GUROBI OPTIMIZER
QUICK START GUIDE

GUROBI

OPTIMIZATION

Version 6.5, Copyr ight © 2016, Gurob i Optimization, Inc.

Introduction 4
Obtaining a Gurobi License 6
2.1 Creating a new academic license o Lo Lo 6
Software Installation Guide 7
Retrieving and Setting Up a Gurobi License 8
4.1 Retrieving a Free Academic license o L. 9
4.1.1 Academic validation oL 10
4.2 Retrieving a Named-User, Single-Machine, or Single-Use license 11
4.3 Setting up and using a Floating license L oo 12
4.3.1 Retrieving a Floating license oL 12
4.3.2 Starting a token server 13
4.3.3 Upgrading a token server 15
4.3.4 Creating a token server client license 15
4.4 Setting up and using a Compute Server license 16
4.4.1 Retrieving a Compute Server license 16
4.4.2 Creating a Compute Server client license 17
4.5 Starting Gurobi Remote Services 18
4.5.1 Upgrading Gurobi Remote Services 20
4.6 Testing your license 20
Solving a Simple Model - The Gurobi Command Line 22
Interactive Shell 28
Attributes 40

C Interface 41

Contents

9 C-++ Interface
10 Java Interface
11 .NET Interface (C#)

12 Python Interface

12.1 Simple Python Example oL
12.2 Python Dictionary Example
12.3 Building and running the examples

13 MATLARB Interface
14 R Interface
15 Recommended Reading

16 Installing the Anaconda Python distribution

16.1 Using the Spyder IDEo oL
16.2 Using the iPython Notebook

17 File Overview

50

56

62

68
69
73
83

84

88

92

93
94
97

98

Introduction

Welcome to the Gurobi™ Optimizer Quick Start Guide for Mac OS users! This document provides
a bagic introduction to the Gurobi Optimizer, including:

e Information on Obtaining a Gurobi License.

o A Software Installation Guide, which includes information on Retrieving and Setting Up your
License.

e An example of how to create a simple optimization model and solve it with the Gurobi
Command Line, and

e A discussion of the Gurobi Interactive Shell.

We suggest that all users read these first five sections.

Once you have done this, you will probably want to choose a programming environment from which
to use Gurobi. If you don’t have a strong preference, we recommend that you use our Python®
interface, which provides a number of benefits. First, Python is a very nice programming language
that can be used for anything from experimentation to prototyping to deployment. Beyond this,
though, our Python interface includes a set of higher-level modeling constructs that make it much
easier to build optimization models. We also include instructions for installing the Anaconda Python
distribution, which includes both a graphical development environment (Spyder) and a notebook-
style interface (iPython Notebook).

If you already have a preferred programming language, you can select from among our available
interfaces:

e (C interface,

o C+-+ interface,

Java®) interface,

Microsoft® .NET interface,

Python interface,

MATLAB®) interface, or

R interface.

At the end of the Quick Start Guide, you’ll find a File Overview that lists the files included in the
Gurobi distribution.

Additional resources

Once you are done with the Quick Start Guide, the next step is to explore these additional resources:

e If you are familiar with mathematical modeling and are ready to use Gurobi from one of our
programming language APIs; consult the Gurobi Reference Manual.

o If you would like to see examples of ways to use Gurobi, consult the Gurobi Example Tour.

e If you would like to learn more about mathematical programming or modeling, we’ve collected
a set of references in our recommended reading section.

Getting help

Have a question that isn’t answered in this guide? Post it to the Gurobi Google Group. Clients
with current maintenance contracts can send questions to support@gurobi.com.

Ready to get started? Your first step is to Obtain a License.

http://www.gurobi.com/documentation/6.5/refman/index.html
http://www.gurobi.com/documentation/6.5/examples/index.html
http://groups.google.com/group/gurobi

Obtaining a Gurobi License

You will need a license in order to install and use the Gurobi Optimizer. There are several ways to
obtain one, depending on your situation:

e If you would like a free evaluation license, please email us at sales@gurobi.com to request
one.

e If you are an academic user, you can obtain a free academic license on our website.

e If you have purchased a license from us, that license should be visible through the Current
tab of your Licenses page on our website (you will need to login to your account to see this

page).
e If you are planning to use Gurobi as a client of a machine that is already set up as a Gurobi

token server or compute server, you will need to create a token server client license or create
a compute server client license.

Once you have a license, your next step is to install the software.

2.1 Creating a new academic license

If you are an academic user at a degree-granting institution and wish to use an academic Gurobi
license, you can create one yourself. To do so, visit the Free Academic License page on our website.
You will need to read and agree to the End User License Agreement and the Conditions for academic
use. Once you have done so, click on Request License. Your new license will be visible immediately
on the Current page. You can create as many academic licenses as you like.

Your next step is to install the software.

http://www.gurobi.com/download/licenses/current
http://www.gurobi.com/download/licenses/free-academic
http://www.gurobi.com/download/licenses/current

Software Installation Guide

Before using the Gurobi Optimizer, you'll need to install the software on your computer. If you
haven’t already done so, please go to our download page. Select your platform (we’ll assume Mac
OS in this document) and click on the Download button.

GUROBI

OPTIMIZATION PRODUCTS DOWNLOADS RESOURCES ACADEMIA SUPPORT ABOUT

Home Downloads

Gurobi Optimizer

Get the software

Gurobi Optimizer is the Gurobi optimization libraries. In addition to the software, also download the README file, which contains installation
instructions.

Current version: 6.5.0

Mac QS v Download

Make a note of the name and location of the downloaded file.

Your next step is to double-click on the appropriate Gurobi installer (e.g., gurobi6.5.0_mac64.pkg
for Gurobi 6.5.0) and follow the prompts. By default, the installer will place the Gurobi 6.5.0 files
in /Library/gurobi650/mac64 (note that this is the system /Library directory, not your personal
~/Library directory). Your <installdir> (which we’ll refer to throughout this document) will be
/Library/gurobi6é50/mac64.

You are now ready to proceed to the section on Retrieving Your Gurobi License.

If you would like an overview of the files included in the Gurobi distribution, you can also view the
File Overview section.

http://www.gurobi.com/download/gurobi-optimizer

Once your license is visible on the Current Page of the website, click on the License ID to view the

License Detail page:

GUROBI

OPTIMIZATION PRODUCTS DOWNLOADS RESOURCES ACADEMIA SUPPORT ABOUT

Your

type,

License Detall

License ID 106290

Information and installation instructions

License ID 106290

Date Issued 2015-10-28
Purpose Trial
License Type Free Trial
Key Type TRIAL
Wersion 6
Distributed Limit o]
Expiration Date 2016-04-25
Host Name

Host D

To install this license on a computer where Gurobi Optimizer is installed, copy and paste the following command to the Start/Run menu (Windows
only) or a command/terminal prompt (any system):

3f712a83-32db-0el@-8285-5630dTa56756

grbgetke)

The |grbgetkey command requires an active internet connection. If you get no response or an error message such as "Unable to contact key
server”, please click here for additional instructions.

next step is to install this Gurobi license on your machine. You do this by obtaining a license
key file. Please consult the License Type field on the License Detail page to identify your license

and click on the appropriate link below to proceed:

Free Academic
Named User
Single-Machine
Single-Use
Floating

Compute Server

Retrieving and Setting Up a Gurobi License

http://www.gurobi.com/download/licenses/current

If your license includes the Distributed Add-On and you plan to use any of the Gurobi distributed
algorithms, you’ll also need to set up Gurobi Remote Services on your distributed worker machines.

4.1 Retrieving a Free Academic license

To obtain a Gurobi license key you’ll need to run the grbgetkey command on your machine. Note
that the machine must be connected to the Internet from a recognized academic domain in order
to retrieve a free academic license. An Internet connection is not required after you have obtained
your license key.

The exact command to run for a specific license is indicated at the bottom of the License Detail
page (e.g., grbgetkey 253e22f3-...). We recommend that you use copy-paste to copy the entire
grbgetkey command from our website and paste it into a Terminal window.

The grbgetkey program passes identifying information about your machine back to our website,
and the website responds with your license key. Once this exchange has occurred, grbgetkey will
ask for the name of the directory in which to store your license key file (gurobi.lic). You should
see a prompt that looks like this:

In which directory would you like to store the Gurobi license key file?
[hit Enter to store it in /home/jones]:

You can store the license key file anywhere, but we strongly recommend that you accept the default
location by hitting Enter. Setting up a non-default location is error-prone and a frequent source of
trouble.

If you receive an error message at this stage, it typically means that we were unable to validate
your academic domain. Please consult the Academic Validation section for more information.

Using a non-default license file location

When you run the Mac version of the Gurobi Optimizer, it will look for the gurobi.lic key file
in three different default locations. It will always look in your home directory. In addition, Gurobi
Optimizer 6.5.0 will also look in /Library/gurobi and /Library/gurobi650.

If you would still like to use a non-default license key file location, you can do so by setting environ-
ment variable GRB_LICENSE_FILE to point to the license key file. Important note: the environment
variable should point to the license key file itself, not to the directory that contains the file.

On Mac systems, you can set the optional GRB_LICENSE_FILE environment variable through environment.plist,
as explained in Apple’s Runtime configuration Guidelines.

https://developer.apple.com/mac/library/documentation/MacOSX/Conceptual/BPRuntimeConfig/Articles/EnvironmentVars.html

Next steps

If your license includes the Distributed Add-On and you plan to use any of the Gurobi distributed
algorithms, you’ll also need to set up Gurobi Remote Services on your distributed worker machines.

Once you have followed the steps above and have obtained a license key file, your next step is to
test your license.

4.1.1 Academic validation

If you are using a free academic license, grbgetkey will perform an academic validation step before
retrieving your license key. This step checks your domain name against our list of known academic
domains. This section will help you resolve validation errors.

Not a recognized academic domain

If grbgetkey produces a message that looks like this:

ERROR 303: hostname mymachine.mydomain (234.28.234.144) not recognized as
belonging to an academic domain

it means your domain isn’t on our academic domain list. Please make sure you are connected to
your university network. If you are validating a home machine and the university provides a VPN,
please connect to it before retrieving your license. If the reported host name is a valid university
address, please send the specific error message you received to support@gurobi.com and we’ll add
your domain.

If you are having trouble validating your license through a VPN, note that some VPNs are configured
to use split tunneling, where traffic to public internet sites is routed through your ISP. You should
ask your network administrator whether the VPN can be configured to route traffic to gurobi.com
through the private network.

Some machines connect to the internet through a proxy server. Unfortunately, such configurations
are incompatible with our academic validation process.

No reverse DNS information

If grbgetkey produces a message that only references a numerical [P address, like this:

ERROR 303: hostname 234.28.234.12 (234.28.234.100) not recognized as
belonging to an academic domain

it means your machine has no reverse DNS information. This usually happens when you are con-
necting to the Internet through a DHCP server that does NAT (network address translation) or
PAT (port address translation), but does not provide DNS information for its clients. The simplest
way to resolve this issue is to ask your network administrator to add a DNS entry (a PTR record)
for the DHCP device itself.

10

There is unfortunately no way for us to validate your academic license without reverse DNS infor-
mation. You can visit this site to check DNS information for your IP address and to obtain more
information about reverse DNS.

4.2 Retrieving a Named-User, Single-Machine, or Single-Use license

To obtain a Gurobi license key you’ll need to run the grbgetkey command on your machine. Note
that the machine must be connected to the Internet in order to run this command. An Internet
connection is not required after you have obtained your license key.

If your computer isn’t connected to the Internet or if your network security system does not allow
the command below to function, we also offer a manual license key process. You’ll find manual
instructions at the bottom of the License Detail page (by following the link labeled click here for
additional instructions).

The exact grbgetkey command to run for a specific license is indicated at the bottom of the License
Detail page (e.g., grbgetkey 253e22£3-...). We recommend that you use copy-paste to copy the
entire grbgetkey command from our website and paste it into a Terminal window.

The grbgetkey program passes identifying information about your machine back to our website,
and the website responds with your license key. Once this exchange has occurred, grbgetkey will
ask for the name of the directory in which to store your license key file (gurobi.lic). You should
see a prompt that looks like this:

In which directory would you like to store the Gurobi license key file?
[hit Enter to store it in /home/jones]:

You can store the license key file anywhere, but we strongly recommend that you accept the default
location by hitting Enter. Setting up a non-default location is error-prone and a frequent source of
trouble.

Using a non-default license file location

When you run the Mac version of the Gurobi Optimizer, it will look for the gurobi.lic key file
in three different default locations. It will always look in your home directory. In addition, Gurobi
Optimizer 6.5.0 will also look in /Library/gurobi and /Library/gurobi650.

If you would like to use a non-default license key file location, you can do so by setting environment
variable GRB_LICENSE_FILE to point to the license key file. Important note: the environment variable
should point to the license key file itself, not to the directory that contains the file.

On Mac systems, you can set the optional GRB_LICENSE_FILE environment variable through environment.plist,
as explained in Apple’s Runtime configuration Guidelines.

11

http://www.gurobi.com/dns
https://developer.apple.com/mac/library/documentation/MacOSX/Conceptual/BPRuntimeConfig/Articles/EnvironmentVars.html

Next steps

If your license includes the Distributed Add-On and you plan to use any of the Gurobi distributed
algorithms, you’ll also need to set up Gurobi Remote Services on your distributed worker machines.

Once you have followed the steps above and have obtained a license key file, your next step is to
test your license.

4.3 Setting up and using a Floating license

When using a floating license, a program that calls the Gurobi Optimizer must obtain a token from
a Gurobi token server before it can solve an optimization model. There are a few steps involved
in setting up such licenses. The first is to retrieve your license key. The key should be installed
on the machine that will act as your token server. Once you have your key, you will need to start
the Gurobi token server. The token server is a process that runs in the background, handing out
available tokens to programs as they request them. Finally, each client for the token server will
need to create a token server client license to allow client programs to find the token server.

Note that if you are setting up a machine as a client of an existing token server, you just need to
create a token server client license.

4.3.1 Retrieving a Floating license

If you are using a floating license, you will need to choose a machine to act as your Gurobi token
server. This token server doles out tokens to client machines. A client will request a token from the
token server when it creates a Gurobi environment, and it will return the token when it destroys
that environment. The client machine can be any machine that can reach the token server over
your network (including the token server itself). The client can run any supported operating system.
Thus, for example, a Linux client can request tokens from a Windows token server.

Once you've chosen a machine to act as your token server, you’ll need to run the grbgetkey command
on that machine to retrieve your Gurobi license key. Note that the machine must be connected to
the Internet in order to run this command. An Internet connection is not required after you have
obtained your license key.

If your computer isn’t connected to the Internet or if your network security system does not allow
the command below to function, we also offer a manual license key process. You’ll find manual
instructions at the bottom of the License Detail page (by following the link labeled click here for
additional instructions).

The exact grbgetkey command to run for a specific license is indicated at the bottom of the License
Detail page (e.g., grbgetkey 253e22f3-...). We recommend that you use copy-paste to copy the
entire grbgetkey command from our website and paste it into a Terminal window.

The grbgetkey program passes identifying information about your machine back to our website,
and the website responds with your license key. Once this exchange has occurred, grbgetkey will
ask for the name of the directory in which to store your license key file (gurobi.lic). You should
see a prompt that looks

12

In which directory would you like to store the Gurobi license key file?
[hit Enter to store it in /home/jones]:

You can store the license key file anywhere, but we strongly recommend that you accept the default
location by hitting Enter. Setting up a non-default location is error-prone and a frequent source of
trouble.

Setting a password for your token server

If you want to require clients of your token server to specify a password in order to check out a
token, you'll need to add one line to your gurobi.lic file:

PASSWORD=abcd1234

You should of course choose your own password. Clients will need to place this same line in their
client license files.

When adding this line to your gurobi.lic file, please be careful not to modify anything else in the
file.

Using a non-default license file location

When you run the Mac version of the Gurobi Optimizer, it will look for the gurobi.lic key file
in three different default locations. It will always look in your home directory. In addition, Gurobi
Optimizer 6.5.0 will also look in /Library/gurobi and /Library/gurobi650.

If you would like to use a non-default license key file location, you can do so by setting environment
variable GRB_LICENSE_FILE to point to the license key file. Important note: the environment variable
should point to the license key file itself, not to the directory that contains the file.

On Mac systems, you can set the optional GRB_LICENSE_FILE environment variable through environment.plist,
as explained in Apple’s Runtime configuration Guidelines.

Once you have followed the steps above and have obtained a license key file, your next step is to
start the token server.

4.3.2 Starting a token server

Important note: most Gurobi licenses do not use the token server. You should only fol-
low these instructions if you are setting up a floating license. If you are not sure whether
you need to start a token server, you can examine the contents of your gurobi.lic file.
If it contains the line TYPE=TOKEN, and does not not contain the line MACHINELIMIT=0, then
you need a token server.

To start the Mac token server daemon, run the program grb_ts (with no arguments) on your token
server machine. You only need to do this once — the token server will keep running until you stop

13

https://developer.apple.com/mac/library/documentation/MacOSX/Conceptual/BPRuntimeConfig/Articles/EnvironmentVars.html

it (or until the machine is shut down). Be sure that the license key file has been installed before
running this program. Note that the token server runs as a user process, so you do not need root
privileges to start it.

If you would like the token server to restart when the machine is rebooted, you should ask your
system administrator to start it from /etc/rc.local. If your Gurobi installation and license key
file are in their default locations, add the following:

/Library/gurobi650/mac64/bin/grb_ts

To stop a running token server, you can issue the grb_ts -s command. You can also use the ps
command to find the relevant process ID, and the kill command to terminate that process.

Output from the token server goes to the system log (/var/log/system.log). You will need to
modify /etc/syslog.conf to see these messages, since by default OS X only allows error message
in the system log. Once you have modified syslog.conf, you should see a message similar to the
following when you start the server:

Mar 9 12:37:21 mymachine grb[7917]: Gurobi Token Server started: Sat Mar 9 12:37:21 2013

By default, the token server only produces logging output when it starts. To obtain more detailed
logging information, start the token server with the -v switch. This will produce a log message each
time a token is checked in or out.

Firewalls

If you run into trouble accessing the token server, check to see if the server machine is running
firewall software (like Bastille or ipfilter) that is blocking access to some ports. The Gurobi token
server uses port number 41954 by default, so you’ll need to open access to that port on the server.
Please consult the documentation for your firewall software to determine how to do this. If there’s a
conflict on the default port, you can choose a different one by adding a PORT line to both the server
and the client license key files:

PORT=46325

You can choose any available port number.

Next steps

Clients of the token server also need simple license files. Your next step is to set up a client license.

Once your token server is running and you’ve set up a client license, you can move on to testing the
license.

Once you’ve set up a client license, you can test the state of the token server at any time, as well
as get a list of the clients that are currently using tokens, by typing gurobi_cl --tokens.

14

4.3.3 Upgrading a token server

To upgrade your token server from an earlier version of the Gurobi Optimizer, you will need to
perform the following steps (on the machine running the token server):

1. Stop the old token server.
2. Install the new version of the Gurobi Optimizer.
3. Upgrade your license file (or modify GRB_LICENSE_FILE to point to the new license file).

4. Start the new token server.

4.3.4 Creating a token server client license

The purpose of a token server client license is quite simple: it tells the client where to find the
Gurobi token server. You can create this file yourself (using a text editor). The client gurobi.lic
file typically contains a single line of text:

TOKENSERVER=mymachine.mydomain.com
or:
TOKENSERVER=192.168.1.100

You should of course substitute the name or IP address of your token server in the example above.

If your token server was configured to use a non-default port, you’ll also need a line that provides
the port number:

PORT=46325

The client license file may also include two optional lines. A TIMEQOUT line allows you to specify the
timeout (in seconds) in case the token server is unavailable. The default value is 30 seconds. A
PASSWORD line allows you to connect to a password-protected token server (you’ll need to get the
password from the owner of the token server).

A more complex client token file might look like this:

TOKENSERVER=192.168.1.100
TIMEQUT=10
PASSWORD=abcd1234

We strongly recommend that you place your client gurobi.lic file in a default location for your
platform (either your home directory or /Library/gurobi). Setting up a non-default location is
error-prone and a frequent source of trouble. (If you still want to use a non-default location, please
refer to the instructions that appeared earlier in this section).

15

If your client and the token server are both running on the same machine, they can share a single
gurobi.lic file. You just need to add the following line to the gurobi.lic file you obtained from
our website:

TOKENSERVER=1ocalhost

The token server will ignore this line, and the client will ignore everything but this line. Your
other option when both client and server are running on the same machine is to create a separate
gurobi.lic file for the client, and to set the GRB_LICENSE_FILE environment variable to point to
this file (following the earlier instructions for using a non-default license location).

Once your client license is in place, you can test the license. If you are unable to connect to the
server, you’ll need to make sure the server is installed and running. Please consult the instructions
for starting a token server for more information.

4.4 Setting up and using a Compute Server license

When using a Compute Server license, programs that call the Gurobi Optimizer can offload Gurobi
computations onto one or more server machines. There are a few steps involved in setting up such
licenses. The first is to retrieve your license key. The key should be installed on the machine that
will act as a Compute Server. Once you have your key, you will need to start Gurobi Remote
Services. Finally, client machines will need a Compute Server client license in order to find the
Compute Server(s).

Note that if you are setting up a machine as a client of an existing Compute Server, you just need
to create a Compute Server client license.

4.4.1 Retrieving a Compute Server license

If you have purchased one or more Gurobi Compute Server licenses, you'll need to perform a few
setup steps in order to start your Compute Servers. Once started, client machines will be able to
offload the work of solving an optimization model onto these servers. The clients and the Compute
Servers can run any mix of supported operating systems. Thus, for example, multiple Mac machines
could submit jobs to a pair of Compute Servers, one running Windows and the other running Mac
OS. Any machine that can reach the Compute Server(s) over your network can be a client (including
the Compute Servers themselves).

Once you’ve chosen a machine to act as a Compute Server, you’ll need to run the grbgetkey
command on that machine to retrieve your Gurobi license key. Note that the machine must be
connected to the Internet in order to run this command. An Internet connection is not required
after you have obtained your license key.

If your computer isn’t connected to the Internet or if your network security system does not allow
the command below to function, we also offer a manual license key process. You’ll find manual
instructions at the bottom of the License Detail page (by following the link labeled click here for
additional instructions).

16

The exact grbgetkey command to run for a specific license is indicated at the bottom of the License
Detail page (e.g., grbgetkey 253e22£3-...). We recommend that you use copy-paste to copy the
entire grbgetkey command from our website and paste it into a Terminal window.

The grobgetkey program passes identifying information about your machine back to our website,
and the website responds with your license key. Once this exchange has occurred, grbgetkey will
ask for the name of the directory in which to store your license key file (gurobi.lic). You should
see a prompt that looks like this:

In which directory would you like to store the Gurobi license key file?
[hit Enter to store it in /home/jones]:

You can store the license key file anywhere, but we strongly recommend that you accept the default
location by hitting Enter. Setting up a non-default location is error-prone and a frequent source of
trouble.

Using a non-default license file location

When you run the Mac version of the Gurobi Optimizer, it will look for the gurobi.lic key file
in three different default locations. It will always look in your home directory. In addition, Gurobi
Optimizer 6.5.0 will also look in /Library/gurobi and /Library/gurobi650.

If you would like to use a non-default license key file location, you can do so by setting environment
variable GRB_LICENSE_FILE to point to the license key file. Important note: the environment variable
should point to the license key file itself, not to the directory that contains the file.

On Mac systems, you can set the optional GRB_LICENSE_FILE environment variable through environment.plist,
as explained in Apple’s Runtime configuration Guidelines.

Once you have followed the steps above and have obtained a license key file, your next step is to
start Gurobi Remote Services.

4.4.2 Creating a Compute Server client license

You have two options for indicating that a Gurobi program will act as a client of a Compute Server.
If you are writing a program that calls the Gurobi C, C++, Java, .NET, or Python APIs, these APIs
provide routines that allow you to specify the names of the Compute Servers (GRBloadclientenv
in C, and special signatures for the GRBEnv constructor in the object-oriented languages). If you
use these routines, Gurobi licenses aren’t required on the client.

Alternately, you can set up a gurobi.lic file that points to the Compute Server. This option
allows you to use a Compute Server with nearly any program that calls Gurobi, without the need
to modify the calling program. You can create your client gurobi.lic with a text editor. The file
should contain a line that looks like this:

17

https://developer.apple.com/mac/library/documentation/MacOSX/Conceptual/BPRuntimeConfig/Articles/EnvironmentVars.html

COMPUTESERVER=machinel.mydomain.com,machine2.mydomain.com,machine3.mydomain.com
or like this:
COMPUTESERVER=192.168.1.100,192.168.1.101,192,168.1.102

This line provides a comma-separated list of Gurobi Compute Servers. If your Compute Servers use
a password, you should also include a line that gives the password:

PASSWORD=cspwd

Please consult the Gurobi Compute Server section of the Gurobi Reference Manual for more infor-
mation.

Note that if your client and server are both running on the same machine, they can share the same
gurobi.lic file. You just need to add a COMPUTESERVER=localhost line to the gurobi.lic file
you obtained from our website. The Compute Server will ignore this line, and the client will ignore
everything but this line. Another option in this situation is to create a separate gurobi.lic file for
the client, and to set the GRB_LICENSE_FILE environment variable to point to this file (following
the earlier instructions for using a non-default license location).

Once your client license is in place, you can test the license. If you are unable to connect to the
server, you’ll need to make sure the server is installed and running. Please consult the instructions
for setting up a Compute Server for more information.

4.5 Starting Gurobi Remote Services

Important note: you only need to start Gurobi Remote Services if you are setting
up a Compute Server or a distributed worker (for use in distributed algorihms). If
you are not sure whether you need to start Gurobi Remote Services, you can examine
the contents of your gurobi.lic file. If it contains the line CSENABLED=1, then you need
Gurobi Remote Services. If it contains a line that begins with DISTRIBUTED=, and if you
plan to run distributed algorithms, then you also need Gurobi Remote Services.

On Mac systems, Gurobi Remote Services is a daemon that allows a server to perform Gurobi
computations on behalf of other client machines. The set of services the server provides depends
on your license. If you are setting up a machine as a distributed worker, no license is required. In
this case, the only service provided by the server is to act as a worker in a distributed algorithm.
If you have a Compute Server license, then servers running Gurobi Remote Services can provide a
variety of services, including offloading computation from a set of clients, balancing computational
load among the servers, and providing failover capabilities, in addition to acting as a distributed
worker.

To start the Gurobi Remote Services daemon, run the program grb_rs (with no arguments) on
your server. You only need to do this once — Gurobi Remote Services will keep running until you
stop it (or until the machine is shut down). If you are setting up a Gurobi Compute Server, be
sure that the license key file has been installed before starting Gurobi Remote Services. Note that
Gurobi Remote Services runs as a user process, so you do not need root privileges to start it.

18

http://www.gurobi.com/documentation/6.5/refman/index.html

If you would like Gurobi Remote Services to restart automatically when the machine is rebooted,
there are a number of options for doing so (including launchd and /etc/rc.local). You should
talk to your system administrator.

Note that if you would like the Compute Server to restart when the machine is rebooted, you
should ask your system administrator to start it from /etc/rc.local. If your Gurobi installation
and license key file are in their default locations, then adding the following should suffice:

/Library/gurobi6é50/mac64/bin/grb_rs
Gurobi Remote Services parameters

Note that Gurobi Remote Services has a few user-configurable parameters. You can set these by
creating a grb_rs. cnf file and placing it in the same directory as grb_rs. Please consult the Gurobi
Remote Services section of the Reference Manual for details.

Starting and stopping the grb_rs Gurobi daemon

To stop Gurobi Remote Services if it is already running, you can issue the grb_rs -s command. You
can also use the ps command to find the relevant process ID, and the kill command to terminate
that process.

Output from Gurobi Remote Services goes to the system log (/var/log/system.log). You will
need to modify /etc/syslog.conf to see these messages, since by default OS X only allows error
message in the system log. Once you have modified syslog.conf, you should see a message similar
to the following when you start the server:

Mar 9 12:37:21 mymachine grb[7917]: Gurobi Remote Services started: Sat Mar 9 12:37:21 2013

By default, Gurobi Remote Services only produces logging output when it starts. Start Gurobi
Remote Services with the -v switch to obtain more detailed logging information. For example, this
option will generate a log message each time a client job starts

Firewalls

If you run into trouble accessing Gurobi Remote Services, check to see if the server is running firewall
software that might be blocking access to some ports. Gurobi Remote Services uses port numbers
61000-65000 by default, so you'll need to open access to these ports on the server. Please consult
the documentation for your firewall software to determine how to do this. If there’s a conflict on
the default port, you can choose a different one by adding a PORT line to both the server and the
client license key files:

PORT=46325

You can choose any available port number.

Next steps

Once you’ve set up Gurobi Remote Services, you should test the state of the server. Type this
command on your server:

19

file:../refman/gurobi_remote_services.html
file:../refman/gurobi_remote_services.html

gurobi_cl --server=localhost --status
If the output includes the following line:
Gurobi Remote Services functioning normally

then Remote Services is ready for use.

Client programs will need to know how to reach your server. If you are using Gurobi Compute
Server, this is typically done with a client license file. You should set that up now.

If you’ve set up distributed workers in order to run a distributed algorithm, you’ll use the WorkerPool
parameter to tell the client machine how to access the servers. When you are ready, you can obtain
more information in the distributed algorithm section of the Reference Manual

4.5.1 Upgrading Gurobi Remote Services

If you want to upgrade Gurobi Remote Services from an earlier version of the Gurobi Optimizer,
you will need to perform the following steps (on the machine running Gurobi Remote Services):

1. Stop the old Gurobi Remote Services.
2. Install the new version of the Gurobi Optimizer.
3. Upgrade your license file (or modify GRB_LICENSE_FILE to point to the new license file).

4. Start the new Gurobi Remote Services.

4.6 Testing your license

Once you have obtained a license key for your machine, you are ready to test your license using
the Gurobi Interactive Shell. To do this, type gurobi.sh in a Terminal window. The shell should
produce the following output:

Gurobi Interactive Shell, Version 6.5.0
Copyright (c) 2015, Gurobi Optimization, Inc.
Type "help()" for help

gurobi>

If you are running as a client of a Gurobi Compute Server, the message above will be preceded by
a message like this:

Server capacity available on myserver - running now

Congratulations, your license is functioning correctly! You are now ready to use the Gurobi Opti-
mizer. The next section will show you how to solve a simple optimization model.

20

file:../refman/workerpool.html
file:../refman/distributed_parallel_algor.html

Possible errors

If the Gurobi shell didn’t produce the desired output, there’s a problem with your license. We'll
list a few common errors here.

ERROR: No Gurobi license found (user smith, host mymachine, hostid 9d3128ce)

indicates that your gurobi.lic file couldn’t be found.
Did you use a non-default license file location?

When you run the Mac version of the Gurobi Optimizer, it will look for the gurobi.lic key file
in three different default locations. It will always look in your home directory. In addition, Gurobi
Optimizer 6.5.0 will also look in /Library/gurobi and /Library/gurobi650.

If you used a non-default license key file location, you should set environment variable GRB_LICENSE_FILE
to point to the license key file. Important note: the environment variable points to the license key
file itself, not to the directory that contains the file.

The following message:
ERROR: HostID mismatch (licensed to 9d3128ce, hostid is 7de025e9)

indicates that your gurobi.lic isn’t valid for this machine. You should make sure that you are
using the right gurobi.lic file.

If you are running as a client of a Gurobi token server and receive this message:
ERROR: Failed to connect to token server ’myserver’ (port 41954)

the Compute Server isn’t currently running. Please consult the section on setting up a token server.

If you are running as a client of a Gurobi Compute Server and receive this message:
ERROR: No server available

the Compute Server isn’t currently running. Please consult the section on setting up a Compute
Server.

21

Solving a Simple Model - The Gurobi Command Line

Now that the Gurobi Optimizer is installed and the license key has been tested, you're ready to
solve a simple math programming model.

This section includes instructions on how to configure the math programming model file and how to
use the Gurobi command-line interface to compute an optimal solution. If you are already familiar
with mathematical modeling and LP-format files, feel free to skip to the end of this section.

Note that this section gives only a brief glimpse into the capabilities of the Gurobi command-line
interface. This interface plays a number of different roles. In addition to providing a simple interface
for solving a model, it can also be used to launch a model on a Compute Server or on a cloud system,
it can check on the status of a token server, and it provides tools that allow you to manage jobs
and administer a Compute Server. If you’d like additional information, consult the Command-Line
Tool section of our Reference Manual.

The problem statement - producing coins

Begin by stating the problem to be solved.

Imagine that it is the end of the calendar year at the United States Mint. The Mint keeps an
inventory of the various minerals used to produce the coins that are put into circulation, and it
wants to use up the minerals on hand before retooling for next year’s coins.

The Mint produces several different types of coins, each with a different composition. The table
below shows the make-up of each coin type (as reported in the US Mint coin specifications).

Penny Nickel Dime Quarter Dollar

Copper (Cu) 0.06g 3.8¢ 2.1g 5.2¢ 7.2g
Nickel (Ni) 1.2g 0.2g 0.5g 0.2g

Zinc (Zi) 24g 0.5¢
Manganese (Mn) 0.3g

Suppose the Mint wants to use the available materials to produce coins with the maximum total
dollar value. Which coins should they produce?

The optimization model
In order to formulate this as an optimization problem, we’ll need to do three things.

e First, we'll need to define the decision variables. The goal of the optimization is to choose
values for these variables.

22

file:../refman/gurobi_command_line_tool.html
file:../refman/gurobi_command_line_tool.html
http://www.usmint.gov/about_the_mint/?action=coin_specifications

e Second, we'll define a linear objective function. This is the function we’d like to minimize (or
maximize).

e Third, we’ll define the linear constraints.

The Gurobi Optimizer will consider all assignments of values to decision variables that satisfy the
specified linear constraints, and return one that optimizes the stated objective function.

The variables in this problem are quite straightforward. The solver will need to decide how many
of each coin to produce. It is convenient to give the decision variables meaningful names. In this
case, we'll call the variables Pennies, Nickels, Dimes, Quarters, and Dollars. We'll also introduce
variables that capture the quantities of the various minerals actually used by the solution. We’ll
call them Cu, Ni, Zi, and Mn.

Recall that the objective of our optimization problem is to maximize the total dollar value of the
coins produced. Each penny produced is worth 0.01 dollars, each nickel is worth 0.05 dollars, etc.
This gives the following linear objective:

maximize: 0.01 Pennies + 0.05 Nickels + 0.1 Dimes + 0.25 Quarters + 1 Dollars

The constraints of this model come from the fact that producing a coin consumes certain quantities
of the available minerals, and the supplies of those minerals are limited. We’'ll capture these rela-
tionships in two parts. First, we’ll create an equation for each mineral that captures the amount of
that mineral that is consumed. For copper, that equation would be:

Cu = 0.06 Pennies + 3.8 Nickels + 2.1 Dimes + 5.2 Quarters + 7.2 Dollars

The coefficients for this equation come from the earlier coin specification table: one penny uses
0.06g of copper, one nickel uses 3.8g, etc.

The model must also capture the available quantities of each mineral. If we have 1000 grams of
copper available, then the constraint would be:

Cu <= 1000

For our example, we’ll assume we have 1000 grams of copper and 50 grams of the other minerals.

There is actually one other set of constraints that must be captured in order for our model to
accurately reflect the physical realities of our problem. While a dime is worth 10 cents, half of a
dime isn’t worth 5 cents. The variables that capture the number of each coin produced must take
integer values.

The model file

The Gurobi Optimizer provides a variety of options for expressing an optimization model. Typically,
you would build the model using an interface to a programming languages (C, C++, C#, Java,
etc.) or using a higher-level application environment (a spreadsheet, a modeling system, MATLAB,

23

R, etc.). However, to keep our example as simple as possible, we're going to read the model from
an LP format file. The LP format was designed to be human readable, and as such it is well suited
for our needs.

The LP format is mostly self-explanatory. Here is our model:

Maximize
.01 Pennies + .05 Nickels + .1 Dimes + .25 Quarters + 1 Dollars
Subject To
Copper: .06 Pennies + 3.8 Nickels + 2.1 Dimes + 5.2 Quarters + 7.2 Dollars -
Cu=0
Nickel: 1.2 Nickels + .2 Dimes + .5 Quarters + .2 Dollars -
Ni=20

Zinc: 2.4 Pennies + .5 Dollars - Zi =0
Manganese: .3 Dollars - Mn =0

Bounds

Cu <= 1000

Ni <= 50

Zi <= 50

Mn <= 50
Integers

Pennies Nickels Dimes Quarters Dollars
End

You’ll find this model in file coins.1lp in the <installdir>/examples/data directory of your Gurobi
distribution. Specifically, assuming you’ve installed Gurobi 6.5.0 in the recommended location, you’ll
find the file in /Library/gurobi650/mac64/examples/data/coins.1p.

To modify this file, open it in a text editor.

Editing the LP file

Before you consider making any modifications to this file or creating your own, we should point out
a few rules about LP format files.

1. Ordering of the sections

Our example contains an objective section (Maximize...), a constraint section (Subject To...), a
variable bound section (Bounds...), and an integrality section (Integers...). The sections must
come in that order. The complete list of section types and the associated ordering rules can be
found in the file format section of the Gurobi Reference Manual.

2. Separating tokens

Tokens must be separated by either a space or a newline. Thus, for example, the term:
+ .1 Dimes

must include a space or newline between + and .1, and another between .1 and Dimes.

24

http://www.gurobi.com/documentation/6.5/refman/index.html

3. Arranging variables

Variables must always appear on the left-hand side of a constraint. The right-hand side is always a
constant. Thus, our constraint:

Cu = .06 Pennies + 3.8 Nickels + 2.1 Dimes + 5.2 Quarters + 7.2 Dollars
...becomes...
.06 Pennies + 3.8 Nickels + 2.1 Dimes + 5.2 Quarters + 7.2 Dollars - Cu =0

4. Variable default bounds

Unless stated otherwise, a variable has a zero lower bound and an infinite upper bound. Thus,
Cu <= 1000 really means 0 <= Cu <= 1000. Similarly, any variable not mentioned in the Bounds
section may take any non-negative value.

Full details on the LP file format are provided in the file format section of the Gurobi Reference
Manual.

Solving the model using the Gurobi command-line interface

The final step in solving our optimization problem is to pass the model to the Gurobi Optimizer.
We’ll use the Gurobi command-line interface, as it is typically the simplest of our interfaces to use
when solving a model stored in a file.

To use the command-line interface, you’ll first need to bring up a window that allows you to run
command-line programs. On a Mac system, you can use a Terminal window. (Note that the Gurobi
Interactive Shell, which was used earlier to test your license, does not directly accept command-line
program input).

The name of the Gurobi command-line tool is gurobi_cl. To invoke it, type gurobi_cl, followed
by the name of the model file. For example, if our model is stored in the file
/Library/gurobi650/mac64/examples/data/coins.1lp, you would type the following command
into your command-line window...

> gurobi_cl /Library/gurobi650/mac64/examples/data/coins.1lp
This command should produce the following output...

Read LP format model from file /Library/gurobi6é50/mac64/examples/data/coins.lp
Reading time = 0.00 seconds

(null): 4 rows, 9 columns, 16 nonzeros

Optimize a model with 4 rows, 9 columns and 16 nonzeros

Presolve removed 1 rows and 5 columns

Presolve time: 0.00s

Presolved: 3 rows, 4 columns, 9 nonzeros

Variable types: O continuous, 4 integer (O binary)

25

http://www.gurobi.com/documentation/6.5/refman/index.html
http://www.gurobi.com/documentation/6.5/refman/index.html

Found heuristic solution: objective 26.1000000
Found heuristic solution: objective 113.3000000

Root relaxation: objective 1.134615e+02, 4 iterations, 0.00 seconds

Nodes [Current Node | Objective Bounds [Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 113.46154 0 1 113.30000 113.46154 0.14} - Os
0 0 113.45952 0 1 113.30000 113.45952 0.14} - Os
H 0 0 113.4500000 113.45952 0.01% - Os

Explored O nodes (5 simplex iterations) in 0.00 seconds
Thread count was 2 (of 2 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 1.134500000000e+02, best bound 1.134500000000e+02, gap 0.0%

Details on the format of the Gurobi log file can be found in the Gurobi Reference Manual. For
now, you can simply note that the optimal objective value is 113.45. Recall that the objective is
denoted in dollars. We can therefore conclude that by a proper choice of production plan, the Mint
can produce $113.45 worth of coins using the available minerals. Moreover, because this value is
optimal, we know that it is not possible to produce coins with value greater than $113.45!

It would clearly be useful to know the exact number of each coin produced by this optimal plan.
The gurobi_cl command allows you to set Gurobi parameters through command-line arguments.
One particularly useful parameter for the purposes of this example is ResultFile, which instructs
the Gurobi Optimizer to write a file once optimization is complete. The type of the file is encoded
in the suffix. To request a .sol file:

> gurobi_cl ResultFile=coins.sol coins.lp
The command will produce a file that contains solution values for the variables in the model:

Objective value = 113.45
Pennies 0

Nickels O

Dimes 2

Quarters 53

Dollars 100

Cu 999.8

Ni 46.9

Zi 50

Mn 30

In the optimal solution, we’ll produce 100 dollar coins, 53 quarters, and 2 dimes.

26

http://www.gurobi.com/documentation/6.5/refman/index.html

If we wanted to explore the parameters of the model (for example, to consider how the optimal
solution changes with different quantities of available minerals), we could use a text editor to modify
the input file. However, it is typically better to do such tests within a more powerful system. We’ll
now describe the Gurobi Interactive Shell, which provides an environment for creating, modifying,
and experimenting with optimization models.

27

The Gurobi interactive shell allows you to perform hands-on interaction and experimentation with
optimization models. You can read models from files, perform complete or partial optimization runs
on them, change parameters, modify the models, reoptimize, and so on. The Gurobi shell is actually
a set of extensions to the Python shell. Python is a rich and flexible programming language, and
any capabilities that are available from Python are also available from the Gurobi shell. We'll touch
on these capabilities here, but we encourage you to explore the help system and experiment with
the interface in order to gain a better understanding of what is possible.

One big advantage of working within Python is that the Python language is popular and well
supported. One aspect of this support is the breadth of powerful Python Integrated Development
Environments (IDEs) that are available, most of which can be downloaded for free from the internet.
This document includes instructions for setting up Gurobi for use within the Anaconda distribu-
tion. Anaconda includes a powerful IDE (Spyder), as well as a notebook-style interface (iPython
Notebook).

Before diving into the details of the Gurobi interactive shell, we should remind you that Gurobi
also provides a lightweight command line interface. If you just need to do a quick test on a model
stored in a file, you will probably find that that interface is better suited to simple tasks than the
interactive shell.

Important note for AIX users: due to limited Python support on AIX, our AIX port does not
include the Interactive Shell or the Python interface. You can use the command line, or the C,
C+-+, or Java interfaces.

We will now work through a few simple examples of how the Gurobi shell might be used, in order to
give you a quick introduction to its capabilities. More thorough documentation on this and other
interfaces is available in the Gurobi Reference Manual.

Reading and optimizing a model

There are several ways to access the Gurobi Interactive Shell from Windows:

e Double-click on the Gurobi desktop shortcut.
e Select the Gurobi Interactive Shell from the Start Menu.

e Open a DOS command shell and type gurobi.bat.

From Linux or Mac OS, you can simply type gurobi.sh from the command prompt. If you've
installed a Python IDE, the shell will also be available from that environment.

Once the optimizer has started, you are ready to load and optimize a model. We’ll consider model
coins.lp from <installdir>/examples/data...

28

Interactive Shell

http://python.org
http://www.gurobi.com/documentation/6.5/refman/index.html

> gurobi.bat (or gurobi.sh for Linux or Mac 0S)

Gurobi Interactive Shell, Version 6.5.0
Copyright (c) 2015, Gurobi Optimization, Inc.
Type "help()" for help

gurobi> m = read(’c:/gurobi650/win64/examples/data/coins.1lp?)
Read LP format model from file c:/gurobif50/win64/examples/data/coins.1lp
Reading time = 0.00 seconds

(null): 4 rows, 9 columns, 16 nonzeros

gurobi> m.optimize()

Optimize a model with 4 rows, 9 columns and 16 nonzeros
Presolve removed 1 rows and 5 columns

Presolve time: 0.00s

Presolved: 3 rows, 4 columns, 9 nonzeros

Variable types: O continuous, 4 integer (0 binary)

Found heuristic solution: objective 26.1000000

Found heuristic solution: objective 113.3000000

Root relaxation: objective 1.134615e+02, 4 iterations, 0.00 seconds

Nodes [Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 113.46154 0 1 113.30000 113.46154 0.147 - Os
0 0 113.45952 0 1 113.30000 113.45952 0.14} - Os
H 0 0 113.4500000 113.45952 0.01% - Os

Explored O nodes (5 simplex iterations) in 0.00 seconds
Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 1.134500000000e+02, best bound 1.134500000000e+02, gap 0.0%

The read() command reads a model from a file and returns a Model object. In the example, that
object is placed into variable m. There is no need to declare variables in the Python language; you
simply assign a value to a variable.

Note that read() accepts wildcard characters, so you could also have said:
gurobi> m = read(’c:/gurobi650/win64/*/*/coinx’)

Note also that Gurobi commands that read or write files will also function correctly with compressed
files. If gzip, bzip2, or 7zip are installed on your machine and available in your default path, then
you simply need to add the appropriate suffix (.gz, .bz2, .zip, or .7z) to the file name to read or
write compressed versions.

29

The next statement in the example, m.optimize(), invokes the optimize method on the Model object
(you can obtain a list of all methods on Model objects by typing help(Model) or help(m)). The
Gurobi optimization engine finds an optimal solution with objective 113.45.

Inspecting the solution

Once a model has been solved, you can inspect the values of the model variables in the optimal
solution with the printAtir() method on the Model object:

gurobi> m.printAttr(’X’)

Variable X
Dimes 2
Quarters 53
Dollars 100
Cu 999.8

Ni 46.9

Zi 50

Mn 30

This routine prints all non-zero values of the specified attribute X. Attributes play a major role in
the Gurobi optimizer. We’ll discuss them in more detail shortly.

You can also inspect the results of the optimization at a finer grain by retrieving a list of all the
variables in the model using the getVars() method on the Model object (m.get Vars() in our example):

gurobi> v = m.getVars()
gurobi> print len(v)
9

The first command assigns the list of all Var objects in model m to variable v. The Python len()
command gives the length of the array (our example model coins has 9 variables). You can then
query various attributes of the individual variables in the list. For example, to obtain the variable
name and solution value for the first variable in list v, you would issue the following command:

gurobi> print v[0].varName, v[0].x
Pennies 0.0

You can type help(Var) or help(v[0]) to get a list of all methods on a Var object. You can type
help(GRB.Attr) to get a list of all attributes.

Simple model modification

We will now demonstrate a simple model modification. Imagine that you only want to consider
solutions where you make at least 10 pennies (i.e., where the Pennies variable has a lower bound

30

of 10.0). This is done by setting the 1b attribute on the appropriate variable (the first variable in
the list v in our example)...

gurobi> v = m.getVars()
gurobi> v[0].1b = 10

The Gurobi optimizer keeps track of the state of the model, so it knows that the currently loaded
solution is not necessarily optimal for the modified model. When you invoke the optimize() method
again, it performs a new optimization on the modified model...

gurobi> m.optimize()

Optimize a model with 4 rows, 9 columns and 16 nonzeros
Presolve removed 2 rows and 5 columns

Presolve time: 0.00s

Presolved: 2 rows, 4 columns, 5 nonzeros

MIP start did not produce a feasible solution

Variable types: O continuous, 4 integer (O binary)
Found heuristic solution: objective 25.9500000

Root relaxation: objective 7.190000e+01, 2 iterations, 0.00 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

* 0 0 0 71.9000000 71.90000 0.0% - Os

Explored O nodes (2 simplex iterations) in 0.00 seconds
Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 7.190000000000e+01, best bound 7.190000000000e+01, gap 0.0%

The result shows that, if you force the solution to include at least 10 pennies, the maximum possible
objective value for the model decreases from 113.45 to 71.9. A simple check confirms that the new
lower bound is respected:

gurobi> print v[0].x

10.0

Simple experimentation with a more difficult model

Let us now consider a more difficult model, glass4.mps. Again, we read the model and begin the
optimization:

31

gurobi> m = read(’c:/gurobi650/win64/examples/data/glass4’)

Read MPS format model from file c:/gurobi650/win64/examples/data/glass4.mps
Reading time = 0.00 seconds

glass4: 396 Rows, 322 Columns, 1815 NonZeros

gurobi> m.optimize()

Optimize a model with 396 Rows, 322 Columns and 1815 NonZeros

Presolve removed 4 rows and 5 columns

Presolve time: 0.00s

Presolved: 392 Rows, 317 Columns, 1815 Nonzeros

Found heuristic solution: objective 3.691696e+09

Root relaxation: objective 8.000024e+08, 72 iteratiomns, 0.00 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 8.0000e+08 0 72 3.6917e+09 8.0000e+08 78.3% - Os

0 0 8.0000e+08 0 72 3.6917e+09 8.0000e+08 78.3% - Os

0 0 8.0000e+08 0 72 3.6917e+09 8.0000e+08 78.3% - Os

0 0 8.0000e+08 0 72 3.6917e+09 8.0000e+08 78.3% - Os

0 2 8.0000e+08 0 72 3.6917e+09 8.0000e+08 78.3% - Os

H 769 732 2.800024e+09 8.0000e+08 71.4% 5.2 Os
H 834 781 2.666693e+09 8.0000e+08 70.0% 5.3 Os
H 1091 984 2.475023e+09 8.0000e+08 67.7%4 5.1 Os
H 1092 986 2.400020e+09 8.0000e+08 66.7%4 5.1 Os
H 1092 984 2.380021e+09 8.0000e+08 66.4% 5.1 Os
H 1095 988 2.350020e+09 8.0000e+08 66.0% 5.1 Os
* 1845 1543 94 2.316685e+09 8.0000e+08 65.5% 4.9 Os
* 2131 1627 126 2.150018e+09 8.0000e+08 62.8% 4.8 Os
H 2244 1580 2.100019e+09 8.0000e+08 61.9% 4.8 Os
H 2248 1341 1.900018e+09 8.0000e+08 57.9% 5.0 Os
H 3345 1816 1.900018e+09 8.0000e+08 57.9% 4.1 Os
H 3346 1744 1.900017e+09 8.0000e+08 57.9% 4.1 Os
H15979 10383 1.900017e+09 8.0000e+08 57.9% 2.5 1s
H19540 13051 1.900016e+09 8.0000e+08 57.9% 2.4 1s
*21124 13489 101 1.866683e+09 8.0000e+08 57.1% 2.4 1s
*23011 14690 100 1.850015e+09 8.0000e+08 56.8% 2.3 1s
*25630 15679 143 1.800016e+09 8.0000e+08 55.6% 2.3 1s
*28365 15421 113 1.700015e+09 8.0000e+08 52.9% 2.3 1s
H29910 16333 1.700014e+09 8.0000e+08 52.9% 2.3 1s
*30582 16765 124 1.700014e+09 8.0000e+08 52.9% 2.3 1s
*33238 16251 92 1.677794e+09 8.0000e+08 52.3% 2.3 1s
*37319 18258 85 1.633349e+09 8.0000e+08 51.0% 2.2 1s
H40623 19584 1.600015e+09 8.0000e+08 50.0% 2.3 2s
81781 42951 1.1000e+09 49 51 1.6000e+09 8.0001e+08 50.0% 2.2 5s

32

199990 100088 1.6000e+09 82 28 1.6000e+09 8.0001e+08 50.0% 2.3 10s
*242810 116891 97 1.600015e+09 8.2001e+08 48.8% 2.3 11s
*243703 116786 95 1.600014e+09 8.2001e+08 48.8} 2.3 1is

Interrupt request received

Explored 255558 nodes (588336 simplex iterations) in 12.36 seconds
Thread count was 8 (of 8 available processors)

Solve interrupted
Best objective 1.6000142000e+09, best bound 8.5000490000e+08, gap 46.8752%

It quickly becomes apparent that this model is quite a bit more difficult than the earlier coins model.
The optimal solution is actually 1,200,000,000, but finding that solution takes a while. After
letting the model run for 10 seconds, we interrupt the run (by hitting CTRL-C, which produces the
Interrupt request received message) and consider our options. Typing m.optimize () would resume
the run from the point at which it was interrupted.

Changing parameters

Rather than continuing optimization on a difficult model like glass4, it is sometimes useful to try
different parameter settings. When the lower bound moves slowly, as it does on this model, one
potentially useful parameter is MIPFocus, which adjusts the high-level MIP solution strategy. Let
us now set this parameter to value 1, which changes the focus of the MIP search to finding good
feasible solutions. There are two ways to change the parameter value. You can either use method
m.setParam():

gurobi> m.setParam(’MIPFocus’, 1)
Changed value of parameter MIPFocus to 1
Prev: 0 Min: 0 Max: 3 Default: O

...or you can use the m.Params class...

gurobi> m.params.MIPFocus = 1
Changed value of parameter MIPFocus to 1
Prev: 0 Min: O Max: 3 Default: O

Once the parameter has been changed, we call m.reset() to reset the optimization on our model and
then m.optimize() to start a new optimization run:

gurobi> m.reset()

gurobi> m.optimize()

Optimize a model with 396 Rows, 322 Columns and 1815 NonZeros
Presolve removed 4 rows and 5 columns

Presolve time: 0.00s

33

Presolved: 392 Rows, 317 Columns, 1815 Nonzeros
Found heuristic solution: objective 3.691696e+09

Root relaxation: objective 8.000024e+08, 72 iteratiomns, 0.00 seconds

Nodes [Current Node | Objective Bounds [Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 8.0000e+08 0 72 3.6917e+09 8.0000e+08 78.3% - Os

0 0 8.0000e+08 0 72 3.6917e+09 8.0000e+08 78.3% - Os

0 0 8.0000e+08 0 72 3.6917e+09 8.0000e+08 78.3% - Os

0 0 8.0000e+08 0 73 3.6917e+09 8.0000e+08 78.3% - Os

H 0 0 3.075022e+09 8.0000e+08 74.0% - Os
H 0 0 3.020023e+09 8.0000e+08 73.5% - Os
0 0 8.0000e+08 0 76 3.0200e+09 8.0000e+08 73.5% - Os

0 0 8.0000e+08 0 75 3.0200e+09 8.0000e+08 73.5% - Os

H 0 0 2.550024e+09 8.0000e+08 68.6% - Os
H 0 2 2.175020e+09 8.0000e+08 63.2% - Os
0 2 8.0000e+08 0 75 2.1750e+09 8.0000e+08 63.2% - Os

H 95 98 2.150020e+09 8.0000e+08 62.8% 4.6 Os
H 096 98 2.120018e+09 8.0000e+08 62.3% 4.6 Os
H 101 103 2.116687e+09 8.0000e+08 62.2% 4.5 Os
H 110 103 2.100017e+09 8.0000e+08 61.9% 4.3 Os
H 352 325 2.000018e+09 8.0000e+08 60.0% 4.2 Os
H 406 375 1.991686e+09 8.0000e+08 59.8}% 4.0 Os
H 1074 888 1.981836e+09 8.0000e+08 59.6% 3.5 Os
H 1078 889 1.966686e+09 8.0000e+08 59.3%, 3.5 Os
H 1107 878 1.900018e+09 8.0000e+08 57.9% 3.5 Os
H 1696 1125 1.800017e+09 8.0000e+08 55.6% 3.4 Os
H 1845 1146 1.800017e+09 8.0000e+08 55.6% 4.2 1s
H 1863 1087 1.733350e+09 8.0000e+08 53.8% 4.3 1s
H 2353 1273 1.733350e+09 8.0000e+08 53.8}% 4.3 1s
H 2517 1299 1.700016e+09 8.0000e+08 52.9% 4.3 1s
H 2598 1248 1.666682e+09 8.0000e+08 52.0% 4.3 1s
H 2733 1252 1.633349e+09 8.0000e+08 51.0% 4.2 1s
14259 7927 1.5000e+09 85 28 1.6333e+09 8.0000e+08 51.0% 3.5 5s
24846 14278 1.1000e+09 49 55 1.6333e+09 8.0001e+08 51.0% 3.5 10s
H25035 13985 1.600016e+09 8.0001e+08 50.0% 3.5 10s
H25066 14020 1.600016e+09 8.0001e+08 50.0% 3.5 10s
H25072 13532 1.583350e+09 8.0001e+08 49.5%, 3.5 10s
H26218 14083 1.575016e+09 8.0001e+08 49.2}, 3.5 10s
H26326 14118 1.566682e+09 8.0001e+08 48.9% 3.5 10s
H26577 13650 1.525016e+09 8.0001e+08 47.5% 3.5 10s

Interrupt request received

34

Cutting planes:
Gomory: 6
Implied bound: 26
MIR: 60

Explored 30546 nodes (107810 simplex iterations) in 11.81 seconds
Thread count was 8 (of 8 available processors)

Solve interrupted
Best objective 1.5250155750e+09, best bound 8.0000520000e+08, gap 47.5412%

Results are consistent with our expectations. We find a better solution sooner by shifting the focus
towards finding feasible solutions (objective value 1.525e9 versus 1.6e9).

The setParam() method is designed to be quite flexible and forgiving. It accepts wildcards as
arguments, and it ignores character case. Thus, the following commands are all equivalent:

gurobi> m.setParam(’NODELIMIT’, 100)
gurobi> m.setParam(’NodeLimit’, 100)
gurobi> m.setParam(’Nodex*’, 100)

gurobi> m.setParam(’N???Limit, 100)

You can use wildcards to get a list of matching parameters:

gurobi> m.setParam(’*Cuts’, 2)

Matching parameters: [’Cuts’, ’CliqueCuts’, ’CoverCuts’, ’FlowCoverCuts’,
’FlowPathCuts’, ’GUBCoverCuts’, ’ImpliedCuts’, ’MIPSepCuts’, ’MIRCuts’, ’ModKCuts?’,
’NetworkCuts’, ’SubMIPCuts’, ’ZeroHalfCuts’]

Note that Model.Params is a bit less forgiving than setParam(). In particular, wildcards are not
allowed with this approach. You don’t have to worry about capitalization of parameter names in
either approach, though, so m.params.Heuristics and m.params.heuristics are equivalent.

The full set of available parameters can be browsed using the paramHelp() command. You can
obtain further information on a specific parameter (e.g., MIPGap) by typing paramHelp(’MIPGap’).

Parameter tuning tool

When confronted with the task of choosing parameter values that might lead to better performance
on a model, the long list of Gurobi parameters may seem intimidating. To simplify the process,
we include a simple automated parameter tuning tool. From the interactive shell, the command is
tune:

gurobi> m = read(’misc07’)
gurobi> m.tune()

35

The tool tries a number of different parameter settings, and eventually outputs the best ones that
it finds. For example:

Tested 12 parameter sets in 47.77s

Baseline parameter set: runtime 2.39s

Improved parameter set 1 (runtime 1.72s):
RINS O

In this case, it found that setting the RINS parameter to 0 for model misc07 reduced the runtime
from 2.39s to 1.72s.

Note that tuning is meant to give general suggestions for parameters that might help performance.
You should make sure that the results it gives on one model are helpful on the full range of models
you plan to solve. You may sometimes find that performance problems can’t be fixed with parameter
changes alone, particulary if your model has severe numerical issues.

Tuning is also available as a standalone program. From a command prompt, you can type:
> grbtune c:\gurobi650\win64\examples\data\p0033

Please consult the Automated Tuning Tool section of the Gurobi Reference Manual for more infor-
mation.

Using a gurobi.env file

When you want to change the values of Gurobi parameters, you actually have several options
available for doing so. We've already discussed parameter changes through the command-line tool
(e.g., gurobi_cl Threads=1 coins.lp), and through interactive shell commands

(e.g., m.setParam(’Threads’, 1)). Each of our language APIs also provides methods for setting
parameters. The other option we’d like to mention now is the gurobi.env file.

Whenever the Gurobi library starts, it will look for file gurobi.env in the current working directory,
and will apply any parameter changes contained therein. This is true whether the Gurobi library
is invoked from the command-line, from the interactive shell, or from any of the Gurobi APIs.
Parameter settings are stored one per line in this file, with the parameter name first, followed by at
least one space, followed by the desired value. Lines beginning with the # sign are comments and
are ignored. To give an example, the following (Linux) commands:

echo "Threads 1" > gurobi.env
gurobi_cl coins.lp

would read the new value of the Threads parameter from file gurobi.env and then optimize model
coins.lp using one thread. Note that if the same parameter is changed in both gurobi.env and in
your program (or through the Gurobi command-line), the value from gurobi.env will be ignored.

36

http://www.gurobi.com/documentation/6.5/refman/index.html

The distribution includes a sample gurobi.env file (in the bin directory). The sample includes
every parameter, with the default value for each, but with all settings commented out.

Working with multiple models

The Gurobi shell allows you to work with multiple models simultaneously. For example...

gurobi> a = read(’c:/gurobi650/win64/examples/data/p0033?)

Read MPS format model from file c:/gurobi650/win64/examples/data/p0033.mps
Reading time = 0.00 seconds

P0033: 16 Rows, 33 Columns, 98 NonZeros.

gurobi> b = read(’c:/gurobi650/win64/examples/data/stein9?’)

Read MPS format model from file c:/gurobi650/win64/examples/data/stein9.mps
Reading time = 0.00 seconds

STEIN9: 13 Rows, 9 Columns, 45 NonZeros.

The models() command gives a list of all active models.

gurobi> models()

Currently loaded models:

a : <gurobi.Model MIP instance P0033: 16 constrs, 33 vars>
b : <gurobi.Model MIP instance STEINO: 13 constrs, 9 vars>

Note that parameters can be set for a particular model with the Model.setParam() method or the
Model.Params class, or they can be changed for all models in the Gurobi shell by using the global
setParam() method.

Help

The interactive shell includes an extensive help facility. To access it, simply type help() at the
prompt. As previously mentioned, help is available for all of the important objects in the inter-
face. For example, as explained in the help facility, you can type help(Model), help(Var), or
help(Constr). You can also obtain detailed help on any of the available methods on these ob-
jects. For example, help(Model.setParam) gives help on setting model parameters. You can also
use a variable, or a method on a variable, to ask for help. For example, if variable m contains a
Model object, then help(m) is equivalent to help(Model), and help(m.setParam) is equivalent to
help(Model.setParam).

Interface customization

The Gurobi interactive shell lives within a full featured scripting language. This allows you to
perform a wide range of customizations to suit your particular needs. Creating custom functions

37

requires some knowledge of the Python language, but you can achieve a lot by using a very limited
set of language features.

Let us consider a simple example. Imagine that you store your models in a certain directory on
your disk. Rather than having to type the full path whenever you read a model, you can create
your own custom read method:

gurobi> def myread{(filename):
....... return read(’/home/john/models/’+filename)

Note that the indentation of the second line is required.

Defining this function allows you to do the following:

gurobi> m = myread(’stein9’)
Read MPS format model from file /home/john/models/stein9.mps

If you don’t want to type this function in each time you start the Gurobi shell, you can store it in
a file. The file would look like the following:

from gurobipy import *

def myread(filename):
return read(’/home/john/models/’+filename)

The from gurobipy import * line is required in order to allow you to use the read method from
the Gurobi shell in your custom function. The name of your customization file must end with a .py
suffix. If the file is named custom.py, you would then type:

gurobi> from custom import *
in order to import this function. One file can contain as many custom functions as you'd like (see

custom.py in <installdir>/examples/python for an example). If you wish to make site-wide
customizations, you can also customize the gurobi.py file that is included in <installdir>/1ib.

Customization through callbacks

Another type of customization we’d like to touch on briefly can be achieved through Gurobi call-
backs. Callbacks allow you to track the progress of the optimization process. For the sake of
our example, let’s say you want the MIP optimizer to run for 10 seconds before quitting, but you
don’t want it to terminate before it finds a feasible solution. The following callback method would
implement this condition:

from gurobipy import *

def mycallback(model, where):

38

if where == GRB.Callback.MIP:
time = model.cbGet (GRB.Callback.RUNTIME)
best = model.cbGet(GRB.Callback.MIP_OBJBST)
if time > 10 and best < GRB.INFINITY:
model.terminate ()

Once you import this function (from custom import *), you can then say m.optimize (mycallback)
to obtain the desired termination behavior. Alternatively, you could define your own custom opti-
mize method that always invokes the callback:

def myopt (model):
model.optimize(mycallback)

This would allow you to say myopt (m).

You can pass arbitrary data into your callback through the model object. For example, if you set
m._mydata = 1 before calling optimize(), you can query m._mydata inside your callback function.
Note that the names of user data fields must begin with an underscore.

This callback example is included in <installdir>/examples/python/custom.py.
Type from custom import * to import the callback and the myopt() function.

You can type help(GRB.Callback) for more information on callbacks. You can also refer to the
Callback class documentation in the Gurobi Reference Manual.

The Gurobi Python Interface for Python Users

While the Gurobi installation includes everything you need to use Gurobi from within Python, we
understand that some users would prefer to use Gurobi from within their own Python environment.
Doing so requires you to install the gurobipy module. The steps for doing this depend on your plat-
form. On Windows, you can double-click on the pysetup program in the Gurobi <installdir>/bin
directory. This program will prompt you for the location of your Python installation; it handles all
of the details of the installation. On Linux or Mac OS, you will need to open a terminal window,
change your current directory to the Gurobi <installdir> (the directory that contains the file
setup.py), and issue the following command:

python setup.py install

Unless you are using your own private Python installation, you will need to run this command as
super-user. Once gurobipy is successfully installed, you can type import gurobipy or from gurobipy import *
from your Python shell and access all of the Gurobi classes and methods.

Note that for this installation to succeed, your Python environment must be compatible with the
Gurobi Python module. You should only install 32-bit Gurobi libraries into a 32-bit Python shell
(similarly for 64-bit versions). In addition, your Python version must be compatible. With this
release, gurobipy can be used with Python 2.7, 3.2, or 3.4 on Windows and Linux, and with
Python 2.7 on Mac OS.

39

http://www.gurobi.com/documentation/6.5/refman/index.html

As mentioned in the previous section, most of the information associated with a Gurobi model is
stored in a set of atfributes. Some attributes are associated with the variables of the model, some
with the constraints of the model, and some with the model itself. After you optimize a model, for
example, the solution is stored in the X variable attribute. Attributes that are computed by the
Gurobi optimizer (such as the solution attribute) cannot be modified directly by the user, while
those that represent input data (such as the LB attribute which stores variable lower bounds) can.

Each of the Gurobi language interfaces contains routines for querying or modifying attribute values.
To retrieve or modify the value of a particular attribute, you simply pass the name of the attribute
to the appropriate query or modification routine. In the C interface, for example, you’d make the
following call to query the current solution value on variable 1:

double x1;
error = GRBgetdblattrelement(model, GRB_DBL_ATTR_X, 1, &x1);

This routine returns a single element from an array-valued attribute containing double-precision
data. Routines are provided to query and modify scalar-valued and array-valued attributes of type
int, double, char, or char *.

In the object oriented interfaces, you query or modify attribute values through the appropriate
objects. For example, if variable v is a Gurobi variable object (a GRBVar), then the following calls
would be used to modify the lower bound on v:

C++: v.set (GRB_DoubleAttr_LB, 0.0);
Java: v.set (GRB.DoubleAttr.LB, 0.0);
C#: v.Set (GRB.DoubleAttr.LB, 0.0);
Python: v.1b = 0.0

The exact syntax for querying or modifying an attribute varies slightly from one language to another,
but the basic approach remains consistent: you call the appropriate query or modification method
using the name of the desired attribute as an argument.

The full list of Gurobi attributes can be found in the Attributes section of the Gurobi Reference
Manual.

40

Attributes

http://www.gurobi.com/documentation/6.5/refman/index.html
http://www.gurobi.com/documentation/6.5/refman/index.html

C Interface

This section will work through a simple C example in order to illustrate the use of the Gurobi
C interface. The example builds a simple Mixed Integer Programming model, optimizes it, and
outputs the optimal objective value. This section assumes that you are already familiar with the
C programming language. If not, a variety of books are available for learning the language (for

example, The C Programming Language, by Kernighan and Ritchie).

Our example optimizes the following model:

maximize
subject to x

Example mipl c.c

y + 2z
+ 2y + 3z

X, ¥, 7 binary

IV A

This is the complete source code for our example (also available as

<installdir>/examples/c/mipl_c.c)...

#include <stdlib.h>
#include <stdio.h>
#include "gurobi_c.h"

int
main(int argc,
char *argv[])

{
GRBenv *env = NULL;
GRBmodel *model = NULL;
int error = 0;
double sol[3];
int ind[3];
double vall[3];
double obj[3];
char vtype[3];
int optimstatus;
double objval;
int zero = 0;

/* Create environment */

41

error = GRBloadenv{(&env, "mipl.log");

if (error || env == NULL) {
fprintf (stderr, "Error: could not create environment\n");
exit(1);

}

/* Create an empty model */

error = GRBnewmodel(env, &model, "mipl", O, NULL, NULL, NULL, NULL, NULL);

if (error) goto QUIT;

/* Add variables */

obj[0] = 1; obj[1] = 1; obj[2] = 2;

vtype[0] = GRB_BINARY; vtype[1] = GRB_BINARY; vtype[2] = GRB_BINARY;

error = GRBaddvars(model, 3, O, NULL, NULL, NULL, obj, NULL, NULL, wvtype,
NULL) ;

if (error) goto QUIT;

/* Change objective sense to maximization */

error = GRBsetintattr(model, GRB_INT_ATTR_MODELSENSE, GRB_MAXIMIZE);
if (error) goto QUIT;

/* Integrate new variables */

error = GRBupdatemodel (model);

if (error) goto QUIT;

/* First constraint: x + 2 y + 3 z <= 4 */

ind[0] = 0; ind[1] = 1; ind[2] = 2;
val[0] 1; val[l1] = 2; val[2] = 3;

error = GRBaddconstr(model, 3, ind, wval, GRB_LESS_EQUAL, 4.0, NULL);
if (error) goto QUIT;

/* Second constraint: x + y >= 1 %/

ind[0] = 0; ind[1] = 1;
val[0] = 1; vall1] 1,

42

error = GRBaddconstr(model, 2, ind, val, GRB_GREATER_EQUAL, 1.0, NULL);
if (error) goto QUIT;

/* Optimize model */

error = GRBoptimize (model);
if (error) goto QUIT;

/* Write model to ’mipl.lp’ */

error = GRBwrite(model, "mipl.lp");
if (error) goto QUIT;

/* Capture solution information */

error = GRBgetintattr(model, GRB_INT_ATTR_STATUS, &optimstatus);
if (error) goto QUIT;

error = GRBgetdblattr(model, GRB_DBL_ATTR_OBJVAL, &oijal);
if (error) goto QUIT;

error = GRBgetdblattrarray(model, GRB_DBL_ATTR_X, O, 3, sol);
if (error) goto QUIT;

printf ("\nOptimization complete\n");
if (optimstatus == GRB_OPTIMAL) {
printf ("Optimal objective: %.4e\n", objval);

printf (" x=.0f, y=%.0f, z=%.0f\n", sol[0], sol[1], sol[2]);
} else if (optimstatus == GRB_INF_OR_UNBD) {

printf("Model is infeasible or unbounded\n");
} else {

printf ("Optimization was stopped early\n");

QUIT:
/* Error reporting */
if (error) {
printf ("ERROR: %s\n", GRBgeterrormsg(env));
exit(1);

3

/* Free model */

GRBfreemodel (model) ;
/* Free environment */
GRBfreeenv(env) ;

return 0;

Example details

Let us now walk through the example, line by line, to understand how it achieves the desired result
of optimizing the indicated model.

The example begins by including a few include files. Gurobi C applications should always start by
including gurobi_c.h, along with the standard C include files (stdlib.h and stdio.h).

Creating the environment

After declaring the necessary program variables, the example continues by creating an environment:

error = GRBloadenv(&env, "mipl.log");

if (error || env == NULL) {
fprintf(stderr, "Error: could not create environment\n");
exit(1);

}

Later attempts to create optimization models will always require an environment, so environment
creation should always be the first step when using the Gurobi optimizer. The second argument to
GRBloadenv() provides the name of the Gurobi log file. If the argument is an empty string or NULL,
no log file will be written.

Note that environment creation may fail, so you should check the return value of the call.

Creating the model

Once an environment has been created, the next step is to create a model. A Gurobi model
holds a single optimization problem. It consists of a set of variables, a set of constraints, and the
associated attributes (variable bounds, objective coefficients, variable integrality types, constraint
senses, constraint right-hand side values, etc.). The first step towards building a model that contains
all of this information is to create an empty model object:

44

/* Create an empty model */
error = GRBnewmodel(env, &model, "mipl", O, NULL, NULL, NULL, NULL, NULL);
if (error) goto QUIT;

The first argument to GRBnewmodel() is the previously created environment. The second is a
pointer to the location where the pointer to the new model should be stored. The third is the name
of the model. The fourth is the number of variables to initially add to the model. Since we’re
creating an empty model, the number of initial variables is 0. The remaining arguments would
describe the initial variables (lower bounds, upper bounds, variable types, etc.), had they been
present.

Adding variables to the model

Once we create a Gurobi model, we can start adding variables and constraints to it. In our example,
we’ll begin by adding variables:

/* Add variables */

obj[0] = 1; obj[1] = 1; objl[2] = 2;

vtype[0] = GRB_BINARY; vtype[1] = GRB_BINARY; vtype[2] = GRB_BINARY;

error = GRBaddvars(model, 3, 0, NULL, NULL, NULL, obj, NULL, NULL, vtype,
NULL) ;

The first argument to GRBaddvars() is the model to which the variables are being added. The
second is the number of added variables (3 in our example).

Arguments three through six describe the constraint matrix coefficients associated with the new
variables. The third argument gives the number of non-zero constraint matrix entries associated
with the new variables, and the next three arguments give details on these non-zeros. In our
example, we'll be adding these non-zeros when we add the constraints. Thus, the non-zero count
here is zero, and the following three arguments are all NULL.

The seventh argument to GRBaddvars() is the linear objective coefficient for each new variable.
Since our example aims to maximize the objective, and by default Gurobi will minimize the objective,
we’ll need to change the objective sense. This is done in the next statement. Note we could have
multiplied the objective coefficients by -1 instead (since maximizing ¢z is equivalent to minimizing
—x).

The next two arguments specify the lower and upper bounds of the variables, respectively. The
NULL values indicate that these variables should take their default values (0.0 and 1.0 for binary
variables).

The tenth argument specifies the types of the variables. In this example, the variables are all binary
(GRB_BINARY).

The final argument gives the names of the variables. In this case, we allow the variable names to
take their default values (X0, X1, and X2).

45

Changing the objective sense

As we just noted, the default sense for the objective function is minimization. Since our example
aims to maximize the objective, we need to modify the ModelSense attribute:

/* Change objective sense to maximization */

error = GRBsetintattr(model, GRB_INT_ATTR_MODELSENSE, GRB_MAXIMIZE);
if (error) goto QUIT;

Updating the model - lazy modification

Model modifications in the Gurobi optimizer are done in a lazy fashion, meaning that the effects of
the modifications are not seen immediately. This approach makes it easier to perform a sequence
of model modifications, since the model doesn’t change while it is being modified. However, lazy
modifications do require you to manually integrate model changes when needed. This is done with
the following routine:

/* Integrate new variables */
error = GRBupdatemodel(model);
if (error) goto QUIT;

In our example, the model would contain zero variables immediately before the call to GRBupdate-
model(), and three immediately after. Later attempts to add constraints to the model without first
making this call would fail, since the model would contain no variables.

Adding constraints to the model

Once the new variables are integrated into the model, the next step is to add our two constraints.
Constraints are added through the GRBaddconstr() routine. To add a constraint, you must specify
several pieces of information, including the non-zero values associated with the constraint, the
constraint sense, the right-hand side value, and the constraint name. These are all specified as
arguments to GRBaddconstr():

/* First constraint: x + 2 y + 3 z <= 4 %/

ind [0] 0; ind[1] = 1; ind[2]
val[0] = 1; valll] = 2; val[2]

2;
3;

error = GRBaddconstr(model, 3, ind, val, GRB_LESS_EQUAL, 4.0, NULL);
if (error) goto QUIT;

The first argument of GRBaddconstr() is the model to which the constraint is being added. The
second is the total number of non-zero coefficients associated with the new constraint. The next

46

two arguments describe the non-zeros in the new constraint. Constraint coefficients are specified
using a list of index-value pairs, one for each non-zero value. In our example, the first constraint to
be added is =+ 2y + 3z < 4. We have chosen to make z the first variable in our constraint matrix, y
the second, and z the third (note that this choice is arbitrary). Given our variable ordering choice,
the index-value pairs that are required for our first constraint are (0, 1.0), (1, 2.0), and (2, 3.0).
These pairs are placed in the ind and val arrays.

The fifth argument to GRBaddconstr() provides the sense of the new constraint. Possible values
are GRB_LESS_EQUAL, GRB_GREATER_EQUAL, or GRB_EQUAL. The sixth argument gives the right-hand
side value. The final argument gives the name of the constraint (we allow the constraint to take its
default name here by specifying NULL for the argument).

The second constraint is added in a similar fashion:
/* Second constraint: x + y >= 1 %/

ind[0] = 0; ind[1]
val[0] 1; vall1]

1;
1

error = GRBaddconstr(model, 2, ind, val, GRB_GREATER_EQUAL, 1.0, NULL);
if (error) goto QUIT;

Note that routine GRBaddconstrs() would allow you to add both constraints in a single call. The
arguments for this routine are much more complex, though, without providing any significant ad-
vantages, so we recommend that you add one constraint at a time.

Optimizing the model
Now that the model has been built, the next step is to optimize it:

error = GRBoptimize (model);
if (error) goto QUIT;

This routine performs the optimization and populates several internal model attributes, including
the status of the optimization, the solution, etc. Once the function returns, we can query the values
of these attributes. In particular, we can query the status of the optimization process by retrieving
the value of the Status attribute...

error = GRBgetintattr(model, GRB_INT_ATTR_STATUS, &optimstatus);
if (error) goto QUIT;

The optimization status has many possible values. An optimal solution to the model may have been
found, or the model have been determined to be infeasible or unbounded, or the solution process
may have been interrupted. A list of possible statuses can be found in the Gurobi Reference Manual.
For our example, we know that the model is feasible, and we haven’t modified any parameters that
might cause the optimization to stop early (e.g., a time limit), so the status will be GRB_OPTIMAL.

47

http://www.gurobi.com/documentation/6.5/refman/index.html

Another important model attribute is the value of the objective function for the computed solution.
This is accessed through this call:

error = GRBgetdoubleattr(model, GRB_DBL_ATTR_OBJVAL, &objval);
if (error) goto QUIT;

Note that this call would return a non-zero error result if no solution was found for this model.

Once we know that the model was solved, we can extract the X attribute of the model, which
contains the value for each variable in the computed solution:

error = GRBgetdoublearrayattr(model, GRB_DBL_ATTR_X, 0, 3, x);
if (error) goto QUIT;
printf(" x=%.0f, y=%.0f, z=}.0f", x[0], x[1], x[2]);

This routine retrieves the values of an array-valued attribute. The third and fourth arguments
indicate the index of the first array element to be retrieved, and the number of elements to retrieve,
respectively. In this example we retrieve entries 0 through 2 (i.e., all three of them)

Error reporting

We would like to point out one additional aspect of the example. Almost all of the Gurobi methods
return an error code. The code will typically be zero, indicating that no error was encountered, but
it is important to check the value of the code in case an error arises.

While you may want to print a specialized error code at each point where an error may occur,
the Gurobi interface provides a more flexible facility for reporting errors. The GRBgeterrormsg()
routine returns a textual description of the most recent error associated with an environment:

if (error) {
printf ("ERROR: %s\n", GRBgeterrormsg(env));
exit(1);

}

Once the error reporting is done, the only remaining task in our example is to release the resources
associated with our optimization task. In this case, we populated one model and created one
environment. We call GRBfreemodel (model) to free the model, and GRBfreeenv(env) to free the
environment.

Building and running the example

To build and run the example, please refer to the files in <installdir>/examples/build. For
Windows platforms, this directory contains C_examples_2008.sln, C_examples_2010.sln, and
C_examples_2012.sln (Visual Studio 2008, 2010, and 2012 solution files for the C examples).
Double-clicking on the solution file will bring up Visual Studio. Clicking on the mip1_c project,

48

and then selecting Run from the Build menu will compile and run the example. For Linux or Mac
OS platforms, the <installdir>/examples/build directory contains an example Makefile. Typing
make mipl_c will build and run this example.

The C example directory <installdir>/examples/c contains a number of examples. We encourage
you to browse and modify them in order to become more familiar with the Gurobi C interface. We
also encourage you to read the Gurobi Example Tour for more information.

49

http://www.gurobi.com/documentation/6.5/examples/index.html

C4+ Interface

This section will work through a simple C++ example in order to illustrate the use of the Gurobi
C++ interface. The example builds a model, optimizes it, and outputs the optimal objective value.
This section assumes that you are already familiar with the C+—+ programming language. If not,
a variety of books are available for learning the language (for example, The C++ Programming
Language, by Stroustrup).

Our example optimizes the following model:

maximize x + y + 2z
subject to x + 2y + 3z <
X+ y > 1

X, V, z binary

Note that this is the same model that was modeled and optimized in the C Interface section.

Example mipl c++.cpp

This is the complete source code for our example (also available in
<installdir>/examples/c++/mipl_c++.cpp)...

#include "gurobi_c++.h"
using namespace std;

int
main(int argc,
char *argv[])
{
try {
GRBEnv env = GRBEnv();

GRBModel model = GRBModel(env);

// Create variables

GRBVar x = model.addVar(0.0, 1.0, 0.0, GRB_BINARY, "x");
GRBVar y = model.addVar(0.0, 1.0, 0.0, GRB_BINARY, "y");
GRBVar z = model.addVar(0.0, 1.0, 0.0, GRB_BINARY, "z");

// Integrate new variables

20

model.update();

// Set objective: maximize x + y + 2 z

model.setObjective(x + y + 2 * z, GRB_MAXIMIZE);

// Add constraint: x + 2y + 3 z <= 4

model.addConstr(x + 2 * y + 3 *x z <= 4, "cO");

// Add constraint: x +y >= 1

model.addConstr(x + y >= 1, "ci1");

// Optimize model

model.optimize();

cout <<
<<
cout <<
<<
cout <<
<<

cout <<

x.get (GRB_StringlAttr_VarName) << " "
x.get (GRB_DoubleAttr_X) << endl;
y.get (GRB_StringAttr_VarName) << " "
y.get (GRB_DoubleAttr_X) << endl;
z.get (GRB_StringAttr_VarName) << " "
z.get (GRB_DoubleAttr_X) << endl;

"Obj: " << model.get(GRB_DoubleAttr_0bjVal) << endl;

} catch(GRBException e) {

cout <<
cout <<

} catch(..

cout <<

3

return 0;

"Error code = " << e.getErrorCode() << endl;
e.getMessage() << endl;

DA

"Exception during optimization" << endl;

Example details

Let us now walk through the example, line by line, to understand how it achieves the desired result
of optimizing the indicated model.

The example begins by including file gurobi_c++.h. Gurobi C++ applications should always start
by including this file.

ol

Creating the environment

The first executable statement in our example obtains a Gurobi environment (using the GRBEnv ()
constructor):

GRBEnv env = GRBEnv();

Later calls to create an optimization model will always require an environment, so environment
creation is typically the first step in a Gurobi application.

Creating the model

Once an environment has been created, the next step is to create a model. A Gurobi model
holds a single optimization problem. It consists of a set of variables, a set of constraints, and the
associated attributes (variable bounds, objective coefficients, variable integrality types, constraint
senses, constraint right-hand side values, etc.). The first step towards building a model that contains
all of this information is to create an empty model object:

GRBModel model = GRBModel(env);

The constructor takes the previously created environment as its argument.

Adding variables to the model

The next step in our example is to add variables to the model.

// Create variables

GRBVar x = model.addVar(0.0, 1.0, 0.0, GRB_BINARY, "x");
GRBVar y model.addVar(0.0, 1.0, 0.0, GRB_BINARY, "y");
GRBVar z = model.addVar(0.0, 1.0, 0.0, GRB_BINARY, "z");

b

b b

Variables are added through the addVar () method on the model object. A variable is always
associated with a particular model.

The first and second arguments to the addVar() call are the variable lower and upper bounds,
respectively. The third argument is the linear objective coefficient (zero here - we’ll set the objective
later). The fourth argument is the variable type. Our variables are all binary in this example. The
final argument is the name of the variable.

The addVar() method has been overloaded to accept several different argument lists. Please refer
to the Gurobi Reference Manual for further details.

Updating the model - lazy modification

Model modifications in the Gurobi optimizer are done in a lazy fashion, meaning that the effects of
the modifications are not seen immediately. This approach makes it easier to perform a sequence

92

http://www.gurobi.com/documentation/6.5/refman/index.html

of model modifications, since the model doesn’t change while it is being modified. However, lazy
modifications do require you to manually integrate model changes when needed. This is done with
the update method:

// Integrate new variables
model.update();

Setting the objective

The next step in the example is to set the optimization objective:

// Set objective: maximize x +y + 2 z
model.setObjective(x + y + 2 * z, GRB_MAXIMIZE);

The objective is built here using overloaded operators. The C++ API overloads the arithmetic
operators to allow you to build linear and quadratic expression involving Gurobi variables.

The second argument indicates that the sense is maximization.

Note that while this simple example builds the objective in a single statement using an explicit list
of terms, more complex programs will typically build it incrementally. For example:

GRBLinExpr obj = 0.0;

obj += x;
obj += y;
obj += 2%z;

model.set0Objective(obj, GRB_MAXIMIZE);

Adding constraints to the model

The next step in the example is to add the constraints. The first constraint is added here:

// Add constraint: x + 2y + 3 z <= 4
model.addConstr(x + 2 * y + 3 *x z <= 4, "c0");

As with variables, constraints are always associated with a specific model. They are created using
the addConstr() or addConstrs() methods on the model object.

We again use overloaded arithmetic operators to build the linear expression. The comparison
operators are also overloaded to make it easy to build linear constraints.

The second argument to addConstr gives the (optional) constraint name.

Again, this simple example builds the linear expression for the constraint in a single statement using
an explicit list of terms. More complex programs will typically build the expression incrementally.

The second constraint in our model is added with this similar call:

53

// Add constraint: x +y >= 1
model.addConstr(x + y >= 1, "c1");
Optimizing the model
Now that the model has been built, the next step is to optimize it:

// Optimize model
model.optimize();

This routine performs the optimization and populates several internal model attributes (including
the status of the optimization, the solution, etc.).

Reporting results - attributes

Once the optimization is complete, we can query the values of the attributes. In particular, we can
query the VarName and X attributes to obtain the name and solution value of each variable:

cout << x.get(GRB_StringAttr_VarName) << " "
<< x.get(GRB_DoubleAttr_X) << endl;

cout << y.get(GRB_StringAttr_VarName) << " "
<< y.get (GRB_DoubleAttr_X) << endl;

cout << z.get(GRB_StringAttr_VarName) << " "
<< z.get (GRB_DoubleAttr_X) << endl;

We can also query the 0bjVal attribute on the model to obtain the objective value for the current
solution:

cout << "Obj: " << model.get(GRB_DoubleAttr_0ObjVal) << endl;
The names and types of all model, variable, and constraint attributes can be found in the Attributes
section of the Gurobi Reference Manual.
Error handling
Errors in the Gurobi C++ interface are handled through the C+4++ exception mechanism. In the
example, all Gurobi statements are enclosed inside a try block, and any associated errors would be
caught by the catch block.

Building and running the example

To build and run the example, we refer the user to the files in <installdir>/examples/build.
For Windows platforms, this directory contains C++_examples_2008.sln, C++_examples_2010.sln,

o4

http://www.gurobi.com/documentation/6.5/refman/index.html

and C++_examples_2012.sln (Visual Studio 2008, 2010, and 2012 solution files for the C++ ex-
amples). Double-clicking on the solution file will bring up Visual Studio. Clicking on the mipl_c++
project, and then selecting Run from the Build menu will compile and run the example. For Linux
or Mac OS platforms, the <installdir>/examples/build directory contains an example Makefile.
Typing make mipl_c++ will build and run this example.

If you want to create your own project or makefile to build a C++ program that calls Gurobi, the
details will depend on your platform and development environment, but we’d like to point out a
few common pitfalls:

e On Windows, be sure to choose the Gurobi C++ library that is compatible with your Vi-
sual Studio version and your choice of runtime library (Gurobi supports runtime library
options /MD, /MDd, /MT, and /MTd). To give an example, use file gurobi_c++md2010.1ib
when you choose runtime library option /MD in Visual Studio 2010. Similarly, use file
gurobi_c++mtd2012.1ib when you choose runtime library option /MTd in Visual Studio
2012.

e A C++ program that uses Gurobi must link in both the Gurobi C++ library (e.g., gurobi_c++mt2010.1ib
on Windows, libgurobi_c++.a on Linux and Mac) and the Gurobi C library (gurobi65.1ib
on Windows, 1ibgurobi65.so on Linux and Mac).

The C++ example directory <installdir>/examples/c++ contains a number of examples. We
encourage you to browse and modify them in order to become more familiar with the Gurobi C+-+
interface. We also encourage you to read the Gurobi Example Tour for more information.

5%)

http://www.gurobi.com/documentation/6.5/examples/index.html

Java Interface

This section will work through a simple Java example in order to illustrate the use of the Gurobi
Java interface. The example builds a model, optimizes it, and outputs the optimal objective value.
This section assumes that you are already familiar with the Java programming language. If not, a
variety of books and websites are available for learning the language (for example, the online Java
tutorials).

Our example optimizes the following model:

maximize x + y + 2z
subject to x + 2y + 3z <
X+ y > 1

X, V, z binary

Note that this is the same model that was modeled and optimized in the C Interface section.

Example Mipl.java

This is the complete source code for our example (also available in
<installdir>/examples/java/Mipl.java)...

import gurobi.*;

public class Mipl {
public static void main(String[] args) {
try {
GRBEnv env
GRBModel model

new GRBEnv("mipl.log");
new GRBModel(env);

// Create variables

GRBVar x = model.addVar(0.0, 1.0, 0.0, GRB.BINARY, "x");
GRBVar y = model.addVar(0.0, 1.0, 0.0, GRB.BINARY, "y");
GRBVar z = model.addVar(0.0, 1.0, 0.0, GRB.BINARY, "z");

// Integrate new variables
model.update();

// Set objective: maximize x + y + 2 z

o6

http://java.sun.com/docs/books/tutorial
http://java.sun.com/docs/books/tutorial

GRBLinExpr expr = new GRBLinExpr();
expr.addTerm(1.0, x); expr.addTerm(1.0, y); expr.addTerm(2.0, z);
model.setObjective(expr, GRB.MAXIMIZE);

// Add constraint: x + 2y + 3 z <= 4

expr = new GRBLinExpr();
expr.addTerm(1.0, x); expr.addTerm(2.0, y); expr.addTerm(3.0, z);
model.addConstr (expr, GRB.LESS_EQUAL, 4.0, "cO0");

// Add constraint: x +y >= 1

expr = new GRBLinExpr();
expr.addTerm(1.0, x); expr.addTerm(1.0, y);
model .addConstr (expr, GRB.GREATER_EQUAL, 1.0, "c1");

// Optimize model
model.optimize();

System.out.println{(x.get (GRB.StringAttr.VarName)

+ " " +x.get (GRB.DoubleAttr.X));
System.out.println(y.get (GRB.StringAttr.VarName)

+ " " +y.get (GRB.DoubleAttr.X));
System.out.println(z.get (GRB.StringAttr.VarName)

+ " " +z_ get (GRB.DoubleAttr.X));

System.out.println{("Obj: " + model.get(GRB.DoubleAttr.0bjVal));
// Dispose of model and environment

model .dispose();
env.dispose();

catch (GRBException e) {
System.out.println("Error code: " + e.getErrorCode() + ". " +
e.getMessage());

o7

Example details

Let us now walk through the example, line by line, to understand how it achieves the desired result
of optimizing the indicated model.

The example begins by importing the Gurobi classes (import gurobi.#*). Gurobi Java applications
should always start with this line.

Creating the environment

The first executable statement in our example obtains a Gurobi environment (using the GRBEnv ()
constructor):

GRBEnv env = new GRBEnv("mipl.log");
Later calls to create an optimization model will always require an environment, so environment
creation is typically the first step in a Gurobi application. The constructor argument specifies the
name of the log file.
Creating the model
Once an environment has been created, the next step is to create a model. A Gurobi model
holds a single optimization problem. It consists of a set of variables, a set of constraints, and the
associated attributes (variable bounds, objective coefficients, variable integrality types, constraint
senses, constraint right-hand side values, etc.). The first step towards building a model that contains
all of this information is to create an empty model object:

GRBModel model = new GRBModel(env);

The constructor takes the previously created environment as its argument.

Adding variables to the model
The next step in our example is to add variables to the model.

// Create variables

GRBVar x = model.addVar(0.0, 1.0, 0.0, GRB.BINARY, "x");
GRBVar y = model.addVar(0.0, 1.0, 0.0, GRB.BINARY, "y");
GRBVar z = model.addVar(0.0, 1.0, 0.0, GRB.BINARY, "z");

Variables are added through the addVar () method on a model object. A variable is always associated
with a particular model.

The first and second arguments to the addVar() call are the variable lower and upper bounds,
respectively. The third argument is the linear objective coefficient (zero here - we'll set the objective

o8

later). The fourth argument is the variable type. Our variables are all binary in this example. The
final argument is the name of the variable.

The addVar () method has been overloaded to accept several different argument lists. Please refer
to the Gurobi Reference Manual for further details.

Updating the model - lazy modification

Model modifications in the Gurobi optimizer are done in a lazy fashion, meaning that the effects of
the modifications are not seen immediately. This approach makes it easier to perform a sequence
of model modifications, since the model doesn’t change while it is being modified. However, lazy
modifications do require you to manually integrate model changes when needed. This is done with
the update method:

// Integrate new variables
model.update();

Setting the objective

The next step in the example is to set the optimization objective:

// Set objective: maximize x + y + 2 z

GRBLinExpr expr = new GRBLinExpr();
expr.addTerm(1.0, x); expr.addTerm(1.0, y); expr.addTerm(2.0, z);
model.setObjective (expr, GRB.MAXIMIZE);

The objective must be a linear or quadratic function of the variables in the model. In our example,
we build our objective by first constructing an empty linear expression and adding three terms to
it.

The second argument to setObjective indicates that the optimization sense is maximization.

Adding constraints to the model

The next step in the example is to add the constraints. The first constraint is added here:

// Add constraint: x + 2y + 3 z <=4
GRBLinExpr expr;

expr = new GRBLinExpr();
expr.addTerm(1.0, x); expr.addTerm(2.0, y); expr.addTerm(3.0, z);
model .addConstr (expr, GRB.LESS_EQUAL, 4.0, "c0");

29

http://www.gurobi.com/documentation/6.5/refman/index.html

As with variables, constraints are always associated with a specific model. They are created using
the addConstr() or addConstrs() methods on the model object.

The first argument to addConstr() is the left-hand side of the constraint. We built the left-hand side
by first creating an empty linear expression object, and then adding three terms to it. The second
argument is the constraint sense (GRB_LESS_EQUAL, GRB_GREATER_EQUAL, or GRB_EQUAL). The third
argument is the right-hand side (a constant in our example). The final argument is the constraint
name. Several signatures are available for addConstr(). Please consult the Gurobi Reference Manual
for details.

The second constraint is created in a similar manner:

// Add constraint: x + y >= 1

expr = new GRBLinExpr();
expr.addTerm(1.0, x); expr.addTerm(1.0, y);
model.addConstr (expr, GRB.GREATER_EQUAL, 1.0, "c1'");

Optimizing the model

Now that the model has been built, the next step is to optimize it:

// Optimize model
model.optimize();

This routine performs the optimization and populates several internal model attributes (including
the status of the optimization, the solution, etc.).

Reporting results - attributes

Once the optimization is complete, we can query the values of the attributes. In particular, we can
query the VarName and X attributes to obtain the name and solution value for each variable:

System.out.println(x.get (GRB.StringAttr.VarName)

+ " " +x.get (GRB.DoubleAttr.X));
System.out.println(y.get (GRB.StringAttr.VarName)

+ " " +y.get (GRB.DoubleAttr.X));
System.out.println{(z.get (GRB.StringAttr.VarName)

+ " " +z.get (GRB.DoubleAttr.X));

We can also query the ObjVal attribute on the model to obtain the objective value for the current
solution:

System.out.println("Obj: " + model.get(GRB.DoubleAttr.0bjVal));

The names and types of all model, variable, and constraint attributes can be found in the Attributes
section of the Gurobi Reference Manual.

60

http://www.gurobi.com/documentation/6.5/refman/index.html
http://www.gurobi.com/documentation/6.5/refman/index.html

Cleaning up
The example concludes with dispose calls:

model .dispose();
env.dispose();

These reclaim the resources associated with the model and environment. Garbage collection would
reclaim these eventually, but if your program doesn’t exit immediately after performing the opti-
mization, it is best to reclaim them explicitly.

Note that all models associated with an environment must be disposed before the environment itself
is disposed.

Error handling

Errors in the Gurobi Java interface are handled through the Java exception mechanism. In the
example, all Gurobi statements are enclosed inside a try block, and any associated errors would be
caught by the catch block.

Building and running the example

To build and run the example, please refer to the files in <installdir>/examples/build. For
Windows platforms, this directory contains runjava.bat, a simple script to compile and run a
java example. Say runjava Mipl to run this example. For Linux or Mac OS platforms, the
<installdir>/examples/build directory contains an example Makefile. Typing make Mipl will
build and run this example.

The Java example directory <installdir>/examples/java contains a number of examples. We
encourage you to browse and modify them in order to become more familiar with the Gurobi Java
interface. We also encourage you to read the Gurobi Example Tour for more information.

61

http://www.gurobi.com/documentation/6.5/examples/index.html

.NET Interface (C#)

This section will work through a simple C# example in order to illustrate the use of the Gurobi
NET interface. The example builds a model, optimizes it, and outputs the optimal objective value.
This section assumes that you are already familiar with the C# programming language. If not, a
variety of books and websites are available for learning the language (for example, the Microsoft
online C# documentation).

Our example optimizes the following model:

maximize x + y + 2z
subject to x + 2y + 3z <
X+ y > 1

X, V, z binary

Note that this is the same model that was modeled and optimized in the C Interface section.

Example mipl cs.cs

This is the complete source code for our example (also available in
<installdir>/examples/c#/mipl_cs.cs)...

using System;
using Gurobi;

class mipl_cs
{
static void Main()
{
try {
GRBEnv env
GRBModel model

new GRBEnv("mipl.log");
new GRBModel(env);

// Create variables

GRBVar x = model.AddVar(0.0, 1.0, 0.0, GRB.BINARY, "x");
GRBVar y = model.AddVar(0.0, 1.0, 0.0, GRB.BINARY, "y");
GRBVar z = model.AddVar(0.0, 1.0, 0.0, GRB.BINARY, "z");

// Integrate new variables

62

http://msdn.microsoft.com/en-us/vcsharp
http://msdn.microsoft.com/en-us/vcsharp

model.Update();
// Set objective: maximize x +y + 2 z
model.SetObjective(x + y + 2 * z, GRB.MAXIMIZE);
// Add constraint: x + 2y + 3 z <= 4
model.AddConstr(x + 2 * y + 3 * z <= 4.0, "c0");
// Add constraint: x + y >= 1
model.AddConstr(x + y >= 1.0, "cl1™);
// Optimize model
model.Optimize();
Console.WriteLine(x.Get (GRB.StringAttr.VarName)

+ " " + x.Get(GRB.DoubleAttr.X));
Console.WriteLine(y.Get (GRB.StringAttr.VarName)

+ " " + y.Get(GRB.DoubleAttr.X));
Console.WriteLine(z.Get (GRB.StringAttr.VarName)

+ " " + z.Get(GRB.DoubleAttr.X));
Console.WriteLine("Obj: " + model.Get(GRB.DoubleAttr.0ObjVal));

// Dispose of model and env

model.Dispose();
env.Dispose();

catch (GRBException e) {
Console.WriteLine ("Error code: " + e.ErrorCode + ". " + e.Message);

Example details

Let us now walk through the example, line by line, to understand how it achieves the desired result
of optimizing the indicated model.

The example begins by importing the Gurobi namespace (using Gurobi). Gurobi .NET applica-
tions should always start with this line.

63

Creating the environment

The first executable statement in our example obtains a Gurobi environment (using the GRBEnv ()
constructor):

GRBEnv env = new GRBEnv("mipl.log");

Later calls to create an optimization model will always require an environment, so environment
creation is typically the first step in a Gurobi application. The constructor argument specifies the
name of the log file.

Creating the model

Once an environment has been created, the next step is to create a model. A Gurobi model
holds a single optimization problem. It consists of a set of variables, a set of constraints, and the
associated attributes (variable bounds, objective coefficients, variable integrality types, constraint
senses, constraint right-hand side values, etc.). The first step towards building a model that contains
all of this information is to create an empty model object:

GRBModel model = new GRBModel(env);

The constructor takes the previously created environment as its argument.

Adding variables to the model

The next step in our example is to add variables to the model.

// Create variables

GRBVar x = model.AddVar(0.0, 1.0, 0.0, GRB.BINARY, "x");
GRBVar y = model.AddVar(0.0, 1.0, 0.0, GRB.BINARY, "y");
GRBVar z = model.AddVar(0.0, 1.0, 0.0, GRB.BINARY, "z");

Variables are added through the AddVar () method on a model object. A variable is always associated
with a particular model.

The first and second arguments to the AddVar() call are the variable lower and upper bounds,
respectively. The third argument is the linear objective coefficient (zero here - we’ll set the objective
later). The fourth argument is the variable type. Our variables are all binary in this example. The
final argument is the name of the variable.

The AddVar () method has been overloaded to accept several different argument lists. Please refer
to the Gurobi Reference Manual for further details.

64

http://www.gurobi.com/documentation/6.5/refman/index.html

Updating the model - lazy modification

Model modifications in the Gurobi optimizer are done in a lazy fashion, meaning that the effects of
the modifications are not seen immediately. This approach makes it easier to perform a sequence
of model modifications, since the model doesn’t change while it is being modified. However, lazy
modifications do require you to manually integrate model changes when needed. This is done with
the Update method:

// Integrate new variables
model.Update();

Setting the objective

The next step in the example is to set the optimization objective:

// Set objective: maximize x +y + 2 z
model.SetObjective(x + y + 2 * z, GRB.MAXIMIZE);

The objective is built here using overloaded operators. The C# API overloads the arithmetic
operators to allow you to build linear and quadratic expression involving Gurobi variables.

The second argument indicates that the sense is maximization.

Note that while this simple example builds the objective in a single statement using an explicit list
of terms, more complex programs will typically build it incrementally. For example:

GRBLinExpr obj = 0.0;

obj.AddTerm(1.0, x);

obj.AddTerm(1.0, y);

obj.AddTerm(2.0, z);
model.SetObjective(obj, GRB.MAXIMIZE);

Adding constraints to the model

The next step in the example is to add the constraints:

// Add constraint: x + 2y + 3 z <=4
model.AddConstr(x + 2 * y + 3 * z <= 4.0, "c0");

// Add constraint: x + y >= 1
model.AddConstr(x + y >= 1.0, "cl1");

As with variables, constraints are always associated with a specific model. They are created using
the AddConstr() or AddConstrs() methods on the model object.

65

We again use overloaded arithmetic operators to build linear expressions. The comparison operators
are also overloaded to make it easy to build constraints.

The second argument to AddConstr gives the constraint name.

The Gurobi .NET interface also allows you to add constraints by building linear expressions in a
term-by-term fashion:

GRBLinExpr expr = 0.0;
expr.AddTerm(1.0, x);
expr.AddTerm(2.0, y);
expr.AddTerm(3.0, z);
model .AddConstr (expr, GRB.LESS_EQUAL, 4.0, "c0");

This particular AddConstr() signature takes a linear expression that captures the left-hand side of
the constraint as its first argument, the sense of the constraint as its second argument, and a linear

expression that captures the right-hand side of the constraint as its third argument. The constraint
name is given as the fourth argument.

Optimizing the model
Now that the model has been built, the next step is to optimize it:

// Optimize model
model.Optimize();

This routine performs the optimization and populates several internal model attributes (including
the status of the optimization, the solution, etc.).

Reporting results - attributes

Once the optimization is complete, we can query the values of the attributes. In particular, we can
query the VarName and X attributes to obtain the name and solution value for each variable:

Console.WriteLine (x.Get (GRB.StringAttr.VarName) + " " + x.Get(GRB.DoubleAttr.X));
Console.WriteLine(y.Get (GRB.StringAttr.VarName) + " " + y.Get(GRB.DoubleAttr.X));
Console.WriteLine(z.Get (GRB.StringAttr.VarName) + " " + z.Get(GRB.DoubleAttr.X));

We can also query the 0bjVal attribute on the model to obtain the objective value for the current
solution:

Console.WriteLine("Obj: " + model.Get(GRB.DoubleAttr.0bjVal));

The names and types of all model, variable, and constraint attributes can be found in the Attributes
section of the Gurobi Reference Manual.

66

http://www.gurobi.com/documentation/6.5/refman/index.html

Cleaning up
The example concludes with Dispose calls:

model .Dispose();
env.Dispose();

These reclaim the resources associated with the model and environment. Garbage collection would
reclaim these eventually, but if your program doesn’t exit immediately after performing the opti-
mization, it is best to reclaim them explicitly.

Note that all models associated with an environment must be disposed before the environment itself
is disposed.

Error handling

Errors in the Gurobi .NET interface are handled through the .NET exception mechanism. In the
example, all Gurobi statements are enclosed inside a try block, and any associated errors would be
caught by the catch block.

Building and running the example

You can use the CS_examples_2008.sln, CS_examples_2010.sln, or CS_examples_2012.sln solu-
tion files in <installdir>/examples/build to build and run the example with Visual Studio 2008,
2010, or 2012, respectively. Clicking on the mipl_cs project, and then selecting Run from the Build
menu will compile and run the example.

The C# and Visual Basic example directories (<installdir>/examples/c# and
<installdir>/examples/vb) contain a number of examples. We encourage you to browse and
modify them in order to become more familiar with the Gurobi .NET interface. We also encourage
you to read the Gurobi Example Tour for more information.

67

http://www.gurobi.com/documentation/6.5/examples/index.html

Python Interface

The Gurobi Python interface can be used in a number of ways. It is the basis of our Interactive
Shell, where it is typically used to work with existing models. It can also be used to write standalone
programs that create and solve models, in much the same way that you would use our other language
interfaces. The Gurobi distribution includes a Python interpreter and a basic set of Python modules.
If you’d like additional capabilities, you can also install the Anaconda Python distribution, which
includes both a graphical development environment (Spyder) and a notebook-style interface

When comparing our Python interface against our other language interfaces, you will find that our
Python interface adds a few higher-level constructs that allow you to build models using a more
mathematical syntax, similar to the way you might work with a traditional modeling language. This
section will work through two Python modeling examples. The first will present a Python program
that is similar to the C, C++4, Java, and C# programs presented in previous sections. The second
demonstrates some of the higher-level modeling capabilities of our Python interface.

This section assumes that you are already familiar with the Python programming language, and
that you have read the preceding section on the Gurobi Interactive Shell. If you would like to learn
more about the Python language, we recommend that you visit the Python online tutorial.

As we noted, the Gurobi distribution includes all the tools you will need to run Python programs.
However, if you would prefer to use your own Python installation, we also provide tools for installing
the gurobipy module into your Python environment. You should refer to the instructions for
building and running the examples for further details.

One big advantage of working within Python is that the Python language is popular and well
supported. One aspect of this support is the breadth of powerful Python Integrated Development
Environments (IDEs) that are available, most of which can be downloaded for free from the internet.
This document includes instructions for setting up Gurobi for use within the Anaconda distribution.
Anaconda greatly simplifies the task of installing Python packages, and it includes both a graphical
development environment (Spyder) and a notebook-style interface (iPython Notebook). If you plan
to do significant Python development, we recommend that you install Anaconda now. You will also
find pointers to other useful Python tools there.

Important note for AIX users: due to limited Python support on AIX, our AIX port does not
include the Interactive Shell or the Python interface. You can use the C, C++, or Java interfaces.

The Python example directory contains a number of examples. We encourage you to browse and
modify them in order to become more familiar with the Gurobi Python interface. We also encourage
you to read the Gurobi Example Tour for more information.

68

http://docs.python.org/release/2.7/tutorial/
http://www.gurobi.com/documentation/6.5/examples/index.html

12.1 Simple Python Example

This section will work through a simple Python example in order to illustrate the use of the Gurobi
Python interface. The example builds a model, optimizes it, and outputs the optimal objective
value.

Our example optimizes the following model:

maximize x +
subject to x + 2
X +

+ 2z
+ 3z

<<
IV IA
—

X, ¥, # binary

Note that this is the same model that was modeled and optimized in the C Interface section.

Example mipl.py

This is the complete source code for our example (also available in
<installdir>/examples/python/mipl.py)...

from gurobipy import *

try:

*+

Create a new model
= Model("mipl")

=]

Create variables

m.addVar(vtype=GRB.BINARY, name="x")
m.addVar (vtype=GRB.BINARY, name="y")
m.addVar(vtype=GRB.BINARY, name="z")

N < XM
1]

+*

Integrate new variables
m.update ()

Set objective
m.setObjective(x + y + 2 * z, GRB.MAXIMIZE)

Add constraint: x + 2 y + 3 z <= 4
m.addConstr(x + 2 * y + 3 * z <= 4, "cO")

Add comstraint: x + y >= 1
m.addConstr(x + y >= 1, "cl1")

m.optimize ()

69

for v in m.getVars():
print v.varName, v.x

print ’0Obj:’, m.objVal

except GurobiError:
print ’Error reported’

Example details

Let us now walk through the example, line by line, to understand how it achieves the desired result
of optimizing the indicated model.

The example begins by importing the Gurobi functions and classes:
from gurobipy import *

Gurobi Python applications should always start with this line.

Note that in order for this command to succeed, the Python application needs to know how to
find the Gurobi functions and classes. Recall that you have two options here. The first is to use
the Python files that are included with our distribution. You would run this example by typing
gurobi.bat mipl.py (Windows) or gurobi.sh mipl.py (Linux and Mac). The second option is
to install the Gurobi functions and classes into your own Python installation.

Creating the model
The first step in our example is to create a model. A Gurobi model holds a single optimization
problem. It consists of a set of variables, a set of constraints, and the associated attributes (variable

bounds, objective coefficients, variable integrality types, constraint senses, constraint right-hand
side values, etc.). We start this example with an empty model object:

m = Model("mipi")

This function takes the desired model name as its argument.

Adding variables to the model

The next step in our example is to add variables to the model.

Create variables

m.addVar (vtype=GRB.BINARY, name="x")
= m.addVar(vtype=GRB.BINARY, name="y")
m.addVar (vtype=GRB.BINARY, name="z")

N < W
|

70

Variables are added through the addVar () method on a model object. A variable is always associated
with a particular model.

Python allows you to pass arguments by position or by name. We’ve passed them by name here.
Each variable gets a type (binary), and a name. We use the default values for the other arguments.
Please refer to the online help (help(Model.addVar) in the Gurobi Shell) for further details on
addVar ().

Updating the model - lazy modification

Model modifications in the Gurobi optimizer are done in a lazy fashion, meaning that the effects of
the modifications are not seen immediately. This approach makes it easier to perform a sequence
of model modifications, since the model doesn’t change while it is being modified. However, lazy
modifications do require you to manually integrate model changes when needed. This is done with
the update method:

Integrate new variables
m.update ()

Setting the objective
The next step in the example is to set the optimization objective:

Set objective: maximize x + y + 2 z
model.setObjective(x + y + 2 * z, GRB.MAXIMIZE)

The objective is built here using overloaded operators. The Python API overloads the arithmetic
operators to allow you to build linear and quadratic expression involving Gurobi variables.

The second argument indicates that the sense is maximization.

Note that while this simple example builds the objective in a single statement using an explicit list
of terms, more complex programs will typically build it incrementally. For example:

obj = LinExpr();

obj += x;
obj += y;
obj += 2%z;

model.setObjective(obj, GRB.MAXIMIZE);

Adding constraints to the model

The next step in the example is to add the constraints. The first constraint is added here:

Add constraint: x + 2 y + 3 z <= 4
m.addConstr(x + 2 * y + 3 * z <= 4, "cO")

71

As with variables, constraints are always associated with a specific model. They are created using
the addConstr() method on the model object.

We again use overloaded arithmetic operators to build linear expressions. The comparison operators
are also overloaded to make it easy to build constraints.

The second argument to addConstr gives the (optional) constraint name.

Again, this simple example builds the linear expression for the constraint in a single statement using
an explicit list of terms. More complex programs will typically build the expression incrementally.

The second constraint is created in a similar manner:

Add comstraint: x + y >= 1
m.addConstr(x + y >= 1, "cl1")

Optimizing the model
Now that the model has been built, the next step is to optimize it:

Optimize model
m.optimize ()

This routine performs the optimization and populates several internal model attributes (including
the status of the optimization, the solution, etc.).

Reporting results - attributes

Once the optimization is complete, we can query the values of the attributes. In particular, we can
query the varName and x variable attributes to obtain the name and solution value for each variable:

for v in m.getVars():
print v.varName, v.x

We can also query the objVal attribute on the model to obtain the objective value for the current
solution:

print °’0Obj:’, m.objVal

The names and types of all model, variable, and constraint attributes can be found in the online
Python documentation. Type help(GRB.Attr) in the Gurobi Shell for details.

Error handling

Errors in the Gurobi Python interface are handled through the Python exception mechanism. In
the example, all Gurobi statements are enclosed inside a try block, and any associated errors would
be caught by the except block.

72

Running the example

When you run the example (gurobi.bat mipl.py on Windows, or gurobi.sh mipl.py on Linux
or Mac), you should see the following output:

Optimize a model with 2 rows, 3 columns and 5 nonzeros
Presolve removed 2 rows and 3 columns
Presolve time: 0.00s

Explored O nodes (0O simplex iterations) in 0.00 seconds
Thread count was 1 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)

Best objective 3.000000000000e+00, best bound 3.000000000000e+00, gap 0.0%
x 1.0

y 0.0

z 1.0

Obj: 3.0

12.2 Python Dictionary Example

In order to provide a gentle introduction to our interfaces, the examples so far have demonstrated
only very basic capabilities. We will now attempt to demonstrate some of the power of our Python
interface by describing a more complex example. This example is intended to capture most of the
common ingredients of large, complex optimization models. Implementing this same example in
another APT would most likely have required hundreds of lines of code (ours is around 70 lines of
Python code).

We’ll need to present a few preliminaries before getting to the example itself. You’ll need to learn
a bit about the Python language, and we’ll need to describe a few custom classes and functions.
Our intent is that you will come away from this section with an appreciation for the power and
flexibility of this interface. It can be used to create quite complex models using what we believe
are very concise and natural modeling constructs. Our goal with this interface has been to provide
something that feels more like a mathematical modeling language than a programming language
APL

If you’d like to dig a bit deeper into the Python language constructs described here, we recommend
that you visit the online Python tutorial.

Motivation

At the heart of any optimization model lies a set of decision variables. Finding a convenient way to
store and access these variables can often represent the main challenge in implementing the model.
While the variables in some models map naturally to simple programming language constructs
(e.g., x[i] for contiguous integer values i), other models can present a much greater challenge.

73

http://docs.python.org/release/2.7/tutorial/

For example, consider a model that optimizes the flow of multiple different commodities through
a supply network. You might have a variable x[’Pens’, ’Denver’, ’New York’] that captures
the flow of a manufactured item (pens in this example) from Denver to New York. At the same
time, you might not want to have a variable x[’Pencils’, ’Denver’, ’Seattle’], since not all
combinations of commodities, source cities, and destination cities represent valid paths through the
network. Representing a sparse set of decision variables in a typical programming language can be
cumbersome.

To compound the challenge, you typically need to build constraints that involve subsets of these
decision variables. For example, in our network flow model you might want to put an upper bound
on the total flow that enters a particular city. You could certainly collect the relevant decision
variables by iterating over all possible cities and selecting only those variables that capture possible
flow from that source city into the desired destination city. However, this is clearly wasteful if not all
origin-destination pairs are valid. In a large network problem, the inefficiency of this approach could
lead to major performance issues. Handling this efficiently can require complex data structures.

The Gurobi Python interface has been designed to make the issues we’ve just described quite easy to
manage. We’'ll present a specific example of how this is done shortly. Before we do, though, we’ll need
to describe a few important constructs: 1lists, tuples, dictionaries, 1ist comprehension, and
the tuplelist class. The first four are standard Python concepts that are particularly important
in our interface, while the last is a custom class that we’ve added to the Gurobi Python interface.

A quick reminder: you can consult the online Python documentation for additional information on
any of the Python data structures mentioned here.

Lists and Tuples

The list data structure is central to most Python programs; Gurobi Python programs are no
exception. We'll also rely heavily on a similar data structure, the tuple. Tuples are crucial to
providing efficient and convenient access to Gurobi decision variables in Gurobi Python programs.
The difference between a list and a tuple is subtle but important. We’ll discuss it shortly.

Lists and tuples are both simply ordered collections of Python objects. A list is created and
displayed as a comma-separated list of member objects, enclosed in square brackets. A tuple is
similar, except that the member objects are enclosed in parenthesis. For example, [1, 2, 3] is
a list, while (1, 2, 3) is a tuple. Similarly, [?’Pens’, ’Denver’, ’New York’] is a list, while
(’Pens’, ’Denver’, ’New York’) is a tuple.

You can retrieve individual entries from a list or tuple using square brackets and zero-based indices:

gurobi> 1 = [1, 2.0, ’abc’]
gurobi> t = (1, 2.0, ’abc’)
gurobi> print 1[0]

1

gurobi> print t[1]

2.0

gurobi> print 1[2]

abc

74

http://docs.python.org/release/2.7/tutorial/datastructures.html

What’s the difference between a list and a tuple? A tuple is immutable, meaning that you can’t
modify it once it has been created. By contrast, you can add new members to a list, remove
members, change existing members, etc. This immutable property allows you to use tuples as
indices for dictionaries.

Dictionaries

A Python dictionary allows you to map arbitrary key values to pieces of data. Any immutable
Python object can be used as a key: an integer, a floating-point number, a string, or even a tuple.

To give an example, the following statements create a dictionary x, and then associates a value 1
with key (’Pens’, ’Denver’, ’New York?’)

gurobi> x = {} # creates an empty dictionary
gurobi> x[(’Pens’, ’Denver’, ’New York’)] =1
gurobi> print x[(’Pens’, ’Denver’, ’New York’)]
1

Python allows you to omit the parenthesis when accessing a dictionary using a tuple, so the following
is also valid:

gurobi> x = {}

gurobi> x[’Pens’, ’Denver’, ’New York’] = 2
gurobi> print x[’Pens’, ’Denver’, ’New York’]
2

We’ve stored integers in the dictionary here, but dictionaries can hold arbitrary objects. In partic-
ular, they can hold Gurobi decision variables:

gurobi> x[’Pens’, ’Denver’, ’New York’] = model.addVar()
gurobi> print x[’Pens’, ’Denver’, ’New York’]
<gurobi.Var *Awaiting Model Updatex>

To initialize a dictionary, you can of course simply perform assignments for each relevant key:

gurobi> values = {}

gurobi> values[’zero’] = 0
gurobi> values[’one’] =1
gurobi> values[’two’] = 2

You can also use the Python dictionary initialization construct:

gurobi> values = { ’zero’: 0, ’one’: 1, ’two’: 2 }
gurobi> print values[’zero’]

0

gurobi> print values[’one’]

1

75

We have included a utility routine in the Gurobi Python interface that simplifies dictionary initial-
ization for a case that arises frequently in mathematical modeling. The multidict function allows
you to initialize one or more dictionaries in a single statement. The function takes a dictionary as
its argument, where the value associated with each key is a list of length n. The function splits
these lists into individual entries, creating n separate dictionaries. The function returns a list. The
first result is the list of shared key values, followed by the n individual dictionaries:

gurobi> names, lower, upper = multidict({ ’x’: [0, 11, ’y’: [1, 21, ’z’: [0, 31 })
gurobi> print names

[’X’, 7y7, ’Z’]

gurobi> print lower

{’x>: 0, ’y’: 1, 227: 0}

gurobi> print upper

{’x2: 1, 2y?: 2, 227 3}

Note that you can also apply this function to a dictionary where each key maps to a scalar value. In
that case, the function simply returns the list of keys as the first result, and the original dictionary
as the second.

You will see this function in several of our Python examples.

List comprehension

List comprehension is an important Python feature that allows you to build lists in a concise fashion.
To give a simple example, the following list comprehension builds a list containing the squares of
the numbers from 1 through 5:

gurobi> print [x*x for x in [1, 2, 3, 4, 5]]
[1, 4, 9, 16, 25]

A list comprehension can contain more than one for clause, and it can contain one or more if

clauses. The following example builds a list of tuples containing all x,y pairs where x and y are
both less than 3 and are not equal:

gurobi> print [(x,y) for x in range(3) for y in range(3) if x != y]
(¢, 1, (o, 2), (1, 0), (1, 2) (2, 0), (2, 1)]

(Details on the range function can be found here). List comprehension is used extensively in our
Python examples.

The tuplelist class

The final important item we would like to discuss is the tuplelist class. This is a custom sub-class
of the Python list class that is designed to allow you to efficiently build sub-lists from a list of

76

http://docs.python.org/release/2.7/library/functions.html

tuples. To be more specific, you can use the select method on a tuplelist object to retrieve all
tuples that match one or more specified values in specified fields.

Let us give a simple example. We’ll begin by creating a simple tuplelist (by passing a list of
tuples to the constructor):

gurobi> 1 = tuplelist([(1, 2), (1, 3), (2, 3), (2, 4)1)

To select a sub-list where particular tuple entries match desired values, you specify the desired values
as arguments to the select method. The number of arguments to select is equal to the number
of entries in the members of the tuplelist (they should all have the same number of entries). You
use a ’*? string to indicate that any value is acceptable in that position in the tuple.

Each tuple in our example contains two entries, so we can perform the following selections:

gurobi> print 1l.select(l, ’*7)
(1, 2), (1, 3)]

gurobi> print l.select(’*’, 3)
(1, 3), (2, 3)]

gurobi> print 1l.select(1l, 3)
[(1, 3)]

gurobi> print l.select(’*’, ’%’)
[, 2>, (1, 3), (2, 3), (2, 4)]

You may have noticed that similar results could have been achieved using list comprehension. For
example:

gurobi> print 1l.select(l, 7*7)

[(1, 2), (1, 3)1]

gurobi> print [(x,y) for x,y in 1 if x == 1]
[(1, 2), (1, 3]

The problem is that the latter statement considers every member in the list, which can be quite
inefficient for large lists. The select method builds internal data structures that make these
selections quite efficient.

Note that tuplelist is a sub-class of list, so you can use the standard 1ist methods to access or
modify a tuplelist:

gurobi> print 1[1]

(1,3)

gurobi> 1 += [(3, 4)]

gurobi> print 1

(1, 2), (1, 3), (2, 3), (2, 4), (3,)]

Returning to our network flow example, once we’ve built a tuplelist containing all valid commodity-
source-destination combinations on the network (we’ll call it flows), we can select all arcs that flow
into a specific destination city as follows:

77

gurobi> inbound = flows.select(’*’, ’*’, ’New York’)

We now present an example that illustrates the use of all of the concepts discussed so far.

netflow.py example

Our example solves a multi-commodity flow model on a small network. In the example, two com-
modities (Pencils and Pens) are produced in two cities (Detroit and Denver), and must be shipped
to warehouses in three cities (Boston, New York, and Seattle) to satisfy given demand. Each arc in
the transportation network has a cost associated with it, and a total capacity.

This is the complete source code for our example (also available in
<installdir>/examples/python/netflow.py)...

from gurobipy import *
Model data

commodities = [’Pencils’, ’Pens’]
nodes = [’Detroit’, ’Denver’, ’Boston’, ’New York’, ’Seattle’]

arcs, capacity = multidict({
(’Detroit’, ’Boston’): 100,
(’Detroit’, ’New York’): 80,
(’Detroit’, ’Seattle’): 120,
(’Denver’, ’Boston?’): 120,
(’Denver’, ’New York’): 120,
(’Denver’, ’Seattle’): 120 })

arcs = tuplelist(arcs)

cost = {
(’Pencils’, ’Detroit’, ’Boston’): 10,
(’Pencils’, ’Detroit’, ’New York’): 20,
(’Pencils’, ’Detroit?, ’Seattle’): 60,
(’Pencils’, ’Denver’, ’Boston’): 40,
(’Pencils’, ’Denver’, ‘’New York’): 40,
(’Pencils’, ’Denver?’, ’Seattle’): 30,

(’Pens’, ’Detroit’, ’Boston’): 20,

(’Pens’, ’Detroit?’, ’New York?’): 20,

(’Pens’, ’Detroit’, ’Seattle’): 80,

(’Pens’, ’Denver’, ’Boston’): 60,

(’Pens’, ’Denver’, ’New York’): 70,

(’Pens’, ’Denver’, ’Seattle’): 30 }
inflow = {

78

(’Pencils’, ’Detroit?): 50,
(’Pencils’, ’Denver’): 60,
(’Pencils’, ’Boston?’): -50,
(’Pencils’, ’New York’): -50,
(’Pencils’, ’Seattle’): -10,

(’Pens’, 'Detroit?): 60,
(’Pens’, ’Denver’): 40,
(’Pens’, ’Boston’): -40,

(’Pens’, ’New York’): -30,
(’Pens’, ’Seattle’): -30 }

Create optimization model
m = Model(’netflow?)

Create variables
flow = {}
for h in commodities:
for i,j in arcs:
flowlh,i,j] = m.addVar(ub=capacityl[i,j], obj=cost[h,i,j],
name="flow_%s_hs_%s’ % (h, i, j))
m.update()

Arc capacity constraints
for i,j in arcs:
m.addConstr(quicksum(flowl[h,i,j] for h in commodities) <= capacityli,j],
‘cap_%s_hs? % (i, j))

Flow conservation constraints
for h in commodities:
for j in nodes:
m.addConstr(
quicksum(flowl[h,i,j] for i,j in arcs.select(’*’,j)) +
inflowlh, j] ==
quicksum(flowlh,j,k] for j,k in arcs.select(j,’*’)),
‘node_%s_%s’ % (h, j))

Compute optimal solution
m.optimize ()

Print solution
if m.status == GRB.Status.0OPTIMAL:
for h in commodities:
print ’\nOptimal flows for’, h, ’:’
for i,j in arcs:
if flowlh,i,jl.x > O:

79

print i, ’->’, j, ’:’, flow[h,i,j].x

netflow.py example details

Let us now walk through the example, line by line, to understand how it achieves the desired result
of computing the optimal network flow. As with the simple Python example presented earlier, this
example begins by importing the Gurobi functions and classes:

from gurobipy import *
We then create a few lists that contain model data:

commodities = [’Pencils’, ’Pens’]
nodes = [’Detroit’, ’Denver’, ’Boston’, ’New York’, ’Seattle’]

arcs, capacity = multidict({
(’Detroit’, ’Boston?’): 100,
(’Detroit’, °’New York’): 80,
(’Detroit’, ’Seattle?): 120,
(’Denver’, ’Boston’): 120,
(’Denver’, ’New York’): 120,
(’Denver’, ’Seattle’): 120 })

arcs = tuplelist(arcs)

The model works with two commodities (Pencils and Pens), and the network contains 5 nodes and
6 arcs. We initialize commodities and nodes as simple Python lists. We use the Gurobi multidict
function to initialize arcs (the list of keys) and capacity (a dictionary).

In our example, we plan to use arcs to select subsets of the arcs when building constraints later.
We therefore pass the 1ist of tuples returned by multidict to the tuplelist constructor to create
a tuplelist object instead.

The model also requires cost data for each commodity-arc pair:

cost = {
(’Pencils’, ’Detroit’, ’Boston’): 10,
(’Pencils’, ’Detroit?, ’New York?’): 20,
(’Pencils’, °’Detroit?, ’Seattle’): 60,
(’Pencils’, ’Denver’, ’Boston’): 40,
(’Pencils’, ’Denver’, ’New York’): 40,
(’Pencils’, ’Denver’, ’Seattle’): 30,

(’Pens’, ’Detroit’, ’Boston’): 20,
(’Pens’, ’Detroit’, ’New York?’): 20,
(’Pens’, ’Detroit’, ’Seattle’): 80,
(’Pens’, ’Denver’, ’Boston’): 60,
(’Pens’, ’Denver’, ’New York’): 70,
(’Pens’, ’Denver’, ’Seattle’): 30 }

80

Once this dictionary has been created, the cost of moving commodity h from node i to j can be
queried as cost[(h,i,j)]. Recall that Python allows you to omit the parenthesis when using a
tuple to index a dictionary, so this can be shortened to just cost[h,i,j].

A similar construct is used to initialize node demand data:

inflow = {
(’Pencils’, ’Detroit’): 50,
(’Pencils’, ’Denver?): 60,
(’Pencils’, ’Boston’): -50,

(’Pencils’, ’New York’): -50,
(’Pencils’, ’Seattle’): -10,

(’Pens’, ’‘Detroit?): 60,
(’Pens’, ’Denver’): 40,
(’Pens’, ’Boston’): -40,

(’Pens’, ’New York’): -30,
(’Pens’, ’Seattle’): -30 }

Building a multi-dimensional array of variables

The next step in our example (after creating an empty Model object) is to add variables to the
model. The variables are stored in a dictionary flow:

m = Model(’netflow?)

flow = {}
for h in commodities:
for i,j in arcs:
flowlh,i,j] = m.addVar(ub=capacityl[i,j], obj=cost[h,i,j],
name="flow_%s_%s_%s’ % (h, i, j))
m.update()

The flow variable is triply subscripted: by commodity, source node, and destination node. Note
that the dictionary only contains variables for source, destination pairs that are present in arcs.

Arc capacity constraints

We begin with a straightforward set of constraints. The sum of the flow variables on an arc must
be less than or equal to the capacity of that arc:

for i,j in arcs:
m.addConstr(quicksum(flowl[h,i,j] for h in commodities) <= capacityl[i,j],

‘cap_%s_%hs? % (i, j))

Note that we use list comprehension to build a list of all variables associated with an arc (1,3):

81

flowl[h,i,j] for h in commodities

(To be precise, as we’ve used it here, this is actually called a generator expression in Python, but
it is similar enough to list comprehension that you can safely ignore the difference for the purpose
of understanding this example). The result is passed into the quicksum function to create a Gurobi
linear expression that captures the sum of all of these variables. The Gurobi quicksum function is
an alternative to the Python sum function that is much faster for building large expressions.

Flow conservation constraints

The next set of constraints are the flow conservation constraints. They require that, for each
commodity and node, the sum of the flow into the node plus the quantity of external inflow at that
node must be equal to the sum of the flow out of the node:

for h in commodities:
for j in nodes:
m.addConstr(
quicksum(flow[h,i,j] for i,j in arcs.select(’*’,j)) + inflow([h,j] ==
quicksum(flow(h,j,k] for j,k in arcs.select(j,’*’)),
’node_%s_%s’ % (b, j))

Results

Once we’ve added the model constraints, we call optimize and then output the optimal solution:

if m.status == GRB.Status.0OPTIMAL:
for h in commodities:
print ’\nOptimal flows for’, h, ’:’
for i,j in arcs:
if flow[h,i,jl.x > O:
print i, ’->’, j, ’:’, flowlh,i,j].x

If you run the example (gurobi.bat netflow.py on Windows, or gurobi.sh netflow.py on Linux
and Mac), you should see the following output:

Optimize a model with 16 rows, 12 columns and 36 nonzeros

Presolve removed 16 rows and 12 columns

Presolve time: 0.00s

Presolve: All rows and columns removed

Iteration Objective Primal Inf. Dual Inf. Time
0 5.5000000e+03 0.000000e+00 0.000000e+00 Os

Solved in O iterations and 0.00 seconds
Optimal objective 5.500000000e+03

82

Optimal flows for Pencils :
Detroit -> Boston : 50.0
Denver -> New York : 50.0
Denver -> Seattle : 10.0

Optimal flows for Pens :
Detroit -> Boston : 30.0
Detroit -> New York : 30.0
Denver -> Boston : 10.0
Denver -> Seattle : 30.0

12.3 Building and running the examples

Python is an interpreted language, so no explicit compilation step is required to run the examples.
For Windows platforms, you can simply type the following in the Gurobi Python example directory
(<installdir>/examples/python):

gurobi.bat mipl.py
For Linux or Mac OS platforms, type:
gurobi.sh mipl.py

If you are a Python user, and wish to use Gurobi from within your own Python environment,
you can install the gurobipy module directly into your environment. The steps for doing this
depend on your platform. On Windows, you can double-click on the pysetup program in the
Gurobi <installdir>/bin directory. This program will prompt you for the location of your Python
installation; it handles all of the details of the installation. On Linux or Mac OS, you will need to
open a terminal window, change your current directory to the Gurobi <installdir> (the directory
that contains the file setup.py), and issue the following command:

python setup.py install
Unless you are using your own private Python installation, you will need to run this command as

super-user. Once gurobipy is successfully installed, you can type python mipl.py (more generally,
you can type from gurobipy import * in your Python environment).

83

MATLAB Interface

This section describes the Gurobi MATLAB interface. We begin with information on how to set up
Gurobi for use within MATLAB. An example of how to use the MATLAB interface follows.

Setting up Gurobi for MATLAB

To begin, you’ll need to tell MATLAB where to find the Gurobi routines. We’ve provided a script
to assist you with this. The Gurobi MATLAB setup script, gurobi_setup.m, can be found in
the <installdir>/matlab directory of your Gurobi installation (the default <installdir> for
Gurobi 6.5.0 is /opt/gurobi650/1inux64 for Linux, c:\gurobi650\win64 for 64-bit Windows,
and /Library/gurobi650/mac64 for Mac). To get started, type the following commands within
MATLAB to change to the matlab directory and call gurobi_setup:

>> cd /opt/gurobiéb0/linux64/matlab
>> gurobi_setup

You will need to be careful that the MATLAB binary and the Gurobi package you install both
use the same instruction set. For example, if you are using the 64-bit version of MATLAB, you’ll
need to install the 64-bit version of Gurobi, and you’ll need to use the 64-bit Gurobi MATLAB
libraries (i.e., the ones included with the 64-bit version of Gurobi). This is particularly important
on Windows systems, where the error messages that result from instruction set mismatches can be
quite cryptic.

Example

Let us now turn our attention to an example of using Gurobi to solve a simple MIP model. Our
example optimizes the following model:

maximize x + y + 2z
subject to x + 2y + 3z <
X+ y > 1

X, V, z binary

Note that this is the same model that was modeled and optimized in the C Interface section.

This is the complete source code for our example (also available in
<installdir>/examples/matlab/mipl.m)...

names = {’x’; ’y’; ’z’};

84

try
clear model;
model.A = sparse([1 2 3; 1 1 0]);
model.obj = [1 1 2];
model.rhs = [4; 1];
model.sense = ’<>7;
model.vtype = ’B’;
model .modelsense = ’max’;

clear params;
params.outputflag = 0;
params.resultfile ‘mipl.1p’;

result = gurobi(model, params);
disp(result)

for v=1:length(names)
fprintf (°%s %d\n’, names{v}, result.x(v));
end

fprintf(’0bj: %e\n’, result.objval);

catch gurobiError
fprintf (’Error reported\n’);
end

Example details

Let us now walk through the example, line by line, to understand how it achieves the desired result
of optimizing the indicated model.

Building the model

The example begins by building an optimization model. The data associated with an optimization
model must be stored in a MATLAB struct. Fields in this struct contain the different parts of
the model. A few fields are mandatory: the constraint matrix (A), the objective vector (obj), the
right-hand side vector (rhs), and the constraint sense vector (sense). A model can also include
optional fields (e.g., the objective sense modelsense).

The example uses the built-in sparse function to build the constraint matrix A. The Gurobi MAT-
LAB interface only accepts sparse matrices as input. If you have a dense matrix, use sparse to
convert it to a sparse matrix before passing it to our interface.

85

Subsequent statements populate other fields of the model variable, including the objective vector,
the right-hand-side vector, and the constraint sense vector.

In addition to the mandatory fields, this example also sets two optional fields: modelsense and
vtype. The former is used to indicate the sense of the objective function. The default is minimiza-
tion, so we’ve set the fields equal to *max’ to indicate that we would like to maximize the specified
objective. The vtype field is used to indicate the types of the variables in the model. In our exam-
ple, all variables are binary (’B?). Note that our interface allows you to specify a scalar value for
the sense and vtype arguments. The Gurobi interface will expand that scalar to a constant array
of the appropriate length. In this example, the scalar value B’ will be expanded to an array of
length 3, containing one B’ value for each column of A.

Modifying Gurobi parameters
The next statements create a struct variable that will be used to modify two Gurobi parameters:

params.outputflag = O;
params.resultfile ‘mipl.1lp’;

In this example, we set the Gurobi OutputFlag parameter to 0 in order to shut off Gurobi output.
We also set the ResultFile parameter to request that Gurobi produce a file as output (in this case,
a LP format file that contains the optimization model). The Gurobi MATLAB interface allows you
to set as many Gurobi parameters as you would like. The field names in the parameter structure
simply need to match Gurobi parameter names, and the values of the fields should be set to the
desired parameter value. Please consult the Parameters section of the Gurobi Reference Manual for
a complete list of all Gurobi parameters.

Solving the model

The next statement is where the actual optimization occurs:

result = gurobi(model, params);

We pass the model and the optional list of parameter changes to the gurobi () function. It computes
an optimal solution to the specified model and returns the computed result.

Printing the solution

The gurobi() function returns a struct as its result. This struct contains a number of fields, where
each field contains information about the computed solution. The available fields depend on the
result of the optimization, the type of model that was solved (LP, QP, QCP, SOCP, or MIP), and
the algorithm used to solve the model. The returned struct will always contain a status field,

which indicates whether Gurobi was able to compute an optimal solution to the model. You should
consult the Status Codes section of the Gurobi Reference Manual for a complete list of all possible

86

http://www.gurobi.com/documentation/6.5/refman/index.html
http://www.gurobi.com/documentation/6.5/refman/index.html

status codes. If Gurobi was able to find a solution to the model, the return value will also include
objval and x fields. The former gives the objective value for the computed solution, and the latter
is the computed solution vector (one entry per column of the constraint matrix). For continuous
models, we will also return dual information (reduced costs and dual multipliers), and possibly an
optimal basis.

In our example, we simply print the optimal objective value (result.objval) and the optimal
solution vector (result.x).

Running the example

The Gurobi MATLAB examples can be found in the <installdir>/examples/matlab/ directory of
your Gurobi installation (the default <installdir> for Gurobi 6.5.0 is /opt/gurobi650/1inux64
for Linux, c:\gurobi650\win64 for 64-bit Windows, and /Library/gurobi650/mac64 for Mac).
To run one of the examples, first change to this directory in MATLAB, then type its name into the
MATLAB prompt. For example, to run example mipl, you would say:

>> cd /opt/gurobif50/1linux64/examples/matlab
>> mipl

If Gurobi was successfully set up for use in MATLAB, you should see the following output:

status: 20PTIMAL’
versioninfo: [1x1 struct]
objval: 3
runtime: 0.0386
x: [3x1 double]
slack: [2x1 double]

objbound: 3
itercount: O
baritercount: 0O
nodecount: O
x 1
y O
z 1

0bj: 3.000000e+00

The MATLAB example directory contains a number of examples. We encourage you to browse and
modify them in order to become more familiar with the Gurobi MATLAB interface.

87

R Interface

This section describes the Gurobi R interface. We begin with information on how to set up Gurobi
for use within R. An example of how to use the R interface follows.

Installing the R Package
To begin, you’ll need to install the Gurobi package in R. The R command for doing this is:
install.packages(’<R-package-file>’, repos=NULL)

The R package file can be found in the <installdir>/R directory of your Gurobi installation. For
a default installation of Gurobi 6.5.0, the command would be:

e Linux:
install.packages(’/opt/gurobi6b0/1inux64/R/gurobi_6.5-0_R_x86_64-unknown-linux-gnu.tar.gz’,
repos=NULL)

e Windows: install.packages(’c:\gurobi650\win64\R\gurobi_6.5-0.zip’, repos=NULL)

e Mac: install.packages(’/Library/gurobi650/mac64/R/gurobi_6.5-0.tgz’, repos=NULL)

You will need to adjust the path to match your install directory and version.

You will need to be careful that the R binary and the Gurobi package you install both use the same
instruction set. For example, if you are using the 64-bit version of R, you’ll need to install the 64-bit
version of Gurobi, and the 64-bit Gurobi R package. This is particularly important on Windows
systems, where the error messages that result from instruction set mismatches can be quite cryptic.

If you are using R from RStudio Server, and you get an error indicating that R is unable to load
the Gurobi DLL or shared object, you may need to set the rsession-1d-library-path entry in
the server config file. Please consult the RStudio documentation for more information.

Example

Let us now turn our attention to an example of using Gurobi to solve a simple MIP model. Our
example optimizes the following model:

maximize x +
subject to x + 2
X +

+ 2
+ 3

Z
Z

o e
VA

X, ¥, # binary

88

Note that this is the same model that was modeled and optimized in the C Interface section.

This is the complete source code for our example (also available in
<installdir>/examples/R/mip.R)...

library(’gurobi’)

model <- list()

model$A <- matrix(c(1,2,3,1,1,0), nrow=2, ncol=3, byrow=T)
model$obj <- ¢(1,1,2)

model$modelsense <- "max"

model$rhs <- c(4,1)

model$sense <- c(<2, >?)

model$vtype <- ’B’

params <- list(OutputFlag=0)
result <- gurobi(model, params)

print (’Solution:?)
print (result$objval)
print (result$x)

Example details

Let us now walk through the example, line by line, to understand how it achieves the desired result
of optimizing the indicated model.

The example begins by importing the Gurobi package (Library(’gurobi’)). R programs that call
Gurobi must include this line.

Building the model

The example now builds an optimization model. The data associated with an optimization model
must be stored in a single list variable. Named components in this list contain the different parts
of the model. A few components are mandatory: the constraint matrix (4), the objective vector
(obj), the right-hand side vector (rhs), and the constraint sense vector (sense). A model variable
can also include optional components (e.g., the objective sense modelsense).

In our example, we use the built-in R matrix function to build the constraint matrix A. A is stored as a
dense matrix here. You can also store A as a sparse matrix, using either the sparse_triplet_matrix
function from the slam package or the sparseMatrix class from the Matrix package. Sparse input
matrices are illustrated in the 1p2.R example.

Subsequent statements populate other components of the model variable, including the objective

89

vector, the right-hand-side vector, and the constraint sense vector. In each case, we use the built-in
c function to initialize the array arguments.

In addition to the mandatory components, this example also sets two optional components: modelsense
and vtype. The former is used to indicate the sense of the objective function. The default is min-
imization, so we’ve set the components equal to *max’ to indicate that we would like to maximize
the specified objective. The vtype component is used to indicate the types of the variables in the
model. In our example, all variables are binary (’B?). Note that our interface allows you to specify

a scalar value for any array argument. The Gurobi interface will expand that scalar to a constant
array of the appropriate length. In this example, the scalar value B’ will be expanded to an array
of length 3, containing one B’ value for each column of A.

Modifying Gurobi parameters

The next statement creates a list variable that will be used to modify a Gurobi parameter:
params <- list(OutputFlag=0)

In this example, we wish to set the Gurobi OutputFlag parameter to 0 in order to shut off Gurobi
output. The Gurobi R interface allows you to pass a list of the Gurobi parameters you would like
to change. Please consult the Parameters section of the Gurobi Reference Manual for a complete
list of all Gurobi parameters.

Solving the model

The next statement is where the actual optimization occurs:
result <- gurobi(model, params)

We pass the model and the optional list of parameter changes to the gurobi () function. It computes
an optimal solution to the specified model and returns the computed result.

Printing the solution

The gurobi() function returns a list as its result. This list contains a number of components, where
each component contains information about the computed solution. The available components
depend on the result of the optimization, the type of model that was solved (LP, QP, SOCP, or
MIP), and the algorithm used to solve the model. This result list will always contain an integer
status component, which indicates whether Gurobi was able to compute an optimal solution to
the model. You should consult the Status Codes section of the Gurobi Reference Manual for a
complete list of all possible status codes. If Gurobi was able to find a solution to the model, the
return value will also include objval and x components. The former gives the objective value for
the computed solution, and the latter is the computed solution vector (one entry per column of the

90

http://www.gurobi.com/documentation/6.5/refman/index.html
http://www.gurobi.com/documentation/6.5/refman/index.html

constraint matrix). For continuous models, we will also return dual information (reduced costs and
dual multipliers), and possibly an optimal basis.

In our example, we simply print the optimal objective value (result$objval) and the optimal
solution vector (result$x).

Running the example

To run one of the R examples provided with the Gurobi distribution, you can use the source
command in R. For example, if you are running R from the Gurobi R examples directory, you can
say:

> source(’mip.R’)

If the Gurobi package was successfully installed, you should see the following output:

[1] "Solution:"
[1] 3
[11 101

The R example directory <installdir>/examples/R contains a number of examples. We encourage
you to browse and modify them in order to become more familiar with the Gurobi R interface.

91

Recommended Reading

The very basic introduction to mathematical programming and mathematical modeling in this
document barely scratches the surface of this very broad and rich field. We’ve collected a set of
recommended books here that provide more information on various aspects of math programming.

If you want more information on the algorithms and mathematics underlying the solution of linear
programming problems, we recommend Introduction to Linear Optimization by Bertsimas, Tsitsik-
lis, and Tsitsiklis, or Linear Programming: Foundations and Extensions by R. Vanderbei. For a
detailed treatment of interior-point methods for linear programming, we recommend Primal-Dual
Interior-Point Methods by S. Wright.

For more information on the algorithms and mathematics underlying the solution of mixed-integer
programming problems, we recommend Integer Programming by L. Wolsey.

For an introduction to the process of creating mathematical programming representations of business
problems, we recommand Model Building in Mathematical Programming by H.P. Williams.

92

http://www.amazon.com/Introduction-Linear-Optimization-Scientific-Computation/dp/1886529191/
http://www.amazon.com/Linear-Programming-Foundations-Extensions-International/dp/0387743871/
http://www.amazon.com/Primal-Dual-Interior-Point-Methods-Stephen-Wright/dp/089871382X/
http://www.amazon.com/Primal-Dual-Interior-Point-Methods-Stephen-Wright/dp/089871382X/
http://www.amazon.com/Integer-Programming-Laurence-Wolsey/dp/0471283665/
http://www.amazon.com/Model-Building-Mathematical-Programming-Williams/dp/1118443330/

Installing the Anaconda Python distribution

The Gurobi distribution includes a Python interpreter and a basic set of Python modules. While
these are sufficient for building and running simple optimization models, they provide just a glimpse
of the wealth of tools and modules that are available for Python. This section guides you through the
steps involved in installing Anaconda, a widely-used Python platform that includes an Integrated
Development Environment (Spyder), a notebook-style interface (iPython Notebook), and a broad
set of Python modules. These tools can significantly increase the interactivity and productivity of
your Python model building experience.

Before we begin, we should note that Anaconda isn’t your only choice in Python distributions
and/or IDEs. Popular alternatives include Canopy, Eric, iep, and PyDev. We won’t be covering
the details of installing these other options for use with Gurobi, but the Anaconda instructions that
follow should provide a good outline for the steps involved. We’ve found that Anaconda provides a
nice balance between power and complexity, but we realize that people may look for different things
in their Python environments.

Step 1: Download and Install Anaconda

The first step is to download and install Anaconda. You can find it here.

® Continuum x

L C f & hitps://www.continuum.io/downloads

Anaconda for OS X

PYTHON 2.7 PYTHON 3.4

Mac OS X 64-bit Mac OS X 64-bit

0S X Anaconda Installation

1. Download the installer.
2. Double click the .pkg file and follow the instructions on the screen.
3. Command-Line Installs:

After downloading the installer, in the shell execute:

bash Anaconda-2.3.8-Mac0SX-x86_64.sh
NOTE: You should type "bash’, regardless of whether or not you are actually using the bash
shell.

4. Optional: Verify data integrity with MD5.

93

http://www.enthought.com/products/canopy
http://eric-ide.python-projects.org
http://code.google.com/p/iep
http://pydev.org
http://www.gurobi.com/downloads/get-anaconda

Gurobi supports Python 2.7 on MacOS. Click on the download button (Mac 0S X -- 64-Bit Python 2.7
in this case) to begin the download. Once the download has completed, double click on the down-
loaded .pkg file and follow the installation instructions.

Once the install is complete, and once you close your current terminal and open a new one, typing
python in your terminal window should invoke the Anaconda Python interpreter:

> python
Python 2.7.9 |Anaconda 2.2.0 (64-bit) |

Type quit () in Python to return to the terminal.
Step 2: Install Gurobi into Anaconda

The next step is to install the Gurobi package into Anaconda. You do this by first adding the Gurobi
channel to your Anaconda channels and then installing the gurobi package from this channel.

From a Anaconda terminal issue the following command to add the Gurobi channel to your default
search list

conda config --add channels http://conda.anaconda.org/gurobi

Now issue the following command to install the Gurobi package

conda install gurobi

You can remove the Gurobi package at any time by issuing the following command
conda remove gurobi

Step 3: Install a Gurobi License

The third step is to install a Gurobi license (if you haven’t already done so).

You are now ready to use Gurobi from within Anaconda. Your next step is to launch either the
Spyder IDE or iPython Notebook.

16.1 Using the Spyder IDE

To launch the Spyder Python IDE, which is included in Anaconda Python, simply type spyder
in a terminal window. Gurobi Interactive Shell commands can be typed directly into the Spyder
Console window:

94

Spyder (Python 2.7)

File Edit Search Source Run Debug Consoles Tools View Help

yHi s M2 E B XL € +h

| Editor - /home/rothberg/.... @& | IPython console ®

!'_‘, 2 temp.py ¥ = | Efl Console 1/A ¥ | B E

[+])f

In [1]: from gurobipy import *

Spyder Editor In [2]: m = read('/opt/qurobi603/1inux64/examples/data/pBO33.mps")

Ih}s is a temporary scripi In [3]: m.optimize() |
Optimize a model with 16 rows, 33 columns and 98 nonzeros
Coefficient statistics:

Matrix range [1e+88, 4e+82]

Objective range [5e+081, 5e+82]

Bounds range [1e+88, 1e+88]

RHS range [1e+88, 3e+83]
Presolve removed 5 rows and 11 columns
Presolve time: ©.00s
Presolved: 11 rows, 22 columns, 81 nonzeros
Variable types: ® continuous, 22 integer (22 binary)
Found heuristic solution: objective 3660.0088008
Found heuristic solution: objective 3412.0008008

(== BE = T - PO S]

Root relaxation: objective 2.839492e+83, 16 iterations, 0.80 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl Obj Depth IntInf | Incumbent BestBd CGap | It/Node Time

2839.49184 0 3 3412.00000 2839.49184 16.8% - 0s
3347.0000000 2839.49184 15.2% - 0s
1 3347.00000 2941.40000 12.1% - Bs
3089.0000000 2941.40000 4.78% - Bs
7 30895.00000 2951.33261 4.46% - 0s

11 3089.00000 3008.76471 2.60% - 0s
9 3089.00000 3008.76471 2.60% - 0s
9 3089.00000 3008.76471 2.60% - 0s
9 3089.00000 3008.76471 2.60% - Bs

2941.40000

=]

2951.33261
3008.76471
3008.76471
3008.76471
3008.76471

[l ol ol R R R R R
Moo OoOOoOoOOoO

ooocoe

Cutting planes:
Cowver: 2
flinua- A

] [Tv] | Console | Historylog | IPython console |
Permissions: RW End-of-lines: LF Encoding: UTF-8 Line: 1 Column: 1 Memory: 16 %

[4]

Note that a general-purpose Python IDE like Spyder requires one extra step that isn’t required when
you launch the Gurobi shell from the gurobi.sh command: you must manually load the Gurobi
module by typing from gurobipy import * before issuing any Gurobi commands.

You can also use Spyder to run any of the Gurobi examples. For example, if you use Open under the
File menu to open Gurobi example mipl.py, and then click on the Run icon (the green triangle),
you should see:

95

Spyder (Python 2.7)

File Edit Search Source Run Debug Consoles Tools View Help

' = . (% 8
Hbd PErird s bila 32 b @ B A2 € o nacondapin o] fg = +
Editor - Jopt/gurobi603/linux64/examples/python/mip1.py ® IPython console ®
.py ® = Console 1/A % H =
= TR O R e = R T =
= Anaconda is brought to you by Continuum Analytics. =
Please check out: http://continuum.io/thanks and
https://binstar.org i
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra
details.
s#guiref -> A brief reference about the graphical user
interface.
. . In [1]:
4 15 from gurobipy import * runfile(' /opt/gurobi6®3/linux64/exanples/python/mipl.py’,
14 wdir="/opt/gurobicB3/linux64/examples/python')
12}“!": Optimize a model with 2 rows, 3 columns and 5 nonzeros
16 Coefficient statistics:
17 new Matrix range [1e+06, 3e+88]
18 m = Model("mip1") Objective range [le+08, 2e+08]
19 Bounds range [1e+06, 1e+88] |
20 B RHS range [1e+88, 4e+00]
21 x = m.addVar(vtype=GRB.BINARY, name: . Found heuristic solution: objective 2
22 y = m.addVar(vtype=GRB.BINARY, name="y") Presolve removed 2 rows and 3 columns
23 z = m.addVar(vtype=GRB.BINARY, name="z") Presolve time: 8.00s
24
25] Explored @ nodes (0 simplex iterations) in 8.00 seconds
26 n.update() Thread count was 1 (of 4 available processors)
27
28 bject | | optimal solution found (tolerance 1.8@e-84)
29 m.setObjective(x + y + 2 * z, GRB.MAXIMIZE) Best objective 3.000000000000e+00, best bound
30 3.000000000000+00, gap 0.0%
31 x 1
32 m.addConstr(x + 2 * y + 3 * z <= 4, "c0") y 0
33 z1
34 obj: 3
35 m.addConstr(x + y >= 1, "cl1")
53’ timize() | In [2]: -
37 m.optimize e o
ol I) console | Historylog | ipython console
Permissions: RH End-of-lines: LF Encoding: UTF-8-GUESSED Line: 1 Column: 1 Memory: 16 %

Some Gurobi examples require command-line arguments. Those can be input from the Configure. ..
item of the Run menu. For example, to run the sudoku.py example with file sudokul as input...

File Edit Search Source Run Debug Consoles

= S T Y

Editor - fopt/gurobi603/linux64/examples,

Tools View Help

Run Settings

Select a run configuration: L

|jupt,’gurnbiﬁﬂ!/linux64jexamplesfpythDnjsudoku.py S =
.0 (64-bit)| (default, Mar 9 2015, =

3

4

é Console " or "license" for more information.

: w | ® Execute in current Python or IPython console ed Interactive Python.

8 y 9 by Continuum Analytics.

1; | Execute in a new dedicated Python console ontinuum.io/thanks and

ié A Execute in an external System terminal and overview of IPython's features.
ice.

& ko : help system.

14} Ly General settings 'object', use 'object??' for extra

5 v

iS r d ¥ Command line options: |../data/sudokul 'ence about the graphical user

7 va

ig L | ¥ Working directory: 4fexamples/python @

20

21 import sys
22 import math

Dedicated Python console

i gi from gurobipy import * Interact with the Python console after execution

25 if len(sys.argv) < 2: ¥ show warning when killing running process

26 print('Usage: sudoku.py filenam

%; quit() Command line options:]

25 f = open(sys.arav[1])

3e . - -

31grid = f.read().split() Always show this dialog on a First File run

32

33n = len(grid[e]) i

34s = int(math.sqrt{n)) Runy xgancel & oK

35

36

37 v -

38 ' =

39 vars = {} - = S
il I [+ || Console | Historylog ipython console

Permissions: RW End-of-lines: LF Encoding: UTF-8-GUESSED Line: 21 Column: 1 Memory: 15 %

96

Anaconda Python includes all of the Python modules used in the Gurobi examples, but feel free to
explore the vast library of additional Python modules. A list of available modules can be found at
the PyPI site. You can use the conda command to install additional modules. Type conda into a
terminal window with no arguments to get additional information on this command.

16.2 Using the iPython Notebook

To launch iPython Notebook, which is included in Anaconda Python, simply type ipython notebook
in a terminal window. You can create a new notebook by clicking on the New icon (in the upper
right) and choosing one of the Notebook options. Once your new notebook starts, you can type
standard Python commands or Gurobi Interactive Shell commands directly into the In window:

= Jupyter iPython Notebook Example ussavea: (o
File Edit View nsert Cell Kemel Help | Python2 O
+3c B B4 % > B Ccode | ceti Tooibar: | None |

In [45]: from gurobipy import *
m = Model()
v8 = m.addVar()
vl = m.addVar()
m.update()
m.addConstr(v® - vl <= 4) # Con
m.addConstri{ve + vl <= 4) # C
m.addConstr(-0.25*v@ + vl <= 1) # Cor int 3
m.setObjective(vl, GRB.MAXIMIZE) # O ive: maximize vl
m.params.outputflag = ©
m.optimize()

Plot the optimal solution...

In [46]: import matplotlib.pyplot a
pyplot.plot([e,4], [0,4])
pyplot.plot([4,8], [0,4])
pyplot.plot([e,4], [1,2])
pyplot.plot([ve.x], [vl.x], 'ro') # Plot the optimal vertex
pyplot.show

40

35
30
25
20
15
10 ._,_,_,_,__,_,_

0s

In[]:

Our simple example shows a set of commands that create and solve a simple linear programming
model, and then plot the resulting constraints and the computed optimal vertex.

For those of you who aren’t familiar with notebook-style interfaces, they allow you to mix executable
code, text, and graphics to create a self-documenting stream of results. Notebooks can be saved and
continued later, which make them particularly well suited for prototyping and experimentation.

97

http://pypi.python.org

File Overview

This section briefly describes the purposes of the more important files in the Gurobi distribution.
Note that the list below may not precisely agree with your installation. We’ve omitted a few less
important files. In addition, a few file names depend on the exact version of the Gurobi optimizer
that you installed.

The following files and directories are created in your installation directory
(typically /Library/gurobi650/mac64):

e EULA.pdf - Gurobi End User License Agreement - PDF format
e ReleaseNotes.html - release notes
e bin
— grb_rs - Gurobi Remote Services executable
— grb_rsw - Gurobi Remote Services executable
— grb_ts - Gurobi Token Server executable
— grbgetkey - retrieves your Gurobi license key from the Gurobi key server
— grbprobe - probes system details (typically not used)
— grbtune - parameter tuning tool
— gurobi.env - sample parameter initialization file

— gurobi.sh - starts the Gurobi interactive shell

— gurobi_cl - simple command-line binary

— examples - Example Tour - HTML (open index.html in this directory)

— examples.pdf - Example Tour - PDF

— quickstart - Quick Start guide - HTML (open index.html in this directory)
— quickstart.pdf - Quick Start guide - PDF

— refman - Reference Manual - HTML (open index.html in this directory)

— refman.pdf - Reference Manual - PDF

e examples

— build - Makefile for C, C++, Java, and Python examples
— ¢ - source code for C examples

— ¢# - source code for C# examples (for Windows)

98

¢++ - source code for C++ examples

data - data files for examples

java - source code for Java examples

matlab - source code for MATLAB examples
python - source code for Python examples

R - source code for R examples

vb - source code for Visual Basic examples (for Windows)

e include

lib

gurobi_c.h - C include file
gurobi c++.h - C++ include file

gurobi.jar - Java interface
gurobi.py - Python startup file

gurobipy - Python files used by the interactive shell and the Python interface (no need
to look inside this directory)

libGurobiJni65.jnilib - Java JNI wrapper

libgurobi65.so - Gurobi native library (used by all interfaces)
libgurobi c++.a - C++ interface (symbolic link)

libgurobi g++4.2.a - C++ interface

matlab - Gurobi MATLAB interface

R - R Gurobi package

setup.py - Python setup file - used by the installer to install the gurobipy module into your
Python environment

Src

build - Makefile for Gurobi C++ interface
cpp - Source for Gurobi C+-+ interface

99

	Introduction
	Obtaining a Gurobi License
	Creating a new academic license

	Software Installation Guide
	Retrieving and Setting Up a Gurobi License
	Retrieving a Free Academic license
	Academic validation

	Retrieving a Named-User, Single-Machine, or Single-Use license
	Setting up and using a Floating license
	Retrieving a Floating license
	Starting a token server
	Upgrading a token server
	Creating a token server client license

	Setting up and using a Compute Server license
	Retrieving a Compute Server license
	Creating a Compute Server client license

	Starting Gurobi Remote Services
	Upgrading Gurobi Remote Services

	Testing your license

	Solving a Simple Model - The Gurobi Command Line
	Interactive Shell
	Attributes
	C Interface
	C++ Interface
	Java Interface
	.NET Interface (C#)
	Python Interface
	Simple Python Example
	Python Dictionary Example
	Building and running the examples

	MATLAB Interface
	R Interface
	Recommended Reading
	Installing the Anaconda Python distribution
	Using the Spyder IDE
	Using the iPython Notebook

	File Overview

