying various model attributes. The sync call forces the calling program to wait until the
asynchronous optimization call completes. You must call sync before the corresponding model
object is deleted.

The sync call throws an exception if the optimization itself ran into any problems. In other
words, exceptions thrown by this method are those that optimize itself would have thrown, had
the original method not been asynchronous.

Note that you need to call sync even if you know that the asynchronous optimization has
already completed.

void sync ()

GRBModel.terminate()
Generate a request to terminate the current optimization. This method can be called at any time
during an optimization.

void terminate ()

GRBModel.tune()
Perform an automated search for parameter settings that improve performance. Upon completion,
this method stores the best parameter sets it found. The number of stored parameter sets can be
determined by querying the value of the TuneResultCount attribute. The actual settings can be
retrieved using getTuneResult

Please refer to the Parameter Tuning section in the Reference Manual for details on the tuning
tool.

void tune ()

GRBModel.update()
Process any pending model modifications.

void update ()

293

GRBModel.write()
This method is the general entry point for writing model data to a file. It can be used to write
optimization models, IIS submodels, solutions, basis vectors, MIP start vectors, or parameter
settings. The type of file is determined by the file suffix. File formats are described in the File
Formats section of the Reference Manual.

Note that writing a model to a file will process all pending model modifications. However,
writing other model information (solutions, bases, etc.) will not.

void write (String filename)

Arguments:
filename: Name of the file to write. The file type is encoded in the file name suffix. Valid
suffixes for writing the model itself are .mps, .rew, .lp, or .rlp. An IIS can be written
by using an .ilp suffix. Use .sol for a solution file, .mst for a MIP start, .hnt for MIP
hints, .bas for a basis file, or .prm for a parameter file. The suffix may optionally be
followed by .gz, .bz2, or .7z, which produces a compressed result.

294

4.3 GRBVar
Gurobi variable object. Variables are always associated with a particular model. You create a
variable object by adding a variable to a model (using GRBModel.addVar), rather than by using a
GRBVar constructor.

The methods on variable objects are used to get and set variable attributes. For example,
solution information can be queried by calling get(GRB.DoubleAttr.X). Note, however, that it is
generally more efficient to query attributes for a set of variables at once. This is done using the
attribute query method on the GRBModel object (GRBModel.get).

GRBVar.get()
Query the value of a variable attribute.

char get (GRB.CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

String get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

295

GRBVar.sameAs()

boolean sameAs (GRBVar otherVar)

Check whether two variable objects refer to the same variable.
Arguments:

otherVar: The other variable.
Return value:

Boolean result indicates whether the two variable objects refer to the same model variable.

GRBVar.set()
Set the value of a variable attribute.

void set (GRB.CharAttr attr,
char newval)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.DoubleAttr attr,
double newval)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.IntAttr attr,
int newval)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.StringAttr attr,
String newval)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

296

4.4 GRBConstr
Gurobi constraint object. Constraints are always associated with a particular model. You create a
constraint object by adding a constraint to a model (using GRBModel.addConstr), rather than by
using a GRBConstr constructor.

The methods on constraint objects are used to get and set constraint attributes. For example,
constraint right-hand sides can be queried by calling get(GRB.DoubleAttr.RHS). Note, however,
that it is generally more efficient to query attributes for a set of constraints at once. This is done
using the attribute query method on the GRBModel object (GRBModel.get).

GRBConstr.get()
Query the value of a constraint attribute.

char get (GRB.CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

String get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

297

GRBConstr.sameAs()

boolean sameAs (GRBConstr otherConstr)

Check whether two constraint objects refer to the same constraint.
Arguments:

otherConstr: The other constraint.
Return value:

Boolean result indicates whether the two constraint objects refer to the same model con-
straint.

GRBConstr.set()
Set the value of a constraint attribute.

void set (GRB.CharAttr attr,
char newval)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.DoubleAttr attr,
double newval)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.IntAttr attr,
int newval)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.StringAttr attr,
String newval)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

298

4.5 GRBQConstr
Gurobi quadratic constraint object. Quadratic constraints are always associated with a particular
model. You create a quadratic constraint object by adding a quadratic constraint to a model (using
GRBModel.addQConstr), rather than by using a GRBQConstr constructor.

The methods on quadratic constraint objects are used to get and set constraint attributes. For
example, quadratic constraint right-hand sides can be queried by calling get(GRB.DoubleAttr.QCRHS).
Note, however, that it is generally more efficient to query attributes for a set of constraints at once.
This is done using the attribute query method on the GRBModel object (GRBModel.get).

GRBQConstr.get()
Query the value of a quadratic constraint attribute.

char get (GRB.CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

String get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

299

GRBQConstr.set()
Set the value of a quadratic constraint attribute.

void set (GRB.CharAttr attr,
char newval)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.DoubleAttr attr,
double newval)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.StringAttr attr,
String newval)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

300

4.6 GRBSOS
Gurobi SOS constraint object. SOS constraints are always associated with a particular model.
You create an SOS object by adding an SOS constraint to a model (using GRBModel.addSOS),
rather than by using a GRBSOS constructor. Similarly, SOS constraints are removed using the
GRBModel.remove method.

An SOS constraint can be of type 1 or 2 (GRB.SOS_TYPE1 or GRB.SOS_TYPE2). A type 1 SOS
constraint is a set of variables for which at most one variable in the set may take a value other than
zero. A type 2 SOS constraint is an ordered set of variables where at most two variables in the set
may take non-zero values. If two take non-zero values, they must be contiguous in the ordered set.

SOS constraint objects have one attribute, IISSOS, which can be queried with the GRBSOS.get
method.

GRBSOS.get()
Query the value of an SOS attribute.

int get (GRB.IntAttr attr)

Arguments:
attr: The attribute being queried.

Return value:
The current value of the requested attribute.

301

4.7 GRBGenConstr
Gurobi general constraint object. General constraints are always associated with a particular
model. You create a general constraint object by adding a general constraint to a model (using
GRBModel.addGenConstr), rather than by using a GRBGenConstr constructor.

The methods on general constraint objects are used to get and set constraint attributes. For
example, general constraint types can be queried by calling get(GRB.IntAttr.GenConstrType).
Note, however, that it is generally more efficient to query attributes for a set of constraints at once.
This is done using the attribute query method on the GRBModel object (GRBModel.get).

GRBGenConstr.get()
Query the value of a general constraint attribute.

int get (GRB.IntAttr attr)

Query the value of a int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

String get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBGenConstr.set()
Set the value of a general constraint attribute.

void set (GRB.StringAttr attr,
String newval)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

302

4.8 GRBExpr
Abstract base class for the GRBLinExpr and GRBQuadExpr classes. Expressions are used to build
objectives and constraints. They are temporary objects that typically have short lifespans.

GRBExpr.getValue()
Compute the value of an expression for the current solution.

double getValue ()
Return value:

Value of the expression for the current solution.

303

4.9 GRBLinExpr
Gurobi linear expression object. A linear expression consists of a constant term, plus a list of
coefficient-variable pairs that capture the linear terms. Linear expressions are used to build con-
straints. They are temporary objects that typically have short lifespans.

The GRBLinExpr class is a sub-class of the abstract base class GRBExpr.
You generally build linear expressions by starting with an empty expression (using the GRB-

LinExpr constructor), and then adding terms. Terms can be added individually, using addTerm,
or in groups, using addTerms, or multAdd. Terms can also be removed from an expression, using
remove.

Individual terms in a linear expression can be queried using the getVar, getCoeff, and getCon-
stant methods. You can query the number of terms in the expression using the size method.

Note that a linear expression may contain multiple terms that involve the same variable. These
duplicate terms are merged when creating a constraint from an expression, but they may be visible
when inspecting individual terms in the expression (e.g., when using getVar).

GRBLinExpr()

Linear expression constructor. Create an empty linear expression, or copy an existing expression.

GRBLinExpr GRBLinExpr ()
Create an empty linear expression.
Return value:

An empty expression object.

GRBLinExpr GRBLinExpr (GRBLinExpr le)

Copy an existing linear expression.
Arguments:

le: Existing expression to copy.
Return value:

A copy of the input expression object.

GRBLinExpr.add()

Add one linear expression into another. Upon completion, the invoking linear expression will be
equal to the sum of itself and the argument expression.

void add (GRBLinExpr le)

Arguments:
le: Linear expression to add.

304

GRBLinExpr.addConstant()

Add a constant into a linear expression.

void addConstant (double c)

Arguments:
c: Constant to add to expression.

GRBLinExpr.addTerm()

Add a single term into a linear expression.

void addTerm (double coeff,
GRBVar var)

Arguments:
coeff: Coefficient for new term.
var: Variable for new term.

GRBLinExpr.addTerms()

Add new terms into a linear expression.

void addTerms (double[] coeffs,
GRBVar[] vars)

Add a list of terms into a linear expression. Note that the lengths of the two argument arrays
must be equal.

Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.

void addTerms (double[] coeffs,
GRBVar[] vars,
int start,
int len)

Add new terms into a linear expression. This signature allows you to use arrays to hold the
coefficients and variables that describe the terms in an array without being forced to add a term
for each entry in the array. The start and len arguments allow you to specify which terms to add.

Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.
start: The first term in the list to add.
len: The number of terms to add.

305

GRBLinExpr.clear()

Set a linear expression to 0.

void clear ()

GRBLinExpr.getConstant()

Retrieve the constant term from a linear expression.

double getConstant ()
Return value:

Constant from expression.

GRBLinExpr.getCoeff()

Retrieve the coefficient from a single term of the expression.

double getCoeff (int i)

Arguments:
i: Index for coefficient of interest.

Return value:
Coefficient for the term at index i in the expression.

GRBLinExpr.getValue()

Compute the value of a linear expression for the current solution.

double getValue ()
Return value:

Value of the expression for the current solution.

GRBLinExpr.getVar()

Retrieve the variable object from a single term of the expression.

GRBVar getVar (int i)

Arguments:
i: Index for term of interest.

Return value:
Variable for the term at index i in the expression.

306

GRBLinExpr.multAdd()
Add a constant multiple of one linear expression into another. Upon completion, the invoking linear
expression is equal the sum of itself and the constant times the argument expression.

void multAdd (double m,
GRBLinExpr le)

Arguments:
m: Constant multiplier for added expression.
le: Linear expression to add.

GRBLinExpr.remove()
Remove a term from a linear expression.

void remove (int i)

Remove the term stored at index i of the expression.
Arguments:

i: The index of the term to be removed.

boolean remove (GRBVar var)

Remove all terms associated with variable var from the expression.
Arguments:

var: The variable whose term should be removed.
Return value:

Returns true if the variable appeared in the linear expression (and was removed).

GRBLinExpr.size()
Retrieve the number of terms in the linear expression (not including the constant).

int size ()
Return value:

Number of terms in the expression.

307

4.10 GRBQuadExpr
Gurobi quadratic expression object. A quadratic expression consists of a linear expression, plus a
list of coefficient-variable-variable triples that capture the quadratic terms. Quadratic expressions
are used to build quadratic objective functions and quadratic constraints. They are temporary
objects that typically have short lifespans.

The GRBQuadExpr class is a sub-class of the abstract base class GRBExpr.
You generally build quadratic expressions by starting with an empty expression (using the

GRBQuadExpr constructor), and then adding terms. Terms can be added individually, using
addTerm, or in groups, using addTerms, or multAdd. Quadratic terms can be removed from a
quadratic expression using remove.

Individual quadratic terms in a quadratic expression can be queried using the getVar1, getVar2,
and getCoeff methods. You can query the number of quadratic terms in the expression using the
size method. To query the constant and linear terms associated with a quadratic expression,
first obtain the linear portion of the quadratic expression using getLinExpr, and then use the
getConstant, getCoeff, and getVar methods on the resulting GRBLinExpr object.

Note that a quadratic expression may contain multiple terms that involve the same variable
pair. These duplicate terms are merged when creating the model objective from an expression, but
they may be visible when inspecting individual quadratic terms in the expression (e.g., when using
getVar1 and getVar2).

GRBQuadExpr()
Quadratic expression constructor. Create an empty quadratic expression, or copy an existing
expression.

GRBQuadExpr GRBQuadExpr ()
Create an empty quadratic expression.
Return value:

An empty expression object.

GRBQuadExpr GRBQuadExpr (GRBLinExpr le)

Initialize a quadratic expression from an existing linear expression.
Arguments:

le: Existing linear expression to copy.
Return value:

Quadratic expression object whose initial value is taken from the input linear expression.

GRBQuadExpr GRBQuadExpr (GRBQuadExpr qe)

Copy an existing quadratic expression.
Arguments:

qe: Existing expression to copy.
Return value:

A copy of the input expression object.

308

GRBQuadExpr.add()
Add an expression into a quadratic expression. Upon completion, the invoking quadratic expression
will be equal to the sum of itself and the argument expression.

void add (GRBLinExpr le)

Add a linear expression.
Arguments:

le: Linear expression to add.

void add (GRBQuadExpr qe)

Add a quadratic expression.
Arguments:

qe: Quadratic expression to add.

GRBQuadExpr.addConstant()
Add a constant into a quadratic expression.

void addConstant (double c)

Arguments:
c: Constant to add to expression.

GRBQuadExpr.addTerm()
Add a single term into a quadratic expression.

void addTerm (double coeff,
GRBVar var)

Add a single linear term (coeff*var) into a quadratic expression.
Arguments:

coeff: Coefficient for new term.
var: Variable for new term.

void addTerm (double coeff,
GRBVar var1,
GRBVar var2)

Add a single quadratic term (coeff*var1*var2) into a quadratic expression.
Arguments:

coeff: Coefficient for new quadratic term.
var1: First variable for new quadratic term.
var2: Second variable for new quadratic term.

309

GRBQuadExpr.addTerms()

Add new terms into a quadratic expression.

void addTerms (double[] coeffs,
GRBVar[] vars)

Add a list of linear terms into a quadratic expression. Note that the lengths of the two argument
arrays must be equal.

Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.

void addTerms (double[] coeffs,
GRBVar[] vars,
int start,
int len)

Add new linear terms into a quadratic expression. This signature allows you to use arrays to
hold the coefficients and variables that describe the linear terms in an array without being forced
to add a term for each entry in the array. The start and len arguments allow you to specify which
terms to add.

Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.
start: The first term in the list to add.
len: The number of terms to add.

void addTerms (double[] coeffs,
GRBVar[] vars1,
GRBVar[] vars2)

Add a list of quadratic terms into a quadratic expression. Note that the lengths of the three
argument arrays must be equal.

Arguments:
coeffs: Coefficients for new quadratic terms.
vars1: First variables for new quadratic terms.
vars2: Second variables for new quadratic terms.

void addTerms (double[] coeffs,
GRBVar[] vars1,
GRBVar[] vars2,
int start,
int len)

Add new quadratic terms into a quadratic expression. This signature allows you to use arrays
to hold the coefficients and variables that describe the terms in an array without being forced to

310

add a term for each entry in the array. The start and len arguments allow you to specify which
terms to add.

Arguments:
coeffs: Coefficients for new quadratic terms.
vars1: First variables for new quadratic terms.
vars2: Second variables for new quadratic terms.
start: The first term in the list to add.
len: The number of terms to add.

GRBQuadExpr.clear()

Set a quadratic expression to 0.

void clear ()

GRBQuadExpr.getCoeff()

Retrieve the coefficient from a single quadratic term of the quadratic expression.

double getCoeff (int i)

Arguments:
i: Index for coefficient of interest.

Return value:
Coefficient for the quadratic term at index i in the expression.

GRBQuadExpr.getLinExpr()

A quadratic expression is represented as a linear expression, plus a list of quadratic terms. This
method retrieves the linear expression associated with the quadratic expression.

GRBLinExpr getLinExpr ()
Return value:

Linear expression associated with the quadratic expression.

GRBQuadExpr.getValue()

Compute the value of a quadratic expression for the current solution.

double getValue ()
Return value:

Value of the expression for the current solution.

311

GRBQuadExpr.getVar1()

Retrieve the first variable object associated with a single quadratic term from the expression.

GRBVar getVar1 (int i)

Arguments:
i: Index for term of interest.

Return value:
First variable for the quadratic term at index i in the quadratic expression.

GRBQuadExpr.getVar2()

Retrieve the second variable object associated with a single quadratic term from the expression.

GRBVar getVar2 (int i)

Arguments:
i: Index for term of interest.

Return value:
Second variable for the quadratic term at index i in the quadratic expression.

GRBQuadExpr.multAdd()

Add a constant multiple of one quadratic expression into another. Upon completion, the invoking
quadratic expression is equal the sum of itself and the constant times the argument expression.

void multAdd (double m,
GRBLinExpr le)

Add a linear expression into a quadratic expression.
Arguments:

m: Constant multiplier for added expression.
le: Linear expression to add.

void multAdd (double m,
GRBQuadExpr qe)

Add a quadratic expression into a quadratic expression.
Arguments:

m: Constant multiplier for added expression.
qe: Quadratic expression to add.

312

GRBQuadExpr.remove()
Remove a term from a quadratic expression.

void remove (int i)

Remove the quadratic term stored at index i of the expression.
Arguments:

i: The index of the quadratic term to be removed.

boolean remove (GRBVar var)

Remove all quadratic terms associated with variable var from the expression.
Arguments:

var: The variable whose quadratic term should be removed.
Return value:

Returns true if the variable appeared in the quadratic expression (and was removed).

GRBQuadExpr.size()
Retrieve the number of quadratic terms in the quadratic expression. Use GRBQuadExpr.getLinExpr
to retrieve constant or linear terms from the quadratic expression.

int size ()
Return value:

Number of quadratic terms in the expression.

313

4.11 GRBColumn
Gurobi column object. A column consists of a list of coefficient, constraint pairs. Columns are used
to represent the set of constraints in which a variable participates, and the associated coefficients.
They are temporary objects that typically have short lifespans.

You generally build columns by starting with an empty column (using the GRBColumn con-
structor), and then adding terms. Terms can be added individually, using addTerm, or in groups,
using addTerms. Terms can also be removed from a column, using remove.

Individual terms in a column can be queried using the getConstr, and getCoeff methods. You
can query the number of terms in the column using the size method.

GRBColumn()

Column constructor. Create an empty column, or copy an existing column.

GRBColumn GRBColumn ()
Create an empty column.
Return value:

An empty column object.

GRBColumn GRBColumn (GRBColumn col)

Copy an existing column.
Arguments:

orig: Existing column object.
Return value:

A copy of the input column object.

GRBColumn.addTerm()

Add a single term into a column.

void addTerm (double coeff,
GRBConstr constr)

Arguments:
coeff: Coefficient for new term.
constr: Constraint for new term.

GRBColumn.addTerms()

Add new terms into a column.

void addTerms (double[] coeffs,
GRBConstr[] constrs)

314

Add a list of terms into a column. Note that the lengths of the two argument arrays must be
equal.

Arguments:
coeffs: Coefficients for added constraints.
constrs: Constraints to add to column.

void addTerms (double[] coeffs,
GRBConstr[] constrs,
int start,
int len)

Add new terms into a column. This signature allows you to use arrays to hold the coefficients
and constraints that describe the terms in an array without being forced to add an term for each
member in the array. The start and len arguments allow you to specify which terms to add.

Arguments:
coeffs: Coefficients for added constraints.
constrs: Constraints to add to column.
start: The first term in the list to add.
len: The number of terms to add.

GRBColumn.clear()
Remove all terms from a column.

void clear ()

GRBColumn.getCoeff()
Retrieve the coefficient from a single term in the column.

double getCoeff (int i)

Arguments:
i: Index for coefficient of interest.

Return value:
Coefficient for the term at index i in the column.

GRBColumn.getConstr()
Retrieve the constraint object from a single term in the column.

GRBConstr getConstr (int i)

Arguments:
i: Index for term of interest.

Return value:
Constraint for the term at index i in the column.

315

GRBColumn.remove()
Remove a single term from a column.

void remove (int i)

Remove the term stored at index i of the column.
Arguments:

i: The index of the term to be removed.

boolean remove (GRBConstr constr)

Remove the term associated with constraint constr from the column.
Arguments:

constr: The constraint whose term should be removed.
Return value:

Returns true if the constraint appeared in the column (and was removed).

GRBColumn.size()
Retrieve the number of terms in the column.

int size ()
Return value:

Number of terms in the column.

316

4.12 GRBCallback
Gurobi callback class. This is an abstract class. To implement a callback, you should create a
subclass of this class and implement a callback() method. If you pass an object of this subclass
to method GRBModel.setCallback before calling GRBModel.optimize, the callback() method of
the class will be called periodically. Depending on where the callback is called from, you will be
able to obtain various information about the progress of the optimization.

Note that this class contains one protected int member variable: where. You can query this
variable from your callback() method to determine where the callback was called from.

Gurobi callbacks can be used both to monitor the progress of the optimization and to modify
the behavior of the Gurobi optimizer. A simple user callback function might call the GRBCall-
back.getIntInfo or GRBCallback.getDoubleInfo methods to produce a custom display, or perhaps to
terminate optimization early (using GRBCallback.abort). More sophisticated MIP callbacks might
use GRBCallback.getNodeRel or GRBCallback.getSolution to retrieve values from the solution to
the current node, and then use GRBCallback.addCut or GRBCallback.addLazy to add a constraint
to cut off that solution, or GRBCallback.setSolution to import a heuristic solution built from that
solution.

When solving a model using multiple threads, note that the user callback is only ever called
from a single thread, so you don’t need to worry about the thread-safety of your callback.

You can look at the Callback.java example for details of how to use Gurobi callbacks.

GRBCallback()

Callback constructor.

GRBCallback GRBCallback ()
Return value:

A callback object.

GRBCallback.abort()

Abort optimization. When the optimization stops, the Status attribute will be equal to GRB.Status.INTERRUPTED.

void abort ()

GRBCallback.addCut()

Add a cutting plane to the MIP model from within a callback function. Note that this method can
only be invoked when the where member variable is equal to GRB.CB_MIPNODE (see the Callback
Codes section in the Reference Manual for more information).

Cutting planes can be added at any node of the branch-and-cut tree. However, they should be
added sparingly, since they increase the size of the relaxation model that is solved at each node
and can significantly degrade node processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the
relaxation solution at the current node, you should first call getNodeRel.

317

When adding your own cuts, you must set parameter PreCrush to value 1. This setting shuts
off a few presolve reductions that sometimes prevent cuts on the original model from being applied
to the presolved model.

Note that cutting planes added through this method must truly be cutting planes — they can
cut off continuous solutions, but they may not cut off integer solutions that respect the original
constraints of the model. Ignoring this restriction will lead to incorrect solutions.

void addCut (GRBLinExpr lhsExpr,
char sense,
double rhs)

Arguments:
lhsExpr: Left-hand side expression for new cutting plane.
sense: Sense for new cutting plane (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhs: Right-hand side value for new cutting plane.

GRBCallback.addLazy()

Add a lazy constraint to the MIP model from within a callback function. Note that this method can
only be invoked when the where member variable is equal to GRB.CB_MIPNODE or GRB.CB_MIPSOL
(see the Callback Codes section in the Reference Manual for more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large
to represent explicitly. By only including the constraints that are actually violated by solutions
found during the branch-and-cut search, it is sometimes possible to find a proven optimal solution
while only adding a fraction of the full set of constraints.

You would typically add a lazy constraint by first querying the current node solution (by calling
getSolution from a GRB.CB_MIPSOL callback, or getNodeRel from a GRB.CB_MIPNODE callback), and
then calling addLazy() to add a constraint that cuts off the solution. Gurobi guarantees that you
will have the opportunity to cut off any solutions that would otherwise be considered feasible.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints,
including those that have already been added. Node solutions will usually respect previously added
lazy constraints, but not always.

Note that you must set the LazyConstraints parameter if you want to use lazy constraints.

void addLazy (GRBLinExpr lhsExpr,
char sense,
double rhs)

Arguments:
lhsExpr: Left-hand side expression for new lazy constraint.
sense: Sense for new lazy constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhs: Right-hand side value for new lazy constraint.

318

GRBCallback.getDoubleInfo()
Request double-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the double-valued information
that can be queried for different values of where, please refer to the Callback Codes section of the
Reference Manual.

double getDoubleInfo (int what)

Arguments:
what: Information requested. Please refer to the list of Callback Codes in the Reference
Manual for possible values.

Return value:
Value of requested callback information.

GRBCallback.getIntInfo()
Request int-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the int-valued information that
can be queried for different values of where, please refer to the Callback Codes section in the
Reference Manual.

int getIntInfo (int what)

Arguments:
what: Information requested. Please refer to the list of Callback Codes in the Reference
Manual for possible values.

Return value:
Value of requested callback information.

GRBCallback.getNodeRel()
Retrieve node relaxation solution values at the current node. Only available when the where mem-
ber variable is equal to GRB.CB_MIPNODE, and GRB.CB_MIPNODE_STATUS is equal to GRB.Status.OPTIMAL.

double getNodeRel (GRBVar v)

Arguments:
v: The variable whose value is desired.

Return value:
The value of the specified variable in the node relaxation for the current node.

double[] getNodeRel (GRBVar[] xvars)

319

Arguments:
xvars: The list of variables whose values are desired.

Return value:
The values of the specified variables in the node relaxation for the current node.

double[][] getNodeRel (GRBVar[][] xvars)

Arguments:
xvars: The array of variables whose values are desired.

Return value:
The values of the specified variables in the node relaxation for the current node.

GRBCallback.getSolution()

Retrieve values from the current solution vector. Only available when the where member variable
is equal to GRB.CB_MIPSOL.

double getSolution (GRBVar v)

Arguments:
v: The variable whose value is desired.

Return value:
The value of the specified variable in the current solution vector.

double[] getSolution (GRBVar[] xvars)

Arguments:
xvars: The list of variables whose values are desired.

Return value:
The values of the specified variables in the current solution.

double[][] getSolution (GRBVar[][] xvars)

Arguments:
xvars: The array of variables whose values are desired.

Return value:
The values of the specified variables in the current solution.

320

GRBCallback.getStringInfo()
Request string-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the string-valued information
that can be queried for different values of where, please refer to the Callback Codes section of the
Reference Manual.

String getStringInfo (int what)

Arguments:
what: Information requested. Please refer to the list of Callback Codes in the Reference
Manual for possible values.

Return value:
Value of requested callback information.

GRBCallback.setSolution()
Import solution values for a heuristic solution. Only available when the where member variable is
equal to GRB.CB_MIPNODE.

When you specify a heuristic solution from a callback, variables initially take undefined values.
You should use this method to specify variable values. You can make multiple calls to setSolution
from one callback invocation to specify values for multiple sets of variables. After the callback, if
values have been specified for any variables, the Gurobi optimizer will try to compute a feasible
solution from the specified values, possibly filling in values for variables whose values were left unde-
fined. You can also optionally call useSolution within your callback function to try to immediately
compute a feasible solution from the specified values.

void setSolution (GRBVar v,
double val)

Arguments:
v: The variable whose values is being set.
val: The value of the variable in the new solution.

void setSolution (GRBVar[] xvars,
double[] sol)

Arguments:
xvars: The variables whose values are being set.
sol: The desired values of the specified variables in the new solution.

GRBCallback.useSolution()
Once you have imported solution values using setSolution, you can optionally call useSolution to
immediately use these values to try to compute a heuristic solution.

double useSolution ()

321

Return value:
The objective value for the solution obtained from your solution values (or GRB.INFINITY
if no improved solution is found).

322

4.13 GRBException
Gurobi exception object. This is a sub-class of the Java Exception class. A number of useful
methods, including getMessage() and printStackTrace(), are inherited from the parent class.
For a list of parent class methods in Java 1.5, visit this site.

GRBException()
Exception constructor.

GRBException GRBException (int errcode)

Create a Gurobi exception.
Arguments:

errcode: Error code for exception.
Return value:

An exception object.

GRBException GRBException (String errmsg)

Create a Gurobi exception.
Arguments:

errmsg: Error message for exception.
Return value:

An exception object.

GRBException GRBException (String errmsg,
int errcode)

Create a Gurobi exception.
Arguments:

errmsg: Error message for exception.
errcode: Error code for exception.

Return value:
An exception object.

GRBException.getErrorCode()
Retrieve the error code associated with a Gurobi exception.

int getErrorCode ()
Return value:

The error code associated with the exception.

323

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html

4.14 GRB
Class for Java enums and constants. The enums are used to get or set Gurobi attributes or
parameters.

Constants

The following list contains the set of constants needed by the Gurobi Java interface. You would
refer to them using a GRB. prefix (e.g., GRB.Status.OPTIMAL).

// Model status codes (after call to optimize())

public class Status {
public static final int LOADED = 1;
public static final int OPTIMAL = 2;
public static final int INFEASIBLE = 3;
public static final int INF_OR_UNBD = 4;
public static final int UNBOUNDED = 5;
public static final int CUTOFF = 6;
public static final int ITERATION_LIMIT = 7;
public static final int NODE_LIMIT = 8;
public static final int TIME_LIMIT = 9;
public static final int SOLUTION_LIMIT = 10;
public static final int INTERRUPTED = 11;
public static final int NUMERIC = 12;
public static final int SUBOPTIMAL = 13;
public static final int INPROGRESS = 14;
public static final int USER_OBJ_LIMIT = 15;

}

// Basis status info

public static final int BASIC = 0;
public static final int NONBASIC_LOWER = -1;
public static final int NONBASIC_UPPER = -2;
public static final int SUPERBASIC = -3;

// Constraint senses

public static final char LESS_EQUAL = ’<’;
public static final char GREATER_EQUAL = ’>’;
public static final char EQUAL = ’=’;

// Variable types

324

public static final char CONTINUOUS = ’C’;
public static final char BINARY = ’B’;
public static final char INTEGER = ’I’;
public static final char SEMICONT = ’S’;
public static final char SEMIINT = ’N’;

// Objective sense

public static final int MINIMIZE = 1;
public static final int MAXIMIZE = -1;

// SOS types

public static final int SOS_TYPE1 = 1;
public static final int SOS_TYPE2 = 2;

// General constraint types

public static final int GENCONSTR_MAX = 0;
public static final int GENCONSTR_MIN = 1;
public static final int GENCONSTR_ABS = 2;
public static final int GENCONSTR_AND = 3;
public static final int GENCONSTR_OR = 4;
public static final int GENCONSTR_INDICATOR = 5;

// Numeric constants

public static final double INFINITY = 1e100;
public static final double UNDEFINED = 1e101;

// Callback constants

public class Callback {
public static final int POLLING = 0;
public static final int PRESOLVE = 1;
public static final int SIMPLEX = 2;
public static final int MIP = 3;
public static final int MIPSOL = 4;
public static final int MIPNODE = 5;
public static final int MESSAGE = 6;
public static final int BARRIER = 7;
public static final int PRE_COLDEL = 1000;
public static final int PRE_ROWDEL = 1001;
public static final int PRE_SENCHG = 1002;
public static final int PRE_BNDCHG = 1003;

325

public static final int PRE_COECHG = 1004;
public static final int SPX_ITRCNT = 2000;
public static final int SPX_OBJVAL = 2001;
public static final int SPX_PRIMINF = 2002;
public static final int SPX_DUALINF = 2003;
public static final int SPX_ISPERT = 2004;
public static final int MIP_OBJBST = 3000;
public static final int MIP_OBJBND = 3001;
public static final int MIP_NODCNT = 3002;
public static final int MIP_SOLCNT = 3003;
public static final int MIP_CUTCNT = 3004;
public static final int MIP_NODLFT = 3005;
public static final int MIP_ITRCNT = 3006;
public static final int MIPSOL_SOL = 4001;
public static final int MIPSOL_OBJ = 4002;
public static final int MIPSOL_OBJBST = 4003;
public static final int MIPSOL_OBJBND = 4004;
public static final int MIPSOL_NODCNT = 4005;
public static final int MIPSOL_SOLCNT = 4006;
public static final int MIPNODE_STATUS= 5001;
public static final int MIPNODE_REL = 5002;
public static final int MIPNODE_OBJBST= 5003;
public static final int MIPNODE_OBJBND= 5004;
public static final int MIPNODE_NODCNT= 5005;
public static final int MIPNODE_SOLCNT= 5006;
public static final int MSG_STRING = 6001;
public static final int RUNTIME = 6002;
public static final int BARRIER_ITRCNT = 7001;
public static final int BARRIER_PRIMOBJ = 7002;
public static final int BARRIER_DUALOBJ = 7003;
public static final int BARRIER_PRIMINF = 7004;
public static final int BARRIER_DUALINF = 7005;
public static final int BARRIER_COMPL = 7006;

}

// Errors

public class Error {
public static final int OUT_OF_MEMORY = 10001;
public static final int NULL_ARGUMENT = 10002;
public static final int INVALID_ARGUMENT = 10003;
public static final int UNKNOWN_ATTRIBUTE = 10004;
public static final int DATA_NOT_AVAILABLE = 10005;
public static final int INDEX_OUT_OF_RANGE = 10006;
public static final int UNKNOWN_PARAMETER = 10007;

326

public static final int VALUE_OUT_OF_RANGE = 10008;
public static final int NO_LICENSE = 10009;
public static final int SIZE_LIMIT_EXCEEDED = 10010;
public static final int CALLBACK = 10011;
public static final int FILE_READ = 10012;
public static final int FILE_WRITE = 10013;
public static final int NUMERIC = 10014;
public static final int IIS_NOT_INFEASIBLE = 10015;
public static final int NOT_FOR_MIP = 10016;
public static final int OPTIMIZATION_IN_PROGRESS = 10017;
public static final int DUPLICATES = 10018;
public static final int NODEFILE = 10019;
public static final int Q_NOT_PSD = 10020;
public static final int QCP_EQUALITY_CONSTRAINT = 10021;
public static final int NETWORK = 10022;
public static final int JOB_REJECTED = 10023;
public static final int NOT_SUPPORTED = 10024;
public static final int EXCEED_2B_NONZEROS = 10025;
public static final int INVALID_PIECEWISE_OBJ = 10026;
public static final int UPDATEMODE_CHANGE = 10027;
public static final int CLOUD = 10028;
public static final int MODEL_MODIFICATION = 10029;
public static final int NOT_IN_MODEL = 20001;
public static final int FAILED_TO_CREATE_MODEL = 20002;
public static final int INTERNAL = 20003;

}

public static final int CUTS_AUTO = -1;
public static final int CUTS_OFF = 0;
public static final int CUTS_CONSERVATIVE = 1;
public static final int CUTS_AGGRESSIVE = 2;
public static final int CUTS_VERYAGGRESSIVE = 3;

public static final int METHOD_AUTO = -1;
public static final int METHOD_PRIMAL = 0;
public static final int METHOD_DUAL = 1;
public static final int METHOD_BARRIER = 2;
public static final int METHOD_CONCURRENT = 3;
public static final int METHOD_DETERMINISTIC_CONCURRENT = 4;

public static final int BARORDER_AUTOMATIC = 0;
public static final int BARORDER_AMD = 1;
public static final int BARORDER_NESTEDDISSECTION = 2;

public static final int FEASRELAX_LINEAR = 0;

327

public static final int FEASRELAX_QUADRATIC = 1;
public static final int FEASRELAX_CARDINALITY = 2;

GRB.CharAttr
This enum is used to get or set char-valued attributes (through GRBModel.get or GRBModel.set).
Please refer to the Attributes section of the Reference Manual to see a list of all char attributes
and their functions.

GRB.DoubleAttr
This enum is used to get or set double-valud attributes (through GRBModel.get or GRBModel.set).
Please refer to the Attributes section of the Reference Manual to see a list of all double attributes
and their functions.

GRB.DoubleParam
This enum is used to get or set double-valued parameters (through GRBModel.get, GRBModel.set,
GRBEnv.get, or GRBEnv.set). Please refer to the Parameters section of the Reference Manual to
see a list of all double parameters and their functions.

GRB.IntAttr
This enum is used to get or set int-valued attributes (through GRBModel.get or GRBModel.set).
Please refer to the Attributes section of the Reference Manual to see a list of all int attributes and
their functions.

GRB.IntParam
This enum is used to get or set int-valued parameters (through GRBModel.get, GRBModel.set,
GRBEnv.get, GRBEnv.set). Please refer to the Parameters section of the Reference Manual to see
a list of all int parameters and their functions.

GRB.StringAttr
This enum is used to get or set string-valued attributes (through GRBModel.get or GRBModel.set).
Please refer to the Attributes section of the Reference Manual to see a list of all string attributes
and their functions.

GRB.StringParam
This enum is used to get or set string-valued parameters (through GRBModel.get, GRBModel.set,
GRBEnv.get, or GRBEnv.set). Please refer to the Parameters section of the Reference Manual to
see a list of all string parameters and their functions.

328

.NET API Overview

This section documents the Gurobi .NET interface. This manual begins with a quick overview
of the classes exposed in the interface and the most important methods on those classes. It then
continues with a comprehensive presentation of all of the available classes and methods.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide
or the Example Tour. These documents provide concrete examples of how to use the classes and
methods described here.
Environments

The first step in using the Gurobi .NET interface is to create an environment object. Environ-
ments are represented using the GRBEnv class. An environment acts as the container for all data
associated with a set of optimization runs. You will generally only need one environment object in
your program.
Models

You can create one or more optimization models within an environment. Each model is repre-
sented as an object of class GRBModel. A model consists of a set of decision variables (objects of
class GRBVar), a linear or quadratic objective function on those variables (specified using GRB-
Model.SetObjective), and a set of constraints on these variables (objects of class GRBConstr,
GRBQConstr, GRBSOS, or GRBGenConstr). Each variable has an associated lower bound, upper
bound, and type (continuous, binary, etc.). Each linear or quadratic constraint has an associated
sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side value. Refer to this
section for more information on variables and constraints.

Linear constraints are specified by building linear expressions (objects of class GRBLinExpr),
and then specifying relationships between these expressions (for example, requiring that one expres-
sion be equal to another). Quadratic constraints are built in a similar fashion, but using quadratic
expressions (objects of class GRBQuadExpr) instead.

An optimization model may be specified all at once, by loading the model from a file (using the
appropriate GRBModel constructor), or built incrementally, by first constructing an empty object of
class GRBModel and then subsequently calling GRBModel.AddVar or GRBModel.AddVars to add
additional variables, and GRBModel.AddConstr, GRBModel.AddQConstr, GRBModel.AddSOS,
or any of the GRBModel.AddGenConstrXxx methods to add additional constraints. Models are
dynamic entities; you can always add or remove variables or constraints.

We often refer to the class of an optimization model. A model with a linear objective function,
linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic,
the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is a
Quadratically-Constrained Program (QCP). We’ll sometimes also discuss a special case of QCP, the
Second-Order Cone Program (SOCP). If the model contains any integer variables, semi-continuous
variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the
model is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, in-
cluding Mixed Integer Linear Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed

329

http://www.gurobi.com/documentation/{7}.{5}/quick-start-guide/
http://www.gurobi.com/documentation/{7}.{5}/examples/index.html

Integer Quadratically-Constrained Programs (MIQCP), and Mixed Integer Second-Order Cone Pro-
grams (MISOCP). The Gurobi Optimizer handles all of these model classes.
Solving a Model

Once you have built a model, you can call GRBModel.Optimize to compute a solution. By default,
Optimize will use the concurrent optimizer to solve LP models, the barrier algorithm to solve
QP and QCP models, and the branch-and-cut algorithm to solve mixed integer models. The
solution is stored in a set of attributes of the model. These attributes can be queried using a set of
attribute query methods on the GRBModel, GRBVar, GRBConstr, GRBQConstr, GRBSOS, and
GRBGenConstr classes.

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBModel.Optimize
will only perform further optimization if relevant data has changed since the model was last op-
timized. If you would like to discard previously computed solution information and restart the
optimization from scratch without changing the model, you can call GRBModel.Reset.

After a MIP model has been solved, you can call GRBModel.FixedModel to compute the asso-
ciated fixed model. This model is identical to the input model, except that all integer variables are
fixed to their values in the MIP solution. In some applications, it is useful to compute information
on this continuous version of the MIP model (e.g., dual variables, sensitivity information, etc.).
Multiple Solutions and Multiple Objectives

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to
a model with a single objective function. Gurobi provides features that allow you to relax either
of these assumptions. You should refer to the section on Solution Pools for information on how to
request more than one solution, or the section on Multiple Objectives for information on how to
specify multiple objective functions and control the tradeoff between them.
Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the
infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be useful
for diagnosing the cause of an infeasibility, call GRBModel.ComputeIIS to compute an Irreducible
Inconsistent Subsystem (IIS). This method can be used for both continuous and MIP models, but
you should be aware that the MIP version can be quite expensive. This method populates a set of
IIS attributes.

To attempt to repair an infeasibility, call GRBModel.FeasRelax to compute a feasibility relax-
ation for the model. This relaxation allows you to find a solution that minimizes the magnitude of
the constraint violation.
Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some
attributes are associated with the variables of the model, some with the constraints of the model,
and some with the model itself. To give a simple example, solving an optimization model causes
the X variable attribute to be populated. Attributes such as X that are computed by the Gurobi
optimizer cannot be modified directly by the user, while others, such as the variable lower bound
(the LB attribute) can.

Attributes can be accessed in two ways in the .NET interface. The easiest is through .NET
properties. To query or modify the LB attribute on variable v, you would use v.LB or v.LB = 0, re-
spectively. Attributes can also be queried using GRBVar.Get, GRBConstr.Get, GRBQConstr.Get,

330

GRBSOS.Get, GRBGenConstr.Get, or GRBModel.Get, and modified using GRBVar.Set, GRB-
Constr.Set, GRBQConstr.Set, GRBGenConstr.Set, or GRBModel.Set. Attributes are grouped
into a set of enums by type (GRB.CharAttr, GRB.DoubleAttr, GRB.IntAttr,
GRB.StringAttr). The Get() and Set() methods are overloaded, so the type of the attribute
determines the type of the returned value. Thus, constr.Get(GRB.DoubleAttr.RHS) returns a
double, while constr.Get(GRB.CharAttr.Sense) returns a char.

If you wish to retrieve attribute values for a set of variables or constraints, it is usually more
efficient to use the array methods on the associated GRBModel object. Method GRBModel.Get
includes signatures that allow you to query or modify attribute values for one-, two-, and three-
dimensional arrays of variables or constraints.

The full list of attributes can be found in the Attributes section.
Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to
variable bounds, constraint right-hand sides, etc.). The main exceptions are modifications to the
constraint matrix and to the objective function.

The constraint matrix can be modified in a few ways. The first is to call the ChgCoeff method
on a GRBModel object to change individual matrix coefficients. This method can be used to
modify the value of an existing non-zero, to set an existing non-zero to zero, or to create a new
non-zero. The constraint matrix is also modified when you remove a variable or constraint from the
model (through the GRBModel.Remove method). The non-zero values associated with the deleted
constraint or variable are removed along with the constraint or variable itself.

The model objective function can also be modified in a few ways. The easiest is to build an
expression that captures the objective function (a GRBLinExpr or GRBQuadExpr object), and
then pass that expression to method GRBModel.SetObjective. If you wish to modify the objective,
you can simply call setObjective again with a new GRBLinExpr or GRBQuadExpr object.

For linear objective functions, an alternative to SetObjective is to use the Obj variable attribute
to modify individual linear objective coefficients.

If your variables have piecewise-linear objectives, you can specify them using the GRBModel.SetPWLObj
method. Call this method once for each relevant variable. The Gurobi simplex solver includes al-
gorithmic support for convex piecewise-linear objective functions, so for continuous models you
should see a substantial performance benefit from using this feature. To clear a previously specified
piecewise-linear objective function, simply set the Obj attribute on the corresponding variable to
0.
Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed
in a lazy fashion, meaning that modifications don’t affect the model immediately. Rather, they
are queued and applied later. If your program simply creates a model and solves it, you will
probably never notice this behavior. However, if you ask for information about the model before
your modifications have been applied, the details of the lazy update approach may be relevant to
you.

As we just noted, model modifications (bound changes, right-hand side changes, objective
changes, etc.) are placed in a queue. These queued modifications can be applied to the model
in three different ways. The first is by an explicit call to GRBModel.Update. The second is by a
call to GRBModel.Optimize. The third is by a call to GRBModel.Write to write out the model. The

331

first case gives you fine-grained control over when modifications are applied. The second and third
make the assumption that you want all pending modifications to be applied before you optimize
your model or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is
that this approach makes it much easier to perform multiple modifications to a model, since the
model remains unchanged between modifications. The second is that processing model modifica-
tions can be expensive, particularly in a Compute Server environment, where modifications require
communication between machines. Thus, it is useful to have visibility into exactly when these
modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then
update, then make more modifications, then update again, etc. Updating after each individual
modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value
of the requested data from the point of the last update. If the object you tried to query didn’t
exist then, you’ll get a NOT_IN_MODEL exception instead.

The semantics of lazy updates have changed in this release. While the vast majority of programs
will continue to work unmodified, you can use the UpdateMode parameter to revert to the previous
behavior if you run into an issue.
Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of
the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms,
strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters
before beginning the optimization. Parameters can be of type int, double, or string.

The simplest way to set parameters is through the Model.Parameters class and its associated
.NET properties. To set the MIPGap parameter to 0.0 for model m, for example, you would do
m.Parameters.MIPGap = 0.

Parameters can also be set on the Gurobi environment object, using GRBEnv.Set. Note that
each model gets its own copy of the environment when it is created, so parameter changes to the
original environment have no effect on existing models.

You can read a set of parameter settings from a file using GRBEnv.ReadParams, or write the
set of changed parameters using GRBEnv.WriteParams.

We also include an automated parameter tuning tool that explores many different sets of pa-
rameter changes in order to find a set that improves performance. You can call GRBModel.Tune to
invoke the tuning tool on a model. Refer to the parameter tuning tool section for more information.

The full list of Gurobi parameters can be found in the Parameters section.
Memory Management

Users typically do not need to concern themselves with memory management in .NET, since it
is handled automatically by the garbage collector. The Gurobi .NET interface utilizes the same
garbage collection mechanism as other .NET programs, but there are a few specifics of our memory
management that users should be aware of.

In general, Gurobi objects live in the same .NET heap as other .NET objects. When they are
no longer referenced, they become candidates for garbage collection, and are returned to the pool
of free space at the next invocation of the garbage collector. Two important exceptions are the
GRBEnv and GRBModel objects. A GRBModel object has a small amount of memory associated

332

with it in the .NET heap, but the majority of the space associated with a model lives in the heap
of the Gurobi native code DLL. The .NET heap manager is unaware of the memory associated
with the model in the native code library, so it does not consider this memory usage when deciding
whether to invoke the garbage collector. When the garbage collector eventually collects the .NET
GRBModel object, the memory associated with the model in the Gurobi native code library will be
freed, but this collection may come later than you might want. Similar considerations apply to the
GRBEnv object.

If you are writing a .NET program that makes use of multiple Gurobi models or environments,
we recommend that you call GRBModel.Dispose when you are done using the associated GRBModel
object, and GRBEnv.Dispose when you are done using the associated GRBEnv object and after you
have called GRBModel.Dispose on all of the models created using that GRBEnv object.

Native Code

As noted earlier, the Gurobi .NET interface is a thin layer that sits on top of our native code DLL.
Thus, an application that uses the Gurobi .NET library will load the Gurobi DLL at runtime. In
order for this happen, you need to make sure that two things are true. First, you need to make
sure that the native code library is available in the Windows PATH. This environment variable is set
up as part of the installation of the Gurobi Optimizer, but it may not be configured appropriately
on a machine where the full Gurobi Optimizer has not been installed. Second, you need to be
sure that the selected .NET Platform Target (as selected in Visual Studio) is compatible with
the Gurobi DLL that is available through your PATH. In particular, you need to use the 32-bit
Gurobi native library when you’ve selected the x86 Platform Target, and similarly you need to
use the 64-bit Gurobi native library when you’ve selected the x64 Platform Target. If you use the
default Any CPU target, then your .NET application will look for the 64-bit Gurobi DLL on a 64-bit
Windows machine, and the 32-bit DLL on a 32-bit Windows machine.

Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will
send output to the screen. A few simple controls are available for modifying the default logging
behavior. If you would like to direct output to a file as well as to the screen, specify the log file
name in the GRBEnv constructor. You can modify the LogFile parameter if you wish to redirect
the log to a different file after creating the environment object. The frequency of logging output can
be controlled with the DisplayInterval parameter, and logging can be turned off entirely with the
OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging
section.

More detailed progress monitoring can be done through the GRBCallback class. The GRB-
Model.SetCallback method allows you to receive a periodic callback from the Gurobi optimizer.
You do this by sub-classing the GRBCallback abstract class, and writing your own Callback()
method on this class. You can call GRBCallback.GetDoubleInfo, GRBCallback.GetIntInfo, GRB-
Callback.GetStringInfo, or GRBCallback.GetSolution from within the callback to obtain additional
information about the state of the optimization.

Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. The simplest control
callback is GRBCallback.Abort, which asks the optimizer to terminate at the earliest convenient
point. Method GRBCallback.SetSolution allows you to inject a feasible solution (or partial solution)

333

during the solution of a MIP model. Methods GRBCallback.AddCut and GRBCallback.AddLazy
allow you to add cutting planes and lazy constraints during a MIP optimization, respectively.
Error Handling

All of the methods in the Gurobi .NET library can throw an exception of type GRBException.
When an exception occurs, additional information on the error can be obtained by retrieving
the error code (using property GRBException.ErrorCode), or by retrieving the exception message
(using property GRBException.Message from the parent class). The list of possible error return
codes can be found in the Error Codes section.

334

5.1 GRBEnv

Gurobi environment object. Gurobi models are always associated with an environment. You must
create an environment before can you create and populate a model. You will generally only need
a single environment object in your program.

Objects of this class have unmanaged resources associated with them. The class implements
the IDisposable interface.

The methods on environment objects are mainly used to manage Gurobi parameters (e.g., Get,
GetParamInfo, Set).

While the .NET garbage collector will eventually collect an unused GRBEnv object, an environ-
ment will hold onto resources (Gurobi licenses, file descriptors, etc.) until that collection occurs.
If your program creates multiple GRBEnv objects, we recommend that you call GRBEnv.Dispose
when you are done using one (or use the .NET using statement).

GRBEnv()

Environment constructor.
Constructor for GRBEnv object. If the constructor is called with no arguments, no log file will

be written for the environment.
You have the option of constructing either a local environment, which solves Gurobi models on

the local machine, a client environment for a Gurobi compute server, which will solve Gurobi models
on a server machine, or an Instant Cloud environment, which will launch a Gurobi Cloud server
and solve models on that server. Choose the appropriate signature for the type of environment you
wish to launch.

Note that the GRBEnv constructor will check the current working directory for a file named
gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file
should be in PRM format (briefly, each line should contain a parameter name, followed by the
desired value for that parameter).

In general, you should aim to create a single Gurobi environment object in your program, even
if you plan to work with multiple models. Reusing one environment is much more efficient than
creating and destroying multiple environments.
GRBEnv GRBEnv ()
Create a Gurobi environment (with logging disabled).
Return value:

An environment object (with no associated log file).
GRBEnv GRBEnv (string logFileName)

Create a Gurobi environment (with logging enabled).
Arguments:

logFileName: The desired log file name.
Return value:

An environment object.

335

GRBEnv GRBEnv (string logFileName,
string computeserver,
int port,
string password,
int priority,
double timeout)

Create a client Gurobi environment on a compute server.
Arguments:

logFileName: The name of the log file for this environment. Pass an empty string for no
log file.

computeserver: A comma-separated list of Gurobi compute servers. You can refer to
compute server machines using their names or their IP addresses.

port: The port number used to connect to the compute server. You should pass a -1 value,
which indicates that the default port should be used, unless your server administrator has
changed our recommended port settings.

password: The password for gaining access to the specified compute servers. Pass an empty
string if no password is required.

priority: The priority of the job. Priorities must be between -100 and 100, with a default
value of 0 (by convention). Higher priority jobs are chosen from the server job queue
before lower priority jobs. A job with priority 100 runs immediately, bypassing the job
queue and ignoring the job limit on the server. You should exercise caution with priority
100 jobs, since they can severely overload a server, which can cause jobs to fail, and in
extreme cases can cause the server to crash.

timeout: Job timeout (in seconds). If the job doesn’t reach the front of the queue before the
specified timeout, the constructor will throw a JOB_REJECTED exception. Use a negative
value to indicate that the call should never timeout.

Return value:
An environment object.

GRBEnv GRBEnv (string logFileName,
string accessID,
string secretKey,
string pool)

Create a Gurobi environment on Gurobi Instant Cloud
Arguments:

logfilename: The name of the log file for this environment. May be NULL (or an empty
string), in which case no log file is created.

accessID: The access ID for your Gurobi Instant Cloud license. This can be retrieved from
the Gurobi Instant Cloud website. When used in combination with your secretKey, this
allows you to launch Instant Cloud instances and submit jobs to them.

secretKey: The secret key for your Gurobi Instant Cloud license. This can be retrieved
from the Gurobi Instant Cloud website. When used in combination with your accessID,
this allows you to launch Instant Cloud instances and submit jobs to them. Note that you
should keep your secret key private.

336

pool: The machine pool. Machine pools allow you to create fixed configurations on the
Instant Cloud website (capturing things like type of machine, geographic region, etc.),
and then launch and share machines from client programs without having to restate the
configuration information each time you launch a machine. May be an empty string, in
which case your job will be launched in the default pool associated with your cloud license.

Return value:
An environment object.

GRBEnv.Dispose()

Release the resources associated with a GRBEnv object. While the .NET garbage collector will
eventually reclaim these resources, we recommend that you call the Dispose method when you are
done using an environment if your program creates more than one.

The Dispose method on a GRBEnv should be called only after you have called Dispose on all
of the models that were created within that environment. You should not attempt to use a GRBEnv
object after calling Dispose.
void Dispose ()

GRBEnv.ErrorMsg

(Property) The error message for the most recent exception associated with this environment.

GRBEnv.Get()

Query the value of a parameter.
double Get (GRB.DoubleParam param)

Query the value of a double-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

Return value:
The current value of the requested parameter.

int Get (GRB.IntParam param)

Query the value of an int-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

Return value:
The current value of the requested parameter.

string Get (GRB.StringParam param)

Query the value of a string-valued parameter.

337

Arguments:
param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

Return value:
The current value of the requested parameter.

GRBEnv.GetParamInfo()

Obtain information about a parameter.

void GetParamInfo (GRB.DoubleParam param,
double[] info)

Obtain detailed information about a double parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

info: The returned information. The result will contain four entries: the current value of
the parameter, the minimum allowed value, the maximum allowed value, and the default
value.

void GetParamInfo (GRB.IntParam param,
int[] info)

Obtain detailed information about an integer parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

info: The returned information. The result will contain four entries: the current value of
the parameter, the minimum allowed value, the maximum allowed value, and the default
value.

void GetParamInfo (GRB.StringParam param,
string[] info)

Obtain detailed information about a string parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

info: The returned information. The result will contain two entries: the current value of
the parameter and the default value.

338

GRBEnv.Message()

Write a message to the console and the log file.
void Message (string message)

Arguments:
message: Print a message to the console and to the log file. Note that this call has no effect
unless the OutputFlag parameter is set.

GRBEnv.ReadParams()

Read new parameter settings from a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-

scriptions of their purposes and their minimum, maximum, and default values.
void ReadParams (string paramfile)

Arguments:
paramfile: Name of the file containing parameter settings. Parameters should be listed
one per line, with the parameter name first and the desired value second. For example:

Gurobi parameter file
Threads 1
MIPGap 0

Blank lines and lines that begin with the hash symbol are ignored.

GRBEnv.Release()

Release the license associated with this environment. You will no longer be able to call Optimize
on models created with this environment after the license has been released.
void Release ()

GRBEnv.ResetParams()

Reset all parameters to their default values.
Please consult the parameter section for a complete list of Gurobi parameters, including de-

scriptions of their purposes and their minimum, maximum, and default values.
void ResetParams ()

GRBEnv.Set()

Set the value of a parameter.
Important notes:
Note that a model gets its own copy of the environment when it is created. Changes to the

original environment have no effect on the copy. Use GRBModel.Set to change a parameter on an
existing model.

339

void Set (GRB.DoubleParam param,
double newvalue)

Set the value of a double-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

newvalue: The desired new value of the parameter.

void Set (GRB.IntParam param,
int newvalue)

Set the value of an int-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

newvalue: The desired new value of the parameter.

void Set (GRB.StringParam param,
string newvalue)

Set the value of a string-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

newvalue: The desired new value of the parameter.

void Set (string param,
string newvalue)

Set the value of any parameter using strings alone.
Arguments:

param: The name of the parameter being modified. Please consult the parameter section
for a complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

newvalue: The desired new value of the parameter.

GRBEnv.WriteParams()
Write all non-default parameter settings to a file.

Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.
void WriteParams (string paramfile)

Arguments:
paramfile: Name of the file to which non-default parameter settings should be written.
The previous contents are overwritten.

340

5.2 GRBModel
Gurobi model object. Commonly used methods include AddVar (adds a new decision variable to
the model), AddConstr (adds a new constraint to the model), Optimize (optimizes the current
model), and Get (retrieves the value of an attribute).

Objects of this class have unmanaged resources associated with them. The class implements
the IDisposable interface.

While the .NET garbage collector will eventually collect an unused GRBModel object, the vast
majority of the memory associated with a model is stored outside of the .NET heap. As a result,
the garbage collector can’t see this memory usage, and thus it can’t take this quantity into account
when deciding whether collection is necessary. We recommend that you call GRBModel.Dispose
when you are done using a model (or use the .NET using statement).

GRBModel()

Constructor for GRBModel. The simplest version creates an empty model. You can then call
AddVar and AddConstr to populate the model with variables and constraints. The more complex
constructors can read a model from a file, or make a copy of an existing model.
GRBModel GRBModel (GRBEnv env)

Model constructor.
Arguments:

env: Environment for new model.
Return value:

New model object. Model initially contains no variables or constraints.

GRBModel GRBModel (GRBEnv env,
string filename)

Read a model from a file. Note that the type of the file is encoded in the file name suffix.
Valid suffixes are .mps, .rew, .lp, .rlp, .ilp, or .opb. The files can be compressed, so additional
suffixes of .zip, .gz, .bz2, or .7z are accepted.

Arguments:
env: Environment for new model.
modelname: Name of the file containing the model.

Return value:
New model object.

GRBModel GRBModel (GRBModel model)

Create a copy of an existing model.
Arguments:

model: Model to copy.
Return value:

New model object. Model is a clone of the input model.

341

GRBModel.AddConstr()
Add a single linear constraint to a model. Multiple signatures are available.

GRBConstr AddConstr (GRBLinExpr lhsExpr,
char sense,
GRBLinExpr rhsExpr,
string name)

Add a single linear constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhsExpr: Right-hand side expression for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

GRBConstr AddConstr (GRBTempConstr tempConstr,
string name)

Add a single linear constraint to a model.
Arguments:

tempConstr: Temporary constraint object, created by an overloaded comparison operator.
See GRBTempConstr for more information.

name: Name for new constraint.
Return value:

New constraint object.

GRBModel.AddConstrs()
Add new linear constraints to a model.

We recommend that you build your model one constraint at a time (using AddConstr), since it
introduces no significant overhead and we find that it produces simpler code. Feel free to use these
methods if you disagree, though.
GRBConstr[] AddConstrs (int count)

Add count new linear constraints to a model. The new constraints are all of the form 0 <= 0.
Arguments:

count: Number of constraints to add.
Return value:

Array of new constraint objects.

GRBConstr[] AddConstrs (GRBLinExpr[] lhsExprs,
char[] senses,
double[] rhsVals,
string[] names)

342

Add new linear constraints to a model. The number of added constraints is determined by the
length of the input arrays (which must be consistent across all arguments).

Arguments:
lhsExprs: Left-hand side expressions for the new linear constraints.
senses: Senses for new linear constraints (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhsVals: Right-hand side values for the new linear constraints.
names: Names for new constraints.

Return value:
Array of new constraint objects.

GRBConstr[] AddConstrs (GRBLinExpr[] lhsExprs,
char[] senses,
GRBLinExpr[] rhsExprs,
int start,
int len,
string[] names)

Add new linear constraints to a model. This signature allows you to use arrays to hold the
various constraint attributes (left-hand side, sense, etc.), without forcing you to add one constraint
for each entry in the array. The start and len arguments allow you to specify which constraints
to add.

Arguments:
lhsExprs: Left-hand side expressions for the new linear constraints.
senses: Senses for new linear constraints (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhs: Right-hand side expressions for the new linear constraints.
start: The first constraint in the list to add.
len: The number of variables to add.
names: Names for new constraints.

Return value:
Array of new constraint objects.

GRBModel.AddGenConstrXxx()

Each of the functions described below adds a new general constraint to a model.
Mathematical programming has traditionally defined a set of fundamental constraint types:

variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and
SOS constraints. These are typically treated directly by the underlying solver (although not always),
and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general
constraints. These are typically not treated directly by the solver. Rather, they are transformed
by presolve into mathematically equivalent sets of constraints (and variables), chosen from among
the fundamental types listed above. These general constraints are provided as a convenience to
users. If such constraints appear in your model, but if you prefer to reformulate them yourself
using fundamental constraint types instead, you can certainly do so. However, note that Gurobi

343

can sometimes exploit information contained in the other constraints in the model to build a more
efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

• MAX (AddGenConstrMax): set a decision variable equal to the maximum value from among
a set of decision variables

• MIN (AddGenConstrMin): set a decision variable equal to the minimum value from among
a set of decision variables

• ABS (AddGenConstrAbs): set a decision variable equal to the absolute value of some other
decision variable

• AND (AddGenConstrAnd): set a binary variable equal to one if and only if all of a set of
binary decision variables are equal to one

• OR (AddGenConstrOr): set a binary variable equal to one if and only if at least one variable
out of a set of binary decision variables is equal to one

• INDICATOR (AddGenConstrIndicator): a given binary variable may only take a certain
value if a given linear constraint is satisfied

Please refer to this section for additional details on general constraints.

GRBModel.AddGenConstrMax()

Add a new general constraint of type GRB.GENCONSTR_MAX to a model.
A MAX constraint r = max{x1, . . . , xn, c} states that the resultant variable r should be equal

to the maximum of the operand variables x1, . . . , xn and the constant c.

GRBGenConstr AddGenConstrMax (GRBVar resvar,
GRBVar[] vars,
double constant,
string name)

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
constant: The additional constant operand of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

344

GRBModel.AddGenConstrMin()

Add a new general constraint of type GRB.GENCONSTR_MIN to a model.
A MIN constraint r = min{x1, . . . , xn, c} states that the resultant variable r should be equal to

the minimum of the operand variables x1, . . . , xn and the constant c.

GRBGenConstr AddGenConstrMin (GRBVar resvar,
GRBVar[] vars,
double constant,
string name)

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
constant: The additional constant operand of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.AddGenConstrAbs()

Add a new general constraint of type GRB.GENCONSTR_ABS to a model.
An ABS constraint r = abs{x} states that the resultant variable r should be equal to the

absolute value of the argument variable x.

GRBGenConstr AddGenConstrAbs (GRBVar resvar,
GRBVar argvar,
string name)

Arguments:
resvar: The resultant variable of the new constraint.
argvar: The argument variable of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.AddGenConstrAnd()

Add a new general constraint of type GRB.GENCONSTR_AND to a model.
An AND constraint r = and{x1, . . . , xn} states that the binary resultant variable r should be 1

if and only if all of the operand variables x1, . . . , xn are equal to 1. If any of the operand variables
is 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary; indepen-
dently of how they were created.

GRBGenConstr AddGenConstrAnd (GRBVar resvar,
GRBVar[] vars,
string name)

345

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.AddGenConstrOr()

Add a new general constraint of type GRB.GENCONSTR_OR to a model.
An OR constraint r = or{x1, . . . , xn} states that the binary resultant variable r should be 1 if

and only if any of the operand variables x1, . . . , xn is equal to 1. If all operand variables are 0, then
the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary; indepen-
dently of how they were created.

GRBGenConstr AddGenConstrOr (GRBVar resvar,
GRBVar[] vars,
string name)

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.AddGenConstrIndicator()

Add a new general constraint of type GRB.GENCONSTR_INDICATOR to a model.
An INDICATOR constraint z = f → aTx ≤ b states that if the binary indicator variable z is

equal to f ∈ {0, 1}, then the linear constraint aTx ≤ b should hold. On the other hand, if z = 1−f ,
the linear constraint may be violated. The sense of the linear constraint can also be specified to be
= or ≥.

Note that the indicator variable z of a constraint will be forced to be binary; independently of
how it was created.

Multiple signatures are available.

GRBGenConstr AddGenConstrIndicator (GRBVar binvar,
int binval,
GRBLinExpr expr,
char sense,
double rhs,
string name)

Arguments:
binvar: The binary indicator variable.

346

binval: The value for the binary indicator variable that would force the linear constraint
to be satisfied (0 or 1).

expr: Left-hand side expression for the linear constraint triggered by the indicator.
sense: Sense for the linear constraint. Options are GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL.

rhs: Right-hand-side value for the linear constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBGenConstr AddGenConstrIndicator (GRBVar binvar,
int binval,
GRBTempConstr constr,
string name)

Arguments:
binvar: The binary indicator variable.
binval: The value for the binary indicator variable that would force the linear constraint
to be satisfied (0 or 1).

constr: Temporary constraint object defining the linear constraint that is triggered by the
indicator. The temporary constraint object is created using an overloaded comparison
operator. See GRBTempConstr for more information.

name: Name for the new general constraint.
Return value:

New general constraint.

GRBModel.AddQConstr()

Add a quadratic constraint to a model. Multiple signatures are available.
Important note: the algorithms that Gurobi uses to solve quadratically constrained problems

can only handle certain types of quadratic constraints. Constraints of the following forms are always
accepted:

• xTQx+ qTx ≤ b, where Q is Positive Semi-Definite (PSD)

• xTx ≤ y2, where x is a vector of variables, and y is a non-negative variable (a Second-Order
Cone)

• xTx ≤ yz, where x is a vector of variables, and y and z are non-negative variables (a rotated
Second-Order Cone)

If you add a constraint that isn’t in one of these forms (and Gurobi presolve is unable to transform
the constraint into one of these forms), you’ll get an error when you try to solve the model.
Constraints where the quadratic terms only involve binary variables will always be transformed
into one of these forms.

347

GRBQConstr AddQConstr (GRBQuadExpr lhsExpr,
char sense,
GRBQuadExpr rhsExpr,
string name)

Add a quadratic constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side expression for new quadratic constraint.
name: Name for new constraint.

Return value:
New quadratic constraint object.

GRBQConstr AddQConstr (GRBTempConstr tempConstr,
string name)

Add a quadratic constraint to a model.
Arguments:

tempConstr: Temporary constraint object, created by an overloaded comparison operator.
See GRBTempConstr for more information.

name: Name for new constraint.
Return value:

New quadratic constraint object.

GRBModel.AddRange()

Add a single range constraint to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution.

Note that range constraints are stored internally as equality constraints. We add an extra
variable to the model to capture the range information. Thus, the Sense attribute on a range
constraint will always be GRB.EQUAL.

GRBConstr AddRange (GRBLinExpr expr,
double lower,
double upper,
string name)

Arguments:
expr: Linear expression for new range constraint.
lower: Lower bound for linear expression.
upper: Upper bound for linear expression.
name: Name for new constraint.

Return value:
New constraint object.

348

GRBModel.AddRanges()
Add new range constraints to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution.

GRBConstr[] AddRanges (GRBLinExpr[] exprs,
double[] lower,
double[] upper,
string[] names)

Arguments:
exprs: Linear expressions for the new range constraints.
lower: Lower bounds for linear expressions.
upper: Upper bounds for linear expressions.
name: Names for new range constraints.
count: Number of range constraints to add.

Return value:
Array of new constraint objects.

GRBModel.AddSOS()
Add an SOS constraint to the model. Please refer to this section for details on SOS constraints.

GRBSOS AddSOS (GRBVar[] vars,
double[] weights,
int type)

Arguments:
vars: Array of variables that participate in the SOS constraint.
weights: Weights for the variables in the SOS constraint.
type: SOS type (can be GRB.SOS_TYPE1 or GRB.SOS_TYPE2).

Return value:
New SOS constraint.

GRBModel.AddVar()
Add a single decision variable to a model.

GRBVar AddVar (double lb,
double ub,
double obj,
char type,
string name)

Add a variable to a model; non-zero entries will be added later.
Arguments:

lb: Lower bound for new variable.
ub: Upper bound for new variable.

349

obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).

name: Name for new variable.
Return value:

New variable object.

GRBVar AddVar (double lb,
double ub,
double obj,
char type,
GRBConstr[] constrs,
double[] coeffs,
string name)

Add a variable to a model, and the associated non-zero coefficients.
Arguments:

lb: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).

constrs: Array of constraints in which the variable participates.
coeffs: Array of coefficients for each constraint in which the variable participates. The
lengths of the constrs and coeffs arrays must be identical.

name: Name for new variable.
Return value:

New variable object.

GRBVar AddVar (double lb,
double ub,
double obj,
char type,
GRBColumn col,
string name)

Add a variable to a model. This signature allows you to specify the set of constraints to which
the new variable belongs using a GRBColumn object.

Arguments:
lb: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).

col: GRBColumn object for specifying a set of constraints to which new variable belongs.
name: Name for new variable.

350

Return value:
New variable object.

GRBModel.AddVars()

Add new decision variables to a model.

GRBVar[] AddVars (int count,
char type)

Add count new decision variables to a model. All associated attributes take their default values,
except the variable type, which is specified as an argument.

Arguments:
count: Number of variables to add.
type: Variable type for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).

Return value:
Array of new variable objects.

GRBVar[] AddVars (double[] lb,
double[] ub,
double[] obj,
char[] type,
string[] names)

Add new decision variables to a model. The number of added variables is determined by the
length of the input arrays (which must be consistent across all arguments).

Arguments:
lb: Lower bounds for new variables. Can be null, in which case the variables get lower
bounds of 0.0.

ub: Upper bounds for new variables. Can be null, in which case the variables get infinite
upper bounds.

obj: Objective coefficients for new variables. Can be null, in which case the variables get
objective coefficients of 0.0.

type: Variable types for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed
to be continuous.

names: Names for new variables. Can be null, in which case all variables are given default
names.

Return value:
Array of new variable objects.

351

GRBVar[] AddVars (double[] lb,
double[] ub,
double[] obj,
char[] type,
string[] names,
int start,
int len)

Add new decision variables to a model. This signature allows you to use arrays to hold the
various variable attributes (lower bound, upper bound, etc.), without forcing you to add a variable
for each entry in the array. The start and len arguments allow you to specify which variables to
add.

Arguments:
lb: Lower bounds for new variables. Can be null, in which case the variables get lower
bounds of 0.0.

ub: Upper bounds for new variables. Can be null, in which case the variables get infinite
upper bounds.

obj: Objective coefficients for new variables. Can be null, in which case the variables get
objective coefficients of 0.0.

type: Variable types for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed
to be continuous.

names: Names for new variables. Can be null, in which case all variables are given default
names.

start: The first variable in the list to add.
len: The number of variables to add.

Return value:
Array of new variable objects.

GRBVar[] AddVars (double[] lb,
double[] ub,
double[] obj,
char[] type,
string[] names,
GRBColumn[] col)

Add new decision variables to a model. This signature allows you to specify the list of constraints
to which each new variable belongs using an array of GRBColumn objects.

Arguments:
lb: Lower bounds for new variables. Can be null, in which case the variables get lower
bounds of 0.0.

ub: Upper bounds for new variables. Can be null, in which case the variables get infinite
upper bounds.

obj: Objective coefficients for new variables. Can be null, in which case the variables get
objective coefficients of 0.0.

type: Variable types for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed

352

to be continuous.
names: Names for new variables. Can be null, in which case all variables are given default
names.

cols: GRBColumn objects for specifying a set of constraints to which each new column
belongs.

Return value:
Array of new variable objects.

GRBModel.ChgCoeff()

Change one coefficient in the model. The desired change is captured using a GRBVar object, a
GRBConstr object, and a desired coefficient for the specified variable in the specified constraint. If
you make multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you
update the model (using GRBModel.Update), optimize the model (using GRBModel.Optimize), or
write the model to disk (using GRBModel.Write).

void ChgCoeff (GRBConstr constr,
GRBVar var,
double newvalue)

Arguments:
constr: Constraint for coefficient to be changed.
var: Variable for coefficient to be changed.
newvalue: Desired new value for coefficient.

GRBModel.ChgCoeffs()

Change a list of coefficients in the model. Each desired change is captured using a GRBVar object,
a GRBConstr object, and a desired coefficient for the specified variable in the specified constraint.
The entries in the input arrays each correspond to a single desired coefficient change. The lengths
of the input arrays must all be the same. If you make multiple changes to the same coefficient, the
last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you
update the model (using GRBModel.Update), optimize the model (using GRBModel.Optimize), or
write the model to disk (using GRBModel.Write).

void ChgCoeffs (GRBConstr[] constrs,
GRBVar[] vars,
double[] vals)

Arguments:
constrs: Constraints for coefficients to be changed.
vars: Variables for coefficients to be changed.
vals: Desired new values for coefficients.

353

GRBModel.ComputeIIS()

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and
variable bounds with the following properties:

• the subsystem represented by the IIS is infeasible, and

• if any of the constraints or bounds of the IIS is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily
one of minimal cardinality. Thus, there may exist other IISs with fewer constraints or bounds.

If an IIS computation is interrupted before completion, Gurobi will internally store the best
available IIS found so far.

This method populates the IISCONSTR, IISQCONSTR, and IISGENCONSTR constraint attributes,
the IISSOS SOS attribute, and the IISLB, and IISUB variable attributes. You can also obtain
information about the results of the IIS computation by writing a .ilp format file (see GRB-
Model.Write). This file contains only the IIS from the original model.

Note that this method can be used to compute IISs for both continuous and MIP models.
void ComputeIIS ()

GRBModel.DiscardConcurrentEnvs()

Discard concurrent environments for a model.
The concurrent environments created by GetConcurrentEnv will be used by every subsequent

call to the concurrent optimizer until the concurrent environments are discarded.
void DiscardConcurrentEnvs ()

GRBModel.DiscardMultiobjEnvs()

Discard all multi-objective environments associated with the model, thus restoring multi objective
optimization to its default behavior.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple
objective functions and control the tradeoff between them.

Use GetMultiobjEnv to create a multi-objective environment.
void DiscardMultiobjEnvs ()

GRBModel.Dispose()

Release the resources associated with a GRBModel object. While the .NET garbage collector will
eventually reclaim these resources, we recommend that you call the Dispose method when you are
done using a model.

You should not attempt to use a GRBModel object after calling Dispose on it.
void Dispose ()

GRBModel.FeasRelax()

Modifies the GRBModel object to create a feasibility relaxation. Note that you need to call Optimize
on the result to compute the actual relaxed solution.

354

The feasibility relaxation is a model that, when solved, minimizes the amount by which the
solution violates the bounds and linear constraints of the original model. This method provides a
number of options for specifying the relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the
sum of the weighted magnitudes of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the cost per unit violation in the lower bounds, upper bounds, and linear
constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the
weighted sum of the squares of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the coefficients on the squares of the lower bound, upper bound, and
linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the
weighted count of bound and constraint violations. The lbpen, ubpen, and rhspen arguments
specify the cost of violating a lower bound, upper bound, and linear constraint, respectively.

To give an example, if a constraint with rhspen value p is violated by 2.0, it would con-
tribute 2*p to the feasibility relaxation objective for relaxobjtype=0, it would contribute 2*2*p
for relaxobjtype=1, it would contribute p for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is
created. If minrelax=false, optimizing the returned model gives a solution that minimizes the
cost of the violation. If minrelax=true, optimizing the returned model finds a solution that
minimizes the original objective, but only from among those solutions that minimize the cost of the
violation. Note that FeasRelax must solve an optimization problem to find the minimum possible
relaxation when minrelax=true, which can be quite expensive.

There are two signatures for this method. The more complex one takes a list of variables
and constraints, as well as penalties associated with relaxing the corresponding lower bounds,
upper bounds, and constraints. If a variable or constraint is not included in one of these lists,
the associated bounds or constraints may not be violated. The simpler signature takes a pair of
boolean arguments, vrelax and crelax, that indicate whether variable bounds and/or constraints
can be violated. If vrelax/crelax is true, then every bound/constraint is allowed to be violated,
respectively, and the associated cost is 1.0.

Note that this is a destructive method: it modifies the model on which it is invoked. If you
don’t want to modify your original model, use the GRBModel constructor to create a copy before
invoking this method.

double FeasRelax (int relaxobjtype,
boolean minrelax,
GRBVar[] vars,
double[] lbpen,
double[] ubpen,
GRBConstr[] constr,
double[] rhspen)

Create a feasibility relaxation model.
Arguments:

relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.

355

vars: Variables whose bounds are allowed to be violated.
lbpen: Penalty for violating a variable lower bound. One entry for each variable in argument
vars.

ubpen: Penalty for violating a variable upper bound. One entry for each variable in argument
vars.

constr: Linear constraints that are allowed to be violated.
rhspen: Penalty for violating a linear constraint. One entry for each variable in argument
constr.

Arguments:
Return value:

Zero if minrelax is false. If minrelax is true, the return value is the objective value for
the relaxation performed. If the value is less than 0, it indicates that the method failed to
create the feasibility relaxation.

double FeasRelax (int relaxobjtype,
boolean minrelax,
boolean vrelax,
boolean crelax)

Simplified method for creating a feasibility relaxation model.
Arguments:

relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vrelax: Indicates whether variable bounds can be relaxed (with a cost of 1.0 for any viola-
tions.

crelax: Indicates whether linear constraints can be relaxed (with a cost of 1.0 for any
violations.

Return value:
Zero if minrelax is false. If minrelax is true, the return value is the objective value for
the relaxation performed. If the value is less than 0, it indicates that the method failed to
create the feasibility relaxation.

GRBModel.FixedModel()
Create the fixed model associated with a MIP model. The MIP model must have a solution loaded
(e.g., after a call to the Optimize method). In the fixed model, each integer variable is fixed to the
value that variable takes in the MIP solution.
GRBModel FixedModel ()
Return value:

Fixed model associated with calling object.

GRBModel.Get()
Query the value(s) of a parameter or attribute. Use this method for parameters, for scalar model
attributes, and for arrays of constraint or variable attributes.
double Get (GRB.DoubleParam param)

356

Query the value of a double-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.
int Get (GRB.IntParam param)

Query the value of an int-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.
string Get (GRB.StringParam param)

Query the value of a string-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

char[] Get (GRB.CharAttr attr,
GRBVar[] vars)

Query a char-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

char[] Get (GRB.CharAttr attr,
GRBVar[] vars,
int start,
int len)

Query a char-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

char[,] Get (GRB.CharAttr attr,
GRBVar[,] vars)

357

Query a char-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

char[„] Get (GRB.CharAttr attr,
GRBVar[„] vars)

Query a char-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

char[] Get (GRB.CharAttr attr,
GRBConstr[] constrs)

Query a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

char[] Get (GRB.CharAttr attr,
GRBConstr[] constrs,
int start,
int len)

Query a char-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

char[,] Get (GRB.CharAttr attr,
GRBConstr[,] constrs)

Query a char-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being queried.

358

constrs: A two-dimensional array of constraints whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input constraint.

char[„] Get (GRB.CharAttr attr,
GRBConstr[„] constrs)

Query a char-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

char[] Get (GRB.CharAttr attr,
GRBQConstr[] qconstrs)

Query a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: The quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

char[] Get (GRB.CharAttr attr,
GRBQConstr[] qconstrs,
int start,
int len)

Query a char-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being queried.

start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

Return value:
The current values of the requested attribute for each input quadratic constraint.

char[,] Get (GRB.CharAttr attr,
GRBQConstr[,] qconstrs)

Query a char-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being queried.

359

Return value:
The current values of the requested attribute for each input quadratic constraint.

char[„] Get (GRB.CharAttr attr,
GRBQConstr[„] qconstrs)

Query a char-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

double Get (GRB.DoubleAttr attr)

Query the value of a double-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double[] Get (GRB.DoubleAttr attr,
GRBVar[] vars)

Query a double-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

double[] Get (GRB.DoubleAttr attr,
GRBVar[] vars,
int start,
int len)

Query a double-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

360

double[,] Get (GRB.DoubleAttr attr,
GRBVar[,] vars)

Query a double-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

double[„] Get (GRB.DoubleAttr attr,
GRBVar[„] vars)

Query a double-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

double[] Get (GRB.DoubleAttr attr,
GRBConstr[] constrs)

Query a double-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

double[] Get (GRB.DoubleAttr attr,
GRBConstr[] constrs,
int start,
int len)

Query a double-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

double[,] Get (GRB.DoubleAttr attr,
GRBConstr[,] constrs)

Query a double-valued constraint attribute for a two-dimensional array of constraints.

361

Arguments:
attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

double[„] Get (GRB.DoubleAttr attr,
GRBConstr[„] constrs)

Query a double-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

double[] Get (GRB.DoubleAttr attr,
GRBQConstr[] qconstrs)

Query a double-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: The quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

double[] Get (GRB.DoubleAttr attr,
GRBQConstr[] qconstrs,
int start,
int len)

Query a double-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being queried.

start: The first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

Return value:
The current values of the requested attribute for each input quadratic constraint.

double[,] Get (GRB.DoubleAttr attr,
GRBQConstr[,] qconstrs)

Query a double-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.

Arguments:

362

attr: The attribute being queried.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

double[„] Get (GRB.DoubleAttr attr,
GRBQConstr[„] qconstrs)

Query a double-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

int Get (GRB.IntAttr attr)

Query the value of an int-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int[] Get (GRB.IntAttr attr,
GRBVar[] vars)

Query an int-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

int[] Get (GRB.IntAttr attr,
GRBVar[] vars,
int start,
int len)

Query an int-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:

363

The current values of the requested attribute for each input variable.

int[,] Get (GRB.IntAttr attr,
GRBVar[,] vars)

Query an int-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

int[„] Get (GRB.IntAttr attr,
GRBVar[„] vars)

Query an int-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

int[] Get (GRB.IntAttr attr,
GRBConstr[] constrs)

Query an int-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

int[] Get (GRB.IntAttr attr,
GRBConstr[] constrs,
int start,
int len)

Query an int-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

int[,] Get (GRB.IntAttr attr,
GRBConstr[,] constrs)

364

Query an int-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

int[„] Get (GRB.IntAttr attr,
GRBConstr[„] constrs)

Query an int-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

string Get (GRB.StringAttr attr)

Query the value of a string-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

string[] Get (GRB.StringAttr attr,
GRBVar[] vars)

Query a string-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

string[] Get (GRB.StringAttr attr,
GRBVar[] vars,
int start,
int len)

Query a string-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

365

string[,] Get (GRB.StringAttr attr,
GRBVar[,] vars)

Query a string-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

string[„] Get (GRB.StringAttr attr,
GRBVar[„] vars)

Query a string-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

string[] Get (GRB.StringAttr attr,
GRBConstr[] constrs)

Query a string-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

string[] Get (GRB.StringAttr attr,
GRBConstr[] constrs,
int start,
int len)

Query a string-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

string[,] Get (GRB.StringAttr attr,
GRBConstr[,] constrs)

Query a string-valued constraint attribute for a two-dimensional array of constraints.

366

Arguments:
attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

string[„] Get (GRB.StringAttr attr,
GRBConstr[„] constrs)

Query a string-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

string[] Get (GRB.StringAttr attr,
GRBQConstr[] qconstrs)

Query a string-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: The quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

string[] Get (GRB.StringAttr attr,
GRBQConstr[] qconstrs,
int start,
int len)

Query a string-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being queried.

start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

Return value:
The current values of the requested attribute for each input quadratic constraint.

string[,] Get (GRB.StringAttr attr,
GRBQConstr[,] qconstrs)

Query a string-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.

Arguments:

367

attr: The attribute being queried.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

string[„] Get (GRB.StringAttr attr,
GRBQConstr[„] qconstrs)

Query a string-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

GRBModel.GetCoeff()

Query the coefficient of variable var in linear constraint constr (note that the result can be zero).

double GetCoeff (GRBConstr constr,
GRBVar var)

Arguments:
constr: The requested constraint.
var: The requested variable.

Return value:
The current value of the requested coefficient.

GRBModel.GetCol()

Retrieve the list of constraints in which a variable participates, and the associated coefficients. The
result is returned as a GRBColumn object.
GRBColumn GetCol (GRBVar var)

Arguments:
var: The variable of interest.

Return value:
A GRBColumn object that captures the set of constraints in which the variable participates.

GRBModel.GetConcurrentEnv()

Create/retrieve a concurrent environment for a model.
This method provides fine-grained control over the concurrent optimizer. By creating your

own concurrent environments and setting appropriate parameters on these environments (e.g., the

368

Method parameter), you can control exactly which strategies the concurrent optimizer employs.
For example, if you create two concurrent environments, and set Method to primal simplex for
one and dual simplex for the other, subsequent concurrent optimizer runs will use the two simplex
algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with
num=0. For example, if you want three concurrent environments, they must be numbered 0, 1,
and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent
optimization on that model. Use DiscardConcurrentEnvs to revert back to default concurrent
optimizer behavior.
GRBEnv GetConcurrentEnv (int num)

Arguments:
num: The concurrent environment number.

Return value:
The concurrent environment for the model.

GRBModel.GetConstrByName()

Retrieve a linear constraint from its name. If multiple linear constraints have the same name, this
method chooses one arbitrarily.
GRBConstr GetConstrByName (string name)

Arguments:
name: The name of the desired linear constraint.

Return value:
The requested linear constraint.

GRBModel.GetConstrs()

Retrieve an array of all linear constraints in the model.
GRBConstr[] GetConstrs ()
Return value:

All linear constraints in the model.

GRBModel.GetEnv()

Query the environment associated with the model. Note that each model makes its own copy of
the environment when it is created. To change parameters for a model, for example, you should
use this method to obtain the appropriate environment object.
GRBEnv GetEnv ()
Return value:

The environment for the model.

369

GRBModel.GetGenConstrMax()
Retrieve the data of a general constraint of type MAX. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

See also AddGenConstrMax for a description of the semantics of this general constraint type.

void GetGenConstrMax (GRBGenConstr genc,
out GRBVar resvar,
out GRBVar[] vars,
out double constant)

Arguments:
genc: The index of the general constraint.
resvar: Stores the resultant variable of the constraint.
vars: Stores the array of operand variables of the constraint.
constant: Stores the additional constant operand of the constraint.

GRBModel.GetGenConstrMin()
Retrieve the data of a general constraint of type MIN. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

See also AddGenConstrMin for a description of the semantics of this general constraint type.

void GetGenConstrMin (GRBGenConstr genc,
out GRBVar resvar,
out GRBVar[] vars,
out double constant)

Arguments:
genc: The index of the general constraint.
resvar: Stores the resultant variable of the constraint.
vars: Stores the array of operand variables of the constraint.
constant: Stores the additional constant operand of the constraint.

GRBModel.GetGenConstrAbs()
Retrieve the data of a general constraint of type ABS. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

See also AddGenConstrAbs for a description of the semantics of this general constraint type.

void GetGenConstrAbs (GRBGenConstr genc,
out GRBVar resvar,
out GRBVar argvar)

Arguments:

370

genc: The index of the general constraint.
resvar: Stores the resultant variable of the constraint.
argvar: Stores the argument variable of the constraint.

GRBModel.GetGenConstrAnd()

Retrieve the data of a general constraint of type AND. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

See also AddGenConstrAnd for a description of the semantics of this general constraint type.

void GetGenConstrAnd (GRBGenConstr genc,
out GRBVar resvar,
out GRBVar[] vars)

Arguments:
genc: The index of the general constraint.
resvar: Stores the resultant variable of the constraint.
vars: Stores the array of operand variables of the constraint.

GRBModel.GetGenConstrOr()

Retrieve the data of a general constraint of type OR. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

See also AddGenConstrOr for a description of the semantics of this general constraint type.

void GetGenConstrOr (GRBGenConstr genc,
out GRBVar resvar,
out GRBVar[] vars)

Arguments:
genc: The index of the general constraint.
resvar: Stores the resultant variable of the constraint.
vars: Stores the array of operand variables of the constraint.

GRBModel.GetGenConstrIndicator()

Retrieve the data of a general constraint of type INDICATOR. Calling this function for a general
constraint of different type leads to an exception. You can query the GenConstrType attribute to
determine the type of the general constraint.

See also AddGenConstrIndicator for a description of the semantics of this general constraint
type.

371

void GetGenConstrIndicator (GRBGenConstr genc,
out GRBVar binvar,
out int binval,
out GRBLinExpr expr,
out char sense,
out double rhs)

Arguments:
genc: The index of the general constraint.
binvar: Stores the binary indicator variable of the constraint.
binval: Stores the value that the indicator variable has to take in order to trigger the linear
constraint.

expr: Stores the left-hand-side expression of the linear constraint that is triggered by the
indicator.

sense: Stores the sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL,
or GRB_GREATER_EQUAL.

rhs: Stores the right-hand-side value for the linear constraint.

GRBModel.GetGenConstrs()
Retrieve an array of all general constraints in the model.
GRBGenConstr[] GetGenConstrs ()
Return value:

All general constraints in the model.

GRBModel.GetMultiobjEnv()
Create/retrieve a multi-objective environment for the objective with the given index. This envi-
ronment enables fine-grained control over the multi-objective optimization process. Specifically, by
changing parameters on this environment, you modify the behavior of the optimization that occurs
during the corresponding pass of the multi-objective optimization.

Each multi-objective environment starts with a copy of the current model environment.
Please refer to the discussion of Multiple Objectives for information on how to specify multiple

objective functions and control the tradeoff between them.
Use DiscardMultiobjEnvs to discard multi-objective environments and return to standard be-

havior.
GRBEnv GetMultiobjEnv (int index)

Arguments:
index: The objective index.

Return value:
The multi-objective environment for the model.

GRBModel.GetObjective()
Retrieve the model objective(s).
GRBExpr GetObjective ()
Retrieve the optimization objective.

372

Note that the constant and linear portions of the objective can also be retrieved using the
ObjCon and Obj attributes.

Return value:
The model objective.

GRBLinExpr GetObjective (int index)

Retrieve an alternative optimization objective. Alternative objectives will always be linear. You
can also use this routine to retrieve the primary objective (using index = 0), but you will get an
exception if the primary objective contains quadratic terms.

Please refer to the discussion of Multiple Objectives for more information on the use of alter-
native objectives.

Note that alterative objectives can also be retrieved using the ObjNCon and ObjN attributes.
Arguments:

index: The index for the requested alternative objective.
Return value:

The requested alternative objective.

GRBModel.GetPWLObj()
Retrieve the piecewise-linear objective function for a variable. The return value gives the number
of points that define the function, and the x and y arguments give the coordinates of the points,
respectively. The x and y arguments must be large enough to hold the result. Call this method
with null values for x and y if you just want the number of points.

Refer to the description of SetPWLObj for additional information on what the values in x and
y mean.

int GetPWLObj (GRBVar var,
double[] x,
double[] y)

Arguments:
var: The variable whose objective function is being retrieved.
x: The x values for the points that define the piecewise-linear function. These will always
be in non-decreasing order.

y: The y values for the points that define the piecewise-linear function.
Return value:

The number of points that define the piecewise-linear objective function.

GRBModel.GetQConstr()
Retrieve the left-hand side expression from a quadratic constraint. The result is returned as a
GRBQuadExpr object.
GRBQuadExpr GetQConstr (GRBQConstr qconstr)

Arguments:
qconstr: The quadratic constraint of interest.

Return value:

373

A GRBQuadExpr object that captures the left-hand side of the quadratic constraint.

GRBModel.GetQConstrs()

Retrieve an array of all quadratic constraints in the model.
GRBQConstr[] GetQConstrs ()
Return value:

All quadratic constraints in the model.

GRBModel.GetQCRow()

Retrieve the left-hand side expression for a quadratic constraint. The result is returned as a
GRBQuadExpr object.
GRBQuadExpr GetQCRow (GRBQConstr qc)

Arguments:
qc: The quadratic constraint of interest.

Return value:
A GRBQuadExpr object that captures the left-hand side of the quadratic constraint.

GRBModel.GetRow()

Retrieve a list of variables that participate in a constraint, and the associated coefficients. The
result is returned as a GRBLinExpr object.
GRBLinExpr GetRow (GRBConstr constr)

Arguments:
constr: The constraint of interest.

Return value:
A GRBLinExpr object that captures the set of variables that participate in the constraint.

GRBModel.GetSOS()

Retrieve the list of variables that participate in an SOS constraint, and the associated coefficients.
The return value is the length of this list. Note that the argument arrays must be long enough to
accomodate the result. Call the method with null array arguments to determine the appropriate
array lengths.

int GetSOS (GRBSOS sos,
GRBVar[] vars,
double[] weights,
int[] type)

Arguments:
sos: The SOS set of interest.
vars: A list of variables that participate in sos. Can be null.
weights: The SOS weights for each participating variable. Can be null.

374

type: The type of the SOS set (either GRB.SOS_TYPE1 or GRB.SOS_TYPE2) is returned in
type[0].

Return value:
The number of entries placed in the output arrays. Note that you should consult the return
value to determine the length of the result; the arrays sizes won’t necessarily match the
result size.

GRBModel.GetSOSs()

Retrieve an array of all SOS constraints in the model.
GRBSOS[] GetSOSs ()
Return value:

All SOS constraints in the model.

GRBModel.GetTuneResult()

Use this method to retrieve the results of a previous Tune call. Calling this method with argument
n causes tuned parameter set n to be copied into the model. Parameter sets are stored in order of
decreasing quality, with parameter set 0 being the best. The number of available sets is stored in
attribute TuneResultCount.

Once you have retrieved a tuning result, you can call optimize to use these parameter settings
to optimize the model, or write to write the changed parameters to a .prm file.

Please refer to the parameter tuning section for details on the tuning tool.
void GetTuneResult (int n)

n: The index of the tuning result to retrieve. The best result is available as index 0. The
number of stored results is available in attribute TuneResultCount.

GRBModel.GetVarByName()

Retrieve a variable from its name. If multiple variable have the same name, this method chooses
one arbitrarily.
GRBVar GetVarByName (string name)

Arguments:
name: The name of the desired variable.

Return value:
The requested variable.

GRBModel.GetVars()

Retrieve an array of all variables in the model.
GRBVar[] GetVars ()
Return value:

All variables in the model.

375

GRBModel.Optimize()

Optimize the model. The algorithm used for the optimization depends on the model type (simplex
or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful completion,
this method will populate the solution related attributes of the model. See the Attributes section
for more information on attributes.

Please consult this section for a discussion of some of the practical issues associated with solving
a precisely defined mathematical model using finite-precision floating-point arithmetic.

Note that this method will process all pending model modifications.
void Optimize ()

GRBModel::OptimizeAsync()

Optimize a model asynchronously. This routine returns immediately. Your program can perform
other computations while optimization proceeds in the background. To check the state of the
asynchronous optimization, query the Status attribute for the model. A value of IN_PROGRESS
indicates that the optimization has not yet completed. When you are done with your foreground
tasks, you must call sync to sync your foreground program with the asynchronous optimization
task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in
the background is severely limited. Specifically, you can only perform attribute queries, and only
for a few attributes (listed below). Any other calls on the running model, or on any other models that
were built within the same Gurobi environment, will fail with error code OPTIMIZATION_IN_PROGRESS.

Note that there are no such restrictions on models built in other environments. Thus, for
example, you could create multiple environments, and then have a single foreground program
launch multiple simultaneous asynchronous optimizations, each in its own environment.

As already noted, you are allowed to query the value of the Status attribute while an asyn-
chronous optimization is in progress. The other attributes that can be queried are: ObjVal, Ob-
jBound, IterCount, NodeCount, and BarIterCount. In each case, the returned value reflects progress
in the optimization to that point. Any attempt to query the value of an attribute not on this list
will return an OPTIMIZATION_IN_PROGRESS error.
void OptimizeAsync ()

GRBModel.Presolve()

Perform presolve on a model.
GRBModel Presolve ()
Return value:

Presolved version of original model.

GRBModel.Read()

This method is the general entry point for importing data from a file into a model. It can be used
to read basis files for continuous models, start vectors for MIP models, or parameter settings. The
type of data read is determined by the file suffix. File formats are described in the File Format
section.

376

Note that this is not the method to use if you want to read a new model from a file. For that,
use the GRBModel constructor. One variant of the constructor takes the name of the file that
contains the new model as its argument.
void Read (string filename)

Arguments:
filename: Name of the file to read. The suffix on the file must be either .bas (for an LP
basis), .mst or .sol (for a MIP start), .hnt (for MIP hints), .ord (for a priority order),
or .prm (for a parameter file). The suffix may optionally be followed by .zip, .gz, .bz2,
or .7z.

GRBModel.Remove()

Remove a variable, constraint, or SOS from a model.
void Remove (GRBConstr constr)

Remove a constraint from the model. Note that, due to our lazy update approach, the change
won’t actually take effect until you update the model (using GRBModel.Update), optimize the
model (using GRBModel.Optimize), or write the model to disk (using GRBModel.Write).

Arguments:
constr: The constraint to remove.

void Remove (GRBGenConstr genconstr)

Remove a general constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel.Update), optimize
the model (using GRBModel.Optimize), or write the model to disk (using GRBModel.Write).

Arguments:
genconstr: The general constraint to remove.

void Remove (GRBQConstr qconstr)

Remove a quadratic constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel.Update), optimize
the model (using GRBModel.Optimize), or write the model to disk (using GRBModel.Write).

Arguments:
qconstr: The constraint to remove.

void Remove (GRBSOS sos)

Remove an SOS constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel.Update), optimize
the model (using GRBModel.Optimize), or write the model to disk (using GRBModel.Write).

Arguments:
sos: The SOS constraint to remove.

void Remove (GRBVar var)

377

Remove a variable from the model. Note that, due to our lazy update approach, the change
won’t actually take effect until you update the model (using GRBModel.Update), optimize the
model (using GRBModel.Optimize), or write the model to disk (using GRBModel.Write).

Arguments:
var: The variable to remove.

GRBModel.Reset()

Reset the model to an unsolved state, discarding any previously computed solution information.
void Reset ()

GRBModel.SetCallback()

Set the callback object for a model. The Callback() method on this object will be called period-
ically from the Gurobi solver. You will have the opportunity to obtain more detailed information
about the state of the optimization from this callback. See the documentation for GRBCallback
for additional information.

Note that a model can only have a single callback method, so this call will replace an existing
callback. To disable a previously set callback, call this method with a null argument.
void SetCallback (GRBCallback cb)

GRBModel.Set()

Set the value(s) of a parameter or attribute. Use this method for parameters, for scalar model
attributes, or for arrays of constraint or variable attributes.

void Set (GRB.DoubleParam param,
double newvalue)

Set the value of a double-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e.,

through GRBEnv.Set) is that the former modifies the parameter for a single model, while the
latter modifies the parameter for every model that is subsequently built using that environment
(and leaves the parameter unchanged for models that were previously built using that environment).

Arguments:
param: The parameter being modified.
newvalue: The desired new value for the parameter.

void Set (GRB.IntParam param,
int newvalue)

Set the value of an int-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e.,

through GRBEnv.Set) is that the former modifies the parameter for a single model, while the
latter modifies the parameter for every model that is subsequently built using that environment
(and leaves the parameter unchanged for models that were previously built using that environment).

378

Arguments:
param: The parameter being modified.
newvalue: The desired new value for the parameter.

void Set (GRB.StringParam param,
string newvalue)

Set the value of a string-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e.,

through GRBEnv.Set) is that the former modifies the parameter for a single model, while the
latter modifies the parameter for every model that is subsequently built using that environment
(and leaves the parameter unchanged for models that were previously built using that environment).

Arguments:
param: The parameter being modified.
newvalue: The desired new value for the parameter.

void Set (GRB.CharAttr attr,
GRBVar[] vars,
char[] newvalues)

Set a char-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.CharAttr attr,
GRBVar[] vars,
char[] newvalues,
int start,
int len)

Set a char-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

void Set (GRB.CharAttr attr,
GRBVar[,] vars,
char[,] newvalues)

Set a char-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being modified.

379

vars: A two-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.CharAttr attr,
GRBVar[„] vars,
char[„] newvalues)

Set a char-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.CharAttr attr,
GRBConstr[] constrs,
char[] newvalues)

Set a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.CharAttr attr,
GRBConstr[] constrs,
char[] newvalues,
int start,
int len)

Set a char-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

void Set (GRB.CharAttr attr,
GRBConstr[,] constrs,
char[,] newvalues)

Set a char-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

380

void Set (GRB.CharAttr attr,
GRBConstr[„] constrs,
char[„] newvalues)

Set a char-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.CharAttr attr,
GRBQConstr[] qconstrs,
char[] newvalues)

Set a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: The quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.CharAttr attr,
GRBQConstr[] qconstrs,
char[] newvalues,
int start,
int len)

Set a char-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being modified.

newvalues: The desired new values for the attribute for each input quadratic constraint.
start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

void Set (GRB.CharAttr attr,
GRBQConstr[,] qconstrs,
char[,] newvalues)

Set a char-valued quadratic constraint attribute for a two-dimensional array of quadratic con-
straints.

Arguments:
attr: The attribute being modified.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being modified.

newvalues: The desired new values for the attribute for each input quadratic constraint.

381

void Set (GRB.CharAttr attr,
GRBQConstr[„] qconstrs,
char[„] newvalues)

Set a char-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being modified.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being modified.

newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.DoubleAttr attr,
double newvalue)

Set the value of a double-valued model attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void Set (GRB.DoubleAttr attr,
GRBVar[] vars,
double[] newvalues)

Set a double-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.DoubleAttr attr,
GRBVar[] vars,
double[] newvalues,
int start,
int len)

Set a double-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

void Set (GRB.DoubleAttr attr,
GRBVar[,] vars,
double[,] newvalues)

Set a double-valued variable attribute for a two-dimensional array of variables.

382

Arguments:
attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.DoubleAttr attr,
GRBVar[„] vars,
double[„] newvalues)

Set a double-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.DoubleAttr attr,
GRBConstr[] constrs,
double[] newvalues)

Set a double-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.DoubleAttr attr,
GRBConstr[] constrs,
double[] newvalues,
int start,
int len)

Set a double-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
start: The first constraint of interest in the list.
len: The number of constraints.

void Set (GRB.DoubleAttr attr,
GRBConstr[,] constrs,
double[,] newvalues)

Set a double-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.

383

newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.DoubleAttr attr,
GRBConstr[„] constrs,
double[„] newvalues)

Set a double-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.DoubleAttr attr,
GRBQConstr[] qconstrs,
double[] newvalues)

Set a double-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: The quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.DoubleAttr attr,
GRBQConstr[] qconstrs,
double[] newvalues,
int start,
int len)

Set a double-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being modified.

newvalues: The desired new values for the attribute for each input quadratic constraint.
start: The first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

void Set (GRB.DoubleAttr attr,
GRBQConstr[,] qconstrs,
double[,] newvalues)

Set a double-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being modified.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being modified.

384

newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.DoubleAttr attr,
GRBQConstr[„] qconstrs,
double[„] newvalues)

Set a double-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being modified.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being modified.

newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.IntAttr attr,
int newvalue)

Set the value of an int-valued model attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void Set (GRB.IntAttr attr,
GRBVar[] vars,
int[] newvalues)

Set an int-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.IntAttr attr,
GRBVar[] vars,
int[] newvalues,
int start,
int len)

Set an int-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

385

void Set (GRB.IntAttr attr,
GRBVar[,] vars,
int[,] newvalues)

Set an int-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.IntAttr attr,
GRBVar[„] vars,
int[„] newvalues)

Set an int-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.IntAttr attr,
GRBConstr[] constrs,
int[] newvalues)

Set an int-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.IntAttr attr,
GRBConstr[] constrs,
int[] newvalues,
int start,
int len)

Set an int-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

void Set (GRB.IntAttr attr,
GRBConstr[,] constrs,
int[,] newvalues)

Set an int-valued constraint attribute for a two-dimensional array of constraints.

386

Arguments:
attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.IntAttr attr,
GRBConstr[„] constrs,
int[„] newvalues)

Set an int-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.StringAttr attr,
string newvalue)

Set the value of a string-valued model attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void Set (GRB.StringAttr attr,
GRBVar[] vars,
string[] newvalues)

Set a string-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.StringAttr attr,
GRBVar[] vars,
string[] newvalues,
int start,
int len)

Set a string-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

387

void Set (GRB.StringAttr attr,
GRBVar[,] vars,
string[,] newvalues)

Set a string-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.StringAttr attr,
GRBVar[„] vars,
string[„] newvalues)

Set a string-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.StringAttr attr,
GRBConstr[] constrs,
string[] newvalues)

Set a string-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.StringAttr attr,
GRBConstr[] constrs,
string[] newvalues,
int start,
int len)

Set a string-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

void Set (GRB.StringAttr attr,
GRBConstr[,] constrs,
string[,] newvalues)

Set a string-valued constraint attribute for a two-dimensional array of constraints.

388

Arguments:
attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.StringAttr attr,
GRBConstr[„] constrs,
string[„] newvalues)

Set a string-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.StringAttr attr,
GRBQConstr[] qconstrs,
string[] newvalues)

Set a string-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: The quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.StringAttr attr,
GRBQConstr[] qconstrs,
string[] newvalues,
int start,
int len)

Set a string-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being modified.

newvalues: The desired new values for the attribute for each input quadratic constraint.
start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

void Set (GRB.StringAttr attr,
GRBQConstr[,] qconstrs,
string[,] newvalues)

Set a string-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.

Arguments:

389

attr: The attribute being modified.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being modified.

newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.StringAttr attr,
GRBQConstr[„] qconstrs,
string[„] newvalues)

Set a string-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being modified.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being modified.

newvalues: The desired new values for the attribute for each input quadratic constraint.

GRBModel.SetObjective()

Set the model objective equal to a linear or quadratic expression.
Note that you can also modify the linear portion of a model objective using the Obj variable

attribute. If you wish to mix and match these two approaches, please note that this method replaces
the entire existing objective, while the Obj attribute can be used to modify individual linear terms.

void SetObjective (GRBExpr expr,
int sense)

Set the model objective, and the objective sense (GRB.MINIMIZE for minimization, GRB.MAXIMIZE
for maximization).

Arguments:
expr: New model objective.
sense: New optimization sense (GRB.MINIMIZE for minimization, GRB.MAXIMIZE for maxi-
mization).

void SetObjective (GRBExpr expr)

Set the model objective. The sense of the objective is determined by the value of the ModelSense
attribute.

Arguments:
expr: New model objective.

390

GRBModel.SetObjectiveN()

void SetObjectiveN (GRBLinExpr expr,
int index,
int priority,
double weight,
double abstol,
double reltol,
string name)

Set an alternative optimization objective equal to a linear expression.
Please refer to the discussion of Multiple Objectives for more information on the use of alter-

native objectives.
Note that you can also modify an alternative objective using the ObjN variable attribute. If

you wish to mix and match these two approaches, please note that this method replaces the entire
existing objective, while the ObjN attribute can be used to modify individual terms.

Arguments:
expr: New alternative objective.
index: Index for new objective. If you use an index of 0, this routine will change the primary
optimization objective.

priority: Priority for the alternative objective. This initializes the ObjNPriority attribute
for this objective.

weight: Weight for the alternative objective. This initializes the ObjNWeight attribute for
this objective.

abstol: Absolute tolerance for the alternative objective. This initializes the ObjNAbsTol
attribute for this objective.

reltol: Relative tolerance for the alternative objective. This initializes the ObjNRelTol
attribute for this objective.

name: Name of the alternative objective. This initializes the ObjNName attribute for this
objective.

GRBModel.SetPWLObj()

Set a piecewise-linear objective function for a variable.
The arguments to this method specify a list of points that define a piecewise-linear objective

function for a single variable. Specifically, the x and y arguments give coordinates for the vertices
of the function.

For example, suppose we want to define the function f(x) shown below:

391

(1, 1)

(3, 2)

(5, 4)

x[0] x[1] x[2]

y[0]

y[1]

y[2]

The vertices of the function occur at the points (1, 1), (3, 2) and (5, 4), so x is {1, 3, 5} and y is {1,
2, 4}. With these arguments we define f(1) = 1, f(3) = 2 and f(5) = 4. Other objective values
are linearly interpolated between neighboring points. The first pair and last pair of points each
define a ray, so values outside the specified x values are extrapolated from these points. Thus, in
our example, f(−1) = 0 and f(6) = 5.

More formally, a set of n points

x = {x1, . . . , xn}, y = {y1, . . . , yn}

define the following piecewise-linear function:

f(v) =


y1 + y2−y1

x2−x1
(v − x1), if v ≤ x1,

yi + yi+1−yi

xi+1−xi
(v − xi), if v ≥ xi and v ≤ xi+1,

yn + yn−yn−1
xn−xn−1

(v − xn), if v ≥ xn.

The x entries must appear in non-decreasing order. Two points can have the same x coordinate
— this can be useful for specifying a discrete jump in the objective function.

Note that a piecewise-linear objective can change the type of a model. Specifically, including
a non-convex piecewise linear objective function in a continuous model will transform that model
into a MIP. This can significantly increase the cost of solving the model.

Setting a piecewise-linear objective for a variable will set the Obj attribute on that variable to
0. Similarly, setting the Obj attribute will delete the piecewise-linear objective on that variable.

Each variable can have its own piecewise-linear objective function. They must be specified
individually, even if multiple variables share the same function.

void SetPWLObj (GRBvar var,
double[] x,
double[] y)

Set the piecewise-linear objective function for a variable.
Arguments:

392

var: The variable whose objective function is being set.
x: The x values for the points that define the piecewise-linear function. Must be in non-
decreasing order.

y: The y values for the points that define the piecewise-linear function.

GRBModel.Terminate()
Generate a request to terminate the current optimization. This method can be called at any time
during an optimization.
void Terminate ()

GRBModel.Tune()
Perform an automated search for parameter settings that improve performance. Upon completion,
this method stores the best parameter sets it found. The number of stored parameter sets can be
determined by querying the value of the TuneResultCount attribute. The actual settings can be
retrieved using GetTuneResult

Please refer to the parameter tuning section for details on the tuning tool.
void Tune ()

GRBModel.Update()
Process any pending model modifications.
void Update ()

GRBModel.Write()
This method is the general entry point for writing model data to a file. It can be used to write
optimization models, IIS submodels, solutions, basis vectors, MIP start vectors, or parameter
settings. The type of file is determined by the file suffix. File formats are described in the File
Format section.

Note that writing a model to a file will process all pending model modifications. However,
writing other model information (solutions, bases, etc.) will not.
void Write (string filename)

Arguments:
filename: Name of the file to write. The file type is encoded in the file name suffix. Valid
suffixes for writing the model itself are .mps, .rew, .lp, or .rlp. An IIS can be written
by using an .ilp suffix. Use .sol for a solution file, .mst for a MIP start, .hnt for MIP
hints, .bas for a basis file, or .prm for a parameter file. The suffix may optionally be
followed by .gz, .bz2, or .7z, which produces a compressed result.

393

5.3 GRBVar
Gurobi variable object. Variables are always associated with a particular model. You create a
variable object by adding a variable to a model (using GRBModel.AddVar), rather than by using
a GRBVar constructor.

The methods on variable objects are used to get and set variable attributes. For example,
solution information can be queried by calling Get(GRB.DoubleAttr.X). Note, however, that it is
generally more efficient to query attributes for a set of variables at once. This is done using the
attribute query method on the GRBModel object (GRBModel.Get).

GRBVar.Get()

Query the value of a variable attribute.
char Get (GRB.CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
double Get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
int Get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
string Get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBVar.SameAs()

bool SameAs (GRBVar var2)

394

Check whether two variable objects refer to the same variable.
Arguments:

var2: The other variable.
Return value:

Boolean result indicates whether the two variable objects refer to the same model variable.

GRBVar.Set()
Set the value of a variable attribute.

void Set (GRB.CharAttr attr,
char newvalue)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.DoubleAttr attr,
double newvalue)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.IntAttr attr,
int newvalue)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.StringAttr attr,
string newvalue)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

395

5.4 GRBConstr
Gurobi constraint object. Constraints are always associated with a particular model. You create
a constraint object by adding a constraint to a model (using GRBModel.AddConstr), rather than
by using a GRBConstr constructor.

The methods on constraint objects are used to get and set constraint attributes. For example,
constraint right-hand sides can be queried by calling Get(GRB.DoubleAttr.RHS). Note, however,
that it is generally more efficient to query attributes for a set of constraints at once. This is done
using the attribute query method on the GRBModel object (GRBModel.Get).

GRBConstr.Get()

Query the value of a constraint attribute.
char Get (GRB.CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
double Get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
int Get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
string Get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBConstr.SameAs()

bool SameAs (GRBConstr constr2)

396

Check whether two constraint objects refer to the same constraint.
Arguments:

constr2: The other constraint.
Return value:

Boolean result indicates whether the two constraint objects refer to the same model con-
straint.

GRBConstr.Set()
Set the value of a constraint attribute.

void Set (GRB.CharAttr attr,
char newvalue)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.DoubleAttr attr,
double newvalue)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.IntAttr attr,
int newvalue)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.StringAttr attr,
string newvalue)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

397

5.5 GRBQConstr
Gurobi quadratic constraint object. Quadratic constraints are always associated with a particular
model. You create a quadratic constraint object by adding a quadratic constraint to a model (using
GRBModel.AddQConstr), rather than by using a GRBQConstr constructor.

The methods on quadratic constraint objects are used to get and set quadratic constraint
attributes. For example, quadratic constraint right-hand sides can be queried by calling
Get(GRB.DoubleAttr.QCRHS). Note, however, that it is generally more efficient to query attributes
for a set of constraints at once. This is done using the attribute query method on the GRBModel
object (GRBModel.Get).

GRBQConstr.Get()

Query the value of a quadratic constraint attribute.
char Get (GRB.CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
double Get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
int Get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
string Get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBQConstr.Set()

Set the value of a quadratic constraint attribute.

398

void Set (GRB.CharAttr attr,
char newvalue)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.DoubleAttr attr,
double newvalue)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.StringAttr attr,
string newvalue)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

399

5.6 GRBSOS
Gurobi SOS constraint object. SOS constraints are always associated with a particular model.
You create an SOS object by adding an SOS constraint to a model (using GRBModel.AddSOS),
rather than by using a GRBSOS constructor. Similarly, SOS constraints are removed using the
GRBModel.Remove method.

An SOS constraint can be of type 1 or 2 (GRB.SOS_TYPE1 or GRB.SOS_TYPE2). A type 1 SOS
constraint is a set of variables for which at most one variable in the set may take a value other than
zero. A type 2 SOS constraint is an ordered set of variables where at most two variables in the set
may take non-zero values. If two take non-zero values, they must be contiguous in the ordered set.

SOS constraint objects have one attribute, IISSOS, which can be queried with the GRBSOS.Get
method.

GRBSOS.Get()
Query the value of an SOS attribute.
int Get (GRB.IntAttr attr)

Arguments:
attr: The attribute being queried.

Return value:
The current value of the requested attribute.

400

5.7 GRBGenConstr
Gurobi general constraint object. General constraints are always associated with a particular
model. You create a general constraint object by adding a general constraint to a model (using
GRBModel.AddGenConstr), rather than by using a GRBGenConstr constructor.

General constraint objects have a number of attributes, which can be queried with the GRB-
GenConstr.Get method. The full list can be found in the Attributes section of this document.

GRBGenConstr.Get()
Query the value of a general constraint attribute.
int Get (GRB.IntAttr attr)

Query the value of a int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
string Get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBGenConstr.Set()
Set the value of a general constraint attribute.

void Set (GRB.StringAttr attr,
string newvalue)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

401

5.8 GRBExpr
Abstract base class for the GRBLinExpr and GRBQuadExpr classes. Expressions are used to build
objectives and constraints. They are temporary objects that typically have short lifespans.

GRBExpr.Value
(Property) The value of an expression for the current solution.

402

5.9 GRBLinExpr
Gurobi linear expression object. A linear expression consists of a constant term, plus a list of
coefficient-variable pairs that capture the linear terms. Linear expressions are used to build con-
straints. They are temporary objects that typically have short lifespans.

The GRBLinExpr class is a sub-class of the abstract base class GRBExpr.
In .NET languages that support operator overloading, you generally build linear expressions

using overloaded operators. For example, if x is a GRBVar object, then x + 1 is a GRBLinExpr
object. Expressions can be built from constants (e.g., expr = 0), variables (e.g., expr = 1 * x + 2
* y), or from other expressions (e.g., expr2 = 2 * expr1 + x, or expr3 = expr1 + 2 * expr2).
You can also modify existing expressions (e.g., expr += x, or expr2 -= expr1).

The other option for building expressions is to start with an empty expression (using the GRB-
LinExpr constructor), and then add terms. Terms can be added individually (using AddTerm) or
in groups (using AddTerms or MultAdd). Terms can also be removed from an expression, using
Remove.

Note that the cost of building expressions depends heavily on the approach you use. While
you can generally ignore this issue when building small expressions, you should be aware of a few
efficiency issues when building large expressions:

• You should avoid using expr = expr + x or expr += x in a loop. It will lead to runtimes
that are quadratic in the number of terms in the expression.

• Using AddTerm in a loop is reasonably efficient, but it isn’t the most efficient approach.

• The most efficient way to build a large expression is to make a single call to AddTerms.

Individual terms in a linear expression can be queried using the GetVar and GetCoeff methods.
The constant can be queried using the Constant property. You can query the number of terms in
the expression using the Size property.

Note that a linear expression may contain multiple terms that involve the same variable. These
duplicate terms are merged when creating a constraint from an expression, but they may be visible
when inspecting individual terms in the expression (e.g., when using GetVar).

GRBLinExpr()
Linear expression constructor. Create an empty linear expression, or copy an existing expression.
GRBLinExpr GRBLinExpr ()
Create an empty linear expression.
Return value:

An empty expression object.
GRBLinExpr GRBLinExpr (double a)

Create a constant linear expression.
Return value:

A linear expression object.
GRBLinExpr GRBLinExpr (GRBLinExpr orig)

Copy an existing linear expression.

403

Arguments:
orig: Existing expression to copy.

Return value:
A copy of the input expression object.

GRBLinExpr.Add()

Add one linear expression into another. Upon completion, the invoking linear expression will be
equal to the sum of itself and the argument expression.
void Add (GRBLinExpr le)

Arguments:
le: Linear expression to add.

GRBLinExpr.AddConstant()

Add a constant into a linear expression.
void AddConstant (double c)

Arguments:
c: Constant to add to expression.

GRBLinExpr.AddTerm()

Add a single term into a linear expression.

void AddTerm (double coeff,
GRBVar var)

Arguments:
coeff: Coefficient for new term.
var: Variable for new term.

GRBLinExpr.AddTerms()

Add new terms into a linear expression.

void AddTerms (double[] coeffs,
GRBVar[] vars)

Add a list of terms into a linear expression. Note that the lengths of the two argument arrays
must be equal.

Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.

404

void AddTerms (double[] coeffs,
GRBVar[] vars,
int start,
int len)

Add new terms into a linear expression. This signature allows you to use arrays to hold the
coefficients and variables that describe the terms in an array without being forced to add a term
for each entry in the array. The start and len arguments allow you to specify which terms to add.

Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.
start: The first term in the list to add.
len: The number of terms to add.

GRBLinExpr.Clear()
Set a linear expression to 0.

You should use the overloaded expr = 0 instead. The clear method is mainly included for
consistency with our interfaces to non-overloaded languages.
void Clear ()

GRBLinExpr.Constant
(Property) The constant term from the linear expression.

GRBLinExpr.GetCoeff()
Retrieve the coefficient from a single term of the expression.
double GetCoeff (int i)

Return value:
Coefficient for the term at index i in the expression.

GRBLinExpr.GetVar()
Retrieve the variable object from a single term of the expression.
GRBVar GetVar (int i)

Return value:
Variable for the term at index i in the expression.

GRBLinExpr.MultAdd()
Add a constant multiple of one linear expression into another. Upon completion, the invoking linear
expression is equal the sum of itself and the constant times the argument expression.

void MultAdd (double m,
GRBLinExpr le)

405

Arguments:
m: Constant multiplier for added expression.
le: Linear expression to add.

GRBLinExpr.Remove()
Remove a term from a linear expression.
void Remove (int i)

Remove the term stored at index i of the expression.
Arguments:

i: The index of the term to be removed.
boolean Remove (GRBVar var)

Remove all terms associated with variable var from the expression.
Arguments:

var: The variable whose term should be removed.
Return value:

Returns true if the variable appeared in the linear expression (and was removed).

GRBLinExpr.Size
(Property) The number of terms in the linear expression (not including the constant).

GRBLinExpr.Value
(Property) The value of an expression for the current solution.

406

5.10 GRBQuadExpr
Gurobi quadratic expression object. A quadratic expression consists of a linear expression, plus a
list of coefficient-variable-variable triples that capture the quadratic terms. Quadratic expressions
are used to build quadratic objective functions and quadratic constraints. They are temporary
objects that typically have short lifespans.

The GRBQuadExpr class is a sub-class of the abstract base class GRBExpr.
In .NET languages that support operator overloading, you generally build quadratic expres-

sions using overloaded operators. For example, if x is a GRBVar object, then x * x is a GRB-
QuadExpr object. Expressions can be built from constants (e.g., expr = 0), variables (e.g.,
expr = 1 * x * x + 2 * x * y), or from other expressions (e.g., expr2 = 2 * expr1 + x, or
expr3 = expr1 + 2 * expr2). You can also modify existing expressions (e.g., expr += x * x, or
expr2 -= expr1).

The other option for building expressions is to start with an empty expression (using the GRB-
QuadExpr constructor), and then add terms. Terms can be added individually (using AddTerm)
or in groups (using AddTerms or MultAdd). Terms can also be removed from an expression (using
Remove).

Note that the cost of building expressions depends heavily on the approach you use. While
you can generally ignore this issue when building small expressions, you should be aware of a few
efficiency issues when building large expressions:

• You should avoid using expr = expr + x*x or expr += x*x in a loop. It will lead to runtimes
that are quadratic in the number of terms in the expression.

• Using AddTerm in a loop is reasonably efficient, but it isn’t the most efficient approach.

• The most efficient way to build a large expression is to make a single call to AddTerms.

Individual quadratic terms in a quadratic expression can be queried using the GetVar1 GetVar2,
and GetCoeff methods. You can query the number of quadratic terms in the expression using the
Size property. To query the constant and linear terms associated with a quadratic expression, first
obtain the linear portion of the quadratic expression using LinExpr, and then use the Constant,
GetCoeff, or GetVar on the resulting GRBLinExpr object.

Note that a quadratic expression may contain multiple terms that involve the same variable
pair. These duplicate terms are merged when creating the model objective from an expression, but
they may be visible when inspecting individual quadratic terms in the expression (e.g., when using
GetVar1 and GetVar2).

GRBQuadExpr()
Quadratic expression constructor. Create an empty quadratic expression, or copy an existing
expression.
GRBQuadExpr GRBQuadExpr ()
Create an empty quadratic expression.
Return value:

An empty expression object.
GRBQuadExpr GRBQuadExpr (double a)

407

Create a constant quadratic expression.
Return value:

A quadratic expression object.
GRBQuadExpr GRBQuadExpr (GRBLinExpr orig)

Initialize a quadratic expression from an existing linear expression.
Arguments:

orig: Existing linear expression to copy.
Return value:

Quadratic expression object whose initial value is taken from the input linear expression.
GRBQuadExpr GRBQuadExpr (GRBQuadExpr orig)

Copy an existing quadratic expression.
Arguments:

orig: Existing expression to copy.
Return value:

A copy of the input expression object.

GRBQuadExpr.Add()

Add an expression into a quadratic expression. Upon completion, the invoking quadratic expression
will be equal to the sum of itself and the argument expression.
void Add (GRBLinExpr le)

Add a linear expression.
Arguments:

le: Linear expression to add.
void Add (GRBQuadExpr qe)

Add a quadratic expression.
Arguments:

qe: Quadratic expression to add.

GRBQuadExpr.AddConstant()

Add a constant into a quadratic expression.
void AddConstant (double c)

Arguments:
c: Constant to add to expression.

GRBQuadExpr.AddTerm()

Add a single term into a quadratic expression.

408

void AddTerm (double coeff,
GRBVar var)

Add a single linear term (coeff*var) into a quadratic expression.
Arguments:

coeff: Coefficient for new term.
var: Variable for new term.

void AddTerm (double coeff,
GRBVar var1,
GRBVar var2)

Add a single quadratic term (coeff*var1*var2) into a quadratic expression.
Arguments:

coeff: Coefficient for new quadratic term.
var1: First variable for new quadratic term.
var2: Second variable for new quadratic term.

GRBQuadExpr.AddTerms()
Add new terms into a quadratic expression.

void AddTerms (double[] coeffs,
GRBVar[] vars)

Add a list of linear terms into a quadratic expression. Note that the lengths of the two argument
arrays must be equal.

Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.

void AddTerms (double[] coeffs,
GRBVar[] vars,
int start,
int len)

Add new linear terms into a quadratic expression. This signature allows you to use arrays to
hold the coefficients and variables that describe the linear terms in an array without being forced
to add a term for each entry in the array. The start and len arguments allow you to specify which
terms to add.

Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.
start: The first term in the list to add.
len: The number of terms to add.

void AddTerms (double[] coeffs,
GRBVar[] vars1,
GRBVar[] vars2)

409

Add a list of quadratic terms into a quadratic expression. Note that the lengths of the three
argument arrays must be equal.

Arguments:
coeffs: Coefficients for new quadratic terms.
vars1: First variables for new quadratic terms.
vars2: Second variables for new quadratic terms.

void AddTerms (double[] coeffs,
GRBVar[] vars1,
GRBVar[] vars2,
int start,
int len)

Add new quadratic terms into a quadratic expression. This signature allows you to use arrays
to hold the coefficients and variables that describe the terms in an array without being forced to
add a term for each entry in the array. The start and len arguments allow you to specify which
terms to add.

Arguments:
coeffs: Coefficients for new quadratic terms.
vars1: First variables for new quadratic terms.
vars2: Second variables for new quadratic terms.
start: The first term in the list to add.
len: The number of terms to add.

GRBQuadExpr.Clear()

Set a quadratic expression to 0.
You should use the overloaded expr = 0 instead. The clear method is mainly included for

consistency with our interfaces to non-overloaded languages.
void Clear ()

GRBQuadExpr.GetCoeff()

Retrieve the coefficient from a single quadratic term of the quadratic expression.
double GetCoeff (int i)

Return value:
Coefficient for the quadratic term at index i in the expression.

GRBQuadExpr.GetVar1()

Retrieve the first variable object associated with a single quadratic term from the expression.
GRBVar GetVar1 (int i)

Return value:
First variable for the quadratic term at index i in the quadratic expression.

410

GRBQuadExpr.GetVar2()
Retrieve the second variable object associated with a single quadratic term from the expression.
GRBVar GetVar2 (int i)

Return value:
Second variable for the quadratic term at index i in the quadratic expression.

GRBQuadExpr.LinExpr()
(Property) A quadratic expression is represented as a linear expression, plus a list of quadratic
terms. This method retrieves the linear expression associated with the quadratic expression.

GRBQuadExpr.MultAdd()
Add a constant multiple of one quadratic expression into another. Upon completion, the invoking
quadratic expression is equal the sum of itself and the constant times the argument expression.

void MultAdd (double m,
GRBLinExpr le)

Add a linear expression into a quadratic expression.
Arguments:

m: Constant multiplier for added expression.
le: Linear expression to add.

void MultAdd (double m,
GRBQuadExpr qe)

Add a quadratic expression into a quadratic expression.
Arguments:

m: Constant multiplier for added expression.
qe: Quadratic expression to add.

GRBQuadExpr.Remove()
Remove a quadratic term from a quadratic expression.
void Remove (int i)

Remove the quadratic term stored at index i of the expression.
Arguments:

i: The index of the quadratic term to be removed.
boolean Remove (GRBVar var)

Remove all quadratic terms associated with variable var from the expression.
Arguments:

var: The variable whose quadratic term should be removed.
Return value:

Returns true if the variable appeared in the quadratic expression (and was removed).

411

GRBQuadExpr.Size
(Property) The number of quadratic terms in the quadratic expression. Use GRBQuadExpr.LinExpr
to retrieve constant or linear terms from the quadratic expression.

GRBQuadExpr.Value
(Property) The value of an expression for the current solution.

412

5.11 GRBTempConstr
Gurobi temporary constraint object. Objects of this class are created as intermediate results when
building constraints using overloaded operators. There are no public methods on this class. Instead,
GRBTempConstr objects are created by operators ==, <=, or >=. You will generally never store
objects of this class in your own variables.

Consider the following examples:

model.AddConstr(x + y <= 1);
model.AddQConstr(x*x + y*y <= 1);

The overloaded <= operator creates an object of type GRBTempConstr, which is then immediately
passed to GRBModel.AddConstr or GRBModel.AddQConstr.

413

5.12 GRBColumn
Gurobi column object. A column consists of a list of coefficient, constraint pairs. Columns are used
to represent the set of constraints in which a variable participates, and the associated coefficients.
They are temporary objects that typically have short lifespans.

You generally build columns by starting with an empty column (using the GRBColumn con-
structor), and then adding terms. Terms can be added individually, using AddTerm, or in groups,
using AddTerms. Terms can also be removed from a column, using Remove.

Individual terms in a column can be queried using the GetConstr, and GetCoeff methods. You
can query the number of terms in the column using the Size property.

GRBColumn()

Column constructor. Create an empty column, or copy an existing column.
GRBColumn GRBColumn ()
Create an empty column.
Return value:

An empty column object.
GRBColumn GRBColumn (GRBColumn orig)

Copy an existing column.
Return value:

A copy of the input column object.

GRBColumn.AddTerm()

Add a single term into a column.

void AddTerm (double coeff,
GRBConstr constr)

Arguments:
coeff: Coefficient for new term.
constr: Constraint for new term.

GRBColumn.AddTerms()

Add new terms into a column.

void AddTerms (double[] coeffs,
GRBConstr[] constrs)

Add a list of terms into a column. Note that the lengths of the two argument arrays must be
equal.

Arguments:
coeffs: Coefficients for added constraints.
constrs: Constraints to add to column.

414

void AddTerms (double[] coeffs,
GRBConstr[] constrs,
int start,
int len)

Add new terms into a column. This signature allows you to use arrays to hold the coefficients
and constraints that describe the terms in an array without being forced to add an term for each
member in the array. The start and len arguments allow you to specify which terms to add.

Arguments:
coeffs: Coefficients for added constraints.
constrs: Constraints to add to column.
start: The first term in the list to add.
len: The number of terms to add.

GRBColumn.Clear()

Remove all terms from a column.
void Clear ()

GRBColumn.GetCoeff()

Retrieve the coefficient from a single term in the column.
double GetCoeff (int i)

Return value:
Coefficient for the term at index i in the column.

GRBColumn.GetConstr()

Retrieve the constraint object from a single term in the column.
GRBConstr GetConstr (int i)

Return value:
Constraint for the term at index i in the column.

GRBColumn.Remove()

Remove a single term from a column.
GRBConstr Remove (int i)

Remove the term stored at index i of the column.
Arguments:

i: The index of the term to be removed.
Return value:

The constraint whose term was removed from the column. Returns null if the specified
index is out of range.

boolean Remove (GRBConstr constr)

415

Remove the term associated with constraint constr from the column.
Arguments:

constr: The constraint whose term should be removed.
Return value:

Returns true if the constraint appeared in the column (and was removed).

GRBColumn.Size
(Property) The number of terms in the column.

416

5.13 Overloaded Operators
The Gurobi .NET interface overloads several arithmetic and comparison operators. Overloaded
arithmetic operators (+, -, *, /) are used to create linear and quadratic expressions. Overloaded
comparison operators (<=, >=, and ==) are used to build linear and quadratic constraints.

Note that the results of overloaded comparison operators are generally never stored in user
variables. They are immediately passed to GRBModel.AddConstr or GRBModel.AddQConstr.

operator <=
Create an inequality constraint.

GRBTempConstr operator <= (GRBQuadExpr lhsExpr,
GRBQuadExpr rhsExpr)

Arguments:
lhsExpr: Left-hand side of inequality constraint.
rhsExpr: Right-hand side of inequality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to method
GRBModel.AddConstr.

operator >=
Create an inequality constraint.

GRBTempConstr operator >= (GRBQuadExpr lhsExpr,
GRBQuadExpr rhsExpr)

Arguments:
lhsExpr: Left-hand side of inequality constraint.
rhsExpr: Right-hand side of inequality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to method
GRBModel.AddConstr.

operator ==
Create an equality constraint.

GRBTempConstr operator == (GRBLinExpr lhsExpr,
GRBLinExpr rhsExpr)

Arguments:
lhsExpr: Left-hand side of equality constraint.
rhsExpr: Right-hand side of equality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to method
GRBModel.AddConstr.

417

operator +
Create a new expression by adding a pair of Gurobi objects.

GRBLinExpr operator + (GRBLinExpr expr1,
GRBLinExpr expr2)

Arguments:
expr1: First linear expression argument.
expr2: Second linear expression argument.

Return value:
A linear expression that is equal to the sum of the two argument expressions.

GRBLinExpr operator + (GRBLinExpr expr,
GRBVar var)

Arguments:
expr: Linear expression argument.
var: Variable argument.

Return value:
A linear expression that is equal to the sum of the argument linear expression and the
argument variable.

GRBLinExpr operator + (GRBVar var,
GRBLinExpr expr)

Arguments:
var: Variable argument.
expr: Linear expression argument.

Return value:
A linear expression that is equal to the sum of the argument linear expression and the
argument variable.

GRBLinExpr operator + (GRBVar var1,
GRBVar var2)

Arguments:
var1: First variable argument.
var2: Second variable argument.

Return value:
A linear expression that is equal to the sum of the two argument variables.

GRBLinExpr operator + (double a,
GRBVar var)

Arguments:
a: Constant.
var: Variable.

418

Return value:
A linear expression that is equal to the sum of the constant and the variable argument.

GRBLinExpr operator + (GRBVar var,
double a)

Arguments:
var: Variable.
a: Constant.

Return value:
A linear expression that is equal to the sum of the constant and the variable argument.

GRBQuadExpr operator + (GRBQuadExpr expr1,
GRBQuadExpr expr2)

Arguments:
expr1: First quadratic expression argument.
expr2: Second quadratic expression argument.

Return value:
A quadratic expression that is equal to the sum of the two argument quadratic expressions.

GRBQuadExpr operator + (GRBQuadExpr expr,
GRBVar var)

Arguments:
expr: Quadratic expression argument.
var: Variable argument.

Return value:
A quadratic expression that is equal to the sum of the argument quadratic expression and
the argument variable.

GRBQuadExpr operator + (GRBVar var,
GRBQuadExpr expr)

Arguments:
var: Variable argument.
expr: Quadratic expression argument.

Return value:
A quadratic expression that is equal to the sum of the argument quadratic expression and
the argument variable.

operator -
Create a new expression by subtracting one Gurobi object from another.

GRBLinExpr operator - (GRBLinExpr expr1,
GRBLinExpr expr2)

419

Arguments:
expr1: First linear expression argument.
expr2: Second linear expression argument.

Return value:
A linear expression that is equal to the first expression minus the second.

GRBQuadExpr operator - (GRBQuadExpr expr1,
GRBQuadExpr expr2)

Arguments:
expr1: First quadratic expression argument.
expr2: Second quadratic expression argument.

Return value:
A quadratic expression that is equal to the first expression minus the second.

operator *
Create a new expression by multiplying a pair of Gurobi objects.

GRBLinExpr operator * (double multiplier,
GRBLinExpr expr)

Arguments:
multiplier: Multiplier for expression argument.
expr: Expression argument.

Return value:
A linear expression that is equal to the input expression times the input multiplier.

GRBLinExpr operator * (GRBLinExpr expr,
double multiplier)

Arguments:
expr: Linear expression argument.
multiplier: Multiplier for expression argument.

Return value:
A linear expression that is equal to the input expression times the input multiplier.

GRBLinExpr operator * (double multiplier,
GRBVar var)

Arguments:
multiplier: Multiplier for variable argument.
var: Variable argument.

Return value:
A linear expression that is equal to the input variable times the input multiplier.

GRBLinExpr operator * (GRBVar var,
double multiplier)

420

Arguments:
var: Variable argument.
multiplier: Multiplier for variable argument.

Return value:
A linear expression that is equal to the input variable times the input multiplier.

GRBQuadExpr operator * (double multiplier,
GRBQuadExpr expr)

Arguments:
multiplier: Multiplier for expression argument.
expr: Quadratic expression argument.

Return value:
A quadratic expression that is equal to the input expression times the input multiplier.

GRBQuadExpr operator * (GRBQuadExpr expr,
double multiplier)

Arguments:
expr: Quadratic expression argument.
multiplier: Multiplier for expression argument.

Return value:
A quadratic expression that is equal to the input expression times the input multiplier.

GRBQuadExpr operator * (GRBVar var1,
GRBVar var2)

Arguments:
var1: First variable argument.
var2: Second variable argument.

Return value:
A quadratic expression that is equal to the product of the two input variables.

GRBQuadExpr operator * (GRBVar var,
GRBLinExpr expr)

Arguments:
var: Input variable.
expr: Input linear expression.

Return value:
A quadratic expression that is equal to the input linear expression times the input variable.

GRBQuadExpr operator * (GRBLinExpr expr,
GRBVar var)

Arguments:
expr: Input linear expression.
var: Input variable.

421

Return value:
A quadratic expression that is equal to the input linear expression times the input variable.

GRBQuadExpr operator * (GRBLinExpr expr1,
GRBLinExpr expr2)

Arguments:
expr1: First linear expression argument.
expr2: Second linear expression argument.

Return value:
A quadratic expression that is equal to the product of the two input linear expressions.

operator /

Create a new expression by dividing a Gurobi variable by a constant.

GRBLinExpr operator / (GRBVar var,
double divisor)

Arguments:
var: Variable argument.
divisor: Divisor for variable argument.

Return value:
A linear expression that is equal to the input variable divided by the input divisor.

implicit cast

Create an expression from an implicit cast (e.g., expr = 0.0 or expr = x).
GRBLinExpr GRBLinExpr (double value)

Arguments:
value: Desired value for linear expression.

Return value:
A linear expression that is equal to specified constant.

GRBQuadExpr GRBQuadExpr (double value)

Arguments:
value: Desired value for quadratic expression.

Return value:
A quadratic expression that is equal to specified constant.

GRBLinExpr GRBLinExpr (GRBVar var)

Arguments:
value: Desired value for linear expression.

Return value:
A linear expression that is equal to specified variable.

422

GRBQuadExpr GRBQuadExpr (GRBVar var)

Arguments:
value: Desired value for quadratic expression.

Return value:
A quadratic expression that is equal to specified variable.

GRBQuadExpr GRBQuadExpr (GRBLinExpr expr)

Arguments:
expr: Desired value for quadratic expression.

Return value:
A quadratic expression that is equal to specified linear expression.

423

5.14 GRBCallback
Gurobi callback class. This is an abstract class. To implement a callback, you should create a
subclass of this class and implement a callback() method. If you pass an object of this subclass
to method GRBModel.SetCallback before calling GRBModel.Optimize, the callback() method of
the class will be called periodically. Depending on where the callback is called from, you will be
able to obtain various information about the progress of the optimization.

Note that this class contains one protected int member variable: where. You can query this
variable from your callback() method to determine where the callback was called from.

Gurobi callbacks can be used both to monitor the progress of the optimization and to modify
the behavior of the Gurobi optimizer. A simple user callback function might call the GRBCall-
back.GetIntInfo or GRBCallback.GetDoubleInfo methods to produce a custom display, or perhaps
to terminate optimization early (using GRBCallback.Abort). More sophisticated MIP callbacks
might use GRBCallback.GetNodeRel or GRBCallback.GetSolution to retrieve values from the so-
lution to the current node, and then use GRBCallback.AddCut or GRBCallback.AddLazy to add a
constraint to cut off that solution, or GRBCallback.SetSolution to import a heuristic solution built
from that solution.

When solving a model using multiple threads, note that the user callback is only ever called
from a single thread, so you don’t need to worry about the thread-safety of your callback.

You can look at the callback_cs.cs example for details of how to use Gurobi callbacks.

GRBCallback()
Callback constructor.
GRBCallback GRBCallback ()
Return value:

A callback object.

GRBCallback.Abort()
Abort optimization. When the optimization stops, the Status attribute will be equal to
GRB.Status.INTERRUPTED.
void Abort ()

GRBCallback.AddCut()
Add a cutting plane to the MIP model from within a callback function. Note that this method
can only be invoked when the where member variable is equal to GRB.Callback.MIPNODE (see the
Callback Codes section for more information).

Cutting planes can be added at any node of the branch-and-cut tree. However, they should be
added sparingly, since they increase the size of the relaxation model that is solved at each node
and can significantly degrade node processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the
relaxation solution at the current node, you should first call GetNodeRel.

When adding your own cuts, you must set parameter PreCrush to value 1. This setting shuts
off a few presolve reductions that sometimes prevent cuts on the original model from being applied
to the presolved model.

424

Note that cutting planes added through this method must truly be cutting planes — they can
cut off continuous solutions, but they may not cut off integer solutions that respect the original
constraints of the model. Ignoring this restriction will lead to incorrect solutions.

void AddCut (GRBLinExpr lhsExpr,
char sense,
double rhsVal)

Arguments:
lhsExpr: Left-hand side expression for new cutting plane.
sense: Sense for new cutting plane (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsVal: Right-hand side value for new cutting plane.

void AddConstr (GRBTempConstr tempConstr)

Arguments:
tempConstr: Temporary constraint object, created by an overloaded comparison operator.

GRBCallback.AddLazy()
Add a lazy constraint to the MIP model from within a callback function. Note that this method can
only be invoked when the where member variable is GRB.Callback.MIPNODE or GRB.Callback.-
MIPSOL (see the Callback Codes section for more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large
to represent explicitly. By only including the constraints that are actually violated by solutions
found during the branch-and-cut search, it is sometimes possible to find a proven optimal solution
while only adding a fraction of the full set of constraints.

You would typically add a lazy constraint by first querying the current node solution (by calling
GetSolution from a GRB.Callback.MIPSOL callback, or GetNodeRel from a GRB.Callback.MIPNODE
callback), and then calling AddLazy() to add a constraint that cuts off the solution. Gurobi
guarantees that you will have the opportunity to cut off any solutions that would otherwise be
considered feasible.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints,
including those that have already been added. Node solutions will usually respect previously added
lazy constraints, but not always.

Note that you must set the LazyConstraints parameter if you want to use lazy constraints.

void AddLazy (GRBLinExpr lhsExpr,
char sense,
double rhsVal)

Arguments:
lhsExpr: Left-hand side expression for new lazy constraint.
sense: Sense for new lazy constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhsVal: Right-hand side value for new lazy constraint.
void AddConstr (GRBTempConstr tempConstr)

425

Arguments:
tempConstr: Temporary constraint object, created by an overloaded comparison operator.

GRBCallback.GetDoubleInfo()

Request double-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the double-valued information
that can be queried for different values of where, please refer to the Callback section.
double GetDoubleInfo (int what)

Arguments:
what: Information requested (refer the list of Gurobi Callback Codes for possible values).

Return value:
Value of requested callback information.

GRBCallback.GetIntInfo()

Request int-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the int-valued information that
can be queried for different values of where, please refer to the Callback section.
int GetIntInfo (int what)

Arguments:
what: Information requested (refer the list of Gurobi Callback Codes for possible values).

Return value:
Value of requested callback information.

GRBCallback.GetNodeRel()

Retrieve values from the node relaxation solution at the current node. Only available when the
where member variable is equal to GRB.Callback.MIPNODE, and GRB.Callback.MIPNODE_STATUS
is equal to GRB.Status.OPTIMAL.
double GetNodeRel (GRBVar v)

Arguments:
v: The variable whose value is desired.

Return value:
The value of the specified variable in the node relaxation for the current node.

double[] GetNodeRel (GRBVar[] xvars)

Arguments:
xvars: The list of variables whose values are desired.

Return value:
The values of the specified variables in the node relaxation for the current node.

double[][] GetNodeRel (GRBVar[][] xvars)

426

Arguments:
xvars: The array of variables whose values are desired.

Return value:
The values of the specified variables in the node relaxation for the current node.

GRBCallback.GetSolution()

Retrieve values from the current solution vector. Only available when the where member variable
is equal to GRB.Callback.MIPSOL.
double GetSolution (GRBVar v)

Arguments:
v: The variable whose value is desired.

Return value:
The value of the specified variable in the current solution vector.

double[] GetSolution (GRBVar[] xvars)

Arguments:
xvars: The list of variables whose values are desired.

Return value:
The values of the specified variables in the current solution.

double[][] GetSolution (GRBVar[][] xvars)

Arguments:
xvars: The array of variables whose values are desired.

Return value:
The values of the specified variables in the current solution.

GRBCallback.GetStringInfo()

Request string-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the string-valued information
that can be queried for different values of where, please refer to the Callback section.
string GetStringInfo (int what)

Arguments:
what: Information requested (refer the list of Gurobi Callback Codes for possible values).

Return value:
Value of requested callback information.

GRBCallback.SetSolution()

Import solution values for a heuristic solution. Only available when the where member variable is
equal to GRB.Callback.MIPNODE.

When you specify a heuristic solution from a callback, variables initially take undefined values.
You should use this method to specify variable values. You can make multiple calls to SetSolution

427

from one callback invocation to specify values for multiple sets of variables. After the callback, if
values have been specified for any variables, the Gurobi optimizer will try to compute a feasible
solution from the specified values, possibly filling in values for variables whose values were left unde-
fined. You can also optionally call UseSolution within your callback function to try to immediately
compute a feasible solution from the specified values.

void SetSolution (GRBVar v,
double val)

Arguments:
v: The variable whose values is being set.
val: The value of the variable in the new solution.

void SetSolution (GRBVar[] xvars,
double[] sol)

Arguments:
xvars: The variables whose values are being set.
sol: The desired values of the specified variables in the new solution.

GRBCallback.UseSolution()
Once you have imported solution values using SetSolution, you can optionally call UseSolution to
immediately use these values to try to compute a heuristic solution.
double UseSolution ()
Return value:

The objective value for the solution obtained from your solution values (or GRB.INFINITY
if no improved solution is found).

428

5.15 GRBException
Gurobi exception object. This is a sub-class of the .NET Exception class. A number of useful
properties, including Message() and StackTrace(), are inherited from the parent class. For a list
of parent class methods, visit this site.

GRBException()
Exception constructor.
GRBException GRBException (int errcode)

Create a Gurobi exception.
Arguments:

errcode: Error code for exception.
Return value:

An exception object.
GRBException GRBException (string errmsg)

Create a Gurobi exception.
Arguments:

errmsg: Error message for exception.
Return value:

An exception object.

GRBException GRBException (string errmsg,
int errcode)

Create a Gurobi exception.
Arguments:

errmsg: Error message for exception.
errcode: Error code for exception.

Return value:
An exception object.

GRBException.ErrorCode
(Property) The error code associated with a Gurobi exception.

429

http://msdn.microsoft.com/en-us/library/system.exception(VS.71).aspx

5.16 GRB
Class for .NET enums and constants. The enums are used to get or set Gurobi attributes or
parameters.

Constants

The following list contains the set of constants needed by the Gurobi .NET interface. You would
refer to them using a GRB. prefix (e.g., GRB.Status.OPTIMAL).

// Model status codes (after call to optimize())

public class Status
{
public const int LOADED = 1;
public const int OPTIMAL = 2;
public const int INFEASIBLE = 3;
public const int INF_OR_UNBD = 4;
public const int UNBOUNDED = 5;
public const int CUTOFF = 6;
public const int ITERATION_LIMIT = 7;
public const int NODE_LIMIT = 8;
public const int TIME_LIMIT = 9;
public const int SOLUTION_LIMIT = 10;
public const int INTERRUPTED = 11;
public const int NUMERIC = 12;
public const int SUBOPTIMAL = 13;
public const int INPROGRESS = 14;
public const int USER_OBJ_LIMIT = 15;

}

// Basis status info

public const int BASIC = 0;
public const int NONBASIC_LOWER = -1;
public const int NONBASIC_UPPER = -2;
public const int SUPERBASIC = -3;

// Constraint senses

public const char LESS_EQUAL = ’<’;
public const char GREATER_EQUAL = ’>’;
public const char EQUAL = ’=’;

// Variable types

430

public const char CONTINUOUS = ’C’;
public const char BINARY = ’B’;
public const char INTEGER = ’I’;
public const char SEMICONT = ’S’;
public const char SEMIINT = ’N’;

// Objective sense

public const int MINIMIZE = 1;
public const int MAXIMIZE = -1;

// SOS types

public const int SOS_TYPE1 = 1;
public const int SOS_TYPE2 = 2;

// General constraint types

public const int GENCONSTR_MAX = 0;
public const int GENCONSTR_MIN = 1;
public const int GENCONSTR_ABS = 2;
public const int GENCONSTR_AND = 3;
public const int GENCONSTR_OR = 4;
public const int GENCONSTR_INDICATOR = 5;

// Numeric constants

public const double INFINITY = 1e100;
public const double UNDEFINED = 1e101;

// Limits

public const int MAX_STRLEN = 512;

// Callback constants

public class Callback
{
public const int POLLING = 0;
public const int PRESOLVE = 1;
public const int SIMPLEX = 2;
public const int MIP = 3;
public const int MIPSOL = 4;
public const int MIPNODE = 5;

431

public const int MESSAGE = 6;
public const int BARRIER = 7;

public const int PRE_COLDEL = 1000;
public const int PRE_ROWDEL = 1001;
public const int PRE_SENCHG = 1002;
public const int PRE_BNDCHG = 1003;
public const int PRE_COECHG = 1004;
public const int SPX_ITRCNT = 2000;
public const int SPX_OBJVAL = 2001;
public const int SPX_PRIMINF = 2002;
public const int SPX_DUALINF = 2003;
public const int SPX_ISPERT = 2004;
public const int MIP_OBJBST = 3000;
public const int MIP_OBJBND = 3001;
public const int MIP_NODCNT = 3002;
public const int MIP_SOLCNT = 3003;
public const int MIP_CUTCNT = 3004;
public const int MIP_NODLFT = 3005;
public const int MIP_ITRCNT = 3006;
public const int MIPSOL_SOL = 4001;
public const int MIPSOL_OBJ = 4002;
public const int MIPSOL_OBJBST = 4003;
public const int MIPSOL_OBJBND = 4004;
public const int MIPSOL_NODCNT = 4005;
public const int MIPSOL_SOLCNT = 4006;
public const int MIPNODE_STATUS = 5001;
public const int MIPNODE_REL = 5002;
public const int MIPNODE_OBJBST = 5003;
public const int MIPNODE_OBJBND = 5004;
public const int MIPNODE_NODCNT = 5005;
public const int MIPNODE_SOLCNT = 5006;
public const int BARRIER_ITRCNT = 7001;
public const int BARRIER_PRIMOBJ = 7002;
public const int BARRIER_DUALOBJ = 7003;
public const int BARRIER_PRIMINF = 7004;
public const int BARRIER_DUALINF = 7005;
public const int BARRIER_COMPL = 7006;
public const int MSG_STRING = 6001;
public const int RUNTIME = 6002;

}

// Errors

public class Error

432

{
public const int OUT_OF_MEMORY = 10001;
public const int NULL_ARGUMENT = 10002;
public const int INVALID_ARGUMENT = 10003;
public const int UNKNOWN_ATTRIBUTE = 10004;
public const int DATA_NOT_AVAILABLE = 10005;
public const int INDEX_OUT_OF_RANGE = 10006;
public const int UNKNOWN_PARAMETER = 10007;
public const int VALUE_OUT_OF_RANGE = 10008;
public const int NO_LICENSE = 10009;
public const int SIZE_LIMIT_EXCEEDED = 10010;
public const int CALLBACK = 10011;
public const int FILE_READ = 10012;
public const int FILE_WRITE = 10013;
public const int NUMERIC = 10014;
public const int IIS_NOT_INFEASIBLE = 10015;
public const int NOT_FOR_MIP = 10016;
public const int OPTIMIZATION_IN_PROGRESS = 10017;
public const int DUPLICATES = 10018;
public const int NODEFILE = 10019;
public const int Q_NOT_PSD = 10020;
public const int QCP_EQUALITY_CONSTRAINT = 10021;
public const int NETWORK = 10022;
public const int JOB_REJECTED = 10023;
public const int NOT_SUPPORTED = 10024;
public const int EXCEED_2B_NONZEROS = 10025;
public const int INVALID_PIECEWISE_OBJ = 10026;
public const int UPDATEMODE_CHANGE = 10027;
public const int CLOUD = 10028;
public const int MODEL_MODIFICATION = 10029;
public const int NOT_IN_MODEL = 20001;
public const int FAILED_TO_CREATE_MODEL = 20002;
public const int INTERNAL = 20003;

}

public const int METHOD_AUTO = -1;
public const int METHOD_PRIMAL = 0;
public const int METHOD_DUAL = 1;
public const int METHOD_BARRIER = 2;
public const int METHOD_CONCURRENT = 3;
public const int METHOD_DETERMINISTIC_CONCURRENT = 4;

public const int FEASRELAX_LINEAR = 0;
public const int FEASRELAX_QUADRATIC = 1;
public const int FEASRELAX_CARDINALITY = 2;

433

GRB.CharAttr
This enum is used to get or set char-valued attributes (through GRBModel.Get or GRBModel.Set).
Please refer to the Attributes section to see a list of all char attributes and their functions.

GRB.DoubleAttr
This enum is used to get or set double-valud attributes (through GRBModel.Get or GRBModel.Set).
Please refer to the Attributes section to see a list of all double attributes and their functions.

GRB.DoubleParam
This enum is used to get or set double-valued parameters (through GRBModel.Get, GRBModel.Set,
GRBEnv.Get, or GRBEnv.Set). Please refer to the Parameters section to see a list of all double
parameters and their functions.

GRB.IntAttr
This enum is used to get or set int-valued attributes (through GRBModel.Get or GRBModel.Set).
Please refer to the Attributes section to see a list of all int attributes and their functions.

GRB.IntParam
This enum is used to get or set int-valued parameters (through GRBModel.Get, GRBModel.Set,
GRBEnv.Get, or GRBEnv.Set). Please refer to the Parameters section to see a list of all int
parameters and their functions.

GRB.StringAttr
This enum is used to get or set string-valued attributes (through GRBModel.Get or GRBModel.Set).
Please refer to the Attributes section to see a list of all string attributes and their functions.

GRB.StringParam
This enum is used to get or set string-valued parameters (through GRBModel.Get, GRBModel.Set,
GRBEnv.Get, or GRBEnv.Set). Please refer to the Parameters section to see a list of all string
parameters and their functions.

434

Python API Overview

This section documents the Gurobi Python interface. It begins with an overview of the global
functions, which can be called without referencing any Python objects. It then discusses the
different types of objects that are available in the interface, and the most important methods on
those objects. Finally, it gives a comprehensive presentation of all of the available classes and
methods.

Important note for AIX users: due to limited Python support on AIX, our AIX port does
not include the Python interface.
Global Functions

The Gurobi shell contains a set of Global Functions that can be called without referring to any
Gurobi objects. The most important of these functions is probably the read function, which allows
you to read a model from a file. Other useful global functions are system, which allows you to issue
shell commands from within the Gurobi shell, models, which gives you a list of the currently loaded
models, and disposeDefaultEnv, which disposes of the default environment. Other global functions
allow you to read, modify, or write Gurobi parameters (readParams, setParam, and writeParams).
Models

Most actions in the Gurobi Python interface are performed by calling methods on Gurobi objects.
The most commonly used object is the Model. A model consists of a set of decision variables
(objects of class Var), a linear or quadratic objective function on these variables (specified using
Model.setObjective), and a set of constraints on these variables (objects of class Constr, QCon-
str, SOS, or GenConstr). Each variable has an associated lower bound, upper bound, and type
(continuous, binary, etc.). Each linear or quadratic constraint has an associated sense (less-than-
or-equal, greater-than-or-equal, or equal), and right-hand side value. Refer to this section for more
information on variables and constraints.

An optimization model may be specified all at once, by loading the model from a file (using the
previously mentioned read function), or it may be built incrementally, by first constructing an empty
object of class Model and then subsequently calling Model.addVar or Model.addVars to add addi-
tional variables, and Model.addConstr, Model.addConstrs, Model.addQConstr, Model.addSOS, or
any of the Model.addGenConstrXxx methods to add additional constraints.

Linear constraints are specified by building linear expressions (objects of class LinExpr), and
then specifying relationships between these expressions (for example, requiring that one expression
be equal to another). Quadratic constraints are built in a similar fashion, but using quadratic ex-
pressions (objects of class QuadExpr) instead. General constraints are built using a set of dedicated
methods, or a set of general constraint helper functions plus overloaded operators.

Models are dynamic entities; you can always add or remove variables or constraints.
We often refer to the class of an optimization model. A model with a linear objective function,

linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic,
the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is a
Quadratically-Constrained Program (QCP). We’ll sometimes also discuss a special case of QCP, the

435

Second-Order Cone Program (SOCP). If the model contains any integer variables, semi-continuous
variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the
model is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, in-
cluding Mixed Integer Linear Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed
Integer Quadratically-Constrained Programs (MIQCP), and Mixed Integer Second-Order Cone Pro-
grams (MISOCP). The Gurobi Optimizer handles all of these model classes.

Environments

Environments play a much smaller role in the Gurobi Python interface than they do in our other
language APIs, mainly because the Python interface has a default environment. Unless you explic-
itly pass your own environment to routines that require an environment, the default environment
will be used.

The main situation where you may want to create your own environment is when you want
precise control over when the resources associated with an environment (specifically, a licensing
token or a Compute Server) are released. If you use your own environment to create models
(using read or the Model constructor), then the resources associated with the environment will be
released as soon your program no longer references your environment or any models created with
that environment.

Note that you can manually remove the reference to the default environment, thus making
it available for garbage collection, by calling disposeDefaultEnv. After calling this, and after all
models built within the default environment are garbage collected, the default environment will be
garbage collected as well. A new default environment will be created automatically if you call a
routine that needs one.

Solving a Model

Once you have built a model, you can call Model.optimize to compute a solution. By default,
optimize will use the concurrent optimizer to solve LP models, the barrier algorithm to solve QP
and QCP models, and the branch-and-cut algorithm to solve mixed integer models. The solution
is stored in a set of attributes of the model, which can be subsequently queried (we will return to
this topic shortly).

The Gurobi algorithms keep careful track of the state of the model, so calls to Model.optimize
will only perform further optimization if relevant data has changed since the model was last op-
timized. If you would like to discard previously computed solution information and restart the
optimization from scratch without changing the model, you can call Model.reset.

After a MIP model has been solved, you can call Model.fixed to compute the associated fixed
model. This model is identical to the input model, except that all integer variables are fixed to
their values in the MIP solution. In some applications, it is useful to compute information on this
continuous version of the MIP model (e.g., dual variables, sensitivity information, etc.).

Multiple Solutions and Multiple Objectives

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to
a model with a single objective function. Gurobi provides features that allow you to relax either
of these assumptions. You should refer to the section on Solution Pools for information on how to
request more than one solution, or the section on Multiple Objectives for information on how to
specify multiple objective functions and control the tradeoff between them.

436

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause
of the infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be
useful for diagnosing the cause of an infeasibility, call Model.computeIIS to compute an Irreducible
Inconsistent Subsystem (IIS). This method can be used for both continuous and MIP models, but
you should be aware that the MIP version can be quite expensive. This method populates a set of
IIS attributes.

To attempt to repair an infeasibility, call Model.feasRelaxS or Model.feasRelax to compute a
feasibility relaxation for the model. This relaxation allows you to find a solution that minimizes
the magnitude of the constraint violation.
Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some
attributes are associated with the variables of the model, some with the constraints of the model,
and some with the model itself. To give a simple example, solving an optimization model causes
the x variable attribute to be populated. Attributes such as x that are computed by the Gurobi
optimizer cannot be modified directly by the user, while others, such as the variable lower bound
(the lb attribute) can.

Attributes can be accessed in two ways in the Python interface. The first is to use the getAttr()
and setAttr() methods, which are available on variables (Var.getAttr/ Var.setAttr), linear con-
straints (Constr.getAttr/ Constr.setAttr), quadratic constraints (QConstr.getAttr/ QConstr.setAttr),
SOSs (SOS.getAttr), general constraints (GenConstr.getAttr/ GenConstr.setAttr), and models
(Model.getAttr/ Model.setAttr). These are called with the attribute name as the first argument
(e.g., var.getAttr("x") or constr.setAttr("rhs", 0.0)). The full list of available attributes
can be found in the Attributes section of this manual.

Attributes can also be accessed more directly: you can follow an object name by a period,
followed by the name of an attribute of that object. Note that upper/lower case is ignored when
referring to attributes. Thus, b = constr.rhs is equivalent to b = constr.getAttr("rhs"), and
constr.rhs = 0.0 is equivalent to constr.setAttr("rhs", 0.0).
Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to
variable bounds, constraint right-hand sides, etc.). The main exceptions are modifications to the
constraint matrix and to the objective function.

The constraint matrix can be modified in a few ways. The first is to call the Model.chgCoeff
method. This method can be used to modify the value of an existing non-zero, to set an existing
non-zero to zero, or to create a new non-zero. The constraint matrix is also modified when you
remove a variable or constraint from the model (through the Model.remove method). The non-zero
values associated with the deleted constraint or variable are removed along with the constraint or
variable itself.

The model objective function can also be modified in a few ways. The easiest is to build an
expression that captures the objective function (a LinExpr or QuadExpr object), and then pass
that expression to method Model.setObjective. If you wish to modify the objective, you can simply
call setObjective again with a new LinExpr or QuadExpr object.

For linear objective functions, an alternative to setObjective is to use the Obj variable attribute
to modify individual linear objective coefficients.

437

If your variables have piecewise-linear objectives, you can specify them using the Model.setPWLObj
method. Call this method once for each relevant variable. The Gurobi simplex solver includes al-
gorithmic support for convex piecewise-linear objective functions, so for continuous models you
should see a substantial performance benefit from using this feature. To clear a previously specified
piecewise-linear objective function, simply set the Obj attribute on the corresponding variable to
0.
Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed
in a lazy fashion, meaning that modifications don’t affect the model immediately. Rather, they
are queued and applied later. If your program simply creates a model and solves it, you will
probably never notice this behavior. However, if you ask for information about the model before
your modifications have been applied, the details of the lazy update approach may be relevant to
you.

As we just noted, model modifications (bound changes, right-hand side changes, objective
changes, etc.) are placed in a queue. These queued modifications can be applied to the model
in three different ways. The first is by an explicit call to Model.update. The second is by a call
to Model.optimize. The third is by a call to Model.write to write out the model. The first case
gives you fine-grained control over when modifications are applied. The second and third make the
assumption that you want all pending modifications to be applied before you optimize your model
or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is
that this approach makes it much easier to perform multiple modifications to a model, since the
model remains unchanged between modifications. The second is that processing model modifica-
tions can be expensive, particularly in a Compute Server environment, where modifications require
communication between machines. Thus, it is useful to have visibility into exactly when these
modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then
update, then make more modifications, then update again, etc. Updating after each individual
modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value
of the requested data from the point of the last update. If the object you tried to query didn’t
exist then, you’ll get a NOT_IN_MODEL exception instead.

The semantics of lazy updates have changed in this release. While the vast majority of programs
will continue to work unmodified, you can use the UpdateMode parameter to revert to the previous
behavior if you run into an issue.
Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of
the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms,
strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters
before beginning the optimization. Parameters are set using method Model.setParam. Current
values may also be retrieved with Model.getParamInfo. You can also access parameters more
directly through the Model.Params class. To set the MIPGap parameter to 0.0 for model m, for
example, you can do either m.setParam(’MIPGap’, 0) or m.Params.MIPGap = 0.

You can read a set of parameter settings from a file using Model.read, or write the set of changed

438

parameters using Model.write.
We also include an automated parameter tuning tool that explores many different sets of param-

eter changes in order to find a set that improves performance. You can call Model.tune to invoke
the tuning tool on a model. Refer to the parameter tuning tool section for more information.

One thing we should note is that changing a parameter for one model has no effect on the
parameter value for other models. Use the global setParam method to set a parameter for all
loaded models.

The full list of Gurobi parameters can be found in the Parameters section.
Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will
send output to the screen. A few simple controls are available for modifying the default logging
behavior. You can set the LogFile parameter if you wish to also direct the Gurobi log to a file. The
frequency of logging output can be controlled with the DisplayInterval parameter, and logging can
be turned off entirely with the OutputFlag parameter.

More detailed progress monitoring can be done through a callback function. If you pass a
function taking two arguments, model and where, to Model.optimize, your function will be called
periodically from within the optimization. Your callback can then call Model.cbGet to retrieve
additional information on the state of the optimization. You can refer to the Callback class for
additional information.
Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. The simplest control
callback is Model.terminate, which asks the optimizer to terminate at the earliest convenient point.
Method Model.cbSetSolution allows you to inject a feasible solution (or partial solution) during
the solution of a MIP model. Methods Model.cbCut and Model.cbLazy allow you to add cutting
planes and lazy constraints during a MIP optimization, respectively.
Error Handling

All of the methods in the Gurobi Python library can throw an exception of type GurobiError.
When an exception occurs, additional information on the error can be obtained by retrieving the
errno or message members of the GurobiError object. A list of possible values for the errno field
can be found in the Error Code section.

439

6.1 Global Functions
Gurobi global functions. These functions can be accessed from the main Gurobi shell prompt. In
contrast to all other methods in the Gurobi Python interface, these functions do not require a
Gurobi object to invoke them.

models()

models ()

Print a list of loaded models.
Note that this function will only list models stored in global variables. Models stored in Python

data structures (lists, dictionaries, etc.), or inside user classes aren’t listed.
Example usage:

a = Model("a")
b = Model("b")
models()

disposeDefaultEnv()

disposeDefaultEnv ()

Dispose of the default environment.
Calling this function releases the default environment created by the Gurobi Python module.

This function is particuarly useful in a long-running Python session (e.g., within a Jupyter note-
book), where the Gurobi environment would otherwise continue to exist for the full duration of the
session.

Note that models built with the default environment must be garbaged collected before the
default environment can be freed. You can force a model m be garbaged collected with the statement
del m. If no references to the default environment remain, disposeDefaultEnv prints the message

Freed default Gurobi environment

to confirm it was able to dispose of the default environment.
Example usage:

disposeDefaultEnv()

multidict()

multidict (data)

This function splits a single dictionary into multiple dictionaries. The input dictionary should
map each key to a list of n values. The function returns a list of the shared keys as its first result,
followed by the n individual Gurobi tuple dictionaries (stored as tupledict objects).

Arguments:
data: A Python dictionary. Each key should map to a list of values.

440

Return value:
A list, where the first member contains the shared key values, and the following members
contain the dictionaries that result from splitting the value lists from the input dictionary.

Example usage:

keys, dict1, dict2 = multidict({
’key1’: [1, 2],
’key2’: [1, 3],
’key3’: [1, 4] })

paramHelp()

paramHelp (paramname)

Obtain help about a Gurobi parameter.
Arguments:

paramname: String containing the name of parameter that you would like help with. The
name can include ’*’ and ’?’ wildcards. If more than one parameter matches, the matching
names are listed. Note that case is ignored.

Example usage:

paramHelp("Cuts")
paramHelp("Heu*")
paramHelp("*cuts")

quicksum()

quicksum (data)

A version of the Python sum function that is much more efficient for building large Gurobi
expressions (LinExpr or QuadExpr objects). The function takes a list of terms as its argument.

Note that while quicksum is much faster than sum, it isn’t the fastest approach for building
a large expression. Use addTerms or the LinExpr() constructor if you want the quickest possible
expression construction.

Arguments:
data: List of terms to add. The terms can be constants, Var objects, LinExpr objects, or
QuadExpr objects.

Return value:
An expression that represents the sum of the terms in the input list.

Example usage:

expr = quicksum([2*x, 3*y+1, 4*z*z])
expr = quicksum(model.getVars())

read()

read (filename, env=defaultEnv)

441

Read a model from a file.
Arguments:

filename: Name of file containing model. Note that the type of the file is encoded in the
file name suffix. Valid suffixes are .mps, .rew, .lp, .rlp, .ilp, or .opb. The files can be
compressed, so additional suffixes of .gz, .bz2, .zip, or .7z are accepted. The file name
may contain * or ? wildcards. No file is read when no wildcard match is found. If more
than one match is found, this routine will attempt to read the first matching file.

env: Environment in which to create the model. Creating your environment (using the Env
constructor) gives you more control over Gurobi licensing, but it can make your program
more complex. Use the default environment unless you know that you need to control
your own environments.

Return value:
Model object containing the model that was read from the input file.

Example usage:

m = read("afiro.mps")
m.optimize()

readParams()

readParams (filename)

Read a set of parameter settings from a file. The file name must end in .prm, and the file must
be in PRM format.

Arguments:
filename: Name of file containing parameter settings.

Example usage:

readParams("params.prm")

resetParams()

resetParams ()

Reset the values of all parameters to their default values. Note that existing models that are
stored inside Python data structures (lists, dictionaries, etc.), or inside user classes aren’t affected.

Example usage:

resetParams()

setParam()

setParam (paramname, newvalue)

Set the value of a parameter to a new value. Note that existing models that are stored inside
Python data structures (lists, dictionaries, etc.), or inside user classes aren’t affected.

Arguments:

442

paramname: String containing the name of parameter that you would like to modify. The
name can include ’*’ and ’?’ wildcards. If more than one parameter matches, the matching
names are listed and none are modified. Note that case is ignored.

newvalue: Desired new value for parameter. Can be ’default’, which indicates that the
parameter should be reset to its default value.

Example usage:

setParam("Cuts", 2)
setParam("Heu*", 0.5)
setParam("*Interval", 10)

system()

system (command)

Issue a system command.
Arguments:

command: A string containing the desired system command.
Example usage:

system("ls")
system("rm junk")

writeParams()

writeParams (filename)

Write all modified parameters to a file. The file is written in PRM format.
Example usage:

setParam("Heu*", 0.5)
writeParams("params.prm") # file will contain changed parameter
system("cat params.prm")

443

6.2 Model
Gurobi model object. Commonly used methods on the model object in the Gurobi shell include
optimize (optimizes the model), printStats (prints statistics about the model), printAttr (prints the
values of an attribute), and write (writes information about the model to a file). Commonly used
methods when building a model include addVar (adds a new variable), addVars (adds multiple new
variables), addConstr (adds a new constraint), and addConstrs (adds multiple new constraints).

Model()

Model (name="", env=defaultEnv)

Model constructor.
Arguments:

name: Name of new model. Note that name will be stored as an ASCII string. Thus, a
name like ’A→B’ will produce an error, because ’→’ can not be represented as an ASCII
character. Note also that names that contain spaces are strongly discouraged, because
they can’t be written to LP format files.

env: Environment in which to create the model. Creating your environment (using the Env
constructor) gives you more control over Gurobi licensing, but it can make your program
more complex. Use the default environment unless you know that you need to control
your own environments.

Return value:
New model object. Model initially contains no variables or constraints.

Example usage:

m = Model("NewModel")
x0 = m.addVar()

env = Env("my.log")
m2 = Model("NewModel2", env)

Model.addConstr()

addConstr (lhs, sense, rhs=None, name="")

Add a constraint to a model.
Note that this method also accepts a TempConstr as its first argument (with the constraint

name as its second argument). This allows you to use operator overloading to create a variety of
different constraint types. See TempConstr for more information.

Arguments:
lhs: Left-hand side for new linear constraint. Can be a constant, a Var, a LinExpr, or a
TempConstr.

sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhs: Right-hand side for new linear constraint. Can be a constant, a Var, or a LinExpr.

444

name: Name for new constraint. Note that name will be stored as an ASCII string. Thus, a
name like ’A→B’ will produce an error, because ’→’ can not be represented as an ASCII
character. Note also that names that contain spaces are strongly discouraged, because
they can’t be written to LP format files.

Return value:
New constraint object.

Example usage:

model.addConstr(x + 2*y, GRB.EQUAL, 3*z, "c0")
model.addConstr(x + y <= 2.0, "c1")
model.addConstr(x*x + y*y <= 4.0, "qc0")
model.addConstr(x + y + z == [1, 2], "rgc0")
model.addConstr(z == and_(x, y, w), "gc0")
model.addConstr(z == min_(x, y), "gc1")
model.addConstr((w == 1) >> (x + y <= 1), "ic0")

Model.addConstrs()

addConstrs (generator, name="")

Add multiple constraints to a model using a Python generator expression. Returns a Gurobi
tupledict that contains the newly created constraints, indexed by the values generated by the
generator expression.

The first argument to addConstrs is a Python generator expression, a special feature of the
Python language that allows you to iterate over a Python expression. In this case, the Python
expression will be a Gurobi constraint and the generator expression provides values to plug into
that constraint. A new Gurobi constraint is added to the model for each iteration of the generator
expression.

To give an example, if x is a Gurobi variable, then

m.addConstr(x <= 1, name=’c0’)

would add a single linear constraint involving this variable. In contrast, if x is a list of Gurobi
variables, then

m.addConstrs((x[i] <= 1 for i in range(4)), name=’c’)

would add four constraints to the model. The entire first argument is a generator expression, where
the indexing is controlled by the statement for i in range(4), The first constraint that results
from this expression would be named c[0], and would involve variable x[0]. The second would be
named c[1], and would involve variable x[1].

Generator expressions can be much more complex than this. They can involve multiple variables
and conditional tests. For example, you could do:

m.addConstrs((x[i,j] == 0 for i in range(4)
for j in range(4)
if i != j), name=’c’)

445

One restriction that addConstrs places on the generator expression is that each variable must
always take a scalar value (int, float, string, ...). Thus, for i in [1, 2.0, ’a’, ’bc’] is
fine, but for i in [(1, 2), [1, 2, 3]] isn’t.

This method can be used to add linear constraints, quadratic constraints, or general constraints
to the model. Refer to the TempConstr documentation for more information on all of the different
constraint types that can be added.

Note that if you supply a name argument, the generator expression must be enclosed in paren-
thesis. This requirement comes from the Python language interpreter.

Arguments:
generator: A generator expression, where each iteration produces a constraint.
name: Name pattern for new constraints. The given name will be subscripted by the index
of the generator expression, so if the index is an integer, c would become c[0], c[1],
etc. Note that the generated names will be stored as ASCII strings, so you should avoid
using names that contain non-ASCII characters. In addition, names that contain spaces
are strongly discouraged, because they can’t be written to LP format files.

Return value:
A dictionary of Constr objects, indexed by the values specified by the generator expression.

Example usage:
model.addConstrs(x.sum(i, ’*’) <= capacity[i] for i in range(5))
model.addConstrs(x[i] + x[j] <= 1 for i in range(5) for j in range(5))
model.addConstrs(x[i]*x[i] + y[i]*y[i] <= 1 for i in range(5))
model.addConstrs(x.sum(i, ’*’) == [0, 2] for i in [1, 2, 4])
model.addConstrs(z[i] == max_(x[i], y[i]) for i in range(5))
model.addConstrs((x[i] == 1) >> (y[i] + z[i] <= 5) for i in range(5))

Model.addGenConstrXxx()
Each of the functions described below adds a new general constraint to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types:
variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and
SOS constraints. These are typically treated directly by the underlying solver (although not always),
and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general
constraints. These are typically not treated directly by the solver. Rather, they are transformed
by presolve into mathematically equivalent sets of constraints (and variables), chosen from among
the fundamental types listed above. These general constraints are provided as a convenience to
users. If such constraints appear in your model, but if you prefer to reformulate them yourself
using fundamental constraint types instead, you can certainly do so. However, note that Gurobi
can sometimes exploit information contained in the other constraints in the model to build a more
efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

• MAX (Model.addGenConstrMax): set a decision variable equal to the maximum value from
among a set of decision variables

• MIN (Model.addGenConstrMin): set a decision variable equal to the minimum value from
among a set of decision variables

446

• ABS (Model.addGenConstrAbs): set a decision variable equal to the absolute value of some
other decision variable

• AND (Model.addGenConstrAnd): set a binary variable equal to one if and only if all of a set
of binary decision variables are equal to one

• OR (Model.addGenConstrOr): set a binary variable equal to one if and only if at least one
variable out of a set of binary decision variables is equal to one

• INDICATOR (Model.addGenConstrIndicator): a given binary variable may only take a cer-
tain value if a given linear constraint is satisfied

You can also add general constraints through addConstr or addConstrs, using overloaded oper-
ators and a few general constraint helper functions. The descriptions below will make note of these
equivalent, more concise alternatives.

Please refer to this section for additional details on general constraints.

Model.addGenConstrMax()

addGenConstrMax (resvar, vars, constant=None, name="")

Add a new general constraint of type GRB.GENCONSTR_MAX to a model.
A MAX constraint r = max{x1, . . . , xn, c} states that the resultant variable r should be equal

to the maximum of the operand variables x1, . . . , xn and the constant c.
You can also add a MAX constraint using the max_ function.
Arguments:

resvar (Var): The variable whose value will be equal to the max of the other variables.
vars (list of Var): The variables over which the max will be taken. Note that this list
may also contain constants (type int, long, or float).

constant (float, optional): An additional operand that allows you to include a constant
among the arguments of the max operation.

name (string, optional): Name for the new general constraint. Note that name will be
stored as an ASCII string. Thus, a name like ’A→B’ will produce an error, because ’→’
can not be represented as an ASCII character. Note also that names that contain spaces
are strongly discouraged, because they can’t be written to LP format files.

Example usage:
x5 = max(x1, x3, x4, 2.0)
model.addGenConstrMax(x5, [x1, x3, x4], 2.0, "maxconstr")

alternative form
model.addGenConstrMax(x5, [x1, x3, x4, 2.0], name="maxconstr")

overloaded forms
model.addConstr(x5 == max_([x1, x3, x4, 2.0]), name="maxconstr")
model.addConstr(x5 == max_(x1, x3, x4, 2.0), name="maxconstr")

447

Model.addGenConstrMin()

addGenConstrMin (resvar, vars, constant=None, name="")

Add a new general constraint of type GRB.GENCONSTR_MIN to a model.
A MIN constraint r = min{x1, . . . , xn, c} states that the resultant variable r should be equal to

the minimum of the operand variables x1, . . . , xn and the constant c.
You can also add a MIN constraint using the min_ function.
Arguments:

resvar (Var): The variable whose value will be equal to the min of the other variables.
vars (list of Var): The variables over which the min will be taken. Note that this list
may also contain constants (type int, long, or float).

constant (float, optional): An additional operand that allows you to include a constant
among the arguments of the min operation.

name (string, optional): Name for the new general constraint. Note that name will be
stored as an ASCII string. Thus, a name like ’A→B’ will produce an error, because ’→’
can not be represented as an ASCII character. Note also that names that contain spaces
are strongly discouraged, because they can’t be written to LP format files.

Example usage:
x5 = min(x1, x3, x4, 2.0)
model.addGenConstrMin(x5, [x1, x3, x4], 2.0, "minconstr")

alternative form
model.addGenConstrMin(x5, [x1, x3, x4, 2.0], name="minconstr")

overloaded forms
model.addConstr(x5 == min_([x1, x3, x4, 2.0]), name="minconstr")
model.addConstr(x5 == min_(x1, x3, x4, 2.0), name="minconstr")

Model.addGenConstrAbs()

addGenConstrAbs (resvar, argvar, name="")

Add a new general constraint of type GRB.GENCONSTR_ABS to a model.
An ABS constraint r = abs{x} states that the resultant variable r should be equal to the

absolute value of the argument variable x.
You can also add an ABS constraint using the abs_ function.
Arguments:

resvar (Var): The variable whose value will be to equal the absolute value of the argument
variable.

argvar (Var): The variable for which the absolute value will be taken.
name (string, optional): Name for the new general constraint. Note that name will be
stored as an ASCII string. Thus, a name like ’A→B’ will produce an error, because ’→’
can not be represented as an ASCII character. Note also that names that contain spaces
are strongly discouraged, because they can’t be written to LP format files.

Example usage:

448

x5 = abs(x1)
model.addGenConstrAbs(x5, x1, "absconstr")

overloaded form
model.addConstr(x5 == abs_(x1), name="absconstr")

Model.addGenConstrAnd()

addGenConstrAnd (resvar, vars, name="")

Add a new general constraint of type GRB.GENCONSTR_AND to a model.
An AND constraint r = and{x1, . . . , xn} states that the binary resultant variable r should be 1

if and only if all of the operand variables x1, . . . , xn are equal to 1. If any of the operand variables
is 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent
of how they were created.

You can also add an AND constraint using the and_ function.
Arguments:

resvar (Var): The variable whose value will be equal to the AND concatenation of the
other variables.

vars (list of Var): The variables over which the AND concatenation will be taken.
name (string, optional): Name for the new general constraint. Note that name will be
stored as an ASCII string. Thus, a name like ’A→B’ will produce an error, because ’→’
can not be represented as an ASCII character. Note also that names that contain spaces
are strongly discouraged, because they can’t be written to LP format files.

Example usage:
x5 = and(x1, x3, x4)
model.addGenConstrAnd(x5, [x1, x3, x4], "andconstr")

overloaded forms
model.addConstr(x5 == and_([x1, x3, x4]), "andconstr")
model.addConstr(x5 == and_(x1, x3, x4), "andconstr")

Model.addGenConstrOr()

addGenConstrOr (resvar, vars, name="")

Add a new general constraint of type GRB.GENCONSTR_OR to a model.
An OR constraint r = or{x1, . . . , xn} states that the binary resultant variable r should be 1 if

and only if any of the operand variables x1, . . . , xn is equal to 1. If all operand variables are 0, then
the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent
of how they were created.

You can also add an OR constraint using the or_ function.
Arguments:

449

resvar (Var): The variable whose value will be equal to the OR concatenation of the other
variables.

vars (list of Var): The variables over which the OR concatenation will be taken.
name (string, optional): Name for the new general constraint. Note that name will be
stored as an ASCII string. Thus, a name like ’A→B’ will produce an error, because ’→’
can not be represented as an ASCII character. Note also that names that contain spaces
are strongly discouraged, because they can’t be written to LP format files.

Example usage:
x5 = or(x1, x3, x4)
model.addGenConstrOr(x5, [x1, x3, x4], "orconstr")

overloaded forms
model.addConstr(x5 == or_([x1, x3, x4]), "orconstr")
model.addConstr(x5 == or_(x1, x3, x4), "orconstr")

Model.addGenConstrIndicator()

addGenConstrIndicator (binvar, binval, lhs, sense=None, rhs=None, name="")

Add a new general constraint of type GRB.GENCONSTR_INDICATOR to a model.
An INDICATOR constraint z = f → aTx ≤ b states that if the binary indicator variable z is

equal to f ∈ {0, 1}, then the linear constraint aTx ≤ b should hold. On the other hand, if z = 1−f ,
the linear constraint may be violated. The sense of the linear constraint can also be specified to be
= or ≥.

Note that the indicator variable z of a constraint will be forced to be binary, independent of
how it was created.

You can also add an INDICATOR constraint using a special overloaded syntax. See the exam-
ples below for details.

Arguments:
binvar (Var): The binary indicator variable.
binval (Boolean): The value for the binary indicator variable that would force the linear
constraint to be satisfied.

lhs (float, Var, LinExpr, or TempConstr): Left-hand side expression for the linear
constraint triggered by the indicator. Can be a constant, a Var, or a LinExpr. Alterna-
tively, a temporary constraint object can be used to define the linear constraint that is
triggered by the indicator. The temporary constraint object is created using an overloaded
comparison operator. See TempConstr for more information. In this case, the “sense” and
“rhs” parameters must stay at their default values None.

sense (char): Sense for the linear constraint. Options are GRB.LESS_EQUAL, GRB.EQUAL,
or GRB.GREATER_EQUAL.

rhs (float): Right-hand-side value for the linear constraint.
name (string, optional): Name for the new general constraint. Note that name will be
stored as an ASCII string. Thus, a name like ’A→B’ will produce an error, because ’→’
can not be represented as an ASCII character. Note also that names that contain spaces
are strongly discouraged, because they can’t be written to LP format files.

Example usage:

450

x7 = 1 -> x1 + 2 x3 + x4 = 1
model.addGenConstrIndicator(x7, True, x1 + 2*x2 + x4, GRB.EQUAL, 1.0)

alternative form
model.addGenConstrIndicator(x7, True, x1 + 2*x2 + x4 == 1.0)

overloaded form
model.addConstr((x7 == 1) >> (x1 + 2*x2 + x4 == 1.0))

Model.addQConstr()

addQConstr (lhs, sense, rhs, name="")

Add a quadratic constraint to a model.
Important note: the algorithms that Gurobi uses to solve quadratically constrained problems

can only handle certain types of quadratic constraints. Constraints of the following forms are always
accepted:
• xTQx+ qTx ≤ b, where Q is Positive Semi-Definite (PSD)

• xTx ≤ y2, where x is a vector of variables, and y is a non-negative variable (a Second-Order
Cone)

• xTx ≤ yz, where x is a vector of variables, and y and z are non-negative variables (a rotated
Second-Order Cone)

If you add a constraint that isn’t in one of these forms (and Gurobi presolve is unable to transform
the constraint into one of these forms), you’ll get an error when you try to solve the model.
Constraints where the quadratic terms only involve binary variables will always be transformed
into one of these forms.

Note that this method also accepts a TempConstr as its first argument (with the name as
its second argument). This allows you to use operator overloading to create constraints. See
TempConstr for more information.

Arguments:
lhs: Left-hand side for new quadratic constraint. Can be a constant, a Var, a LinExpr, or
a QuadExpr.

sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhs: Right-hand side for new quadratic constraint. Can be a constant, a Var, a LinExpr,
or a QuadExpr.

name: Name for new constraint. Note that name will be stored as an ASCII string. Thus, a
name like ’A→B’ will produce an error, because ’→’ can not be represented as an ASCII
character. Note also that names that contain spaces are strongly discouraged, because
they can’t be written to LP format files.

Return value:
New quadratic constraint object.

Example usage:

451

model.addQConstr(x*x + y*y, GRB.LESS_EQUAL, z*z, "c0")
model.addQConstr(x*x + y*y <= 2.0, "c1")

Model.addRange()

addRange (expr, lower, upper, name="")

Add a range constraint to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution.

Note that range constraints are stored internally as equality constraints. We add an extra
variable to the model to capture the range information. Thus, the Sense attribute on a range
constraint will always be GRB.EQUAL.

Arguments:
expr: Linear expression for new range constraint. Can be a Var or a LinExpr.
lower: Lower bound for linear expression.
upper: Upper bound for linear expression.
name: Name for new constraint. Note that name will be stored as an ASCII string. Thus, a
name like ’A→B’ will produce an error, because ’→’ can not be represented as an ASCII
character. Note also that names that contain spaces are strongly discouraged, because
they can’t be written to LP format files.

Return value:
New constraint object.

Example usage:
1 <= x + y <= 2
model.addRange(x + y, 1.0, 2.0, "range0")

overloaded forms
model.addConstr(x + y == [1.0, 2.0], name="range0")

Model.addSOS()

addSOS (type, vars, wts=None)

Add an SOS constraint to the model. Please refer to this section for details on SOS constraints.
Arguments:

type: SOS type (can be GRB.SOS_TYPE1 or GRB.SOS_TYPE2).
vars: List of variables that participate in the SOS constraint.
weights (optional): Weights for the variables in the SOS constraint. Default weights are
1, 2, ...

Return value:
New SOS object.

Example usage:
model.addSOS(GRB.SOS_TYPE1, [x, y, z], [1, 2, 4])

452

Model.addVar()

addVar (lb=0.0, ub=GRB.INFINITY, obj=0.0, vtype=GRB.CONTINUOUS, name="",
column=None)

Add a decision variable to a model.
Arguments:

lb (optional): Lower bound for new variable.
ub (optional): Upper bound for new variable.
obj (optional): Objective coefficient for new variable.
vtype (optional): Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.-
INTEGER, GRB.SEMICONT, or GRB.SEMIINT).

name (optional): Name for new variable. Note that name will be stored as an ASCII string.
Thus, a name like ’A→B’ will produce an error, because ’→’ can not be represented as
an ASCII character. Note also that names that contain spaces are strongly discouraged,
because they can’t be written to LP format files.

column (optional): Column object that indicates the set of constraints in which the new
variable participates, and the associated coefficients.

Return value:
New variable object.

Example usage:
x = model.addVar() # all default arguments
y = model.addVar(vtype=GRB.INTEGER, obj=1.0, name="y") # arguments by name
z = model.addVar(0.0, 1.0, 1.0, GRB.BINARY, "z") # arguments by position

Model.addVars()

addVars (*indices, lb=0.0, ub=GRB.INFINITY, obj=0.0, vtype=GRB.CONTINUOUS,
name="")

Add multiple decision variables to a model.
Returns a Gurobi tupledict object that contains the newly created variables. The keys for the

tupledict are derived from the indices argument(s). The arguments for this method can take
several different forms, which will be described now.

The first arguments provide the indices that will be used as keys to access the variables in
the returned tupledict. In its simplest version, you would specify one or more integer values,
and this method would create the equivalent of a multi-dimensional array of variables. For exam-
ple, x = model.addVars(2, 3) would create six variables, accessed as x[0,0], x[0,1], x[0,2],
x[1,0], x[1,1], and x[1,2].

In a more complex version, you can specify arbitrary lists of immutable objects, and this
method will create variables for each member of the cross product of these lists. For example,
x = model.addVars([3, 7], [’a’, ’b’, ’c’]) would create six variables, accessed as x[3,’a’],
x[7,’c’], etc.

You can also provide your own list of tuples as indices. For example, x = model.addVars([(3,’a’), (3,’b’), (7,’b’), (7,’c’)])
would be accessed in the same way as the previous example (x[3,’a’], x[7,’c’], etc.), except
that not all combinations will be present. This is typically how sparse indexing is handled.

453

Note that while the indices can be provided as multiple lists of objects, or as a list of tuples, the
member values for a specific index must always be scalars (int, float, string, ...). For example,
x = model.addVars([(1, 3), 7], [’a’]) is not allowed, since the first argument for the first
member would be (1, 3). Similarly, x = model.addVars([((1, 3),’a’), (7,’a’)]) is also not
allowed.

The named arguments (lb, obj, etc.) can take several forms. If you provide a scalar value (or
use the default), then every variable will use that value. Thus, for example, lb=1.0 will give every
created variable a lower bound of 1.0. Note that a scalar value for the name argument has a special
meaning, which will be discussed separately.

You can also provide a Python dict as the argument. In that case, the value for each variable
will be pulled from the dict, using the indices argument to build the keys. For example, if the
variables created by this method are indexed as x[i,j], then the dict provided for the argument
should have an entry for each possible (i,j) value.

Finally, if your indices argument is a single list, you can provide a Python list of the same
length for the named arguments. For each variable, it will pull the value from the corresponding
position in the list.

As noted earlier, the name argument is special. If you provide a scalar argument for the name,
that argument will be transformed to have a subscript that corresponds to the index of the associ-
ated variable. For example, if you do x = model.addVars(2,3,name="x"), the variables will get
names x[0,0], x[0,1], etc.

Arguments:
indices: Indices for accessing the new variables.
lb (optional): Lower bound(s) for new variables.
ub (optional): Upper bound(s) for new variables.
obj (optional): Objective coefficient(s) for new variables.
vtype (optional): Variable type(s) for new variables.
name (optional): Names for new variables. The given name will be subscripted by the
index of the generator expression, so if the index is an integer, c would become c[0], c[1],
etc. Note that the generated names will be stored as ASCII strings, so you should avoid
using names that contain non-ASCII characters. In addition, names that contain spaces
are strongly discouraged, because they can’t be written to LP format files.

Return value:
New tupledict object that contains the new variables as values, using the provided indices
as keys.

Example usage:
3-D array of binary variables
x = model.addVars(3, 4, 5, vtype=GRB.BINARY)

variables index by tuplelist
l = tuplelist([(1, 2), (1, 3), (2, 3)])
y = model.addVars(l, ub=[1, 2, 3])

Model.cbCut()

cbCut (lhs, sense, rhs)

454

Add a new cutting plane to a MIP model from within a callback function. Note that this method
can only be invoked when the where value on the callback function is equal to GRB.Callback.MIPNODE
(see the Callback Codes section for more information).

Cutting planes can be added at any node of the branch-and-cut tree. However, they should be
added sparingly, since they increase the size of the relaxation model that is solved at each node
and can significantly degrade node processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the
relaxation solution at the current node, you should first call cbGetNodeRel.

When adding your own cuts, you must set parameter PreCrush to value 1. This setting shuts
off a few presolve reductions that sometimes prevent cuts on the original model from being applied
to the presolved model.

One very important note: you should only add cuts that are implied by the constraints in your
model. If you cut off an integer solution that is feasible according to the original model constraints,
you are likely to obtain an incorrect solution to your MIP problem.

Arguments:
lhs: Left-hand side for new cut. Can be a constant, a Var, or a LinExpr.
sense: Sense for new cut (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhs: Right-hand side for new cut. Can be a constant, a Var, or a LinExpr.

Example usage:
def mycallback(model, where):

if where == GRB.Callback.MIPNODE:
status = model.cbGet(GRB.Callback.MIPNODE_STATUS)
if status == GRB.OPTIMAL:

rel = model.cbGetNodeRel([model._vars[0], model._vars[1]])
if rel[0] + rel[1] > 1.1:
model.cbCut(model._vars[0] + model._vars[1] <= 1)

model._vars = model.getVars()
model.optimize(mycallback)

Model.cbGet()

cbGet (what)

Query the optimizer from within the user callback.
Arguments:

what: Integer code that indicates what type of information is being requested by the callback.
The set of valid codes depends on the where value that is passed into the user callback
function. Please refer to the Callback Codes section for a list of possible where and what
values.

Example usage:
def mycallback(model, where):

if where == GRB.Callback.SIMPLEX:
print(model.cbGet(GRB.Callback.SPX_OBJVAL))

model.optimize(mycallback)

455

Model.cbGetNodeRel()

cbGetNodeRel (vars)

Retrieve values from the node relaxation solution at the current node. Note that this method can
only be invoked when the where value on the callback function is equal to GRB.Callback.MIPNODE,
and GRB.Callback.MIPNODE_STATUS is equal to GRB.OPTIMAL (see the Callback Codes section for
more information).

Arguments:
vars: The variables whose relaxation values are desired. Can be a list of variables or a
single variable.

Return value:
The values of the specified variables in the node relaxation for the current node.

Example usage:
def mycallback(model, where):

if where == GRB.Callback.MIPNODE:
print model.cbGetNodeRel(model._vars)

model._vars = model.getVars()
model.optimize(mycallback)

Model.cbGetSolution()

cbGetSolution (vars)

Retrieve values from the new MIP solution. Note that this method can only be invoked when
the where value on the callback function is equal to GRB.Callback.MIPSOL (see the Callback Codes
section for more information).

Arguments:
vars: The variables whose solution values are desired. Can be a list of variables or a single
variable.

Return value:
The values of the specified variables in the solution.

Example usage:
def mycallback(model, where):

if where == GRB.Callback.MIPSOL:
print model.cbGetSolution(model._vars)

model._vars = model.getVars()
model.optimize(mycallback)

Model.cbLazy()

cbLazy (lhs, sense, rhs)

456

Add a new lazy constraint to a MIP model from within a callback function. Note that this
method can only be invoked when the where value on the callback function is GRB.Callback.MIPNODE
or GRB.Callback.MIPSOL (see the Callback Codes section for more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large
to represent explicitly. By only including the constraints that are actually violated by solutions
found during the branch-and-cut search, it is sometimes possible to find a proven optimal solution
while only adding a fraction of the full set of constraints.

You would typically add a lazy constraint by first querying the current node solution (by calling
cbGetSolution from a GRB.CB_MIPSOL callback, or cbGetNodeRel from a GRB.CB_MIPNODE callback),
and then calling cbLazy() to add a constraint that cuts off the solution. Gurobi guarantees that
you will have the opportunity to cut off any solutions that would otherwise be considered feasible.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints,
including those that have already been added. Node solutions will usually respect previously added
lazy constraints, but not always.

Note that you must set the LazyConstraints parameter if you want to use lazy constraints.
Arguments:

lhs: Left-hand side for new lazy constraint. Can be a constant, a Var, or a LinExpr.
sense: Sense for new lazy constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhs: Right-hand side for new lazy constraint. Can be a constant, a Var, or a LinExpr.
Example usage:

def mycallback(model, where):
if where == GRB.Callback.MIPSOL:
sol = model.cbGetSolution([model._vars[0], model._vars[1]])
if sol[0] + sol[1] > 1.1:

model.cbLazy(model._vars[0] + model._vars[1] <= 1)

model._vars = model.getVars()
model.optimize(mycallback)

Model.cbSetSolution()

cbSetSolution (vars, solution)

Import solution values for a heuristic solution. Only available when the where value on the call-
back function is equal to GRB.CB_MIPNODE. (see the Callback Codes section for more information).

When you specify a heuristic solution from a callback, variables initially take undefined val-
ues. You should use this method to specify variable values. You can make multiple calls to
cbSetSolution from one callback invocation to specify values for multiple sets of variables. After
the callback, if values have been specified for any variables, the Gurobi optimizer will try to com-
pute a feasible solution from the specified values, possibly filling in values for variables whose values
were left undefined. You can also optionally call cbUseSolution within your callback function to
try to immediately compute a feasible solution from the specified values.

Arguments:
vars: The variables whose values are being set. This can be a list of variables or a single
variable.

457

solution: The desired values of the specified variables in the new solution.
Example usage:

def mycallback(model, where):
if where == GRB.Callback.MIPNODE:
model.cbSetSolution(vars, newsolution)

model.optimize(mycallback)

Model.cbUseSolution()

cbUseSolution ()

Once you have imported solution values using cbSetSolution, you can optionally call cbUseSolution
to immediately use these values to try to compute a heuristic solution.

Return value:
The objective value for the solution obtained from your solution values (or GRB.INFINITY
if no improved solution is found).

Example usage:
def mycallback(model, where):

if where == GRB.Callback.MIPNODE:
model.cbSetSolution(vars, newsolution)
objval = model.cbUseSolution()

model.optimize(mycallback)

Model.chgCoeff()

chgCoeff (constr, var, newvalue)

Change one coefficient in the model. The desired change is captured using a Var object, a
Constr object, and a desired coefficient for the specified variable in the specified constraint. If you
make multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you
update the model (using Model.update), optimize the model (using Model.optimize), or write the
model to disk (using Model.write).

Arguments:
constr: Constraint for coefficient to be changed.
var: Variable for coefficient to be changed.
newvalue: Desired new value for coefficient.

Example usage:
model.chgCoeff(c0, x, 2.0)

Model.computeIIS()

computeIIS (void)

458

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and
variable bounds with the following properties:
• the subsystem represented by the IIS is infeasible, and

• if any of the constraints or bounds of the IIS is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily
one of minimal cardinality. Thus, there may exist other IISs with fewer constraints or bounds.

If an IIS computation is interrupted before completion, Gurobi will internally store the best
available IIS found so far.

This method populates the IISCONSTR, IISQCONSTR, and IISGENCONSTR constraint attributes,
the IISSOS SOS attribute, and the IISLB, and IISUB variable attributes. You can also obtain infor-
mation about the results of the IIS computation by writing an .ilp format file (see Model.write).
This file contains only the IIS from the original model.

Note that this method can be used to compute IISs for both continuous and MIP models.
Example usage:

model.computeIIS()
model.write("model.ilp")

Model.copy()

copy ()

Copy a model.
Return value:

Copy of model.
Example usage:

copy = model.copy()

Model.discardConcurrentEnvs()

discardConcurrentEnvs ()

Discard concurrent environments for a model.
The concurrent environments created by getConcurrentEnv will be used by every subsequent

call to the concurrent optimizer until the concurrent environments are discarded.
Example usage:

env0 = model.getConcurrentEnv(0)
env1 = model.getConcurrentEnv(1)

env0.setParam(’Method’, 0)
env1.setParam(’Method’, 1)

model.optimize()

model.discardConcurrentEnvs()

459

Model.discardMultiobjEnvs()

discardMultiobjEnvs ()

Discard all multi-objective environments associated with the model, thus restoring multi objec-
tive optimization to its default behavior.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple
objective functions and control the tradeoff between them.

Use getMultiobjEnv to create a multi-objective environment.
Example usage:

env0 = model.getMultiobjEnv(0)
env1 = model.getMultiobjEnv(1)

env0.setParam(’Method’, 2)
env1.setParam(’Method’, 1)

model.optimize()

model.discardMultiobjEnvs()

Model.feasRelaxS()

feasRelaxS (relaxobjtype, minrelax, vrelax, crelax)

Modifies the Model object to create a feasibility relaxation. Note that you need to call optimize
on the result to compute the actual relaxed solution. Note also that this is a simplified version of
this method - use feasRelax for more control over the relaxation performed.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the
solution violates the bounds and linear constraints of the original model. This method provides a
number of options for specifying the relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the sum
of the magnitudes of the bound and constraint violations.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the sum
of the squares of the bound and constraint violations.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the
total number of bound and constraint violations.

To give an example, if a constraint is violated by 2.0, it would contribute 2.0 to the feasibility
relaxation objective for relaxobjtype=0, it would contribute 2.0*2.0 for relaxobjtype=1, and it
would contribute 1.0 for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is
created. If minrelax=False, optimizing the returned model gives a solution that minimizes the
cost of the violation. If minrelax=True, optimizing the returned model finds a solution that
minimizes the original objective, but only from among those solutions that minimize the cost of the
violation. Note that feasRelaxS must solve an optimization problem to find the minimum possible
relaxation when minrelax=True, which can be quite expensive.

460

Note that this is a destructive method: it modifies the model on which it is invoked. If you
don’t want to modify your original model, use copy to create a copy before invoking this method.

Arguments:
relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vrelax: Indicates whether variable bounds can be relaxed.
crelax: Indicates whether constraints can be relaxed.

Return value:
Zero if minrelax is False. If minrelax is True, the return value is the objective value for
the relaxation performed. If the value is less than 0, it indicates that the method failed to
create the feasibility relaxation.

Example usage:
if model.status == GRB.INFEASIBLE:

model.feasRelaxS(1, False, False, True)
model.optimize()

Model.feasRelax()

feasRelax (relaxobjtype, minrelax, vars, lbpen, ubpen, constrs, rhspen)

Modifies the Model object to create a feasibility relaxation. Note that you need to call optimize
on the result to compute the actual relaxed solution. Note also that this is a more complex version
of this method - use feasRelaxS for a simplified version.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the
solution violates the bounds and linear constraints of the original model. This method provides a
number of options for specifying the relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the
sum of the weighted magnitudes of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the cost per unit violation in the lower bounds, upper bounds, and linear
constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the
weighted sum of the squares of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the coefficients on the squares of the lower bound, upper bound, and
linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the
weighted count of bound and constraint violations. The lbpen, ubpen, and rhspen arguments
specify the cost of violating a lower bound, upper bound, and linear constraint, respectively.

To give an example, if a constraint with rhspen value p is violated by 2.0, it would con-
tribute 2*p to the feasibility relaxation objective for relaxobjtype=0, it would contribute 2*2*p
for relaxobjtype=1, and it would contribute p for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is
created. If minrelax=False, optimizing the returned model gives a solution that minimizes the
cost of the violation. If minrelax=True, optimizing the returned model finds a solution that
minimizes the original objective, but only from among those solutions that minimize the cost of the
violation. Note that feasRelax must solve an optimization problem to find the minimum possible
relaxation when minrelax=True, which can be quite expensive.

461

Note that this is a destructive method: it modifies the model on which it is invoked. If you
don’t want to modify your original model, use copy to create a copy before invoking this method.

Arguments:
relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vars: Variables whose bounds are allowed to be violated.
lbpen: Penalty for violating a variable lower bound. One entry for each variable in argument
vars.

ubpen: Penalty for violating a variable upper bound. One entry for each variable in argument
vars.

constr: Linear constraints that are allowed to be violated.
rhspen: Penalty for violating a linear constraint. One entry for each variable in argument
constr.

Return value:
Zero if minrelax is False. If minrelax is True, the return value is the objective value for
the relaxation performed. If the value is less than 0, it indicates that the method failed to
create the feasibility relaxation.

Example usage:
if model.status == GRB.INFEASIBLE:

vars = model.getVars()
ubpen = [1.0]*model.numVars
model.feasRelax(1, False, vars, None, ubpen, None, None)
model.optimize()

Model.fixed()

fixed ()

Create the fixed model associated with a MIP model. The MIP model must have a solution
loaded (e.g., after a call to the optimize method). In the fixed model, each integer variable is fixed
to the value that variable takes in the MIP solution.

Return value:
Fixed model associated with calling object.

Example usage:
fixed = model.fixed()

Model.getAttr()

getAttr (attrname, objs=None)

Query the value of an attribute. When called with a single argument, it returns the value of a
model attribute. When called with two arguments, it returns the value of an attribute for either a
list or a dictionary containing either variables or constraints. If called with a list, the result is a list.
If called with a dictionary, the result is a dictionary that uses the same keys, but is populated with
the requested attribute values. The full list of available attributes can be found in the Attributes
section.

462

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried.
Arguments:

attrname: Name of the attribute.
objs (optional): List or dictionary containing either constraints or variables

Example usage:
print(model.numintvars)
print(model.getAttr("numIntVars"))
print(model.getAttr(GRB.Attr.numIntVars))
print(model.getAttr("X", model.getVars()))
print(model.getAttr("Pi", model.getConstrs()))

Model.getCoeff()

getCoeff (constr, var)

Query the coefficient of variable var in linear constraint constr (note that the result can be
zero).

Arguments:
constr: The requested constraint.
var: The requested variable.

Return value:
The current value of the requested coefficient.

Example usage:
print(model.getCoeff(constr, var))

Model.getCol()

getCol (var)

Retrieve the list of constraints in which a variable participates, and the associated coefficients.
The result is returned as a Column object.

Arguments:
var: The variable of interest.

Return value:
A Column object that captures the set of constraints in which the variable participates.

Example usage:
print(model.getCol(x))

Model.getConcurrentEnv()

getConcurrentEnv (num)

Create/retrieve a concurrent environment for a model.
This method provides fine-grained control over the concurrent optimizer. By creating your

own concurrent environments and setting appropriate parameters on these environments (e.g., the
Method parameter), you can control exactly which strategies the concurrent optimizer employs.
For example, if you create two concurrent environments, and set Method to primal simplex for

463

one and dual simplex for the other, subsequent concurrent optimizer runs will use the two simplex
algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with
num=0. For example, if you want three concurrent environments, they must be numbered 0, 1,
and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent
optimization on that model. Use discardConcurrentEnvs to revert back to default concurrent
optimizer behavior.

Arguments:
num (int): The concurrent environment number.

Return value:
The concurrent environment for the model.

Example usage:
env0 = model.getConcurrentEnv(0)
env1 = model.getConcurrentEnv(1)

env0.setParam(’Method’, 0)
env1.setParam(’Method’, 1)

model.optimize()

model.discardConcurrentEnvs()

Model.getConstrByName()

getConstrByName (name)

Retrieve a linear constraint from its name. If multiple linear constraints have the same name,
this method chooses one arbitrarily.

Arguments:
name: Name of desired constraint.

Return value:
Constraint with the specified name.

Example usage:
c0 = model.getConstrByName("c0")

Model.getConstrs()

getConstrs ()

Retrieve a list of all linear constraints in the model.
Return value:

All linear constraints in the model.
Example usage:

constrs = model.getConstrs()
c0 = constrs[0]

464

Model.getGenConstrMax()

getGenConstrMax (genconstr)

Retrieve the data of a general constraint of type MAX. Calling this function for a general
constraint of different type leads to an exception. You can query the GenConstrType attribute to
determine the type of the general constraint.

See also addGenConstrMax for a description of the semantics of this general constraint type.
Arguments:

genconstr: The general constraint object of interest.
Return value:

A tuple (resvar, vars, constant) that contains the data of the general constraint:
resvar (Var): Resultant variable of the MAX constraint.
vars (list of Var): Operand variables of the MAX constraint.
constant (float): Additional constant operand of the MAX constraint.

Example usage:
(resvar, vars, constant) = model.getGenConstrMax(model.getGenConstrs()[0])

Model.getGenConstrMin()

getGenConstrMin (genconstr)

Retrieve the data of a general constraint of type MIN. Calling this function for a general
constraint of different type leads to an exception. You can query the GenConstrType attribute to
determine the type of the general constraint.

See also addGenConstrMin for a description of the semantics of this general constraint type.
Arguments:

genconstr: The general constraint object of interest.
Return value:

A tuple (resvar, vars, constant) that contains the data of the general constraint:
resvar (Var): Resultant variable of the MIN constraint.
vars (list of Var): Operand variables of the MIN constraint.
constant (float): Additional constant operand of the MIN constraint.

Example usage:
(resvar, vars, constant) = model.getGenConstrMin(model.getGenConstrs()[0])

Model.getGenConstrAbs()

getGenConstrAbs (genconstr)

Retrieve the data of a general constraint of type ABS. Calling this function for a general
constraint of different type leads to an exception. You can query the GenConstrType attribute to
determine the type of the general constraint.

See also addGenConstrAbs for a description of the semantics of this general constraint type.
Arguments:

genconstr: The general constraint object of interest.
Return value:

465

A tuple (resvar, argvar) that contains the data of the general constraint:
resvar (Var): Resultant variable of ABS constraint.
argvar (Var): Argument variable of ABS constraint.

Example usage:
(resvar, argvar) = model.getGenConstrAbs(model.getGenConstrs()[0])

Model.getGenConstrAnd()

getGenConstrAnd (genconstr)

Retrieve the data of a general constraint of type AND. Calling this function for a general
constraint of different type leads to an exception. You can query the GenConstrType attribute to
determine the type of the general constraint.

See also addGenConstrAnd for a description of the semantics of this general constraint type.
Arguments:

genconstr: The general constraint object of interest.
Return value:

A tuple (resvar, vars) that contains the data of the general constraint:
resvar (Var): Resultant variable of AND constraint.
vars (list of Var): Operand variables of AND constraint.

Example usage:
(resvar, vars) = model.getGenConstrAnd(model.getGenConstrs()[0])

Model.getGenConstrOr()

getGenConstrOr (genconstr)

Retrieve the data of a general constraint of type OR. Calling this function for a general constraint
of different type leads to an exception. You can query the GenConstrType attribute to determine
the type of the general constraint.

See also addGenConstrOr for a description of the semantics of this general constraint type.
Arguments:

genconstr: The general constraint object of interest.
Return value:

A tuple (resvar, vars) that contains the data of the general constraint:
resvar (Var): Resultant variable of OR constraint.
vars (list of Var): Operand variables of OR constraint.

Example usage:
(resvar, vars) = model.getGenConstrOr(model.getGenConstrs()[0])

Model.getGenConstrIndicator()

getGenConstrIndicator (genconstr)

Retrieve the data of a general constraint of type INDICATOR. Calling this function for a general
constraint of different type leads to an exception. You can query the GenConstrType attribute to
determine the type of the general constraint.

466

See also addGenConstrIndicator for a description of the semantics of this general constraint
type.

Arguments:
genconstr: The general constraint object of interest.

Return value:
A tuple (binvar, binval, expr, sense, rhs) that contains the data of the general constraint:
binvar (Var): Antecedent variable of indicator constraint.
binval (Boolean): Value of antecedent variable that activates the linear constraint.
expr (LinExpr): LinExpr object containing the left-hand side of the constraint triggered
by the indicator.

sense (char): Sense of linear constraint triggered by the indicator (e.g., GRB.LESS_EQUAL).
rhs (float): Right-hand side of linear constraint triggered by the indicator.

Example usage:
(binvar, binval, expr, sense, rhs) = model.getGenConstr(model.getGenConstrIndicator()[3])

Model.getGenConstrs()

getGenConstrs ()

Retrieve a list of all general constraints in the model.
Return value:

All general constraints in the model.
Example usage:

gencons = model.getGenConstrs()
for gc in gencons:

print(model.getGenConstr(gc))

Model.getMultiobjEnv()

getMultiobjEnv (index)

Create/retrieve a multi-objective environment for the objective with the given index. This
environment enables fine-grained control over the multi-objective optimization process. Specifically,
by changing parameters on this environment, you modify the behavior of the optimization that
occurs during the corresponding pass of the multi-objective optimization.

Each multi-objective environment starts with a copy of the current model environment.
Please refer to the discussion of Multiple Objectives for information on how to specify multiple

objective functions and control the tradeoff between them.
Use discardMultiobjEnvs to discard multi-objective environments and return to standard be-

havior.
Arguments:

index (int): The objective index.
Return value:

The multi-objective environment for the model.
Example usage:

env0 = model.getMultiobjEnv(0)

467

env1 = model.getMultiobjEnv(1)

env0.setParam(’TimeLimit’, 100)
env1.setParam(’TimeLimit’, 10)

model.optimize()

model.discardMultiobjEnvs()

Model.getObjective()

getObjective (index=None)

Retrieve the model objective(s).
Call this with no argument to retrieve the primary objective, or with an integer argument to

retrieve the corresponding alternative objective.
Arguments:

index (int, optional): The index for the requested alternative objective.
Return value:

The model objective. A LinExpr object for a linear objective, or a QuadExpr object for a
quadratic objective. Note that alternative objectives are always linear.

Example usage:
obj = model.getObjective()
print(obj.getValue())

Model.getParamInfo()

getParamInfo (paramname)

Retrieve information about a Gurobi parameter, including the type, the current value, the
minimum and maximum allowed values, and the default value.

Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

Arguments:
paramname: String containing the name of the parameter of interest. The name can include
’*’ and ’?’ wildcards. If more than one parameter matches, the matching names are listed
and the method returns None.

Return value:
Returns a 6-entry tuple that contains: the parameter name, the parameter type, the current
value, the minimum value, the maximum value, and the default value.

Example usage:
print(model.getParamInfo(’Heuristics’))

Model.getPWLObj()

getPWLObj (var)

468

Retrieve the piecewise-linear objective function for a variable. The function returns a list of
tuples, where each provides the x and y coordinates for the points that define the piecewise-linear
objective function.

Refer to the description of setPWLObj for additional information on how the points relate to
the overall function.

Arguments:
var: A Var object that gives the variable whose objective function is being retrieved.

Return value:
The points that define the piecewise-linear objective function.

Example usage:
> print(model.getPWLObj(var))
[(1, 1), (2, 2), (3, 4)]

Model.getQConstrs()

getQConstrs ()

Retrieve a list of all quadratic constraints in the model.
Return value:

All quadratic constraints in the model.
Example usage:

qconstrs = model.getQConstrs()
qc0 = qconstrs[0]

Model.getQCRow()

getQCRow (qconstr)

Retrieve the left-hand side expression from a quadratic constraint. The result is returned as a
QuadExpr object.

Arguments:
qconstr: The constraint of interest.

Return value:
A QuadExpr object that captures the left-hand side of the quadratic constraint.

Example usage:
print(model.getQCRow(model.getQConstrs()[0]))

Model.getRow()

getRow (constr)

Retrieve the list of variables that participate in a constraint, and the associated coefficients.
The result is returned as a LinExpr object.

Arguments:
constr: The constraint of interest.

Return value:
A LinExpr object that captures the set of variables that participate in the constraint.

469

Example usage:
print(model.getRow(c0))

Model.getSOS()

getSOS (sos)

Retrieve information about an SOS constraint. The result is a tuple that contains the SOS type
(1 or 2), the list of participating Var objects, and the list of associated SOS weights.

Arguments:
sos: The SOS object of interest.

Return value:
A tuple that contains the SOS type (1 or 2), a list of participating Var objects, and a list of
associated SOS weights.

Example usage:
(sostype, vars, weights) = model.getSOS(s)

Model.getSOSs()

getSOSs ()

Retrieve a list of all SOS constraints in the model.
Return value:

All SOS constraints in the model.
Example usage:

sos = model.getSOSs()
for s in sos:

print(model.getSOS(s))

Model.getTuneResult()

getTuneResult ()

Use this routine to retrieve the results of a previous tune call. Calling this method with argument
n causes tuned parameter set n to be copied into the model. Parameter sets are stored in order of
decreasing quality, with parameter set 0 being the best. The number of available sets is stored in
attribute TuneResultCount.

Once you have retrieved a tuning result, you can call optimize to use these parameter settings
to optimize the model, or write to write the changed parameters to a .prm file.

Please refer to the parameter tuning section for details on the tuning tool.
Arguments:

n: The index of the tuning result to retrieve. The best result is available as index 0. The
number of stored results is available in attribute TuneResultCount.

Example usage:
model.tune()
for i in range(model.tuneResultCount):

model.getTuneResult(i)

470

model.write(’tune’+str(i)+’.prm’)

Model.getVarByName()

getVarByName (name)

Retrieve a variable from its name. If multiple variables have the same name, this method
chooses one arbitrarily.

Arguments:
name: Name of desired variable.

Return value:
Variable with the specified name.

Example usage:
x0 = model.getVarByName("x0")

Model.getVars()

getVars ()

Retrieve a list of all variables in the model.
Return value:

All variables in the model.
Example usage:

vars = model.getVars()
x0 = vars[0]

Model.message()

message (msg)

Append a string to the Gurobi log file.
Arguments:

msg: String to append to Gurobi log file.
Example usage:

model.message(’New message’)

Model.optimize()

optimize (callback)

Optimize the model. The algorithm used for the optimization depends on the model type
(simplex or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful
completion, this method will populate the solution related attributes of the model. See the At-
tributes section for more information on attributes.

Please consult this section for a discussion of some of the practical issues associated with solving
a precisely defined mathematical model using finite-precision floating-point arithmetic.

Note that this method will process all pending model modifications.

471

Arguments:
callback: Callback function. The callback function should take two arguments, model and
where. During the optimization, the function will be called periodically, with model set to
the model being optimized, and where indicating where in the optimization the callback
is called from. See the Callback class for additional information.

Example usage:
model.optimize()

Model.presolve()

presolve ()

Perform presolve on a model.
Return value:

Presolved version of original model.
Example usage:

p = model.presolve()
p.printStats()

Model.printAttr()

printAttr (attrs, filter=’*’)

Print the value of one or more attributes. If attrs is a constraint or variable attribute, print
all non-zero values of the attribute, along with the associate constraint or variable names. If attrs
is a list of attributes, print attribute values for all listed attributes. The method takes an optional
filter argument, which allows you to select which specific attribute values to print (by filtering
on the constraint or variable name).

See the Attributes section for a list of all available attributes.
Arguments:

attrs: Name of attribute or attributes to print. The value can be a single attribute or a
list of attributes. If a list is given, all listed attributes must be of the same type (model,
variable, or constraint).

filter (optional): Filter for values to print — name of constr/var must match filter to
be printed.

Example usage:
model.printAttr(’x’) # all non-zero solution values
model.printAttr(’lb’, ’x*’) # bounds for vars whose names begin with ’x’
model.printAttr([’lb’, ’ub’]) # lower and upper bounds

Model.printQuality()

printQuality ()

Print statistics about the quality of the computed solution (constraint violations, integrality
violations, etc.).

472

For continuous models, the output will include the maximum unscaled and scaled violation,
as well as the variable or constraint name associated with the worst unscaled violation. For MIP
models, the output will include the maximum unscaled violation and the associated variable or
constraint name.

Example usage:
model.optimize()
model.printQuality()

Model.printStats()

printStats ()

Print statistics about the model (number of constraints and variables, number of non-zeros in
constraint matrix, smallest and largest coefficients, etc.).

Example usage:
model.printStats()

Model.read()

read (filename)

This method is the general entry point for importing data from a file into a model. It can be
used to read basis files for continuous models, start vectors for MIP models, or parameter settings.
The type of data read is determined by the file suffix. File formats are described in the File Format
section.

Note that this is not the method to use if you want to read a new model from a file. For that,
use the read command.

Arguments:
filename: Name of the file to read. The suffix on the file must be either .bas (for an LP
basis), .mst or .sol (for a MIP start), .hnt (for MIP hints), .ord (for a priority order),
or .prm (for a parameter file). The suffix may optionally be followed by .zip, .gz, .bz2,
or .7z. The file name may contain * or ? wildcards. No file is read when no wildcard
match is found. If more than one match is found, this method will attempt to read the
first matching file.

Example usage:
model.read(’input.bas’)
model.read(’input.mst’)

Model.relax()

relax ()

Create the relaxation of a MIP model. Transforms integer variables into continuous variables,
and removes SOS and general constraints.

Return value:
Relaxed version of model.

Example usage:

473

r = model.relax()

Model.remove()

remove (items)

Remove variables, linear constraints, quadratic constraints, SOS constraints, or general con-
straints from a model.

Arguments:
items: The items to remove from the model. Argument can be a single Var, Constr,
QConstr, SOS, or GenConstr, or a list, tuple, or dict containing these objects. If the
argument is a dict, the values will be removed, not the keys.

Example usage:
model.remove(model.getVars()[0])
model.remove(model.getVars()[0:10])
model.remove(model.getConstrs()[0])
model.remove(model.getConstrs()[1:3])
model.remove(model.getQConstrs()[0])
model.remove(model.getSOSs()[0])
model.remove(model.getGenConstrs()[0])

Model.reset()

reset ()

Reset the model to an unsolved state, discarding any previously computed solution information.
Example usage:

model.reset()

Model.resetParams()

resetParams ()

Reset all parameters to their default values.
Example usage:

model.resetParams()

Model.setAttr()

setAttr (attrname, newvalue)

Set the value of an attribute. Note that, due to our lazy update approach, the change won’t
actually take effect until you update the model (using Model.update), optimize the model (using
Model.optimize), or write the model to disk (using Model.write).

Call this method with two arguments to set a model attribute. Call it with three arguments to
set the values of the attribute for a list of variables or constraints.

474

The full list of available attributes can be found in the Attributes section.
Raises an AttributeError if the specified attribute doesn’t exist or can’t be set.
Arguments:

attrname: Name of attribute to set.
newvalue: Desired new value of attribute.

Example usage:
model.setAttr("objCon", 0)
model.setAttr(GRB.Attr.objCon, 0)
model.setAttr("LB", model.getVars(), [0]*model.numVars)
model.setAttr("RHS", model.getConstrs(), [1.0]*model.numConstrs)
model.objcon = 0

Model.setObjective()

setObjective (expr, sense=None)

Set the model objective equal to a linear or quadratic expression.
Note that you can also modify a linear model objective using the Obj variable attribute. If you

wish to mix and match these two approaches, please note that this method will replace the existing
objective.

Arguments:
expr: New objective expression. Argument can be a linear or quadratic expression (an
objective of type LinExpr or QuadExpr).

sense (optional): Optimization sense (GRB.MINIMIZE for minimization, GRB.MAXIMIZE
for maximization). Omit this argument to use the ModelSense attribute value to determine
the sense.

Example usage:
model.setObjective(x + y, GRB.MAXIMIZE)
model.setObjective(x*x + y*y)

Model.setObjectiveN()

setObjectiveN (expr, index, priority=0, weight=1, abstol=0, reltol=0,
name="")

Set an alternative optimization objective equal to a linear expression.
Please refer to the discussion of Multiple Objectives for more information on the use of alter-

native objectives.
Note that you can also modify an alternative objective using the ObjN variable attribute. If

you wish to mix and match these two approaches, please note that this method replaces the entire
existing objective, while the ObjN attribute can be used to modify individual terms.

Arguments:
expr (LinExpr): New alternative objective.
index (int): Index for new objective. If you use an index of 0, this routine will change the
primary optimization objective.

priority (int, optional): Priority for the alternative objective. This initializes the
ObjNPriority attribute for this objective.

475

weight (float, optional): Weight for the alternative objective. This initializes the Ob-
jNWeight attribute for this objective.

abstol (float, optional): Absolute tolerance for the alternative objective. This initial-
izes the ObjNAbsTol attribute for this objective.

reltol (float, optional): Relative tolerance for the alternative objective. This initial-
izes the ObjNRelTol attribute for this objective.

name (string, optional): Name of the alternative objective. This initializes the ObjN-
Name attribute for this objective. Note that name will be stored as an ASCII string.
Thus, a name like ’A→B’ will produce an error, because ’→’ can not be represented as
an ASCII character. Note also that names that contain spaces are strongly discouraged,
because they can’t be written to LP format files.

Example usage:
Primary objective: x + 2 y
model.setObjectiveN(x + 2*y, 0, 2)
Alternative, lower priority objectives: 3 y + z and x + z
model.setObjectiveN(3*y + z, 1, 1)
model.setObjectiveN(x + z, 2, 0)

Model.setPWLObj()

setPWLObj (var, x, y)

Set a piecewise-linear objective function for a variable.
The arguments to this method specify a list of points that define a piecewise-linear objective

function for a single variable. Specifically, the x and y arguments give coordinates for the vertices
of the function.

For example, suppose we want to define the function f(x) shown below:

(1, 1)

(3, 2)

(5, 4)

x[0] x[1] x[2]

y[0]

y[1]

y[2]

The vertices of the function occur at the points (1, 1), (3, 2) and (5, 4), so x is [1, 3, 5] and y is [1,
2, 4]. With these arguments we define f(1) = 1, f(3) = 2 and f(5) = 4. Other objective values
are linearly interpolated between neighboring points. The first pair and last pair of points each

476

define a ray, so values outside the specified x values are extrapolated from these points. Thus, in
our example, f(−1) = 0 and f(6) = 5.

More formally, a set of n points

x = [x1, . . . , xn], y = [y1, . . . , yn]

define the following piecewise-linear function:

f(v) =


y1 + y2−y1

x2−x1
(v − x1), if v ≤ x1,

yi + yi+1−yi

xi+1−xi
(v − xi), if v ≥ xi and v ≤ xi+1,

yn + yn−yn−1
xn−xn−1

(v − xn), if v ≥ xn.

The x entries must appear in non-decreasing order. Two points can have the same x coordinate
— this can be useful for specifying a discrete jump in the objective function.

Note that a piecewise-linear objective can change the type of a model. Specifically, including
a non-convex piecewise linear objective function in a continuous model will transform that model
into a MIP. This can significantly increase the cost of solving the model.

Setting a piecewise-linear objective for a variable will set the Obj attribute on that variable to
0. Similarly, setting the Obj attribute will delete the piecewise-linear objective on that variable.

Each variable can have its own piecewise-linear objective function. They must be specified
individually, even if multiple variables share the same function.

Arguments:
var: A Var object that gives the variable whose objective function is being set.
x: The x values for the points that define the piecewise-linear function. Must be in non-
decreasing order.

y: The y values for the points that define the piecewise-linear function.
Example usage:

model.setPWLObj(var, [1, 3, 5], [1, 2, 4])

Model.setParam()

setParam (paramname, newvalue)

Set the value of a parameter to a new value. Note that this method only affects the parameter
setting for this model. Use global function setParam to change the parameter for all models.

You can also set parameters using the Model.Params class. For example, to set parameter
MIPGap to value 0 for model m, you can do either m.setParam(’MIPGap’, 0) or m.Params.MIPGap=0.

Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

Arguments:
paramname: String containing the name of parameter that you would like to modify. The
name can include ’*’ and ’?’ wildcards. If more than one parameter matches, the matching
names are listed and none are modified. Note that case is ignored.

newvalue: Desired new value for parameter. Can be ’default’, which indicates that the
parameter should be reset to its default value.

477

Example usage:
model.setParam("heu*", 0.5)
model.setParam(GRB.Param.heuristics, 0.5)
model.setParam("heu*", "default")

Model.terminate()

terminate ()

Generate a request to terminate the current optimization. This method is typically called from
within a user callback (see Callbacks for more information). When the optimization stops, the
Status attribute will be equal to GRB_INTERRUPTED.

Example usage:
model.terminate()

Model.tune()

tune ()

Perform an automated search for parameter settings that improve performance. Upon comple-
tion, this method stores the best parameter sets it found. The number of stored parameter sets
can be determined by querying the value of the TuneResultCount attribute. The actual settings
can be retrieved using getTuneResult

Please refer to the parameter tuning section for details on the tuning tool.
Example usage:

model.tune()

Model.update()

update ()

Process any pending model modifications.
Example usage:

model.update()

Model.write()

write (filename)

This method is the general entry point for writing model data to a file. It can be used to
write optimization models, IIS submodels, solutions, basis vectors, MIP start vectors, or parameter
settings. The type of file is determined by the file suffix. File formats are described in the File
Format section.

Note that writing a model to a file will process all pending model modifications. However,
writing other model information (solutions, bases, etc.) will not.

Arguments:

478

filename: Name of the file to write. The file type is encoded in the file name suffix. Valid
suffixes for writing the model itself are .mps, .rew, .lp, or .rlp. An IIS can be written
by using an .ilp suffix. Use .sol for a solution file, .mst for a MIP start, .hnt for MIP
hints, .bas for a basis file, or .prm for a parameter file. The suffix may optionally be
followed by .gz, .bz2, or .7z, which produces a compressed result.

Example usage:
model.write("out.mst")
model.write("out.sol")

479

6.3 Var
Gurobi variable object. Variables are always associated with a particular model. You create a
variable object by adding a variable to a model (using Model.addVar), rather than by using a Var
constructor.

Variable objects have a number of attributes. The full list can be found in the Attributes section
of this document. Some variable attributes can only be queried, while others can also be set. Recall
that the Gurobi optimizer employs a lazy update approach, so changes to attributes don’t take effect
until the next call to Model.update, Model.optimize, or Model.write on the associated model.

We should point out a few things about variable attributes. Consider the lb attribute. Its value
can be queried using var.lb. The Gurobi library ignores letter case in attribute names, so it can
also be queried as var.lb. It can be set using a standard assignment statement (e.g., var.lb = 0).
However, as mentioned earlier, attribute modification is done in a lazy fashion, so you won’t see
the effect of the change immediately. And some attributes can not be set (e.g., the x attribute), so
attempts to assign new values to them will raise an exception.

You can also use Var.getAttr/ Var.setAttr to access attributes. The attribute name can be
passed to these routines as a string, or you can use the constants defined in the GRB.Attr class
(e.g., GRB.Attr.lb).

To build expressions using variable objects, you generally use operator overloading. You can
build either linear or quadratic expressions:

expr1 = x + 2 * y + 3 * z + 4.0
expr2 = x * x + 2 * x * y + 3 * z + 4.0

The first expression is linear, while the second is quadratic. An expressions is typically then passed
to setObjective (to set the optimiazation objective) or addConstr (to add a constraint).

Var.getAttr()

getAttr (attrname)

Query the value of a variable attribute. The full list of available attributes can be found in the
Attributes section.

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried.
Arguments:

attrname: The attribute being queried.
Return value:

The current value of the requested attribute.
Example usage:

print(var.getAttr(GRB.Attr.x))
print(var.getAttr("x"))

Var.sameAs()

sameAs (var2)

Check whether two variable objects refer to the same variable.

480

Arguments:
var2: The other variable.

Return value:
Boolean result indicates whether the two variable objects refer to the same model variable.

Example usage:
print(model.getVars()[0].sameAs(model.getVars()[1]))

Var.setAttr()

setAttr (attrname, newvalue)

Set the value of a variable attribute. Note that, due to our lazy update approach, the change
won’t actually take effect until you update the model (using Model.update), optimize the model
(using Model.optimize), or write the model to disk (using Model.write).

The full list of available attributes can be found in the Attributes section.
Raises an AttributeError if the specified attribute doesn’t exist or can’t be set.
Arguments:

attrname: The attribute being modified.
newvalue: The desired new value of the attribute.

Example usage:
var.setAttr(GRB.Attr.ub, 0.0)
var.setAttr("ub", 0.0)

481

6.4 Constr
Gurobi constraint object. Constraints are always associated with a particular model. You create a
constraint object by adding a constraint to a model (using Model.addConstr), rather than by using
a Constr constructor.

Constraint objects have a number of attributes. The full list can be found in the Attributes
section of this document. Some constraint attributes can only be queried, while others can also be
set. Recall that the Gurobi optimizer employs a lazy update approach, so changes to attributes don’t
take effect until the next call to Model.update, Model.optimize, or Model.write on the associated
model.

We should point out a few things about constraint attributes. Consider the rhs attribute. Its
value can be queried using constr.rhs. The Gurobi library ignores letter case in attribute names,
so it can also be queried as constr.rhs. It can be set using a standard assignment statement (e.g.,
constr.rhs = 0). However, as mentioned earlier, attribute modification is done in a lazy fashion,
so you won’t see the effect of the change immediately. And some attributes can not be set (e.g.,
the Pi attribute), so attempts to assign new values to them will raise an exception.

You can also use Constr.getAttr/ Constr.setAttr to access attributes. The attribute name can
be passed to these routines as a string, or you can use the constants defined in the GRB.Attr class
(e.g., GRB.Attr.rhs).

Constr.getAttr()

getAttr (attrname)

Query the value of a constraint attribute. The full list of available attributes can be found in
the Attributes section.

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried.
Arguments:

attrname: The attribute being queried.
Return value:

The current value of the requested attribute.
Example usage:

print(constr.getAttr(GRB.Attr.slack))
print(constr.getAttr("slack"))

Constr.sameAs()

sameAs (constr2)

Check whether two constraint objects refer to the same constraint.
Arguments:

constr2: The other constraint.
Return value:

Boolean result indicates whether the two constraint objects refer to the same model con-
straint.

Example usage:
print(model.getConstrs()[0].sameAs(model.getConstrs()[1]))

482

Constr.setAttr()

setAttr (attrname, newvalue)

Set the value of a constraint attribute. Note that, due to our lazy update approach, the change
won’t actually take effect until you update the model (using Model.update), optimize the model
(using Model.optimize), or write the model to disk (using Model.write).

The full list of available attributes can be found in the Attributes section.
Raises an AttributeError if the specified attribute doesn’t exist or can’t be set.
Arguments:

attrname: The attribute being modified.
newvalue: The desired new value of the attribute.

Example usage:
constr.setAttr(GRB.Attr.rhs, 0.0)
constr.setAttr("rhs", 0.0)

483

6.5 QConstr
Gurobi quadratic constraint object. Quadratic constraints are always associated with a particular
model. You create a quadratic constraint object by adding a quadratic constraint to a model (using
Model.addQConstr), rather than by using a QConstr constructor.

Quadratic constraint objects have a number of attributes. The full list can be found in the
Attributes section of this document. Some constraint attributes can only be queried, while others
can also be set. Recall that the Gurobi optimizer employs a lazy update approach, so changes to
attributes don’t take effect until the next call to Model.update, Model.optimize, Model.write on
the associated model.

We should point out a few things about quadratic constraint attributes. Consider the qcrhs
attribute. Its value can be queried using qconstr.qcrhs. The Gurobi library ignores letter case
in attribute names, so it can also be queried as qconstr.QCRHS. It can be set using a standard
assignment statement (e.g., qconstr.qcrhs = 0). However, as mentioned earlier, attribute modi-
fication is done in a lazy fashion, so you won’t see the effect of the change immediately. And some
attributes can not be set (e.g., the qcpi attribute), so attempts to assign new values to them will
raise an exception.

You can also use QConstr.getAttr/ QConstr.setAttr to access attributes. The attribute name
can be passed to these routines as a string, or you can use the constants defined in the GRB.Attr
class (e.g., GRB.Attr.qcrhs).

QConstr.getAttr()

getAttr (attrname)

Query the value of a quadratic constraint attribute. The full list of available attributes can be
found in the Attributes section.

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried.
Arguments:

attrname: The attribute being queried.
Return value:

The current value of the requested attribute.
Example usage:

print(qconstr.getAttr(GRB.Attr.qcsense))
print(qconstr.getAttr("qcsense"))

QConstr.setAttr()

setAttr (attrname, newvalue)

Set the value of a quadratic constraint attribute. Note that, due to our lazy update approach,
the change won’t actually take effect until you update the model (using Model.update), optimize
the model (using Model.optimize), or write the model to disk (using Model.write).

The full list of available attributes can be found in the Attributes section.
Raises an AttributeError if the specified attribute doesn’t exist or can’t be set.
Arguments:

484

attrname: The attribute being modified.
newvalue: The desired new value of the attribute.

Example usage:
constr.setAttr(GRB.Attr.qcrhs, 0.0)
constr.setAttr("qcrhs", 0.0)

485

6.6 SOS
Gurobi SOS constraint object. SOS constraints are always associated with a particular model.
You create an SOS object by adding an SOS constraint to a model (using Model.addSOS), rather
than by using an SOS constructor. Similarly, SOS constraints are removed using the Model.remove
method.

An SOS constraint can be of type 1 or 2 (GRB.SOS_TYPE1 or GRB.SOS_TYPE2). A type 1 SOS
constraint is a set of variables for which at most one variable in the set may take a value other than
zero. A type 2 SOS constraint is an ordered set of variables where at most two variables in the set
may take non-zero values. If two take non-zero values, they must be contiguous in the ordered set.

SOS constraint objects have one attribute, IISSOS, which can be queried with the SOS.getAttr
method.

SOS.getAttr()

getAttr (attrname)

Query the value of an SOS attribute. The full list of available attributes can be found in the
Attributes section.

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried.
Arguments:

attrname: The attribute being queried.
Return value:

The current value of the requested attribute.
Example usage:

print(sos.getAttr(GRB.Attr.IISSOS))

486

6.7 GenConstr
Gurobi general constraint object. General constraints are always associated with a particular
model. You add a general constraint to a model either by using Model.addGenConstr, or by using
Model.addConstr or Model.addConstrs plus a general constraint helper function).

General constraint objects have a number of attributes, which can be queried with the Gen-
Constr.getAttr method. The full list can be found in the Attributes section of this document.

GenConstr.getAttr()

getAttr (attrname)

Query the value of a general constraint attribute. The full list of available attributes can be
found in the Attributes section.

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried.
Arguments:

attrname: The attribute being queried.
Return value:

The current value of the requested attribute.
Example usage:

print(genconstr.getAttr(GRB.Attr.GenConstrType))
print(genconstr.getAttr("GenConstrType"))

GenConstr.setAttr()

setAttr (attrname, newvalue)

Set the value of a general constraint attribute. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using Model.update), optimize the
model (using Model.optimize), or write the model to disk (using Model.write).

The full list of available attributes can be found in the Attributes section.
Raises an AttributeError if the specified attribute doesn’t exist or can’t be set.
Arguments:

attrname: The attribute being modified.
newvalue: The desired new value of the attribute.

6.8 LinExpr
Gurobi linear expression object. A linear expression consists of a constant term, plus a list of
coefficient-variable pairs that capture the linear terms. Linear expressions are used to build con-
straints. They are temporary objects that typically have short lifespans.

You generally build linear expressions using overloaded operators. For example, if x is a Var
object, then x + 1 is a LinExpr object. Expressions can be built from constants (e.g., expr = 0),
variables (e.g., expr = 1 * x + 2 * y), or from other expressions (e.g., expr2 = 2 * expr1 + x,
or expr3 = expr1 + 2 * expr2). You can also modify existing expressions (e.g., expr += x, or
expr2 -= expr1).

487

The full list of overloaded operators on LinExpr objects is as follows: +, +=, -, -=, *, *=, and /.
In Python parlance, we’ve defined the following LinExpr functions: __add__, __radd__, __iadd__,
__sub__, __rsub__, __isub__, __mul__, __rmul__, __imul__, and __div__.

We’ve also overloaded the comparison operators (==, <=, and >=), to make it easier to build
constraints from linear expressions.

You can also use add or addTerms to modify expressions. The LinExpr() constructor can be
used to build expressions. Another option is quicksum; it is a more efficient version of the Python
sum function. Terms can be removed from an expression using remove.

Note that the cost of building expressions depends heavily on the approach you use. While
you can generally ignore this issue when building small expressions, you should be aware of a few
efficiency issues when building large expressions:

• While the Python sum function can be used to build expressions, it should be avoided. Its
cost is quadratic in the length of the expression.

• For similar reasons, you should avoid using expr = expr + x in a loop. Building large
expressions in this way also leads to quadratic runtimes.

• The quicksum function is much quicker than sum, as are loops over expr += x or expr.add(x).
These approaches are fast enough for most programs, but they may still be expensive for very
large expressions.

• The two most efficient ways to build large linear expressions are addTerms or the LinExpr()
constructor.

Individual terms in a linear expression can be queried using the getVar, getCoeff, and getCon-
stant methods. You can query the number of terms in the expression using the size method.

Note that a linear expression may contain multiple terms that involve the same variable. These
duplicate terms are merged when creating a constraint from an expression, but they may be visible
when inspecting individual terms in the expression (e.g., when using getVar).

LinExpr()

LinExpr (arg1=0.0, arg2=None)

Linear expression constructor. Note that you should generally use overloaded operators instead
of the explicit constructor to build linear expression objects.

This constructor takes multiple forms. You can initialize a linear expression using a constant
(LinExpr(2.0)), a variable (LinExpr(x)), an expression (LinExpr(2*x)), a pair of lists containing
coefficients and variables, respectively (LinExpr([1.0, 2.0], [x, y])), or a list of coefficient-
variable tuples (LinExpr([(1.0, x), (2.0, y), (1.0, z)])).

Return value:
A linear expression object.

Example usage:
expr = LinExpr(2.0)
expr = LinExpr(2*x)
expr = LinExpr([1.0, 2.0], [x, y])
expr = LinExpr([(1.0, x), (2.0, y), (1.0, z)])

488

LinExpr.add()

add (expr, mult=1.0)

Add one linear expression into another. Upon completion, the invoking linear expression will
be equal to the sum of itself and the argument expression.

Arguments:
expr: Linear expression to add.
mult (optional): Multiplier for argument expression.

Example usage:
e1 = x + y
e1.add(z, 3.0)

LinExpr.addConstant()

addConstant (c)

Add a constant into a linear expression.
Arguments:

c: Constant to add to expression.
Example usage:

expr = x + 2 * y
expr.addConstant(0.1)

LinExpr.addTerms()

addTerms (coeffs, vars)

Add new terms into a linear expression.
Arguments:

coeffs: Coefficients for new terms; either a list of coefficients or a single coefficient. The
two arguments must have the same size.

vars: Variables for new terms; either a list of variables or a single variable. The two
arguments must have the same size.

Example usage:
expr.addTerms(1.0, x)
expr.addTerms([2.0, 3.0], [y, z])

LinExpr.clear()

clear ()

Set a linear expression to 0.
Example usage:

expr.clear()

489

LinExpr.copy()

copy ()

Copy a linear expression
Return value:

Copy of input expression.
Example usage:

e0 = 2 * x + 3
e1 = e0.copy()

LinExpr.getConstant()

getConstant ()

Retrieve the constant term from a linear expression.
Return value:

Constant from expression.
Example usage:

e = 2 * x + 3
print(e.getConstant())

LinExpr.getCoeff()

getCoeff (i)

Retrieve the coefficient from a single term of the expression.
Return value:

Coefficient for the term at index i in the expression.
Example usage:

e = x + 2 * y + 3
print(e.getCoeff(1))

LinExpr.getValue()

getValue ()

Compute the value of an expression using the current solution.
Return value:

The value of the expression.
Example usage:

obj = model.getObjective()
print(obj.getValue())

490

LinExpr.getVar()

getVar (i)

Retrieve the variable object from a single term of the expression.
Return value:

Variable for the term at index i in the expression.
Example usage:

e = x + 2 * y + 3
print(e.getVar(1))

LinExpr.remove()

remove (item)

Remove a term from a linear expression.
Arguments:

item: If item is an integer, then the term stored at index item of the expression is removed.
If item is a Var, then all terms that involve item are removed.

Example usage:
e = x + 2 * y + 3
e.remove(x)

LinExpr.size()

size ()

Retrieve the number of terms in the linear expression (not including the constant).
Return value:

Number of terms in the expression.
Example usage:

e = x + 2 * y + 3
print(e.size())

LinExpr.__eq__()

__eq__ ()

Overloads the == operator, creating a TempConstr object that captures an equality constraint.
The result is typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(x + y == 1)

491

LinExpr.__le__()

__le__ ()

Overloads the <= operator, creating a TempConstr object that captures an equality constraint.
The result is typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(x + y <= 1)

LinExpr.__ge__()

__ge__ (arg)

Overloads the >= operator, creating a TempConstr object that captures an equality constraint.
The result is typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(x + y >= 1)

492

6.9 QuadExpr
Gurobi quadratic expression object. A quadratic expression consists of a linear expression plus a
list of coefficient-variable-variable triples that capture the quadratic terms. Quadratic expressions
are used to build quadratic objective functions and quadratic constraints. They are temporary
objects that typically have short lifespans.

You generally build quadratic expressions using overloaded operators. For example, if x is a Var
object, then x * x is a QuadExpr object. Expressions can be built from constants (e.g., expr = 0),
variables (e.g., expr = 1 * x *x + 2 * x * y), or from other expressions (e.g., expr2 = 2 *
expr1 + x * x, or expr3 = expr1 + 2 * expr2). You can also modify existing expressions (e.g.,
expr += x * x, or expr2 -= expr1).

The full list of overloaded operators on QuadExpr objects is as follows: +, +=, -, -=, *, *=,
and /. In Python parlance, we’ve defined the following QuadExpr functions: __add__, __radd__,
__iadd__, __sub__, __rsub__, __isub__, __mul__, __rmul__, __imul__, and __div__.

We’ve also overloaded the comparison operators (==, <=, and >=), to make it easier to build
constraints from quadratic expressions.

You can use quicksum to build quadratic expressions; it is a more efficient version of the Python
sum function. You can also use add or addTerms to modify expressions. Terms can be removed
from an expression using remove.

Note that the cost of building expressions depends heavily on the approach you use. While
you can generally ignore this issue when building small expressions, you should be aware of a few
efficiency issues when building large expressions:

• While the Python sum function can be used to build expressions, it should be avoided. Its
cost is quadratic in the length of the expression.

• For similar reasons, you should avoid using expr = expr + x*x in a loop. Building large
expressions in this way also leads to quadratic runtimes.

• The quicksum function is much quicker than sum, as are loops over expr += x*x or expr.add(x*x).
These approaches are fast enough for most programs, but they may still be expensive for very
large expressions.

• The most efficient way to build a large quadratic expression is with a single call to addTerms.

Individual quadratic terms in a quadratic expression can be queried using the getVar1, getVar2,
and getCoeff methods. You can query the number of quadratic terms in the expression using the
size method. To query the constant and linear terms associated with a quadratic expression, use
getLinExpr to obtain the linear portion of the quadratic expression, and then use the getVar,
getCoeff, and getConstant methods on this LinExpr object. Note that a quadratic expression may
contain multiple terms that involve the same variable pair. These duplicate terms are merged when
creating a constraint from an expression, but they may be visible when inspecting individual terms
in the expression (e.g., when using getVar1 and getVar2).

QuadExpr()

QuadExpr (expr = None)

493

Quadratic expression constructor. Note that you should generally use overloaded operators
instead of the explicit constructor to build quadratic expression objects.

Arguments:
expr (optional): Initial value of quadratic expression. Can be a LinExpr or a QuadExpr.
If no argument is specified, the initial expression value is 0.

Return value:
A quadratic expression object.

Example usage:

expr = QuadExpr()
expr = QuadExpr(2*x)
expr = QuadExpr(x*x + y+y)

QuadExpr.add()

add (expr, mult=1.0)

Add an expression into a quadratic expression. Argument can be either a linear or a quadratic
expression. Upon completion, the invoking quadratic expression will be equal to the sum of itself
and the argument expression.

Arguments:
expr: Linear or quadratic expression to add.
mult (optional): Multiplier for argument expression.

Example usage:
e = x * x + 2 * y * y
e.add(z * z, 3.0)

QuadExpr.addConstant()

addConstant (c)

Add a constant into a quadratic expression.
Arguments:

c: Constant to add to expression.
Example usage:

e = x * x + 2 * y * y + z
expr.addConstant(0.1)

QuadExpr.addTerms()

addTerms (coeffs, vars, vars2=None)

Add new linear or quadratic terms into a quadratic expression.
Arguments:

coeffs: Coefficients for new terms; either a list of coefficients or a single coefficient. The
arguments must have the same size.

494

vars: Variables for new terms; either a list of variables or a single variable. The arguments
must have the same size.

vars2 (optional): Variables for new quadratic terms; either a list of variables or a single
variable. Only present when you are adding quadratic terms. The arguments must have
the same size.

Example usage:
expr.addTerms(1.0, x)
expr.addTerms([2.0, 3.0], [y, z])
expr.addTerms([2.0, 3.0], [x, y], [y, z])

QuadExpr.clear()

clear ()

Set a quadratic expression to 0.
Example usage:

expr.clear()

QuadExpr.copy()

copy ()

Copy a quadratic expression
Return value:

Copy of input expression.
Example usage:

e0 = x * x + 2 * y * y + z
e1 = e0.copy()

QuadExpr.getCoeff()

getCoeff (i)

Retrieve the coefficient from a single term of the expression.
Return value:

Coefficient for the quadratic term at index i in the expression.
Example usage:

e = x * x + 2 * y * y + z
print(e.getCoeff(1))

QuadExpr.getLinExpr()

getLinExpr ()

A quadratic expression is represented as a linear expression, plus a list of quadratic terms. This
method retrieves the linear expression associated with the quadratic expression.

Return value:

495

Linear expression from quadratic expression.
Example usage:

e = x * x + 2 * y * y + z
le = e.getLinExpr()

QuadExpr.getValue()

getValue ()

Compute the value of an expression using the current solution.
Return value:

The value of the expression.
Example usage:

obj = model.getObjective()
print(obj.getValue())

QuadExpr.getVar1()

getVar1 (i)

Retrieve the first variable for a single quadratic term of the quadratic expression.
Return value:

First variable associated with the quadratic term at index i in the quadratic expression.
Example usage:

e = x * x + 2 * y * y + z
print(e.getVar1(1))

QuadExpr.getVar2()

getVar2 (i)

Retrieve the second variable for a single quadratic term of the quadratic expression.
Return value:

Second variable associated with the quadratic term at index i in the quadratic expression.
Example usage:

e = x * x + 2 * y * y + z
print(e.getVar2(1))

QuadExpr.remove()

remove (item)

Remove a term from a quadratic expression.
Arguments:

item: If item is an integer, then the quadratic term stored at index item of the expression
is removed. If item is a Var, then all quadratic terms that involve item are removed.

Example usage:

496

e = x * x + 2 * y * y + z
e.remove(x)

QuadExpr.size()

size ()

Retrieve the number of quadratic terms in the expression.
Return value:

Number of quadratic terms in the expression.
Example usage:

e = x * x + 2 * y * y + z
print(e.size())

QuadExpr.__eq__()

__eq__ ()

Overloads the == operator, creating a TempConstr object that captures an equality constraint.
The result is typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(x*x + y*y == 1)

QuadExpr.__le__()

__le__ ()

Overloads the <= operator, creating a TempConstr object that captures an equality constraint.
The result is typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(x*x + y*y <= 1)

QuadExpr.__ge__()

__ge__ (arg)

Overloads the >= operator, creating a TempConstr object that captures an equality constraint.
The result is typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(x*x + y*y >= 1)

497

6.10 GenExpr
Gurobi general expression object. Objects of this class are created by a set of general constraint
helper functions functions. They are temporary objects, meant to be used in conjunction with over-
loaded operators to build TempConstr objects, which are then passed to addConstr or addConstrs
to build general constraints.

To be more specific, the following creates a GenExpr object...

max_(x, y)

The following creates a TempConstr object...

z == max_(x, y)

The following adds a general constraint to a model...

model.addConstr(z == max_(x, y))

Please refer to the TempConstr documentation for more information on building general con-
straints.

498

6.11 TempConstr
Gurobi temporary constraint object. Objects of this class are created as intermediate results when
building constraints using overloaded operators. There are no member functions on this class.
Instead, TempConstr objects are created by a set of functions on Var, LinExpr, QuadExpr, and
GenExpr objects (e.g., ==, <=, and >=). You will generally never store objects of this class in
your own variables.

The TempConstr object allows you to create several different types of constraints:

• Linear Constraint: an expression of the form Expr1 sense Expr1, where Expr1 and Expr2
are LinExpr objects, Var objects, or constants, and sense is one of ==, <= or >=. For example,
x + y <= 1 + z is a linear constraint, as is x + y == 5. Note that Expr1 and Expr2 can’t
both be constants.

• Ranged Linear Constraint: an expression of the form LinExpr == [Const1, Const2],
where Const1 and Const2 are constants and LinExpr is a LinExpr object. For example,
x + y == [1, 2] is a ranged linear constraint.

• Quadratic Constraint: an expression of the form Expr1 sense Expr2, where Expr1 and
Expr2 are QuadExpr objects, LinExpr objects, Var objects, or constants, and sense is one of
==, <= or >=. For example, x*x + y*y <= 3 is a quadratic constraint, as is x*x + y*y <= z*z.
Note that one of Expr1 or Expr2 must be a QuadExpr (otherwise, the constraint would be
linear).

• Absolute Value Constraint: an expression of the form x == abs_(y), where x and y must
be Var objects.

• Logical Constraint: an expression of the form x == op_(y), where x is a binary Var object,
and y is a binary Var, a list of binary Var, or a tupledict of binary Var, and op_ is either
and_ or or_ (or the Python-specific variants, all_ and any_).

• Min or Max Constraint: an expression of the form x == op_(y), where x is a Var object,
and y is a Var, a list of Var and constants, or a tupledict of Var, and op_ is one of min_ or
max_.

• Indicator Constraint: an expression of the form (x == b) >> (Expr1 sense Expr2),
where x is a binary Var object, b is either 0 or 1; Expr1 and Expr2 are LinExpr objects,
Var objects, or constants, and sense is one of ==, <= or >=. Parenthesizing both expressions
is required. For example, (x == 1) >> (y + w <= 5) is an indicator constraint, indicating
that whenever the binary variable x takes the value 1 then the linear constraint y + w <= 5
must hold.

Consider the following examples:

model.addConstr(x + y == 1);
model.addConstr(x + y == [1, 2]);
model.addConstr(x*x + y*y <= 1);
model.addConstr(x == abs_(y));
model.addConstr(x == or_(y, z));

499

model.addConstr(x == max_(y, z));
model.addConstr((x == 1) >> (y + z <= 5));

In each case, the overloaded comparison operator creates an object of type TempConstr, which is
then immediately passed to method Model.addConstr.

500

6.12 Column
Gurobi column object. A column consists of a list of coefficient, constraint pairs. Columns are used
to represent the set of constraints in which a variable participates, and the associated coefficients.
They are temporary objects that typically have short lifespans.

You generally build columns using the Column constructor. Terms can be added to an existing
column using addTerms. Terms can also be removed from a column using remove.

Individual terms in a column can be queried using the getConstr, and getCoeff methods. You
can query the number of terms in the column using the size method.

Column()

Column (coeffs=None, constrs=None)

Column constructor.
Arguments:

coeffs (optional): Lists the coefficients associated with the members of constrs.
constrs (optional): Constraint or constraints that participate in expression. If constrs
is a list, then coeffs must contain a list of the same length. If constrs is a single
constraint, then coeffs must be a scalar.

Return value:
An expression object.

Example usage:

col = Column()
col = Column(3, c1)
col = Column([1.0, 2.0], [c1, c2])

Column.addTerms()

addTerms (coeffs, constrs)

Add new terms into a column.
Arguments:

coeffs: Coefficients for added constraints; either a list of coefficients or a single coefficient.
The two arguments must have the same size.

constrs: Constraints to add to column; either a list of constraints or a single constraint.
The two arguments must have the same size.

Example usage:
col.addTerms(1.0, x)
col.addTerms([2.0, 3.0], [y, z])

Column.clear()

clear ()

Remove all terms from a column.

501

Example usage:
col.clear()

Column.copy()

copy ()

Copy a column.
Return value:

Copy of input column.
Example usage:

col0 = Column(1.0, c0)
col1 = col0.copy()

Column.getCoeff()

getCoeff (i)

Retrieve the coefficient from a single term in the column.
Return value:

Coefficient for the term at index i in the column.
Example usage:

col = Column([1.0, 2.0], [c0, c1])
print(col.getCoeff(1))

Column.getConstr()

getConstr (i)

Retrieve the constraint object from a single term in the column.
Return value:

Constraint for the term at index i in the column.
Example usage:

col = Column([1.0, 2.0], [c0, c1])
print(col.getConstr(1))

Column.remove()

remove (item)

Remove a term from a column.
Arguments:

item: If item is an integer, then the term stored at index item of the column is removed.
If item is a Constr, then all terms that involve item are removed.

Example usage:
col = Column([1.0, 2.0], [c0, c1])
col.remove(c0)

502

Column.size()

size ()

Retrieve the number of terms in the column.
Return value:

Number of terms in the column.
Example usage:

print(Column([1.0, 2.0], [c0, c1]).size())

503

6.13 Callbacks
Gurobi callback class. A callback is a user function that is called periodically by the Gurobi
optimizer in order to allow the user to query or modify the state of the optimization. More
precisely, if you pass a function that takes two arguments (model and where) as the argument to
Model.optimize, your function will be called during the optimization. Your callback function can
then call Model.cbGet to query the optimizer for details on the state of the optimization.

Gurobi callbacks can be used both to monitor the progress of the optimization and to modify
the behavior of the Gurobi optimizer. A simple user callback function might call Model.cbGet
to produce a custom display, or perhaps to terminate optimization early (using Model.terminate).
More sophisticated MIP callbacks might use Model.cbGetNodeRel or Model.cbGetSolution to re-
trieve values from the solution to the current node, and then use Model.cbCut or Model.cbLazy
to add a constraint to cut off that solution, or Model.cbSetSolution to import a heuristic solution
built from that solution.

The Gurobi callback class provides a set of constants that are used within the user callback
function. The first set of constants in this class list the options for the where argument to the user
callback function. The where argument indicates from where in the optimization process the user
callback is being called. Options are listed in the Callback Codes section of this document.

The other set of constants in this class list the options for the what argument to Model.cbGet.
The what argument is used by the user callback to indicate what piece of status information it
would like to retrieve. The full list of options can be found in the Callback Codes section. As
with the where argument, you refer to a what constant through GRB.Callback. For example, the
simplex objective value would be requested using GRB.Callback.SPX_OBJVAL.

If you would like to pass data to your callback function, you can do so through the Model object.
For example, if your program includes the statement model._value = 1 before the optimization
begins, then your callback function can query the value of model._value. Note that the name of
the user data field must begin with an underscore.

When solving a model using multiple threads, note that the user callback is only ever called
from a single thread, so you don’t need to worry about the thread-safety of your callback.

You can look at callback.py in the examples directory for details of how to use Gurobi call-
backs.

504

6.14 GurobiError
Gurobi exception object. Upon catching an exception e, you can examine e.errno (an integer) or
e.message (a string). A list of possible values for errno can be found in the Error Code section.
message provides additional information on the source of the error.

505

6.15 Env
Gurobi environment object. Note that environments play a much smaller role in the Python
interface than they do in other Gurobi language APIs, mainly because the Python interface has a
default environment. Unless you explicitly pass your own environment to routines that require an
environment, the default environment will be used.

The primary situations where you will want to use your own environment are:

• When you are using a Gurobi Compute Server and want to choose the server from within
your program.

• When you need control over garbage collection of your environment. The Gurobi Python
interface maintains a reference to the default environment, so by default it will never be
garbage collected. By creating your own environment, you can control exactly when your
program releases any licensing tokens or Compute Servers it is using.

• When you are using concurrent environments in one of the concurrent optimizers.

Note that you can manually remove the reference to the default environment by calling dis-
poseDefaultEnv. After calling this, and after all models built within the default environment are
garbage collected, the default environment will be garbage collected as well. A new default envi-
ronment will be created automatically if you call a routine that needs one.

Env()

Env (logfilename=””)

Env constructor. You will generally want to use the default environment in Gurobi Python
programs. The exception is when you want explicit control over environment garbage collection. By
creating your own environment object and always passing it to methods that take an environment
as input (read or the Model constructor), you will avoid creating the default environment. Once
every model created using an Env object is garbage collected, and once the Env object itself is
no longer referenced, the garbage collector will reclaim the environment and release all associated
resources.

Arguments:
logfilename: Name of the log file for this environment. Pass an an empty string if you
don’t want a log file.

Return value:
New environment object.

Example usage:
env = Env("gurobi.log")
m = read("misc07.mps", env)
m.optimize()

Env.ClientEnv()

Env.ClientEnv (logfilename=””, computeServers=””, port=GRB.DEFAULT_CS_PORT,
password=””, priority=0, timeout=-1)

506

Compute Server Env constructor. Creates a client environment on a compute server. If all
compute servers are at capacity, this command will cause a job to be placed in the compute server
queue, and the command will return an environment once capacity is available.

Client environments have limited uses in the Python environment. You can use a client envi-
ronment as an argument to the Model constructor, to indicate that a model should be constructed
on a Compute Server, or as an argument to the global read function, to indicate that the result of
reading the file should be place on a Compute Server.

Arguments:
logfilename: Name of the log file for this environment. Pass an an empty string if you
don’t want a log file.

computeServers: Comma-separated list of compute servers. Servers can be identified by
name or by IP address.

port: Port number on compute server. Use the default value unless your server administra-
tor has informed you that a different value should be used.

password: User password on compute server. Obtain this from your Compute Server ad-
ministrator.

priority: Job priority on the compute server. Higher priority jobs are pulled from the job
queue before lower priority jobs. A special value of 100 indicates that the job should run
immediately.

timeout: Job queue timeout. After the specified timeout (in seconds) has elapsed, this
command will give up and return a Gurobi exception. Use a negative value to indicate
that the call should never timeout.

Return value:
New environment object.

Example usage:

env = Env.ClientEnv("client.log", "server1.mycompany.com,server2.mycompany.com")
m = read("misc07.mps", env)
m.optimize()

Env.CloudEnv()

Env.CloudEnv (logfilename=””, accessID, secretKey, pool=””)

Instant Cloud Env constructor. Creates a Gurobi environment on an Instant Cloud server. Uses
an existing Instant Cloud machine if one is currently active within the specified machine pool, and
launches a new one otherwise. Note that launching a machine can take a few minutes.

Once an Instant Cloud server is active (either because it was already active or because the
launch of a new server completed), this command places a job in the server queue. If the server
has sufficient capacity, the job will start immediately. Otherwise, it is placed in the server queue
and this command returns once capacity becomes available.

You should visit the Gurobi Instant Cloud site to obtain your accessID and secretKey, con-
figure your machine pools, and perform other cloud setup and maintenance tasks.

Note that you should keep your secretKey private. Sharing it with others will allow them to
launch Instant Cloud instances in your account.

507

In addition to creating a new environment, this routine will also check the current working
directory for a file named gurobi.env, and it will attempt to read parameter settings from this file
if it exists. The file should be in PRM format (briefly, each line should contain a parameter name,
followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments.

Most methods in the Gurobi Python interface will use the default enironment, so you’ll need to
take special action to use the cloud environment created by this method. You can use a cloud envi-
ronment as an argument to the Model constructor, to indicate that a model should be constructed
on the given Instant Cloud server, or as an argument to the global read function, to indicate that
the result of reading the file should be place on the given Instant Cloud Server.

Arguments:
logfilename: The name of the log file for this environment. May be NULL (or an empty
string), in which case no log file is created.

accessID: The access ID for your Gurobi Instant Cloud license. This can be retrieved from
the Gurobi Instant Cloud website. When used in combination with your secretKey, this
allows you to launch Instant Cloud instances and submit jobs to them.

secretKey: The secret key for your Gurobi Instant Cloud license. This can be retrieved
from the Gurobi Instant Cloud website. When used in combination with your accessID,
this allows you to launch Instant Cloud instances and submit jobs to them. Note that you
should keep your secret key private.

pool: The machine pool. Machine pools allow you to create fixed configurations on the
Instant Cloud website (capturing things like type of machine, geographic region, etc.),
and then launch and share machines from client programs without having to restate the
configuration information each time you launch a machine. May be an empty string, in
which case your job will be launched in the default pool associated with your cloud license.

Return value:
New environment object.

Example usage:

env = Env.CloudEnv("cloud.log",
"3d1ecef9-dfad-eff4-b3fa", "ae6L23alJe3+fas");

m = read("misc07.mps", env)
m.optimize()

Env.resetParams()

resetParams ()

Reset the values of all parameters to their default values.
Example usage:

env.resetParams()

Env.setParam()

setParam (paramname, newvalue)

508

Set the value of a parameter to a new value.
Arguments:

paramname: String containing the name of parameter that you would like to modify. The
name can include ’*’ and ’?’ wildcards. If more than one parameter matches, the matching
names are listed and none are modified. Note that case is ignored.

newvalue: Desired new value for parameter. Can be ’default’, which indicates that the
parameter should be reset to its default value.

Example usage:
env.setParam("Cuts", 2)
env.setParam("Heu*", 0.5)
env.setParam("*Interval", 10)

Env.writeParams()

writeParams (filename)

Write all modified parameters to a file. The file is written in PRM format.
Example usage:

env.setParam("Heu*", 0.5)
env.writeParams("params.prm") # file will contain changed parameter
system("cat params.prm")

509

6.16 GRB
Class for Python constants. Classes GRB.Attr and GRB.Param are used to get or set Gurobi
attributes and parameters, respectively.

Constants

The following list contains a set of constants that are used by the Gurobi Python interface. You
would refer to them using a GRB. prefix (e.g., GRB.OPTIMAL).

Model status codes (after call to optimize())

LOADED = 1
OPTIMAL = 2
INFEASIBLE = 3
INF_OR_UNBD = 4
UNBOUNDED = 5
CUTOFF = 6
ITERATION_LIMIT = 7
NODE_LIMIT = 8
TIME_LIMIT = 9
SOLUTION_LIMIT = 10
INTERRUPTED = 11
NUMERIC = 12
SUBOPTIMAL = 13
INPROGRESS = 14
USER_OBJ_LIMIT = 15

Basis status info

BASIC = 0
NONBASIC_LOWER = -1
NONBASIC_UPPER = -2
SUPERBASIC = -3

Constraint senses

LESS_EQUAL = ’<’
GREATER_EQUAL = ’>’
EQUAL = ’=’

Variable types

CONTINUOUS = ’C’
BINARY = ’B’
INTEGER = ’I’

510

SEMICONT = ’S’
SEMIINT = ’N’

Objective sense

MINIMIZE = 1
MAXIMIZE = -1

SOS types

SOS_TYPE1 = 1
SOS_TYPE2 = 2

General constraint types

GENCONSTR_MAX = 0
GENCONSTR_MIN = 1
GENCONSTR_ABS = 2
GENCONSTR_AND = 3
GENCONSTR_OR = 4
GENCONSTR_INDICATOR = 5

Numeric constants

INFINITY = 1e100
UNDEFINED = 1e101

Other constants

DEFAULT_CS_PORT = 61000

Errors

ERROR_OUT_OF_MEMORY = 10001
ERROR_NULL_ARGUMENT = 10002
ERROR_INVALID_ARGUMENT = 10003
ERROR_UNKNOWN_ATTRIBUTE = 10004
ERROR_DATA_NOT_AVAILABLE = 10005
ERROR_INDEX_OUT_OF_RANGE = 10006
ERROR_UNKNOWN_PARAMETER = 10007
ERROR_VALUE_OUT_OF_RANGE = 10008
ERROR_NO_LICENSE = 10009
ERROR_SIZE_LIMIT_EXCEEDED = 10010
ERROR_CALLBACK = 10011
ERROR_FILE_READ = 10012

511

ERROR_FILE_WRITE = 10013
ERROR_NUMERIC = 10014
ERROR_IIS_NOT_INFEASIBLE = 10015
ERROR_NOT_FOR_MIP = 10016
ERROR_OPTIMIZATION_IN_PROGRESS = 10017
ERROR_DUPLICATES = 10018
ERROR_NODEFILE = 10019
ERROR_Q_NOT_PSD = 10020
ERROR_QCP_EQUALITY_CONSTRAINT = 10021
ERROR_NETWORK = 10022
ERROR_JOB_REJECTED = 10023
ERROR_NOT_SUPPORTED = 10024
ERROR_EXCEED_2B_NONZEROS = 10025
ERROR_INVALID_PIECEWISE_OBJ = 10026
ERROR_UPDATEMODE_CHANGE = 10027
ERROR_CLOUD = 10028
ERROR_MODEL_MODIFICATION = 10029
ERROR_NOT_IN_MODEL = 20001
ERROR_FAILED_TO_CREATE_MODEL = 20002
ERROR_INTERNAL = 20003

GRB.Attr
The constants defined in this class are used to get or set attributes (through Model.getAttr or
Model.setAttr, for example). Please refer to the Attributes section to see a list of all attributes
and their functions. You refer to an attribute using a GRB.Attr prefix (e.g., GRB.Attr.obj). Note
that these constants are simply strings, so wherever you might use this constant, you also have the
option of using the string directly (e.g, ’obj’ rather than GRB.Attr.obj).

GRB.Param
The constants defined in this class are used to get or set parameters Model.getParamInfo or
Model.setParam. Please refer to the Parameters section to see a list of all parameters and their
functions. You refer to a parameter using a GRB.Param prefix (e.g., GRB.Param.displayInterval).
Note that these constants are simply strings, so wherever you might use this constant, you also
have the option of using the string directly (e.g, ’displayInterval’ rather than GRB.Param.-
displayInterval).

512

6.17 tuplelist
Gurobi tuple list. This is a sub-class of the Python list class that is designed to efficiently
support a usage pattern that is quite common when building optimization models. In particular, if a
tuplelist is populated with a list of tuples, the select function on this class efficiently selects tuples
whose values match specified values in specified tuple fields. To give an example, the statement
l.select(1, ’*’, 5) would select all member tuples whose first field is equal to ’1’ and whose
third field is equal to ’5’. The ’*’ character is used as a wildcard to indicate that any value is
acceptable in that field.

You generally build tuplelist objects in the same way you would build standard Python lists.
For example, you can use the += operator to append a new list of items to an existing tuplelist, or
the + operator to concatenate a pair of tuplelist objects. You can also call the append, extend,
insert, pop, and remove functions.

To access the members of a tuplelist, you also use standard list functions. For example, l[0]
returns the first member of a tuplelist, while l[0:10] returns a tuplelist containing the first
ten members. You can also use len(l) to query the length of a list.

Note that tuplelist objects build and maintain a set of internal data structures to support
efficient select operations. If you wish to reclaim the storage associated with these data structures,
you can call the clean function.

A tuplelist is designed to store tuples containing scalar values (int, float, string, ...). It
may produce unpredictable results with other Python objects, such as tuples of tuples. Thus, you
can store (1, 2.0, ’abc’) in a tuplelist, but you shouldn’t store ((1, 2.0), ’abc’).

tuplelist()

tuplelist (list)

tuplelist constructor.
Arguments:

list: Initial list of member tuples.
Return value:

A tuplelist object.
Example usage:

l = tuplelist([(1,2), (1,3), (2,4)])
l = tuplelist([(’A’, ’B’, ’C’), (’A’, ’C’, ’D’)])

tuplelist.select()

select (pattern)

Returns a tuplelist containing all member tuples that match the specified pattern. The
pattern requires one argument for each field in the member tuple. A scalar argument must match the
corresponding field exactly. A list argument matches if any list member matches the corresponding
field. A ’*’ argument matches any value in the corresponding field.

Arguments:
pattern: Pattern to match for a member tuple.

513

Example usage:
l.select(1, 3, ’*’, 6)
l.select([1, 2], 3, ’*’, 6)
l.select(’A’, ’*’, ’C’)

tuplelist.clean()

clean ()

Discards internal data structure associated with a tuplelist object. Note that calling this
routine won’t affect the contents of the tuplelist. It only affects the memory used and the
performance of later calls to select.

Example usage:
l.clean()

tuplelist.__contains__()

__contains__ (val)

Provides efficient support for the Python in operator.
Example usage:

if (1,2) in l:
print("Tuple (1,2) is in tuplelist l")

514

6.18 tupledict
Gurobi tuple dict. This is a sub-class of the Python dict class that is designed to efficiently
support a usage pattern that is quite common when building optimization models. In particular, a
tupledict is a Python dict where the keys are stored as a Gurobi tuplelist, and where the values
are typically Gurobi Var objects. Objects of this class make it easier to build linear expressions on
sets of Gurobi variables, using tuplelist.select() syntax and semantics.

You typically build a tupledict by calling Model.addVars. Once you’ve created a tupledict
d, you can use d.sum() to create a linear expression that captures the sum of the variables in the
tupledict. You can also use a command like d.sum(1, ’*’, 5) to create a sum over a subset
of the variables in d. Assuming the keys for the tupledict are tuples containing three fields, this
statement would create a linear expression that captures the sum over all variables in d whose keys
contain a 1 in the first field of the tuple and a 5 in the third field (the ’*’ character is a wildcard
that indicates that any value is acceptable in that field). You can also use d.prod(coeff) to
create a linear expression where the coefficients are pulled from the argument dict. For example, if
d(1,2,5) contains variable x and coeff(1,2,5) is 2.0, then the resulting expression would include
term 2.0 ∗ x.

To access the members of a tupledict, you can use standard dict indexing. For example,
d[1,2] returns the value associated with tuple (1,2).

Note that a tupledict key must be a tuple of scalar values (int, float, string, ...). Thus,
you can use (1, 2.0, ’abc’) as a key, but you can’t use ((1, 2.0), ’abc’).

Note that tupledict objects build and maintain a set of internal data structures to support
efficient select operations. If you wish to reclaim the storage associated with these data structures,
you can call the clean function.

tupledict()

tupledict (args, kwargs)

tupledict constructor. Arguments are identical to those of a Python dict constructor.
Note that you will typically use Model.addVars to build a tupledict.
Arguments:

args: Positional arguments.
kwargs: Named arguments.

Return value:
A tupledict object.

Example usage:

d = tupledict([((1,2), ’onetwo’), ((1,3), ’onethree’), ((2,3), ’twothree’)])
print(d[1,2]) # prints ’onetwo’

tupledict.select()

select (pattern)

515

Returns a list containing the values associated with keys that match the specified tuple pattern.
The pattern should provide one value for each field in the key tuple. A ’*’ value indicates that
any value is accepted in that field.

Without arguments, this method returns a list of all values in the tupledict.
Arguments:

pattern: Pattern to match for a key tuple.
Example usage:

d = tupledict([((1,2), ’onetwo’), ((1,3), ’onethree’), ((2,3), ’twothree’)])
print(d.select()) # prints [’onetwo’, ’onethree’, ’twothree’]
print(d.select(1, ’*’)) # prints [’onetwo’, ’onethree’]
print(d.select(’*’, 3)) # prints [’onethree’, ’twothree’]
print(d.select(1, 3)) # prints [’onethree’]

tupledict.sum()

sum (pattern)

Returns the sum of the values associated with keys that match the specified pattern. If the
values are Gurobi Var objects, the result is a LinExpr. The pattern should provide one value for
each field in the key tuple. A ’*’ value indicates that any value is accepted in that field.

Without arguments, this method returns the sum of all values in the tupledict.
Arguments:

pattern: Pattern to match for a key tuple.
Example usage:

x = m.addVars([(1,2), (1,3), (2,3)])
expr = x.sum() # LinExpr: x[1,2] + x[1,3] + x[2,3]
expr = x.sum(1, ’*’) # LinExpr: x[1,2] + x[1,3]
expr = x.sum(’*’, 3) # LinExpr: x[1,3] + x[2,3]
expr = x.sum(1, 3) # LinExpr: x[1,3]

tupledict.prod()

prod (coeff, pattern)

Returns a linear expression that contains one term for each tuple that is present in both the
tupledict and in the argument dict. For example, x.prod(coeff) would contain term 2.0 ∗ var
if x[1,2] = var and coeff[1,2] = 2.0.

Arguments:
coeff: Python dict that maps tuples to coefficients.
pattern: Pattern to match for a key tuple.

Example usage:
x = m.addVars([(1,2), (1,3), (2,3)])
coeff = dict([((1,2), 2.0), ((1,3), 2.1), ((2,3), 3.3)])
expr = x.prod(coeff) # LinExpr: 2.0 x[1,2] + 2.1 x[1,3] + 3.3 x[2,3]
expr = x.prod(coeff, ’*’, 3) # LinExpr: 2.1 x[1,3] + 3.3 x[2,3]

516

tupledict.clean()

clean ()

Discards internal data structure associated with a tupledict object. Note that calling this
routine won’t affect the contents of the tupledict. It only affects the memory used and the
performance of later calls to select.

Example usage:
d.clean()

517

6.19 General Constraint Helper Functions
Gurobi general constraint helper functions - used in conjunction with overloaded operators and
Model.addConstr or Model.addConstrs to build general constraints.

abs_()

abs_ (variable)

Used to set a decision variable equal to the absolute value of another decision variable.
Example usage:

m.addConstr(y == abs_(x))

Return value:
Returns a GenExpr object.

and_()

and_ (variables)

Used to set a binary decision variable equal to the logical AND of a list of other binary decision
variables. You can pass the arguments as a Python list or as a comma-separated list.

Note that the Gurobi Python interface includes an equivalent all_() function.
Example usage:

m.addConstr(z == and_(x, y))
m.addConstr(z == and_([x, y]))

Return value:
Returns a GenExpr object.

max_()

max_ (variables)

Used to set a decision variable equal to the maximum of a list of decision variables (or constants).
You can pass the arguments as a Python list or as a comma-separated list.

Example usage:

m.addConstr(z == max_(x, y, 3))
m.addConstr(z == max_([x, y, 3]))

Return value:
Returns a GenExpr object.

518

min_()

min_ (variables)

Used to set a decision variable equal to the minimum of a list of decision variables (or constants).
You can pass the arguments as a Python list or as a comma-separated list.

Example usage:

m.addConstr(z == min_(x, y, 3))
m.addConstr(z == min_([x, y, 3]))

Return value:
Returns a GenExpr object.

or_()

or_ (variables)

Used to set a binary decision variable equal to the logical OR of a list of other binary decision
variables. You can pass the arguments as a Python list or as a comma-separated list.

Note that the Gurobi Python interface includes an equivalent any_() function.
Example usage:

m.addConstr(z == or_(x, y))
m.addConstr(z == or_([x, y]))

Return value:
Returns a GenExpr object.

519

MATLAB API Overview

The Gurobi MATLAB R© interface allows you to build an optimization model, pass the model to
Gurobi, and obtain the optimization result, all from within the MATLAB environment. For those
of you who are not familiar with MATLAB, it is an environment for doing numerical computing.
Please visit the MATLAB web site for more information.

The Optimization Toolbox of MATLAB 2017b adds problem based optimization, Gurobi sup-
ports it through the examples, such as linprog, intlinprog, opttoolbox_lp and opttoolbox_mip1.

A quick note for new users: the convention in math programming is that variables are non-
negative unless specified otherwise. You’ll need to explicitly set lower bounds if you want variables
to be able to take negative values.
The Gurobi MATLAB API

The Gurobi MATLAB interface is quite concise. It consists of just five MATLAB functions: gurobi,
gurobi_read, gurobi_write, gurobi_iis, and gurobi_setup.

520

http://www.mathworks.com/products/matlab

7.1 Solving models with the Gurobi MATLAB interface
The Gurobi MATLAB interface can be used to solve optimization problems of the following form:

minimize xTQx+ cTx+ alpha
subject to Ax = b (linear constraints)

` ≤ x ≤ u (bound constraints)
some xj integral (integrality constraints)
some xk lie within second order cones (cone constraints)
xTQcx+ qTx ≤ beta (quadratic constraints)
some xi in SOS (special ordered set constraints)

Many of the model components listed here are optional. For example, integrality constraints
may be omitted. We’ll discuss the details of how models are represented shortly.

The function gurobi, described next, allows you to take a model represented using MATLAB
matrices and solve it with the Gurobi Optimizer.

gurobi()

gurobi (model, params)

The two arguments are MATLAB struct variables, each consisting of multiple fields. The first
argument contains the optimization model to be solved. The second contains an optional set of
Gurobi parameters to be modified during the solution process. The return value of this function is
a struct, also consisting of multiple fields. It contains the result of performing the optimization
on the specified model. We’ll now discuss the details of each of these data structures.
The optimization model

As we’ve mentioned, the model argument to the gurobi function is a struct variable, containing
multiple fields that represent the various parts of the optimization model. Several of these fields
are optional. Note that you refer to a field of a MATLAB struct variable by adding a period to the
end of the variable name, followed by the name of the field. For example, model.A refers to field A
of variable model.

Note that all vector fields within the model variable must be dense vectors. Also, all matrix
fields must be sparse matrices.

The following is an enumeration of all of the fields of the model argument that Gurobi will take
into account when optimizing the model:

A: The linear constraint matrix.

obj: The linear objective vector (c vector in the problem statement). You must specify one value
for each column of A.

sense: The senses of the linear constraints. Allowed values are ’=’, ’<’, or ’>’. You must specify
one value for each row of A, or a single value to specify that all constraints have the same
sense. This must be a char array.

rhs: The right-hand side vector for the linear constraints (b in the problem statement). You must
specify one value for each row of A.

521

lb (optional): The lower bound vector. When present, you must specify one value for each
column of A. When absent, each variable has a lower bound of 0.

ub (optional): The upper bound vector. When present, you must specify one value for each
column of A. When absent, the variables have infinite upper bounds.

vtype (optional): The variable types. This char array is used to capture variable integrality
constraints. Allowed values are ’C’ (continuous), ’B’ (binary), ’I’ (integer), ’S’ (semi-
continuous), or ’N’ (semi-integer). Binary variables must be either 0 or 1. Integer variables
can take any integer value between the specified lower and upper bounds. Semi-continuous
variables can take any value between the specified lower and upper bounds, or a value of
zero. Semi-integer variables can take any integer value between the specified lower and upper
bounds, or a value of zero. When present, you must specify one value for each column of A,
or a single value to specify that all variables have the same type. When absent, each variable
is treated as being continuous. Refer to this section for more information on variable types.

modelsense (optional): The optimization sense. Allowed values are ’min’ (minimize) or ’max’
(maximize). When absent, the default optimization sense is minimization.

modelname (optional): The name of the model. The name appears in the Gurobi log, and when
writing a model to a file.

objcon (optional): The constant offset in the objective function (alpha in the problem state-
ment).

vbasis (optional): The variable basis status vector. Used to provide an advanced starting point
for the simplex algorithm. You would generally never concern yourself with the contents of
this array, but would instead simply pass it from the result of a previous optimization run to
the input of a subsequent run. When present, you must specify one value for each column of
A.

cbasis (optional): The constraint basis status vector. Used to provide an advanced starting
point for the simplex algorithm. Consult the vbasis description for details. When present,
you must specify one value for each row of A.

Q (optional): The quadratic objective matrix. When present, Q must be a square matrix whose
row and column counts are equal to the number of columns in A.

cones (optional): Second-order cone constraints. A struct array. When present, each ele-
ment in cones defines a single cone constraint:

∑
x2

i ≤ y2. The constraint is defined via
model.cones(i).index = [k idx], with the first entry in index corresponding to the index
of the variable on the right-hand side of the constraint, and the remaining entries correspond-
ing to the indices of the variables on the left-hand side of the constraint.

quadcon (optional): The quadratic constraints. A struct array. When present, each element in
quadcon defines a single quadratic constraint: xTQcx + qTx ≤ beta. The Qc matrix must
be a square matrix whose row and column counts are equal to the number of columns of A.
It is stored in model.quadcon(i).Qc. The optional q vector defines the linear terms in the
constraint. If present, you must specify a value for q for each column of A. It is stored in

522

model.quadcon(i).q. The scalar beta defines the right-hand side of the constraint. It is
stored in model.quadcon(i).rhs.

sos (optional): The Special Ordered Set (SOS) constraints. A struct array. When present, each
entry in sos defines a single SOS constraint. A SOS constraint can be of type 1 or 2. The
type of SOS constraint i is specified via model.sos(i).type. A type 1 SOS constraint is
a set of variables for which at most one variable in the set may take a value other than
zero. A type 2 SOS constraint is an ordered set of variables where at most two variables in
the set may take non-zero values. If two take non-zeros values, they must be contiguous in
the ordered set. The members of an SOS constraint are specified by placing their indices in
vector model.sos(i).index. Weights associated with SOS members are provided in vector
model.sos(i).weight. Please refer to this section for details on SOS constraints.

pwlobj (optional): The piecewise-linear objective functions. A struct array. When present, each
entry in pwlobj defines a piecewise-linear objective function of a single variable. The index
of the variable whose objective function is being defined is stored in model.pwlobj(i).var.
The x values for the points that define the piecewise-linear function are stored in
model.pwlobj(i).x. The values in the x vector must be in non-decreasing order. The y val-
ues for the points that define the piecewise-linear function are stored in model.pwlobj(i).y.

start (optional): The MIP start vector. The MIP solver will attempt to build an initial solution
from this vector. When present, you must specify a start value for each variable. Note that
you can set the start value for a variable to nan, which instructs the MIP solver to try to fill
in a value for that variable.

varnames (optional): The variable names. A cell array of strings. When present, each element
of the array defines the name of a variable. You must specify a name for each column of A.

constrnames (optional): The constraint names. A cell array of strings. When present, each
element of the array defines the name of a constraint. You must specify a name for each row
of A.

If any of the mandatory fields listed above are missing, the gurobi() function will return an error.
Below is an example that demonstrates the construction of a simple optimization model:

model.A = sparse([1 2 3; 1 1 0]);
model.obj = [1 1 2];
model.modelsense = ’max’;
model.rhs = [4; 1];
model.sense = ’<>’

Parameters

The optional params argument to the gurobi() function is also a struct of fields. The name of
each field must be the name of a Gurobi parameter, and the associated value should be the desired
value of that parameter. Gurobi parameters allow users to modify the default behavior of the
Gurobi optimization algorithms. You can find a complete list of the available Gurobi parameters
here.

To create a struct that would set the Gurobi Method parameter to 2 and the ResultFile param-
eter parameter to model.mps, you would do the following:

523

params.Method = 2;
params.ResultFile = ’model.mps’;

We should say a bit more about the ResultFile parameter. If this parameter is set, the
optimization model that is eventually passed to Gurobi will also be output to the specified file.
The filename suffix should be one of .mps, .lp, .rew, or .rlp, to indicate the desired file format
(see the file formats section for details on Gurobi file formats).
The optimization result

The gurobi() function returns a struct, with the various results of the optimization stored in its
fields. The specific results that are available depend on the type of model that was solved, and the
status of the optimization. The following is a list of fields that might be available in the returned
result. We’ll discuss the circumstances under which each will be available after presenting the list.

status: The status of the optimization, returned as a string. The desired result is ’OPTIMAL’,
which indicates that an optimal solution to the model was found. Other status are possible,
for example if the model has no feasible solution or if you set a Gurobi parameter that leads to
early solver termination. See the Status Code section for further information on the Gurobi
status codes.

objval: The objective value of the computed solution.

runtime: The elapsed wall-clock time (in seconds) for the optimization.

x: The computed solution. This array contains one entry for each column of A.

slack: The constraint slack for the computed solution. This array contains one entry for each row
of A.

pi: Dual values for the computed solution (also known as shadow prices). This array contains one
entry for each row of A.

rc: Variable reduced costs for the computed solution. This array contains one entry for each
column of A.

vbasis: Variable basis status values for the computed optimal basis. You generally should not
concern yourself with the contents of this array. If you wish to use an advanced start later,
you would simply copy the vbasis and cbasis arrays into the corresponding fields for the
next model. This array contains one entry for each column of A.

cbasis: Constraint basis status values for the computed optimal basis. This array contains one
entry for each row of A.

objbound: Best available bound on solution (lower bound for minimization, upper bound for max-
imization).

itercount: Number of simplex iterations performed.

baritercount: Number of barrier iterations performed.

nodecount: Number of branch-and-cut nodes explored.

524

qcslack: The quadratic constraint slack in the current solution. This array contains one entry for
second-order cone constraint and one entry for each quadratic constraint. The slacks for the
second-order cone constraints appear before the slacks for the quadratic constraints.

qcpi: The dual values associated with the quadratic constraints. This array contains one entry
for each second-order cone constraint and one entry for each quadratic constraint. The dual
values for the second-order cone constraints appear before the dual values for the quadratic
constraints.

unbdray: Unbounded ray. Provides a vector that, when added to any feasible solution, yields a
new solution that is also feasible but improves the objective.

farkasdual: Farkas infeasibility proof. This is a dual unbounded vector. Adding this vector to
any feasible solution of the dual model yields a new solution that is also feasible but improves
the dual objective.

farkasproof: Magnitude of infeasibility violation in Farkas infeasibility proof. A Farkas infea-
sibility proof identifies a new constraint, obtained by taking a linear combination of the
constraints in the model, that can never be satisfied. (the linear combination is available
in the farkasdual field). This attribute indicates the magnitude of the violation of this
aggregated constraint.

The status field will be present in all cases. It indicates whether Gurobi was able to find a proven
optimal solution to the model. In cases where a solution to the model was found, optimal or
otherwise, the objval and x fields will be present. For linear and quadratic programs, if a solution
is available, then the pi and rc fields will also be present. For models with quadratic constraints,
if the parameter qcpdual is set to 1, the field qcpi will be present. If the final solution is a
basic solution (computed by simplex), then vbasis and cbasis will be present. If the model is
an unbounded linear program and the infunbdinfo parameter is set to 1, the field unbdray will be
present. Finally, if the model is an infeasible linear program and the infunbdinfo parameter is set
to 1, the fields farkasdual and farkasproof will be set.

The following is an example of how the results of the gurobi call might be extracted and output:

result = gurobi(model, params)
if strcmp(result.status, ’OPTIMAL’)

fprintf(’Optimal objective: %e\n’, result.objval);
disp(result.x)

else
fprintf(’Optimization returned status: %s\n’, result.status);

end

Please consult this section for a discussion of some of the practical issues associated with solving
a precisely defined mathematical model using finite-precision floating-point arithmetic.

525

7.2 Reading and writing models with the Gurobi MATLAB interface
The MATLAB interface contains functions to read and write model files.

gurobi_read()

gurobi_read (filename)

Reads a model from a file.
Arguments:

filename: Name of the file to read. Note that the type of the file is encoded in the file
name suffix. The filename suffix should be one of .mps, .rew, .lp, .rlp, .ilp, or .opb (see
the file formats section for details on Gurobi file formats). The files can be compressed,
so additional suffixes of .gz, .bz2, .zip, or .7z are accepted. The file name may contain *
or ? wildcards. No file is read when no wildcard match is found. If more than one match
is found, this routine will attempt to read the first matching file.

Return value:
A model struct containing multiple named fields. See the gurobi function for a description
of these fields and their contents.

Example usage:
model = gurobi_read(’etamacro.mps’);
result = gurobi(model)

gurobi_write()

gurobi_write (model, filename)

Writes a model to a file.
Arguments:

model: The model struct must contain a valid Gurobi model. See the gurobi function for a
description of model’s required fields and values.

filename: Name of the file to write. Note that the type of the file is encoded in the file
name suffix. The filename suffix should be one of .mps, .rew, .lp, .rlp, or .ilp, to indicate
the desired file format (see the file formats section for details on Gurobi file formats). The
files can be compressed, so additional suffixes of .gz, .bz2, .zip, or .7z are accepted.

Example usage:
model.A = sparse([1 2 3; 1 1 0]);
model.obj = [1 1 2];
model.modelsense = ’max’;
model.rhs = [4; 1];
model.sense = ’<>’;

gurobi_write(model, ’mymodel.mps’);
gurobi_write(model, ’mymodel.lp’);
gurobi_write(model, ’mymodel.mps.bz2’);

526

7.3 Computing an IIS with the Gurobi MATLAB interface
The MATLAB interface contains a function to compute an IIS. An IIS is a subset of the constraints
and variable bounds with the following properties:

• the subsystem represented by the IIS is infeasible, and

• if any of the constraints or bounds of the IIS is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily
one of minimal cardinality. Thus, there may exist other IISs with fewer constraints or bounds.

If an IIS computation is interrupted before completion, Gurobi will internally store the best
available IIS found so far.

gurobi_iis()

gurobi_iis (model, params)

Computes an IIS
Arguments:

model: The model struct must contain a valid Gurobi model. See the gurobi function for a
description of model’s required fields and values.

params: The params struct may contain Gurobi parameters. See the gurobi function for a
description of the param’s fields and values.

Example usage:
clear model params
model = gurobi_read(’examples/data/klein1.mps’)
params.resultfile = ’myiis.ilp’;
iis = gurobi_iis(model, params);\

The IIS result

The gurobi_iis function returns a struct iis, with various results stored in its named components.
The specific results that are available depend on the type of model.
The iis struct will always contain the following fields

minimal: A logical scalar that indicates whether the computed IIS is minimal. It will normally be
true, but it may be false if the IIS computation was stopped early (e.g due to a time limit or
a user interrupt).

constrs: A logical vector that indicates whether a linear constraint appears in the computed IIS.

lb: A logical vector that indicates whether a lower bound in the computed IIS.

ub: A logical vector that indicates whether a upper bound appears in the computed IIS.

If your model contains SOS constraints the IIS struct will contain the following field:

sos: A logical vector that indicates whether an sos constraint appears in the computed IIS

527

If your model contains cones or quadratic constraints the IIS struct will contain the following field:

qconstrs: A logical vector that indicates whether the cone or quadratic constraint appears in the
computed IIS. Note that any cones in the model will appear first in this vector, followed by
the quadratic constraints.

528

7.4 Setting up the Gurobi MATLAB interface
In order to use our MATLAB interface, you’ll need to use the MATLAB function gurobi_setup to
tell MATLAB where to find the Gurobi mex file. This file is stored in the <installdir>/matlab
directory of your Gurobi installation. For example, if you installed the 64-bit Windows version of
Gurobi 7.5 in the default location, you should run

>> cd c:/Users/jones/gurobi752/win64/matlab
>> gurobi_setup

The gurobi_setup function adjusts your MATLAB path to include the <installdir>/matlab
directory. If you want to avoid typing this command every time you start MATLAB, follow the
instructions issued by gurobi_setup to permanently adjust your path.

The MATLAB examples provided with the Gurobi distribution are included in the
<installdir>/examples/matlab directory. To run these examples you need to change to this
directory. For example, if you are running the 64-bit Windows version of Gurobi, you would say:

>> cd c:/Users/jones/gurobi752/win64/examples/matlab
>> mip1

If the Gurobi package was successfully installed, you should see the following output:

status: ’OPTIMAL’
versioninfo: [1x1 struct]

objval: 3
runtime: 0.0386

x: [3x1 double]
slack: [2x1 double]

objbound: 3
itercount: 0

baritercount: 0
nodecount: 0

x 1
y 0
z 1
Obj: 3.000000e+00

529

R API Overview

The Gurobi R interface allows you to build an optimization model, pass the model to Gurobi, and
obtain the optimization result, all from within the R environment. For those of you who are not
familiar with R, it is a free language for statistical computing. Please visit the R Project web site
for more information.

A quick note for new users: the convention in math programming is that variables are non-
negative unless specified otherwise. You’ll need to explicitly set lower bounds if you want variables
to be able to take negative values.
The Gurobi R API

The Gurobi R interface is quite concise. It consists of a pair of R functions: gurobi and gurobi_-
write.

530

http://www.r-project.org

8.1 Solving models with the Gurobi R interface
The Gurobi R interface can be used to solve optimization problems of the following form:

minimize xTQx+ cTx+ alpha
subject to Ax = b (linear constraints)

` ≤ x ≤ u (bound constraints)
some xj integral (integrality constraints)
some xk lie within second order cones (cone constraints)
xTQcx+ qTx ≤ beta (quadratic constraints)
some xi in SOS (special ordered set constraints)

Many of the model components listed here are optional. For example, integrality constraints
may be omitted. We’ll discuss the details of how models are represented shortly.

The function gurobi, described next, allows you to take a model represented using R data
structures and solve it with the Gurobi Optimizer.

gurobi (model, params=NULL)

The two arguments are R list variables, each consisting of multiple named components. The
first argument contains the optimization model to be solved. The second contains an optional set
of Gurobi parameters to be modified during the solution process. The return value of this function
is a list, also consisting of multiple named components. It contains the result of performing the
optimization on the specified model. We’ll now discuss the details of each of these lists.
The optimization model

As we’ve mentioned, the model argument to the gurobi function is a list variable, containing
multiple named components that represent the various parts of the optimization model. Several of
these fields are optional. Note that you refer to a named component of a R list variable by adding
a dollar sign to the end of the variable name, followed by the name of the named component. For
example, model$A refers to named component A of variable model.

Note that all matrix named components within the model variable can be dense or sparse. Sparse
matrices should be built using either sparseMatrix from the Matrix package, or simple_triplet_matrix
from the slam package.

The following is an enumeration of all of the named components of the model argument that
Gurobi will take into account when optimizing the model:

A: The linear constraint matrix.

obj: The linear objective vector (c vector in the problem statement). You must specify one value
for each column of A.

sense: The senses of the linear constraints. Allowed values are ’=’, ’<’, or ’>’. You must specify
one value for each row of A, or a single value to specify that all constraints have the same
sense. This must be a char array.

rhs: The right-hand side vector for the linear constraints (b in the problem statement). You must
specify one value for each row of A.

531

lb (optional): The lower bound vector. When present, you must specify one value for each
column of A. When absent, each variable has a lower bound of 0.

ub (optional): The upper bound vector. When present, you must specify one value for each
column of A. When absent, the variables have infinite upper bounds.

vtype (optional): The variable types. This char array is used to capture variable integrality
constraints. Allowed values are ’C’ (continuous), ’B’ (binary), ’I’ (integer), ’S’ (semi-
continuous), or ’N’ (semi-integer). Binary variables must be either 0 or 1. Integer variables
can take any integer value between the specified lower and upper bounds. Semi-continuous
variables can take any value between the specified lower and upper bounds, or a value of
zero. Semi-integer variables can take any integer value between the specified lower and upper
bounds, or a value of zero. When present, you must specify one value for each column of A,
or a single value to specify that all variables have the same type. When absent, each variable
is treated as being continuous. Refer to this section for more information on variable types.

modelsense (optional): The optimization sense. Allowed values are ’min’ (minimize) or ’max’
(maximize). When absent, the default optimization sense is minimization.

modelname (optional): The name of the model. The name appears in the Gurobi log, and when
writing a model to a file.

objcon (optional): The constant offset in the objective function (alpha in the problem state-
ment).

vbasis (optional): The variable basis status vector. Used to provide an advanced starting point
for the simplex algorithm. You would generally never concern yourself with the contents of
this array, but would instead simply pass it from the result of a previous optimization run to
the input of a subsequent run. When present, you must specify one value for each column of
A.

cbasis (optional): The constraint basis status vector. Used to provide an advanced starting
point for the simplex algorithm. Consult the vbasis description for details. When present,
you must specify one value for each row of A.

Q (optional): The quadratic objective matrix. When present, Q must be a square matrix whose
row and column counts are equal to the number of columns in A.

cones (optional): Second-order cone constraints. A list of lists. When present, each element in
cones defines a single cone constraint:

∑
x2

i ≤ y2. The constraint is defined via model$cones[[i]]$index
= [k idx], with the first entry in index corresponding to the index of the variable on the
right-hand side of the constraint, and the remaining entries corresponding to the indices of
the variables on the left-hand side of the constraint.

quadcon (optional): The quadratic constraints. A list of lists. When present, each element in
quadcon defines a single quadratic constraint: xTQcx+ qTx ≤ beta. The Qc matrix must be
a square matrix whose row and column counts are equal to the number of columns of A. It
is stored in model$quadcon[[i]]$Qc. The optional q vector defines the linear terms in the
constraint. If present, you must specify a value for q for each column of A. It is stored in

532

model$quadcon[[i]]$q. The scalar beta defines the right-hand side of the constraint. It is
stored in model$quadcon[[i]]$rhs.

sos (optional): The Special Ordered Set (SOS) constraints. A list of lists. When present, each
entry in sos defines a single SOS constraint. A SOS constraint can be of type 1 or 2. The
type of SOS constraint i is specified via model$sos[[i]]$type. A type 1 SOS constraint
is a set of variables for which at most one variable in the set may take a value other than
zero. A type 2 SOS constraint is an ordered set of variables where at most two variables
in the set may take non-zero values. If two take non-zeros values, they must be contiguous
in the ordered set. The members of an SOS constraint are specified by placing their indices
in vector model$sos[[i]]$index. Weights associated with SOS members are provided in
vector model$sos[[i]]$weight. Please refer to this section for details on SOS constraints.

pwlobj (optional): The piecewise-linear objective functions. A list of lists. When present, each
entry in pwlobj defines a piecewise-linear objective function of a single variable. The index of
the variable whose objective function is being defined is stored in model$pwlobj[[i]]$var.
The x values for the points that define the piecewise-linear function are stored in
model$pwlobj[[i]]$x. The values in the x vector must be in non-decreasing order. The y
values for the points that define the piecewise-linear function are stored in model$pwlobj[[i]]$y.

start (optional): The MIP start vector. The MIP solver will attempt to build an initial solution
from this vector. When present, you must specify a start value for each variable. Note that
you can set the start value for a variable to NA, which instructs the MIP solver to try to fill
in a value for that variable.

If any of the mandatory components listed above are missing, the gurobi() function will return
an error.

Below is an example that demonstrates the construction of a simple optimization model:

model <- list()

model$A <- matrix(c(1,1,0,0,1,1), nrow=2, byrow=T)
model$obj <- c(1,1,2)
model$modelsense <- ’max’
model$rhs <- c(1,1)
model$sense <- c(’<’, ’<’)

You can also build A as a sparse matrix, using either sparseMatrix or simple_triplet_matrix:

model$A <- spMatrix(2, 3, c(1, 1, 2, 2), c(1, 2, 2, 3), c(1, 1, 1, 1))
model$A <- simple_triplet_matrix(c(1, 1, 2, 2), c(1, 2, 2, 3), c(1, 1, 1, 1))

Note that the Gurobi interface allows you to specify a scalar value for any of the array-valued
components. The specified value will be expanded to an array of the appropriate size, with
each component of the array equal to the scalar (e.g., model$rhs <- 1 would be equivalent to
model$rhs <- c(1,1) in the example).

533

Parameters

The optional params argument to the gurobi() function is also a list of named components.
The name of each named component must be the name of a Gurobi parameter, and the associated
value should be the desired value of that parameter. Gurobi parameters allow users to modify
the default behavior of the Gurobi optimization algorithms. You can find a complete list of the
available Gurobi parameters here.

To create a list that would set the Gurobi Method parameter to 2 and the ResultFile parameter
parameter to model.mps, you would do the following:

params <- list(Method=2, ResultFile=’model.mps’)

We should say a bit more about the ResultFile parameter. If this parameter is set, the
optimization model that is eventually passed to Gurobi will also be output to the specified file.
The filename suffix should be one of .mps, .lp, .rew, or .rlp, to indicate the desired file format
(see the file formats section for details on Gurobi file formats).
The optimization result

The gurobi() function returns a list, with the various results of the optimization stored in its
named components. The specific results that are available depend on the type of model that was
solved, and the status of the optimization. The following is a list of fields that might be available
in the returned result. We’ll discuss the circumstances under which each will be available after
presenting the list.

status: The status of the optimization, returned as a string. The desired result is ’OPTIMAL’,
which indicates that an optimal solution to the model was found. Other status are possible,
for example if the model has no feasible solution or if you set a Gurobi parameter that leads to
early solver termination. See the Status Code section for further information on the Gurobi
status codes.

objval: The objective value of the computed solution.

runtime: The elapsed wall-clock time (in seconds) for the optimization.

x: The computed solution. This array contains one entry for each column of A.

slack: The constraint slack for the computed solution. This array contains one entry for each row
of A.

pi: Dual values for the computed solution (also known as shadow prices). This array contains one
entry for each row of A.

rc: Variable reduced costs for the computed solution. This array contains one entry for each
column of A.

vbasis: Variable basis status values for the computed optimal basis. You generally should not
concern yourself with the contents of this array. If you wish to use an advanced start later,
you would simply copy the vbasis and cbasis arrays into the corresponding fields for the
next model. This array contains one entry for each column of A.

534

cbasis: Constraint basis status values for the computed optimal basis. This array contains one
entry for each row of A.

objbound: Best available bound on solution (lower bound for minimization, upper bound for max-
imization).

itercount: Number of simplex iterations performed.

baritercount: Number of barrier iterations performed.

nodecount: Number of branch-and-cut nodes explored.

The status component will be present in all cases. It indicates whether Gurobi was able to find a
proven optimal solution to the model. In cases where a solution to the model was found, optimal
or otherwise, the objval, x, and slack components will be present. For linear and quadratic
programs, if a solution is available, then the pi and rc components will also be present. Finally,
if the final solution is a basic solution (computed by simplex), then vbasis and cbasis will be
present.

The following is an example of how the results of the gurobi() call might be extracted and
output:

result <- gurobi(model, params)
print(result$objval)
print(result$x)

Please consult this section for a discussion of some of the practical issues associated with solving
a precisely defined mathematical model using finite-precision floating-point arithmetic.

535

8.2 Writing models with the Gurobi R interface
The Gurobi R interface also contains a routine that allows you to write an optimization model to
a file:

gurobi_write (model, filename)

Arguments:
model: The model argument contains a valid Gurobi model. See the gurobi function for a
description of model’s required and optional components.

filename: Name of the file to write. Note that the type of the file is encoded in the file
name suffix. The filename suffix should be one of .mps, .rew, .lp, .rlp, or .ilp, to indicate
the desired file format (see the file formats section for details on Gurobi file formats). The
files can be compressed, so additional suffixes of .gz, .bz2, .zip, or .7z are accepted.

Below is an example that demonstrates how a model can be written to a file:

model <- list()

model$A <- matrix(c(1,1,0,0,1,1), nrow=2, byrow=T)
model$obj <- c(1,1,2)
model$modelsense <- ’max’
model$rhs <- c(1,1)
model$sense <- c(’<=’, ’<=’)

gurobi_write(model, ’mymodel.mps’);
gurobi_write(model, ’mymodel.lp’);
gurobi_write(model, ’mymodel.mps.bz2’);

536

8.3 Installing the R package
To use our R interface, you’ll need to install the Gurobi package in your local R installation. The
R command for doing this is:

install.packages(’<R-package-file>’, repos=NULL)

The Gurobi R package file can be found in the <installdir>/R directory of your Gurobi in-
stallation (the default <installdir> for Gurobi 7.5.2 is /opt/gurobi752/linux64 for Linux,
c:\gurobi752\win64 for 64-bit Windows, and /Library/gurobi752/mac64 for Mac). You should
browse the <installdir>/R directory to find the exact name of the file for your platform (the
Linux package is in file gurobi_7.5-2_R_x86_64-pc-linux-gnu.tar.gz, the Windows package is
in file gurobi_7.5-2.zip, and the Mac package is in file gurobi_7.5-2.tgz).

You will need to be careful to make sure that the R binary and the Gurobi package you install
both use the same instruction set. For example, if you are using the 64-bit version of R, you’ll need to
install the 64-bit version of Gurobi, and the 64-bit Gurobi R package. This is particularly important
on Windows systems, where the error messages that result from instruction set mismatches can be
quite cryptic.

To run one of the R examples provided with the Gurobi distribution, you can use the source
command in R. For example, if you are running R from the Gurobi R examples directory, you can
say:

> source(’mip.R’)

If the Gurobi package was successfully installed, you should see the following output:

[1] ’Solution:’
[1] 3
[1] 1 0 1

537

Variables and Constraints

The lowest-level building blocks for Gurobi models are variables and constraints. While each has a
clean mathematical definition, linear and integer programming aren’t performed in exact arithmetic,
so computed results can sometimes deviate from these clean definitions. This section discusses the
use of and restrictions on these basic building blocks.

9.1 Variables
Decision variables capture the results of the optimization. In a feasible solution, the computed
values for the decision variables satisfy all of the model constraints. Some of these constraints
are associated with individual variables (e.g., variable bounds), while others capture relationships
between variables. We’ll first consider the different types of decision variables that can be added
to a Gurobi model, and the implicit and explicit constraints associated with these variable types.

Before starting, we should point out one important thing about the variables in a mathematical
programming model: their computed solution values will only satisfy bounds to tolerances, meaning
that a variable may violate its stated bounds. Mathematical programming is fundamentally built
on top of linear algebra and in particular on the numerical solution of systems of linear equations.
These linear systems are solved using finite-precision arithmetic, which means that small errors are
unavoidable. For some models, large errors are unavoidable too; we’ll return to that topic later in
this section.

The available variables types are continuous, general integer, binary, semi-continuous, and semi-
integer.
Continuous Variables

The simplest and least constrained of the available variable types is the continuous variable. This
variable can take any value between its lower and upper bound. In mathematical programming,
the convention is that variables are non-negative unless stated otherwise, so if you don’t explicitly
provide bounds for a variable, you should assume that the lower bound is 0 and the upper bound
is infinite.

The Gurobi APIs provides a symbolic constant to allow you to indicate that a bound is infinite
(GRB_INFINITY in C and C++, GRB.INFINITY in C#, Java, and Python). A variable can have an
infinite upper bound, an infinite lower bound (negative infinity), or both. A variable with infinite
upper and lower bounds is referred to as a free variable. Any bound larger than 1e30 is treated as
infinite.

As noted earlier, variables may violate their bounds by tolerances. In the case of variable
bounds, the relevant tolerance value is the FeasibilityTol. You can reduce the value of this tolerance
parameter, but due to numerical errors it may not be possible to achieve your desired accuracy.
General Integer Variables

General integer variables are more constrained than continuous variables. In addition to respecting
the specified lower and upper bounds, integer variables also take integral values.

538

Due to the limitations of finite-precision arithmetic, integer variables will often take values that
aren’t exactly integral. The magnitude of the allowed integrality violation is controlled by the
IntFeasTol parameter. You can tighten this parameter to reduce the magnitude of these integrality
violations, but the cost of solving the optimization problem may increase significantly as a result.

The fact that modern computers represent integer values using 32-bit values places some re-
strictions on the range of an integral variable. Specifically, the largest and smallest bounds that
can be placed on an integer variable are +/- 2,000,000,000. Furthermore, integer variables with
infinite bounds actually have these values as their implicit bounds. A solution is not considered
feasible unless all integer variables take values that satisfy these bounds.
Binary Variables

Binary variables are the most constrained variable type that can be added to your model. A binary
variable takes a value of either 0 or 1.

Again, due to the limitations of finite-precision arithmetic, binary variables will often take values
that aren’t exactly integral. The magnitude of the allowed integrality violation is controlled by the
IntFeasTol parameter.
Semi-Continuous and Semi-Integer Variables

You can also add semi-continuous or semi-integer variables to your model. A semi-continous variable
has the property that it takes a value of 0, or a value between the specified lower and upper bounds.
A semi-integer variable adds the additional restriction that the variable also take an integral value.

Again, these variables may violate these restrictions up to tolerances. In this case, the relevant
tolerance is IntFeasTol (even for semi-continuous variables).

9.2 Constraints
A constraint in Gurobi captures a restriction on the values that a set of variables may take. The
simplest example is a linear constraint, which states that a linear expression on a set of variables
take a value that is either less-than-or-equal, greater-than-or-equal, or equal another linear expres-
sion. Recall that Gurobi works in finite-precision arithmetic, so constraints are only satisfied to
tolerances. Tolerances can be tightened to reduce such violations, but there are limits to how small
the violations can be - errors are inherent in floating-point arithmetic.

The available constraint types are linear, SOS, quadratic, and general.
Linear Constraints

A linear constraint allows you to restrict the value of a linear expression. For example, you may
require that any feasible solution satisfy the constraint 3x + 4y ≤ 5z. Note that the matrix-
oriented Gurobi API’s (C, MATLAB, and R) require the right-hand side of a linear constraint to
be a constant, while the object-oriented APIs (C++, Java, .NET, and Python) allow arbitrary
linear expressions on both sides of the comparator.

The computed solution should satisfy the stated constraint to within FeasibilityTol (although
it may not in cases of numerical ill-conditioning - we’ll discuss this shortly).

Gurobi supports a limited set of comparators. Specifically, you can constrain an expression to
be less-than-or-equal, greater-than-or-equal, or equal another. We do not support strict less-than,
strict greater-than, or not-equal comparators. While these other comparators may seem appropriate
for mathematical programming, we exclude them to avoid potential confusion related to numerical

539

tolerances. Consider a simple example of a strict inequality constraint on a pair of continuous
variables: x > y. How large would x− y need to be in order to satisfy the constraint? Rather than
trying to embed a subtle and potentially confusing strategy for handling such constraints into the
solver, we’ve chosen not to support them instead.

SOS Constraints

An Special-Ordered Set, or SOS constraint, is a highly specialized constraint that places restrictions
on the values that variables in a given list can take. There are two types of SOS constraints. In
an SOS constraint of type 1 (an SOS1 constraint), at most one variable in the specified list is
allowed to take a non-zero value. In an SOS constraint of type 2 (an SOS2 constraint), at most
two variables in the specified, ordered list are allowed to take a non-zero value, and those non-zero
variables must be contiguous in the list. The variables in an SOS constraint can be continuous,
integer, or binary.

Again, tolerances play an important role in SOS constraints. Specifically, variables that take
values less than IntFeasTol (in absolute value) are considered to be zero for the purposes of deter-
mining whether an SOS constraint is satisfied.

An SOS constraint is described using a list of variables and a list of corresponding weights.
While the weights have historically had intuitive meanings associated with them, we simply use
them to order the list of variables. The weights should be unique. This is especially important for
an SOS2 constraint, which relies on the notion of contiguous variables. Since the variables in the
SOS are ordered by weight, contiguity becomes ambiguous when multiple variables have the same
weight.

It is often more efficient to capture SOS structure using linear constraints rather than SOS
constraints. The optimizer will often perform this conversion automatically. This is controlled with
two parameters: PreSOS1BigM and PreSOS2BigM. The conversion is done by adding constraints
of the form x <= Mb, where x is the variable that participates in the SOS constraint, b is a binary
variable, and M is an upper bound on the value of variable x. Large values of M can lead to
numerical issues, so these parameters control the maximum value of M that can be introduced by
this conversion. SOS constraints that would require a larger value aren’t converted.

Quadratic Constraints

A quadratic constraint allows you to restrict the value of a quadratic expression. For example,
you may require that any feasible solution satisfy the constraint 3x2 + 4y2 + 5z ≤ 10. Note that
the matrix-oriented Gurobi API’s (C, MATLAB, and R) require the right-hand side of a quadratic
constraint to be a constant, while the object-oriented APIs (C++, Java, .NET, and Python) allow
arbitrary quadratic expressions on both sides of the comparator.

The computed solution should satisfy the stated constraint to within FeasibilityTol. Quadratic
constraints are often much more challenging to satisfy than linear constraints, so tightening the
parameter may increase runtimes dramatically.

The algorithms that Gurobi uses to solve quadratically constrained problems can only handle
certain types of quadratic constraints. Constraints of the following forms are always accepted:

• xTQx+ qTx ≤ b, where Q is Positive Semi-Definite (PSD)

• xTx ≤ y2, where x is a vector of variables, and y is a non-negative variable (a Second-Order
Cone)

540

• xTx ≤ yz, where x is a vector of variables, and y and z are non-negative variables (a rotated
Second-Order Cone)

If you add a constraint that isn’t in one of these forms (and Gurobi presolve is unable to transform
the constraint into one of these forms), you’ll get an error when you try to solve the model.
Constraints where the quadratic terms only involve binary variables will always be transformed
into one of these forms.
General Constraints

The previously-described constraints are typically handled directly by the underlying optimization
algorithms (although not always). Gurobi also includes an additional set of constraints, which we
collectively refer to as general constraints. General constraints are a convenience feature, designed
to allow you to capture certain relationships between variables without having to immerse yourself
in the often esoteric details of how to model these relationships in terms of the more fundamental
constraints of MIP. Capturing a single one of these general constraints can often require a large set
of linear and SOS constraints, plus a number of auxiliary decision variables. By supporting them
directly in the Gurobi API, we simplify the modeling process by performing the transformation to
a corresponding MIP formulation automatically and transparently during the solution process.

Gurobi supports a number of different types of general constraints, each having its own syntax
and semantics:

• MAX constraint: The constraint r = max{x1, . . . , xk, c} states that the resultant variable
r should be equal to the maximum of the operand variables x1, . . . , xk and the constant c.
For example, a solution (r = 3, x1 = 2, x2 = 3, x3 = 0) would be feasible for the constraint
r = max{x1, x2, x3, 1.7} because 3 is indeed the maximum of 2, 3, 0, and 1.7.

• MIN constraint: Similar to a MAX constraint, the constraint r = min{x1, . . . , xk, c}
states that the resultant variable r should be equal to the minimum of the operand vari-
ables x1, . . . , xk and the constant c.

• ABS constraint: The constraint r = abs{x} states that the resultant variable r should be
equal to the absolute value of the operand variable x. For example, a solution (r = 3, x = −3)
would be feasible for the constraint r = abs{x}.

• AND constraint: The constraint r = and{x1, . . . , xk} states that the binary resultant
variable r should be equal 1 if and only if all of the binary operand variables x1, . . . , xk are
equal to 1. For example, a solution (r = 1, x1 = 1, x2 = 1, x3 = 1) would be feasible for the
constraint r = and{x1, x2, x3}. Note that declaring an AND constraint implicitly declares all
involved variables to be of binary type.

• OR constraint: Similar to an AND constraint, the constraint r = or{x1, . . . , xk} states that
the binary resultant variable r should be 1 if and only if at least one of the binary operand
variables x1, . . . , xk is equal to 1. Note that declaring an OR constraint implicitly declares
all involved variables to be of binary type.

• INDICATOR constraints: An indicator constraint y = f → aTx ≤ b states that if the
binary indicator variable y has the value f ∈ {0, 1} in a given solution, then the linear
constraint aTx ≤ b has to be satisfied. On the other hand, if y 6= f (i.e., y = 1− f) then the

541

linear constraint may be violated. Note that the sense of the linear constraint can also be =
or ≥; refer to this earlier section for a more detailed description of linear constraints. Note
also that declaring an INDICATOR constraint implicitly declares the indicator variable to be
of binary type.

As stated above, each general constraint has an equivalent MIP formulation that consists of
linear and SOS constraints, and possibly auxiliary variables. Thus, you could always model such
constraints yourself without using a Gurobi general constraint. For example, the MAX constraint
r = max{x1, . . . , xk, c} can be modeled as follows:

r = xj + sj for all j = 1, . . . , k
r = c+ sk+1

z1 + . . .+ zk+1 = 1
SOS1(sj , zj) for all j = 1, . . . , k + 1

sj ≥ 0 for all j = 1, . . . , k + 1
zj ∈ {0, 1} for all j = 1, . . . , k + 1

The first two constraints state that r ≥ max{x1, . . . , xk, c}, i.e., that the resultant variable r has
to be at least as large as each of the operand variables xj and the constant c. This can be modeled
using inequalities, but we turned them into equations by introducing explicit continuous slack
variables sj ≥ 0, which we will reuse below.

Those slack variables and the remaining constraints model r ≤ max{x1, . . . , xk, c}, which is more
complicated. In addition to the explicit slacks, this requires the introduction of binary auxiliary
variables zj ∈ {0, 1}. The SOS1 constraints state that at most one of the two variables sj and zj

can be non-zero, which models the implication zj = 1 → sj = 0. Due to the third constraint, one
zj will be equal to 1 and thus at least one sj will be zero. Hence, r = xj for at least one j due to
the first constraint, or r = c due to the second constraint.

Tolerances play a role in general constraints, although as you might expect, the exact role
depends on the constraint type. Generally, violations in the resultant will be smaller than the
feasibility tolerance, and integrality violations in integer resultants will also satisfy the integrality
tolerance.

If a model contains general constraints, then Gurobi adds the respective MIP formulations for
those constraints during the solution process. In this respect, general constraints are just a means
of concisely capturing these relationships between variables while removing the burden of creating
an equivalent MIP formulation. However, general constraints have another potential advantage:
Gurobi might be able to simplify parts of the MIP formulation if it can prove during presolve that
the simplified version suffices for the correctness of the model. For this reason, Gurobi might be
able to produce a smaller or tighter representation of the general constraint than you would get
from the most general formulation. For example, it might be the case that r ≤ max{x1, . . . , xk, c}
is already implied by the other constraints in the model, so that a simple set of inequalities

r ≥ xj for all j = 1, . . . , k
r ≥ c

to describe r ≥ max{x1, . . . , xk, c} suffices to model the relevant part of the MAX constraint.

542

9.3 Tolerances and Ill Conditioning - A Caveat
As noted at several places in this section, finite-precision arithmetic limits the precision of the
solutions Gurobi computes. This limitation is managed through numerical tolerances in most
cases; we treat a solution as satisfying a constraint if the violation is smaller than the corresponding
tolerance. The default tolerances are chosen to be sufficiently large so that numerical errors aren’t
an issue for most models.

Unfortunately, some models suffer from severe ill conditioning, which can greatly complicate
the search for a solution. This can show itself in a few ways. Ill conditioning can severely hurt
performance, and it can lead to solutions whose constraint violations are larger than the tolerances.

Ill conditioning is a measure of the amount of error that can result when solving linear systems
of equations. As noted earlier, linear and mixed-integer programming are built on top of linear
solves, so errors in solving linear systems directly lead to errors in LP and MIP solutions. Serious
problems arise when the error in solving a linear system is comparable to the desired tolerance. If
you want to solve a linear programming problem to the default feasibility tolerance of 1e − 6, for
example, and if your linear system solves produce errors that are also roughly 1e−6, then you have
no way of knowing whether your current solution is truly feasible. This can lead to oscillations, as
your solution bounces between feasible and infeasible due to nothing more than numerical error,
which can make it extremely difficult to achieve forward progress towards an optimal solution.

When solving linear and quadratic programming problems, we recommend that you check final
primal and dual constraint violations. Duality theory states that, if your solution is primal feasible,
dual feasible, and complementary, then you have an optimal solution. Complementarity is auto-
matically enforced by the simplex method, so achieving primal and dual feasibility (to tolerances)
assures that the solution is optimal (to tolerances).

When solving a MIP model, there is unfortunately no simple method available to check the
optimality of the result. While we work hard to identify and manage the negative effects of ill
conditioning, we are unable to provide a mathematical proof that the solution returned is truly
optimal.

543

Attributes

The primary mechanism for querying and modifying properties of a Gurobi model is through the
attribute interface. A variety of different attributes are available. Some are only populated at
certain times (e.g., those related to the solution of a model), while others are available at all times
(e.g., the number of variables in the model). Attributes can be associated with variables (e.g., lower
bounds), constraints (e.g., the right-hand side), SOSs (e.g., IIS membership), or with the model as
a whole (e.g., the objective value for the current solution).

The following tables list the full set of Gurobi attributes. The attributes have been grouped
by type: model attributes take scalar values, while variable, linear constraint, SOS constraint,
quadratic constraint, and general constraint attributes contain one entry per variable or constraint
in the model. The APIs provide methods to query attribute values for individual constraints or
variables, or to query their values for arrays of constraints or variables (refer to our Attribute
Examples section for examples). Array queries are generally more efficient.

Note that the attributes that provide solution quality information have been split off into a
separate table at the end of this section. These attributes are also associated with the model as a
whole.

Some solution attributes require information that is only computed by certain Gurobi algo-
rithms. Such cases are noted in the detailed attribute descriptions that follow. For example, the
VBasis and CBasis attributes can only be queried when a simplex basis is available (a basis is
available when a continuous model has been solved using primal simplex, dual simplex, or barrier
with crossover). Sensitivity information (SAObjLow, SAObjUp, etc.) is also only available for basic
solutions.

544

Model attributes:
These attributes provide information about the overall model (as opposed to information about

individual variables or constraints in the model).

Attribute name Description
NumVars Number of variables
NumConstrs Number of linear constraints
NumSOS Number of SOS constraints
NumQConstrs Number of quadratic constraints
NumGenConstrs Number of general constraints
NumNZs Number of non-zero coefficients in the constraint matrix
DNumNZs Number of non-zero coefficients in the constraint matrix (in double format)
NumQNZs Number of non-zero quadratic objective terms
NumQCNZs Number of non-zero terms in quadratic constraints
NumIntVars Number of integer variables
NumBinVars Number of binary variables
NumPWLObjVars Number of variables with piecewise-linear objective functions.
ModelName Model name
ModelSense Model sense (minimization or maximization)
ObjCon Constant offset for objective function
ObjVal Objective value for current solution
ObjBound Best available objective bound (lower bound for minimization, upper bound

for maximization)
ObjBoundC Best available objective bound, without rounding (lower bound for mini-

mization, upper bound for maximization)
PoolObjBound Bound on best objective for solutions not in pool (lower bound for minimiza-

tion, upper bound for maximization)
PoolObjVal Objective value of alternatives solutions stored during the optimization pro-

cess
MIPGap Current relative MIP optimality gap
Runtime Runtime for most recent optimization
Status Current optimization status
SolCount Number of stored solutions
IterCount Number of simplex iterations performed in most recent optimization
BarIterCount Number of barrier iterations performed in most recent optimization
NodeCount Number of branch-and-cut nodes explored in most recent optimization
IsMIP Indicates whether the model is a MIP
IsQP Indicates whether the model is a QP/MIQP
IsQCP Indicates whether the model is a QCP/MIQCP
IsMultiObj Indicates whether the model has multiple objectives
IISMinimal Indicates whether the current IIS is minimal
MaxCoeff Maximum constraint matrix coefficient (in absolute value)
MinCoeff Minimum (non-zero) constraint matrix coefficient (in absolute value)
MaxBound Maximum finite variable bound
MinBound Minimum finite variable bound
MaxObjCoeff Maximum linear objective coefficient (in absolute value)

545

MinObjCoeff Minimum (non-zero) linear objective coefficient (in absolute value)
MaxRHS Maximum constraint right-hand side (in absolute value)
MinRHS Minimum (non-zero) constraint right-hand side (in absolute value)
MaxQCCoeff Maximum quadratic constraint matrix coefficient of quadratic part (in ab-

solute value)
MinQCCoeff Minimum (non-zero) quadratic constraint matrix coefficient of quadratic

part (in absolute value)
MaxQCLCoeff Maximum quadratic constraint matrix coefficient in linear part (in absolute

value)
MinQCLCoeff Minimum (non-zero) quadratic constraint matrix coefficient in linear part

(in absolute value)
MaxQCRHS Maximum quadratic constraint right-hand side (in absolute value)
MinQCRHS Minimum (non-zero) quadratic constraint right-hand side (in absolute value)
MaxQObjCoeff Maximum quadratic objective coefficient (in absolute value)
MinQObjCoeff Minimum (non-zero) quadratic objective coefficient (in absolute value)
Kappa Estimated basis condition number
KappaExact Exact basis condition number
FarkasProof Magnitude of infeasibility violation in Farkas infeasibility proof
TuneResultCount Number of improved parameter sets found by tuning tool
LicenseExpiration License expiration date

546

Variable attributes:
These attributes provide information that is associated with specific variables.
Attribute name Description
LB Lower bound
UB Upper bound
Obj Linear objective coefficient
VType Variable type (continuous, binary, integer, etc.)
VarName Variable name
X Value in the current solution
Xn Value in a sub-optimal MIP solution
RC Reduced cost
BarX Value in the best barrier iterate (before crossover)
Start MIP start value (for constructing an initial MIP solution)
VarHintVal MIP hint value
VarHintPri MIP hint priority
BranchPriority Branching priority
VBasis Basis status
PStart Simplex start vector
IISLB Indicates whether the lower bound participate in the IIS
IISUB Indicates whether the upper bound participate in the IIS
PWLObjCvx Indicates whether the variable has a convex piecewise-linear objective
SAObjLow Objective coefficient sensitivity information
SAObjUp Objective coefficient sensitivity information
SALBLow Lower bound sensitivity information
SALBUp Lower bound sensitivity information
SAUBLow Upper bound sensitivity information
SAUBUp Upper bound sensitivity information
UnbdRay Unbounded ray

547

Linear constraint attributes:
These attributes provide information that is associated with specific linear constraints.
Attribute name Description
Sense Constraint sense (’<’, ’>’, or ’=’)
RHS Right-hand side value
ConstrName Constraint name
Pi Dual value (also known as the shadow price)
Slack Slack in the current solution
CBasis Basis status
DStart Simplex start vector
Lazy Determines whether a constraint is treated as a lazy constraint
IISConstr Indicates whether the constraint participates in the IIS
SARHSLow Right-hand-side sensitivity information
SARHSUp Right-hand-side sensitivity information
FarkasDual Farkas infeasibility proof

548

SOS attributes:
These attributes provide information that is associated with specific Special-Ordered Set (SOS)

constraints.
Attribute name Description
IISSOS Indicates whether the SOS constraint participates in the IIS

549

Quadratic constraint attributes:
These attributes provide information that is associated with specific quadratic constraints.
Attribute name Description
QCSense Constraint sense (’<’, ’>’, or ’=’)
QCRHS Right-hand side
QCName Quadratic constraint name
QCPi Dual value
QCSlack Slack in the current solution
IISQConstr Indicates whether the quadratic constraint participates in the IIS

550

General constraint attributes:
These attributes provide information that is associated with specific general constraints.
Attribute name Description
GenConstrType Type of general constraint
GenConstrName General constraint name
IISGenConstr Indicates whether the general constraint participates in the IIS

551

Solution quality attributes:

Attribute name Description
BoundVio Maximum (unscaled) bound violation
BoundSVio Maximum (scaled) bound violation
BoundVioIndex Index of variable with the largest (unscaled) bound violation
BoundSVioIndex Index of variable with the largest (scaled) bound violation
BoundVioSum Sum of (unscaled) bound violations
BoundSVioSum Sum of (scaled) bound violations
ConstrVio Maximum (unscaled) constraint violation
ConstrSVio Maximum (scaled) constraint violation
ConstrVioIndex Index of constraint with the largest (unscaled) violation
ConstrSVioIndex Index of constraint with the largest (scaled) violation
ConstrVioSum Sum of (unscaled) constraint violations
ConstrSVioSum Sum of (scaled) constraint violations
ConstrResidual Maximum (unscaled) primal constraint error
ConstrSResidual Maximum (scaled) primal constraint error
ConstrResidualIndex Index of constraint with the largest (unscaled) primal constraint error
ConstrSResidualIndex Index of constraint with the largest (scaled) primal constraint error
ConstrResidualSum Sum of (unscaled) primal constraint errors
ConstrSResidualSum Sum of (scaled) primal constraint errors
DualVio Maximum (unscaled) reduced cost violation
DualSVio Maximum (scaled) reduced cost violation
DualVioIndex Index of variable with the largest (unscaled) reduced cost violation
DualSVioIndex Index of variable with the largest (scaled) reduced cost violation
DualVioSum Sum of (unscaled) reduced cost violations
DualSVioSum Sum of (scaled) reduced cost violations
DualResidual Maximum (unscaled) dual constraint error
DualSResidual Maximum (scaled) dual constraint error
DualResidualIndex Index of variable with the largest (unscaled) dual constraint error
DualSResidualIndex Index of variable with the largest (scaled) dual constraint error
DualResidualSum Sum of (unscaled) dual constraint errors
DualSResidualSum Sum of (scaled) dual constraint errors
ComplVio Maximum complementarity violation
ComplVioIndex Index of variable with the largest complementarity violation
ComplVioSum Sum of complementarity violations
IntVio Maximum integrality violation
IntVioIndex Index of variable with the largest integrality violation
IntVioSum Sum of integrality violations

552

Multi-objective attributes:

Attribute name Description
ObjN Objectives of multi-objectives
ObjNCon Constant terms of multi-objectives
ObjNPriority Priorities of multi-objectives
ObjNWeight Weights of multi-objectives
ObjNRelTol Relative tolerances of multi-objectives
ObjNAbsTol Absolute tolerances of multi-objectives
ObjNVal Objective value of multi-objectives solutions
ObjNName Names of multi-objectives
NumObj Number of multi-objectives

10.1 Model Attributes
These are model attributes, meaning that they are associated with the overall model (as opposed
to being associated with a particular variable or constraint of the model). You should use one of
the various get routines to retrieve the value of an attribute. These are described at the beginning
of this section). For the object-oriented interfaces, model attributes are retrieved by invoking the
get method on the model object itself. For attributes that can be modified directly by the user,
you can use one of the various set methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute
query routine will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented in-
terfaces will throw an exception.

NumConstrs

Type: int
Modifiable: No

The number of linear constraints in the model.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumVars

Type: int
Modifiable: No

The number of decision variables in the model.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumSOS

Type: int
Modifiable: No

The number of Special-Ordered Set (SOS) constraints in the model.
For examples of how to query or modify attributes, refer to our Attribute Examples.

553

NumQConstrs

Type: int
Modifiable: No

The number of quadratic constraints in the model.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumGenConstrs

Type: int
Modifiable: No

The number of general constraints in the model.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumNZs

Type: int
Modifiable: No

The number of non-zero coefficients in the linear constraints of the model. For models with
more than 2 billion non-zero coefficients use DNumNZs.

For examples of how to query or modify attributes, refer to our Attribute Examples.

DNumNZs

Type: double
Modifiable: No

The number of non-zero coefficients in the linear constraints of the model. This attribute is
provided in double precision format to accurately count the number of non-zeros in models that
contain more than 2 billion non-zero coefficients.

For examples of how to query or modify attributes, refer to our Attribute Examples.

NumQNZs

Type: int
Modifiable: No

The number of terms in the lower triangle of the Q matrix in the quadratic objective.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumQCNZs

Type: int
Modifiable: No

The number of non-zero coefficients in the quadratic constraints.
For examples of how to query or modify attributes, refer to our Attribute Examples.

554

NumIntVars

Type: int
Modifiable: No

The number of integer variables in the model. This includes both binary variables and general
integer variables.

For examples of how to query or modify attributes, refer to our Attribute Examples.

NumBinVars

Type: int
Modifiable: No

The number of binary variables in the model.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumPWLObjVars

Type: int
Modifiable: No

The number of variables in the model with piecewise-linear objective functions. You can query
the function for a specific variable using the appropriate getPWLObj method for your language (in
C, C++, C#, Java, and Python).

For examples of how to query or modify attributes, refer to our Attribute Examples.

ModelName

Type: string
Modifiable: Yes

The name of the model. The name has no effect on Gurobi algorithms. It is output in the
Gurobi log file when a model is solved, and when a model is written to a file.

For examples of how to query or modify attributes, refer to our Attribute Examples.

ModelSense

Type: int
Modifiable: Yes

Optimization sense. The default 1 value indicates that the objective is to minimize the objective.
Setting this attribute to -1 changes the sense to maximization.

For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjCon

Type: double
Modifiable: Yes

A constant value that is added into the model objective. The default value is 0.
For examples of how to query or modify attributes, refer to our Attribute Examples.

555

ObjVal

Type: double
Modifiable: No

The objective value for the current solution. If the model was solved to optimality, then this
attribute gives the optimal objective value.

For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjBound

Type: double
Modifiable: No

The best known bound on the optimal objective. When solving a MIP model, the algorithm
maintains both a lower bound and an upper bound on the optimal objective value. For a minimiza-
tion model, the upper bound is the objective of the best known feasible solution, while the lower
bound gives a bound on the best possible objective.

In contrast to ObjBoundC, this attribute takes advantage of objective integrality information
to round to a tighter bound. For example, if the objective is known to take an integral value and
the current best bound is 1.5, ObjBound will return 2.0 while ObjBoundC will return 1.5.

For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjBoundC

Type: double
Modifiable: No

The best known bound on the optimal objective. When solving a MIP model, the algorithm
maintains both a lower bound and an upper bound on the optimal objective value. For a minimiza-
tion model, the upper bound is the objective of the best known feasible solution, while the lower
bound gives a bound on the best possible objective.

In contrast to ObjBound, this attribute does not take advantage of objective integrality infor-
mation to round to a tighter bound. For example, if the objective is known to take an integral
value and the current best bound is 1.5, ObjBound will return 2.0 while ObjBoundC will return 1.5.

For examples of how to query or modify attributes, refer to our Attribute Examples.

PoolObjBound

Type: double
Modifiable: No

Bound on the objective of undiscovered MIP solutions. The MIP solver stores solutions that it
finds during the MIP search, but it only provides quality guarantees for those whose objective is
at least as good as PoolObjBound. Specifically, further exploration of the MIP search tree will not
find solutions whose objective is better than PoolObjBound.

The difference between PoolObjBound and ObjBound is that the former gives an objective
bound for undiscovered solutions, while the latter gives a bound for any solution.

For examples of how to query or modify attributes, refer to our Attribute Examples.

556

PoolObjVal

Type: double
Modifiable: No

This attribute is used to query the objective value of the k-th solution stored in the pool of
feasible solutions found so far for the problem. You set k using the SolutionNumber parameter.

The number of stored solutions can be queried using the SolCount attribute.
For examples of how to query or modify attributes, refer to our Attribute Examples.

MIPGap

Type: double
Modifiable: No

Current relative MIP optimality gap; computed as |ObjBound − ObjV al|/|ObjV al| (where
ObjBound and ObjV al are the MIP objective bound and incumbent solution objective, respectively.
Returns GRB_INFINITY when an incumbent solution has not yet been found, when no objective
bound is available, or when the current incumbent objective is 0.

For examples of how to query or modify attributes, refer to our Attribute Examples.

Runtime

Type: double
Modifiable: No

Runtime for the most recent optimization (in seconds). Note that all times reported by the
Gurobi Optimizer are wall-clock times.

For examples of how to query or modify attributes, refer to our Attribute Examples.

Status

Type: int
Modifiable: No

Current optimization status for the model. Status values are described in the Status Code
section.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SolCount

Type: int
Modifiable: No

Number of stored solutions from the most recent optimization.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IterCount

Type: double
Modifiable: No

Number of simplex iterations performed during the most recent optimization.
For examples of how to query or modify attributes, refer to our Attribute Examples.

557

BarIterCount

Type: int
Modifiable: No

Number of barrier iterations performed during the most recent optimization.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NodeCount

Type: double
Modifiable: No

Number of branch-and-cut nodes explored in the most recent optimization.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IsMIP

Type: int
Modifiable: No

Indicates whether the model is a MIP. Note that any discrete elements make the model a MIP.
Discrete elements include binary, integer, semi-continuous, semi-integer variables, SOS constraints,
and general constraints. In addition, models having multiple objectives are considered as MIP
models, even when all variables are continuous and all constraints are linear.

For examples of how to query or modify attributes, refer to our Attribute Examples.

IsQP

Type: int
Modifiable: No

Indicates whether the model is a quadratic programming problem. Note that a model with
both a quadratic objective and quadratic constraints is classified as a QCP, not a QP.

For examples of how to query or modify attributes, refer to our Attribute Examples.

IsQCP

Type: int
Modifiable: No

Indicates whether the model has quadratic constraints.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IsMultiObj

Type: int
Modifiable: No

Indicates whether the model has multiple objectives.
Note that the case where the model has a single objective (NumObj = 1) is slightly ambiguous.

If you used setObjectiveN to set your objective, or if you set any of the multi-objective attributes
(e.g., ObjNPriority), then the model is considered to be a multi-objective model. Otherwise, it is
not.

558

To reset a multi-objective model back to a single objective model, you should set the NumObj
attribute to 0, and then set a new single objective.

For examples of how to query or modify attributes, refer to our Attribute Examples.

IISMinimal

Type: int
Modifiable: No

Indicates whether the current Irreducible Inconsistent Subsystem (IIS) is minimal. This at-
tribute is only available after you have computed an IIS on an infeasible model. It will normally
take value 1, but it may take value 0 if the IIS computation was stopped early (e.g., due to a time
limit or user interrupt).

For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxCoeff

Type: double
Modifiable: No

Maximum matrix coefficient (in absolute value) in the linear constraint matrix.
For examples of how to query or modify attributes, refer to our Attribute Examples.

MinCoeff

Type: double
Modifiable: No

Minimum non-zero matrix coefficient (in absolute value) in the linear constraint matrix.
For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxBound

Type: double
Modifiable: No

Maximum (finite) variable bound.
For examples of how to query or modify attributes, refer to our Attribute Examples.

MinBound

Type: double
Modifiable: No

Minimum (non-zero) variable bound.
For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxObjCoeff

Type: double
Modifiable: No

Maximum linear objective coefficient (in absolute value).

559

For examples of how to query or modify attributes, refer to our Attribute Examples.

MinObjCoeff

Type: double
Modifiable: No

Minimum (non-zero) linear objective coefficient (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxRHS

Type: double
Modifiable: No

Maximum (finite) linear constraint right-hand side value (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MinRHS

Type: double
Modifiable: No

Minimum (non-zero) linear constraint right-hand side value (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxQCCoeff

Type: double
Modifiable: No

Maximum coefficient in the quadartic part of all quadratic constraint matrices (in absolute
value).

For examples of how to query or modify attributes, refer to our Attribute Examples.

MinQCCoeff

Type: double
Modifiable: No

Minimum (non-zero) coefficient in the quadartic part of all quadratic constraint matrices (in
absolute value).

For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxQCLCoeff

Type: double
Modifiable: No

Maximum coefficient in the linear part of all quadratic constraint matrices (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

560

MinQCLCoeff

Type: double
Modifiable: No

Minimum (non-zero) coefficient in the linear part of all quadratic constraint matrices (in absolute
value).

For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxQCRHS

Type: double
Modifiable: No

Maximum (finite) quadratic constraint right-hand side value (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MinQCRHS

Type: double
Modifiable: No

Minimum (non-zero) quadratic constraint right-hand side value (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxQObjCoeff

Type: double
Modifiable: No

Maximum coefficient of the quadratic terms in the objective (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MinQObjCoeff

Type: double
Modifiable: No

Minimum (non-zero) coefficient of the quadratic terms in the objective (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

Kappa

Type: double
Modifiable: No

Estimated condition number for the current LP basis matrix. Only available for basic solutions.
For examples of how to query or modify attributes, refer to our Attribute Examples.

KappaExact

Type: double
Modifiable: No

561

Exact condition number for the current LP basis matrix. Only available for basic solutions.
The exact condition number is much more expensive to compute than the estimate that you get
from the Kappa attribute. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

FarkasProof

Type: double
Modifiable: No

Together, attributes FarkasDual and FarkasProof provide a certificate of the infeasibility of the
given problem.

They are a solution to the following system:

āx = λtAx ≤ λtb = −β +
∑

i:āj<0
āiUj +

∑
i:āj>0

ājLj ,

where Lj is the lower bound of variable xj , Uj is the upper bound of variable xj , λi ≥ 0 if the
i-th constraint has a ≤ sense, λi ≤ 0 if the i-th constraint has a ≥ sense, āj ≥ 0 if Uj = ∞, and
āj ≤ 0 if Lj = −∞.

The FarkasProof correspond to β, and FarkasDual correspond to λ in the system above.
Note that any solution to the system above, with β > 0, provides an infeasible constraint,

āx ≤ λtb, derived from the set of original constraints and bounds. Also, the proof is independent
of the objective function and of the model sense of the problem at hand.

This attribute is only available when parameter InfUnbdInfo is set to 1.
For examples of how to query or modify attributes, refer to our Attribute Examples.

TuneResultCount

Type: int
Modifiable: No

After the tuning tools has been run, this attribute reports the number of parameter sets that
were stored. This value will be zero if no improving parameter sets were found, and its upper
bound is determined by the TuneResults parameter.

For examples of how to query or modify attributes, refer to our Attribute Examples.

LicenseExpiration

Type: int
Modifiable: No

License expiration date. The format is YYYYMMDD, so for example if license currently in use
expires on July 20, 2018, the result would be 20180720. If the license has no expiration date, the
result will be 99999999.

This attribute is available for node licenses and for clients of a Gurobi Compute Server. Unfor-
tunately, this attribute isn’t available for clients of a Gurobi Token Server.

For examples of how to query or modify attributes, refer to our Attribute Examples.

562

10.2 Variable Attributes
These are variable attributes, meaning that they are associated with specific variables in the model.
You should use one of the various get routines to retrieve the value of an attribute. These are
described at the beginning of this section). For the object-oriented interfaces, variable attributes
are retrieved by invoking the get method on a variable object. For attributes that can be modified
directly by the user, you can use one of the various set methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute
query routine will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented in-
terfaces will throw an exception.

LB

Type: double
Modifiable: Yes

Variable lower bound. Note that any value less than -1e20 is treated as negative infinity.
For examples of how to query or modify attributes, refer to our Attribute Examples.

UB

Type: double
Modifiable: Yes

Variable upper bound. Note that any value greater than 1e20 is treated as infinite.
For examples of how to query or modify attributes, refer to our Attribute Examples.

Obj

Type: double
Modifiable: Yes

Linear objective coefficient. In our object-oriented interfaces, you typically use the setObjective
method to set the objective, but this attribute provides an alternative for setting or modifying linear
objective terms.

Note that this attribute interacts with our piecewise-linear objective feature. If you set a
piecewise-linear objective function for a variable, that will automatically set the Obj attribute to
zero. Similarly, if you set the Obj attribute for a variable, that will automatically delete any
previously specified piecewise-linear objective.

For examples of how to query or modify attributes, refer to our Attribute Examples.

VType

Type: char
Modifiable: Yes

Variable type (’C’ for continuous, ’B’ for binary, ’I’ for integer, ’S’ for semi-continuous, or
’N’ for semi-integer). Binary variables must be either 0 or 1. Integer variables can take any integer
value between the specified lower and upper bounds. Semi-continuous variables can take any value
between the specified lower and upper bounds, or a value of zero. Semi-integer variables can take
any integer value between the specified lower and upper bounds, or a value of zero.

563

Refer to this section for more information on variable types.
For examples of how to query or modify attributes, refer to our Attribute Examples.

VarName

Type: string
Modifiable: Yes

Variable name.
For examples of how to query or modify attributes, refer to our Attribute Examples.

X

Type: double
Modifiable: No

Variable value in the current solution.
For examples of how to query or modify attributes, refer to our Attribute Examples.

Xn

Type: double
Modifiable: No

The variable value in a sub-optimal MIP solution. Use parameter SolutionNumber to indi-
cate which alternate solution to retrieve. Solutions are sorted in order of worsening objective
value. Thus, when SolutionNumber is 1, Xn returns the second-best solution found. When
SolutionNumber is equal to its default value of 0, querying attribute Xn is equivalent to query-
ing attribute X.

The number of sub-optimal solutions found during the MIP search will depend on the values of
a few parameters. The most important of these are PoolSolutions, PoolSearchMode, and PoolGap.
Please consult the section on Solution Pools for a more detailed discussion of this topic.

For examples of how to query or modify attributes, refer to our Attribute Examples.

RC

Type: double
Modifiable: No

The reduced cost in the current solution. Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

BarX

Type: double
Modifiable: No

The variable value in the best barrier iterate (before crossover). Only available when the barrier
algorithm was selected.

For examples of how to query or modify attributes, refer to our Attribute Examples.

564

Start

Type: double
Modifiable: Yes

The current MIP start vector. The MIP solver will attempt to build an initial solution from this
vector when it is available. Note that the start can be partially populated — the MIP solver will
attempt to fill in values for missing start values. If you wish to leave the start value for a variable
undefined, you can either avoid setting the Start attribute for that variable, or you can set it to
a special undefined value (GRB_UNDEFINED in C and C++, or GRB.UNDEFINED in Java, .NET, and
Python).

If the Gurobi MIP solver log indicates that your MIP start didn’t produce a new incumbent
solution, note that there can be multiple explanations. One possibility is that your MIP start is
infeasible. Another, more common possibility is that one of the Gurobi heuristics found a solution
that is as good as the solution produced by the MIP start, so the MIP start solution was cut off.
Finally, if you specified a partial MIP start, it is possible that the limited MIP exploration done
on this partial start was insufficient to find a new incumbent solution. You can try setting the
StartNodeLimit parameter to a larger value if you want Gurobi to work harder to try to complete
the partial start.

If you solve a sequence of models, where one is built by modifying the previous one, and if you
don’t provide a MIP start, then Gurobi will try to construct one automatically from the solution
of the previous model. If you don’t want it to try this, you should reset the model before starting
the subsequent solve. If you provided a MIP start but would prefer to use the previous solution as
the start instead, you should clear your start (by setting the Start attribute to undefined for all
variables).

If you want to diagnose an infeasible MIP start, you can try fixing the variables in the model to
their values in your MIP start (by setting their lower and upper bound attributes). If the resulting
MIP model is infeasible, you can then compute an IIS on this model to get additional information
that should help to identify the cause of the infeasibility.

Only affects MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

VarHintVal

Type: double
Modifiable: Yes

A set of user hints. If you know that a variable is likely to take a particular value in high quality
solutions of a MIP model, you can provide that value as a hint. You can also (optionally) provide
information about your level of confidence in a hint with the VarHintPri attribute.

The Gurobi MIP solver will use these variable hints in a number of different ways. Hints will
affect the heuristics that Gurobi uses to find feasible solutions, and the branching decisions that
Gurobi makes to explore the MIP search tree. In general, high quality hints should produce high
quality MIP solutions faster. In contrast, low quality hints will lead to some wasted effort, but
shouldn’t lead to dramatic performance degradations.

Variables hints and MIP starts are similar in concept, but they behave in very different ways.
If you specify a MIP start, the Gurobi MIP solver will try to build a single feasible solution from
the provided set of variable values. If you know a solution, you should use a MIP start to provide it

565

to the solver. In contrast, variable hints provide guidance to the MIP solver that affects the entire
solution process. If you have a general sense of the likely values for variables, you should provide
them through variable hints.

If you wish to leave the hint value for a variable undefined, you can either avoid setting the
VarHintVal attribute for that variable, or you can set it to a special undefined value (GRB_UNDEFINED
in C and C++, or GRB.UNDEFINED in Java, .NET, and Python).

Note that deleting variables from your model will cause several attributes to be discarded
(variables hints and branch priorities). If you’d like them to persist, your program will need to
repopulate them after deleting the variables and making a subsequent model update call.

Only affects MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

VarHintPri

Type: int
Modifiable: Yes

Priorities on user hints. After providing variable hints through the VarHintVal attribute, you
can optionally also provide hint priorities to give an indication of your level of confidence in your
hints.

Hint priorities are relative. If you are more confident in the hint value for one variable than for
another, you simply need to set a larger priority value for the more solid hint. The default hint
priority for a variable is 0.

Please refer to the VarHintVal discussion for more details on the role of variable hints.
Only affects MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

BranchPriority

Type: int
Modifiable: Yes

Variable branching priority. The value of this attribute is used as the primary criteria for
selecting a fractional variable for branching during the MIP search. Variables with larger values
always take priority over those with smaller values. Ties are broken using the standard branch
variable selection criteria. The default variable branch priority value is zero.

Note that deleting variables from your model will cause several attributes to be discarded
(variables hints and branch priorities). If you’d like them to persist, your program will need to
repopulate them after deleting the variables and making a subsequent model update call.

Only affects MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

VBasis

Type: int
Modifiable: Yes

The status of a given variable in the current basis. Possible values are 0 (basic), -1 (non-basic
at lower bound), -2 (non-basic at upper bound), and -3 (super-basic). Note that, if you wish to

566

specify an advanced starting basis, you must set basis status information for all constraints and
variables in the model. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

PStart

Type: double
Modifiable: Yes

The current simplex start vector. If you set PStart values for every variable in the model and
DStart values for every constraint, then simplex will use those values to compute a warm start
basis. If you’d like to retract a previously specified start, set any PStart value to GRB_UNDEFINED.

Note that any model modifications made after setting PStart (adding variables or constraints,
changing coefficients, etc.) will discard the start. You should only set this attribute after you are
done modifying your model.

Note also that you’ll get much better performance if you warm start your linear program using
a simplex basis (using VBasis and CBasis). The PStart attribute should only be used in situations
where you don’t have a basis.

If you’d like to provide a feasible starting solution for a MIP model, you should input it using
the Start attribute.

Only affects LP models; it will be ignored for QP, QCP, or MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IISLB

Type: int
Modifiable: No

For an infeasible model, indicates whether the lower bound participates in the computed Irre-
ducible Inconsistent Subsystem (IIS). Only available after you have computed an IIS.

For examples of how to query or modify attributes, refer to our Attribute Examples.

IISUB

Type: int
Modifiable: No

For an infeasible model, indicates whether the upper bound participates in the computed Irre-
ducible Inconsistent Subsystem (IIS). Only available after you have computed an IIS.

For examples of how to query or modify attributes, refer to our Attribute Examples.

PWLObjCvx

Type: int
Modifiable: No

Indicates whether a variable has a convex piecewise-linear objective. Returns 0 if the piecewise-
linear objective function on the variable is non-convex. Returns 1 if the function is convex, or if
the objective function on the variable is linear.

This attribute is useful for isolating the particular variable that caused a continuous model with
a piecewise-linear objective function to become a MIP.

567

For examples of how to query or modify attributes, refer to our Attribute Examples.

SAObjLow

Type: double
Modifiable: No

Objective coefficient sensitivity information: smallest objective value at which the current op-
timal basis would remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SAObjUp

Type: double
Modifiable: No

Objective coefficient sensitivity information: largest objective value at which the current optimal
basis would remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SALBLow

Type: double
Modifiable: No

Lower bound sensitivity information: smallest lower bound value at which the current optimal
basis would remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SALBUp

Type: double
Modifiable: No

Lower bound sensitivity information: largest lower bound value at which the current optimal
basis would remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SAUBLow

Type: double
Modifiable: No

Upper bound sensitivity information: smallest upper bound value at which the current optimal
basis would remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SAUBUp

Type: double
Modifiable: No

568

Upper bound sensitivity information: largest upper bound value at which the current optimal
basis would remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

UnbdRay

Type: double
Modifiable: No

Unbounded ray (for unbounded linear models only). Provides a vector that, when added to
any feasible solution, yields a new solution that is also feasible but improves the objective. Only
available when parameter InfUnbdInfo is set to 1.

For examples of how to query or modify attributes, refer to our Attribute Examples.

10.3 Linear Constraint Attributes
These are linear constraint attributes, meaning that they are associated with specific linear con-
straints in the model. You should use one of the various get routines to retrieve the value of an
attribute. These are described at the beginning of this section). For the object-oriented interfaces,
linear constraint attributes are retrieved by invoking the get method on a constraint object. For
attributes that can be modified directly by the user, you can use one of the various set methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute
query routine will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented in-
terfaces will throw an exception.

Sense

Type: char
Modifiable: Yes

Constraint sense (’<’, ’>’, or ’=’).
For examples of how to query or modify attributes, refer to our Attribute Examples.

RHS

Type: double
Modifiable: Yes

Constraint right-hand side.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrName

Type: string
Modifiable: Yes

Constraint name.
For examples of how to query or modify attributes, refer to our Attribute Examples.

569

Pi

Type: double
Modifiable: No

The constraint dual value in the current solution (also known as the shadow price).
Given a linear programming problem

minimize c′x
subject to Ax ≥ b

x ≥ 0

and a corresponding dual problem

maximize b′y
subject to A′y ≤ c

y ≥ 0

the Pi attribute returns y.
Of course, not all models fit this canonical form. In general, dual values have the following

properties:

• Dual values for ≥ constraints are ≥ 0.

• Dual values for ≤ constraints are ≤ 0.

• Dual values for = constraints are unconstrained.

For models with a maximization sense, the senses of the dual values are reversed: the dual is ≥ 0
for a ≤ constraint and ≤ 0 for a ≥ constraint.

Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

Slack

Type: double
Modifiable: No

The constraint slack in the current solution.
For examples of how to query or modify attributes, refer to our Attribute Examples.

CBasis

Type: int
Modifiable: Yes

The status of a given linear constraint in the current basis. Possible values are 0 (basic) or -1
(non-basic). A constraint is basic when its slack variable is in the simplex basis. Note that, if you
wish to specify an advanced starting basis, you must set basis status information for all constraints
and variables in the model. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

570

DStart

Type: double
Modifiable: Yes

The current simplex start vector. If you set DStart values for every linear constraint in the
model and PStart values for every variable, then simplex will use those values to compute a
warm start basis. If you’d like to retract a previously specified start, set any DStart value to
GRB_UNDEFINED.

Note that any model modifications made after setting DStart (adding variables or constraints,
changing coefficients, etc.) will discard the start. You should only set this attribute after you are
done modifying your model.

Note also that you’ll get much better performance if you warm start your linear program from
a simplex basis (using VBasis and CBasis). The DStart attribute should only be used in situations
where you don’t have a basis.

If you’d like to provide a feasible starting solution for a MIP model, you should input it using
the Start attribute.

Only affects LP models; it will be ignored for QP, QCP, or MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

Lazy

Type: int
Modifiable: Yes

Determines whether a linear constraint is treated as a lazy constraint. At the beginning of the
MIP solution process, any constraint whose Lazy attribute is set to 1, 2, or 3 (the default value
is 0) is removed from the model and placed in the lazy constraint pool. Lazy constraints remain
inactive until a feasible solution is found, at which point the solution is checked against the lazy
constraint pool. If the solution violates any lazy constraints, the solution is discarded and one or
more of the violated lazy constraints are pulled into the active model.

Larger values for this attribute cause the constraint to be pulled into the model more aggres-
sively. With a value of 1, the constraint can be used to cut off a feasible solution, but it won’t
necessarily be pulled in if another lazy constraint also cuts off the solution. With a value of 2, all
lazy constraints that are violated by a feasible solution will be pulled into the model. With a value
of 3, lazy constraints that cut off the relaxation solution at the root node are also pulled in.

Note that deleting constraints from your model will cause this attribute to be discarded. If
you’d like it to persist, your program will need to repopulate it after deleting the constraints and
making a subsequent model update call.

Note that only linear constraints can be marked lazy. Marking other types of constraints (such
as quadratic, SOS, or general constraints) as Lazy may result in an error, or may be ignored. This
attribute only affects MIP models.

For examples of how to query or modify attributes, refer to our Attribute Examples.

IISConstr

Type: int
Modifiable: No

571

For an infeasible model, indicates whether the linear constraint participates in the computed
Irreducible Inconsistent Subsystem (IIS). Only available after you have computed an IIS.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SARHSLow

Type: double
Modifiable: No

Right-hand-side sensitivity information: smallest right-hand-side value at which the current
optimal basis would remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SARHSUp

Type: double
Modifiable: No

Right-hand-side sensitivity information: largest right-hand-side value at which the current op-
timal basis would remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

FarkasDual

Type: double
Modifiable: No

Together, attributes FarkasDual and FarkasProof provide a certificate of the infeasibility of the
given problem.

They are a solution to the following system:

āx = λtAx ≤ λtb = −β +
∑

i:āj<0
āiUj +

∑
i:āj>0

ājLj ,

where Lj is the lower bound of variable xj , Uj is the upper bound of variable xj , λi ≥ 0 if the
i-th constraint has a ≤ sense, λi ≤ 0 if the i-th constraint has a ≥ sense, āj ≥ 0 if Uj = ∞, and
āj ≤ 0 if Lj = −∞.

The FarkasProof correspond to β, and FarkasDual correspond to λ in the system above.
Note that any solution to the system above, with β > 0, provides an infeasible constraint,

āx ≤ λtb, derived from the set of original constraints and bounds. Also, the proof is independent
of the objective function and of the model sense of the problem at hand.

This attribute is only available when parameter InfUnbdInfo is set to 1.
For examples of how to query or modify attributes, refer to our Attribute Examples.

10.4 SOS Attributes
These are SOS attributes, meaning that they are associated with specific special-ordered set con-
straints in the model. You should use one of the various get routines to retrieve the value of an
attribute. These are described at the beginning of this section). For the object-oriented interfaces,

572

SOS attributes are retrieved by invoking the get method on an SOS object. For attributes that
can be modified directly by the user, you can use one of the various set methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute
query routine will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented in-
terfaces will throw an exception.

IISSOS

Type: int
Modifiable: No

For an infeasible model, indicates whether the SOS constraint participates in the computed
Irreducible Inconsistent Subsystem (IIS). Only available after you have computed an IIS.

For examples of how to query or modify attributes, refer to our Attribute Examples.

10.5 Quadratic Constraint Attributes
These are quadratic constraint attributes, meaning that they are associated with specific quadratic
constraints in the model. You should use one of the various get routines to retrieve the value of an
attribute. These are described at the beginning of this section). For the object-oriented interfaces,
quadratic constraint attributes are retrieved by invoking the get method on a constraint object.
For attributes that can be modified directly by the user, you can use one of the various setmethods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute
query routine will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented in-
terfaces will throw an exception.

QCSense

Type: char
Modifiable: Yes

Quadratic constraint sense (’<’, ’>’, or ’=’).
For examples of how to query or modify attributes, refer to our Attribute Examples.

QCRHS

Type: double
Modifiable: Yes

Quadratic constraint right-hand side.
For examples of how to query or modify attributes, refer to our Attribute Examples.

QCName

Type: string
Modifiable: Yes

Quadratic constraint name.
For examples of how to query or modify attributes, refer to our Attribute Examples.

573

QCPi

Type: double
Modifiable: No

The constraint dual value in the current solution. Note that quadratic constraint dual values
are only available when the QCPDual parameter is set to 1.

For examples of how to query or modify attributes, refer to our Attribute Examples.

QCSlack

Type: double
Modifiable: No

The constraint slack in the current solution.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IISQConstr

Type: int
Modifiable: No

For an infeasible model, indicates whether the quadratic constraint participates in the computed
Irreducible Inconsistent Subsystem (IIS). Only available after you have computed an IIS.

For examples of how to query or modify attributes, refer to our Attribute Examples.

10.6 General Constraint Attributes
These are general constraint attributes, meaning that they are associated with specific general
constraints in the model. You should use one of the various get routines to retrieve the value of an
attribute. These are described at the beginning of this section). For the object-oriented interfaces,
general constraint attributes are retrieved by invoking the get method on a constraint object. For
attributes that can be modified directly by the user, you can use one of the various set methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute
query routine will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented in-
terfaces will throw an exception.

GenConstrType

Type: int
Modifiable: No

General constraint type.
For examples of how to query or modify attributes, refer to our Attribute Examples.

GenConstrName

Type: string
Modifiable: Yes

General constraint name.
For examples of how to query or modify attributes, refer to our Attribute Examples.

574

IISGenConstr

Type: int
Modifiable: No

For an infeasible model, indicates whether the general constraint participates in the computed
Irreducible Inconsistent Subsystem (IIS). Only available after you have computed an IIS.

For examples of how to query or modify attributes, refer to our Attribute Examples.

10.7 Quality Attributes
These are solution quality attributes. They are associated with the overall model. You should use
one of the various get routines to retrieve the value of an attribute. These are described at the
beginning of this section). For the object-oriented interfaces, quality attributes are retrieved by
invoking the get method on a constraint object. For attributes that can be modified directly by
the user, you can use one of the various set methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute
query routine will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented in-
terfaces will throw an exception.

BoundVio

Type: double
Modifiable: No

Maximum (unscaled) bound violation.
Available for all model types.
For examples of how to query or modify attributes, refer to our Attribute Examples.

BoundSVio

Type: double
Modifiable: No

Maximum (scaled) bound violation.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

BoundVioIndex

Type: int
Modifiable: No

Index of variable with the largest (unscaled) bound violation.
Available for all model types.
For examples of how to query or modify attributes, refer to our Attribute Examples.

BoundSVioIndex

Type: int
Modifiable: No

575

Index of variable with the largest (scaled) bound violation.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

BoundVioSum

Type: double
Modifiable: No

Sum of (unscaled) bound violations.
Available for all model types.
For examples of how to query or modify attributes, refer to our Attribute Examples.

BoundSVioSum

Type: double
Modifiable: No

Sum of (scaled) bound violations.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrVio

Type: double
Modifiable: No

Reporting constraint violations for the simplex solver is actually more complex than it may ap-
pear, due to the treatment of slacks on linear inequality constraints. The simplex solver introduces
explicit non-negative slack variables inside the algorithm. Thus, for example, aTx ≤ b becomes
aTx+s = b. In this formulation, constraint errors can show up in two places: (i) as bound violations
on the computed slack variable values, and (ii) as differences between aTx + s and b. We report
the former as ConstrVio and the latter as ConstrResidual.

For MIP models, constraint violations are reported in ConstrVio.
Available for all model types.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrSVio

Type: double
Modifiable: No

Maximum (scaled) slack bound violation.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrVioIndex

Type: int
Modifiable: No

Index of linear constraint with the largest (unscaled) slack bound violation.

576

Available for all model types.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrSVioIndex

Type: int
Modifiable: No

Index of linear constraint with the largest (scaled) slack bound violation.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrVioSum

Type: double
Modifiable: No

Sum of (unscaled) slack bound violations.
Available for all model types.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrSVioSum

Type: double
Modifiable: No

Sum of (scaled) slack bound violations.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrResidual

Type: double
Modifiable: No

Reporting constraint violations for the simplex solver is actually more complex than it may ap-
pear, due to the treatment of slacks on linear inequality constraints. The simplex solver introduces
explicit non-negative slack variables inside the algorithm. Thus, for example, aTx ≤ b becomes
aTx+s = b. In this formulation, constraint errors can show up in two places: (i) as bound violations
on the computed slack variable values, and (ii) as differences between aTx + s and b. We report
the former as ConstrVio and the latter as ConstrResidual.

Only available for continuous models. For MIP models, constraint violations are reported in
ConstrVio.

For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrSResidual

Type: double
Modifiable: No

Maximum (scaled) primal constraint error.
Only available for continuous models.

577

For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrResidualIndex

Type: int
Modifiable: No

Index of linear constraint with the largest (unscaled) constraint error.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrSResidualIndex

Type: int
Modifiable: No

Index of linear constraint with the largest (scaled) constraint error.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrResidualSum

Type: double
Modifiable: No

Sum of (unscaled) linear constraint violations.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrSResidualSum

Type: double
Modifiable: No

Sum of (scaled) linear constraint violations.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualVio

Type: double
Modifiable: No

Reporting dual constraint violations for the simplex solver is actually more complex than it may
appear, due to the treatment of reduced costs for bounded variables. The simplex solver introduces
explicit non-negative reduced-cost variables inside the algorithm. Thus, aT y ≥ c becomes aT y−z =
c (where y is the dual vector and z is the reduced cost). In this formulation, errors can show up
in two places: (i) as bound violations on the computed reduced-cost variable values, and (ii) as
differences between aT y−z and c. We report the former as DualVio and the latter as DualResidual.

DualVio reports the maximum (unscaled) reduced-cost bound violation.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

578

DualSVio

Type: double
Modifiable: No

Maximum (scaled) reduced cost violation.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualVioIndex

Type: int
Modifiable: No

Index of variable with the largest (unscaled) reduced cost violation. Note that the result may
be larger than the number of variables in the model, which indicates that a constraint slack is the
variable with the largest violation. Subtract the variable count from the result to get the index of
the corresponding constraint.

Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualSVioIndex

Type: int
Modifiable: No

Index of variable with the largest (scaled) reduced cost violation. Note that the result may be
larger than the number of variables in the model, which indicates that a constraint slack is the
variable with the largest violation. Subtract the variable count from the result to get the index of
the corresponding constraint.

Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualVioSum

Type: double
Modifiable: No

Sum of (unscaled) reduced cost violations.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualSVioSum

Type: double
Modifiable: No

Sum of (scaled) reduced cost violations.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

579

DualResidual

Type: double
Modifiable: No

Reporting dual constraint violations for the simplex solver is actually more complex than it may
appear, due to the treatment of reduced costs for bounded variables. The simplex solver introduces
explicit non-negative reduced-cost variables inside the algorithm. Thus, aT y ≥ c becomes aT y−z =
c (where y is the dual vector and z is the reduced cost). In this formulation, errors can show up
in two places: (i) as bound violations on the computed reduced-cost variable values, and (ii) as
differences between aT y−z and c. We report the former as DualVio and the latter as DualResidual.

DualResidual reports the maximum (unscaled) dual constraint error.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualSResidual

Type: double
Modifiable: No

Maximum (scaled) dual constraint error.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualResidualIndex

Type: int
Modifiable: No

Index of variable with the largest (unscaled) dual constraint error.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualSResidualIndex

Type: int
Modifiable: No

Index of variable with the largest (scaled) dual constraint error.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualResidualSum

Type: double
Modifiable: No

Sum of (unscaled) dual constraint errors.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

580

DualSResidualSum

Type: double
Modifiable: No

Sum of (scaled) dual constraint errors.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ComplVio

Type: double
Modifiable: No

Maximum complementarity violation. In an optimal solution, the product of the value of
a variable and its reduced cost must be zero. This isn’t always strictly true for interior point
solutions. This attribute returns the maximum complementarity violation for any variable.

Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ComplVioIndex

Type: int
Modifiable: No

Index of variable with the largest complementarity violation.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ComplVioSum

Type: double
Modifiable: No

Sum of complementarity violation.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IntVio

Type: double
Modifiable: No

A MIP solver won’t always assign strictly integral values to integer variables. This attribute
returns the largest distance between the computed value of any integer variable and the nearest
integer.

Only available for MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

581

IntVioIndex

Type: int
Modifiable: No

Index of variable with the largest integrality violation.
Only available for MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IntVioSum

Type: double
Modifiable: No

Sum of integrality violations.
Only available for MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

10.8 Multi-objective Attributes
These are the attributes for setting and querying multiple objectives (refer to this section for
additional information on multi-objective optimization).

ObjN

Type: double
Modifiable: Yes

When the model has multiple objectives, this attribute is used to query or modify objective
coefficients for objective n. You set n using the ObjNumber parameter. Note that when ObjNumber
is equal to 0, ObjN is equivalent to Obj.

The number of objectives in the model can be queried (or modified) using the NumObj attribute.
Please refer to the discussion of Multiple Objectives for more information on the use of alter-

native objectives.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjNCon

Type: double
Modifiable: Yes

When the model has multiple objectives, this attribute is used to query or modify the constant
term for objective n. You set n using the ObjNumber parameter. Note that when ObjNumber is
equal to 0, ObjNCon is equivalent to ObjCon.

The number of objectives in the model can be queried (or modified) using the NumObj attribute.
Please refer to the discussion of Multiple Objectives for more information on the use of alter-

native objectives.
For examples of how to query or modify attributes, refer to our Attribute Examples.

582

ObjNPriority

Type: int
Modifiable: Yes

This attribute is used to query or modify the priority of objective n when doing hierarchical
multi-objective optimization. You set n using the ObjNumber parameter.

The default priority for an objective is 0.
The number of objectives in the model can be queried (or modified) using the NumObj attribute.
Please refer to the discussion of Multiple Objectives for more information on the use of alter-

native objectives.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjNWeight

Type: double
Modifiable: Yes

This attribute is used to query or modify the weight of objective n when doing blended multi-
objective optimization. You set n using the ObjNumber parameter.

The default weight for an objective is 1.0.
The number of objectives in the model can be queried (or modified) using the NumObj attribute.
Please refer to the discussion of Multiple Objectives for more information on the use of alter-

native objectives.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjNRelTol

Type: double
Modifiable: Yes

This attribute is used to set the allowable degradation for objective n when doing hierarchical
multi-objective optimization for MIP models. You set n using the ObjNumber parameter.

Hierarchical multi-objective MIP optimization will optimize for the different objectives in the
model one at a time, in priority order. If it achieves objective value z when it optimizes for this
objective, then subsequent steps are allowed to degrade this value by at most ObjNRelTol*|z|.

Objective degradations are handled differently for multi-objective LP models. The allowable
degradation is controlled strictly using the ObjNAbsTol.

The default relative tolerance for an objective is 0.
The number of objectives in the model can be queried (or modified) using the NumObj attribute.
Please refer to the discussion of Multiple Objectives for more information on the use of alter-

native objectives.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjNAbsTol

Type: double
Modifiable: Yes

This attribute is used to set the allowable degradation for objective n when doing hierarchical
multi-objective optimization. You set n using the ObjNumber parameter.

583

Hierarchical multi-objective MIP optimization will optimize for the different objectives in the
model one at a time, in priority order. If it achieves objective value z when it optimizes for this
objective, then subsequent steps are allowed to degrade this value by at most ObjNAbsTol.

Objective degradations are handled differently for multi-objective LP models. For LP models,
solution quality for higher-priority objectives is maintained by fixing some variables to their values
in previous optimal solutions. These fixings are decided using variable reduced costs. The value of
the ObjNAbsTol parameter indicates the amount by which a fixed variable’s reduced cost is allowed
to violate dual feasibility. The value of the related ObjNRelTol attribute is ignored.

The default absolute tolerance for an objective is 0.
The number of objectives in the model can be queried (or modified) using the NumObj attribute.
Please refer to the discussion of Multiple Objectives for more information on the use of alter-

native objectives.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjNVal

Type: double
Modifiable: No

This attribute is used to query the objective value obtained for objective n by the k-th solution
stored in the pool of feasible solutions found so far for the problem. You set n using the ObjNumber
parameter, while you set k using the SolutionNumber parameter.

The number of objectives in the model can be queried (or modified) using the NumObj attribute;
while the number of stored solutions can be queried using the SolCount attribute.

Please refer to the discussion of Multiple Objectives for more information on the use of alter-
native objectives.

For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjNName

Type: string
Modifiable: No

When the model has multiple objectives, this attribute is used to query or modify the name for
objective n. You set n using the ObjNumber parameter.

The number of objectives in the model can be queried (or modified) using the NumObj attribute.
Please refer to the discussion of Multiple Objectives for more information on the use of alter-

native objectives.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumObj

Type: int
Modifiable: Yes

Number of objectives in the model. If you modify this attribute, it will change the number of
objectives in the model. Decreasing it will discard existing objectives. Increasing it will create new
objectives (initialized to 0). Setting it to 0 will create a model with no objective (i.e., a feasibility
model).

584

You can use the ObjNumber parameter, in conjunction with multi-objective attributes (ObjN,
ObjNName, etc.), to query or modify attributes for different objectives. The value of ObjNumber
should always be less than NumObj.

Please refer to the discussion of Multiple Objectives for more information on the use of alter-
native objectives.

For examples of how to query or modify attributes, refer to our Attribute Examples.

10.9 Attribute Examples
Gurobi attribute handling is designed to be orthogonal, meaning that you only need to use a small
number of routines to work with a large number attributes. In particular:

• The names and meanings of the various Gurobi attributes remain constant across the different
programming language API’s, although some decoration is required in each language.

• Given the type of an attribute (double, integer, etc.) and the programming language you
wish to use it from, you simply need to identify the appropriate routine for that attribute
type in that language in order to query or modify that attribute.

Consider the LB attribute, which captures the lower bound on a variable. You would refer to
this attribute as follows in the different Gurobi APIs:
Language Attribute
C GRB_DBL_ATTR_LB
C++ GRB_DoubleAttr_LB
Java GRB.DoubleAttr.LB
.NET GRB.DoubleAttr.LB, or just var.LB
Python GRB.Attr.lb, or just var.lb

To query the value of this attribute for an individual variable in the different API’s, you would
do the following:
Language Attribute Query Example
C GRBgetdblattrelement(model, GRB_DBL_ATTR_LB, var_index, &value);
C++ var.get(GRB_DoubleAttr_LB)
Java var.get(GRB.DoubleAttr.LB)
.NET var.Get(GRB.DoubleAttr.LB), or just var.LB
Python var.getAttr(GRB.Attr.lb), or just var.lb

Our APIs also include routines for querying attribute values for multiple variables or constraints
at once, which is more efficient.

Attributes are referred to using a set of enum types in C++, Java, and .NET (one enum for
double-valued attributes, one for int-valued attributes, etc.). In C and Python, the names listed
above are simply constants that take string values. For example, GRB_DBL_ATTR_LB is defined in
the C layer as:

#define GRB_DBL_ATTR_LB "LB"

In C and Python, you have the option of using the strings directly when calling attribute methods.
If you wish to do so, note that character case and underscores are ignored. Thus, MIN_COEFF and
MinCoeff are equivalent.

585

One important point to note about attributes modification is that it is done in a lazy fashion.
Modifications don’t actually affect the model until the next request to either update or optimize
the model (GRBupdatemodel or GRBoptimize in C).

Refer to the following sections for more detailed examples of how to query or modify attributes
from our various API’s:

• C

• C++

• C#

• Java

• Python

• Visual Basic

You can also also browse our Examples to get a better sense of how to use our attribute interface.

C Attribute Examples

Consider the case where you have a Gurobi model m. You can retrieve the number of variables in
the model by querying the NumVars model attribute. This is an integer-valued, scalar attribute,
so you use GRBgetintattr:

int cols;
error = GRBgetintattr(m, GRB_INT_ATTR_NUMVARS, &cols);

You can also use the name of the attribute directly:

int cols;
error = GRBgetintattr(m, "NumVars", &cols);

(Note that attribute capitalization doesn’t matter in the C interface, so you could also use "numVars"
or "numvars").

If you’ve performed optimization on the model, the optimal objective value can be obtained
by querying the ObjVal model attribute. This is a double-valued, scalar attribute, so you use
GRBgetdblattr:

double objval;
error = GRBgetdblattr(m, GRB_DBL_ATTR_OBJVAL, &objval);

If you’d like to query the value that a variable takes in the computed solution, you can query
the X variable attribute. This is a double-valued, vector attribute, so you have a few options for
querying the associated values. You can retrieve the value for a single variable using GRBgetdblat-
trelement:

double x0;
error = GRBgetdblattrelement(m, GRB_DBL_ATTR_X, 0, &x0);

586

http://www.gurobi.com/documentation/{7}.{5}/examples/index.html

(we query the solution value for variable 0 in this example). You can also query attribute values
for multiple variables using GRBgetdblattrarray or GRBgetdblattrlist:

double x[];
error = GRBgetdblattrarray(m, GRB_DBL_ATTR_X, 0, cols, x);

The former routine retrieves a contiguous set of values (cols values, starting from index 0 in our
example). The latter allows you to provide a list of indices, and it returns the values for the
corresponding entries.

For each attribute query routine, there’s an analogous set routine. To set the upper bound of
a variable, for example, you would use GRBsetdblattrelement:

error = GRBsetdblattrelement(m, GRB_DBL_ATTR_UB, 0, 0.0);

(In this example, we’ve set the upper bound for variable 0 to 0). You can set attribute values for
multiple variables in a single call using GRBsetdblattrarray or GRBsetdblattrlist.

C++ Attribute Examples

Consider the case where you have a Gurobi model m. You can retrieve the number of variables in
the model by querying the NumVars model attribute using the get method:

cols = m.get(GRB_IntAttr_NumVars);

If you’ve performed optimization on the model, the optimal objective value can be obtained by
querying the ObjVal model attribute:

obj = m.get(GRB_DoubleAttr_ObjVal);

If you’d like to query the value that a variable takes in the computed solution, you can query
the X attribute for the corresponding variable object:

vars = m.getVars()
for (int j = 0; j < cols; j++)
xj = vars[j].get(GRB_DoubleAttr_X)

You can also query the value of X for multiple variables in a single get call on the model m:

double xvals[] = m.get(GRB_DoubleAttr_X, m.GetVars()))

For each attribute query method, there’s an analogous set routine. To set the upper bound of
a variable, for example:

v = m.getVars()[0]
v.set(GRB_DoubleAttr_UB, 0)

(In this example, we’ve set the upper bound for the first variable in the model to 0).

587

C# Attribute Examples
Consider the case where you have a Gurobi model m. You can retrieve the number of variables in
the model by querying the NumVars model attribute (which is implemented as a .NET property):

cols = m.NumVars;

If you’ve performed optimization on the model, the optimal objective value can be obtained by
querying the ObjVal model attribute:

obj = m.ObjVal;

If you’d like to query the value that a variable takes in the computed solution, you can query
the X attribute for the corresponding variable object:

vars = m.GetVars()
for (int j = 0; j < cols; j++)
xj = vars[j].X

You can also query the value of X for multiple variables in a single call using the Get method on
the model m:

double[] xvals = m.Get(GRB.DoubleAttr.X, m.GetVars()))

For each attribute query method, there’s an analogous Set routine. To set the upper bound of
a variable, for example:

v = m.GetVars()[0]
v.UB = 0

(In this example, we’ve set the upper bound for the first variable in the model to 0).

Java Attribute Examples
Consider the case where you have a Gurobi model m. You can retrieve the number of variables in
the model by querying the NumVars model attribute using the get method:

cols = m.get(GRB.IntAttr.NumVars);

If you’ve performed optimization on the model, the optimal objective value can be obtained by
querying the ObjVal model attribute:

obj = m.get(GRB.DoubleAttr.ObjVal);

If you’d like to query the value that a variable takes in the computed solution, you can query
the X attribute for the corresponding variable object:

vars = m.getVars()
for (int j = 0; j < cols; j++)
xj = vars[j].get(GRB.DoubleAttr.X)

You can also query the value of X for multiple variables in a single get call on the model m:

588

double[] xvals = m.get(GRB.DoubleAttr.X, m.getVars()))

For each attribute query method, there’s an analogous set routine. To set the upper bound of
a variable, for example:

v = m.getVars()[0]
v.set(GRB.DoubleAttr.UB, 0)

(In this example, we’ve set the upper bound for the first variable in the model to 0).

Python Attribute Examples

Consider the case where you have a Gurobi model m. You can retrieve the number of variables in
the model by querying the NumVars model attribute:

print(m.numVars)

(Note that attribute capitalization doesn’t matter in the Python interface, so you could also query
m.NumV ars or m.numvars).

If you’ve performed optimization on the model, the optimal objective value can be obtained by
querying the ObjVal model attribute:

print(m.objVal)

If you’d like to query the value that a variable takes in the computed solution, you can query
the X attribute for the corresponding variable object:

for v in m.getVars():
print(v.x)

You can also query the value of X for multiple variables in a single getAttr call on the model m:

print(m.getAttr(GRB.Attr.x, m.getVars()))

For each attribute query method, there’s an analogous set routine. To set the upper bound of
a variable, for example:

v = m.getVars()[0]
v.ub = 0

(In this example, we’ve set the upper bound for the first variable in the model to 0).

Visual Basic Attribute Examples

Consider the case where you have a Gurobi model m. You can retrieve the number of variables in
the model by querying the NumVars model attribute (which is implemented as a .NET property):

cols = m.NumVars;

If you’ve performed optimization on the model, the optimal objective value can be obtained by
querying the ObjVal model attribute:

589

obj = m.ObjVal;

If you’d like to query the value that a variable takes in the computed solution, you can query
the X attribute for the corresponding variable object:

vars = m.GetVars()
For j As Integer = 0 To cols - 1
xj = vars[j].X

You can also query the value of X for multiple variables in a single call using the Get method on
the model m:

xvals = m.Get(GRB.DoubleAttr.X, m.GetVars()))

For each attribute query method, there’s an analogous Set routine. To set the upper bound of
a variable, for example:

v = m.GetVars()[0]
v.UB = 0

(In this example, we’ve set the upper bound for the first variable in the model to 0).

590

Parameters

Parameters control the operation of the Gurobi solvers. They must be modified before the opti-
mization begins. While you should feel free to experiment with different parameter settings, we
recommend that you leave parameters at their default settings unless you find a compelling reason
not to. For a discussion of when you might want to change parameter values, refer to our Parameter
Guidelines.

The various Gurobi APIs all provide routines for querying and modifying parameter values.
Refer to our Parameter Examples for additional information.
Available Gurobi Parameters

Termination: These parameters affect the termination of the algorithms. If the algorithm exceeds
any of these limits, it will terminate and report a non-optimal termination status (see the Status
Code section for further details). Note that the algorithm won’t necessarily stop the moment it
hits the specified limit. The termination check may occur well after the limit has been exceeded.

Parameter name Purpose
BarIterLimit Barrier iteration limit
Cutoff Objective cutoff
IterationLimit Simplex iteration limit
NodeLimit MIP node limit
SolutionLimit MIP feasible solution limit
TimeLimit Time limit
BestObjStop Best objective value to stop
BestBdStop Best objective bound to stop

Tolerances: These parameters control the allowable feasibility or optimality violations.
Parameter name Purpose
BarConvTol Barrier convergence tolerance
BarQCPConvTol Barrier QCP convergence tolerance
FeasibilityTol Primal feasibility tolerance
IntFeasTol Integer feasibility tolerance
MarkowitzTol Threshold pivoting tolerance
MIPGap Relative MIP optimality gap
MIPGapAbs Absolute MIP optimality gap
OptimalityTol Dual feasibility tolerance
PSDTol Positive semi-definite tolerance

591

Simplex: These parameters control the operation of the simplex algorithms.
Parameter name Purpose
InfUnbdInfo Generate additional info for infeasible/unbounded models
NormAdjust Simplex pricing norm
ObjScale Objective scaling
PerturbValue Simplex perturbation magnitude
Quad Quad precision computation in simplex
ScaleFlag Model scaling
Sifting Sifting within dual simplex
SiftMethod LP method used to solve sifting sub-problems
SimplexPricing Simplex variable pricing strategy

Barrier: These parameters control the operation of the barrier solver.
Parameter name Purpose
BarCorrectors Central correction limit
BarHomogeneous Barrier homogeneous algorithm
BarOrder Barrier ordering algorithm
Crossover Barrier crossover strategy
CrossoverBasis Crossover initial basis construction strategy
QCPDual Compute dual variables for QCP models

MIP: These parameters control the operation of the MIP algorithms.
Parameter name Purpose
BranchDir Branch direction preference
DegenMoves Degenerate simplex moves
ConcurrentJobs Enables distributed concurrent solver
ConcurrentMIP Enables concurrent MIP solver
ConcurrentSettings Comma-separated list of .prm files - used to create concurrent environments
Disconnected Disconnected component strategy
DistributedMIPJobs Enables the distributed MIP solver
Heuristics Turn MIP heuristics up or down
ImproveStartGap Trigger solution improvement
ImproveStartNodes Trigger solution improvement
ImproveStartTime Trigger solution improvement
MinRelNodes Minimum relaxation heuristic control
MIPFocus Set the focus of the MIP solver
MIQCPMethod Method used to solve MIQCP models
NodefileDir Directory for MIP node files
NodefileStart Memory threshold for writing MIP tree nodes to disk
NodeMethod Method used to solve MIP node relaxations
PumpPasses Feasibility pump heuristic control
RINS RINS heuristic
SolutionNumber Sub-optimal MIP solution retrieval
SubMIPNodes Nodes explored by sub-MIP heuristics
Symmetry MIP symmetry detection
VarBranch Branch variable selection strategy
ZeroObjNodes Zero objective heuristic control

592

Tuning: These parameters control the operation of the parameter tuning tool.
Parameter name Purpose
TuneCriterion Specify tuning criterion
TuneJobs Enables distributed tuning
TuneOutput Tuning output level
TuneResults Number of improved parameter sets returned
TuneTimeLimit Time limit for tuning
TuneTrials Perform multiple runs on each parameter set to limit the

effect of random noise
Multiple Solutions: These parameters allow you to modify the behavior of the MIP search in
order to find more than one solution to a MIP model.

Parameter name Purpose
PoolSearchMode Choose the approach used to find additional solutions
PoolGap Gap for solutions in pool
PoolSolutions Number of solutions to keep in pool

MIP Cuts: These parameters affect the generation of MIP cutting planes. In all cases, a value of
-1 corresponds to an automatic setting, which allows the solver to determine the appropriate level
of aggressiveness in the cut generation. Unless otherwise noted, settings of 0, 1, and 2 correspond
to no cut generation, conservative cut generation, or aggressive cut generation, respectively. The
Cuts parameter provides global cut control, affecting the generation of all cuts. This parameter
also has a setting of 3, which corresponds to very aggressive cut generation. The other parameters
override the global Cuts parameter (so setting Cuts to 2 and CliqueCuts to 0 would generate all
cut types aggressively, except clique cuts which would not be generated at all).

Parameter name Purpose
Cuts Global cut generation control
CliqueCuts Clique cut generation
CoverCuts Cover cut generation
FlowCoverCuts Flow cover cut generation
FlowPathCuts Flow path cut generation
GUBCoverCuts GUB cover cut generation
ImpliedCuts Implied bound cut generation
MIPSepCuts MIP separation cut generation
MIRCuts MIR cut generation
StrongCGCuts Strong-CG cut generation
ModKCuts Mod-k cut generation
NetworkCuts Network cut generation
ProjImpliedCuts Projected implied bound cut generation
SubMIPCuts Sub-MIP cut generation
ZeroHalfCuts Zero-half cut generation
InfProofCuts Infeasibility proof cut generation
CutAggPasses Constraint aggregation passes performed during cut generation
CutPasses Root cutting plane pass limit
GomoryPasses Root Gomory cut pass limit

Distributed algorithms: Parameters that are used to control our distributed parallel algorithms

593

(distributed MIP, distributed concurrent, and distributed tuning).
Parameter name Purpose
WorkerPassword Password for distributed workers
WorkerPool List of available distributed workers
WorkerPort Non-default port number for distributed workers

594

Other: Other parameters.
Parameter name Purpose
AggFill Allowed fill during presolve aggregation
Aggregate Presolve aggregation control
DisplayInterval Frequency at which log lines are printed
DualReductions Disables dual reductions in presolve
FeasRelaxBigM Big-M value for feasibility relaxations
IISMethod IIS method
InputFile File to be read before optimization commences
LazyConstraints Programs that add lazy constraints must set this parameter
LogFile Log file name
LogToConsole Console logging
Method Algorithm used to solve continuous models
MultiObjMethod Warm-start method to solve for subsequent objectives
MultiObjPre Initial presolve on multi-objective models
NumericFocus Set the numerical focus
IgnoreNames Indicates whether to ignore names provided by users
ObjNumber Set index of multi-objectives
OutputFlag Solver output control
PreCrush Allows presolve to translate constraints on the original model

to equivalent constraints on the presolved model
PreDepRow Presolve dependent row reduction
PreDual Presolve dualization
PreMIQCPForm Format of presolved MIQCP model
PrePasses Presolve pass limit
PreQLinearize Presolve Q matrix linearization
Presolve Presolve level
PreSOS1BigM Controls SOS1 converstion to binary form
PreSOS2BigM Controls SOS2 converstion to binary form
PreSparsify Presolve sparsify reduction
Record Enable API call recording
ResultFile Result file written upon completion of optimization
Seed Modify the random number seed
StartNodeLimit Node limit for MIP start sub-MIP
Threads Number of parallel threads to use
UpdateMode Change the behavior of lazy updates

595

11.1 Parameter Guidelines
This section provides a brief discussion of the roles of the various Gurobi parameters when solving
continuous or MIP models, with some indication of their relative importance.

Note that you also have the option of using the Parameter Tuning Tool to tune parameters.
We recommend that you browse this section, though, even if you use the tuning tool, so that you
can get an understanding of the roles of the various parameters.

Continuous Models

If you wish to use Gurobi parameters to tune performance on continuous models, we offer the
following guidelines.

Choosing the method for LP or QP

The most important parameter when solving an LP or QP is Method. The default setting (-1) uses
the concurrent optimizer for an LP, and the parallel barrier solver for a QP. While the default is
usually a good choice, you may want to choose a different method in a few situations.

If memory is tight, you should consider using the dual simplex method (Method=1) instead of
the default. The default will invoke the barrier method, which can take a lot more memory than
dual. In addition, the default for LP will try multiple algorithms simultaneously, and each requires
a copy of the original model. By selecting dual simplex, you will only use one copy of the model.

Another scenario where you should change the default is when you must get the same opti-
mal basis each time you run your program. For LP models, the default concurrent solver invokes
multiple algorithms simultaneously on multi-core systems, returning the optimal basis from the
one that finishes first. In rare cases, one algorithm may complete first in one run, while another
completes first in another. This can potentially lead to different alternate optimal solutions. Se-
lecting any other method, including the deterministic concurrent solver, will avoid this possibility.
Note, however, that the deterministic concurrent solver can be significantly slower than the default
concurrent solver.

Finally, if you are confronted with a difficult LP model, you should experiment with the different
method options. While the default is rarely significantly slower than the best choice, you may find
that one option is consistently faster or more robust for your models. There are no simple rules for
predicting which method will work best for a particular family of models.

If you are solving QCP or SOCP models, note that the barrier algorithm is your only option.

Parallel solution

Among the remaining parameters that affect continuous models, the only one that you would
typically want to adjust is Threads, which controls the number of threads used for the concurrent
and parallel barrier algorithms. By default, concurrent and barrier will use all available cores in
your machine. Note that the simplex solvers can only use one thread, so this parameter has no
effect on them.

If you would like to experiment with different strategies than the default ones when solving an
LP model using the concurrent optimizer, we provide methods in C, C++, Java, .NET, and Python
that allow you to create and configure concurrent environments.

596

Infeasible or unbounded models

If you are confronted with an infeasible or unbounded LP, additional details can be obtained when
you set the InfUnbdInfo parameter. For an unbounded model, setting this parameter allows you to
retrieve an unbounded ray (using the UnbdRay attribute). For an infeasible model, setting this pa-
rameter allows you to retrieve a Farkas infeasibility proof (using the FarkasDual and FarkasProof
attributes).

For the barrier algorithm, you should set the BarHomogeneous parameter to 1 whenever you
have a model that you suspect is infeasible or unbounded. This algorithm is better at diagnosing
infeasibility or unboundedness.

Special structure

If you wish to solve an LP model that has many more variables than constraints, you may want
to try the sifting algorithm. Sifting is actually implemented within our dual simplex solver, so to
select sifting, set the Method parameter to 1 (to select dual), and then set the Sifting parameter
to a positive value. You can use the SiftMethod parameter to choose the algorithm that is used to
solve the sub-problems that arise within the sifting algorithm. In general, sifting is only effective
when the ratio between variables and constraints is extremely large (100 to 1 or more). Note that
the default Sifting setting allows the Gurobi Optimizer to select sifting automatically when a
problem has the appropriate structure, so you won’t typically need to select it manually.

Additional parameters

The ScaleFlag parameter can be used to modify the scaling performed on the model. The default
scaling value (1) is usually the most effective choice, but turning off scaling entirely (0) can some-
times reduce constraint violations on the original model, and applying more aggressive scaling (2)
can sometimes improve the numerical properties of the scaled model. The ObjScale parameter
allows you to scale just the objective. Objective scaling can be useful when the objective contains
extremely large values, but it can also lead to large dual violations, so it should be used sparingly.

The SimplexPricing parameter determines the method used to choose a simplex pivot. The
default is usually the best choice. The NormAdjust parameter allows you to choose alternate
simplex pricing norms. Again, the default is usually best. The Quad parameter allows you to
force the simplex solver to use (or not use) quad precision. While quad precision can help for
numerically difficult models, the default setting will typically recognize such cases automatically.
The PerturbValue parameter allows you to adjust the magnitude of the simplex perturbation (used
to overcome degeneracy). Again, the default value is typically effective.

Other Gurobi parameters control the details of the barrier solver. The BarConvTol and Bar-
QCPConvTol parameters allow you to adjust barrier termination. While you can ask for more
precision than the default, you will typically run into the limitations of double-precision arithmetic
quite quickly. This parameter is typically used to indicate that you are willing to settle for a less
accurate answer than the defaults would give. The BarCorrectors parameter allows you to adjust
the number of central corrections applied in each barrier iteration. More corrections generally lead
to more forward progress in each iteration, but at a cost of more expensive iterations. The BarOrder
parameter allows you to choose the barrier ordering method. The default approach typically works
well, but you can manually choose the less expensive Approximate Minimum Degree ordering option
(BarOrder=0) if you find that ordering is taking too long.

597

MIP Models

While default settings generally work well, MIP models will often benefit from parameter tuning.
We offer the following guidelines, but we also encourage you to experiment.

Most Important Parameters

The two most important Gurobi settings when solving a MIP model are probably the Threads and
MIPFocus parameters. The Threads parameter controls the number of threads used by the parallel
MIP solver to solve the model. The default is to use all cores in the machine. If you wish to leave
some available for other activities, adjust this parameter accordingly.

The MIPFocus parameter allows you to modify your high-level solution strategy, depending
on your goals. By default, the Gurobi MIP solver strikes a balance between finding new feasible
solutions and proving that the current solution is optimal. If you are more interested in good quality
feasible solutions, you can select MIPFocus=1. If you believe the solver is having no trouble finding
the optimal solution, and wish to focus more attention on proving optimality, select MIPFocus=2.
If the best objective bound is moving very slowly (or not at all), you may want to try MIPFocus=3
to focus on the bound.

Solution Improvement

The ImproveStartTime and ImproveStartGap parameters can also be used to modify your high-
level solution strategy, but in a different way. These parameters allow you to give up on proving
optimality at a certain point in the search, and instead focus all attention on finding better feasible
solutions from that point onward. The ImproveStartTime parameter allows you to make this
transition after the specified time has elapsed, while the ImproveStartGap parameter makes the
transition when the specified optimality gap has been achieved.

Termination

Another important set of Gurobi parameters affect solver termination. If the solver is unable to
find a proven optimal solution within the desired time, you will need to indicate how to limit
the search. The simplest option is to limit runtime using the TimeLimit parameter. Another
common termination choice for MIP models is to set the MIPGap parameter. The MIPGap parameter
allows you to indicate that optimization should stop when the relative gap between the best known
solution and the best known bound on the solution objective is less than the specified value. You can
terminate when the absolute gap is below a desired threshold using the MIPGapAbs parameter. Other
termination options include NodeLimit, IterationLimit, SolutionLimit, and Cutoff. The first
three indicate that optimization should terminate when the number of branch-and-bound nodes, the
total number of simplex iterations, or the number of discovered feasible integer solutions exceeds the
specified value, respectively. The Cutoff parameter indicates that the solver should only consider
solutions whose objective values are better than the specified value, and should terminate if no
such solutions are found.

Reducing Memory Usage

If you find that the Gurobi optimizer exhausts memory when solving a MIP, you should modify the
NodefileStart parameter. When the amount of memory used to store nodes (measured in GBytes)
exceeds the specified parameter value, nodes are written to disk. We recommend a setting of 0.5,
but you may wish to choose a different value, depending on the memory available in your machine.

598

By default, nodes are written to the current working directory. The NodefileDir parameter can
be used to choose a different location.

If you still exhaust memory after setting the NodefileStart parameter to a small value, you
should try limiting the thread count. Each thread in parallel MIP requires a copy of the model,
as well as several other large data structures. Reducing the Threads parameter can sometimes
significantly reduce memory usage.

Speeding Up The Root Relaxation

The root relaxation in a MIP model can sometimes be quite expensive to solve. If you find that a lot
of time is spent here, consider using the Method parameter to select a different continuous algorithm
for the root. For example, Method=2 would select the parallel barrier algorithm at the root, and
Method=3 would select the concurrent solver. Note that you can choose a different algorithm for
the MIP node relaxations using the NodeMethod parameter, but it is rarely beneficial to change
this from the default (dual simplex).

Heuristics

A few Gurobi parameters control internal MIP strategies. The Heuristics parameter controls
the fraction of runtime spent on feasibility heuristics. Increasing the parameter can lead to more
and better feasible solutions, but it will also reduce the rate of progress in the best bound. The
SubMIPNodes parameter controls the number of nodes explored in some of the more sophisticated
local search heuristics inside the Gurobi solver. You can increase this if you are having trouble
finding good feasible solutions. The MinRelNodes, PumpPasses, and ZeroObjNodes parameters
control a set of expensive heuristics whose goal is to find a feasible solution. All are invoked at the
end of the MIP root node, but only if no feasible solution has been found already. Try these if you
are having trouble finding any feasible solutions.

Cutting Planes

The Gurobi MIP solver employs a wide range of cutting plane strategies. The aggressiveness of
these strategies can be controlled at a coarse level through the Cuts parameter, and at a finer
grain through a further set of cuts parameters (e.g., FlowCoverCuts, MIRCuts, etc.). Each cut
parameter can be set to Aggressive (2), Conservative (1), Automatic (-1), or None (0). The more
specific parameters override the more general, so for example setting MIRCuts to None (0) while
also setting Cuts to Aggressive (2) would aggressively generate all cut types, except MIR cuts
which would not be generated. Very easy models can sometimes benefit from turning cuts off,
while extremely difficult models can benefit from turning them to their Aggressive setting.

Presolve

Presolve behavior can be modified with a set of parameters. The Presolve parameter sets the
aggressiveness level of presolve. Options are Aggressive (2), Conservative (1), Automatic (-1), or
None (0). More aggressive application of presolve takes more time, but can sometimes lead to a
significantly tighter model. The PrePasses provides finer-grain control of presolve. It limits the
number of passes presolve performs. Setting it to a small value (e.g., 3) can reduce presolve runtime.
The Aggregate parameter controls whether presolve performs constraint aggregation. Aggregation
typically leads to a smaller formulation, but in rare cases it can introduce numerical issues. The
AggFill parameter controls aggregation at a finer grain. It controls how much fill is tolerated in
the constraint matrix from a single variable aggregation. The PreSparsify parameter enables an

599

algorithm that can sometimes significantly reduce the number of nonzero values in the constraint
matrix.
Additional Parameters

The Symmetry parameter controls symmetry detection. The default value usually works well. The
VarBranch parameter controls the branching variable selection strategy within the branch-and-
bound process. Variable selection can have a significant impact on overall time to solution, but the
default strategy is usually the best choice.
Tolerances

The Gurobi solver includes a set of numerical tolerance parameters. These rarely require adjust-
ment, and are included for advanced users who are having trouble with the numerical properties of
their models. The FeasibilityTol, IntFeasTol, MarkowitzTol, and OptimalityTol parameters
allow you to adjust the primal feasibility tolerance, the integer feasibility tolerance, the Markowitz
tolerance for simplex basis factorization, and the dual feasibility tolerance, respectively.

11.2 Parameter Descriptions
AggFill

Presolve aggregation fill level

Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Controls the amount of fill allowed during presolve aggregation. Larger values generally lead to
presolved models with fewer rows and columns, but with more constraint matrix non-zeros.

The default value chooses automatically, and usually works well.
For examples of how to query or modify parameter values from our different APIs, refer to our

Parameter Examples.

Aggregate

Presolve aggregation

Type: int
Default value: 1
Minimum value: 0
Maximum value: 1

Enables or disables aggregation in presolve. In rare instances, aggregation can lead to an
accumulation of numerical errors. Turning it off can sometimes improve solution accuracy.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

BarConvTol

Barrier convergence tolerance

Type: double
Default value: 1e-8
Minimum value: 0.0
Maximum value: 1.0

600

The barrier solver terminates when the relative difference between the primal and dual objective
values is less than the specified tolerance (with a GRB_OPTIMAL status). Tightening this tolerance
often produces a more accurate solution, which can sometimes reduce the time spent in crossover.
Loosening it causes the barrier algorithm to terminate with a less accurate solution, which can be
useful when barrier is making very slow progress in later iterations.

Note: Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

BarCorrectors

Barrier central corrections

Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Limits the number of central corrections performed in each barrier iteration. The default value
chooses automatically, depending on problem characteristics. The automatic strategy generally
works well, although it is often possible to obtain higher performance on a specific model by
selecting a value manually.

Note: Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

BarHomogeneous

Barrier homogeneous algorithm

Type: int
Default value: -1
Minimum value: -1
Maximum value: 1

Determines whether to use the homogeneous barrier algorithm. At the default setting (-1), it
is only used when barrier solves a node relaxation for a MIP model. Setting the parameter to 0
turns it off, and setting it to 1 forces it on. The homogeneous algorithm is useful for recognizing
infeasibility or unboundedness. It is a bit slower than the default algorithm.

Note: Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

BarOrder

Barrier ordering algorithm

Type: int
Default value: -1
Minimum value: -1
Maximum value: 1

601

Chooses the barrier sparse matrix fill-reducing algorithm. A value of 0 chooses Approximate
Minimum Degree ordering, while a value of 1 chooses Nested Dissection ordering. The default value
of -1 chooses automatically. You should only modify this parameter if you notice that the barrier
ordering phase is consuming a significant fraction of the overall barrier runtime.

Note: Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

BarQCPConvTol

Barrier convergence tolerance for QCP models

Type: double
Default value: 1e-6
Minimum value: 0.0
Maximum value: 1.0

When solving a QCP model, the barrier solver terminates when the relative difference between
the primal and dual objective values is less than the specified tolerance (with a GRB_OPTIMAL status).
Tightening this tolerance may lead to a more accurate solution, but it may also lead to a failure to
converge.

Note: Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

BarIterLimit

Barrier iteration limit

Type: int
Default value: 1000
Minimum value: 0
Maximum value: MAXINT

Limits the number of barrier iterations performed. This parameter is rarely used. If you would
like barrier to terminate early, it is almost always better to use the BarConvTol parameter instead.

Optimization returns with an ITERATION_LIMIT status if the limit is exceeded (see the Status
Code section for further details).

Note: Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

BestBdStop

Objective bound to stop optimization

Type: double
Default value: Infinity
Minimum value: -Infinity
Maximum value: Infinity

602

Terminates as soon as the engine determines that the best bound on the objective value is at
least as good as the specified value. Optimization returns with an USER_OBJ_LIMIT status in this
case.

Note that you should always include a small tolerance in this value. Without this, a bound that
satisfies the intended termination criterion may not actually lead to termination due to numerical
round-off in the bound.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

BestObjStop

Objective value to stop optimization

Type: double
Default value: -Infinity
Minimum value: -Infinity
Maximum value: Infinity

Terminate as soon as the engine finds a feasible solution whose objective value is at least as
good as the specified value. Optimization returns with an USER_OBJ_LIMIT status in this case.

Note that you should always include a small tolerance in this value. Without this, a solution that
satisfies the intended termination criterion may not actually lead to termination due to numerical
round-off in the objective.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

BranchDir

Preferred branch direction

Type: int
Default value: 0
Minimum value: -1
Maximum value: 1

Determines which child node is explored first in the branch-and-cut search. The default value
chooses automatically. A value of -1 will always explore the down branch first, while a value of 1
will always explore the up branch first.

Changing the value of this parameter rarely produces a significant benefit.
Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

603

DegenMoves

Degenerate simplex moves

Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Limits degenerate simplex moves. These moves are performed to improve the integrality of the
current relaxation solution. By default, the algorithm chooses the number of moves to perform
automatically.

Changing the value of this parameter can help performance in cases where an excessive amount
of time is spent after the initial root relaxation has been solved but before the cut generation
process or the root heuristics have started.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CliqueCuts

Clique cut generation

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls clique cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or
2 for aggressive cut generation. The default -1 value choose automatically. Overrides the Cuts
parameter.

We have observed that setting this parameter to its aggressive setting can produce a significant
benefit for some large set partitioning models.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ConcurrentJobs

Distributed concurrent optimizer job count

Type: int
Default value: 0
Minimum value: 0
Maximum value: MAXINT

Enables distributed concurrent optimization, which can be used to solve LP or MIP models on
multiple machines. A value of n causes the solver to create n independent models, using different
parameter settings for each. Each of these models is sent to a distributed worker for processing.
Optimization terminates when the first solve completes. Use the WorkerPool parameter to provide
a list of available distributed workers.

By default, Gurobi chooses the parameter settings used for each independent solve automati-
cally. You can create concurrent environments to choose your own parameter settings (refer to the

604

concurrent optimization section for details). The intent of concurrent MIP solving is to introduce
additional diversity into the MIP search. By bringing the resources of multiple machines to bear
on a single model, this approach can sometimes solve models much faster than a single machine.

The distributed concurrent solver produces a slightly different log from the standard solver,
and provides different callbacks as well. Please refer to the Distributed Algorithm discussion for
additional details.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ConcurrentMIP

Enables the concurrent MIP solver

Type: int
Default value: 1
Minimum value: 1
Maximum value: MAXINT

This parameter enables the concurrent MIP solver. When the parameter is set to value n, the
MIP solver performs n independent MIP solves in parallel, with different parameter settings for
each. Optimization terminates when the first solve completes.

By default, Gurobi chooses the parameter settings used for each independent solve automati-
cally. You can create concurrent environments to choose your own parameter settings (refer to the
concurrent optimization section for details). The intent of concurrent MIP solving is to introduce
additional diversity into the MIP search. This approach can sometimes solve models much faster
than applying all available threads to a single MIP solve, especially on very large parallel machines.

The concurrent MIP solver divides available threads evenly among the independent solves. For
example, if you have 6 threads available and you set ConcurrentMIP to 2, the concurrent MIP
solver will allocate 3 threads to each independent solve. Note that the number of independent
solves launched will not exceed the number of available threads.

The concurrent MIP solver produces a slightly different log from the standard MIP solver,
and provides different callbacks as well. Please refer to the concurrent optimizer discussion for
additional details.

Concurrent MIP is not deterministic. If runtimes for different independent solves are very
similar, and if the model has multiple optimal solutions, you may get slightly different results from
multiple runs on the same model.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ConcurrentSettings

Create concurrent environments from a set of .prm files Type: string
Default value: ""

This command-line only parameter allows you to specify a comma-separated list of .prm files
that are used to set parameters for the different instances in a concurrent MIP run.

To give an example, you could create two .prm files with the following contents...
s0.prm:

605

MIPFocus 0

s1.prm:

MIPFocus 1

Issuing the command gurobi_cl ConcurrentSettings=s0.prm,s1.prm model.mps would in-
voke the concurrent MIP solver, using parameter setting MIPFocus=0 in one of the two concurrent
solves and MIPFocus=1 in the other.

Note that if you want to run concurrent MIP on multiple machines, you must also set the
ConcurrentJobs parameter. The command for running distributed concurrent optimization using
the two example parameter files on two machines would be

> gurobi_cl ConcurrentJobs=2 ConcurrentSettings=s0.prm,s1.prm model.mps

Note: Command-line only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CoverCuts

Cover cut generation

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls cover cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or
2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts
parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Crossover

Barrier crossover strategy

Type: int
Default value: -1
Minimum value: -1
Maximum value: 4

Determines the crossover strategy used to transform the interior solution produced by barrier
into a basic solution (note that crossover is not available for QP or QCP models). Crossover consists
of three phases: (i) a primal push phase, where primal variables are pushed to bounds, (ii) a dual
push phase, where dual variables are pushed to bounds, and (iii) a cleanup phase, where simplex is
used to remove any primal or dual infeasibilities that remain after the push phases are complete.
The order of the first two phases and the algorithm used for the third phase are both controlled by
the Crossover parameter:

606

Parameter value First push Second push Cleanup
0 Disabled Disabled Disabled
1 Dual Primal Primal
2 Dual Primal Dual
3 Primal Dual Primal
4 Primal Dual Dual

The default value of -1 chooses the strategy automatically. Use value 0 to disable crossover;
this setting returns the interior solution computed by barrier.

Note: Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CrossoverBasis

Crossover basis construction strategy

Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

Determines the initial basis construction strategy for crossover. The default value (0) chooses
an initial basis quickly. A value of 1 can take much longer, but often produces a more numerically
stable start basis.

Note: Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Cutoff

Objective cutoff

Type: double
Default value: Infinity for minimization, -Infinity for maximization
Minimum value: -Infinity
Maximum value: Infinity

Indicates that you aren’t interested in solutions whose objective values are worse than the
specified value. If the objective value for the optimal solution is better than the specified cutoff,
the solver will return the optimal solution. Otherwise, it will terminate with a CUTOFF status (see
the Status Code section for further details).

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CutAggPasses

Constraint aggregation passes in cut generation

Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

607

A non-negative value indicates the maximum number of constraint aggregation passes performed
during cut generation. Overrides the Cuts parameter.

Changing the value of this parameter rarely produces a significant benefit.
Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CutPasses

Cutting plane passes

Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

A non-negative value indicates the maximum number of cutting plane passes performed during
root cut generation. The default value chooses the number of cut passes automatically.

You should experiment with different values of this parameter if you notice the MIP solver
spending significant time on root cut passes that have little impact on the objective bound.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Cuts

Global cut control

Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Global cut aggressiveness setting. Use value 0 to shut off cuts, 1 for moderate cut generation, 2
for aggressive cut generation, and 3 for very aggressive cut generation. This parameter is overridden
by the parameters that control individual cut types (e.g., CliqueCuts).

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Disconnected

Disconnected component strategy

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

A MIP model can sometimes be made up of multiple, completely independent sub-models.
This parameter controls how aggressively we try to exploit this structure. A value of 0 ignores

608

this structure entirely, while larger values try more aggressive approaches. The default value of -1
chooses automatically.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

DisplayInterval

Frequency of log lines

Type: int
Default value: 5
Minimum value: 1
Maximum value: MAXINT

Determines the frequency at which log lines are printed (in seconds).
For examples of how to query or modify parameter values from our different APIs, refer to our

Parameter Examples.

DistributedMIPJobs

Distributed MIP job count

Type: int
Default value: 0
Minimum value: 0
Maximum value: MAXINT

Enables distributed MIP. A value of n causes the MIP solver to divide the work of solving a MIP
model among n machines. Use the WorkerPool parameter to provide the list of available machines.

The distributed MIP solver produces a slightly different log from the standard MIP solver,
and provides different callbacks as well. Please refer to the Distributed Algorithm discussion for
additional details.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

DualReductions

Controls dual reductions

Type: int
Default value: 1
Minimum value: 0
Maximum value: 1

Determines whether dual reductions are performed in presolve. You should disable these re-
ductions if you received an optimization status of INF_OR_UNBD and would like a more definitive
conclusion.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

609

FeasibilityTol

Primal feasibility tolerance

Type: double
Default value: 1e-6
Minimum value: 1e-9
Maximum value: 1e-2

All constraints must be satisfied to a tolerance of FeasibilityTol. Tightening this tolerance
can produce smaller constraint violations, but for numerically challenging models it can sometimes
lead to much larger iteration counts.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

FeasRelaxBigM

Big-M value for feasibility relaxations

Type: double
Default value: 1e6
Minimum value: 0
Maximum value: Infinity

When relaxing a constraint in a feasibility relaxation, it is sometimes necessary to introduce a
big-M value. This parameter determines the default magnitude of that value.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

FlowCoverCuts

Flow cover cut generation

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls flow cover cut generation. Use 0 to disable these cuts, 1 for moderate cut generation,
or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts
parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

FlowPathCuts

Flow path cut generation

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls flow path cut generation. Use 0 to disable these cuts, 1 for moderate cut generation,
or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts
parameter.

610

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

GomoryPasses

Gomory cut passes

Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

A non-negative value indicates the maximum number of Gomory cut passes performed. Over-
rides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

GUBCoverCuts

GUB cover cut generation

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls GUB cover cut generation. Use 0 to disable these cuts, 1 for moderate cut generation,
or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts
parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Heuristics

Time spent in feasibility heuristics

Type: double
Default value: 0.05
Minimum value: 0
Maximum value: 1

Determines the amount of time spent in MIP heuristics. You can think of the value as the
desired fraction of total MIP runtime devoted to heuristics (so by default, we aim to spend 5% of
runtime on heuristics). Larger values produce more and better feasible solutions, at a cost of slower
progress in the best bound.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

611

IISMethod

Selects method used to compute IIS

Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Chooses the IIS method to use. Method 0 is often faster, while method 1 can produce a smaller
IIS. Method 2 ignores the bound constraints. Method 3 will return the IIS for the LP relaxation
of a MIP model if the relaxation is infeasible, even though the result may not be minimal when
integrality constraints are included. The default value of -1 chooses automatically.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ImpliedCuts

Implied bound cut generation

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls implied bound cut generation. Use 0 to disable these cuts, 1 for moderate cut genera-
tion, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the
Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ImproveStartGap

Solution improvement strategy control

Type: double
Default value: 0.0
Minimum value: 0.0
Maximum value: Infinity

The MIP solver can change parameter settings in the middle of the search in order to adopt
a strategy that gives up on moving the best bound and instead devotes all of its effort towards
finding better feasible solutions. This parameter allows you to specify an optimality gap at which
the MIP solver switches to a solution improvement strategy. For example, setting this parameter
to 0.1 will cause the MIP solver to switch strategies once the relative optimality gap is smaller than
0.1.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

612

ImproveStartNodes

Solution improvement strategy control

Type: double
Default value: Infinity
Minimum value: 0.0
Maximum value: Infinity

The MIP solver can change parameter settings in the middle of the search in order to adopt
a strategy that gives up on moving the best bound and instead devotes all of its effort towards
finding better feasible solutions. This parameter allows you to specify the node count at which the
MIP solver switches to a solution improvement strategy. For example, setting this parameter to 10
will cause the MIP solver to switch strategies once the node count is larger than 10.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ImproveStartTime

Solution improvement strategy control

Type: double
Default value: Infinity
Minimum value: 0.0
Maximum value: Infinity

The MIP solver can change parameter settings in the middle of the search in order to adopt
a strategy that gives up on moving the best bound and instead devotes all of its effort towards
finding better feasible solutions. This parameter allows you to specify the time when the MIP
solver switches to a solution improvement strategy. For example, setting this parameter to 10 will
cause the MIP solver to switch strategies 10 seconds after starting the optimization.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

InfProofCuts

Infeasibility proof cut generation

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls infeasibility proof cut generation. Use 0 to disable these cuts, 1 for moderate cut
generation, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides
the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

613

InfUnbdInfo

Additional info for infeasible/unbounded models

Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

Determines whether simplex (and crossover) will compute additional information when a model
is determined to be infeasible or unbounded. Set this parameter if you want to query the unbounded
ray for unbounded models (through the UnbdRay attribute), or the infeasibility proof for infeasible
models (through the FarkasDual and FarkasProof attributes).

Note that if a model is found to be either infeasible or unbounded, and you simply want to
know which one it is, you should use the DualReductions parameter instead. It performs much less
additional computation.

Note: LP only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

InputFile

Import data into a model before beginning optimization Type: string
Default value: ""

Specifies the name of a file that will be read before beginning a command-line optimization
run. This parameter can be used to input a MIP start (a .mst or .sol file), MIP hints (a .hnt
file), a simplex basis (a .bas file), or a set of parameter settings (a .prm file) from the Gurobi
command line. The suffix may optionally be followed by .zip, .gz, bz2, or .7z if the input files
are compressed.

Note: Command-line only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

IntFeasTol

Integer feasibility tolerance

Type: double
Default value: 1e-5
Minimum value: 1e-9
Maximum value: 1e-1

An integrality restriction on a variable is considered satisfied when the variable’s value is less
than IntFeasTol from the nearest integer value. Tightening this tolerance can produce smaller
integrality violations, but very tight tolerances may significantly increase runtime. Loosening this
tolerance rarely reduces runtime.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

614

IterationLimit

Simplex iteration limit

Type: double
Default value: Infinity
Minimum value: 0
Maximum value: Infinity

Limits the number of simplex iterations performed. The limit applies to MIP, barrier crossover,
and simplex. Optimization returns with an ITERATION_LIMIT status if the limit is exceeded (see
the Status Code section for further details).

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

LazyConstraints

Programs that use lazy constraints must set this parameter

Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

Programs that add lazy constraints through a callback must set this parameter to value 1. The
parameter tells the Gurobi algorithms to avoid certain reductions and transformations that are
incompatible with lazy constraints.

Note that if you use lazy constraints by setting the Lazy attribute (and not through a callback),
there’s no need to set this parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

LogFile

Name for Gurobi log file Type: string
Default value: ""

Determines the name of the Gurobi log file. Modifying this parameter closes the current log
file and opens the specified file. Use an empty string for no log file. Use OutputFlag to shut off all
logging.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

LogToConsole

Control console logging

Type: int
Default value: 1
Minimum value: 0
Maximum value: 1

Enables or disables console logging. Use OutputFlag to shut off all logging.
For examples of how to query or modify parameter values from our different APIs, refer to our

Parameter Examples.

615

MarkowitzTol

Threshold pivoting tolerance

Type: double
Default value: 0.0078125
Minimum value: 1e-4
Maximum value: 0.999

The Markowitz tolerance is used to limit numerical error in the simplex algorithm. Specifically,
larger values reduce the error introduced in the simplex basis factorization. A larger value may
avoid numerical problems in rare situations, but it will also harm performance.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Method

Algorithm used to solve continuous models

Type: int
Default value: -1
Minimum value: -1
Maximum value: 5

Algorithm used to solve continuous models or the root node of a MIP model. Options are:
-1=automatic, 0=primal simplex, 1=dual simplex, 2=barrier, 3=concurrent, 4=deterministic con-
current, 5=deterministic concurrent simplex.

In the current release, the default Automatic (-1) setting will typically choose non-deterministic
concurrent (Method=3) for an LP, barrier (Method=2) for a QP or QCP, and dual (Method=1)
for the MIP root node. Only the simplex and barrier algorithms are available for continuous QP
models. Only primal and dual simplex are available for solving the root of an MIQP model. Only
barrier is available for continuous QCP models.

Concurrent optimizers run multiple solvers on multiple threads simultaneously, and choose the
one that finishes first. Deterministic concurrent (Method=4) and deterministic concurrent simplex
(Method=5) gives the exact same result each time, while Method=3 is often faster but can produce
different optimal bases when run multiple times. Deterministic concurrent simplex (Method=5) will
run both primal and dual simplex, while deterministic concurrent will run barrier, primal simplex
and dual simplex at the same time.

The default setting is rarely significantly slower than the best possible setting, so you generally
won’t see a big gain from changing this parameter. There are classes of models where one particular
algorithm is consistently fastest, though, so you may want to experiment with different options when
confronted with a particularly difficult model.

Note that if memory is tight on an LP model, you should consider using the dual simplex
method (Method=1). The concurrent optimizer, which is typically chosen when using the default
setting, consumes a lot more memory than dual simplex alone.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

616

MinRelNodes

Minimum relaxation heuristic

Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Number of nodes to explore in the minimum relaxation heuristic. Note that this heuristic is
only applied at the end of the MIP root, and only when no other root heuristic finds a feasible
solution.

This heuristic is quite expensive, and generally produces poor quality solutions. You should
generally only use it if other means, including exploration of the tree with default settings, fail to
produce a feasible solution.

The default value automatically chooses whether to apply the heuristic. It will only rarely
choose to do so.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

MIPFocus

MIP solver focus

Type: int
Default value: 0
Minimum value: 0
Maximum value: 3

The MIPFocus parameter allows you to modify your high-level solution strategy, depending
on your goals. By default, the Gurobi MIP solver strikes a balance between finding new feasible
solutions and proving that the current solution is optimal. If you are more interested in finding
feasible solutions quickly, you can select MIPFocus=1. If you believe the solver is having no trouble
finding good quality solutions, and wish to focus more attention on proving optimality, select
MIPFocus=2. If the best objective bound is moving very slowly (or not at all), you may want to
try MIPFocus=3 to focus on the bound.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

MIPGap

Relative MIP optimality gap

Type: double
Default value: 1e-4
Minimum value: 0
Maximum value: Infinity

The MIP solver will terminate (with an optimal result) when the gap between the lower and
upper objective bound is less than MIPGap times the absolute value of the upper bound.

617

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

MIPGapAbs

Absolute MIP optimality gap

Type: double
Default value: 1e-10
Minimum value: 0
Maximum value: Infinity

The MIP solver will terminate (with an optimal result) when the gap between the lower and
upper objective bound is less than MIPGapAbs.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

MIPSepCuts

MIP separation cut generation

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls MIP separation cut generation. Use 0 to disable these cuts, 1 for moderate cut gen-
eration, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides
the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

MIQCPMethod

Method used to solve MIQCP models

Type: int
Default value: -1
Minimum value: -1
Maximum value: 1

Controls the method used to solve MIQCPmodels. Value 1 uses a linearized, outer-approximation
approach, while value 0 solves continuous QCP relaxations at each node. The default setting (-1)
chooses automatically.

Note: Only affects MIQCP models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

618

MIRCuts

MIR cut generation

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls Mixed Integer Rounding (MIR) cut generation. Use 0 to disable these cuts, 1 for mod-
erate cut generation, or 2 for aggressive cut generation. The default -1 value chooses automatically.
Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ModKCuts

Mod-k cut generation

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls mod-k cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or
2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts
parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

MultiObjMethod

Method used for multi-objective solves

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

When solving a continuous multi-objective model using a hierarchical approach, the model is
solved once for each objective. The algorithm used to solve for the highest priority objective is
controlled by the Method parameter. This parameter determines the algorithm used to solve for
subsequent objectives. As with the Method parameters, values of 0 and 1 use primal and dual
simplex, respectively. A value of 2 indicates that warm-start information from previous solves
should be discarded, and the model should be solved from scratch (using the algorithm indicated
by the Method parameter). The default setting of -1 usually chooses primal simplex.

Note: Only affects continuous multi-objective models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

619

MultiObjPre

Initial presolve level on multi-objective models

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls the initial presolve level used for multi-objective models. Value 0 disables the initial
presolve, value 1 applies presolve conservatively, and value 2 applies presolve aggressively. The
default -1 value usually applies presolve conservatively. Aggressive presolve may increase the chance
of the objective values being slightly different than those for other options.

Note: Only affects multi-objective models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

NetworkCuts

Network cut generation

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls network cut generation. Use 0 to disable these cuts, 1 for moderate cut generation,
or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts
parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

NodefileDir

Directory for node files Type: string
Default value: "."

Determines the directory into which nodes are written when node memory usage exceeds the
specified NodefileStart value.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

NodefileStart

Write MIP nodes to disk

Type: double
Default value: Infinity
Minimum value: 0
Maximum value: Infinity

620

If you find that the Gurobi optimizer exhausts memory when solving a MIP, you should modify
the NodefileStart parameter. When the amount of memory used to store nodes (measured in
GBytes) exceeds the specified parameter value, nodes are compressed and written to disk. We
recommend a setting of 0.5, but you may wish to choose a different value, depending on the
memory available in your machine. By default, nodes are written to the current working directory.
The NodefileDir parameter can be used to choose a different location.

If you still exhaust memory after setting the NodefileStart parameter to a small value, you
should try limiting the thread count. Each thread in parallel MIP requires a copy of the model,
as well as several other large data structures. Reducing the Threads parameter can sometimes
significantly reduce memory usage.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

NodeLimit

MIP node limit

Type: double
Default value: Infinity
Minimum value: 0
Maximum value: Infinity

Limits the number of MIP nodes explored. Optimization returns with an NODE_LIMIT status if
the limit is exceeded (see the Status Code section for further details).

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

NodeMethod

Method used to solve MIP node relaxations

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Algorithm used for MIP node relaxations (except for the root node, see Method). Options
are: -1=automatic, 0=primal simplex, 1=dual simplex, and 2=barrier. Note that barrier is not an
option for MIQP node relaxations.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

621

IgnoreNames

Indicates whether to ignore names provided by users.

Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

This parameter affects how Gurobi deals with names. If set to 1, subsequent calls to add
variables or constraints to the model will ignore the associated names. Names for objectives and
the model will also be ignored. In addition, subsequent calls to modify name atributes will have no
effect. Note that variables or constraints that had names at the point this parameter was changed
to 1 will retain their names. If you wish to discard all name information, you should set this
parameter to 1 before adding variables or constraints to the model.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

NormAdjust

Choose simplex pricing norm.

Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Chooses from among multiple pricing norm variants. The details of how this parameter affects
the simplex pricing algorithm are subtle and difficult to describe, so we’ve simply labeled the options
0 through 3. The default value of -1 chooses automatically.

Changing the value of this parameter rarely produces a significant benefit.
For examples of how to query or modify parameter values from our different APIs, refer to our

Parameter Examples.

NumericFocus

Numerical focus

Type: int
Default value: 0
Minimum value: 0
Maximum value: 3

The NumericFocus parameter controls the degree to which the code attempts to detect and
manage numerical issues. The default setting (0) makes an automatic choice, with a slight prefer-
ence for speed. Settings 1-3 increasingly shift the focus towards being more careful in numerical
computations. With higher values, the code will spend more time checking the numerical accuracy
of intermediate results, and it will employ more expensive techniques in order to avoid potential
numerical issues.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

622

ObjScale

Objective scaling

Type: double
Default value: 0.0
Minimum value: -1
Maximum value: Infinity

Divides the model objective by the specified value to avoid numerical errors that may result
from very large objective coefficients. The default value of 0 decides on the scaling automatically.
A value less than zero uses the maximum coefficient to the specified power as the scaling (so
ObjScale=-0.5 would scale by the square root of the largest objective coefficient).

Objective scaling can be useful when the objective contains extremely large values, but it can
also lead to large dual violations, so it should be used sparingly.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

OptimalityTol

Dual feasibility tolerance

Type: double
Default value: 1e-6
Minimum value: 1e-9
Maximum value: 1e-2

Reduced costs must all be smaller than OptimalityTol in the improving direction in order for
a model to be declared optimal.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ObjNumber

Selects objective index of multi-objectives

Type: int
Default value: 0
Minimum value: 0
Maximum value: 2000000000

When working with multiple objectives, this parameter selects the index of the objective you
want to work with. When you modify an attribute associated with multiple objectives (ObjN,
ObjNVal, etc.), the ObjNumber parameter will determine which objective is actually affected. The
value of this parameter should be less than the value of the NumObj attribute (which captures the
number of objectives in the model).

Please refer to the discussion of Multiple Objectives for more information on the use of alter-
native objectives.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

623

OutputFlag

Controls Gurobi output

Type: int
Default value: 1
Minimum value: 0
Maximum value: 1

Enables or disables solver output. Use LogFile and LogToConsole for finer-grain control. Setting
OutputFlag to 0 is equivalent to setting LogFile to "" and LogToConsole to 0.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PerturbValue

Simplex perturbation

Type: double
Default value: 0.0002
Minimum value: 0
Maximum value: Infinity

Magnitude of the simplex perturbation. Note that perturbation is only applied when progress
has stalled, so the parameter will often have no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PoolGap

Maximum gap for stored solutions

Type: double
Default value: Infinity
Minimum value: 0
Maximum value: Infinity

Determines how large a gap to tolerate in stored solutions. When this parameter is set to a
non-default value, solutions whose objective values exceed that of the best known solution by more
than the specified (relative) gap are discarded. For example, if the MIP solver has found a solution
at objective 100, then a setting of PoolGap=0.2 would discard solutions with objective worse than
120 (assuming a minimization objective).

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PoolSearchMode

Selects different modes for exploring the MIP search tree

Type: int
Default value: 0
Minimum value: 0
Maximum value: 2

Selects different modes for exploring the MIP search tree. With the default setting (PoolSearchMode=0),
the MIP solver tries to find an optimal solution to the model. It keeps other solutions found along
the way, but those are incidental. By setting this parameter to a non-default value, the MIP search

624

will continue after the optimal solution has been found in order to find additional, high-quality
solutions. With a setting of 2, it will find the n best solutions, where n is determined by the value
of the PoolSolutions parameter. With a setting of 1, it will try to find additional solutions, but
with no guarantees about the quality of those solutions. The cost of the solve will increase with
increasing values of this parameter.

Once optimization is complete, the PoolObjBound attribute can be used to evaluate the quality
of the solutions that were found. For example, a value of PoolObjBound=100 indicates that there
are no other solutions with objective better 100, and thus that any known solutions with objective
better than 100 are better than any as-yet undiscovered solutions.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PoolSolutions

Number of MIP solutions to store

Type: int
Default value: 10
Minimum value: 1
Maximum value: 2000000000

Determines how many MIP solutions are stored. For the default value of PoolSearchMode,
these are just the solutions that are found along the way in the process of exploring the MIP search
tree. For other values of PoolSearchMode, this parameter sets a target for how many solutions to
find, so larger values will impact performance.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PreCrush

Controls presolve reductions that affect user cuts

Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

Allows presolve to translate constraints on the original model to equivalent constraints on the
presolved model. You must turn this parameter on when you are using callbacks to add your own
cuts.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

625

PreDepRow

Controls the presolve dependent row reduction

Type: int
Default value: -1
Minimum value: -1
Maximum value: 1

Controls the presolve dependent row reduction, which eliminates linearly dependent constraints
from the constraint matrix. The default setting (-1) applies the reduction to continuous models
but not to MIP models. Setting 0 turns the reduction off for all models. Setting 1 turns it on for
all models.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PreDual

Controls presolve model dualization

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls whether presolve forms the dual of a continuous model. Depending on the structure
of the model, solving the dual can reduce overall solution time. The default setting uses a heuristic
to decide. Setting 0 forbids presolve from forming the dual, while setting 1 forces it to take the
dual. Setting 2 employs a more expensive heuristic that forms both the presolved primal and dual
models (on two threads), and heuristically chooses one of them.

Note: LP only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PreMIQCPForm

Format of presolved MIQCP model

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Determines the format of the presolved version of an MIQCP model. Option 0 leaves the model
in MIQCP form, so the branch-and-cut algorithm will operate on a model with arbitrary quadratic
constraints. Option 1 always transforms the model into MISOCP form; quadratic constraints
are transformed into second-order cone constraints. Option 2 always transforms the model into
disaggregated MISOCP form; quadratic constraints are transformed into rotated cone constraints,
where each rotated cone contains two terms and involves only three variables.

The default setting (-1) choose automatically. The automatic setting works well, but there are
cases where forcing a different form can be beneficial.

Note: Only affects MIQCP models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

626

PrePasses

Presolve pass limit

Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Limits the number of passes performed by presolve. The default setting (-1) chooses the number
of passes automatically. You should experiment with this parameter when you find that presolve
is consuming a large fraction of total solve time.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PreQLinearize

Presolve quadratic linearization

Type: int
Default value: -1
Minimum value: -1
Maximum value: 1

Controls presolve Q matrix linearization. Option 1 attempts to linearize quadratic constraints
or a quadratic objective, potentially transforming an MIQP or MIQCP into an MILP. Option 0
shuts off the transformation. The default setting (-1) choose automatically. The automatic setting
works well, but there are cases where forcing Q linearization can be beneficial.

Note: Only affects MIQP and MIQCP models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Presolve

Controls the presolve level

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls the presolve level. A value of -1 corresponds to an automatic setting. Other options
are off (0), conservative (1), or aggressive (2). More aggressive application of presolve takes more
time, but can sometimes lead to a significantly tighter model.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PreSOS1BigM

Threshold for SOS1-to-binary reformulation

Type: double
Default value: -1
Minimum value: -1
Maximum value: 1e10

Controls the automatic reformulation of SOS1 constraints into binary form. SOS1 constraints
are often handled more efficiently using a binary representation. The reformulation often requires

627

big-M values to be introduced as coefficients. This parameter specifies the largest big-M that can
be introduced by presolve when performing this reformulation. Larger values increase the chances
that an SOS1 constraint will be reformulated, but very large values (e.g., 1e8) can lead to numerical
issues.

The default value of -1 chooses a threshold automatically. You should set the parameter to 0
to shut off SOS1 reformulation entirely, or a large value to force reformulation.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Please refer to this section for more information on SOS constraints.

PreSOS2BigM

Threshold for SOS2-to-binary reformulation

Type: double
Default value: 0
Minimum value: -1
Maximum value: 1e10

Controls the automatic reformulation of SOS2 constraints into binary form. SOS2 constraints
are often handled more efficiently using a binary representation. The reformulation often requires
big-M values to be introduced as coefficients. This parameter specifies the largest big-M that can
be introduced by presolve when performing this reformulation. Larger values increase the chances
that an SOS2 constraint will be reformulated, but very large values (e.g., 1e8) can lead to numerical
issues.

The default value of 0 disables the reformulation. You can set the parameter to -1 to choose an
automatic approach, or a large value to force reformulation.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Please refer to this section for more information on SOS constraints.

PreSparsify

Controls the presolve sparsify reduction

Type: int
Default value: -1
Minimum value: -1
Maximum value: 1

Controls the presolve sparsify reduction. This reduction can sometimes significantly reduce the
number of nonzero values in the presolved model. Value 0 shuts off the reduction, while value 1
forces it on. The default value of -1 chooses automatically.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

628

ProjImpliedCuts

Projected implied bound cut generation

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls projected implied bound cut generation. Use 0 to disable these cuts, 1 for moderate
cut generation, or 2 for aggressive cut generation. The default -1 value chooses automatically.
Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PSDTol

Positive semi-definite tolerance

Type: double
Default value: 1e-6
Minimum value: 0
Maximum value: Infinity

Sets a limit on the amount of diagonal perturbation that the optimizer is allowed to perform
on a Q matrix in order to correct minor PSD violations. If a larger perturbation is required, the
optimizer will terminate with a GRB_ERROR_Q_NOT_PSD error.

Note: Only affects QP/QCP/MIQP/MIQCP models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PumpPasses

Passes of the feasibility pump heuristic

Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Number of passes of the feasibility pump heuristic. Note that this heuristic is only applied at
the end of the MIP root, and only when no other root heuristic finds a feasible solution.

This heuristic is quite expensive, and generally produces poor quality solutions. You should
generally only use it if other means, including exploration of the tree with default settings, fail to
produce a feasible solution.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

629

QCPDual

Dual variables for QCP models

Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

Determines whether dual variable values are computed for QCP models. Computing them can
add significant time to the optimization, so you should only set this parameter to 1 if you need
them.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Quad

Controls quad precision in simplex

Type: int
Default value: -1
Minimum value: -1
Maximum value: 1

Enables or disables quad precision computation in simplex. The -1 default setting allows the
algorithm to decide. Quad precision can sometimes help solve numerically challenging models, but
it can also significantly increase runtime.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Record

Enables API call recording

Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

Enables API call recording. When enabled, Gurobi will write one or more files (named gurobi000.grbr
or similar) that capture the sequence of Gurobi commands that your program issued. This file can
subsequently be replayed using the Gurobi command-line tool. Replaying the file will repeat the
exact same sequence of commands, and when completed will show the time spent in Gurobi API
routines, the time spent in Gurobi algorithms, and will indicate whether any Gurobi environments
or models were leaked by your program. Replay files are particularly useful in tech support situ-
ations. They provide an easy way to relay to Gurobi tech support the exact sequence of Gurobi
commands that led to a question or issue.

This parameter must be set as soon as you create your Gurobi environment (or in a gurobi.env
file). All Gurobi commands will be recorded until the environment is freed or the program ends.
Changing the parameter value back to 0 has no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

630

ResultFile

Write a result file upon completion of optimization Type: string
Default value: ""

Specifies the name of the result file to be written upon completion of optimization. The type
of the result file is determined by the file suffix. The most commonly used suffixes are .sol (to
capture the solution vector), .bas (to capture the simplex basis), and .mst (to capture the solution
vector on the integer variables). You can also write a .ilp file (to capture the IIS for an infeasible
model), or a .mps, .rew, .lp, or .rlp file (to capture the original model). The file suffix may
optionally be followed by .gz, .bz2, or .7z, which produces a compressed result.

More information on the file formats can be found in the File Format section.
For examples of how to query or modify parameter values from our different APIs, refer to our

Parameter Examples.

RINS

Relaxation Induced Neighborhood Search (RINS) heuristic frequency

Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Frequency of the RINS heuristic. Default value (-1) chooses automatically. A value of 0 shuts
off RINS. A positive value n applies RINS at every n-th node of the MIP search tree.

Increasing the frequency of the RINS heuristic shifts the focus of the MIP search away from
proving optimality, and towards finding good feasible solutions. We recommend that you try
MIPFocus, ImproveStartGap, or ImproveStartTime before experimenting with this parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ScaleFlag

Model scaling

Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Controls model scaling. By default, the rows and columns of the model are scaled in order
to improve the numerical properties of the constraint matrix. The scaling is removed before the
final solution is returned. Scaling typically reduces solution times, but it may lead to larger con-
straint violations in the original, unscaled model. Turning off scaling (ScaleFlag=0) can sometimes
produce smaller constraint violations. Choosing a different scaling option can sometimes improve
performance for particularly numerically difficult models.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

631

Seed

Random number seed

Type: int
Default value: 0
Minimum value: 0
Maximum value: MAXINT

Modifies the random number seed. This acts as a small perturbation to the solver, and typically
leads to different solution paths.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Sifting

Controls sifting within dual simplex

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Enables or disables sifting within dual simplex. Sifting can be useful for LP models where the
number of variables is many times larger than the number of constraints (we typically only see
significant benefits when the ratio is 100 or more). Options are Automatic (-1), Off (0), Moderate
(1), and Aggressive (2). With a Moderate setting, sifting will be applied to LP models and to
the root node for MIP models. With an Aggressive setting, sifting will be applied any time dual
simplex is used, including at the nodes of a MIP. Note that this parameter has no effect if you
aren’t using dual simplex. Note also that Gurobi will ignore this parameter in cases where sifting
is obviously a worse choice than dual simplex.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

SiftMethod

LP method used to solve sifting sub-problems

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

LP method used to solve sifting sub-problems. Options are Automatic (-1), Primal Simplex
(0), Dual Simplex (1), and Barrier (2). Note that this parameter only has an effect when you are
using dual simplex and sifting has been selected (either automatically by dual simplex, or through
the Sifting parameter).

Changing the value of this parameter rarely produces a significant benefit.
For examples of how to query or modify parameter values from our different APIs, refer to our

Parameter Examples.

632

SimplexPricing

Simplex pricing strategy

Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Determines the simplex variable pricing strategy. Available options are Automatic (-1), Partial
Pricing (0), Steepest Edge (1), Devex (2), and Quick-Start Steepest Edge (3).

Changing the value of this parameter rarely produces a significant benefit.
For examples of how to query or modify parameter values from our different APIs, refer to our

Parameter Examples.

SolutionLimit

MIP solution limit

Type: int
Default value: MAXINT
Minimum value: 1
Maximum value: MAXINT

Limits the number of feasible MIP solutions found. Optimization returns with a SOLUTION_LIMIT
status once the limit has been reached (see the Status Code section for further details).

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

SolutionNumber

Select a sub-optimal MIP solution

Type: int
Default value: 0
Minimum value: 0
Maximum value: MAXINT

When querying attribute Xn, ObjNVal, or PoolObjVal to retrieve an alternate MIP solution,
this parameter determines which alternate solution is retrieved. The value of this parameter should
be less than the value of the SolCount attribute.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

StartNodeLimit

Limit MIP start sub-MIP nodes

Type: int
Default value: -1
Minimum value: -2
Maximum value: 2000000000

633

This parameter limits the number of branch-and-bound nodes explored when completing a
partial MIP start. The default value of -1 uses the value of the SubMIPNodes parameter. A value
of -2 shuts off MIP start processing entirely. Non-negative values are node limits.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

StrongCGCuts

Strong-CG cut generation

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls Strong Chvátal-Gomory (Strong-CG) cut generation. Use 0 to disable these cuts,
1 for moderate cut generation, or 2 for aggressive cut generation. The default -1 value chooses
automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

SubMIPCuts

Sub-MIP cut generation

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls sub-MIP cut generation. Use 0 to disable these cuts, 1 for moderate cut generation,
or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts
parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

SubMIPNodes

Nodes explored in sub-MIP heuristics

Type: int
Default value: 500
Minimum value: 0
Maximum value: MAXINT

Limits the number of nodes explored by MIP-based heuristics (such as RINS). Exploring more
nodes can produce better solutions, but it generally takes longer.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

634

Symmetry

MIP symmetric detection

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls MIP symmetry detection. A value of -1 corresponds to an automatic setting. Other
options are off (0), conservative (1), or aggressive (2).

Changing the value of this parameter rarely produces a significant benefit.
Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Threads

Thread count

Type: int
Default value: 0
Minimum value: 0
Maximum value: NProc

Controls the number of threads to apply to parallel algorithms (concurrent LP, parallel barrier,
parallel MIP, etc.). The default value of 0 is an automatic setting. It will generally use all of the
cores in the machine, but it may choose to use fewer.

While you will generally get the best performance by using all available cores in your machine,
there are a few exceptions. One is of course when you are sharing a machine with other jobs. In
this case, you should select a thread count that doesn’t oversubscribe the machine.

We have also found that certain classes of MIP models benefit from reducing the thread count,
often all the way down to one thread. Starting multiple threads introduces contention for machine
resources. For classes of models where the first solution found by the MIP solver is almost always
optimal, and that solution isn’t found at the root, it is often better to allow a single thread to
explore the search tree uncontended.

Another situation where reducing the thread count can be helpful is when memory is tight.
Each thread can consume a significant amount of memory.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

TimeLimit

Time limit

Type: double
Default value: Infinity
Minimum value: 0
Maximum value: Infinity

Limits the total time expended (in seconds). Optimization returns with a TIME_LIMIT status
if the limit is exceeded (see the Status Code section for further details).

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

635

TuneCriterion

Tuning criterion

Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Modifies the tuning criterion for the tuning tool. The primary tuning criterion is always to
minimize the runtime required to find a proven optimal solution. However, for MIP models that
don’t solve to optimality within the specified time limit, a secondary criterion is needed. Set this
parameter to 1 to use the optimality gap as the secondary criterion. Choose a value of 2 to use the
objective of the best feasible solution found. Choose a value of 3 to use the best objective bound.
Choose 0 to ignore the secondary criterion and focus entirely on minimizing the time to find a
proven optimal solution. The default value of -1 chooses automatically.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

TuneJobs

Distributed tuning job count

Type: int
Default value: 0
Minimum value: 0
Maximum value: MAXINT

Enables distributed parallel tuning, which can significantly increase the performance of the
tuning tool. A value of n causes the tuning tool to distribute tuning work among n parallel jobs.
These jobs are distributed among a set of machines. Use the WorkerPool parameter to provide a
list of available distributed worker machines.

Note that distributed tuning is most effective when the worker machines have similar perfor-
mance. Distributed tuning doesn’t attempt to normalize performance by server, so it can incorrectly
attribute a boost in performance to a parameter change when the associated setting is tried on a
worker that is significantly faster than the others.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

TuneOutput

Tuning output level

Type: int
Default value: 2
Minimum value: 0
Maximum value: 3

Controls the amount of output produced by the tuning tool. Level 0 produces no output; level
1 produces tuning summary output only when a new best parameter set is found; level 2 produces
tuning summary output for each parameter set that is tried; level 3 produces tuning summary
output, plus detailed solver output, for each parameter set tried.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

636

TuneResults

Number of improved parameter sets returned

Type: int
Default value: -1
Minimum value: 1
Maximum value: MAXINT

The tuning tool often finds multiple parameter sets that produce better results than the baseline
settings. This parameter controls how many of these sets should be retained when tuning is
complete. The default value retains the best results that were found for each count of changed
parameters. In other words, it retains the best result for one changed parameter, for two changed
parameter, etc. Results that aren’t on the efficient frontier are discard.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

TuneTimeLimit

Tuning tool time limit

Type: double
Default value: -1
Minimum value: -1
Maximum value: Infinity

Limits total tuning runtime (in seconds). The default setting (-1) chooses a time limit auto-
matically.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

TuneTrials

Perform multiple runs on each parameter set to limit the effect of random noise

Type: int
Default value: 3
Minimum value: 1
Maximum value: MAXINT

Performance on a MIP model can sometimes experience significant variations due to random
effects. As a result, the tuning tool may return parameter sets that improve on the baseline only
due to randomness. This parameter allows you to perform multiple solves for each parameter set,
using different Seed values for each, in order to reduce the influence of randomness on the results.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

UpdateMode

Changes the behavior of lazy updates

Type: int
Default value: 1
Minimum value: 0
Maximum value: 1

637

Determines how newly added variables and linear constraints are handled. The default setting
(1) allows you to use new variables and constraints immediately for building or modifying the
model. A setting of 0 requires you to call update before these can be used.

Since the vast majority of programs never query Gurobi for details about the optimization
models they build, the default setting typically removes the need to call update, or even be aware
of the details of our lazy update approach for handling model modifications. However, these details
will show through when you try to query modified model information.

In the Gurobi interface, model modifications (bound changes, right-hand side changes, objective
changes, etc.) are placed in a queue. These queued modifications are applied to the model at three
times: when you call update, when you call optimize, or when you call write to write the model
to disk. When you query information about the model, the result will depend on both whether that
information was modified and when it was modified. In particular, if the modification is sitting in
the queue, you’ll get the result from before the modification. Note that this lazy update behavior
is independent of the value of the UpdateMode parameter.

The only potential benefit to changing the parameter to 0 is that in unusual cases this setting
may allow simplex make more aggressive use of warm-start information after a model modification.

If you want to change this parameter, you need to set it as soon as you create your Gurobi
environment.

Note that you still need to call update to modify an attribute on an SOS constraint, quadratic
constraint, or general constraint.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

VarBranch

Branch variable selection strategy

Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Controls the branch variable selection strategy. The default -1 setting makes an automatic
choice, depending on problem characteristics. Available alternatives are Pseudo Reduced Cost
Branching (0), Pseudo Shadow Price Branching (1), Maximum Infeasibility Branching (2), and
Strong Branching (3).

Changing the value of this parameter rarely produces a significant benefit.
Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

WorkerPassword

Distributed worker password Type: string
Default value: ""

When using a distributed algorithm (distributed MIP, distributed concurrent, or distributed
tuning), this parameter allows you to specify the password for the distributed workers listed in the
WorkerPool parameter.

638

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

WorkerPool

Pool of machines to use for distributed algorithms Type: string
Default value: ""

When using a distributed algorithm (distributed MIP, distributed concurrent, or distributed
tuning), this parameter allows you to specify a comma-separated list of machines that can be used
as workers. These machines must be running Gurobi Remote Services. You can refer to these
workers using their names or their IP addresses. You should specify the access password, if there
is one, in the WorkerPassword parameter.

To give an example, if you have two machines named server1.mydomain.com and server2.mydomain.com,
with IP addresses 192.168.1.100 and 192.168.1.101, you could set the WorkerPool to
"server1.mydomain.com,server2.mydomain.com" or "192.168.1.100,192.168.1.101".

As shown in the examples above, when specifying multiple machines, the next machine should
immediately follow the comma separator. You should not include any spaces before, after, or
between, machine names or IP addresses.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

WorkerPort

Non-default port number for distributed workers

Type: int
Default value: -1
Minimum value: -1
Maximum value: 65536

When using a distributed algorithm (distributed MIP, distributed concurrent, or distributed
tuning), this parameter allows you to specify a non-default port number for the distributed worker
machines. All workers should use the same port number. The list of distributed workers should be
specified via the WorkerPool parameter.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ZeroHalfCuts

Zero-half cut generation

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls zero-half cut generation. Use 0 to disable these cuts, 1 for moderate cut generation,
or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts
parameter.

Note: Only affects mixed integer programming (MIP) models

639

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ZeroObjNodes

Zero-objective heuristic

Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Number of nodes to explore in the zero objective heuristic. Note that this heuristic is only
applied at the end of the MIP root, and only when no other root heuristic finds a feasible solution.

This heuristic is quite expensive, and generally produces poor quality solutions. You should
generally only use it if other means, including exploration of the tree with default settings, fail to
produce a feasible solution.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

11.3 Parameter Examples
Gurobi parameter handling is designed to be orthogonal, meaning that you only need to use a small
number of routines to work with a large number parameters. In particular:

• The names and meanings of the various Gurobi parameters remain constant across the dif-
ferent programming language API’s, although some decoration is required in each language.

• Given the type of a parameter (double, integer, etc.) and the programming language you
wish to use it from, you simply need to identify the appropriate routine for that parameter
type in that language in order to query or modify that parameter.

Please refer to the following sections for detailed examples of how to work with parameters from
our various API’s:

• C

• C++

• C#

• Java

• MATLAB

• Python

• R

• Visual Basic

640

You can also browse our Examples to get a better sense of how to use our parameter interface.
One important note about integer-valued parameters: while the maximum value that can be

stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an
integer parameter to a value larger than this maximum will produce an error.

C Parameter Examples
The C interface defines a symbolic constant for each parameter. The symbolic constant name is
prefixed by GRB_type_PAR_, where type is either INT, DBL, or STR. This is followed by the capitalized
parameter name. For example, the symbolic constant for the integer Threads parameter (found in
C header file gurobi_c.h) is:

#define GRB_INT_PAR_THREADS "Threads"

The routine you use to modify a parameter value depends on the type of the parameter. For a
double-valued parameter, you would use GRBsetdblparam.

Recall that each model gets its own copy of the environment when it is created. Parameter
changes to the original environment therefore have no effect on existing models. You’ll need to use
GRBgetenv to retrieve the environment associated with a particular model if you want to change
a parameter for that model.

To set the TimeLimit parameter for a model, you’d do:

error = GRBsetdblparam(GRBgetenv(model), GRB_DBL_PAR_TIMELIMIT, 100.0);

If you’d prefer to use a string for the parameter name, you can also do:

error = GRBsetdblparam(GRBgetenv(model), "TimeLimit", 100.0);

The case of the string is ignored, as are underscores. Thus, TimeLimit and TIME_LIMIT are
equivalent.

Use GRBgetdblparam to query the current value of a (double) parameter:

double currentvalue;
error = GRBgetdblparam(modelenv, "TimeLimit", ¤tvalue);

C++ Parameter Examples
In the C++ interface, parameters are grouped by datatype into three enums: GRB_DoubleParam,
GRB_IntParam, and GRB_StringParam. You refer to a specific parameter by appending the param-
eter name to the enum name. For example, the Threads parameter is GRB_IntParam_Threads.

To modify a parameter, you use GRBModel::set. Recall that you can also set parameters on an
environment, but changes to the environment won’t affect models that have already been created
using that environment. It is generally simpler to set parameters on the model itself.

To set the TimeLimit parameter for a model, you’d do:

GRBModel *m = ...;
m->set(GRB_DoubleParam_TimeLimit, 100.0);

You can also set the value of a parameter using strings for the parameter name and desired
value. For example:

641

http://www.gurobi.com/documentation/{7}.{5}/examples/index.html

GRBModel *m = ...;
m->set("TimeLimit", "100.0");

Use GRBModel::get to query the current value of a parameter:

currentlimit = m.get(GRB_DoubleParam_TimeLimit);

C# Parameter Examples
In the C# interface, parameters are grouped by datatype into three enums: GRB.DoubleParam,
GRB.IntParam, and GRB.StringParam. You would refer to the integer Threads parameter as
GRB.IntParam.Threads.

To modify a parameter, set the corresponding .NET property from Model.Parameters. To set
the TimeLimit parameter, for example:

GRBModel m = ...;
m.Parameters.TimeLimit = 100.0;

You can also use GRBModel.Set:

m.Set(GRB.DoubleParam.TimeLimit, 100.0);

You can also set the value of a parameter using strings for the parameter name and desired
value. For example:

GRBModel m = ...;
m.Set("TimeLimit", "100.0");

To query the current value of a parameter, use:

currentlimit = m.Parameters.TimeLimit;

You can also use GRBModel.Get:

currentlimit = m.Get(GRB.DoubleParam.TimeLimit);

Java Parameter Examples
In the Java interface, parameters are grouped by datatype into three enums: GRB.DoubleParam,
GRB.IntParam, and GRB.StringParam. You would refer to the integer Threads parameter as
GRB.IntParam.Threads.

To modify a parameter, you use GRBModel.set. Recall that you can also set parameters on an
environment, but changes to the environment won’t affect models that have already been created
using that environment. It is generally simpler to set parameters on the model itself.

To set the TimeLimit parameter for a model, you’d do:

GRBModel m = ...;
m.set(GRB.DoubleParam.TimeLimit, 100.0);

You can also set the value of a parameter using strings for the parameter name and desired
value. For example:

642

GRBModel m = ...;
m.set("TimeLimit", "100.0");

Use GRBModel.get to query the current value of a parameter:

currentlimit = m.get(GRB.DoubleParam.TimeLimit);

MATLAB Parameter Examples
In the MATLAB interface, parameters are passed to Gurobi through a struct. To modify a
parameter, you create a field in the struct with the appropriate name, and set it to the desired
value. For example, to set the TimeLimit parameter to 100 you’d do:

params.timelimit = 100;

The case of the parameter name is ignored, as are underscores. Thus, you could also do:

params.timeLimit = 100;

...or...

params.TIME_LIMIT = 100;

All desired parameter changes should be stored in a single struct, which is passed as the second
parameter to the gurobi function.

Python Parameter Examples
In the Python interface, parameters are listed as constants within the GRB.Param class. You would
refer to the Threads parameter as GRB.Param.Threads.

To modify a parameter, you can set the appropriate member of Model.Params. To set the time
limit for model m, you’d do:

m.Params.timeLimit = 100.0

The case of the parameter name is actually ignored, as are underscores, so you could also do:

m.Params.timelimit = 100.0

...or...

m.Params.TIME_LIMIT = 100.0

You can also use the Model.setParam method:

m.setParam(GRB.Param.TimeLimit, 100.0)

If you’d prefer to use a string for the parameter name, you can also do:

m.setParam("TimeLimit", 100.0);

To query the current value of a parameter, use:

currentlimit = m.Params.timeLimit

643

R Parameter Examples
In the R interface, parameters are passed to Gurobi through a list. To modify a parameter, you
create a named component in the list with the appropriate name, and set it to the desired value.
For example, to set the TimeLimit parameter to 100 you’d do:

params <- list(TimeLimit=100)

The case of the parameter name is ignored, as are underscores. Thus, you could also do:

params <- list(timeLimit = 100)

...or...

params <- list(TIME_LIMIT = 100)

All desired parameter changes should be stored in a single list, which is passed as the second
parameter to the gurobi function.

Visual Basic Parameter Examples
In the Visual Basic interface, parameters are grouped by datatype into three enums: GRB.DoubleParam,
GRB.IntParam, and GRB.StringParam. You would refer to the integer Threads parameter as
GRB.IntParam.Threads.

To modify a parameter, set the corresponding .NET property from Model.Parameters. To set
the TimeLimit parameter, for example:

GRBModel m = ...
m.Parameters.TimeLimit = 100.0

You can also use GRBModel.Set:

m.Set(GRB.DoubleParam.TimeLimit, 100.0)

You can also set the value of a parameter using strings for the parameter name and desired
value. For example:

GRBModel m = ...
m.Set("TimeLimit", "100.0")

To query the current value of a parameter, use:

currentlimit = m.Parameters.TimeLimit

You can also use GRBModel.Get:

currentlimit = m.Get(GRB.DoubleParam.TimeLimit)

644

Optimization Status Codes

Once an optimize call has returned, the Gurobi optimizer sets the Status attribute of the model to
one of several possible values. The attribute takes an integer value, but we recommend that you
use one of the pre-defined status constants to check the status in your program. Each code has a
name, and each language requires a prefix on this name to obtain the appropriate constant. You
would access status code OPTIMAL in the following ways from the available Gurobi interfaces:
Language Status Code
C GRB_OPTIMAL
C++ GRB_OPTIMAL
Java GRB.Status.OPTIMAL
.NET GRB.Status.OPTIMAL
Python GRB.OPTIMAL

Possible status codes are as follows:

Status code Value Description
LOADED 1 Model is loaded, but no solution information is available.
OPTIMAL 2 Model was solved to optimality (subject to tolerances), and an opti-

mal solution is available.
INFEASIBLE 3 Model was proven to be infeasible.
INF_OR_UNBD 4 Model was proven to be either infeasible or unbounded. To obtain

a more definitive conclusion, set the DualReductions parameter to 0
and reoptimize.

UNBOUNDED 5 Model was proven to be unbounded. Important note: an unbounded
status indicates the presence of an unbounded ray that allows the ob-
jective to improve without limit. It says nothing about whether the
model has a feasible solution. If you require information on feasibil-
ity, you should set the objective to zero and reoptimize.

CUTOFF 6 Optimal objective for model was proven to be worse than the value
specified in the Cutoff parameter. No solution information is avail-
able.

ITERATION_LIMIT 7 Optimization terminated because the total number of simplex itera-
tions performed exceeded the value specified in the IterationLimit
parameter, or because the total number of barrier iterations exceeded
the value specified in the BarIterLimit parameter.

NODE_LIMIT 8 Optimization terminated because the total number of branch-and-
cut nodes explored exceeded the value specified in the NodeLimit
parameter.

TIME_LIMIT 9 Optimization terminated because the time expended exceeded the
value specified in the TimeLimit parameter.

645

SOLUTION_LIMIT 10 Optimization terminated because the number of solutions found
reached the value specified in the SolutionLimit parameter.

INTERRUPTED 11 Optimization was terminated by the user.
NUMERIC 12 Optimization was terminated due to unrecoverable numerical diffi-

culties.
SUBOPTIMAL 13 Unable to satisfy optimality tolerances; a sub-optimal solution is

available.
INPROGRESS 14 An asynchronous optimization call was made, but the associated

optimization run is not yet complete.
USER_OBJ_LIMIT 15 User specified an objective limit (a bound on either the best objective

or the best bound), and that limit has been reached.

646

Callback Codes

The Gurobi callback routines make use of a pair of arguments: where and what. When a user
callback function is called, the where argument indicates from where in the Gurobi optimizer it
is being called (presolve, simplex, barrier, MIP, etc.). When the user callback wishes to obtain
more detailed information about the state of the optimization, the what argument can be passed
to an appropriate get method for your language to obtain additional information (e.g., GRBcbget
in C, GRBCallback::getIntInfo in C++, GRBCallback.getIntInfo in Java, GRBCallback.GetIntInfo
in .NET, and Model.cbGet in Python).

More detailed information on how to use callbacks in your application can be found in the
reference manuals for the different Gurobi language interfaces (C, C++, Java, .NET, and Python).

Possible values for the where and what arguments are listed in the following tables. Note that
these values are referred to in slightly different ways from the different Gurobi interfaces. Consider
the SIMPLEX value as an example. You would refer to this constant as follows from the different
Gurobi APIs:
Language Callback constant
C GRB_CB_SIMPLEX
C++ GRB_CB_SIMPLEX
Java GRB.Callback.SIMPLEX
.NET GRB.Callback.SIMPLEX
Python GRB.Callback.SIMPLEX

Possible where values are:
where Numeric value Optimizer status
POLLING 0 Periodic polling callback
PRESOLVE 1 Currently performing presolve
SIMPLEX 2 Currently in simplex
MIP 3 Currently in MIP
MIPSOL 4 Found a new MIP incumbent
MIPNODE 5 Currently exploring a MIP node
MESSAGE 6 Printing a log message
BARRIER 7 Currently in barrier

Allowable what values depend on the value of the where argument. Valid combinations are:

what where Result
type

Description

RUNTIME Any except
POLLING

double Elapsed solver runtime (seconds).

PRE_COLDEL PRESOLVE int The number of columns removed by
presolve to this point.

PRE_ROWDEL PRESOLVE int The number of rows removed by pre-
solve to this point.

647

PRE_SENCHG PRESOLVE int The number of constraint senses
changed by presolve to this point.

PRE_BNDCHG PRESOLVE int The number of variable bounds
changed by presolve to this point.

PRE_COECHG PRESOLVE int The number of coefficients changed by
presolve to this point.

SPX_ITRCNT SIMPLEX double Current simplex iteration count.
SPX_OBJVAL SIMPLEX double Current simplex objective value.
SPX_PRIMINF SIMPLEX double Current primal infeasibility.
SPX_DUALINF SIMPLEX double Current dual infeasibility.
SPX_ISPERT SIMPLEX int Is problem current perturbed?
MIP_OBJBST MIP double Current best objective.
MIP_OBJBND MIP double Current best objective bound.
MIP_NODCNT MIP double Current explored node count.
MIP_SOLCNT MIP int Current count of feasible solutions

found.
MIP_CUTCNT MIP int Current count of cutting planes ap-

plied.
MIP_NODLFT MIP double Current unexplored node count.
MIP_ITRCNT MIP double Current simplex iteration count.
MIPSOL_SOL MIPSOL double * Solution vector for new solution (C

only). The resultP argument to C rou-
tine GRBcbget should point to an ar-
ray of doubles that is at least as long
as the number of variables in the user
model. Use the getSolution callback
method in the object-oriented inter-
faces.

MIPSOL_OBJ MIPSOL double Objective value for new solution.
MIPSOL_OBJBST MIPSOL double Current best objective.
MIPSOL_OBJBND MIPSOL double Current best objective bound.
MIPSOL_NODCNT MIPSOL double Current explored node count.
MIPSOL_SOLCNT MIPSOL int Current count of feasible solutions

found.
MIPNODE_STATUS MIPNODE int Optimization status of current MIP

node (see the Status Code section for
further information).

MIPNODE_OBJBST MIPNODE double Current best objective.
MIPNODE_OBJBND MIPNODE double Current best objective bound.
MIPNODE_NODCNT MIPNODE double Current explored node count.
MIPNODE_SOLCNT MIPNODE int Current count of feasible solutions

found.

648

MIPNODE_REL MIPNODE double * Relaxation solution for the current
node, when its optimization status
is GRB_OPTIMAL (C only). The
resultP argument to C routine GR-
Bcbget should point to an array of
doubles that is at least as long as the
number of variables in the user model.
Use the getNodeRel callback method
in the object-oriented interfaces.

BARRIER_ITRCNT BARRIER int Current barrier iteration count.
BARRIER_PRIMOBJ BARRIER double Primal objective value for current bar-

rier iterate.
BARRIER_DUALOBJ BARRIER double Dual objective value for current bar-

rier iterate.
BARRIER_PRIMINF BARRIER double Primal infeasibility for current barrier

iterate.
BARRIER_DUALINF BARRIER double Dual infeasibility for current barrier

iterate.
BARRIER_COMPL BARRIER double Complementarity violation for current

barrier iterate.
MSG_STRING MESSAGE char * The message that is being printed.

Remember that the appropriate prefix must be added to the what or where name listed above,
depending on the language you are using.
Callback notes

Note that the POLLING callback does not allow any additional information to be retreived. It is
provided in order to allow interactive applications to regain control frequently, so that they can
maintain application responsiveness.

The object-oriented interfaces have specialized methods for obtaining the incumbent or relax-
ation solution. While in C you would use GRBcbget, you use getSolution or getNodeRel in the
object-oriented interfaces. Please consult the callback descriptions for C++, Java, .NET, or Python
for further details.

Note that the MIPNODE callback will be called once for each cut pass during the root node solve.
The MIPNODE_NODCNT value will remain at 0 until the root node is complete. If you query relaxation
values from during the root node, the first MIPNODE callback will give the relaxation with no cutting
planes, and the last will give the relaxation after all root cuts have been applied.

649

Error Codes

Errors can arise in most of the Gurobi library routines. In the C interface, library routines return
an integer error code. In the C++, Java, .NET, and Python interfaces, Gurobi methods can throw
an exception (a C++ exception, a Java exception, a .NET exception, or a Python exception)

Underlying all Gurobi error reporting is a set of error codes. These are integer values, but we
recommend that you use one of the pre-defined error code constants to check the error status in
your program. Each error code has a name, and each language requires a prefix on this name to
obtain the appropriate constant. You would access error code OUT_OF_MEMORY in the following ways
from the available Gurobi interfaces:
Language Error Code
C GRB_ERROR_OUT_OF_MEMORY
C++ GRB_ERROR_OUT_OF_MEMORY
Java GRB.Error.OUT_OF_MEMORY
.NET GRB.Error.OUT_OF_MEMORY
Python GRB.Error.OUT_OF_MEMORY

Note that when an error occurs, it produces both an error code and an error message. The
message can be obtained through GRBgeterrormessage in C, through GRBException::getMessage()
in C++, through the inherited getMessage() method on the GRBException class in Java, through
the inherited Message property on the GRBException class in .NET, or through the e.message
attribute on the GurobiError object in Python.

Possible error codes are:

Error code Error
number

Description

OUT_OF_MEMORY 10001 Available memory was exhausted
NULL_ARGUMENT 10002 NULL input value provided for a required argument
INVALID_ARGUMENT 10003 An invalid value was provided for a routine argu-

ment
UNKNOWN_ATTRIBUTE 10004 Tried to query or set an unknown attribute
DATA_NOT_AVAILABLE 10005 Attempted to query or set an attribute that could

not be accessed at that time
INDEX_OUT_OF_RANGE 10006 Tried to query or set an attribute, but one or

more of the provided indices (e.g., constraint in-
dex, variable index) was outside the range of valid
values

UNKNOWN_PARAMETER 10007 Tried to query or set an unknown parameter
VALUE_OUT_OF_RANGE 10008 Tried to set a parameter to a value that is outside

the parameter’s valid range
NO_LICENSE 10009 Failed to obtain a valid license

650

SIZE_LIMIT_EXCEEDED 10010 Attempted to solve a model that is larger than
the limit for a demo license

CALLBACK 10011 Problem in callback
FILE_READ 10012 Failed to read the requested file
FILE_WRITE 10013 Failed to write the requested file
NUMERIC 10014 Numerical error during requested operation
IIS_NOT_INFEASIBLE 10015 Attempted to perform infeasibility analysis on a

feasible model
NOT_FOR_MIP 10016 Requested operation not valid for a MIP model
OPTIMIZATION_IN_PROGRESS 10017 Tried to query or modify a model while optimiza-

tion was in progress
DUPLICATES 10018 Constraint, variable, or SOS contained duplicated

indices
NODEFILE 10019 Error in reading or writing a node file during MIP

optimization
Q_NOT_PSD 10020 Q matrix in QP model is not positive semi-definite
QCP_EQUALITY_CONSTRAINT 10021 QCP equality constraint specified (only inequali-

ties are supported)
NETWORK 10022 Problem communicating with the Gurobi Com-

pute Server
JOB_REJECTED 10023 Gurobi Compute Server responded, but was un-

able to process the job (typically because the
queuing time exceeded the user-specified timeout
or because the queue has exceeded its maximum
capacity)

NOT_SUPPORTED 10024 Indicates that a Gurobi feature is not supported
under your usage environment (for example, some
advanced features are not supported in a Com-
pute Server environment)

EXCEED_2B_NONZEROS 10025 Indicates that the user has called a query routine
on a model with more than 2 billion non-zero en-
tries, and the result would exceed the maximum
size that can be returned by that query routine.
The solution is typically to move to the GRBX ver-
sion of that query routine.

INVALID_PIECEWISE_OBJ 10026 Piecewise-linear objectives must have certain
properties (as described in the documentation for
the various setPWLObj methods). This error in-
dicates that one of those properties was violated.

UPDATEMODE_CHANGE 10027 The UpdateMode parameter can not be modified
once a model has been create.

CLOUD 10028 Problems launching a Gurobi Instant Cloud job.

651

MODEL_MODIFICATION 10029 Indicates that the user has modified the model in
such a way that the model became invalid. For
example, this happens when a general constraint
exists in the model and the user deletes the re-
sultant variable of this constraint. In such a case,
the general constraint does not have any mean-
ingful interpretation anymore. The solution is to
also delete the general constraint when a resultant
variable is deleted.

NOT_IN_MODEL 20001 Tried to use a constraint or variable that is not
in the model, either because it was removed or
because it has not yet been added

FAILED_TO_CREATE_MODEL 20002 Failed to create the requested model
INTERNAL 20003 Internal Gurobi error

652

Model File Formats

The Gurobi optimizer works with a variety of file formats. The MPS, REW, LP, RLP, ILP, and
OPB formats are used to hold optimization models. The MST format is used to hold MIP start
data. Importing this data into a MIP model allows the MIP model to start with a known feasible
solution. The HNT format is used to hold MIP hints. Importing this data into a MIP model guides
the MIP search towards a guess at a high-quality feasible solution. The ORD format is used to
hold MIP variable branching priorities. Importing this data into a MIP model affects the search
strategy. The BAS format holds simplex basis information. Importing this data into a continuous
models allows the simplex algorithm to start from the given simplex basis. The SOL format holds a
solution vector. It can be written once the model has been optimized. PRM format holds parameter
values. Importing this data into a model changes the values of the referenced parameters.

Note that all of the Gurobi file I/O routines can work with compressed versions of these files.
Specifically, we can read or write files with the following extensions: .zip, .gz, .bz2, and .7z
(assuming that the associated compression tool, e.g., 7zip for .7z, is installed on your machine
and a corresponding entry is part of you PATH environment variable).

15.1 MPS format
MPS format is the oldest and most widely used format for storing math programming models.
There are actually two variants of this format in wide use. In fixed format, the various fields must
always start at fixed columns in the file. Free format is very similar, but the fields are separated by
white space instead of appearing in specific columns. One important practical difference between
the two formats is in name length. In fixed format, row and column names are exactly 8 characters,
and spaces are part of the name. In free format, names can be arbitrarily long (although the Gurobi
reader places a 255 character limit on name length), and names may not contain spaces. The Gurobi
MPS reader reads both MPS types, and recognizes the format automatically.

Note that any line that begins with the * character is a comment. The contents of that line are
ignored.

NAME section

The first section in an MPS format file is the NAME section. It gives the name of the model:

NAME AFIRO

In fixed format, the model name starts in column 15.

ROWS section

The next section is the ROWS section. It begins with the word ROWS on its own line, and continues
with one line for each row in the model. These lines indicate the constraint type (E for equality,
L for less-than-or-equal, or G for greater-than-or-equal), and the constraint name. In fixed format,
the type appears in column 2 and the row name starts in column 5. Here’s a simple example:

653

ROWS
E R09
E R10
L X05
N COST

Note that an N in the type field indicates that the row is a free row. The first free row is used as
the objective function.

If the file includes multiple N rows, each including a priority, weight, relative, and absolute
tolerance field, then each such row is treated as an objective in a multi-objective model. The
additional fields must appear after the name, separated by spaces. For example, the following
would capture a pair of objectives, where the first has priority 2 and the second has priority 1 (and
both have identical weights, and relative and absolute tolerances):

N OBJ0 2 1 0 0
N OBJ1 1 1 0 0

Please refer to the multi-objective, ObjNPriority, ObjNWeight, ObjNAbsTol, and ObjNRelTol
sections for information on the meanings of these fields. Note that all objectives of a multi-objective
optimization problem have to be linear.
LAZYCONS section

The next section is the LAZY CONSTRAINT section. It begins with the line LAZYCONS, and continues
with one line for each lazy constraint. The format is the same as that of the ROWS section: each line
indicates the constraint type (E for equality, L for less-than-or-equal, or G for greater-than-or-equal),
and the constraint name. In fixed format, the type appears in column 2 and the row name starts
in column 5. For example:

LAZYCONS
E R01
G R07
L S01

Lazy constraints are linear constraints, and they are semantically equivalent to standard linear
constraints (i.e., entries in the ROWS section). The difference is in how they are enforced by the
MIP solver. Please refer to the description of the Lazy attribute for details.

This section is optional.
COLUMNS section

The next and typically largest section of an MPS file is the COLUMNS section, which lists the columns
in the model and the non-zero coefficients associated with each. Each line in the columns section
provides a column name, followed by either zero, one, or two non-zero coefficients from that column.
Coefficients are specified using a row name first, followed by a floating-point value. Consider the
following example:

COLUMNS
X01 X48 .301 R09 -1.
X01 R10 -1.06 X05 1.
X02 X21 -1. R09 1.
X02 COST -4.

654

The first line indicates that column X01 has a non-zero in row X48 with coefficient .301, and a
non-zero in row R09 with coefficient -1.0. Note that multiple lines associated with the same column
must be contiguous in the file.

In fixed format, the column name starts in column 5, the row name for the first non-zero starts
in column 15, and the value for the first non-zero starts in column 25. If a second non-zero is
present, the row name starts in column 40 and the value starts in column 50.

Integrality markers

The COLUMNS section can optionally include integrality markers. The variables introduced between
a pair of markers must take integer values. All variables within markers will have a default lower
bound of 0 and a default upper bound of 1 (other bounds can be specified in the BOUNDS section).
The beginning of an integer section is marked by an INTORG marker:

MARK0000 ’MARKER’ ’INTORG’

The end of the section is marked by an INTEND marker:

MARK0000 ’MARKER’ ’INTEND’

The first field (beginning in column 5 in fixed format) is the name of the marker (which is ignored).
The second field (in column 15 in fixed format) must be equal to the string ’MARKER’ (including
the single quotes). The third field (in column 40 in fixed format) is ’INTORG’ at the start and
’INTEND’ at the end of the integer section.

The COLUMNS section can contain an arbitrary number of such marker pairs.

RHS section

The next section of an MPS file is the RHS section, which specifies right-hand side values. Each line
in this section may contain one or two right-hand side values.

RHS
B X50 310. X51 300.
B X05 80. X17 80.

The first line above indicates that row X50 has a right-hand side value of 310, and X51 has a right-
hand side value of 300. In fixed format, the variable name for the first bound starts in column
15, and the first bound value starts in column 25. For the second bound, the variable name starts
in column 40 and the value starts in column 50. The name of the RHS is specified in the first
field (column 5 in fixed format), but this name is ignored by the Gurobi reader. If a row is not
mentioned anywhere in the RHS section, that row takes a right-hand side value of 0.

BOUNDS section

The next section in an MPS file is the optional BOUNDS section. By default, each variable takes a
lower bound of 0 and an infinite upper bound. Each line in this section can modify the lower bound
of a variable, the upper bound, or both. Each line indicates a bound type (in column 2 in fixed
format), a bound name (ignored), a variable name (in column 15 in fixed format), and a bound
value (in columns 25 in fixed format). The different bound types, and the meaning of the associate

655

bound value, are as follows:
LO lower bound
UP upper bound
FX variable is fixed at the specified value
FR free variable (no lower or upper bound)
MI infinite lower bound
PL infinite upper bound
BV variable is binary (equal 0 or 1)
LI lower bound for integer variable
UI upper bound for integer variable
SC upper bound for semi-continuous variable

Consider the following example:

BOUNDS
UP BND X50 80.
LO BND X51 20.
FX BND X52 30.

In this BOUNDS section, variable X50 gets a upper bound of 80 (lower bound is unchanged at 0, X51
gets a lower bound of 20 (infinite upper bound is unchanged), and X52 is fixed at 30.
QUADOBJ section

The next section in an MPS file is the optional QUADOBJ section, which contains quadratic objective
terms. Each line in this section represents a single non-zero value in the lower triangle of the
Q matrix. The names of the two variable that participate in the quadratic term are found first
(starting in columns 5 and 15 in fixed format), followed by the numerical value of the coefficient
(in column 25 in fixed format). By convention, the Q matrix has an implicit one-half multiplier
associated with it. Here’s an example containing three quadratic terms:

QUADOBJ
X01 X01 10.0
X01 X02 2.0
X02 X02 2.0

These three terms would represent the quadratic function (10X012 + 2X01 ∗X02 + 2X02 ∗X01 +
2X022)/2 (recall that the single off-diagonal term actually represents a pair of non-zero values in
the symmetric Q matrix).
QCMATRIX section

The next section in an MPS file contains zero or more QCMATRIX blocks. These blocks contain
the quadratic terms associated with the quadratic constraints. There should be one block for each
quadratic constraint in the model.

Each QCMATRIX block starts with a line that indicates the name of the associated quadratic
constraint (starting in column 12 in fixed format). This is followed by one of more quadratic terms.
Each term is described on one line, which gives the names of the two involved variables (starting in
columns 5 and 15 in fixed format), followed by the coefficient (in column 25 in fixed format). For
example:

656

QCMATRIX QC0
X01 X01 10.0
X01 X02 2.0
X02 X01 2.0
X02 X02 2.0

These four lines describe three quadratic terms: quadratic constraint QC0 contains terms 10X012,
4X01 ∗ X02, and 2X022. Note that a QCMATRIX block must contain a symmetric matrix, so for
example an X01*X02 term must be accompanied by a matching X02*X01 term.

Linear terms for quadratic constraint QC0 appear in the COLUMNS section. The sense and right-
hand side value appear in the ROWS and RHS sections, respectively.
PWLOBJ section

The next section in an MPS file is the optional PWLOBJ section, which contains piecewise-linear
objective functions. Each line in this section represents a single point in a piecewise-linear objective
function. The name of the associated variable appears first (starting in column 4), followed by the
x and y coordinates of the point (starting in columns 14 and 17). Here’s an example containing
two piecewise-linear expressions, for variables X01 and X02, each with three points:

X01 1 1
X01 2 2
X01 3 4
X02 1 1
X02 3 5
X02 7 10

SOS section

The next section in an MPS file is the optional SOS section. The representation for a single SOS
constraint contains one line that provides the type of the SOS set (S1 for SOS type 1 or S2 for
SOS type 2, found in column 2 in fixed format) and the name of the SOS set (column 5 in fixed
format) of the SOS set. This is followed by one line for each SOS member. The member line gives
the name of the member (column 5 in fixed format) and the associated weight (column 15 in fixed
format). Here’s an example containing two SOS2 sets.

SOS
S2 sos1

x1 1
x2 2
x3 3

S2 sos2
x3 1
x4 2
x5 3

Indicator Constraint section

The indicator constraint section is optional in the MPS format. It starts with the keyword
INDICATORS. Each subsequent line of the indicator section starts with the keyword IF (placed

657

at column 2 in fixed format) followed by a space and a row name (the row must have already been
defined in the ROWS section). The line continues with a binary variable (placed at column 15 in
fixed format) and finally a value 0 or 1 (placed at column 25 in fixed format).

Here a simple example:

INDICATORS
IF row1 x1 0
IF row2 y1 1

The first indicator constraint in this example states that row1 has to be fulfilled if the x1 takes
a value of 0.
General Constraint section

An MPS file may contain an optional section that captures more general constraints. The general
constraint section starts with the keyword GENCONS.

Each general constraint in this section starts with a general constraint type specifier, such as
MIN , MAX , OR, AND, or ABS (found in column 2 in fixed format). Optionally a space and a
name may follow.

What follows this line depends on the general constraint type. All general constraints start with
the so-called resultant variable, placed on it’s own line (starting at column 5 in fixed format). For
MIN or MAX constraints, a non empty list of variables or values follows this (each on its own line).
For OR and AND constraints, a list of binary variables follows (each on its own line). For ABS
constraints, one additional variable follows (on its own line). In fixed format all of these variables
or values are placed at column 5.

The other general constraint type, the INDICATOR constraint, appears in a separate Indicator
section, which is described above.

The following shows an example of a general constraint section:

GENCONS
MAX gc0

r1
x1
x2
x10
0.7

MIN gencons1
r2
y0
10
y1
r1

AND and1
r
b1
b2

OR or1
r

658

b3
b4

ABS GC14
xabs
x

For more information, consult the general constraint discussion.
ENDATA

The final line in an MPS file must be an ENDATA statement.
Additional notes

Note that in the Gurobi optimizer, MPS models are always written in full precision. That means
that if you write a model and then read it back, the data associated with the resulting model will
be bit-for-bit identical to the original data.

15.2 REW format
The REW format is identical to the MPS format, except in how objects are named when files are
written. When writing an MPS format file, the Gurobi optimizer refers to constraints and variables
using their given names. When writing an REW format file, the Gurobi optimizer ignores the
given names and instead refers to the variables using a set of default names that are based on row
and column numbers. The constraint name depends solely on the associated row number: row i
gets name ci. The variable name depends on the type of the variable, the column number of the
variable in the constraint matrix, and the number of non-zero coefficients in the associated column.
A continuous variable in column 7 with column length 2 would get name C7(2), for example. A
binary variable with the same characteristics would get name B7(2).

15.3 LP format
The LP format captures an optimization model in a way that is easier for humans to read than
MPS format, and can often be more natural to produce. One limitation of the LP format is that
it doesn’t preserve several model properties. In particular, LP files do not preserve column order
when read, and they typically don’t preserve the exact numerical values of the coefficients (although
this isn’t inherent to the format).

Unlike MPS files, LP files do not rely on fixed field widths. Line breaks and white space
characters are used to separate objects. Here is a simple example:

\ LP format example

Maximize
x + y + z

Subject To
c0: x + y = 1
c1: x + 5 y + 2 z <= 10
qc0: x + y + [x ^ 2 - 2 x * y + 3 y ^ 2] <= 5

Bounds

659

0 <= x <= 5
z >= 2

Generals
x y z

End

The backslash symbol starts a comment; the remainder of that line is ignored.
Variable names play a major role in LP files. Each variable must have its own unique name.

A name should be no longer than 255 characters, and to avoid confusing the LP parser, it should not
begin with a number, or contain any of the characters +, -, *, ^, <, >, =, (,), [,], ,, or :.

Note that white space is not optional in the Gurobi LP format. Thus, for example, the text
x+y+z would be treated as a single variable name, while x + y + z would be treated as a three
term expression.

LP files are structured as a list of sections, where each section captures a logical piece of the
whole optimization model. Sections begin with particular keywords, and must generally come in a
fixed order, although a few are allowed to be interchanged.
Objective Section

The first section in an LP file is the objective section. This section begins with one of the following
six keywords: minimize, maximize, minimum, maximum, min, or max. Capitalization is ignored.
This keyword may appear alone, or it may be immediately followed by multi-objectives, which
indicates that the model contains multiple objective functions.
Single-Objective Case

Let us consider single-objective models first, where this header is followed by a single linear or
quadratic expression that captures the objective function.

The objective optionally begins with a label. A label consists of a name, followed by a colon
character, following by a space. A space is allowed between the name and the colon, but not
required.

The objective then continues with a list of linear terms, separated by the + or - operators. A
term can contain a coefficient and a variable (e.g., 4.5 x), or just a variable (e.g., x). The objective
can be spread over many lines, or it may be listed on a single line. Line breaks can come between
tokens, but never within tokens.

The objective may optionally continue with a list of quadratic terms. The quadratic portion
of the objective expression begins with a [symbol and ends with a] symbol, followed by / 2.
These brackets should enclose one or more quadratic terms. Either squared terms (e.g., 2 x ^ 2)
or product terms (e.g., 3 x * y) are accepted. Coefficients on the quadratic terms are optional.

For variables with piecewise-linear objective functions, the objective section will include a
__pwl(x) term, where x is the name of the variable. You should view these as comments; they are
ignored by the LP reader. The actual piecewise-linear expressions are pulled from the later PWLObj
section.

The objective expression must always end with a line break.
An objective section might look like the following:

Minimize
obj: 3.1 x + 4.5 y + 10 z + [x ^ 2 + 2 x * y + 3 y ^ 2] / 2

660

Multi-Objective Case

In the multi-objective case, the header is followed by one or more linear objective functions, where
each starts with its own sub-header. The sub-header gives the name of the objective, followed
by a number of optional fields that provide a Priority, Weight, absolute tolerance (AbsTol) and
relative tolerance (RelTol) for that objective (see ObjNPriority, ObjNWeight, ObjNAbsTol, and
ObjNRelTol for details on the meanings of these fields). The fields start with the field name,
followed by a =, followed by the value. For example:

OBJ0: Priority=2 Weight=1 AbsTol=0 RelTol=0

Please refer to the multi-objective section for additional details.
Each sub-header is followed by a linear expression that captures that objective.
A complete multi-objective section might look like the following:

Minimize multi-objectives
OBJ0: Priority=2 Weight=1 AbsTol=0 RelTol=0
3.1 x + 4.5 y + 10 z

OBJ1: Priority=1 Weight=1 AbsTol=0 RelTol=0
10 x + 0.1 y

The objective section is optional. The objective is set to 0 when it is not present.
Constraints Section

The next section is the constraints section. It begins with one of the following headers, on its own
line: subject to, such that, st, or s.t.. Capitalization is ignored.

The constraint section can have an arbitrary number of constraints. Each constraint starts
with an optional label (constraint name, followed by a colon, followed by a space), continues with
a linear expression, followed by an optional quadratic expression (enclosed in square brackets), and
ends with a comparison operator, followed by a numerical value, followed by a line break. Valid
comparison operators are =, <=, <, >=, or >. Note that LP format does not distinguish between
strict and non-strict inequalities, so for example < and <= are equivalent.

Note that the left-hand side of a constraint may not contain a constant term; the constant must
appear on the right-hand side.

The following is a simple example of a valid linear constraint:

c0: 2.5 x + 2.3 y + 5.3 z <= 8.1

The following is a valid quadratic constraint:

qc0: 3.1 x + 4.5 y + 10 z + [x ^ 2 + 2 x * y + 3 y ^ 2] <= 10

The constraint section may also contain another constraint type: the so-called indicator con-
straint. Indicator constraints start with an optional label (constraint name, followed by a colon,
followed by a space), followed by a binary variable, a space, a =, again a space and a value, either 0
or 1. They continue with a space, followed by ->, and again a space and finally a linear constraint
(without a label).

For example:

c0: b1 = 1 -> 2.5 x + 2.3 y + 5.3 z <= 8.1

661

This example constraint requires the given linear constraint to be satisfied if the variable b1
takes a value of 1.

Every LP format file must have a constraints section.
Lazy Constraints Section

The next section is the lazy constraints section. It begins with the line Lazy Constraints, and
continues with a list of linear constraints in the exact same format as the linear constraints in the
constraints section. For example:

Lazy Constraints
c0: 2.5 x + 2.3 y + 5.3 z <= 8.1

Lazy constraints are linear constraints, and they are semantically equivalent to standard linear
constraints. The difference is in how they are enforced by the MIP solver. Please refer to the
description of the Lazy attribute for details.

This section is optional.
Bounds Section

The next section is the bounds section. It begins with the word Bounds, on its own line, and is
followed by a list of variable bounds. Each line specifies the lower bound, the upper bound, or
both for a single variable. The keywords inf or infinity can be used in the bounds section to
specify infinite bounds. A bound line can also indicate that a variable is free, meaning that it is
unbounded in either direction.

Here are examples of valid bound lines:

0 <= x0 <= 1
x1 <= 1.2
x2 >= 3
x3 free
x2 >= -Inf

It is not necessary to specify bounds for all variables; by default, each variable has a lower
bound of 0 and an infinite upper bound. In fact, the entire bounds section is optional.
Variable Type Section

The next section is the variable types section. Variables can be designated as being either binary,
general integer, or semi-continuous. In all cases, the designation is applied by first providing the
appropriate header (on its own line), and then listing the variables that have the associated type.
For example:

Binary
x y z

Variable type designations don’t need to appear in any particular order (e.g., general integers
can either precede or follow binaries). If a variable is included in multiple sections, the last one
determines the variable type.

Valid keywords for variable type headers are: binary, binaries, bin, general, generals, gen,
semi-continuous, semis, or semi.

The variable types section is optional. By default, variables are assumed to be continuous.

662

SOS Section

An LP file can contain a section that captures SOS constraints of type 1 or type 2. The SOS section
begins with the SOS header on its own line (capitalization isn’t important). An arbitrary number
of SOS constraints can follow. An SOS constraint starts with a name, followed by a colon (unlike
linear constraints, the name is not optional here). Next comes the SOS type, which can be either
S1 or S2. The type is followed by a pair of colons.

Next come the members of the SOS set, along with their weights. Each member is captured using
the variable name, followed by a colon, followed by the associated weight. Spaces can optionally
be placed before and after the colon. An SOS constraint must end with a line break.

Here’s an example of an SOS section containing two SOS constraints:

SOS
sos1: S1 :: x1 : 1 x2 : 2 x3 : 3
sos2: S2 :: x4:8.5 x5:10.2 x6:18.3

The SOS section is optional.
PWLObj Section

An LP file can contain a section that captures piecewise-linear objective functions. The PWL section
begins with the PWLObj header on its own line (capitalization isn’t important). Each piecewise-
linear objective function is associated with a model variable. A PWL function starts with the
corresponding variable name, followed immediately by a colon (the name is not optional). Next
come the points that define the piecewise-linear function. These points are represented as (x, y)
pairs, with parenthesis surrounding the two values and a comma separating them. A PWL function
must end with a line break.

Here’s an example of a PWLObj section containing two simple piecewise-linear functions:

PWLObj
x1: (1, 1) (2, 2) (3, 4)
x2: (1, 3) (3, 5) (100, 300)

The PWLObj section is optional.
General Constraint Section

An LP file may contain a section that captures more general constraints. The general constraint
section starts with one of the following keywords general constraints, general constraint, gencons,
or g.c.. Capitalization is ignored.

Each general constraint starts with an optional label (constraint name, followed by a colon,
followed by a space), continues with a variable name, the so-called resultant, followed by a space,
a equation character =, and a space again. The line continues with a general constraint type
specifier, such as MIN , MAX , OR, AND, or ABS followed by a space and a (and a space again.
Capitalization is ignored.

What follows depends on the general constraint type. MIN or MAX constraints expect a non
empty list of variables or values separated by a space, a comma, and space again. OR and AND
constraints expect a list of binary variables, again separated by a space, a comma, and space again.
ABS constraints only expect one variable name.

All these general constraints end with a space,), and a line break.

663

The other general constraint type, the INDICATOR constraint, appears in the constraints
section, which is described above.

The following is an example of a general constraint section :

General Constraints
gc0: r1 = MAX (x1 , x2 , x10 , 0.7)
gencons1: r2 = MIN (y0 , 10 , y1 , r1)
and1: r = AND (b1 , b2)
or1: r = OR (b3 , b4)
GC14: xabs = ABS (x)

This section is optional.
For more information, consult the general constraint discussion.

End statement

The last line in an LP format file should be an End statement.

15.4 RLP format
The RLP format is identical to the LP format, except in how objects are named when files are
written. When writing an LP format file, the Gurobi optimizer refers to constraints and variables
using their given names. When writing an RLP format file, the Gurobi optimizer ignores the given
names and instead refers to the variables using names that are based on variable or constraint
characteristics. The constraint name depends solely on the associated row number: row i gets
name ci. The variable name depends on the type of the variable, the column number of the
variable in the constraint matrix, and the number of non-zero coefficients in the associated column.
A continuous variable in column 7 with column length 2 would get name C7(2), for example. A
binary variable with the same characteristics would get name B7(2).

15.5 ILP format
The ILP file format is identical to the LP format. The only difference is in how they are used. ILP
files are specifically used to write computed Irreducible Inconsistent Subsystem (IIS) models.

15.6 OPB format
The OPB file format is used to store pseudo-boolean satisfaction and pseudo-boolean optimization
models. These models may only contain binary variables, but these variables may be complemented
and multiplied together in constraints and objectives. Pseudo-boolean models in OPB files are
translated into a MIP representation by Gurobi. The syntax of the OPB format is described in
detail by Roussel and Manquinho. However, the OPB format supported by Gurobi is less restrictive,
e.g., fractional coefficients are allowed.

664

http://www.cril.univ-artois.fr/PB12/format.pdf

The following is an example of a pseduo-boolean optimization model

minimize y − 1.3x(1− z) + (1− z)
subject to 2y − 3x+ 1.7w = 1.7

−y + x+ xz(1− v) ≥ 0
−y ≤ 0,
v, w, x, y, z ∈ {0, 1}.

(1)

The corresponding OPB file for this example is given by

* This is a dummy pseduo-boolean optimization model
min: y - 1.3 x ~z + ~z;
2 y - 3 x + 1.7 w = 1.7;
-1 y + x + x z ~v >= 0;
-1 y <= 0;

Lines starting with * are treated as comments and ignored. Non-comment lines must end with
a semicolon ;. Whitespaces must be used to separate variables. The complement of a variable may
be specified with a tilde ~.

Only minimization models are supported. These models must be specified with the min: ob-
jective keyword. This keyword must appear before other constraints. Satisfiability models may be
definied by omitting the objective.

Constraint senses >=, =, and <= are supported.

15.7 MST format
A MIP start (MST) file is used to specify an initial solution for a mixed integer programming model.
The file lists values to assign to the variables in the model. If a MIP start has been imported into
a MIP model before optimization begins (using GRBread, for example), the Gurobi optimizer will
attempt to build a feasible solution from the specified start values. A good initial solution often
speeds the solution of the MIP model, since it provides an early bound on the optimal value, and
also since the specified solution can be used to seed the local search heuristics employed by the
MIP solver.

A MIP start file consists of variable-value pairs, each on its own line. Any line that begins with
the hash sign (#) is a comment line and is ignored. The following is a simple example:

MIP start
x1 1
x2 0
x3 1

Importing a MIP start into a model is equivalent to setting the Start attribute for each listed
variable to the associated value. If the same variable appears more than once in a start file, the
last assignment is used. Importing multiple start files is equivalent to reading the concatenation of
the imported files.

Note that start files don’t need to specify values for all variables. When variable values are left
unspecified, the Gurobi solver will try to extend the specified values into a feasible solution for the
full model.

665

15.8 HNT format
A MIP hint (HNT) file is used to provide hints for the values of the variables in a mixed integer
programming model (typically obtained from a solution to a related model). The file lists values
for variables in the model, and priorities for those hints. When MIP hints are imported into a MIP
model before optimization begins (using GRBread, for example), the MIP search is guided towards
the values captured in those hints. Good hints often allow the MIP solver to find high-quality
solutions much more quickly.

A MIP hint file consists of variable-value-priority triples, each on its own line. Any line that
begins with the hash sign (#) is a comment line and is ignored. The following is a simple example:

MIP hints
x1 1 2
x2 0 1
x3 1 1

Importing hints into a model is equivalent to setting the VarHintVal and VarHintPri attributes
for each listed variable to the associated values. If the same variable appears more than once in
a hint file, the last assignment is used. Importing multiple hint files is equivalent to reading the
concatenation of the imported files.

Note that hint files don’t need to specify values for all variables. When values are left unspecified,
the Gurobi MIP solver won’t attempt to adjust the search strategy for those variables.

15.9 ORD format
A priority ordering (ORD) file is used to input a set of variable priority orders. Reading a priority
file (using GRBread, for example) modifies the MIP branch variable selection. When choosing a
branching variable from among a set of fractional variables, the Gurobi MIP solver will always
choose a variable with higher priority over one with a lower priority.

The file consists of variable-value pairs, each on its own line. The file contains one line for each
variable in the model. Any line that starts with the hash sign (#) is treated as a comment line and
is ignored. The following is a simple example:

Branch priority file
x 1
y 1
z -1

Variables have a default branch priority value of 0, so it is not necessary to specify values for all
variables.

Importing a priority order file is equivalent to replacing the BranchPriority attribute value for
each variable in the model. Note that you can still modify the BranchPriority attribute after
importing an ordering file.

15.10 BAS format
An LP basis (BAS) file is used to specify an initial basis for a continuous model. The file provides
basis status information for each variable and constraint in the model. If a basis has been imported

666

into a continuous model before optimization begins (using GRBread, for example), and if a simplex
optimizer has been selected (through the Method parameter), the Gurobi simplex optimizer begins
from the specified basis.

A BAS file begins with a NAME line, and ends with an ENDDATA statement. No information is
retrieved from these lines, but they are required by the format. Between these two lines are basis
status lines, each consisting of two or three fields. If the first field is LL, UL, or BS, the variable
named in the second field is non-basic at its lower bound, non-basic at its upper bound, or basic,
respectively. Any additional fields are ignored. If the first field is XL or XU, the variable named
in the second field is basic, while the variable named in the third field is non-basic at its lower or
upper bound, respectively.

The following is a simple example:

NAME example.bas
XL x1 c1
XU x2 c2
BS c3
UL x3
LL x4

Importing a basis into a model is equivalent to setting the VBasis and CBasis attributes for
each listed variable and constraint to the specified basis status.

A near-optimal basis can speed the solution of a difficult LP model. However, specifying a start
basis that is not extremely close to an optimal solution will often slow down the solution process.
Exercise caution when providing start bases.

15.11 SOL format
A Gurobi solution (SOL) file is used to output a solution vector. It can be written (using GRBwrite,
for example) whenever a solution is available.

The file consists of variable-value pairs, each on its own line. The file contains one line for each
variable in the model. The following is a simple example:

Solution file
x 1.0
y 0.5
z 0.2

15.12 PRM format
A Gurobi parameter (PRM) file is used to specify parameter settings. Reading a parameter file
(using GRBread, for example) causes the parameters specified in the file to take the specified values.

The file consists of parameter-value pairs, each on its own line. Any line that begins with the
hash sign (#) is a comment line and is ignored. The following is a simple example:

Parameter settings
Cuts 2
Heuristics 0.5

667

If an unknown parameter name is listed in the file, a warning is printed and the associated line
is ignored.

668

Logging

The Gurobi Optimizer produces a log that allows you to track the progress of the optimization. By
default, the log is put to both the screen and to a file. Screen output can be controlled using the
OutputFlag parameter, and file output can be controlled using the LogFile parameter.

The format of the log depends on the algorithm that is used to solve the model (simplex, barrier,
sifting, or branch-and-cut). We now describe the contents of the log for each algorithm.

16.1 Simplex Logging
The simplex log can be divided into three sections: the presolve section, the simplex progress
section, and the summary section.
Presolve Section

The first thing the Gurobi optimizer does when optimizing a model is to apply a presolve algorithm
in order to simplify the model. The first section of the Gurobi log provides information on the
extent to which presolve succeeds in this effort. Consider the following example output from
NETLIB model dfl001:

Presolve removed 2381 rows and 3347 columns
Presolve time: 0.12 sec.
Presolved: 3690 Rows, 8883 Columns, 31075 Nonzeros

The example output shows that presolve was able to remove 2381 rows and 3347 columns, and
it required 0.12 seconds. The final line in the presolve section shows the size of the model after
presolve. This is size of the model that is passed to the simplex optimizer. Note that the solution
that is computed for this model is automatically transformed into a solution for the original problem
once simplex finishes (in a process often called uncrushing), but this uncrush step is transparent
and produces no log output.
Progress Section

The second section of the Gurobi simplex output provides information on the progress of the simplex
method:

Iteration Objective Primal Inf. Dual Inf. Time
0 1.7748600e+04 6.627132e+03 0.000000e+00 0s

9643 1.1574611e+07 1.418653e+03 0.000000e+00 5s
14440 1.1607748e+07 4.793500e+00 0.000000e+00 10s
15213 1.1266396e+07 0.000000e+00 0.000000e+00 11s

The five columns in each output row show the number of simplex iterations performed to that
point, the objective value for the current basis, the magnitude of the primal infeasibility for the
current basis (computed as the sum of the absolute values of all constraint and bound violations),
the magnitude of the dual infeasibility (computed as the sum of the absolute values of all dual

669

constraint violations), and the amount of time expended to that point (measured using wall clock
time). The default simplex algorithm in the Gurobi solver is dual simplex, which tries to maintain
dual feasibility while performing simplex pivots to improve the objective. Thus, once the dual
simplex algorithm has found an initial dual feasible basis, you will generally see a dual infeasibility
value of zero. When the primal and dual infeasibilities both reach zero, the basis is optimal and
optimization is complete.

By default, the Gurobi optimizer produces a log line every 5 seconds. The frequency of log
lines can be changed by modifying the DisplayInterval parameter (see the Parameter section of this
document for more information).
Summary Section

The third section of the simplex log provides summary information. It provides a summary of the
work that the simplex algorithm performed, including the iteration count and the runtime, and it
provides information on outcome of the optimization. The summary for a model that is solved to
optimality would look like this:
Solved in 15213 iterations and 10.86 seconds
Optimal objective 1.126639605e+07

Other termination states produce different summaries. For example, a user interrupt would produce
a summary that looks like:
Stopped in 7482 iterations and 3.41 seconds
Solve interrupted

Hitting a time limit would produce a summary that looks like:
Stopped in 9221 iterations and 5.00 seconds
Time limit exceeded

16.2 Barrier Logging
The barrier log can be divided into five sections: the presolve section, the barrier preprocessing
section, the barrier progress section, the crossover progress section, and the summary section.
Presolve Section

As mentioned earlier, the first thing the Gurobi optimizer does when optimizing a model is to apply
a presolve algorithm in order to simplify the model. The first section of the Gurobi log provides
information on the extent to which presolve succeeds in this effort. Consider the following example
output from NETLIB model dfl001:
Presolve removed 2381 rows and 3347 columns
Presolve time: 0.12 sec.
Presolved: 3690 Rows, 8883 Columns, 31075 Nonzeros

The example output shows that presolve was able to remove 2381 rows and 3347 columns, and
it required 0.12 seconds. The final line in the presolve section shows the size of the model after
presolve. This is size of the model that is passed to the barrier optimizer. Note that the solution
that is computed for this model is automatically transformed into a solution for the original problem
once barrier finishes (in a process often called uncrushing), but this uncrush step is transparent
and produces no log output.

670

Barrier Preprocessing Section

The factor matrix for the linear system solved in each iteration of the barrier method can be quite
large and quite expensive to compute. In order to reduce the cost of this computation, the first
step of the barrier algorithm is to compute a fill-reducing reordering of the rows and columns of
this matrix. This step can be quite expensive, but the cost is recouped in the reduced cost of the
subsequent barrier iterations.

Once this fill-reducing reordering has been computed, the Gurobi Optimizer outputs information
related to the barrier factor matrix:

Barrier statistics:
Dense cols : 10
Free vars : 3
AA’ NZ : 9.353e+04
Factor NZ : 1.139e+06 (roughly 14 MBytes of memory)
Factor Ops : 7.388e+08 (roughly 2 seconds per iteration)

The first line indicates how many columns from the constraint matrix were treated as dense. The
second line indicates how many variables in the model are free. Dense columns and free variables
can sometimes lead to numerical difficulties in the barrier solver, so it is sometimes useful to know
that they are present. Note that these lines are only printed when the model contains dense columns
or free variables.

The next line shows the number of off-diagonal entries in the lower triangle of AAT . A scaled
version of this matrix is factored in each iteration of the barrier algorithm, so the structure of the
Cholesky factor depends on the structure of AAT .

The final two lines indicate the number of non-zero values in the factor matrix, and the number
of floating-point operations required to factor it. Note that the log also provides an estimate of
how much memory will be needed by the barrier algorithm, and how long each barrier iteration will
require: These are rough estimates that are meant to provide a general sense of how difficult the
model will be to solve. If you want to obtain an estimate of overall solution time, note that most
models achieve convergence in roughly 50 iterations, but there are many exceptions. Crossover
runtime is typically comparable to the cost of a few barrier iterations, but this time can vary
considerably, depending on the model characteristics.
Progress Section

The third section of the Gurobi barrier output provides information on the progress of the barrier
method:

Objective Residual
Iter Primal Dual Primal Dual Compl Time

0 1.11502515e+13 -3.03102251e+08 7.65e+05 9.29e+07 2.68e+09 2s
1 4.40523949e+12 -8.22101865e+09 3.10e+05 4.82e+07 1.15e+09 3s
2 1.18016996e+12 -2.25095257e+10 7.39e+04 1.15e+07 3.37e+08 4s
3 2.24969338e+11 -2.09167762e+10 1.01e+04 2.16e+06 5.51e+07 5s
4 4.63336675e+10 -1.44308755e+10 8.13e+02 4.30e+05 9.09e+06 6s
5 1.25266057e+10 -4.06364070e+09 1.52e+02 8.13e+04 2.21e+06 7s
6 1.53128732e+09 -1.27023188e+09 9.52e+00 1.61e+04 3.23e+05 9s
7 5.70973983e+08 -8.11694302e+08 2.10e+00 5.99e+03 1.53e+05 10s

671

8 2.91659869e+08 -4.77256823e+08 5.89e-01 5.96e-08 8.36e+04 11s
9 1.22358325e+08 -1.30263121e+08 6.09e-02 7.36e-07 2.73e+04 12s
10 6.47115867e+07 -4.50505785e+07 1.96e-02 1.43e-06 1.18e+04 13s

The seven columns in each output row show the number of barrier iterations performed to that
point, the primal and dual objective values for the current barrier iterate, the magnitude of the
primal and dual infeasibilites for the current iterate (computed as the infinity-norms of the primal
and dual residual vectors, respectively), the magnitude of the complementarity violation of the
current primal and dual iterates (the dot product of the primal solution and the dual reduced cost
vector), and the amount of time expended to that point (measured using wall clock time). When the
primal infeasibility, dual infeasibility, and complementarity satisfy barrier convergence tolerances
(controlled using the BarConvTol parameter), the solution is declared optimal and optimization is
complete.

Unlike the simplex and MIP optimizers, the barrier optimizer produces a log line for each iterate,
independent of the value of the DisplayInterval parameter.

You may sometimes see a star after the iteration count in the barrier progress log:

15 2.42800468e+03 8.54543324e+04 1.68e+02 1.02e-09 8.30e+04 0s
16 4.05292006e+03 4.65997441e+04 1.82e+02 2.50e-01 4.25e+04 0s
17* 4.88742259e+08 4.30781025e+10 5.17e+00 1.31e-01 2.52e-02 0s
18* 1.21709951e+06 3.39471138e+13 8.55e-06 3.14e-06 3.14e-05 0s
19* -1.38021972e+06 3.31580578e+16 3.42e-08 8.20e-09 3.22e-08 0s
20* 1.25182178e+06 3.31575855e+19 6.54e-12 7.34e-09 3.22e-11 0s

This indicates that the model may be primal or dual infeasible. Note that these intermediate indi-
cations of infeasibility won’t necessarily turn into an infeasibility proof, so the star may disappear
in later iterations.
Crossover Section

The fourth section of the barrier log provides information on the crossover step. This section is
only present when crossover is selected (as controlled through the Crossover parameter. Crossover
converts the interior point solution produced by the barrier algorithm to a basic solution.

The first stage in crossover is to push variables to bounds in order to obtain a valid basic
solution. By default, this is done for dual variables first, then for primal variables. Progress of this
phase is tracked with this portion of the crossover log...

Crossover log...

1592 DPushes remaining with DInf 0.0000000e+00 2s
0 DPushes remaining with DInf 2.8167333e-06 2s

180 PPushes remaining with PInf 0.0000000e+00 2s
0 PPushes remaining with PInf 0.0000000e+00 2s

Push phase complete: Pinf 0.0000000e+00, Dinf 2.8167333e-06 2s

Each line indicates how many push steps remain, the amount of infeasibility in the current solution,
and the elapsed barrier time.

672

Upon completion of the push phase, crossover has a basic solution that isn’t necessarily optimal.
The resulting basis is passed to simplex, and simplex completes the optimization...

Iteration Objective Primal Inf. Dual Inf. Time
1776 1.1266396e+07 0.000000e+00 0.000000e+00 2s

The five columns in each output row of the simplex log show the number of simplex iterations
performed to that point in the crossover algorithm (including the push steps), the objective value
for the current basis, the magnitude of the primal infeasibility for the current basis (computed as
the sum of the absolute values of all constraint and bound violations), the magnitude of the dual
infeasibility (computed as the sum of the absolute values of all dual constraint violations), and the
amount of time expended by the crossover algorithm to that point (measured using wall clock time).
When the primal and dual infeasibilities both reach zero, the basis is optimal and optimization is
complete.
Summary Section

The final section of the barrier log provides summary information. It provides a summary of the
work that the barrier algorithm performed, including the iteration count and the runtime, and it
provides information on outcome of the optimization. The summary for a model that is solved to
optimality would look like this:

Solved in 7212 iterations and 48.38 seconds
Optimal objective 1.126639605e+07

Other termination states produce different summaries. For example, a user interrupt would produce
a summary that looks like:

Stopped in 7482 iterations and 3.41 seconds
Solve interrupted

Hitting a time limit would produce a summary that looks like:

Stopped in 9221 iterations and 5.00 seconds
Time limit exceeded

16.3 Sifting Logging
Sifting will sometimes be used within the dual simplex method, either as a result of an automatic
choice by the Gurobi Optimizer or because the user selected it through the Sifting parameter.
The sifting log consists of three sections: the presolve section, the sifting progress section, and the
summary section. The first and last are identical to those for simplex, so we’ll only discuss the
middle section here.
Sifting Progress Section

As we mentioned, output for sifting and dual simplex are indistinguishable until the progress section
begins. For sifting, the progress section begins with a clear indication that sifting has been selected:

Starting sifting (using dual simplex for sub-problems)...

673

The sifting algorithm performs a number of major iterations, where each iteration solves a smaller
LP sub-problem. It uses the result to update the current primal and dual solution. The sifting
log prints one line per major iteration, with information on the current primal and dual objective
values:

Iter Pivots Primal Obj Dual Obj Time
0 0 infinity 2.0000000e+01 11s
1 4662 1.5220652e+03 2.7034420e+02 12s
2 8917 1.3127217e+03 4.6530259e+02 13s
3 16601 1.1651147e+03 6.4767742e+02 17s
4 30060 1.0881514e+03 7.8842688e+02 29s
5 45169 1.0618879e+03 8.8656855e+02 46s
6 59566 1.0549766e+03 9.5404159e+02 64s
7 73614 1.0540577e+03 1.0172213e+03 82s

The first column in the log gives the major iteration number. The second shows the total number
of simplex iterations performed in solving the sifting sub-problems. The third and fourth columns
show the primal and dual objective values for the current solution. The final column shows elapsed
runtime.

The completion of sifting is indicated with the following message:

Sifting complete

The basis computed by sifting is then handed back to dual simplex, and the log from that point
forward comes from the dual simplex algorithm.

16.4 MIP Logging
The MIP log can be divided into three sections: the presolve section, the simplex progress section,
and the summary section.
Presolve Section

As with the simplex and barrier logs, the first section of the MIP log is the presolve section. Here
is presolve output for MIPLIB model mas76:

Presolve removed 0 rows and 3 columns
Presolve time: 0.00s
Presolved: 12 Rows, 148 Columns, 1615 Nonzeros

In this example, presolve was able to remove 3 columns. The final line shows the size of the model
that is passed to the branch-and-cut algorithm.
Progress Section

The next section in the MIP log tracks the progress of the branch-and-cut search. The search
involves a number of different steps, so this section typically contains a lot of detailed information.
The first thing to observe in the log for example mas76 is these lines:

Found heuristic solution: objective 93644.999
Found heuristic solution: objective 87658.484
Found heuristic solution: objective 80811.127

674

These indicate that the Gurobi heuristics found three integer feasible solutions before the root
relaxation was solved.

The next thing you will see in the log is the root relaxation solution display. For a model where
the root solves quickly, this display contains a single line:

Root relaxation: objective 3.889390e+04, 43 iterations, 0.00 seconds

For models where the root relaxation takes more time (MIPLIB model dano3mip, for example),
the Gurobi solver will automatically include a detailed simplex log for the relaxation itself:

Root relaxation log...

Iteration Objective Primal Inf. Dual Inf. Time
8370 5.6894789e+02 3.032449e+05 0.000000e+00 5s
13770 5.6906050e+02 2.875568e+06 0.000000e+00 10s
18758 5.6924158e+02 7.523521e+06 0.000000e+00 15s
25649 5.7101828e+02 1.463095e+06 0.000000e+00 20s
31400 5.7146225e+02 6.748823e+04 0.000000e+00 25s
34230 5.7623162e+02 0.000000e+00 0.000000e+00 28s

Root relaxation: objective 5.762316e+02, 34230 iterations, 28.47 seconds

To be more precise, this more detailed log is triggered whenever the root relaxation requires more
than the DisplayInterval parameter value (5 seconds by default).

The next section provides progress information on the branch-and-cut tree search:

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 38893.904 0 11 80811.127 38893.904 51.9% - 0s
H 0 0 45476.147 38893.904 14.5% - 0s

0 0 38903.750 0 13 45476.147 38903.750 14.5% - 0s
0 0 38926.214 0 12 45476.147 38926.214 14.4% - 0s
0 0 38950.968 0 13 45476.147 38950.968 14.3% - 0s
0 0 38952.279 0 14 45476.147 38952.279 14.3% - 0s

H 0 2 43875.000 38952.279 11.2% - 0s
H 0 2 40005.054 38952.279 2.63% - 0s

0 2 38952.279 0 14 40005.054 38952.279 2.63% - 0s
96386 22115 cutoff 37 40005.054 39504.729 1.25% 4.0 5s
153831 18491 infeasible 42 40005.054 39576.907 1.07% 4.0 10s
203266 12649 cutoff 30 40005.054 39756.344 0.62% 3.9 15s

This display is somewhat dense with information, but each column is hopefully fairly easy to
understand. The Nodes section (the first two columns) provides general quantitative information
on the progress of the search. The first column shows the number of branch-and-cut nodes that
have been explored to that point, while the second shows the number of leaf nodes in the search
tree that remain unexplored. At times, there will be an H or * character at the beginning of the

675

output line. These indicate that a new feasible solution has been found, either by a MIP heuristic
(H) or by branching (*).

The Current Node section provides information on the specific node that was explored at that
point in the branch-and-cut tree. It shows the objective of the associated relaxation, the depth of
that node in the branch-and-cut tree, and the number of integer variables that have non-integral
values in the associated relaxation.

The Objective Bounds section provides information on the best known objective value for
a feasible solution (i.e., the objective value of the current incumbent), and the current objective
bound provided by leaf nodes of the search tree. The optimal objective value is always between
these two values. The third column in this section (Gap) shows the relative gap between the two
objective bounds. When this gap is smaller than the MIPGap parameter, optimization terminates.

The Work section of the log provides information on how much work has been performed to
that point. The first column shows the average number of simplex iterations performed per node
in the branch-and-cut tree. The final column shows the elapsed time since the solve began.

By default, the Gurobi MIP solver prints a log line every 5 seconds (although the interval can
sometimes be longer for models with particularly time-consuming nodes). The interval between
log lines can be adjusted with the DisplayInterval parameter (see the Parameter section of this
document for more information).

Note that the explored node count often stays at 0 for an extended period. This means that the
Gurobi MIP solver is processing the root node. The Gurobi solver can often expend a significant
amount of effort on the root node, generating cutting planes and trying various heuristics in order
to reduce the size of the subsequent branch-and-cut tree.
Summary Section

The third section in the log provides summary information once the MIP solver has finished:

Cutting planes:
Gomory: 6
Cover: 5
MIR: 8

Explored 226525 nodes (854805 simplex iterations) in 11.15 seconds
Thread count was 2 (of 2 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 4.0005054142e+04, best bound 4.0001112908e+04, gap 0.0099%

In this example, the Gurobi solver required just over 11 seconds to solve the model to optimality,
and it used two processors to do so (the processor count can be limited with the Threads parameter).
The gap between the best feasible solution objective and the best bound is just under 0.01%, which
produces an Optimal termination status, since the achieved gap is smaller than the default MIPGap
parameter value.

16.5 Multi-Objective Logging
The contents of the log for a multi-objective solve will depend on the approach you use to solve
the model. As noted in the section on multi-objective models, you have two options. In a blended

676

approach, where the objectives are combined into a single objective, the log will be the same as
what you’d see for a single-objective model. When using a hierarchical approach, a series of models
is solved, one for each objective priority level. If your model is a pure hierarchical multi-objective
problem with three objectives, the optimization process log will start with

Multi-objectives: starting optimization with 3 objectives ...

If your model is a mixed hierarchical-blended multi-objective problem with five objectives but only
three priorities, the optimization log will start with

Multi-objectives: starting optimization with 5 objectives (3 combined) ...

You will also see a log for each solve, introduced by a small header

Multi-objectives: optimize objective 1 Name ...

Where Name will be the name of the objective function being optimize, or (weighted) if the
objective function is the result of blending more than one objective function.

The logs for the individual solves will again be the same as what you’d see for a single-objective
model.

16.6 Distributed MIP Logging
Logging for distributed MIP is very similar to the standard MIP logging. The main difference is in
the progress section. The header for the standard MIP logging looks like this:

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

In contrast, the distributed MIP header has a different label for the second-to-last field:

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | ParUtil Time

Instead of showing iterations per node, this field in the distributed log shows parallel utilization.
Specifically, it shows the fraction of the preceding time period (the time since the previous progress
log line) that the workers spent actively processing MIP nodes.

Here is an example of a distributed MIP progress log:

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | ParUtil Time

H 0 157344.61033 - - 0s
H 0 40707.729144 - - 0s

677

H 0 28468.534497 - - 0s
H 0 18150.083886 - - 0s
H 0 14372.871258 - - 0s
H 0 13725.475382 - - 0s

0 0 10543.7611 0 19 13725.4754 10543.7611 23.2% 99% 0s
* 266 12988.468031 10543.7611 18.8% 0s
H 1503 12464.099984 10630.6187 14.7% 0s
* 2350 12367.608657 10632.7061 14.0% 1s
* 3360 12234.641804 10641.4586 13.0% 1s
H 3870 11801.185729 10641.4586 9.83% 1s

Ramp-up phase complete - continuing with instance 2 (best bd 10661)

16928 2731 10660.9626 0 12 11801.1857 10660.9635 9.66% 99% 2s
135654 57117 11226.5449 19 12 11801.1857 11042.3036 6.43% 98% 5s
388736 135228 11693.0268 23 12 11801.1857 11182.6300 5.24% 96% 10s
705289 196412 cutoff 11801.1857 11248.8963 4.68% 98% 15s
1065224 232839 11604.6587 28 10 11801.1857 11330.2111 3.99% 98% 20s
1412054 238202 11453.2202 31 12 11801.1857 11389.7119 3.49% 99% 25s
1782362 209060 cutoff 11801.1857 11437.2670 3.08% 97% 30s
2097018 158137 11773.6235 20 11 11801.1857 11476.1690 2.75% 92% 35s
2468495 11516 cutoff 11801.1857 11699.9393 0.86% 78% 40s
2481830 0 cutoff 11801.1857 11801.1857 0.00% 54% 40s

One thing you may find in the progress section is that node counts may not increase monoton-
ically. Distributed MIP tries to create a single, unified view of node numbers, but with multiple
machines processing nodes independently, possibly at different rates, some inconsistencies are in-
evitable.

Another difference is the line that indicates that the distributed ramp-up phase is complete.
At this point, the distributed strategy transitions from a concurrent approach to a distributed
approach. The log line indicates which worker was the winner in the concurrent approach. Dis-
tributed MIP continues by dividing the partially explored MIP search tree from this worker among
all of the workers.

Another difference in the distributed log is in the summary section. The distributed MIP log
includes a breakdown of how runtime was spent:

Runtime breakdown:
Runtime breakdown:
Active: 37.85s (93%)
Sync: 2.43s (6%)
Comm: 0.34s (1%)

This is an aggregated view of the utilization data that is displayed in the progress log lines. In
this example, the workers spent 93% of runtime actively working on MIP nodes, 6% waiting to
synchronize with other workers, and 1% communicating data between machines.

678

Gurobi Command-Line Tool

The Gurobi command-line tool allows you to perform simple commands without the overhead or
complexity of an interactive interface. While the most basic usage of the command-line tool is quite
straightforward, the tool has a number of uses that are perhaps less obvious. This section talks
about its full capabilities.

To use this tool, you’ll need to type commands into a command-line interface. Linux and Mac
users can use a Terminal window. Windows users will need to open a Command Prompt (also
known as a Console window or a cmd window). To launch one, hold down the Start and R keys
simultaneously, and then type cmd into the Run box that appears.

The command to solve a model using the command-line tool is:

gurobi_cl [parameter=value]* modelfile

The Gurobi log file is printed to the screen as the model solves, and the command terminates
when the solve is complete. Parameters are chosen from among the Gurobi parameters. The final
argument is the name of a file that contains an optimization model, stored in MPS or LP format.
You can learn more about using the command-line tool to solve models in this section.

The command-line tool can also be used to replay recordings of API calls. The command for
this usage is:

gurobi_cl recordingfile

A recording file is a binary file generated by Gurobi with a .grbr extension. You can learn more
about using the command-line tool to replay recordings in this section.

The command-line tool can also be used to administer Gurobi Remote Services and Gurobi
Compute Server. The syntax for this usage is:

gurobi_cl [--command]*

A list of supported commands can be found in this section.
The command-line tool can also be used to check on the status of a Gurobi token server. The

command is:

gurobi_cl --tokens

This command will show you whether the token server is currently serving tokens, and which users
and machines are currently using tokens.

You can also type:

gurobi_cl --help

to get help on the use of the tool, or:

gurobi_cl --version

679

to get version information, or:

gurobi_cl --license

to get the location of the current Gurobi license file.

17.1 Solving a Model
The command-line tool provides an easy way to solve a model stored in a file. The model can be
stored in several different formats, including MPS, REW, LP, and RLP, and the file can optionally
be compressed using gzip, bzip2, or 7z. See the File Format discussion for more information on
accepted formats.

The most basic command-line command is the following:

gurobi_cl model.mps

This will read the model from the indicated file, optimize it, and display the Gurobi log file as the
solve proceeds.

You can optionally include an arbitrary number of parameter=value commands before the
name of the file. For example:

gurobi_cl Method=2 TimeLimit=100 model.mps

The full set of Gurobi parameters is described in the Parameter section.
Gurobi Compute Server users can add the --server= switch to specify a server. For example,

the command:

gurobi_cl --server=server1 Method=2 TimeLimit=100 model.mps

would solve the model stored in file model.mps on machine server1, assuming it is running Gurobi
Compute Server. If the Compute Server has an access password, use the --password= switch to
specify it.
Writing Result Files

While it is often useful to simply solve a model and display the log, it is also common to want to
review the resulting solution. You can use the ResultFile parameter to write the solution to a file:

gurobi_cl ResultFile=model.sol model.mps

The file name suffix determines the type of file written. Useful file formats for solution information
are .sol (for solution vectors) and .bas (for simplex basis information). Again, you should consult
the section on File Formats for a list of the supported formats

If you have an infeasible model, you may want to examine a corresponding Irreducible Incon-
sistent Subsystem (IIS) to identify the cause of the infeasibility. You can ask the command-line
tool to write a .ilp format file. It will attempt to solve the model, and if the model is found to be
infeasible, it will automatically compute an IIS and write it to the requested file name. An IIS is
a subset of the constraints and variable bounds with the following properties:

• the subsystem represented by the IIS is infeasible, and

• if any of the constraints or bounds of the IIS is removed, the subsystem becomes feasible.

680

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily
one of minimal cardinality. Thus, there may exist other IISs with fewer constraints or bounds.

If an IIS computation is interrupted before completion, Gurobi will internally store the best
available IIS found so far.

Another use of ResultFile is to translate between file formats. For example, if you want to
translate a model from MPS format to LP format, you could issue the following command:

gurobi_cl TimeLimit=0 ResultFile=model.lp model.mps

Gurobi can write compressed files directly, so this command would also work (assuming that 7zip
is installed on your machine):

gurobi_cl TimeLimit=0 ResultFile=model.lp.7z model.mps

The ResultFile parameter works differently from other parameters in the command-line in-
terface. While a parameter normally takes a single value, you can actually specify multiple result
files. For example, the following command:

gurobi_cl ResultFile=model.sol ResultFile=model.bas model.mps

will write two files.

Reading Input Files

You can use the InputFile parameter to read input files during the optimization. The most common
input formats are .bas (a simplex basis), .mst (a MIP start), .sol (also a MIP start), .hnt (MIP
hints), and .ord (a MIP priority order). For example, the following command:

gurobi_cl InputFile=model.bas model.mps

would start the optimization of the continuous model stored in file model.mps using the basis
provided in file model.bas.

Reading input files is equivalent to setting the values of Gurobi attributes. A .bas file populates
the VBasis and CBasis attributes, while a .ord file populates the BranchPriority attribute. A .mst
or .sol file populates the Start attribute. A .hnt file populates the VarHintVal and VarHintPri
attributes.

Again, you should consult the File Formats section for more information on supported file
formats

17.2 Replaying Recording Files
If you’ve generated a recording of the Gurobi API calls made by your program, you may use the
command-line tool to replay this recording.

Recordings are stored in files with .grbr extensions. To replay a recording from a file named
recording000.grbr issue the following command:

gurobi_cl recording000.grbr

681

You should adjust the file name to match the recording you wish to replay.
You will know you have succeeded in replaying a recording, if you see lines similar to the

following at the beginning of the command-line tool’s output:

Replay* Replay of file ’recording000.grbr’
Replay* Recording captured Tue Sep 13 19:28:48 2017
Replay* Recording captured with Gurobi version 7.5.2 (linux64)

For information about recording API calls and replaying them, see the Recording API Calls
chapter.

17.3 Gurobi Remote Services and Compute Server Administration
The command-line tool can also be used to administer Gurobi Remote Services and Gurobi Compute
Server. The format of an administrative command is simply:

gurobi_cl [--command]*

Available administrative commands are:

–-status: Obtain a list of running and queued jobs.

–-killjob=: Kill a job. The argument identifies the job to kill. You specify a job by giving the
client hostname, followed by a comma, followed by the process ID (PID) of the job. You
typically obtain this information from the output of gurobi_cl --status.

–-joblimit=: Change the server job limit. The argument gives the new limit. Note that this
command is useful for taking a Compute Server off-line: setting the job limit to zero allows
currently running jobs to finish, but prevents new ones from starting.

–-newadminpassword: Change the administrator password.

Administrative commands can be run from any machine on the same network as the server.
All except --status prompt you for the administrator password. Alternatively, you can provide
the password on the command line using the --adminpassword= command. For security reasons,
if no initial administrator password is specified (via the grb_rs.cnf file), server administration is
disabled.

One additional command-line argument that you may need in conjunction with these com-
mands is --server= (--servers= is also accepted). This argument specifies the machine where
the requested command should be performed. If you omit this argument, the machine name will
be pulled from the COMPUTESERVER= line of your client license file.

Note that the --joblimit and --newadminpassword commands can only be applied to a single
server at a time. If you specify multiple servers (either through the --servers switch or through
your client license file), the command will only be applied to the first member of the list.

The following shows sample output from gurobi_cl --status...
–––––––––––––––––––––––––––––––––

Checking status of Gurobi Remote Services on server ’server1’...
–––––––––––––––––––––––––––––––––

682

Gurobi Remote Services (version 7.5.2) functioning normally
Available services: Distributed Worker, Compute Server
Job limit: 2, currently running: 2

Jobs currently running: 2 ...

Client HostName Client IP Address UserName PID
–––––––––––––––––––––––––––––-
client1 192.168.1.101 smith 7416
client2 192.168.1.102 jones 1536

Jobs currently queued: 1 ...

Client HostName Client IP Address UserName PID Priority
––––––––––––––––––––––––––––––––––––
client3 192.168.1.103 jim 2620 5

The report shows two jobs currently running (one from user smith on client machine client1,
and one from user jones on client machine client2), and one job queued (from user jim on client
machine client3).

Here are a few more example administrator commands:

> gurobi_cl --killjob=client1,7416
> gurobi_cl --newadminpassword --server=gurobiserver1
> gurobi_cl --joblimit=0 --server=gurobiserver1

683

Solution Pool

While the default goal of the Gurobi Optimizer is to find one proven optimal solution to your
model, with a possible side-effect of finding other solutions along the way, the solver provides a
number of parameters that allow you to change this behavior.

18.1 Finding Multiple Solutions

By default, the Gurobi MIP solver will try to find one proven optimal solution to your model. It
will typically find multiple sub-optimal solutions along the way, which can be retrieved later (using
the SolutionNumber parameter, and the Xn and PoolObjVal attributes). However, these solutions
aren’t produced in a systematic way. The set of solutions that are found depends on the exact path
the solver takes through the MIP search. You could solve a MIP model once, obtaining a set of
interesting sub-optimal solutions, and then solve the same problem again with different parameter
settings, and find only the optimal solution.

If you’d like more control over how solutions are found and retained, the Gurobi Optimizer has
a number of parameters available for this. The first and simplest is PoolSolutions, which controls
the size of the solution pool. Changing this parameter won’t affect the number of solutions that
are found - it simply determines how many of those are retained.

You can use the PoolSearchMode parameter to control the approach used to find solutions.
In its default setting (0), the MIP search simply aims to find one optimal solution. Setting the
parameter to 1 causes the MIP search to expend additional effort to find more solutions, but in a
non-systematic way. You will get more solutions, but not necessarily the best solutions. Setting
the parameter to 2 causes the MIP to do a systematic search for the n best solutions. For both
non-default settings, the PoolSolutions parameter sets the target for the number of solutions to
find.

If you are only interested in solutions that are within a certain gap of the best solution found,
you can set the PoolGap parameter. Solutions that are not within the specified gap are discarded.

Obtaining an OPTIMAL optimization return status when using PoolSearchMode=2 indicates that
the MIP solver succeeded in finding the desired number of best solutions, or it proved that the model
doesn’t have that many distinct feasible solutions. If the solver terminated early (e.g., due to a
time limit), you can use the PoolObjBound attribute to evaluate the quality of the solutions that
were found. This attribute gives a bound on the objective of any solution that isn’t already in the
solution pool. The difference between this attribute and ObjBound is that the latter gives a bound
on the objective for any solution, and which is often looser than PoolObjBound.

There are a few subtleties associated with finding multiple solutions that you should be aware
of. For example, the notion of finding the n best solutions can be a bit ambiguous when you have
a non-zero optimality tolerance. Also, it isn’t obvious whether two solutions should be considered
different when the model has continuous variables. We’ll discuss these issues later in this section.

684

18.2 Examples
Let’s continue with a few examples of how these parameters would be used. Imagine that you are
solving a MIP model with an optimal (minimization) objective of 100. Further imagine that, using
default settings, the MIP solver finds four solutions to this model with objectives 100, 110, 120,
and 130.

If you set the PoolSolutions parameter to 3 and solve the model again, the MIP solver would
discard the worst solution and return with 3 solutions in the solution pool (i.e., the SolCount
attribute would have value 3). If you instead set the PoolGap parameter to value 0.2, the MIP
solver would discard any solutions whose objective value is worse than 120 (which would also leave
3 solutions in the solution pool).

If you set the PoolSearchMode parameter to 2 and the PoolSolutions parameter to 10, the MIP
solver would attempt to find the 10 best solutions to the model. An OPTIMAL return status would
indicate that either (i) it found the 10 best solutions, or (ii) it found all feasible solutions to the
model, and there were fewer than 10. If you also set the PoolGap parameter to a value of 0.1, the
MIP solver would try to find 10 solutions with objective no worse than 110. While this may appear
equivalent to asking for 10 solutions and simply ignoring those with objective worse than 110, the
solve will typically complete significantly faster with this parameter set, since the solver does not
have to expend effort looking for solutions beyond the requested gap.

18.3 Retrieving Solutions
After optimization has completed, you can retrieve solutions from the solution pool using a few
parameters and attributes. The SolCount attribute indicates how many solutions were retained by
the MIP solver. The best solution can always be obtained through the X attribute. Sub-optimal
solutions can be obtained by first setting the SolutionNumber parameter and then querying the Xn
attribute to obtain the solution or the PoolObjVal attribute to obtain the objective value for the
corresponding solution.

For example, to retrieve the worst solution kept by the MIP solver, you’d first query SolCount to
determine how many solutions are available, then set the SolutionNumber parameter to SolCount-1,
then query the Xn attribute.

The PoolObjBound attribute gives a bound on the objective of undiscovered solutions. Further
tree exploration won’t find better solutions. You can use this parameter to get a count of how
many of the n best solutions you found: any solutions whose objective values are at least as good
as PoolObjBound are among the n best.

18.4 Subtleties and Limitations
There are a few subtleties associated with finding multiple solutions that we’ll cover now.
Continuous Variables

One subtlety arises when considering multiple solutions for models with continuous variables.
Specifically, you may have two solutions that take identical values on the integer variables but
where some continuous variables differ. By choosing different points on the line between these two
solutions, you actually have an infinite number of choices for feasible solutions to the problem. To
avoid this issue, we define two solutions as being equivalent if they take the same values on all

685

integer variables (and on all continuous variables that participate in SOS constraints). A solution
will be discarded if it is equivalent to another solution that is already in the pool.
Optimality Gap

The interplay between the optimality gap (MIPGap or MIPGapAbs) and multiple solutions can
be a bit subtle. When using the default PoolSearchMode, a non-zero optimality gap indicates that
you are willing to allow the MIP solver to declare a solution optimal, even though the model may
have other, better solutions. The claim the solver makes upon termination is that no other solution
would improve the incumbent objective by more than the optimality gap. Terminating at this point
is ultimately a pragmatic choice - we’d probably rather have the true best solution, but the cost of
reducing the optimality gap to zero can often be prohibitive.

This pragmatic choice can produce a bit of confusion when finding multiple optimal solutions.
Specifically, if you ask for the n best solutions, the optimality gap plays a similar role as it does in
the default case, but the implications may be a bit harder to understand. Specifically, a non-zero
optimality gap means that you are willing to allow the solver to declare that it has found the n
best solutions, even though there may be solutions that are better than those that were returned.
The claim in this case is that any solution not among the reported n best would improve on the
objective for the worst among the n best by less than the optimality gap.

If you want to avoid this source of potential confusion, you should set the optimality gap to 0
when using PoolSearchMode=2.
Logging

If you browse the log from a MIP solve with PoolSearchMode set to a non-default value, you may
see the lower bound on the objective exceed the upper bound. This can’t happen with the default
PoolSearchMode - if you are only looking for one optimal solution, the search is done as soon as
the lower bound reaches the upper bound. However, if you are looking for the n best solutions,
you have to prove that the model has no solution better than the nth best. The objective for that
nth solution could be much worse than that of the incumbent. In this situation, the log file will
include a line of the form:

Optimal solution found at node 123 - now completing solution pool...

Distributed MIP

One limitation that we should point out related to multiple solutions is that the distributed MIP
solver has not been extended to support non-default PoolSearchMode settings. Distributed MIP
will typically produce many more feasible solutions than non-distributed MIP, but there’s no way
to ask it to find the n best solutions.

686

Multiple Objectives

While typical optimization models have a single objective function, real-world optimization prob-
lems often have multiple, competing objectives. For example, in a production planning model, you
may want to both maximize profits and minimize late orders, or in a workforce scheduling appli-
cation, you may want to minimize the number of shifts that are short-staffed while also respecting
worker’s shift preferences.

The main challenge you face when working with multiple, competing objectives is deciding how
to manage the tradeoffs between them. Gurobi provides tools that simplify the task: Gurobi allows
you to blend multiple objectives, to treat them hierarchically, or to combine the two approaches.
In a blended approach, you optimize a weighted combination of the individual objectives. In
a hierarchical or lexicographic approach, you set a priority for each objective, and optimize in
priority order. When optimizing for one objective, you only consider solutions that would not
degrade the objective values of higher-priority objectives. Gurobi allows you to enter and manage
your objectives, to provide weights for a blended approach, or to set priorities for a hierarchical
approach.

19.1 Specifying Multiple Objectives
Let us first discuss the interface for managing multiple objectives. An empty model starts with
one objective function, which is initially just 0.0. We’ll refer to this as the primary objective. You
can modify the primary objective in two ways: you can set the Obj attribute, or you can use the
setObjective method from your language API (e.g., Model.setObjective in Python). For models
with a single objective, this primary objective can be linear, quadratic, or piecewise linear. In
general, attributes and methods that aren’t specific to multi-objective optimization will work with
the primary objective function.

To provide additional objectives, use the setObjectiveN method from your language API (e.g.
Model.setObjectiveN in Python). Objectives are numbered 0 through NumObj-1. The order of
the objectives is arbitrary, but you must provide a unique index for each one (specified using the
index argument to setObjectiveN). You can query the number of objectives in your model using
the NumObj attribute. Note that all objectives, including the primary one, must be linear for
multi-objective models.

You can query and modify information about multiple objectives using the ObjNumber pa-
rameter, in conjunction with several model and variable attributes. For example, to retrieve the
coefficient for variable x in objective 2, you’d set the ObjNumber parameter to 2, then query the
ObjN attribute for x. Similarly, querying the ObjNName attribute after setting ObjNumber to 3
would give the name of objective 3.

We should note that there is one important exception to our statement above that the order of
objectives is arbitrary: objective 0 is treated as the primary objective. One consequence is that the
original objective automatically becomes objective 0 when you add a second objective. Another is
that querying the ObjN attribute is equivalent to querying the Obj attribute when ObjNumber is 0.

687

Note that a model has a single objective sense (controlled by the ModelSense attribute). This
means that you can’t maximize the first objective and minimize the second. However, you can
achieve the same result with a simple trick. Each objective has a weight, and these weights are
allowed to be negative. Minimizing an objective function is equivalent to maximizing the negation
of that function.

You can change the number of objectives in your model as many times as you like (by modifying
the NumObj attribute). When you increase the objective count, the new objectives and their
associated attributes are set to 0. When you decrease the count, objectives beyond the new count
are discarded. If you set the number of objectives to zero, the model becomes a pure feasibility
problem.

We have extended the LP and MPS file formats, so writing a model with multiple objectives
to a file will capture those objectives. Similarly, if you read a model file that contains multiple
objectives, then NumObj and ObjN will capture the objectives stored in the file. See the file
format section for details.

19.2 Working With Multiple Objective
Of course, specifying a set of objectives is only the first step in solving a multi-objective optimization
problem. The next step is to indicate how the objectives should be combined. As noted earlier, we
support two approaches: blended and hierarchical.

Blended Objectives

A blending approach creates a single objective by taking a linear combination of your objectives.
You provide a weight for each objective as an argument to setObjectiveN. Alternatively, you can
use the ObjNWeight attribute, together with ObjNumber. The default weight for an objective is
1.0.

To give an example, if your model has two objectives, 1 + x + 2y and y + 2z, and if you give
weights of −1 and 2 to them, respectively, then Gurobi would solve your model with a blended
objective of −1 · (1 + x+ 2y) + 2 · (y + 2z) = −1− x+ 4z.

You should avoid weights that are very large or very small. A very large weight (i.e., larger
than 106) may lead to very large objective coefficients, which can cause numerical difficulties. A
very small weight (i.e., smaller than 1e− 6) may cause the contribution from that objective to the
overall blended objective to be smaller than tolerances, which may lead to that objective being
effectively ignored.

Hierarchical Objectives

A hierarchical or lexicographic approach assigns a priority to each objective, and optimizes for
the objectives in decreasing priority order. At each step, it finds the best solution for the current
objective, but only from among those that would not degrade the solution quality for higher-
priority objectives. You provide the priority for each objective as an argument to setObjectiveN.
Alternatively, you can use the ObjNPriority attribute. Priorities are integral, not continuous.
Larger values indicate higher priorities. The default priority for an objective is 0.

To give an example, if your model has two objectives, with priorities 10 and 5, and the optimal
solution for the first objective has value 100, then the solver will find the solution that optimizes
the second objective from among all solutions with objective 100 for the first objective.

688

Allowing Multiple-Objective Degradation

By default, our hierarchical approach won’t allow later objectives to degrade earlier objectives.
This behavior can be relaxed for MIPs through a pair of tolerances: a relative and an absolute
tolerance. These are provided as arguments to setObjectiveN, or they can be set using attributes
ObjNRelTol and ObjNAbsTol. By setting one of these for a particular objective, you can indicate
that later objectives are allowed to degrade this objective by the specified relative or absolute
amount, respectively. In our earlier example, if the optimal value for the first objective is 100, and
if we set ObjNAbsTol for this objective to 20, then the second optimization step would find the best
solution for the second objective from among all solutions with objective 120 or better for the first
objective. Note that if you modify both tolerances, later optimizations would use the looser of the
two values (i.e., the one that allows the larger degradation).

Objective degradations are handled differently for multi-objective LP models. For LP models,
solution quality for higher-priority objectives is maintained by fixing some variables to their values
in previous optimal solutions. These fixings are decided using variable reduced costs. The value of
the ObjNAbsTol parameter indicates the amount by which a fixed variable’s reduced cost is allowed
to violate dual feasibility, whereas the ObjNRelTol parameter is simply ignored. If you want the
MIP behavior, where the degradation is controlled more directly, you can add a dummy binary
variable to the model, thus transforming it into a MIP. Solving the resulting multi-objective MIP
will be much more time consuming than solving the original multi-objective LP.

Combining Blended and Hierarchical Objectives

You can actually set both a weight and a priority for each objective. This allows you to combine
the blended and hierarchical approaches. To understand how this works, we should first provide
more detail on how hierarchical objectives are handled.

When you specify a different priority for each of n objectives, the solver performs n separate
optimization steps. In each step, in decreasing priority order, it optimizes for the current objective,
while imposing constraints that ensure that the quality of higher-priority objectives isn’t degraded
by more than the specified tolerances.

If you give the same priority to multiple objectives, then they will be handled in the same
optimization step, resulting in fewer than n total steps for n objectives. More precisely, one op-
timization step is performed per distinct priority value, in order of decreasing priority, and all
objectives with the same priority are blended together, using the weights for those objectives. This
gives you quite a bit of flexibility when combining the blended and hierarchical approaches.

One subtle point when blending multiple objectives within a single level in a hierarchical ap-
proach relates to the handling of degradations from lower-priority levels. The objective degrada-
tion allowed after a blended optimization step is the maximum absolute and relative degradations
allowed by each of the participating objectives. For example, if we have three objectives with
ObjNPriority equal to {2, 2, 1}, and ObjNRelTol equal to {0.10, 0.05, 0.00} and ObjNAbsTol equal
to {0, 1, 2}, and if the best solution for the first priority objective is 10, then the allowed degradation
for the first priority objective is max{10 · 0.10, 10 · 0.05, 0, 1} = 1.

689

19.3 Additional Details
Multi-Objective Environments

By default, the termination criteria (e.g. TimeLimit, SolutionLimit, MIPGap, etc.) for each
pass in a hierarchical multiple-objective optimization are controlled by the parameters defined in
the model environment. However, we provide a feature called multi-objective environments that
allows you to create a Gurobi environment for each objective function and set parameters on
those environments. Those settings will only affect the corresponding pass of the multi-objective
optimization. Thus, for example, if the TimeLimit parameter for the model is 100, but you use a
multi-objective environment to set the parameter to 10 for a particular multi-objective pass, then
the multi-objective optimization will spend at most 10 seconds on that particular pass (and at most
100 seconds in total).

To create a multi-objective environment for a particular multi-objective pass, use the getMultiobjEnv
method from your language API (e.g. Model.getMultiobjEnv in Python). The index argument
gives the index of the multi-objective pass that you want to control.

Note that multi-objective environments are tied to a given multi-objective optimization pass
and not to a given multi-objective function, so multi-objective environment 0 is always tied to the
highest priority (possibly blended) objective, while multi-objective environment 1 is always tied to
the second highest priority objective (if any).

Once you create multi-objective environments, they will be used for every subsequent multi-
objective optimization on that model. Use the discardMultiobjEnvs method from your language
API (e.g. Model.discardMultiobjEnvs in Python) to revert back to default multi-objective opti-
mization behavior.
Other Details

We haven’t attempted to generalize the notions of dual solutions or simplex bases for continuous
multi-objective models, so you can’t query attributes such as Pi, RC, VBasis, or CBasis for multi-
objective solutions. Because of this, we’ve concluded that the most consistent result to return for
attribute IsMIP is 1.

Gurobi will only solve multi-objective models with strictly linear objectives. If the primary
objective is quadratic or piecewise linear, the solve call will return an error.

When solving a continuous multi-objective model using a hierarchical approach, you have a
choice of which optimization algorithm to use for the different steps (primal simplex, dual simplex,
or barrier). The first step will always use the algorithm specified in the Method parameter. The
algorithm for subsequent steps is controlled by the MultiObjMethod parameter. This parameter
has no effect for multi-objective MIP models. Note you can get finer-grained control over the
algorithm choice using our multi-objective environment feature, by setting the Method parameter
for individual objectives.

For the hierarchical approach, Gurobi will perform a conservative presolve step at the beginning
of the multi-objective optimization, and a more aggressive presolve step at the beginning of each step
(assuming presolve hasn’t been turned off). You can optionally perform a more aggressive presolve
step at the beginning of the multi-objective optimization by setting parameter MultiObjPre to
value 2. This can help performance, but it makes a few simplifying assumptions that could lead to
small degradations in the values achieved for lower-priority objectives.

The log file when using a hierarchical approach will show optimization progress for each step of
the process. You’ll see log lines that look like this:

690

Multi-objectives: optimize objective 1 (Obj1Name) ...
...
Multi-objectives: optimize objective 2 (weighted) ...
...

For further details, please see section Multi-Objective Logging.

691

Recording API Calls

The Gurobi Optimizer provides the option to record the set of Gurobi commands issued by your
program and store them to a file. The commands can be played back later using the Gurobi
Command-Line Tool. If you replay the commands on a machine with the same specs (operating
system, core count, and instruction set) as the machine where you created the recording, your
Gurobi calls will take the exact same computational paths that they took when you ran your
original program.

Recording can be useful in a number of situations...

• If you want to understand how much time is being spent in Gurobi routines, the replay will
show you the total time spent in Gurobi API routines, and the total time spent in Gurobi
algorithms.

• If you want to check for leaks of Gurobi data, the replay will show you how many Gurobi
models and environments were never freed by your program.

• If you run into a question or an issue and you would like to get help from Gurobi, your
recording will allow Gurobi technical support to reproduce the exact results that you are
seeing without requiring you to send your entire application.

20.1 Recording
To enable recording, you simply need to set the Record parameter to 1 as soon as you create your
Gurobi environment. The easiest way to do this is with a gurobi.env file. This file should contain
the following line:

Record 1

If you put this file in the same directory as your application, Gurobi will pick up the setting when
your applications makes its first Gurobi call. You can also set this parameter through the standard
parameter modification routines in your program.

Once this parameter is set, you should see the following in your log:

*** Start recording in file recording000.grbr

If your application creates more than one Gurobi environment, you may see more than one of
these messages. Each will write to a different file:

*** Start recording in file recording001.grbr

As your program runs, Gurobi will write the commands and data that are passed into Gurobi
routines to these files. Recording continues until you free your Gurobi environment (or until your
program ends). When you free the environment, if Gurobi logging is enabled you will see the
following message:

692

*** Recording complete - close file recording000.grbr

At this point, you have a recording file that is ready for later replay.

20.2 Replay
To replay a Gurobi recording, you issue the following command:

> gurobi_cl recording000.grbr

You should adjust the file name to match the file you wish to replay. If your program generated
multiple recording files, you will need to replay each one separately.

When the replay starts, the first output you will see will look like this:

Replay* Replay of file ’recording000.grbr’
Replay* Recording captured Tue Sep 13 19:28:48 2017
Replay* Recording captured with Gurobi version 7.5.2 (linux64)

After this output, the replay will start executing the commands issued by your program...

Replay Load new Gurobi environment
Replay Create new Gurobi model (0 rows, 0 cols)
Replay Update Gurobi model
Replay Change objective sense to -1
Replay Add 3 new variables

This continues until the recording file ends. At that point, the replay will print out a final
runtime accounting...

Replay Replay complete

Replay Gurobi API routine runtime: 0.05s
Replay Gurobi solve routine runtime: 2.31s

If your program leaked any Gurobi models or environments, you may also see that in the output:

Replay Models leaked: 2
Replay Environments leaked: 1

20.3 Limitations
Recording works with most programs that call Gurobi. There are a few Gurobi features that aren’t
supported, though:

• Recording won’t capture calls to the Gurobi tuning tool.

• You can’t use recording if you are a client of a Gurobi Compute Server.

• Recording won’t capture data passed into control callbacks. In other words, you can’t record
a program that adds lazy constraints, user cuts, or solutions through callbacks.

693

Concurrent Optimizer

Concurrent optimization is a simple approach for exploiting multiple processors. It starts multiple,
independent solves on a model, using different strategies for each. Optimization terminates when
the first one completes. By pursuing multiple different strategies simultaneously, the concurrent
optimizer can often obtain a solution faster than it would if it had to choose a single strategy.

Concurrent optimization is our default choice for solving LP models, and a user-selectable
option for solving MIP models. The concurrent optimizer can be controlled in a few different
ways. These will be discussed in this section. To avoid confusion when reporting results from
multiple simultaneous solves, we’ve chosen to produce simplified logs and callbacks when performing
concurrent optimization. These will also be discussed in this section.

Controlling Concurrent Optimization

If you wish to use the concurrent optimizer to solve your model, the steps you need to take depend
on the model type. As mentioned earlier, the concurrent optimizer is the default choice for LP
models. This choice is controlled by the Method parameter. For MIP models, you can select the
concurrent optimizer by modifying the ConcurrentMIP parameter.

When controlling the concurrent optimizer using these parameters, the strategies used for the
different independent solves are chosen automatically. While we reserve the right to change our
choices in the future, for LP models we currently devote the first concurrent thread to dual sim-
plex, the second through fourth to a single parallel barrier solve, and the fifth to primal simplex.
Additional threads are devoted to the one parallel barrier solve. Thus, for example, a concurrent
LP solve using four threads would devote one thread to dual simplex and three to parallel barrier.
For MIP, we divide available threads evenly among the independent solves, and we choose different
values for the MIPFocus and Seed parameters for each.

If you want more control over concurrent optimization (e.g., to choose the exact strategies
used for each independent solve), you can do so by creating two or more concurrent environments.
These can be created via API routines (in C, C++, Java, .NET, or Python), or they can be
created from .prm files using the ConcurrentSettings parameter if you are using our command-line
interface. Once these have been created, subsequent optimization calls will start one independent
solve for each concurrent environment you created. To control the strategies used for each solve,
you simply set the parameters in each environment to the values you would like them to take in the
corresponding solve. For example, if you create two concurrent environments and set the MIPFocus
parameter to 1 in the first and 2 in the second, subsequent MIP optimize calls will perform two
solves in parallel, one with MIPFocus=1 and the other with MIPFocus=2.

Logging

Your first indication that the concurrent optimizer is being used is output in the Gurobi log that
looks like this...

Concurrent LP optimizer: dual simplex and barrier
Showing barrier log only...

694

...or like this...

Concurrent MIP optimizer: 2 concurrent instances (2 threads per instance)

These log lines indicate how many independent solves will be launched. For the LP case, the lines
also indicate which methods will be used for each.

Since it would be quite confusing to see results from multiple solves interleaved in a single log,
we’ve chosen to use a simplified log format for concurrent optimization. For concurrent LP, we
only present the log for a single solve. For concurrent MIP, the log is similar to our standard MIP
log, except that it only provides periodic summary information (see the MIP logging section if you
are unfamiliar with our standard MIP log). Each concurrent MIP log line shows the objective for
the best feasible solution found by any of the independent solves to that point, the best objective
bound proved by any of the independent solves, and the relative gap between these two values:

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 - - - 24.00000 13.00000 45.8% 0s
0 0 - - - 16.50000 13.21154 19.9% 0s
0 0 - - - 16.50000 13.25000 19.7% 0s
0 0 - - - 16.50000 13.37500 18.9% 0s
0 0 - - - 16.50000 13.37500 18.9% 0s
0 0 - - - 16.50000 13.37500 18.9% 0s
0 6 - - - 15.50000 13.37500 13.7% 0s

310 149 - - - 15.00000 13.66923 8.87% 0s
3873 1634 - - - 15.00000 14.00000 6.67% 5s
9652 4298 - - - 15.00000 14.12500 5.83% 10s

16535 6991 - - - 15.00000 14.18056 5.46% 15s
23610 9427 - - - 15.00000 14.22333 5.18% 20s
...

We also include node counts from one of the independent solves, as well as elapsed times, to give
some indication of forward progress.
Determinism

Concurrent optimization essentially sets up a race between multiple threads to solve your model,
with the winning thread returning the solution that it found. In cases where multiple threads solve
the model in roughly the same amount of time, small variations in runtime from one run to the next
could mean that the winning thread is not the same each time. If your model has multiple optimal
solutions (which is quite common in LP and MIP), then it is possible that running a concurrent
solver multiple times on the same model could produce different optimal solutions. This is known
as non-deterministic behavior.

By default, the Gurobi concurrent solvers all produce non-deterministic behavior. You can
obtain deterministic behavior for the concurrent LP solver by setting the Method parameter to
value 4. This setting typically increases runtimes slightly, but if your application is dependent on
deterministic behavior, deterministic concurrent LP is often your best option. There is no similar
setting for the concurrent MIP solver.

695

Callbacks

Rather than providing callbacks from multiple independent solves simultaneously, we’ve again cho-
sen to simplify behavior for the concurrent optimizer. In particular, we only supply callbacks from
a single solve. A few consequences of this choice:

• Information retrieved by your callback (solutions, objective bounds, etc.) will come from a
single model.

• User cutting planes are only applied to a single model.

• You aren’t allowed to use lazy constraints with concurrent MIP, since they would only be
applied to one model.

696

Parameter Tuning Tool

The Gurobi Optimizer provides a wide variety of parameters that allow you to control the operation
of the optimization engines. The level of control varies from extremely coarse-grained (e.g., the
Method parameter, which allows you to choose the algorithm used to solve continuous models) to
very fine-grained (e.g., the MarkowitzTol parameter, which allows you to adjust the tolerances used
during simplex basis factorization). While these parameters provide a tremendous amount of user
control, the immense space of possible options can present a significant challenge when you are
searching for parameter settings that improve performance on a particular model. The purpose of
the Gurobi tuning tool is to automate this search.

The Gurobi tuning tool performs multiple solves on your model, choosing different parameter
settings for each solve, in a search for settings that improve runtime. The longer you let it run,
the more likely it is to find a significant improvement. If you are using a Gurobi Compute Server,
you can harness the power of multiple machines to perform distributed parallel tuning in order to
speed up the search for effective parameter settings.

The tuning tool can be invoked through two different interfaces. You can either use the grbtune
command-line tool, or you can invoke it from one of our programming language APIs. Both
approaches share the same underlying tuning algorithm, and both allow you to modify the same
set of tuning parameters.

A number of tuning-related parameters allow you to control the operation of the tuning tool.
The most important is probably TuneTimeLimit, which controls the amount of time spent searching
for an improving parameter set. Other parameters include TuneTrials (which attempts to limit
the impact of randomness on the result), TuneCriterion (which specifies the tuning criterion),
TuneResults (which controls the number of results that are returned), and TuneOutput (which
controls the amount of output produced by the tool).

Before we discuss the actual operation of the tuning tool, let us first provide a few caveats
about the results. While parameter settings can have a big performance effect for many models,
they aren’t going to solve every performance issue. One reason is simply that there are many
models for which even the best possible choice of parameter settings won’t produce an acceptable
result. Some models are simply too large and/or difficult to solve, while others may have numerical
issues that can’t be fixed with parameter changes.

Another limitation of automated tuning is that performance on a model can experience signifi-
cant variations due to random effects (particularly for MIP models). This is the nature of search.
The Gurobi algorithms often have to choose from among multiple, equally appealing alternatives.
Seemingly innocuous changes to the model (such as changing the order of the constraint or vari-
ables), or subtle changes to the algorithm (such as modifying the random number seed) can lead
to different choices. Often times, breaking a single tie in a different way can lead to an entirely
different search. We’ve seen cases where subtle changes in the search produce 100X performance
swings. While the tuning tool tries to limit the impact of these effects, the final result will typically
still be heavily influenced by such issues.

The bottom line is that automated performance tuning is meant to give suggestions for param-

697

eters that could produce consistent, reliable improvements on your models. It is not meant to be
a replacement for efficient modeling or careful performance testing.

22.1 Command-Line Tuning
The grbtune command-line tool provides a very simple way to invoke parameter tuning on a model
(or a set of models). You specify a list of parameter=value arguments first, followed by the name
of the file containing the model to be tuned. For example, you can issue the following command
(in a Windows command window, or in a Linux/Mac terminal window)...

> grbtune TuneTimeLimit=10000 c:\gurobi752\win64\examples\data\misc07

(substituting the appropriate path to a model, stored in an MPS or LP file). The tool will try
to find parameter settings that reduce the runtime on the specified model. When the tuning run
completes, it writes a set of .prm files in the current working directory that capture the best
parameter settings that it found. It also writes the Gurobi log files for these runs (in a set of .log
files).

You can also invoke the tuning tool through our programming language APIs. That will be
discussed shortly.

If you specify multiple model files at the end of the command line, the tuning tool will try to
find settings that minimize the total runtime for the listed models.
Running the Tuning Tool

The first thing the tuning tool does is to perform a baseline run. The parameters for this run
are determined by your choice of initial parameter values. If you set a parameter, it will take the
chosen value throughout tuning. Thus, for example, if you set the Method parameter to 2, then
the baseline run and all subsequent tuning runs will include this setting. In the example above,
you’d do this by issuing the command:

> grbtune Method=2 TuneTimeLimit=100 misc07

For a MIP model, you will note that the tuning tool actually performs several baseline runs,
and captures the mean runtime over all of these trials. In fact, the tool will perform multiple runs
for each parameter set considered. This is done to limit the impact of random effects on the results,
as discussed earlier. Use the TuneTrials parameter to adjust the number of trials performed.

Once the baseline run is complete, the time for that run becomes the time to beat. The tool
then starts its search for improved parameter settings. Under the default value of the TuneOutput
parameter, the tool prints output for each parameter set that it tries...

Testing candidate parameter set 7...

Method 2
MIPFocus 1

Solving with random seed #1 ... runtime 3.63s
Solving with random seed #2 ... runtime 4.12s+

698

Progress so far: baseline runtime 3.38s, best runtime 2.88s
Total elapsed tuning time 34s (66s remaining)

This output indicates that the tool has tried 7 parameter sets so far. For the seventh set, it changed
the value of the MIPFocus parameter (the Method parameter was changed in our initial parameter
settings, so this change will appear in every parameter set that the tool tries). The first trial solved
the model in 3.63 seconds, while the second hit a a time limit that was set by the tuning tool
(as indicated by the + after the runtime output). If any trial hits a time limit, the corresponding
parameter set is considered worse any set that didn’t hit a time limit. The output also shows that
the best parameter set found so far gives a runtime of 2.88s. Finally, it shows elapsed and remaining
runtime.

Tuning normally proceeeds until the elapsed time exceeds the tuning time limit. However,
hitting CTRL-C will also stop the tool.

When the tuning tool finishes, it prints a summary...

Tested 20 parameter sets in 97.89s

Baseline parameter set: runtime 3.38s

Improved parameter set 1 (runtime 1.62s):

Method 2
Heuristics 0
VarBranch 1
CutPasses 3
GomoryPasses 0

Improved parameter set 2 (runtime 2.03s):

Method 2
Heuristics 0
VarBranch 1
CutPasses 3

Improved parameter set 3 (runtime 2.38s):

Method 2
VarBranch 1

Wrote parameter files tune1.prm through tune3.prm
Wrote log files: tune1.log through tune3.log

The summary shows the number of parameter sets it tried, and provides details on a few of the
best parameter sets it found. It also shows the names of the .prm and .log files it writes. You can
change the names of these files using the ResultFile parameter. If you set ResultFile=model.prm,
for example, the tool would write model1.prm through model3.prm and model1.log through
model3.log.

699

The number of sets that are retained by the tuning tool is controlled by the TuneResults
parameter. The default behavior is to keep the sets that achieve the best tradeoff between runtime
and the number of changed parameters. In other words, we report the set that achieves the best
result when changing one parameter, when changing two parameters, etc. We actually report a
Pareto frontier, so for example we won’t report a result for three parameter changes if it is worse
than the result for two parameter changes.
Other Tuning Parameters

So far, we’ve only talked about using the tuning tool to minimize the time to find an optimal
solution. For MIP models, you can also minimize the optimality gap after a specified time limit.
You don’t have to take any special action to do this; you just set a time limit. Whenever a baseline
run hits this limit, the tuning tool will automatically try to minimize the MIP gap. To give an
example, the command...

> grbtune TimeLimit=100 glass4

...will look for a parameter set that minimizes the optimality gap achieved after 100s of runtime on
model glass4. If the tool happens to find a parameter set that solves the model within the time
limit, it will then try to find settings that minimize mean runtime.

For models that don’t solve to optimality in the specified time limit, you can gain more control
over the criterion used to choose a winning parameter set with the TuneCriterion parameter. This
parameter allows you to tell the tuning tool to search for parameter settings that produce the best
incumbent solution or the best lower bound, rather than always minimizing the MIP gap,

You can modify the TuneOutput parameter to produce more or less output. The default value
is 2. A setting of 0 produces no output; a setting of 1 only produces output when an improvement
is found; a setting of 3 produces a complete Gurobi log for each run performed.

If you would like to use a MIP start with your tuning run, you can include the name of the
start file immediately after the model name in the argument list. For example:

> grbtune misc07.mps misc07.mst

You can also use MIP starts when tuning over multiple models; any model that is immediately
followed by a start file in the argument list will use the corresponding start. For example:

> grbtune misc07.mps misc07.mst p0033.mps p0548.mps p0548.mst

22.2 Tuning API
The tuning tool can be invoked from our C, C++, Java, .NET, and Python interfaces. The tool
behaves slightly differently when invoked from these interfaces. Rather than writing the results to
a set of files, upon completion the tool populates a TuneResultCount attribute, which gives a count
of the number of improving parameter sets that were found and retained. The user program can
then query the value of this attribute, and then use the GetTuneResult method to copy any of
these parameter sets into a model (using C, C++, Java, .NET, or Python). Once loaded into the
model, the parameter set can be used to perform a subsequent optimization, or the list of changed
parameters can be written to a .prm file using the appropriate Write routine (from C, C++, Java,
.NET, or Python).

700

Gurobi Remote Services

Gurobi Remote Services allow a machine to perform Gurobi computations on behalf of other ma-
chines. It is a Windows Service on Windows sytems, and a daemon on Linux and Mac systems.
The set of services provided will depend on your license. The most basic service is the Distributed
Worker, which allows a machine to be used as a worker in a Distributed Algorithm. Another, more
powerful service is Compute Server, which allows you to offload Gurobi computations from a set of
client machines onto one or more servers. Later sections will discuss the use of these services. This
section is devoted to the configuration and administration of Gurobi Remote Services.

23.1 Setting Up and Administering Gurobi Remote Services
Setting up Gurobi Remote Services is generally quite straightforward. One option is to simply
follow the basic setup instructions in the Quick Start Guide. The default settings have been chosen
to work well in most usage environments. However, even if you choose to use the defaults, you’ll
probably want to be aware of the additional options and capabilities described here, including
server parameters, firewall issues, and remote administration options.

Gurobi Remote Services Parameters
As noted in the Quick Start Guide, you start Gurobi Remote Services by running the grb_rs
program on the server machine. This starts a Windows service on Windows systems, and a daemon
on Linux or Mac OS systems. When Gurobi Remote Services starts, it picks up user parameter
settings from an optional grb_rs.cnf file (the file must be in the directory that contains the grb_rs
executable).

To modify the default settings, you should place a list of parameter=value lines in this config-
uration file. Lines that begin with the # symbol are treated as comments and are ignored. Here’s
an example file:

Configuration file
PASSWORD=abcd1234
ADMINPASSWORD=1234abcd

You can create this file using your favorite text editor (Notepad is a good choice on Windows).
Some Gurobi Remote Services parameters are generic, while others are specific to a particular

service. The generic parameters are:

PASSWORD: The password that the client program must supply in order to submit a job. Note that
all user data is passed between the client and server using 256-bit AES encryption, whether
you supply a password or not. The server password simply prevents unauthorized clients from
submitting jobs to the server. The default is no password.

ADMINPASSWORD: The password for performing administrative tasks. This is different from the
password that client programs must provide. Administrative tasks are performed using the

701

file:../quickstart/starting_gurobi_remote_ser.html

gurobi_cl program. Example tasks include changing the job limit and killing jobs (details
will follow). Note that the administrator password must be set if you wish to enable remote
administration.

THREADLIMIT: A limit on the number of threads a single job can launch on the server. By default,
a job can create as many threads as it likes (although by default the Gurobi algorithms won’t
create more than one thread per core).

A few Gurobi Remote Services parameters are specific to Compute Server. They control the
job queuing features...

JOBLIMIT: A limit on the number of client jobs that are allowed to run on the server at a time.
Client requests beyond this limit are queued. The default limit is 2.

HARDJOBLIMIT: A hard limit on the number of simultaneous client jobs. Certain jobs (those with
priority 100) are allowed to ignore the JOBLIMIT, but they aren’t allowed to ignore this limit.
Client requests beyond this limit are queued. The default hard limit is 100.

IGNOREPRIORITIES: When set to 1, the server ignores user job priorities.

The configuration file is only read once, when Gurobi Remote Services first starts. Subsequent
changes to the file won’t affect parameter values on a running server.

Firewalls

Amachine running Gurobi Remote Services communicates with clients through a number of network
ports on the server machine. By default, it uses ports 61000-65000. You generally don’t need to
be aware of the details, since in most cases the server will either silently allow Gurobi Remote
Services to use these ports or it will ask you to confirm that these ports can be used. However,
some situations require you to manually open these ports.

One notable example is Amazon EC2, where most network ports are closed by default. You’ll
need to create an EC2 Security Group (or modify your default group) when you start your instance
in order to open these ports.

If for some reason our default port range is unavailable on your server, you can include a PORT=
statement in both the client and the server license files to choose a different range. For example,
the line:

PORT=43000

would use ports 43000-47000 instead.
If you run into trouble with firewall issues, we suggest you share this section with your network

administrator.

Administrative Commands

Gurobi Remote Services provides a number of administration features. These allow you to check
the status of a server, kill a running job, etc. All are accessed through the gurobi_cl command-line
tool. Refer to this section (and this subsection in particular) for more information.

702

Copyright Notice for 3rd Party Library
Gurobi Compute Server uses an AES encryption library written by Brian Gladman for encrypting
messages between the client and the server. Here is the copyright notice for that library:

Copyright (c) 1998-2010, Brian Gladman, Worcester, UK. All rights reserved.

The redistribution and use of this software (with or without changes)
is allowed without the payment of fees or royalties provided that:

source code distributions include the above copyright notice, this
list of conditions and the following disclaimer;

binary distributions include the above copyright notice, this list
of conditions and the following disclaimer in their documentation.

This software is provided ’as is’ with no explicit or implied warranties
in respect of its operation, including, but not limited to, correctness
and fitness for purpose.

703

Distributed Parallel Algorithms

Gurobi Optimizer implements a number of distributed algorithms that allow you to use multiple
machines to solve a problem faster. Available distributed algorithms are:

• A distributed MIP solver, which allows you to divide the work of solving a single MIP
model among multiple machines. A manager machine passes problem data to a set of worker
machines in order to coordinate the overall solution process.

• A distributed concurrent solver, which allows you to use multiple machines to solve an
LP or MIP model. Unlike the distributed MIP solver, the concurrent solver doesn’t divide
the work associated with solving the problem among the machines. Instead, each machine
uses a different strategy to solve the whole problem, with the hope that one strategy will be
particularly effective and will finish much earlier than the others. For some problems, this
concurrent approach can be more effective than attempting to divide up the work.

• Distributed parameter tuning, which automatically searches for parameter settings that
improve performance on your optimization model. Tuning solves your model with a variety
of parameter settings, measuring the performance obtained by each set, and then uses the
results to identify the settings that produce the best overall performance. The distributed
version of tuning performs these trials on multiple machines, which makes the overall tuning
process run much faster.

These distributed algorithms are designed to be nearly transparent to the user. The user simply
modifies a few parameters, and the work of distributing the computation among multiple machines
is handled behind the scenes by the Gurobi library.

24.1 Configuring a Distributed Worker Pool
Before your program can perform a distributed optimization task, you’ll need to identify a set
of machines to use as your distributed workers. Ideally these machines should give very similar
performance. Identical performance is best, especially for distributed tuning, but small variations
in performance won’t hurt your overall results too much.
Specifying the Distributed Worker Pool

Once you’ve identified your distributed worker machines, you’ll need to start Gurobi Remote Ser-
vices on these machines. Instructions for setting up Gurobi Remote Services can be found in the
Gurobi Quick Start Guide. As noted in the Quick Start Guide, run the following command to make
sure a machine is available to be used as a distributed worker:

> gurobi_cl --server=machine --status

(replace machine with the name or IP address of your machine). If you see Distributed Worker
listed among the set of available services...

704

file:../quickstart/starting_gurobi_remote_ser.html

Gurobi Remote Services (version 7.5.2) functioning normally
Available services: Distributed Worker

then that machine is good to go.
We should reiterate a point that is raised in the Quick Start Guide: you do not need a Gurobi

license to run Gurobi Remote Services on a machine. Some services are only available with a license
(e.g., Compute Server). However, any machine that is running Gurobi Remote Services will provide
the Distributed Worker service.
The Distributed Manager Machine

Once you have identified a set of distributed worker machines, you’ll need to choose a manager
machine. This is the machine where your application actually runs. In addition to building the
optimization model, your manager machine will coordinate the efforts of the distributed workers
during the execution of the distributed algorithm.

Distributed Worker Distributed Worker

Distributed Worker Distributed Worker

Manager

Note that once the distributed algorithm completes, only the manager retains any information
about the solution. The distributed workers go off to work on other things.

You’ll need to choose a manager machine that is licensed to run the distributed algorithms.
You’ll see a DISTRIBUTED= line in your license file if distributed algorithms are enabled.

Note that, by default, the manager does not participate in the distributed optimization. It
simply coordinates the efforts of the distributed workers. If you would like the manager to also act
as one of the workers, you’ll need to start Gurobi Remote Services on the manager machine as well.

Manager/Distributed Worker Distributed Worker

Distributed Worker Distributed Worker

705

The workload associated with managing the distributed algorithm is quite light, so a machine can
handle both the manager and worker role without degrading performance.

Note that we only allow a machine to act as manager for a single distributed job. If you want
to run multiple distributed jobs simultaneously, you’ll need multiple manager machines.
Specifying the Distributed Worker Pool

If you’d like to invoke a distributed algorithm from your application, you’ll need to provide the
names of the distributed worker machines. You do this by setting the WorkerPool parameter (refer
to the Gurobi Parameter section for information on how to set a parameter). The parameter should
be set to a string that contains a comma-separated list of either machine names or IP addresses.
For example, you might use the following in your gurobi_cl command line:

> gurobi_cl WorkerPool=server1,server2,server3 ...

If you have set up an access password on the distributed worker machines, you’ll need to provide
it through the WorkerPassword parameter. All machines in the worker pool must have the same
access password.

Note that providing a list of available workers is strictly a configuration step. Your program
won’t actually use any of the distributed algorithms unless it specifically requests them. Instructions
for doing so are next.
Requesting A Distributed Algorithm

Once you’ve set the WorkerPool parameter to the appropriate value, your final step is to set the
ConcurrentJobs, DistributedMIPJobs, or TuneJobs parameter. These parameters indicate how
many distinct distributed worker jobs you would like to start. For example, if you set TuneJobs to
2 in grbtune...

> grbtune WorkerPool=server1,server2 TuneJobs=2 misc07.mps

...you should see the following output in the log...

Started distributed worker on server1
Started distributed worker on server2

Distributed tuning: launched 2 distributed worker jobs

This output indicates that two jobs have been launched, one on machine server1 and the other
on machine server2. These two jobs will continue to run until your tuning run completes.

Similarly, if you launch distributed MIP...

> gurobi_cl WorkerPool=server1,server2 DistributedMIPJobs=2 misc07.mps

...you should see the following output in the log...

Started distributed worker on server1
Started distributed worker on server2

Distributed MIP job count: 2

706

Note that, in most cases, each machine runs one distributed worker job at a time. Distributed
workers are allocated on a first-come, first-served basis, so if multiple users are sharing a set of
distributed worker machines, you should be prepared for the possibility that some or all of them
may be busy when the manager requests them. The manager will grab as many as it can, up to
the requested count. If none are available, it will return an error.
Compute Server Considerations

If you have one or more Gurobi Compute Servers, you can use them for distributed optimization as
well. Compute Servers offer a lot more flexibility than distributed workers, though, so they require
a bit of additional explanation.

The first point you should be aware of is that one Compute Server can actually host multiple
distributed worker jobs. Compute Servers allow you to set a limit on the number of jobs that can
run simultaneously. Each of those jobs can be a distributed worker. For example, if you have a
pair of Compute Servers, each with a job limit of 2, then issuing the command...

> gurobi_cl DistributedMIPJobs=3 WorkerPool=server1,server2 misc07.mps

...would produce the following output...

Started distributed worker on server1
Started distributed worker on server2
Started distributed worker on server1

Compute Server assigns a new job to the machine with the most available capacity, so assuming that
the two servers are otherwise idle, the first distributed worker job would be assigned to server1,
the second to server2, and the third to server1.

Another point to note is that, if you are working in a Compute Server environment, it is often
better to use the Compute Server itself as the distributed manager, rather than the client machine.
This is particularly true if the Compute Server and the workers are physically close to each other,
but physically distant from the client machine. In a typical environment, the client machine will
offload the Gurobi computations onto the Compute Server, and the Compute Server will then act
as the manager for the distributed computation.

To give an example, running following command on machine client1:

> gurobi_cl --server=server1 WorkerPool=server1,server2 DistributeMIPJobs=2 misc07.mps

...will lead to the following sequence of events...

• The model will be read from the disk on client1 and passed to Compute Server server1.

• Machine server1 will act as the manager of the distributed optimization.

• Machine server1 will start two distributed worker jobs, one that also runs on server1 and
another that runs on server2.

Compute Server provides load balancing among multiple machines, so it is common for the user
to provides a list of available servers when a Gurobi application starts. We’ll automatically copy
this list into the WorkerPool parameter. Of course, you can change the value of this parameter in
your program, but the default behavior is to draw from the same set of machines for the distributed
workers. Thus, the following command would be equivalent to the previous command:

707

> gurobi_cl --server=server1,server2 DistributedMIPJobs=2 misc07.mps

Please refer to the next section section for more information on using a Gurobi Compute Server.

24.2 Writing Your Own Distributed Algorithms
Gurobi provides a set of routines that allow you to write your own distributed algorithms. Doing
so requires a Compute Server, though. This capability will be discussed in the Compute Server
section.

24.3 Distributed Algorithm Considerations
So far in this section, we’ve focused almost entirely on configuration and setup issues for the
distributed algorithms in this section. These algorithms have been designed to be nearly indistin-
guishable from the single machine versions. Our hope is that, if you know how to use the single
machine version, you’ll find it straightforward to use the distributed version. The distributed algo-
rithms respect all of the usual parameters. For distributed MIP, you can adjust strategies, adjust
tolerances, set limits, etc. For concurrent MIP, you can allow Gurobi to choose the settings for each
machine automatically or you can use concurrent environments to make your own choices. For dis-
tributed tuning, you can use the usual tuning parameters, including TuneTimeLimit, TuneTrials,
and TuneOutput.
Performance Across Distributed Workers

There are a few things to be aware of when using distributed algorithms, though. One relates
to relative machine performance. As we noted earlier, distributed algorithms work best if all of
the workers give very similar performance. For example, if one machine in your worker pool were
much slower than the others in a distributed tuning run, any parameter sets tested on the slower
machine would appear to be less effective than if they were run on a faster machine. Similar
considerations apply for distributed MIP and distributed concurrent. We strongly recommend
that you use machines with very similar performance. Note that if your machines have similarly
performing cores but different numbers of cores, we suggest that you use the Threads parameter to
make sure that all machines use the same number of cores.
Callbacks

Another difference between the distributed algorithms and our single-machine algorithms is in the
callbacks. The distributed MIP and distributed concurrent solvers do not provide the full range of
callbacks that are available with our standard solvers. They will only provide the MIP, MIPNODE,
and POLLING callbacks. See the Callback section for details on the different callback types.
Logging

The distributed algorithms provide slightly different logging information from the standard algo-
rithms. Consult the Distributed MIP Logging section for details.

708

Gurobi Compute Server

This section describes Gurobi Compute Server, an optional component of Gurobi Remote Services
that allows you to choose one or more servers to run your Gurobi computations. You can then
offload the work associated with solving optimization problems onto these servers from as many
client machines as you like:

Gurobi Compute Server

Compute Server client

Compute Server client

When considering a program that uses Gurobi Compute Server, you can think of the optimiza-
tion as being split into two parts. A client program builds an optimization model using any of the
standard Gurobi interfaces (C, C++, Java, .NET, Python, MATLAB, R). This happens in the left
box of this figure:

Compute ServerClient Machine

Gurobi

Interactive

Shell

Python API

C API

.NET API

Java API

C++ API

MATLAB API

R API

Gurobi

Command

Line

Gurobi Algorithms

Model Data

Solution Data

All of our API’s sit on top of our C API. The C API is in charge of building the internal
model data structures, invoking the Gurobi algorithms, retrieving solution information, etc. When
running Gurobi on a single machine, the C API would build the necessary data structures in

709

memory. The Gurobi algorithms would take the data stored in these data structures as input, and
produce solution data as output.

When running on a Compute Server, the C API instead passes model data to the server, where
it is stored. When the Gurobi algorithms are invoked, the C API simply passes a message to the
server, indicating that optimization should be performed on the stored model data. Solution data is
computed and stored on the server. When the client program later queries the solution information,
the client sends a message to the server in order to obtain the requested data. All communication
between the client and server happens behind the scenes,

In other words, the overall process can be viewed as happening in three phases:

Client computer uses any Gurobi API

to build model; Gurobi library passes

model data to server

Gurobi Compute Server solves the

model

Gurobi library retrieves results on the

client computer

Of course, programs that use the Gurobi API’s in more complex ways would have additional steps.
Gurobi Compute Servers support queuing and load balancing. You can set a limit on the number

of simultaneous jobs each Compute Server will run. When this limit has been reached, subsequent
jobs will be queued. If you have multiple Compute Servers, the current job load is automatically
balanced among the available servers.

Clients Compute servers

Job queue

710

By default, the Gurobi job queue is serviced in a First-In, First-Out (FIFO) fashion. However,
jobs can be given different priorities (through a client license file, or through API calls). Jobs with
higher priorities are then selected from the queue before jobs with lower priorities.

While the Gurobi Compute Server is meant to be transparent to both developers and users,
there are a few aspects of Compute Server usage that you do need to be aware of. These include
performance considerations, APIs for configuring client programs, and a few features that are not
supported for Compute Server applications. Please proceeed to Compute Server usage for details.

25.1 Setting Up and Administering a Gurobi Compute Server
To use Compute Server, you’ll need to start Gurobi Remote Services on one or more servers. Once
you’ve got a Compute Server running, you can check to make sure that you will be able to submit
jobs to it by issuing the following command from any machine that can reach the server on your
network:

> gurobi_cl --server=servername --status

(replace servername with the name of your server). If you see the following lines in the resulting
output, Compute Server is ready to go:

Gurobi Remote Services (version 7.5.2) functioning normally
Available services: Distributed Worker, Compute Server

Compute Server provides a number of user configurable parameters to control things like the
user and administrator passwords, limits on the number of jobs that can run simultaneously, etc.
Compute Server also has a number of administrative commands that allow you to kill jobs, obtain
a list of running and queued jobs, and change parameters. Please refer to the Gurobi Remote
Services section for details.

25.2 Compute Server Usage
The Gurobi Compute Server feature was designed to be almost entirely transparent to both the
developers and the users of the programs that use it. However, there are a few topics that you
may need to be aware of, including setting up a Compute Server client, setting job priorities,
performance considerations, callbacks, and a few coding practices for Compute Server.

Client Configuration
Compute Server clients must know how to reach the desired servers. You have a few options for
providing this information. Your first is through the client gurobi.lic file. That file should contain
a line like the following:

COMPUTESERVER=server1.mydomain.com,server2.mydomain.com

You can create this license file yourself, using your favorite text editor (Notepad is a good choice
on Windows). You simply need to provide a list of the names of the machines that are acting
as Compute Servers. You can refer to the Compute Server machines using their names (e.g.,
server.mydomain.com) or their IP addresses (e.g., 192.168.1.100).

Your client license file may optionally specify a few additional pieces of information. The first
is the Compute Server password:

711

PASSWORD=abcd

This should match the password that you chose when you started the Compute Server. The second
is the job priority:

PRIORITY=10

As you might expect, higher priority jobs take precedence over lower priority jobs. Priorities will
be discussed in more detail shortly. The third is the queuing timeout:

TIMEOUT=60

A job that has been sitting in queue for longer than the specified TIMEOUT value (in seconds) will
return with a JOB_REJECTED error.

Your second option for specifying the desired Compute Servers is through API calls. The ap-
propriate call depends on your programming language. From C, you would call GRBloadclientenv.
From our object-oriented interfaces, the GRBEnv constructors each provide a signature that allows
you to specify the compute server(s), the compute server password, the job priority, and a timeout
for jobs submitted by that program.

Your final option for specifying the desired Computes Servers is specific to the Gurobi command-
line tool. The --server= or --servers= argument allows you to provide a comma-separated list of
Compute Servers (and the optional --password argument allows you to specify the user password):

> gurobi_cl --servers=server1,server2 --password=password1 misc07.mps

Job Priorities

As noted earlier, Gurobi Compute Servers support job priorities. You can assign an integer priority
between -100 and 100 to each job (the default is 0). When choosing among queued jobs, the
Compute Server will run the highest priority job first. Note that servers will never preempt running
jobs.

We have chosen to give priority 100 a special meaning. A priority 100 job will start immediately,
even if this means that a server will exceed its job limit. You should be cautious with priority 100
jobs, since submitting too many at once could lead to very high server loads, which could lead to
poor performance and even crashes in extreme cases.

Performance Considerations on a Wide-Area Network (WAN)

While using Gurobi Compute Server doesn’t typically require you to make any modifications to
your code, performance considerations can sometimes force you to do some tuning when your client
and server are connected by a slow network (e.g., the internet). We’ll briefly talk about the source
of the issue, and the changes required to work around it.

In a Gurobi Compute Server, a call to a Gurobi routine typically results in network messages
between the client and the server. While each individual message is not that expensive, sending
hundreds or thousands of messages can be quite time-consuming. Compute Server makes heavy
use of caching to reduce the number of such messages. However, not all methods are cached. As a
result, we suggest that you avoid doing the following things:

712

• Retrieving the non-zero values for individual rows and columns of the constraint matrix (using,
for example, GRBgetconstrs in C, GRBModel::getRow in C++, GRBModel.getRow in Java,
GRBModel.GetRow in .NET, and Model.getRow in Python).

• Retrieving individual string-valued attributes.

Please note that you don’t need to be too concerned about this issue. Caching generally works
well. In particular, when building a model, our lazy update approach avoids the issue entirely.
You should feel free to build your model one constraint at a time, for example. Your changes are
communicated to the server in one large message when you request a model update.

Of course, network overhead depends on both the number of messages that are sent and the sizes
of these messages. We automatically perform data compression to reduce the time spent transfering
very large messages. However, as you may expect, you will notice some lag when solving very large
models over slow networks.

Callbacks

As you might imagine, since the actual optimization task runs on a remote system in a Compute
Server environment, Gurobi callbacks give different behavior than they do when the task runs
locally. In particular, callbacks are both less frequent and more restrictive. You will only receive
MESSAGE, BARRIER, SIMPLEX, MIP, and MIPSOL callbacks; you will not receive PRESOLVE or MIPNODE
callbacks. As a result, you will only have access to a subset of the callback information that you
would be able to obtain when running locally. You can still request that the optimization be
terminated from any of the callbacks you receive. Please refer to the Callback Code section for
more information on the various callback codes.

Developing for Compute Server

With only a few exceptions, using Gurobi Compute Server requires no changes to your program.
This section covers the exceptions. We’ll talk about program robustness issues that may arise
specifically in a Compute Server environment, and we’ll give a full list of the Gurobi features that
aren’t supported in Compute Server.
Coding for Robustness

Client-server computing introduces a few robustness situations that you wouldn’t face when all of
your computation happens on a single machine. Specifically, by passing data between a client and
a server, your program is dependent on both machines being available, and on an uninterrupted
network connection between the two systems. The queuing and failover capabilities of Gurobi
Compute Server can handle the vast majority of issues that may come up, but you can take a few
additional steps in your program if you want to achieve the maximum possible robustness.

The one scenario you may need to guard against is the situation where you lose the connection
to the server while the portion of your program that builds and solves an optimization model is
running. Gurobi Compute Server will automatically route queued jobs to another server, but jobs
that are running when the server goes down are interrupted (the client will receive a NETWORK
error). If you want your program to be able to survive such failures, you will need to architect it in
such a way that it will rebuild and resolve the optimization model in response to a NETWORK error.
The exact steps for doing so are application dependent, but they generally involve encapsulating

713

the code between the initial Gurobi environment creation and the last Gurobi call into a function
that can be reinvoked in case of an error.
Features Not Supported in Compute Server

As noted earlier, there are a few Gurobi features that are not supported in Compute Server. We’ve
mentioned some of them already, but we’ll give the full list here for completeness. You will need to
avoid using these features if you want your application to work in a Compute Server environment.

The unsupported features are:

• Lazy constraints: While we do provide MIPSOL callbacks, we don’t allow you to add lazy
constraints to cut off the associated MIP solutions.

• User cuts: The MIPNODE callback isn’t supported, so you won’t have the opportunity to add
your own cuts. User cuts aren’t necessary for correctness, but applications that heavily rely
on them may experience performance issues.

• Multi-threading within a single Gurobi environment: This isn’t actually supported in
Gurobi programs in general, but the results in a Compute Server environment are sufficiently
difficult to track down that we wanted to mention it again here. All models built from an
environment share a single socket connection to the Compute Server. This one socket can’t
handle multiple simultaneous messages. If you wish to call Gurobi from multiple threads
in the same program, you should make sure that each thread works within its own Gurobi
environment.

• Advanced simplex basis routines: The C routines that work with the simplex basis
(GRBFSolve, GRBBSolve, GRBBinvColj, GRBBinvRowi, and GRBgetBasisHead) are not
supported.

Acknowledgement of 3rd Party Icons
The icons used in this chapter come from the Open Security Architecture.

714

http://www.opensecurityarchitecture.org

Gurobi Instant Cloud

Gurobi Instant Cloud allows you to start and stop Gurobi Compute Servers on the cloud. You
can start multiple machines without the need for your own hardware or local Gurobi licenses.
Computations are seamlessly offloaded to these servers. Depending on your cloud license type,
these machines provide the full set of Compute Server features, including queuing, load balancing,
and distributed parallel computing.

Overview

When using the Instant Cloud, there are always three systems involved: your client machine, the
Instant Cloud Manager, and a cloud Compute Server.

The program that requests a Gurobi Instant Cloud machine and submits optimization models
to this server runs on your client machine. Note, however, that this program does not actually need
to be aware that it will be using Gurobi Instant Cloud. You have a few options for configuring
the client to use the Instant Cloud. The simplest and most seamless is to set up a cloud license
file. The alternative is to use a programming language API, which gives your program additional
control over how it uses the cloud. Details on launching cloud machines from your client program
follow shortly.

The Instant Cloud Manager manages the configuration and launching of cloud machines. Your
client program will send credential information to this website, along with a request to launch an
Instant Cloud machine. The specific action taken in response to this request depend on configu-
ration information that you manage through the website. For each license, you set up things like
the number of servers to launch, the types and geographic regions of these machines, the maximum
number of simultaneous jobs to run on each server, etc.

Once the Instant Cloud Manager launches the requested Compute Servers, it passes information
about these servers back to your client program. The client program then directly interacts with the
servers, sending the Gurobi model, launching a solve on the model, requesting solution information,
etc. As with any Gurobi Compute Server, this process is entirely transparent to the client program.

Now that we’ve given a high-level description of the overall process, we need to cover a few
important details.

26.1 Client Setup
As noted previously, a client program that wishes to launch a Gurobi Instant Cloud machine must
pass credential information to the Instant Cloud Manager. Every Instant Cloud license has such
credentials associated with it. This information is captured in a pair strings, an access ID and a
secret key. These strings can be retrieved from your account on the Instant Cloud Manager. Note
that you shouldn’t share these credentials with others, since anyone who knows these two strings
can launch Instant Cloud machines in your account.

Once you have the credentials associated with your license, there are two ways to configure your
client program to use them. The simplest is to use a cloud license file. This is just like any other

715

https://cloud.gurobi.com
https://cloud.gurobi.com
https://cloud.gurobi.com

Gurobi license file, except that its fields are specific to the cloud. A cloud license file will contain
two lines with credential information:

CLOUDACCESSID=312e9gef-e0bc-4114-b6fb-26ed7klaeff9
CLOUDKEY=ae32L0H321dgaL

It may also contain an optional third line:

CLOUDPOOL=pool1

We’ll discuss cloud pools a bit later. You can download a gurobi.lic file containing this information
from the Instant Cloud website, or you can create one yourself in a text editor. If you follow the
standard process for setting up a Gurobi license file (refer to the Quick Start Guide for details),
then Gurobi will automatically use the Instant Cloud rather than running locally.

The other option for passing credential information to the Instant Cloud Manager is to call a
Gurobi API routine. The appropriate routine depends on your programming language. Our C and
Python APIs have calls devoted to launching cloud servers. Our C++, Java, and .NET APIs each
have a special GRBEnv constructor (look for the one that accepts an access ID and secret key in
its argument list). In all cases, you pass the access ID and secret key to the method or constructor,
and the method creates a Gurobi environment that you can use like any other Gurobi environment
(to build, solve, and modify optimization models, to retrieve solutions, etc.).

26.2 Instant Cloud Setup
As noted previously, cloud configuration is done via the Instant Cloud Manager. The client program
requests that a cloud machine be launched, but the Instant Cloud Manager determines exactly how
to respond to that request.

One essential concept when configuring your Instant Cloud license is the notion of a cloud pool.
Pools allow you to create multiple configurations within a single cloud license. For example, you
may set up one pool for jobs in the US and another for jobs in Europe, or one for short-running jobs
and another for long-running jobs, or one for single-machine jobs and another for distributed parallel
jobs. For each of the available cloud configuration options (which will be discussed below), you can
select different values for different pools. Every license always has a default pool, which comes pre-
configured with what we consider to be reasonable default values. Thus, you always have the option
of ignoring cloud pools and simply using the default pool if you don’t need multiple configurations.

The main things that a user may want to configure on the Instant Cloud website are the idle
shutdown time, the number of machines to launch, the number of distributed workers to launch,
the machine region, and the machine type. These can take different values in different pools.

The idle shutdown time is a vital concept in the Instant Cloud. When a client program requests
a cloud server, it takes some time (typically less than 2 minutes) to launch that server. Rather than
forcing client programs to incur this delay each time they run, the Gurobi Instant Cloud leaves a
server running until is has been idle for the specified idle shutdown time. In this way, later client
programs may find a cloud server already available. You can set this to a small value if you want
your server to shut down immediately after your job finishes, or to a very large value if you want
your server to always be available.

Another configuration option is the number of machines associated with the pool. Gurobi
Compute Server automatically handles queuing and load balancing between servers, so launching

716

https://cloud.gurobi.com

multiple machines allows you to distribute the work of many simultaneous client programs among
them. A pool can also be configured to launch any number of distributed workers, if you want to
use distributed computing.

Cloud machines can be launched in multiple geographic regions, including the US, Europe,
Asia, and South America. You should visit the website to see the full list. We offer several options
for machine type, although we’ve chosen what we believe is the best general-purpose machine for
running Gurobi as the default, so you are unlikely to want to change this setting.

26.3 Copyright Notice for 3rd Party Libraries
Gurobi Instant Cloud uses the libcurl library, which utilizes a number of other libraries. In
particular, this product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit. (http://www.openssl.org/).

Here is the copyright notice for libcurl:

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1996 - 2016, Daniel Stenberg, daniel@haxx.se, and many
contributors, see the THANKS file.

All rights reserved.

Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all
copies.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUD ING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Except as contained in this notice, the name of a copyright holder
shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Software without prior written
authorization of the copyright holder.

Here is the copyright notice for OpenSSL:

/* ==
* Copyright (c) 1998-2016 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without

717

* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young

718

* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

719

	Introduction
	C API Overview
	Environment Creation and Destruction
	GRBloadenv
	GRBloadclientenv
	GRBloadcloudenv
	GRBfreeenv
	GRBgetconcurrentenv
	GRBgetmultiobjenv
	GRBdiscardconcurrentenvs
	GRBdiscardmultiobjenvs

	Model Creation and Modification
	GRBloadmodel
	GRBnewmodel
	GRBcopymodel
	GRBaddconstr
	GRBaddconstrs
	GRBaddgenconstrXxx
	GRBaddgenconstrMax
	GRBaddgenconstrMin
	GRBaddgenconstrAbs
	GRBaddgenconstrAnd
	GRBaddgenconstrOr
	GRBaddgenconstrIndicator
	GRBaddqconstr
	GRBaddqpterms
	GRBaddrangeconstr
	GRBaddrangeconstrs
	GRBaddsos
	GRBaddvar
	GRBaddvars
	GRBchgcoeffs
	GRBdelconstrs
	GRBdelgenconstrs
	GRBdelq
	GRBdelqconstrs
	GRBdelsos
	GRBdelvars
	GRBsetobjectiven
	GRBsetpwlobj
	GRBupdatemodel
	GRBfreemodel
	GRBXaddconstrs
	GRBXaddrangeconstrs
	GRBXaddvars
	GRBXchgcoeffs
	GRBXloadmodel

	Model Solution
	GRBoptimize
	GRBoptimizeasync
	GRBcomputeIIS
	GRBfeasrelax
	GRBfixedmodel
	GRBresetmodel
	GRBsync

	Model Queries
	GRBgetcoeff
	GRBgetconstrbyname
	GRBgetconstrs
	GRBgetenv
	GRBgetgenconstrMax
	GRBgetgenconstrMin
	GRBgetgenconstrAbs
	GRBgetgenconstrAnd
	GRBgetgenconstrOr
	GRBgetgenconstrIndicator
	GRBgetpwlobj
	GRBgetq
	GRBgetqconstr
	GRBgetsos
	GRBgetvarbyname
	GRBgetvars
	GRBXgetconstrs
	GRBXgetvars

	Input/Output
	GRBreadmodel
	GRBread
	GRBwrite

	Attribute Management
	GRBgetattrinfo
	GRBgetintattr
	GRBsetintattr
	GRBgetintattrelement
	GRBsetintattrelement
	GRBgetintattrarray
	GRBsetintattrarray
	GRBgetintattrlist
	GRBsetintattrlist
	GRBgetdblattr
	GRBsetdblattr
	GRBgetdblattrelement
	GRBsetdblattrelement
	GRBgetdblattrarray
	GRBsetdblattrarray
	GRBgetdblattrlist
	GRBsetdblattrlist
	GRBgetcharattrelement
	GRBsetcharattrelement
	GRBgetcharattrarray
	GRBsetcharattrarray
	GRBgetcharattrlist
	GRBsetcharattrlist
	GRBgetstrattr
	GRBsetstrattr
	GRBgetstrattrelement
	GRBsetstrattrelement
	GRBgetstrattrarray
	GRBsetstrattrarray
	GRBgetstrattrlist
	GRBsetstrattrlist

	Parameter Management and Tuning
	GRBtunemodel
	GRBgettuneresult
	GRBgetdblparam
	GRBgetintparam
	GRBgetstrparam
	GRBsetdblparam
	GRBsetintparam
	GRBsetstrparam
	GRBgetdblparaminfo
	GRBgetintparaminfo
	GRBgetstrparaminfo
	GRBreadparams
	GRBwriteparams

	Monitoring Progress - Logging and Callbacks
	GRBmsg
	GRBsetcallbackfunc
	GRBgetcallbackfunc
	GRBcbget
	GRBversion

	Modifying Solver Behavior - Callbacks
	GRBcbcut
	GRBcblazy
	GRBcbsolution
	GRBterminate

	Error Handling
	GRBgeterrormsg

	Advanced simplex routines
	GRBFSolve
	GRBBSolve
	GRBBinvColj
	GRBBinvRowi
	GRBgetBasisHead

	C++ API Overview
	GRBEnv
	GRBEnv()
	GRBEnv::get()
	GRBEnv::getErrorMsg()
	GRBEnv::getParamInfo()
	GRBEnv::message()
	GRBEnv::readParams()
	GRBEnv::resetParams()
	GRBEnv::set()
	GRBEnv::writeParams()

	GRBModel
	GRBModel()
	GRBModel::addConstr()
	GRBModel::addConstrs()
	GRBModel::addGenConstrXxx()
	GRBModel::addQConstr()
	GRBModel::addRange()
	GRBModel::addRanges()
	GRBModel::addSOS()
	GRBModel::addVar()
	GRBModel::addVars()
	GRBModel::chgCoeff()
	GRBModel::chgCoeffs()
	GRBModel::computeIIS()
	GRBModel::discardConcurrentEnvs()
	GRBModel::discardMultiobjEnvs()
	GRBModel::feasRelax()
	GRBModel::fixedModel()
	GRBModel::get()
	GRBModel::getCoeff()
	GRBModel::getCol()
	GRBModel::getConcurrentEnv()
	GRBModel::getConstrByName()
	GRBModel::getConstrs()
	GRBModel::getEnv()
	GRBModel::getGenConstrMax()
	GRBModel::getGenConstrMin()
	GRBModel::getGenConstrAbs()
	GRBModel::getGenConstrAnd()
	GRBModel::getGenConstrOr()
	GRBModel::getGenConstrIndicator()
	GRBModel::getGenConstrs()
	GRBModel::getMultiobjEnv()
	GRBModel::getObjective()
	GRBModel::getPWLObj()
	GRBModel::getQCRow()
	GRBModel::getQConstrs()
	GRBModel::getRow()
	GRBModel::getSOS()
	GRBModel::getSOSs()
	GRBModel::getTuneResult()
	GRBModel::getVarByName()
	GRBModel::getVars()
	GRBModel::optimize()
	GRBModel::optimizeasync()
	GRBModel::presolve()
	GRBModel::read()
	GRBModel::remove()
	GRBModel::reset()
	GRBModel::setCallback()
	GRBModel::set()
	GRBModel::setObjective()
	GRBModel.setObjectiveN()
	GRBModel::setPWLObj()
	GRBModel::sync()
	GRBModel::terminate()
	GRBModel::tune()
	GRBModel::update()
	GRBModel::write()

	GRBVar
	GRBVar::get()
	GRBVar::sameAs()
	GRBVar::set()

	GRBConstr
	GRBConstr::get()
	GRBConstr::sameAs()
	GRBConstr::set()

	GRBQConstr
	GRBQConstr::get()
	GRBQConstr::set()

	GRBSOS
	GRBSOS::get()

	GRBGenConstr
	GRBGenConstr::get()
	GRBGenConstr::set()

	GRBExpr
	GRBExpr::getValue()

	GRBLinExpr
	GRBLinExpr()
	GRBLinExpr::addTerms()
	GRBLinExpr::clear()
	GRBLinExpr::getConstant()
	GRBLinExpr::getCoeff()
	GRBLinExpr::getValue()
	GRBLinExpr::getVar()
	GRBLinExpr::operator=
	GRBLinExpr::operator+
	GRBLinExpr::operator-
	GRBLinExpr::operator+=
	GRBLinExpr::operator-=
	GRBLinExpr::operator*=
	GRBLinExpr::remove()
	GRBLinExpr::size()

	GRBQuadExpr
	GRBQuadExpr()
	GRBQuadExpr::addTerm()
	GRBQuadExpr::addTerms()
	GRBQuadExpr::clear()
	GRBQuadExpr::getCoeff()
	GRBQuadExpr::getLinExpr()
	GRBQuadExpr::getValue()
	GRBQuadExpr::getVar1()
	GRBQuadExpr::getVar2()
	GRBQuadExpr::operator=
	GRBQuadExpr::operator+
	GRBQuadExpr::operator-
	GRBQuadExpr::operator+=
	GRBQuadExpr::operator-=
	GRBQuadExpr::operator*=
	GRBQuadExpr::remove()
	GRBQuadExpr::size()

	GRBTempConstr
	GRBColumn
	GRBColumn()
	GRBColumn::addTerm()
	GRBColumn::addTerms()
	GRBColumn::clear()
	GRBColumn::getCoeff()
	GRBColumn::getConstr()
	GRBColumn::remove()
	GRBColumn::size()

	GRBCallback
	GRBCallback()
	GRBCallback::abort()
	GRBCallback::addCut()
	GRBCallback::addLazy()
	GRBCallback::getDoubleInfo()
	GRBCallback::getIntInfo()
	GRBCallback::getNodeRel()
	GRBCallback::getSolution()
	GRBCallback::getStringInfo()
	GRBCallback::setSolution()
	GRBCallback::useSolution()

	GRBException
	GRBException()
	GRBException::getErrorCode()
	GRBException::getMessage()

	Non-Member Functions
	operator==
	operator<=
	operator>=
	operator+
	operator-
	operator*
	operator/

	Attribute Enums
	GRB_CharAttr
	GRB_DoubleAttr
	GRB_IntAttr
	GRB_StringAttr

	Parameter Enums
	GRB_DoubleParam
	GRB_IntParam
	GRB_StringParam

	Java API Overview
	GRBEnv
	GRBEnv()
	GRBEnv.dispose()
	GRBEnv.get()
	GRBEnv.getErrorMsg()
	GRBEnv.getParamInfo()
	GRBEnv.message()
	GRBEnv.readParams()
	GRBEnv.release()
	GRBEnv.resetParams()
	GRBEnv.set()
	GRBEnv.writeParams()

	GRBModel
	GRBModel()
	GRBModel.addConstr()
	GRBModel.addConstrs()
	GRBModel.addGenConstrXxx()
	GRBModel.addQConstr()
	GRBModel.addRange()
	GRBModel.addRanges()
	GRBModel.addSOS()
	GRBModel.addVar()
	GRBModel.addVars()
	GRBModel.chgCoeff()
	GRBModel.chgCoeffs()
	GRBModel.computeIIS()
	GRBModel.discardConcurrentEnvs()
	GRBModel.discardMultiobjEnvs()
	GRBModel.dispose()
	GRBModel.feasRelax()
	GRBModel.fixedModel()
	GRBModel.get()
	GRBModel.getCoeff()
	GRBModel.getCol()
	GRBModel.getConcurrentEnv()
	GRBModel.getConstrByName()
	GRBModel.getConstrs()
	GRBModel.getEnv()
	GRBModel.getGenConstrMax()
	GRBModel.getGenConstrMin()
	GRBModel.getGenConstrAbs()
	GRBModel.getGenConstrAnd()
	GRBModel.getGenConstrOr()
	GRBModel.getGenConstrIndicator()
	GRBModel.getGenConstrs()
	GRBModel.getMultiobjEnv()
	GRBModel.getObjective()
	GRBModel.getPWLObj()
	GRBModel.getQCRow()
	GRBModel.getQConstrs()
	GRBModel.getRow()
	GRBModel.getSOS()
	GRBModel.getSOSs()
	GRBModel.getTuneResult()
	GRBModel.getVarByName()
	GRBModel.getVars()
	GRBModel.optimize()
	GRBModel.optimizeasync()
	GRBModel.presolve()
	GRBModel.read()
	GRBModel.remove()
	GRBModel.reset()
	GRBModel.setCallback()
	GRBModel.set()
	GRBModel.setObjective()
	GRBModel.setObjectiveN()
	GRBModel.setPWLObj()
	GRBModel.sync()
	GRBModel.terminate()
	GRBModel.tune()
	GRBModel.update()
	GRBModel.write()

	GRBVar
	GRBVar.get()
	GRBVar.sameAs()
	GRBVar.set()

	GRBConstr
	GRBConstr.get()
	GRBConstr.sameAs()
	GRBConstr.set()

	GRBQConstr
	GRBQConstr.get()
	GRBQConstr.set()

	GRBSOS
	GRBSOS.get()

	GRBGenConstr
	GRBGenConstr.get()
	GRBGenConstr.set()

	GRBExpr
	GRBExpr.getValue()

	GRBLinExpr
	GRBLinExpr()
	GRBLinExpr.add()
	GRBLinExpr.addConstant()
	GRBLinExpr.addTerm()
	GRBLinExpr.addTerms()
	GRBLinExpr.clear()
	GRBLinExpr.getConstant()
	GRBLinExpr.getCoeff()
	GRBLinExpr.getValue()
	GRBLinExpr.getVar()
	GRBLinExpr.multAdd()
	GRBLinExpr.remove()
	GRBLinExpr.size()

	GRBQuadExpr
	GRBQuadExpr()
	GRBQuadExpr.add()
	GRBQuadExpr.addConstant()
	GRBQuadExpr.addTerm()
	GRBQuadExpr.addTerms()
	GRBQuadExpr.clear()
	GRBQuadExpr.getCoeff()
	GRBQuadExpr.getLinExpr()
	GRBQuadExpr.getValue()
	GRBQuadExpr.getVar1()
	GRBQuadExpr.getVar2()
	GRBQuadExpr.multAdd()
	GRBQuadExpr.remove()
	GRBQuadExpr.size()

	GRBColumn
	GRBColumn()
	GRBColumn.addTerm()
	GRBColumn.addTerms()
	GRBColumn.clear()
	GRBColumn.getCoeff()
	GRBColumn.getConstr()
	GRBColumn.remove()
	GRBColumn.size()

	GRBCallback
	GRBCallback()
	GRBCallback.abort()
	GRBCallback.addCut()
	GRBCallback.addLazy()
	GRBCallback.getDoubleInfo()
	GRBCallback.getIntInfo()
	GRBCallback.getNodeRel()
	GRBCallback.getSolution()
	GRBCallback.getStringInfo()
	GRBCallback.setSolution()
	GRBCallback.useSolution()

	GRBException
	GRBException()
	GRBException.getErrorCode()

	GRB
	Constants
	GRB.CharAttr
	GRB.DoubleAttr
	GRB.DoubleParam
	GRB.IntAttr
	GRB.IntParam
	GRB.StringAttr
	GRB.StringParam

	.NET API Overview
	GRBEnv
	GRBEnv()
	GRBEnv.Dispose()
	GRBEnv.ErrorMsg
	GRBEnv.Get()
	GRBEnv.GetParamInfo()
	GRBEnv.Message()
	GRBEnv.ReadParams()
	GRBEnv.Release()
	GRBEnv.ResetParams()
	GRBEnv.Set()
	GRBEnv.WriteParams()

	GRBModel
	GRBModel()
	GRBModel.AddConstr()
	GRBModel.AddConstrs()
	GRBModel.AddGenConstrXxx()
	GRBModel.AddQConstr()
	GRBModel.AddRange()
	GRBModel.AddRanges()
	GRBModel.AddSOS()
	GRBModel.AddVar()
	GRBModel.AddVars()
	GRBModel.ChgCoeff()
	GRBModel.ChgCoeffs()
	GRBModel.ComputeIIS()
	GRBModel.DiscardConcurrentEnvs()
	GRBModel.DiscardMultiobjEnvs()
	GRBModel.Dispose()
	GRBModel.FeasRelax()
	GRBModel.FixedModel()
	GRBModel.Get()
	GRBModel.GetCoeff()
	GRBModel.GetCol()
	GRBModel.GetConcurrentEnv()
	GRBModel.GetConstrByName()
	GRBModel.GetConstrs()
	GRBModel.GetEnv()
	GRBModel.GetGenConstrMax()
	GRBModel.GetGenConstrMin()
	GRBModel.GetGenConstrAbs()
	GRBModel.GetGenConstrAnd()
	GRBModel.GetGenConstrOr()
	GRBModel.GetGenConstrIndicator()
	GRBModel.GetGenConstrs()
	GRBModel.GetMultiobjEnv()
	GRBModel.GetObjective()
	GRBModel.GetPWLObj()
	GRBModel.GetQConstr()
	GRBModel.GetQConstrs()
	GRBModel.GetQCRow()
	GRBModel.GetRow()
	GRBModel.GetSOS()
	GRBModel.GetSOSs()
	GRBModel.GetTuneResult()
	GRBModel.GetVarByName()
	GRBModel.GetVars()
	GRBModel.Optimize()
	GRBModel::OptimizeAsync()
	GRBModel.Presolve()
	GRBModel.Read()
	GRBModel.Remove()
	GRBModel.Reset()
	GRBModel.SetCallback()
	GRBModel.Set()
	GRBModel.SetObjective()
	GRBModel.SetObjectiveN()
	GRBModel.SetPWLObj()
	GRBModel.Terminate()
	GRBModel.Tune()
	GRBModel.Update()
	GRBModel.Write()

	GRBVar
	GRBVar.Get()
	GRBVar.SameAs()
	GRBVar.Set()

	GRBConstr
	GRBConstr.Get()
	GRBConstr.SameAs()
	GRBConstr.Set()

	GRBQConstr
	GRBQConstr.Get()
	GRBQConstr.Set()

	GRBSOS
	GRBSOS.Get()

	GRBGenConstr
	GRBGenConstr.Get()
	GRBGenConstr.Set()

	GRBExpr
	GRBExpr.Value

	GRBLinExpr
	GRBLinExpr()
	GRBLinExpr.Add()
	GRBLinExpr.AddConstant()
	GRBLinExpr.AddTerm()
	GRBLinExpr.AddTerms()
	GRBLinExpr.Clear()
	GRBLinExpr.Constant
	GRBLinExpr.GetCoeff()
	GRBLinExpr.GetVar()
	GRBLinExpr.MultAdd()
	GRBLinExpr.Remove()
	GRBLinExpr.Size
	GRBLinExpr.Value

	GRBQuadExpr
	GRBQuadExpr()
	GRBQuadExpr.Add()
	GRBQuadExpr.AddConstant()
	GRBQuadExpr.AddTerm()
	GRBQuadExpr.AddTerms()
	GRBQuadExpr.Clear()
	GRBQuadExpr.GetCoeff()
	GRBQuadExpr.GetVar1()
	GRBQuadExpr.GetVar2()
	GRBQuadExpr.LinExpr()
	GRBQuadExpr.MultAdd()
	GRBQuadExpr.Remove()
	GRBQuadExpr.Size
	GRBQuadExpr.Value

	GRBTempConstr
	GRBColumn
	GRBColumn()
	GRBColumn.AddTerm()
	GRBColumn.AddTerms()
	GRBColumn.Clear()
	GRBColumn.GetCoeff()
	GRBColumn.GetConstr()
	GRBColumn.Remove()
	GRBColumn.Size

	Overloaded Operators
	operator <=
	operator >=
	operator ==
	operator +
	operator -
	operator *
	operator /
	implicit cast

	GRBCallback
	GRBCallback()
	GRBCallback.Abort()
	GRBCallback.AddCut()
	GRBCallback.AddLazy()
	GRBCallback.GetDoubleInfo()
	GRBCallback.GetIntInfo()
	GRBCallback.GetNodeRel()
	GRBCallback.GetSolution()
	GRBCallback.GetStringInfo()
	GRBCallback.SetSolution()
	GRBCallback.UseSolution()

	GRBException
	GRBException()
	GRBException.ErrorCode

	GRB
	Constants
	GRB.CharAttr
	GRB.DoubleAttr
	GRB.DoubleParam
	GRB.IntAttr
	GRB.IntParam
	GRB.StringAttr
	GRB.StringParam

	Python API Overview
	Global Functions
	models()
	disposeDefaultEnv()
	multidict()
	paramHelp()
	quicksum()
	read()
	readParams()
	resetParams()
	setParam()
	system()
	writeParams()

	Model
	Model()
	Model.addConstr()
	Model.addConstrs()
	Model.addGenConstrXxx()
	Model.addGenConstrMax()
	Model.addGenConstrMin()
	Model.addGenConstrAbs()
	Model.addGenConstrAnd()
	Model.addGenConstrOr()
	Model.addGenConstrIndicator()
	Model.addQConstr()
	Model.addRange()
	Model.addSOS()
	Model.addVar()
	Model.addVars()
	Model.cbCut()
	Model.cbGet()
	Model.cbGetNodeRel()
	Model.cbGetSolution()
	Model.cbLazy()
	Model.cbSetSolution()
	Model.cbUseSolution()
	Model.chgCoeff()
	Model.computeIIS()
	Model.copy()
	Model.discardConcurrentEnvs()
	Model.discardMultiobjEnvs()
	Model.feasRelaxS()
	Model.feasRelax()
	Model.fixed()
	Model.getAttr()
	Model.getCoeff()
	Model.getCol()
	Model.getConcurrentEnv()
	Model.getConstrByName()
	Model.getConstrs()
	Model.getGenConstrMax()
	Model.getGenConstrMin()
	Model.getGenConstrAbs()
	Model.getGenConstrAnd()
	Model.getGenConstrOr()
	Model.getGenConstrIndicator()
	Model.getGenConstrs()
	Model.getMultiobjEnv()
	Model.getObjective()
	Model.getParamInfo()
	Model.getPWLObj()
	Model.getQConstrs()
	Model.getQCRow()
	Model.getRow()
	Model.getSOS()
	Model.getSOSs()
	Model.getTuneResult()
	Model.getVarByName()
	Model.getVars()
	Model.message()
	Model.optimize()
	Model.presolve()
	Model.printAttr()
	Model.printQuality()
	Model.printStats()
	Model.read()
	Model.relax()
	Model.remove()
	Model.reset()
	Model.resetParams()
	Model.setAttr()
	Model.setObjective()
	Model.setObjectiveN()
	Model.setPWLObj()
	Model.setParam()
	Model.terminate()
	Model.tune()
	Model.update()
	Model.write()

	Var
	Var.getAttr()
	Var.sameAs()
	Var.setAttr()

	Constr
	Constr.getAttr()
	Constr.sameAs()
	Constr.setAttr()

	QConstr
	QConstr.getAttr()
	QConstr.setAttr()

	SOS
	SOS.getAttr()

	GenConstr
	GenConstr.getAttr()
	GenConstr.setAttr()

	LinExpr
	LinExpr()
	LinExpr.add()
	LinExpr.addConstant()
	LinExpr.addTerms()
	LinExpr.clear()
	LinExpr.copy()
	LinExpr.getConstant()
	LinExpr.getCoeff()
	LinExpr.getValue()
	LinExpr.getVar()
	LinExpr.remove()
	LinExpr.size()
	LinExpr.__eq__()
	LinExpr.__le__()
	LinExpr.__ge__()

	QuadExpr
	QuadExpr()
	QuadExpr.add()
	QuadExpr.addConstant()
	QuadExpr.addTerms()
	QuadExpr.clear()
	QuadExpr.copy()
	QuadExpr.getCoeff()
	QuadExpr.getLinExpr()
	QuadExpr.getValue()
	QuadExpr.getVar1()
	QuadExpr.getVar2()
	QuadExpr.remove()
	QuadExpr.size()
	QuadExpr.__eq__()
	QuadExpr.__le__()
	QuadExpr.__ge__()

	GenExpr
	TempConstr
	Column
	Column()
	Column.addTerms()
	Column.clear()
	Column.copy()
	Column.getCoeff()
	Column.getConstr()
	Column.remove()
	Column.size()

	Callbacks
	GurobiError
	Env
	Env()
	Env.ClientEnv()
	Env.CloudEnv()
	Env.resetParams()
	Env.setParam()
	Env.writeParams()

	GRB
	Constants
	GRB.Attr
	GRB.Param

	tuplelist
	tuplelist()
	tuplelist.select()
	tuplelist.clean()
	tuplelist.__contains__()

	tupledict
	tupledict()
	tupledict.select()
	tupledict.sum()
	tupledict.prod()
	tupledict.clean()

	General Constraint Helper Functions
	abs_()
	and_()
	max_()
	min_()
	or_()

	MATLAB API Overview
	Solving models with the Gurobi MATLAB interface
	gurobi()

	Reading and writing models with the Gurobi MATLAB interface
	gurobi_read()
	gurobi_write()

	Computing an IIS with the Gurobi MATLAB interface
	gurobi_iis()

	Setting up the Gurobi MATLAB interface

	R API Overview
	Solving models with the Gurobi R interface
	Writing models with the Gurobi R interface
	Installing the R package

	Variables and Constraints
	Variables
	Constraints
	Tolerances and Ill Conditioning - A Caveat

	Attributes
	Model Attributes
	NumConstrs
	NumVars
	NumSOS
	NumQConstrs
	NumGenConstrs
	NumNZs
	DNumNZs
	NumQNZs
	NumQCNZs
	NumIntVars
	NumBinVars
	NumPWLObjVars
	ModelName
	ModelSense
	ObjCon
	ObjVal
	ObjBound
	ObjBoundC
	PoolObjBound
	PoolObjVal
	MIPGap
	Runtime
	Status
	SolCount
	IterCount
	BarIterCount
	NodeCount
	IsMIP
	IsQP
	IsQCP
	IsMultiObj
	IISMinimal
	MaxCoeff
	MinCoeff
	MaxBound
	MinBound
	MaxObjCoeff
	MinObjCoeff
	MaxRHS
	MinRHS
	MaxQCCoeff
	MinQCCoeff
	MaxQCLCoeff
	MinQCLCoeff
	MaxQCRHS
	MinQCRHS
	MaxQObjCoeff
	MinQObjCoeff
	Kappa
	KappaExact
	FarkasProof
	TuneResultCount
	LicenseExpiration

	Variable Attributes
	LB
	UB
	Obj
	VType
	VarName
	X
	Xn
	RC
	BarX
	Start
	VarHintVal
	VarHintPri
	BranchPriority
	VBasis
	PStart
	IISLB
	IISUB
	PWLObjCvx
	SAObjLow
	SAObjUp
	SALBLow
	SALBUp
	SAUBLow
	SAUBUp
	UnbdRay

	Linear Constraint Attributes
	Sense
	RHS
	ConstrName
	Pi
	Slack
	CBasis
	DStart
	Lazy
	IISConstr
	SARHSLow
	SARHSUp
	FarkasDual

	SOS Attributes
	IISSOS

	Quadratic Constraint Attributes
	QCSense
	QCRHS
	QCName
	QCPi
	QCSlack
	IISQConstr

	General Constraint Attributes
	GenConstrType
	GenConstrName
	IISGenConstr

	Quality Attributes
	BoundVio
	BoundSVio
	BoundVioIndex
	BoundSVioIndex
	BoundVioSum
	BoundSVioSum
	ConstrVio
	ConstrSVio
	ConstrVioIndex
	ConstrSVioIndex
	ConstrVioSum
	ConstrSVioSum
	ConstrResidual
	ConstrSResidual
	ConstrResidualIndex
	ConstrSResidualIndex
	ConstrResidualSum
	ConstrSResidualSum
	DualVio
	DualSVio
	DualVioIndex
	DualSVioIndex
	DualVioSum
	DualSVioSum
	DualResidual
	DualSResidual
	DualResidualIndex
	DualSResidualIndex
	DualResidualSum
	DualSResidualSum
	ComplVio
	ComplVioIndex
	ComplVioSum
	IntVio
	IntVioIndex
	IntVioSum

	Multi-objective Attributes
	ObjN
	ObjNCon
	ObjNPriority
	ObjNWeight
	ObjNRelTol
	ObjNAbsTol
	ObjNVal
	ObjNName
	NumObj

	Attribute Examples
	C Attribute Examples
	C++ Attribute Examples
	C# Attribute Examples
	Java Attribute Examples
	Python Attribute Examples
	Visual Basic Attribute Examples

	Parameters
	Parameter Guidelines
	Continuous Models
	MIP Models

	Parameter Descriptions
	AggFill
	Aggregate
	BarConvTol
	BarCorrectors
	BarHomogeneous
	BarOrder
	BarQCPConvTol
	BarIterLimit
	BestBdStop
	BestObjStop
	BranchDir
	DegenMoves
	CliqueCuts
	ConcurrentJobs
	ConcurrentMIP
	ConcurrentSettings
	CoverCuts
	Crossover
	CrossoverBasis
	Cutoff
	CutAggPasses
	CutPasses
	Cuts
	Disconnected
	DisplayInterval
	DistributedMIPJobs
	DualReductions
	FeasibilityTol
	FeasRelaxBigM
	FlowCoverCuts
	FlowPathCuts
	GomoryPasses
	GUBCoverCuts
	Heuristics
	IISMethod
	ImpliedCuts
	ImproveStartGap
	ImproveStartNodes
	ImproveStartTime
	InfProofCuts
	InfUnbdInfo
	InputFile
	IntFeasTol
	IterationLimit
	LazyConstraints
	LogFile
	LogToConsole
	MarkowitzTol
	Method
	MinRelNodes
	MIPFocus
	MIPGap
	MIPGapAbs
	MIPSepCuts
	MIQCPMethod
	MIRCuts
	ModKCuts
	MultiObjMethod
	MultiObjPre
	NetworkCuts
	NodefileDir
	NodefileStart
	NodeLimit
	NodeMethod
	IgnoreNames
	NormAdjust
	NumericFocus
	ObjScale
	OptimalityTol
	ObjNumber
	OutputFlag
	PerturbValue
	PoolGap
	PoolSearchMode
	PoolSolutions
	PreCrush
	PreDepRow
	PreDual
	PreMIQCPForm
	PrePasses
	PreQLinearize
	Presolve
	PreSOS1BigM
	PreSOS2BigM
	PreSparsify
	ProjImpliedCuts
	PSDTol
	PumpPasses
	QCPDual
	Quad
	Record
	ResultFile
	RINS
	ScaleFlag
	Seed
	Sifting
	SiftMethod
	SimplexPricing
	SolutionLimit
	SolutionNumber
	StartNodeLimit
	StrongCGCuts
	SubMIPCuts
	SubMIPNodes
	Symmetry
	Threads
	TimeLimit
	TuneCriterion
	TuneJobs
	TuneOutput
	TuneResults
	TuneTimeLimit
	TuneTrials
	UpdateMode
	VarBranch
	WorkerPassword
	WorkerPool
	WorkerPort
	ZeroHalfCuts
	ZeroObjNodes

	Parameter Examples
	C Parameter Examples
	C++ Parameter Examples
	C# Parameter Examples
	Java Parameter Examples
	MATLAB Parameter Examples
	Python Parameter Examples
	R Parameter Examples
	Visual Basic Parameter Examples

	Optimization Status Codes
	Callback Codes
	Error Codes
	Model File Formats
	MPS format
	REW format
	LP format
	RLP format
	ILP format
	OPB format
	MST format
	HNT format
	ORD format
	BAS format
	SOL format
	PRM format

	Logging
	Simplex Logging
	Barrier Logging
	Sifting Logging
	MIP Logging
	Multi-Objective Logging
	Distributed MIP Logging

	Gurobi Command-Line Tool
	Solving a Model
	Replaying Recording Files
	Gurobi Remote Services and Compute Server Administration

	Solution Pool
	Finding Multiple Solutions
	Examples
	Retrieving Solutions
	Subtleties and Limitations

	Multiple Objectives
	Specifying Multiple Objectives
	Working With Multiple Objective
	Additional Details

	Recording API Calls
	Recording
	Replay
	Limitations

	Concurrent Optimizer
	Parameter Tuning Tool
	Command-Line Tuning
	Tuning API

	Gurobi Remote Services
	Setting Up and Administering Gurobi Remote Services
	Gurobi Remote Services Parameters
	Firewalls
	Administrative Commands
	Copyright Notice for 3rd Party Library

	Distributed Parallel Algorithms
	Configuring a Distributed Worker Pool
	Writing Your Own Distributed Algorithms
	Distributed Algorithm Considerations

	Gurobi Compute Server
	Setting Up and Administering a Gurobi Compute Server
	Compute Server Usage
	Client Configuration
	Job Priorities
	Performance Considerations on a Wide-Area Network (WAN)
	Callbacks
	Developing for Compute Server
	Acknowledgement of 3rd Party Icons

	Gurobi Instant Cloud
	Client Setup
	Instant Cloud Setup
	Copyright Notice for 3rd Party Libraries

