GUROBI OPTIMIZER
REFERENCE MANUAL

GUROBI

OPTIMIZATION

Version 9.5, Copyright (©) 2022, Gurobi Optimization, LLC

Contents

1 Introduction 1
2 Detailed Release Notes for Gurobi 9.5.1 3
3 C API Overview 10
3.1 Environment Creation and Destruction 15
GRBloadenv 15
GRBemptyenvo 15
GRBstartenv e 15
GRBfreeenv e 16
GRBgetconcurrentenvo Lo oL 16
GRBgetmultiobjenv Lo 17
GRBdiscardconcurrentenvs L0000 oo 18
GRBdiscardmultiobjenvs L oo 18

3.2 Model Creation and Modification 0 19
GRBloadmodel 19
GRBnewmodel 21
GRBcopymodelo 22
GRBaddconstr 22
GRBaddconstrs e 23
GRBaddgenconstrXxx Lo 24
GRBaddgenconstrMax L L L o 25
GRBaddgenconstrMino L oo 26
GRBaddgenconstrAbso 27
GRBaddgenconstrAndo 27
GRBaddgenconstrOr 28
GRBaddgenconstrNorm 29
GRBaddgenconstrIndicator 30
GRBaddgenconstrPWL oL 31
GRBaddgenconstrPolyo oo 31
GRBaddgenconstrExpo o 32
GRBaddgenconstrExpAo o 33
GRBaddgenconstrLog oo 34
GRBaddgenconstrLogA 35
GRBaddgenconstrPowo 36
GRBaddgenconstrSin Lo Lo 37
GRBaddgenconstrCos L Lo 37
GRBaddgenconstrTan L 38
GRBaddqeconstr 39

GRBaddgpterms 40

GRBaddrangeconstr oL 41
GRBaddrangeconstrs L Lo 42
GRBaddsos e e 44
GRBaddvar 45
GRBaddvars e 46
GRBchgeoeffso 47
GRBdelconstrs e 48
GRBdelgenconstrs 48
GRBdelq 48
GRBdelqconstrso 49
GRBdelsos e 49
GRBdelvars 50
GRBsetobjectiven 50
GRBsetpwlobjo 51
GRBupdatemodel 52
GRBfreemodel 52
GRBXaddconstrs 53
GRBXaddrangeconstrs L Lo 54
GRBXaddvars 55
GRBXchgeoeffs 56
GRBXloadmodel e 57
3.3 Model Solution L 60
GRBoptimize 60
GRBoptimizeasync 60
GRBcomputellS 61
GRBfeasrelax oL 62
GRBfixmodel e 63
GRBreset 64
GRBsync 64
3.4 Model Queries e 66
GRBgetcoeff 66
GRBgetconstrbyname oL 66
GRBgetconstrs 67
GRBgetenv 67
GRBgetgenconstrMax Lo 68
GRBgetgenconstrMin oL Lo 69
GRBgetgenconstrAbs 70
GRBgetgenconstrAnd 70
GRBgetgenconstrOro 71
GRBgetgenconstrNorm 72
GRBgetgenconstrIndicator 73
GRBgetgenconstrPWL 74
GRBgetgenconstrPoly oo 75

GRBgetgenconstrExp 76

GRBgetgenconstrExpAo 7

GRBgetgenconstrLog 78
GRBgetgenconstrLogAo 79
GRBgetgenconstrPowo L 79
GRBgetgenconstrSino 80
GRBgetgenconstrCos L 81
GRBgetgenconstrTan L L oo 81
GRBgetjsonsolutiono 82
GRBgetpwlobj o 83
GRBgetq o 83
GRBgetqconstr oL 84
GRBgetqconstrbynameo 85
GRBgetsos 85
GRBgetvarbynameo 86
GRBgetvars 87
GRBsinglescenariomodel L Lo 87
GRBXgetconstrs oL 88
GRBXgetvars 89
3.5 Input/Output oL e 91
GRBreadmodel 91
GRBread 91
GRBwrite e e 92
3.6 Attribute Management oL oL L 93
GRBgetattrinfo 93
GRBgetintattro 93
GRBsetintattro 94
GRBgetintattrelement oL oL 94
GRBsetintattrelemento Lo 95
GRBgetintattrarray 95
GRBsetintattrarrayo 96
GRBgetintattrlist 97
GRBsetintattrlist 97
GRBgetdblattr 98
GRBsetdblattr 98
GRBgetdblattrelement oL oL 99
GRBsetdblattrelemento Lo 99
GRBgetdblattrarrayo 100
GRBsetdblattrarray 100
GRBgetdblattrlist 101
GRBsetdblattrlist 102
GRBgetcharattrelement 102
GRBsetcharattrelement L L o o 103
GRBgetcharattrarray 103
GRBsetcharattrarrayo 104
GRBgetcharattrlist 104

iii

GRBsetcharattrlist 105

GRBgetstrattr 105
GRBsetstrattr 106
GRBgetstrattrelemento 107
GRBsetstrattrelement Lo 107
GRBgetstrattrarrayo 108
GRBsetstrattrarray Lo 108
GRBgetstrattrlisto 109
GRBsetstrattrlist 110
GRBgetbatchattrinfo oo 110
3.7 Parameter Management and Tuning oL 112
GRBtunemodel 112
GRBgettuneresult Lo 112
GRBgetdblparam L 113
GRBgetintparamo 113
GRBgetstrparam 114
GRBsetdblparam 114
GRBsetintparam 115
GRBsetstrparam 115
GRBgetdblparaminfo o oo 116
GRBgetintparaminfoo 117
GRBgetstrparaminfo L oo 117
GRBreadparams 118
GRBwriteparamso 118
3.8 Monitoring Progress - Logging and Callbacks 120
GRBmsg 120
GRBsetcallbackfunco 120
GRBgetcallbackfunc Lo 121
GRBcbget 121
GRBversion e e 122
3.9 Modifying Solver Behavior - Callbacks, . 123
GRBcbecut e e 123
GRBcblazy 124
GRBcbsolution 125
GRBcbproceed 125
GRBcbstoponemultiobjo oo 126
GRBterminate L 127
3.10 Batch Requests e 128
GRBabortbatcho 128
GRBdiscardbatch 128
GRBfreebatch L 128
GRBgetbatch 129
GRBgetbatchenv 129
GRBgetbatchintattr oo 130

GRBgetbatchjsonsolution 130

GRBgetbatchstrattr L Lo 131

GRBoptimizebatch 131
GRBretrybatcho 132
GRBupdatebatch 132
GRBwritebatchjsonsolution o oL 133

3.11 Error Handling e 134
GRBgeterrormsgo L 134

3.12 Advanced simplex routines 135
GRBFSolve 135
GRBBSolve 135
GRBBinvColjo 136
GRBBinvRowi o 136
GRBgetBasisHead o 137

4 C++ API Overview 138
4.1 GRBEnv. 144
GRBEnv() 144
GRBEnv:uget() 147
GRBEnv:getErrorMsg() 148
GRBEnv::getParamlInfo() 148
GRBEnvimessage() oo 149
GRBEnv:readParams() 149
GRBEnv:resetParams() Lo 150
GRBEnvuset() 150
GRBEnvustart() 151
GRBEnv:writeParams()o 151

4.2 GRBModel 152
GRBModel() o 152
GRBModel::addConstr()o 153
GRBModel::addConstrs() oo 155
GRBModel::addGenConstrXxx()o oo 155
GRBModel::addQConstr()o oL 166
GRBModel::addRange()o 167
GRBModel::addRanges() Lo 167
GRBModel::addSOS()o 168
GRBModel::addVar() 168
GRBModel::addVars()o 170
GRBModel::chgCoeff()o oo 171
GRBModel::chgCoeffs()o o 172
GRBModel::computellIS() o 172
GRBModel::discardConcurrentEnvs() L. 173
GRBModel::discardMultiobjEnvs()o L. 173
GRBModel::feasRelax() Lo 173
GRBModel::fixedModel() 175
GRBModel:iget() v o 175
GRBModel::getCoeff() o oo oo 180

4.3 GRBVar

4.4 GRBConstr

GRBModel::getCol() oo o 180
GRBModel::getConcurrentEnv() oo L 180
GRBModel::getConstrByName() 181
GRBModel::getConstrs() o oo 181
GRBModel::getGenConstrXxx() L. 181
GRBModel::getGenConstrs() oo oo 189
GRBModel::getJSONSolution() 189
GRBModel::getMultiobjEnv() o 190
GRBModel::getObjective() 190
GRBModel::;getPWLODbj() o oo 191
GRBModel::getQCRow() 191
GRBModel::getQConstrs()« oo 191
GRBModel::getRow() L 192
GRBModel::getSOS() o oo 192
GRBModel::getSOSs() o o oo 192
GRBModel::getTuneResult() 193
GRBModel::getVarByName() 193
GRBModel::getVars() o 193
GRBModel::optimize() Lo 193
GRBModel::optimizeasync() 194
GRBModel::optimizeBatch() o L. 194
GRBModel::presolve()o 194
GRBModel:iread() Lo 195
GRBModel:irtemove()o 195
GRBModel:reset() oL 196
GRBModel::setCallback() oo oo 196
GRBModel:iset() o o oo 197
GRBModel::setObjective() o v o oo 201
GRBModel::setObjectiveN()o oo 201
GRBModel::setPWLObj() o0 o oo 202
GRBModel::singleScenarioModel()o o L 202
GRBModel:isync() . . o v v oo 202
GRBModel::terminate()o 203
GRBModel::tune() o o 203
GRBModel::update() oo 203
GRBModel:iwrite() . . . v o o oo 203
... 205
GRBVar:get() o 205
GRBVarz:index() 206
GRBVar:sameAs()o 206
GRBVarzset() 206
... 208
GRBConstriget() . . . o o 208
GRBConstrzindex()o 209
GRBConstrasameAs() oo oo 209

GRBConstrzset() 209

4.5 GRBQConstr e 211
GRBQConstr:get() 211
GRBQConstrset()« . o 212

4.6 GRBSOS e 213
GRBSOS::get() . . o v o o 213
GRBSOS:set() o oo 213

4.7 GRBGenConstr 214
GRBGenConstr:get() o 214
GRBGenConstrset()o oo o 214

4.8 GRBEXDr e 216
GRBExpr::getValue() 216

4.9 GRBLInEXpr e 217
GRBLInEXpr() o 217
GRBLinExpr:addTerms() oo 218
GRBLinExpr:clear() o 218
GRBLinExpr::getConstant() 218
GRBLinExpr::getCoeff() 219
GRBLinExpr:getValue() oo 219
GRBLinExpr:getVar() oo L 219
GRBLinExpr::operator=. 219
GRBLinExpr::operator+o oo 220
GRBLinExpr::operator- 220
GRBLinExpr::operator+=.o 220
GRBLinExpr::operator-= 220
GRBLinExpr::operator®= 221
GRBLinExpriremove()o 221
GRBLinExpr:size()o o e 221

4.10 GRBQuadExpr e 222
GRBQuadExpr() 223
GRBQuadExpr:addTerm() 223
GRBQuadExpr::addTerms() 224
GRBQuadExpr:clear() 224
GRBQuadExpr::getCoeff() 224
GRBQuadExpr::getLinExpr() 225
GRBQuadExpr::getValue() 225
GRBQuadExpr:getVarl() 225
GRBQuadExpr::getVar2() 225
GRBQuadExpr::operator= 226
GRBQuadExpr::operator+o 226
GRBQuadExpr::operator- 226
GRBQuadExpr::operator+= o 226
GRBQuadExpr::operator-= 227
GRBQuadExpr::operator®= 227
GRBQuadExpriremove() oo 227

vii

GRBQuadExprusize() 227

4.11 GRBTempConstr e e 228
4.12 GRBColumn 229
GRBColumn() 229
GRBColumn::addTerm() 229
GRBColumn::addTerms()o o 229
GRBColumn::clear() 229
GRBColumn::getCoeff() 230
GRBColumn::getConstr() 230
GRBColumn:remove() o oo oo 230
GRBColumn:size() 230
4.13 GRBCallback 231
GRBCallback() 231
GRBCallback::abort() 231
GRBCallback:addCut() oo 231
GRBCallback::addLazy() 232
GRBCallback::getDoubleInfo() 233
GRBCallback::getIntInfo() L oo 233
GRBCallback::getNodeRel()o 234
GRBCallback::getSolution() 234
GRBCallback::getStringInfo() Lo oL 235
GRBCallback::proceed() oL 235
GRBCallback::setSolution()o 235
GRBCallback::stopOneMultiObj() o .. 236
GRBCallback::useSolution() oL oo 237
4.14 GRBException 238
GRBException() 238
GRBException::getErrorCode() oo 238
GRBException::getMessage() oo 238
4.15 GRBBatch e 239
GRBBatch() 239
GRBBatch::abort() 240
GRBBatch::discard()o oo 240
GRBBatch::getJSONSolution() o 240
GRBBatch::get()o 240
GRBBatchuretry() . . . o o 241
GRBBatch:update()o 241
GRBBatch::writeJSONSolution() 242
4.16 Non-Member Functions 243
operator== e 243
OPEratoOr<C= e e e e e e e 243
operator>= 243
operator+ L e e 244
operator- Lo e e e 245
operator™® 246

viii

operator/ 248

4.17 Attribute Enumso Lo 249
GRB_ CharAttr e 249
GRB_DoubleAttr e 249
GRB IntAttr. e 249
GRB_ StringAttro 249

4.18 Parameter Enumso 250
GRB DoubleParam 250
GRB IntParam 250
GRB_ StringParam Lo 250

5 Java API Overview 251

51 GRBEnv. . . . 257
GRBENV() .+« o o e oo e e e e e e e e e 257
GRBEnv.dispose() 260
GRBEnv.get() 260
GRBEnv.getErrorMsg() 261
GRBEnv.getParamlInfo() 261
GRBEnv.message() oo o 262
GRBEnv.readParams() o 262
GRBEnv.release() 263
GRBEnv.resetParams() Lo 263
GRBEnv.set() 263
GRBEnv.setLogCallback() 264
GRBEnv.start() 264
GRBEnv.writeParams() o 265

5.2 GRBModel 266
GRBModel() o 266
GRBModel.addConstr() o 267
GRBModel.addConstrs()o 269
GRBModel.addGenConstrXxx() 270
GRBModel.addQConstr() 280
GRBModel.addRange() L 283
GRBModel.addRanges() 283
GRBModel.addSOS() oo o 284
GRBModel.addVar() 284
GRBModel.addVars() Lo 285
GRBModel.chgCoeff() 287
GRBModel.chgCoeffs() 288
GRBModel.computellS() 288
GRBModel.discardConcurrentEnvs() L. 289
GRBModel.discardMultiobjEnvs() 289
GRBModel.dispose()o e 290
GRBModel.feasRelax() 290
GRBModel.fixedModel() L 291
GRBModel.get() 292

ix

GRBModel.getCoeff() 307

GRBModel.getCol() o 307
GRBModel.getConcurrentEnv() oL 307
GRBModel.getConstrByName() 308
GRBModel.getConstrs() 308
GRBModel.getGenConstrXxx() v o v v v v v 308
GRBModel.getGenConstrs() 316
GRBModel.getJSONSolution() o 316
GRBModel.getMultiobjEnv() L. 316
GRBModel.getObjective() o 317
GRBModel.getPWLODbj() 317
GRBModel.getQCRow() o oo 318
GRBModel.getQConstrs()o 318
GRBModel.getRow() o 318
GRBModel.getSOS() o 318
GRBModel.getSOSs() o o oo 319
GRBModel.getTuneResult() 319
GRBModel.getVarByName() 319
GRBModel.getVars() 320
GRBModel.optimize() 320
GRBModel.optimizeasync() 320
GRBModel.optimizeBatch() oo 321
GRBModel.presolve() 321
GRBModel.read() 321
GRBModel.remove() 321
GRBModel.reset() 323
GRBModel.setCallback() o 323
GRBModel.set()o 323
GRBModel.setLogCallback() 336
GRBModel.setObjective() o o o 337
GRBModel.setObjectiveN() L oo 337
GRBModel.setPWLODj() o 338
GRBModel.singleScenarioModel() 338
GRBModel.sync()o 338
GRBModel.terminate() 339
GRBModel.tune() 339
GRBModel.update() L 339
GRBModel.write() 339
53 GRBVar 341
GRBVar.get() o o 341
GRBVar.index() 342
GRBVar.sameAs() 342
GRBVarset()o 342
54 GRBConstr 344

GRBConstr.get()« o 344

GRBConstrindex() 345

GRBConstr.sameAs() 345
GRBConstrset() L 345
5.5 GRBQConstr e 347
GRBQConstr.get() 347
GRBQConstr.set() o 348
5.6 GRBSOS 349
GRBSOS.get() . . . v v v 349
GRBSOS.set() o 349
5.7 GRBGenConstr e 350
GRBGenConstr.get() 350
GRBGenConstrset()o oo o 350
5.8 GRBEXpr e 352
GRBExpr.getValue() 352
5.9 GRBLIinExpr e 353
GRBLInEXpr() o 353
GRBLinExpr.add() 353
GRBLinExpr.addConstant() 354
GRBLinExpr.addTerm() oo 354
GRBLinExpr.addTerms() 354
GRBLinExpr.clear() 355
GRBLinExpr.getConstant() oo 355
GRBLinExpr.getCoeff() o 355
GRBLinExpr.getValue() o 355
GRBLinExpr.getVar() 356
GRBLinExpr.multAdd() 356
GRBLinExpr.remove()o 356
GRBLinExpr.size() e 357
5.10 GRBQuadExpr e 358
GRBQuadExpr() 358
GRBQuadExpradd() 359
GRBQuadExpr.addConstant() 359
GRBQuadExpr.addTerm() 359
GRBQuadExpr.addTerms() o 360
GRBQuadExpr.clear() 361
GRBQuadExpr.getCoeff() 361
GRBQuadExpr.getLinExpr() 362
GRBQuadExpr.getValue() 362
GRBQuadExpr.getVarl() 362
GRBQuadExpr.getVar2() 362
GRBQuadExpr.multAdd() 363
GRBQuadExpr.remove() 363
GRBQuadExpr.size()o oo 363
5.11 GRBColumn e 364
GRBColumn() o 364

xi

GRBColumn.addTerm() 364

GRBColumn.addTerms() 364
GRBColumn.clear() e 365
GRBColumn.getCoeff() 365
GRBColumn.getConstr() 365
GRBColumn.remove() 366
GRBColumn.size() o oo 366
512 GRBCallback 367
GRBCallback() 367
GRBCallback.abort() 367
GRBCallback.addCut() 367
GRBCallback.addLazy()« e 368
GRBCallback.getDoubleInfo() oo 369
GRBCallback.getIntInfo() oo 369
GRBCallback.getNodeRel() oo 369
GRBCallback.getSolution() 370
GRBCallback.getStringInfo() L Lo 371
GRBCallback.proceed() 371
GRBCallback.setSolution() 371
GRBCallback.stopOneMultiObj() 372
GRBCallback.useSolution() 373
5.13 GRBException e 374
GRBException() 374
GRBException.getErrorCode() oo 374
514 GRBBatch 375
GRBBatch() 375
GRBBatch.abort() 376
GRBBatch.discard() 376
GRBBatch.dispose()o 376
GRBBatch.getJSONSolution() 377
GRBBatch.get() 377
GRBBatch.retry() 377
GRBBatch.update() 378
GRBBatch.writeJSONSolution() 378
5.15 GRB o 379
Constants L 379
GRB.CharAttr 384
GRB.DoubleAttr 385
GRB.DoubleParam Lo o 385
GRB.IntAttr 385
GRB.IntParamo 385
GRB.StringAttr 385
GRB.StringParam oo 385

xii

6 .NET API Overview 386

6.1 GRBEnv. e 392
GRBEDV() .+« o o o oo e e e e e e e e e e 392
GRBEnv.Dispose() 395
GRBEnv.ErrorMsg L 395
GRBEnv.Get() o e 395
GRBEnv.GetParamInfo() 396
GRBEnv.Message() o v v i i 397
GRBEnv.ReadParams() 397
GRBEnv.Release() 397
GRBEnv.ResetParams() Lo 398
GRBEnv.Set() e 398
GRBEnv.Start() 399
GRBEnv.WriteParams() 399

6.2 GRBModel 400
GRBMOAEl() .« o o oo e e e e e e e e e e e 400
GRBModel.AddConstr() 401
GRBModel.AddConstrs() o v v it 401
GRBModel.AddGenConstrXxx() o 402
GRBModel.AddQConstr()« v v 413
GRBModel.AddRange() 413
GRBModel.AddRanges() e 414
GRBModel.AddSOS() o oo 414
GRBModel.AddVar() 415
GRBModel.AddVars() 416
GRBModel.ChgCoeff() o o 418
GRBModel.ChgCoeffs() 418
GRBModel.ComputelIS() o 419
GRBModel.DiscardConcurrentEnvs() 420
GRBModel.DiscardMultiobjEnvs() o L. 420
GRBModel.Dispose() 420
GRBModel.FeasRelax() 420
GRBModel.FixedModel() 422
GRBModel.Get() 422
GRBModel.GetCoeff() 434
GRBModel.GetCol()o oo 434
GRBModel.GetConcurrentEnv() L oL 434
GRBModel.GetConstrByName() 435
GRBModel.GetConstrs() o v v v 435
GRBModel.GetGenConstrXxx()o 435
GRBModel.GetGenConstrs()« v oo v i i 442
GRBModel.GetJSONSolution() o 442
GRBModel.GetMultiobjEnv() 443
GRBModel.GetObjective()o 443
GRBModel.GetPWLODbj()o o 443

6.3

6.4

6.5

6.6

6.7

GRBModel.GetQConstr() 444

GRBModel.GetQConstrs() e 444
GRBModel.GetQCRow() 444
GRBModel.GetRow() 445
GRBModel.GetSOS() o 445
GRBModel.GetSOSs() v v v o 445
GRBModel.GetTuneResult() 445
GRBModel.GetVarByName() o 446
GRBModel.GetVars() 446
GRBModel.Optimize() o 446
GRBModel.OptimizeAsync()o 446
GRBModel.OptimizeBatch() 447
GRBModel.Presolve() 447
GRBModel.Read() o 447
GRBModel.Remove() o 448
GRBModel.Reset()o 449
GRBModel.SetCallback() 449
GRBModel.Set() 449
GRBModel.SetObjective()o 461
GRBModel.SetObjectiveN() o 462
GRBModel.SetPWLObj() 462
GRBModel.SingleScenarioModel() o L. 463
GRBModel.Sync() 463
GRBModel. Terminate() o 463
GRBModel. Tune() 463
GRBModel.Update() o 464
GRBModel.Write() 464
GRBVar o e 465
GRBVar.Get() 465
GRBVar.Index 465
GRBVar.SameAs() 466
GRBVar.Set() 466
GRBConstr 467
GRBConstr.Get() 467
GRBConstrIndex 467
GRBConstr.SameAs() 468
GRBConstr.Set() 468
GRBQConstr e e 470
GRBQConstr.Get() o 470
GRBQConstr.Set() o 470
GRBSOS . . . 472
GRBSOS.Get() . . . v v v o 472
GRBSOS.Set()o 472
GRBGenConstr 473
GRBGenConstr.Get() 473

Xiv

GRBGenConstr.Set() 473

6.8 GRBExXpr 475
GRBExpr.Value 475
6.9 GRBLinExpr e 476
GRBLInExpr() 476
GRBLIEXPrAdd() . . o o oo oo e e e e e e e ATT
GRBLinExpr.AddConstant(), . 477
GRBLinExpr.AddTerm() 477
GRBLinExpr.AddTerms() 477
GRBLinExpr.Clear() o 478
GRBLinExpr.Constant 478
GRBLinExpr.GetCoeff() 478
GRBLinExpr.GetVar() 478
GRBLinExpr.MultAdd() 479
GRBLinExpr.Remove() o 479
GRBLinExpr.Size 479
GRBLinExpr.Value 479
6.10 GRBQuadExpr e 480
GRBQuadExpr() 481
GRBQuadExpr.Add() 481
GRBQuadExpr.AddConstant() 481
GRBQuadExpr.AddTerm() 482
GRBQuadExpr.AddTerms() o 482
GRBQuadExpr.Clear() 483
GRBQuadExpr.GetCoeff() oo 483
GRBQuadExpr.GetVarl() 484
GRBQuadExpr.GetVar2() 484
GRBQuadExpr.LinExpr() 484
GRBQuadExpr.MultAdd() 484
GRBQuadExpr.Remove() 485
GRBQuadExpr.Size 485
GRBQuadExpr.Value 485
6.11 GRBTempConstr e e 486
6.12 GRBColumn 487
GRBColumn() 487
GRBColumn.AddTerm() o 487
GRBColumn.AddTerms() 487
GRBColumn.Clear() e 488
GRBColumn.GetCoeff() 488
GRBColumn.GetConstr() 488
GRBColumn.Remove() e 488
GRBColumn.Size L 489
6.13 Overloaded Operators 0 i i it it e e e 490
operator <<= e 490
OPErator >= e e e e e e 490

p.q%

operator ==l 490

operator + L Lo e 491
operator - L e e 492
operator * . . . L 493
operator / 495
implicit cast L e 495
6.14 GRBCallback 497
GRBCallback() 497
GRBCallback.Abort() 497
GRBCallback.AddCut() 497
GRBCallback.AddLazy()« o 498
GRBCallback.GetDoubleInfo() L. 499
GRBCallback.GetIntInfo() oo 499
GRBCallback.GetNodeRel() oo 499
GRBCallback.GetSolution() 500
GRBCallback.GetStringInfo() oo 500
GRBCallback.Proceed() 501
GRBCallback.SetSolution() 501
GRBCallback.StopOneMultiObj() 501
GRBCallback.UseSolution() Lo 502
6.15 GRBException e 503
GRBException() 503
GRBException.ErrorCode o 503
6.16 GRBBatch 504
GRBBatch() 504
GRBBatch.Abort() 505
GRBBatch.Discard() 505
GRBBatch.GetJSONSolution() 505
GRBBatch.Get() 505
GRBBatch.Retry() 506
GRBBatch.Update() 506
GRBBatch.WriteJSONSolution() 506
6.17 GRB 507
Constants L 507
GRB.CharAttr o 519
GRB.DoubleAttro 519
GRB.DoubleParam oo 519
GRB.IntAttr 519
GRB.IntParam 519
GRB.StringAttr 519
GRB.StringParamo o 520

xvi

7 Python API Overview 521

7.1 Global Functions 527
models() 527
disposeDefaultEnv()o 527
multidict() 527
paramHelp() 528
quicksum() 528
read() . ..o 529
readParams() L 529
resetParams() o 529
setParam() 529
system() . ..o 530
writeParams() 530

7.2 Model 531
Model() 531
Model.addConstr() 531
Model.addConstrs() o 532
Model.addGenConstrXxx() v v v v 533
Model.addGenConstrMax() o 534
Model.addGenConstrMin() Lo o 535
Model.addGenConstrAbs() 535
Model.addGenConstrAnd() Lo 536
Model.addGenConstrOr()o 536
Model.addGenConstrNorm() o 537
Model.addGenConstrIndicator() 538
Model.addGenConstrPWL() o 538
Model.addGenConstrPoly() oo 539
Model.addGenConstrExp() L oo 540
Model.addGenConstrExpA() oo 540
Model.addGenConstrLog() 541
Model.addGenConstrLogA() Lo 541
Model.addGenConstrPow() o 542
Model.addGenConstrSin() Lo o 542
Model.addGenConstrCos() o o i 543
Model.addGenConstrTan() 544
Model.addLConstr()o 544
Model.addMConstr()« . oo 545
Model.addMQConstr() 545
Model.addMVar() 546
Model.addQConstr() 547
Model.addRange() 547
Model.addSOS() o 548
Model.addVar() oo 548
Model.addVars() L 549
Model.cbCut() o 550

Model.cbGet() 551

Model.cbGetNodeRel() 551
Model.cbGetSolution() L 552
Model.cbLazy()« o 552
Model.cbProceed() 553
Model.cbSetSolution() 554
Model.cbStopOneMultiObj() Lo 554
Model.cbUseSolution() o 555
Model.chgCoeff() 555
Model.computelIS() 556
Model.copy() o o o 557
Model.discardConcurrentEnvs() Lo 557
Model.discardMultiobjEnvs() oo 557
Model.dispose() o 558
Model.feasRelaxS()o 558
Model.feasRelax() 559
Modelfixed() 560
Model.getA() o o 561
Model.getAttr() 561
Model.getCoeff() 561
Model.getCol() 562
Model.getConcurrentEnv() Lo 562
Model.getConstrByName() 563
Model.getConstrs() oL 563
Model.getGenConstrMax() Lo 563
Model.getGenConstrMin() Lo 564
Model.getGenConstrAbs() Lo 564
Model.getGenConstrAnd()o 564
Model.getGenConstrOr() o 565
Model.getGenConstrNorm() o 565
Model.getGenConstrIndicator()00 566
Model.getGenConstrPWL() o 566
Model.getGenConstrPoly() oo 567
Model.getGenConstrExp() o 567
Model.getGenConstrExpA() Lo 568
Model.getGenConstrLog() oo 568
Model.getGenConstrLogA() 569
Model.getGenConstrPow() o oo 569
Model.getGenConstrSin() Lo 570
Model.getGenConstrCos() o . oL 570
Model.getGenConstrTan() oo v 570
Model.getGenConstrs() 571
Model.getJSONSolution() oo 571
Model.getMultiobjEnv() 571
Model.getObjective()« « v o oo 572

xviii

7.4 MVar

Model.getParamInfo() Lo o 572

Model.getPWLODbj() o 573
Model.getQConstrs() 573
Model.getQCROW() o o o v 573
Model.getRow() L 574
Model.getSOS() o o o o 574
Model.getSOSs() o o o 574
Model.getTuneResult() o 575
Model.getVarByName() 575
Model.getVars() 575
Model.message() 576
Model.optimize() 576
Model.optimizeBatch() Lo o 576
Model.presolve() o 577
Model.printAttr() 577
Model.printQuality() 577
Model.printStats() 578
Model.read() 578
Model.relax() o 578
Model.rtemove() o 578
Model.reset() 579
Model.resetParams() 579
Model.setAttr() 579
Model.setMObjective() o 580
Model.setObjective() 581
Model.setObjectiveN() o 581
Model.setPWLObj() o 582
Model.setParam() 582
Model.singleScenarioModel() Lo 583
Model.terminate() 583
Model.tune() 583
Model.update() o L 584
Model.write() 584
.. 585
Var.getAttr() 585
VarsameAs()o 585
Varindex 586
VarssetAttr() oL 586
.. 087
MVar() 587
MVar.copy() . v v v v e e e e e e 588
MVar.tolist() 588
MVar.getAttr() o o o o 588
MVar.setAttr()o 589
MVarssum()o o o 589

Xix

7.5 Constr 590
Constr.getAttr() 590
Constr.index L 590
Constr.sameAs() 591
Constr.setAttr() 591

7.6 MConstr 592
MConstr.tolist() 592
MConstr.getAttr() 592
MConstr.setAttr() 593

7.7 QConstr 594
QConstr.getAttr() 594
QConstr.setAttr() 594

7.8 SOS e 596
SOS.getAttr() . . . o o o 596
SOS.setAttr() 596

7.9 GenConstr. e 597
GenConstr.getAttr() L 597
GenConstr.setAttr() 597

7.10 LinExpr L 597
LinExpr() 598
LinExpr.add() 599
LinExpr.addConstant() 599
LinExpr.addTerms() L 599
LinExpr.clear() o 599
LinExpr.copy() o o o 600
LinExpr.getConstant() 600
LinExpr.getCoeff() 600
LinExpr.getValue() 600
LinExpr.getVar() 601
LinExpr.oremove() o oL 601
LinExpr.size() 601
LinExpr. eq () 601
LinExpr. _le () . . . oo 602
LinExpr. ge () 602

711 QuadEXpr e e e 603
QuadExpr() 603
QuadExpr.add() 604
QuadExpr.addConstant() L 604
QuadExpr.addTerms()o 604
QuadExpr.clear() 605
QuadExpr.copy() o oo 605
QuadExpr.getCoeff() 605
QuadExpr.getLinExpr() 605
QuadExpr.getValue() 606

QuadExpr.getVarl() L 606

QuadExpr.getVar2() 606

QuadExpr.remove() 606
QuadExpr.size() 607
QuadExpr. eq () . . o oo 607
QuadExpr. le (). 607
QuadExpr. ge () 607
712 GenExpr. e e 608
7.13 MLInEXpr . . . o . o o e e 609
MLInEXPr.copy() - . - - v v v v 609
MLinExpr.getValue() 609
MLIinExpr. eq () . .« 610
MLinExpr. le (). ... 610
MLinExpr. ge () 610
7.14 MQuadExXpr e 611
MQuadEXPr.copy() - « v v v v v v e e e e 611
MQuadExpr.getValue() 611
MQuadExpr._eq () . . v v v v 611
MQuadExpr._le () 612
MQuadExpr. ge () 612
7.15 TempConstr o e 613
7.16 Column 615
Column() o oo 615
Column.addTerms() 615
Column.clear() 616
Column.copy() « « « v v v i 616
Column.getCoeff() 616
Column.getConstr() o 616
Column.remove() v v e 616
Column.size() o o oo 617
7.17 Callbacks e 618
7.18 GurobiErroro 619
719 Env . oo 620
BV © v vt e 620
Env.ClientEnv() 621
Env.CloudEnv() 623
Env.resetParams() o 624
Env.setParam() o 0oL 624
Envesstart()o 624
Env.writeParams() 625
Env.dispose() oo o 625
7.20 Batcho 626
Batch() 626
Batch.abort() 627
Batch.discard() 627
Batch.dispose() o 627

xxi

Batch.getJSONSolution() 627

Batch.retry() L 628
Batch.update() L 628
Batch.writeJSONSolution() L. 628

721 GRB . . 630
Constants 630

GRB.Attr . . . o 632
GRB.Param 632

7.22 tuplelisto 633
tuplelist() 633
tuplelist.select() L oL 633
tuplelist.clean() L 634

tuplelist. contains () Lo 634

7.23 tupledict oL 635
tupledict() 635
tupledict.select() 635
tupledict.sum()o 636
tupledict.prod() 636
tupledict.clean() L 637

7.24 General Constraint Helper Functions 638
abs () . . . 638

and_ () .. 638

MAX_ () o o 638

min_ () ..o 639

or_() v o 639

NOTIN() « v v v e 640

8 MATLAB API Overview 641
8.1 Common Arguments 644
The model argument oL 644

The params argument Lo 659

8.2 Solvinga Model. 661
gurobi() 661

gurobi is() 664
gurobi_feasrelax() 666
gurobi_relax() 667

8.3 Input/Output 668
gurobi read() 668
gurobi_write() 668

8.4 Using Gurobi within MATLAB’s Problem-Based Optimization 669
8.5 Setting up the Gurobi MATLAB interface 671

xxii

9 R API Overview

9.1 Common Argumentso e
The model argument
The params argumento

9.2 Solving a Model
gurobi()

gurobi is()
gurobi feasrelax() Lo
gurobi_relax()

9.3 Input/Output .

gurobi read().
gurobi write()
9.4 Installing the R package o

10 Variables and Constraints and Objectives

10.1 Variables . . .
10.2 Constraints . .
10.3 Objectives . . .

10.4 Tolerances and Ill Conditioning -- A Caveat

11 Environments

11.1 Session boundaries L
11.2 Configuration parameters e e
11.3 Algorithmic parameters
11.4 Concurrent environmentst e e
11.5 Multi-objective environments L L oL oL

12 Attributes

12.1 Model Attributes
NumConstrs o

NumVars
NumSOS

NumQConstrs
NumGenConstrs e

NumNZs

DNumNZs
NumQNZs e
NumQCNZSs o o e
NumIntVars
NumBinVars
NumPWLObjVars o e
ModelName e e e e
ModelSense

ObjCon

Fingerprint L

ObjVal

672
674
674
689
691
691
695
697
698
698
698
699
699

701
701
702
710
716

717
717
718
720
720
721

722
728
728
728
729
729
729
729
729
729
730
730
730
730
730
730
731
731
731

xxiii

ObjBound 731

ObjBoundC e 731
PoolObjBound e 732
PoolObjVal 732
MIPGap o o e 732
Runtime 732
Work . . e 733
Status e 733
SolCount e e e 733
IterCount e 733
BarlterCount e 733
NodeCount e 733
ConcurrentWinMethod 734
ISMIP e 734
IsQP . . . e 734
ISQCP . . . o e e 734
IsMultiObj e 734
IISMinimal e 735
MaxCoeff e 735
MinCoeff e 735
MaxBound 735
MinBound 735
MaxObjCoeff 735
MinObjCoeff e 736
MaxRHS e 736
MinRHS 736
MaxQCCoeff e 736
MinQCCoeff 736
MaxQCLCoeff e 736
MinQCLCoeff o e 737
MaxQCRHS e 737
MinQCRHS e 737
MaxQObjCoeff 737
MinQObjCoeff o 737
OpenNodeCount e 737
Kappa o e 738
KappaExact e 738
FarkasProof 738
TuneResultCount e 739
NumStart e 739
LicenseExpiration 739
SEIVET . . . o v o e e e 739
12.2 Variable Attributes 739
LB . 740
UB . . e 740

xxiv

OB o o o e e 740

VarName e 740
VTag . . o e 740
VType . . o 741
X e 741
X1 .o e 741
RC . e 741
BarX . 742
Start e 742
VarHintVal 743
VarHintPri 743
BranchPriority 744
Partition 744
VBasis e 744
PStart e 745
IISLB . . . e 745
IISLBForce e 745
IISUB . . . e 746
IISUBForce e 746
Poollgnore e 746
PWLODbJCvx o 747
SAObjLow 747
SAODBJUp 747
SALBLOW e e 747
SALBUD e e 747
SAUBLOW e 748
SAUBUD e e 748
UnbdRay 748
12.3 Linear Constraint Attributes 748
SENSE . . . o e 748
RHS . . . e 749
ConstrName e 749
CTag . . . 749
Pi o 749
Slack e e 750
CBasisS e 750
DStart e 750
Lazy o e 751
IISConstr e 752
IISConstrForce e 752
SARHSLow e e 752
SARHSUp 752
FarkasDual e 752
12.4 SOS Attributes 753
IISSOS . . e 753

XXV

12.5 Quadratic Constraint Attributes o L 754
QCSense 754
QCRHS 754
QCName e e 754
QCPL © o o oo e 755
QCSlack e 755
QCTag . . . 755
IISQConstr e 755
IISQConstrForce 755

12.6 General Constraint Attributes 756
FuncPieceError 756
FuncPieceLength o 756
FuncPieceRatio 756
FuncPieces e 757
GenConstrTlype Lo 757
GenConstrName e 757
IISGenConstr e 758
IISGenConstrForce 758

12.7 Quality Attributes Lo 758
MaxVio e e 758
BoundVio 759
BoundSVio 759
BoundViolndex 759
BoundSViolndex 759
BoundVioSum 759
BoundSVioSum 759
ConstrVio e 760
ConstrSVIo e e e 760
ConstrViolndex e 760
ConstrSViolndex e 760
ConstrVioSum e 761
ConstrSVioSum e e 761
ConstrResidual 761
ConstrSResidual 761
ConstrResiduallndex e 761
ConstrSResiduallndex 762
ConstrResidualSum 762
ConstrSResidualSum 762
DualVio e 762
DualSVio e 762
DualViolndex e 763
DualSViolndex e 763
DualVioSum e 763
DualSVioSum e 763

XXVI

DualResidual e 763

DualSResidual e 764
DualResiduallndex e 764
DualSResiduallndex 764
DualResidualSum 764
DualSResidualSum e 764
ComplVio o 765
ComplViolndex e 765
ComplVioSum 765
IntVio e 765
IntViolndex e 765
IntVioSum 766
12.8 Multi-objective Attributes 766
ObjN . e 766
ObjNCon o 766
ObjNPriority o o 766
ObjNWeight 767
ObjNRelTol e 767
ObjNADbsTol 767
ObjNVal 768
ObjNName o 768
NumODbj o 768
12.9 Multi-Scenario Attributes L 769
ScenNLB 769
ScenNUB 769
ScenNODj 769
ScenNRHS e 770
ScenNName e e 770
ScenNObjBound L 770
ScenNObjVal o 770
ScenNX . . L e 771
NumScenarios o i e 771
12.10Batch Attributes e 771
BatchErrorCode e 771
BatchErrorMessage 772
BatchID e 772
BatchStatus 772
12.11Attribute Examples e 772
C Attribute Examples 774
C++ Attribute Exampleso 775
C# Attribute Examples Lo o 775
Java Attribute Exampleso L 776
Python Attribute Examples o oL 776
Visual Basic Attribute Examples T

13 Parameters 778

13.1 Parameter Guidelines e 786
Continuous Models e 786
MIP Models e e 787

13.2 Parameter Descriptions Lo 790
AggFill . o . o 790
Aggregate L 791
BarConvTol e 791
BarCorrectors e 792
BarHomogeneous L L e 792
BarlterLimit 792
BarOrder e 793
BarQCPConvTol e 793
BestBdStop 794
BestObjStop oL 794
BQPCuts e 794
BranchDir e 795
CliqueCuts o 795
CloudAccessID e 795
CloudHost e 796
CloudSecretKey 796
CloudPool e 796
ComputeServer e e e e 797
ConcurrentJobs e 797
ConcurrentMIP 798
ConcurrentSettings Lo 799
CoverCuts o e 799
CroSSOVET o o i i e e e e e e 800
CrossoverBasis 800
CSAPIAccessID e 801
CSAPISecret 801
CSAppName 801
CSAuthToken e 802
CSBatchMode e 802
CSClientLog 802
CSGroup o 803
CSIdleTimeout e e 803
CSManager o e 804
CSPriority 804
CSQueueTimeout e 804
CSRouter 805
CSTLSInsecure o e e e e e e 805
CutAggPasses 806
Cutoff e 806
CutPasses e 806

xxviii

Cuts . . . o 807

DegenMoves L e e 807
Disconnected 808
DisplayInterval 808
DistributedMIPJobs 808
DualReductions e 809
FeasibilityTol o . o e 809
FeasRelaxBigM o 809
FlowCoverCuts e 810
FlowPathCuts e 810
FuncPieceError 810
FuncPieceLength 811
FuncPieceRatio 811
FuncPieces e 811
FuncMaxVal e 812
GomoryPasses 813
GUBCoverCuts o e e 813
Heuristics e 813
IgnoreNames 814
IISMethod e 814
ImpliedCuts e 814
ImproveStartGap 815
ImproveStartNodes 815
ImproveStartTime L 816
InfProofCuts 816
InfUnbdInfo e 816
InputFile 817
IntegralityFocus L 817
IntFeasTol e 818
TterationLimit 818
JobID . ..o 819
JSONSolDetail e 819
LazyConstraints 819
LicenseID e 820
LiftProjectCuts 820
LPWarmStart e 820
LogFile 821
LogToConsole o 822
MarkowitzTol 822
MemLimit e 822
Method 823
MinRelNodes e 824
MIPFocus e 824
MIPGap o o o 825
MIPGapAbs e 826

MIPSEPOULS « « o v v o e e e e e e e e 826

MIQCPMethod e 826
MIRCuts e 827
ModKCuts e 827
MultiObjMethod o 827
MultiObjPre e 828
MultiObjSettings oL e 828
NetworkCuts e 829
NLPHeur e 829
NodefileDir e 829
NodefileStart e 830
NodeLimit 830
NodeMethod 831
NonConvex i i i e e e e 831
NoRelHeurTime s 831
NoRelHeurWork 832
NormAdjust 832
NumericFocus 833
ObjNumber 833
ObjScale 833
OptimalityTol o o 834
OutputFlag o 834
PartitionPlace 835
PerturbValue 835
PoolGap e 835
PoolGapAbs e 836
PoolSearchMode 836
PoolSolutions 837
PreCrush e 837
PreDepRow« 838
PreDual 838
PreMIQCPForm 838
PrePasses e 839
PreQLinearize e 839
Presolve e 840
PreSOSIBigM e 840
PreSOS1Encoding 841
PreSOS2BigM e 841
PreSOS2Encoding 842
PreSparsify e 842
ProjlmpliedCuts e 843
PSDCuts e 843
PSDTol e 844
PumpPasses 844

QCPDual e 844

QUAd © o 845

Record 845
ResultFile e 845
RINS . e 846
RelaxLiftCuts e 846
RLTCuts e 847
ScaleFlag 847
ScenarioNumber 847
Seed e 848
ServerPassword e 848
ServerTimeout e 849
Siftingo 849
SiftMethod e 850
SimplexPricing 850
SolutionLimit e 850
SolFiles e 851
SolutionNumber e 851
StartNodeLimit e 852
StartNumber e e 852
StrongCGCuts 852
SubMIPCuts e 853
SubMIPNodes e 853
Symmetry 854
Threads 854
TimeLimit 855
TokenServer e 855
TSPort e 855
TuneBaseSettings 856
TuneCleanup 856
TuneCriterion e 856
TuneJobs e 857
TuneMetric 857
TuneOutput e 858
TuneResults 858
TuneTargetMIPGap 858
TuneTargetTime o 859
TuneTimeLimit e 859
TuneTrials e 859
UpdateMode e 860
UserName 0 o o e e e e e e e e e e e 861
VarBranch 861
WLSAccessID 861
WLSSecret e 862
WLSToken e 862
WLSTokenDuration 862

WorkerPassword 862

WorkerPool 863

WorkLimit e 863

ZeroHalfCuts e 864

ZeroObjNodes L 864

13.3 Parameter Examples 865

C Parameter Exampleso 865

C++ Parameter Examples Lo o o 866

C# Parameter Exampleso 866

Java Parameter Examples oo 867

MATLAB Parameter Examples 867

Python Parameter Examples L 868

R Parameter Examples 868

Visual Basic Parameter Examples 869

14 Optimization Status Codes 870
15 Batch Status Codes 872
16 Callback Codes 873
17 Error Codes 878
18 Model File Formats 881
18.1 MPS format e 881
18.2 REW format e 890
18.3 DUA format e e e e 890
18.4 LP format 890
185 RLP format e 896
18.6 DLP format e 897
18.7 ILP format e 897
18.8 OPB format 897
189 MST format e 898
18.10HNT format e e 898
18.110RD format e e e 899
18.12BAS format e 899
18.13SOL format e 900
18.14JSON solution format e 900
18.15ATTR format e 907
18.16PRM format e 908

19 Logging 910
19.1 Header e 910
19.2 Simplex Logging L 911
19.3 Barrier Logging e 912
19.4 Sifting Logging 915

Xxxii

19.5 MIP Logging o e e e
19.6 Solution Pool and Multi-Scenario Logging
19.7 Multi-Objective Logging
19.8 Distributed MIP Logging
19.9 TIS Logging o o e

20 Gurobi Command-Line Tool
20.1 Solving a Model e
20.2 Replaying Recording Files L

21 Solution Pool
21.1 Finding Multiple Solutions L
21.2 Retrieving Solutions L L e
21.3 Examples e e e
21.4 Subtleties and Limitations

22 Multiple Objectives
22.1 Specifying Multiple Objectives
22.2 Working With Multiple Objectives
22.3 Additional Details

23 Multiple Scenarios
23.1 Definition of a Multi-Scenario Model L.
23.2 Specifying Multiple Scenarios L L
23.3 Logging e e
23.4 Retrieving Solutions for Multiple Scenarios
23.5 Tipsand Tricks e
23.6 Limitations and Additional Considerations

24 Batch Optimization
24.1 Setting Up a Batch Environment 0oL,
24.2 Tagging Variables or Constraints
24.3 Submitting a Batch Optimization Request
24.4 Interacting with Batch Requests 0oL
24.5 Interpreting the JSON Solution o
24.6 A Complete Example

25 Recording API Calls
25.1 Recording o L L e
25.2 Replay o e
25.3 Limitations L e

26 Concurrent Optimizer

27 Parameter Tuning Tool
27.1 Command-Line Tuning
27.2 Tuning APL L

924
925
927

928
928
929
929
931

932
932
933
936

938
938
938
939
940
940
941

942
942
942
943
943
944
945

948
949
949
950

951

xxxiii

28 Gurobi Instant Cloud
28.1 Client Setup
28.2 Instant Cloud Setup

29 Guidelines for Numerical Issues
29.1 Avoid rounding of input
29.2 Real numbers arenotreal
29.3 Tolerances and user-scaling

Gurobi tolerances and the limitations of double-precision arithmetic

Why scaling and geometry is relevant
Recommended ranges for variables and constraints .
Improving ranges for variables and constraints . . .
Advanced user scaling
Avoid hiding large coefficients
Dealing with big-M constraints
29.4 Does my model have numerical issues?
29.5 Solver parameters to manage numerical issues
Presolve
Choosing the right algorithm
Making the algorithm less sensitive
29.6 Instability and the geometry of optimization problems . . .
The case of linear systems:
The geometry of linear optimization problems
Multiple optimal solutions
Dealing with epsilon-optimal solutions
Thin feasible regions

Optimizing over thin regions:
Stability and convergence
29.7 Further reading L.

Source code for the experiment of optimizing over a circle
Source code for the experiment on a thin feasible region

Source code for the experiment with column scalings

30 Copyright Notices for 3rd Party Libraries

959
959
960

962
962
963
964
965
965
968
969
969
970
971
971
973
973
974
974
975
976
976
978
979
981
982
984
985
985
986
987
987

988

XXX1V

C++ API Model Data

Java API

: NET API
Gurobi

Interactive Python API v

Shell Gurobi Algorithms
MATLAB API

R API

Gurobi
Command
Line

Y
Solution Data

This is the reference manual for the Gurobi™ Optimizer. It contains documentation for the
following Gurobi language interfaces:

o C

o C++

Java®)

Microsoft®.NET

Python®

MATLAB®
e R

The Gurobi interactive shell is also documented in the Python section.

The different Gurobi language interfaces share many common features. These are described at
the end of this manual. Two particularly important common features are the Attribute interface
and the Gurobi Parameter set. You may wish to bookmark these pages, since you are likely to refer
to them frequently as you develop applications that use the Gurobi Optimizer.

Introduction

Additional Topics

This document covers a number of additional topics, which are listed here:
e Detailed Release Notes
e Variables and Constraints and Objectives
e Environments
e Attributes
e Parameters
e Optimization Status Codes
e Callback Codes
e Error Codes
e File Formats
e Logging
e Command-Line Tool
e Solution Pool
e Multiple Objectives
e Multiple Scenarios
e Batch Optimization
e Recording API Calls
e Concurrent Optimizer
e Parameter Tuning Tool
e Instant Cloud
e Guidelines for Numerical Issues

Additional Resources

You can consult the Gurobi Quick Start for a high-level overview of the Gurobi Optimizer, or the
Gurobi Example Tour for a quick tour of the examples provided with the Gurobi distribution, or the
Gurobi Remote Services Reference Manual for an overview of Gurobi Compute Server, Distributed
Algorithms, and Gurobi Remote Services.

Getting Help

If you have a question that is not answered in this document, please visit the Gurobi support site at
https://support.gurobi.com. There, you can read knowledge base articles and join the community
discussion forum. Also, if you have a current maintenance contract, you can use the Gurobi support
site to submit a request to the Gurobi support team.

https://www.gurobi.com/documentation/9.5/quickstart_windows/index.html
https://www.gurobi.com/documentation/9.5/examples/index.html
https://www.gurobi.com/documentation/9.5/remoteservices/remoteservices.html
https://support.gurobi.com

Supported Platforms

Platform (port)

Operating System

Detailed Release Notes for Gurobi 9.5.1

Compiler

Notes

Windows 64-bit

(win64)

Windows 10, 11, Windows
Server 2012 R2, 2016,
2019, 2022

Visual Studio 2017

Visual Studio 2019

Use gurobi_c++md2017.1ib
(e.g.) for C++
Use gurobi_c++md2019.1ib
(e.g.) for C++

Linux x86-64

64-bit (linux64)

Red Hat Enterprise Linux
7 (and corresponding Cen-
tOS distribution), 8

SUSE Enterprise Linux 12,
15

Ubuntu 18.04, 20.04
Amazon Linux 2

GCC > 4.8

Use libgurobi_g++5.2.a
for newer C++ compilers

macOS 64-bit macOS 10.15 (Catalina), Xcode 12/13

universal2 (ma- 11 (Big Sur), 12 (Mon-

cos__universal2) terey)

AIX 64-bit AIX 7.1,7.2, 7.3 XL C/C++ 9 Due to limited Python sup-
(pOWGr64) port on AIX, this port

does not include the Inter-
active Shell or the Python

libraries.

Note that the previous mac64 port has been replaced by the new macos_ universal2 port, which
supports both Intel and Apple processors.

Additional Supported Platform Information

Gurobi 9.5.1 supports the following language/platform versions:

Language Version

Python 2.7, 3.7, 3.8, 3.9, 3.10
MATLAB R2019a-R2021b

R 4.1
JDK 8, 11, 15
NET Core 3.1, 6.0

Deprecation Notes

End of support for Python 2.7 in next release

The release that follows Gurobi 9.5 (major or minor) will drop support for Python 2.7. We recom-
mend that you move to a supported Python 3 version now.

Legacy methods for creating Compute Server and Instant Cloud environments

The following legacy methods for creating Compute Server and Instant Cloud environments are
deprecated in Gurobi 9.5 and will be removed in the next major or minor release:

e C: GRBloadclientenv, GRBloadcloudenv

o C++:

GRBEnv(const std::string& logfilename, const std::string& computeserver,
const std::string& router, const std::string& password,
const std::string& group, int CStlsInsecure, int priority,
double timeout)

GRBEnv(const std::string& logfilename, const std::string& accessID,
const std::stringk secretKey, const std::stringk pool,
int priority)

o Java:
GRBEnv(String logFileName, String computeServer, String router,
String password, String group, int CStlsInsecure, int priority,
double timeout)
GRBEnv(String logfilename, String accessID, String secretKey, String pool,
int priority)
e NET:

GRBEnv(string logfilename, string computeserver, string router,
string password, string group, int CStlsInsecure, int priority,
double timeout)

GRBEnv(string logfilename, string accessID, string secretKey, string pool,
int priority)

e gurobipy: Env.ClientEnv, Env.CloudEnv,

e Matlab and R: The env parameter to the Gurobi functions. See Matlab and R changes below
for conversion details.

To programmatically create Compute Server and Instant Cloud environments you should use
the configuration parameters introduced in Gurobi 8.0.

New features affecting all APls

New parameters

The following parameters are new in Gurobi 9.5:

PreSOS1Encoding and PreSOS2Encoding to choose a reformulation for SOS1 and SOS2 con-
straints.

NLPHeur to control the use of the new non-linear barrier solver for quickly finding feasible
solutions to non-convex quadratic models.

WorkLimit to terminate an optimization when the specified work limit has been exceeded.

MemLimit to terminate an optimization when the the memory used by the optimization
exceeds the specified value.

LiftProjectCuts to control a new type of cut in this release.

LPWarmStart to control how the Simplex algorithms warm-start from a previous solution.
In particular, new options to warm-start are introduced, including the option to start from a
basis while maintaining presolve.

New attributes

The following attributes are new in Gurobi 9.5:

The ConcurrentWinMethod attribute indicates the winning method after solving an LP with
the concurrent optimizer.

The Work attribute captures the amount of work performed in an Optimize call in a deter-
ministic fashion.

The IISLBForce, IISUBForce, IISConstrForce, IISSOSForce, IISQConstrForce, and IISGen-
ConstrForce attributes control how the Irreducible Infeasible Subsystem (IIS) algorithm han-
dles each type of constraint. With these attributes you can force specific constraints or
bounds to be part of the IIS, even if the resulting subsystem is not minimal. Similarly, you
can exclude constraints or bounds from the IIS.

The MaxVio attribute provides the maximum (unscaled) constraint violation for the com-
puted solution.

The Poollgnore attribute is used to choose variables that should be ignored when checking
whether two solutions differ in the solution pool.

New callback functionality

The following features have been added to the callback framework in Gurobi 9.5:

The CB_WORK callback value allows you to monitor the Work metric from within a callback
(see the Callback Codes section for more information).

e (Callbacks can now be used to programmatically track the progress of the IIS algorithm. See
the Callback Codes section for the description of the new where value IIS and the new what
values IIS_CONSTRMIN, IIS_CONSTRMAX, IIS_CONSTRGUESS, IIS_BOUNDMIN, IIS_BOUNDMAX
and IIS_BOUNDGUESS.

e Callbacks can now be used for exiting the NoRel Heuristic: The new Proceed method (e.g.,
Model.cbProceed in Python) allows you to transition from the NoRel heuristic to the standard
MIP search.

e Lazy Constraints in the NoRel Heuristic: Lazy constraints are now supported in the NoRel
heuristic. You will receive solution callbacks and be given the opportunity to cut off those
solutions with lazy constraints.

New file formats

We added two new file formats for writing the explicit dual of a linear program:
e .dlp: used for writing the dual formulation of an LP in LP file format, and
e .dua: used for writing the dual formulation of an LP in MPS file format.

Norm General Constraint

Our existing general constraint feature allows you to add common higher-level constraints using a
convenient shorthand. This release includes a new vector norm constraint, which allows you to set
one decision variable in your optimization model equal to the norm of a list of decision variables.
A number of norms are supported: the 0-norm, 1-norm, 2-norm, and the infinity-norm. See the
general constraint section for more information.

Tuning Tool
We added a number of additional controls to our tuning tool, including control over termination

(using parameters TuneTarget MIPGap and TuneTargetTime), and control over how runtimes from
multiple trials are aggregated (using parameter TuneMetric).

Behavior changes affecting all APlIs

Formatting changes to the solution JSON format

In past releases, literals corresponding to floating-point and integer attributes were formatted as
strings (i.e., enclosed in quotes). Starting with this release, all number literals are formatted as
numbers, in accordance with the JSON specification. For example, the SolutionInfo section of a
JSON solution file now appears as:

{
"SolutionInfo" : {
"BarIterCount" : 6,
"BoundVio" : O,
"ConstrVio" : O,
"IterCount" : 5,
"ObjVal" : -4.6475314285714285e+02,

"Runtime" : 2.8498172760009766e-03,

"Status" : 2,

}

Using the JSON solution file without setting tags

We changed a default behavior of the JSON solution file. Before this release, if none of the variables
had been tagged through the VTag attribute, no variable solution information would be included
in the file. Starting with this release, if no VTag attributes have been set, the JSON solution data
will contain names and solution values for all variables with non-zero solution values.

Parameter changes

The units for the NodefileStart parameter have been changed from GiB (10243 bytes) to GB (1000*
bytes).

The StartNodeLimit parameter now behaves in a slightly different way. If you solve a model,
modify it, and then solve the modified model, Gurobi uses the incumbent solution of the first solve as
a MIP start for the second. This is usually done by fixing the integer variables to their respective
values and then solving an LP to find values for the continuous variables. With Gurobi 9.5, in
default settings of the StartNodeLimit parameter, if the model has just a few integer variables
and many continuous variables, the continuous variables are fixed as well and the solution is just
checked for feasibility. This change was made to avoid a potentially very expensive LP solve on
the original model. To recover the old behavior, you can set the StartNodeLimit parameter to a
non-default value.

Attribute changes

The Fingerprint attribute will (likely) take a different value than it did in older versions, but now
it is platform independent. Thus, for example, Fingerprint will now be identical on Windows and
Linux for the same model.

APl method changes

The setSolution and useSolution methods
e C: GRBcbsolution,
o C++: setSolution and useSolution,
e Java: setSolution and useSolution,
e NET: SetSolution and UseSolution,
e gurobipy: cbSetSolution and cbUseSolution

can now also be called from the callback when the where flag has values MIP or MIPSOL. This allows
you, for example, to directly pass a new solution to Gurobi from within a MIPSOL callback. In
previous versions, you had to temporarily store the modified solution in your own data structures
and then pass it to Gurobi only during the next MIPNODE callback.

Changes in the log

Gurobi now displays all parameter changes in the log (when logging is enabled).

Changes in gurobipy

Specifying dependencies when installing from PyPl.org

Since version 9.1 gurobipy can be installed through pip from PyPl.org. While the core funcionality
of gurobipy does not have any dependencies on other Python packages, the matrix-friendly API (the
classes MVar, MConstr, MLinExpr, ...) relies on NumPy and SciPy. This "optional dependency”
is now reflected in the setup.py configuration. Specifying pip install gurobipy[matrixapi]
indicates that you intend to use the matrix API and that NumPy and SciPy should be installed
as well. Similarly, you can add gurobipy[matrixapi] to a requirements.txt file in order to
guarantee that these dependencies are installed even if they are not explicitly mentioned.

Type hints for gurobipy

Type hints are now available for most of the gurobipy classes and functions. They are not part
of the gurobipy extension itself, but are distributed as a separate extension available on PyPIl.org.
Use the command pip install gurobipy-stubs in order to install them alongside of the gurobipy
extension.

Indexing of MVar and MConstr objects

The indexing behaviour of the MVar and MConstr classes has changed. Selecting a single element
from such objects now returns the corresponding scalar Object of type Var or Constr. In version 9.1,
such indexing would return an MVar or MConstr object of shape (1,). With this change these two
ndarray-like classes behave more like NumPy ndarrays.

Example:

import gurobipy as gp

m = gp.Model()

x = m.addMVar(3) # An MVar object of shape (3,)

mc = m.addConstr(x >= 1) # An MConstr object of shape (3,)
print(x[1]) # NEW: This is a Var object

print(mc[1]) # NEW: This is a Constr object

You can use slicing if you want the old behavior:

print(x[1:2]) # Not changed, still an MVar of shape (1,)
print(mc[1:2]) # Not changed, still an MConstr of shape (1,)

Changes in the Matlab and R APlIs

The env argument to Matlab and R API functions has been deprecated. This argument was
previously used to provide the data required to connect to a Compute Server or to Gurobi Instant
Cloud. This information should now be passed through parameters in the params struct.

For example, the new signature of the "gurobi" function is gurobi (model, params). To update
an program that uses the env argument, just set the appropriate parameters in params to match
the fields you previously used in env. The following table shows the correspondence between the
field names of the deprecated env argument and Gurobi parameters:

https://pypi.org/project/gurobipy/
https://pypi.org/project/pip/
https://pypi.org/
https://numpy.org/
https://www.scipy.org/
https://pypi.org/project/gurobipy-stubs

env params

router CSRouter
password ServerPassword
group CSGroup
priority CSPriority
timeout CSQueueTimeout

accessid CloudAccessID

secretkey CloudSecretKey

pool CloudPool
A client code to solve a model on a Compute Server with MATLAB should now read:

m.A = sparse(0,0); % Just a minimal model struct for demonstration
params.Method = 2; J Use barrier method (for demonstration)
params.ComputeServer = ’myserver.mycompany.com’; % Set server name
params.ServerPassword = ’pass’; % Set password

gurobi(m, params); % Solve model on server with barrier

Similarly, for R the client code to solve a model on a Compute Server should read:

m <- list(A = matrix(0)) # Just a minimal model struct for demonstration
params <- list()

params$Method <- 2 # Use barrier method (for demonstration)
params$ComputeServer <- "myserver.mycompany.com"; # Set server name
params$ServerPassword <- "pass"; # Set password

gurobi(m, params); # Solve model on server with barrier

In summary, here are the new signatures for all Matlab and R API functions:

gurobi(model, params)

gurobi_feasrelax(model, relaxobjtype, minrelax, penalties, params)
gurobi_iis(model, params)

gurobi_read(model, filename, params)

gurobi_relax(model, params)

gurobi_write(model, filename, params)

Changes in the Java API

Gurobi 9.5 adds two new methods to the Java API:

e public void GRBEnv.setLogCallback(java.util.function.Consumer<String> logCallback),
and

e public void GRBModel.setLogCallback(java.util.function.Consumer<String> logCallback).
These can be used to pipe all log output through a user callback function.

Compute Server, Cluster Manager, and Instant Cloud

Detailed release notes for Compute Server, Cluster Manager, and Instant Cloud can be found here

https://www.gurobi.com/release-notes/server/v9.5/

This section documents the Gurobi C interface. This manual begins with a quick overview of the
functions in the interface, and continues with detailed descriptions of all of the available interface
routines.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide
or the Example Tour. These documents provide concrete examples of how to use the routines
described here.

Environments

The first step in using the Gurobi C optimizer is to create an environment, using the GRBloadenv
call. The environment acts as a container for all data associated with a set of optimization runs. You
will generally only need one environment in your program, even if you wish to work with multiple
optimization models. Once you are done with an environment, you should call GRBfreeenv to
release the associated resources.

For more advanced use cases, you can use the GRBemptyenv routine to create an uninitialized
environment and then, programmatically, set all required options for your specific requirements.
For further details see the Environment section.

Models

You can create one or more optimization models within an environment. A model consists of a set of
variables, a linear, quadratic, or piecewise-linear objective function on those variables, and a set of
constraints. Fach variable has an associated lower bound, upper bound, type (continuous, binary,
integer, semi-continuous, or semi-integer), and linear objective coefficient. Each linear constraint
has an associated sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side
value. Refer to this section for more information on variables and constraints.

An optimization model may be specified all at once, through the GRBloadmodel routine, or
built incrementally, by first calling GRBnewmodel and then calling GRBaddvars to add variables
and GRBaddconstr, GRBaddqconstr, GRBaddsos, or any of the GRBaddgenconstrXxx methods to
add constraints. Models are dynamic entities; you can always add or delete variables or constraints.

Specific variables and constraints are referred to throughout the Gurobi C interface using their
indices. Variable indices are assigned as variables are added to the model, in a contiguous fashion.
The same is true for constraints. In adherence to C language conventions, indices all start at 0.

We often refer to the class of an optimization model. A model with a linear objective function,
linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic,
the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is
a Quadratically-Constrained Program (QCP). We will sometimes refer to a few special cases of
QCP: QCPs with convex constraints, QCPs with non-convex constraints, bilinear programs, and
Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-continuous
variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the
model is a Mized Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, in-
cluding Mized Integer Linear Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mized

10

C API Overview

https://www.gurobi.com/documentation/9.5/quickstart_windows/index.html
https://www.gurobi.com/documentation/9.5/examples/index.html

Integer Quadratically-Constrained Programs (MIQCP), and Mized Integer Second-Order Cone Pro-
grams (MISOCP). The Gurobi Optimizer handles all of these model classes.

Solving a Model

Once you have built a model, you can call GRBoptimize to compute a solution. By default,
GRBoptimize () will use the concurrent optimizer to solve LP models, the barrier algorithm to
solve QP models with convex objectives and QCP models with convex constraints, and the branch-
and-cut algorithm otherwise. The solution is stored as a set of attributes of the model. The C
interface contains an extensive set of routines for querying these attributes.

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBoptimize ()
will only perform further optimization if relevant data has changed since the model was last op-
timized. If you would like to discard previously computed solution information and restart the
optimization from scratch without changing the model, you can call GRBreset.

After a MIP model has been solved, you can call GRBfixmodel to compute the associated fized
model. This model is identical to the original, except that the integer variables are fixed to their
values in the MIP solution. If your model contains SOS constraints, some continuous variables that
appear in these constraints may be fixed as well. In some applications, it can be useful to compute
information on this fixed model (e.g., dual variables, sensitivity information, etc.), although you
should be careful in how you interpret this information.

Multiple Solutions, Objectives, and Scenarios

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to
a single model with a single objective function. Gurobi provides the following features that allow
you to relax these assumptions:

e Solution Pool: Allows you to find more solutions.
e Multiple Scenarios: Allows you to find solutions to multiple, related models.

e Multiple Objectives: Allows you to specify multiple objective functions and control the trade-
off between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause
of the infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be
useful for diagnosing the cause of an infeasibility, call GRBcomputellS to compute an Irreducible
Inconsistent Subsystem (IIS). This routine can be used for both continuous and MIP models, but
you should be aware that the MIP version can be quite expensive. This routine populates a set of
IIS attributes.

To attempt to repair an infeasibility, call GRBfeasrelax to compute a feasibility relaxation for
the model. This relaxation allows you to find a solution that minimizes the magnitude of the
constraint violation.

Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some
attributes are associated with the variables of the model, some with the constraints of the model,
and some with the model itself. To give a simple example, solving an optimization model causes
the X variable attribute to be populated. Attributes such as X that are computed by the Gurobi

11

optimizer cannot be modified directly by the user, while others, such as the variable lower bound
array (the LB attribute) can.

The Gurobi C interface contains an extensive set of routines for querying or modifying attribute
values. The exact routine to use for a particular attribute depends on the type of the attribute.
As mentioned earlier, attributes can be either variable attributes, constraint attributes, or model
attributes. Variable and constraint attributes are arrays, and use a set of array attribute routines.
Model attributes are scalars, and use a set of scalar routines. Attribute values can additionally be
of type char, int, double, or string (really char *).

Scalar model attributes are accessed through a set of GRBget*attr () routines (e.g., GRBget-
intattr). In addition, those model attributes that can be set directly by the user (e.g., the objective
sense) may be modified through the GRBset*attr () routines (e.g., GRBsetdblattr).

Array attributes are accessed through three sets of routines. The first set, the GRBget*attrarray ()
routines (e.g., GRBgetcharattrarray) return a contiguous sub-array of the attribute array, specified
using the index of the first member and the length of the desired sub-array. The second set, the
GRBget*attrelement () routines (e.g., GRBgetcharattrelement) return a single entry from the at-
tribute array. Finally, the GRBget*attrlist () routines (e.g., GRBgetdblattrlist) retrieve attribute
values for a list of indices.

Array attributes that can be set by the user are modified through the GRBset*attrarray(),
GRBset*attrelement (), and GRBset*attrlist () routines.

The full list of Gurobi attributes can be found in the Attributes section.

Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to
variable bounds, constraint right-hand sides, etc.). The main exceptions are modifications to the
constraints themselves, and to the quadratic and piecewise-linear portions of the objective function.

The constraint matrix can be modified in a few ways. The first is to call GRBchgcoeffs to
change individual matrix coefficients. This routine can be used to modify the value of an existing
non-zero, to set an existing non-zero to zero, or to create a new non-zero. The constraint ma-
trix is also modified when you remove constraints (through GRBdelconstrs) or variables (through
GRBdelvars). The non-zero values associated with the deleted constraints or variables are removed
along with the constraints or variables themselves.

Quadratic objective terms are added to the objective function using the GRBaddqpterms rou-
tine. You can add a list of quadratic terms in one call, or you can add terms incrementally through
multiple calls. The GRBdelq routine allows you to delete all quadratic terms from the model. Note
that quadratic models will typically have both quadratic and linear terms. Linear terms are entered
and modified through the 0bj attribute, in the same way that they are handled for models with
purely linear objective functions.

If your variables have piecewise-linear objectives, you can specify them using the GRBsetpwlobj
routine. Call this routine once for each relevant variable. The Gurobi simplex solver includes
algorithmic support for convex piecewise-linear objective functions, so for continuous models you
should see a substantial performance benefit from using this feature. To clear a previously specified
piecewise-linear objective function, simply set the Obj attribute on the corresponding variable to
0.

12

Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed
in a lazy fashion, meaning that modifications don’t affect the model immediately. Rather, they
are queued and applied later. If your program simply creates a model and solves it, you will
probably never notice this behavior. However, if you ask for information about the model before
your modifications have been applied, the details of the lazy update approach may be relevant to
you.

As we just noted, model modifications (bound changes, right-hand side changes, objective
changes, etc.) are placed in a queue. These queued modifications can be applied to the model
in three different ways. The first is by an explicit call to GRBupdatemodel. The second is by a
call to GRBoptimize. The third is by a call to GRBwrite to write out the model. The first case
gives you fine-grained control over when modifications are applied. The second and third make the
assumption that you want all pending modifications to be applied before you optimize your model
or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is
that this approach makes it much easier to perform multiple modifications to a model, since the
model remains unchanged between modifications. The second is that processing model modifica-
tions can be expensive, particularly in a Compute Server environment, where modifications require
communication between machines. Thus, it is useful to have visibility into exactly when these
modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then
update, then make more modifications, then update again, etc. Updating after each individual
modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value
of the requested data from the point of the last update. If the object you tried to query didn’t
exist then, you’ll get an INDEX_OUT_OF_RANGE error instead.

The semantics of lazy updates have changed since earlier Gurobi versions. While the vast
majority of programs are unaffected by this change, you can use the UpdateMode parameter to
revert to the earlier behavior if you run into an issue.

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of
the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms,
strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi param-
eters before beginning the optimization. Parameters are set using the GRBset*param() routines
(e.g., GRBsetintparam). Current values can be retrieved with the GRBget*param() routines (e.g.,
GRBgetdblparam). Parameters can be of type int, double, or char * (string). You can also read a
set of parameter settings from a file using GRBreadparams, or write the set of changed parameters
using GRBwriteparams.

We also include an automated parameter tuning tool that explores many different sets of pa-
rameter changes in order to find a set that improves performance. You can call GRBtunemodel to
invoke the tuning tool on a model. Refer to the parameter tuning tool section for more information.

One thing we should note is that each model gets its own copy of the environment when it
is created. Parameter changes to the original environment therefore have no effect on existing
models. Use GRBgetenv to retrieve the environment associated with a particular model if you

13

want to change a parameter for that model.

Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will
send output to the screen. A few simple controls are available for modifying the default logging
behavior. If you would like to direct output to a file as well as to the screen, specify the log file
name in GRBloadenv when you create your environment. You can modify the LogFile parameter
if you wish to redirect the log to a different file after creating the environment. The frequency of
logging output can be controlled with the DisplayInterval parameter, and logging can be turned off
entirely with the OutputFlag parameter. A detailed description of the Gurobi log file can be found
in the Logging section.

More detailed progress monitoring can be done through the Gurobi callback function. The
GRBsetcallbackfunc routine allows you to install a function that the Gurobi optimizer will call
regularly during the optimization process. You can call GRBcbget from within the callback to
obtain additional information about the state of the optimization.

Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. If you call routine
GRBterminate from within a callback, for example, the optimizer will terminate at the earliest
convenient point. Routine GRBcbsolution allows you to inject a feasible solution (or partial solu-
tion) during the solution of a MIP model. Routines GRBcbcut and GRBcblazy allow you to add
cutting planes and lazy constraints during a MIP optimization, respectively. Routine GRBcbsto-
ponemultiobj allows you to interrupt the optimization process of one of the optimization steps in
a multi-objective MIP problem without stopping the hierarchical optimization process.

Batch Optimization

Gurobi Compute Server enables programs to offload optimization computations onto dedicated
servers. The Gurobi Cluster Manager adds a number of additional capabilities on top of this.
One important one, batch optimization, allows you to build an optimization model with your client
program, submit it to a Compute Server cluster (through the Cluster Manager), and later check
on the status of the model and retrieve its solution. You can use a Batch object to make it easier
to work with batches. For details on batches, please refer to the Batch Optimization section.

Error Handling

Most of the Gurobi C library routines return an integer error code. A zero return value indicates
that the routine completed successfully, while a non-zero value indicates that an error occurred.
The list of possible error return codes can be found in the Error Codes section.

When an error occurs, additional information on the error can be obtained by calling GRBgeter-
rormsg.

14

3.1 Environment Creation and Destruction

GRBloadenv

int GRBloadenv (GRBenv **envP,
const char *logfilename)

Create an environment. Optimization models live within an environment, so this is typically
the first Gurobi routine called in an application.

This routine will also populate any parameter (ComputeServer, TokenServer, ServerPassword,
etc.) specified in your gurobi.lic file. This routine will also check the current working directory
for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.
The file should be in PRM format (briefly, each line should contain a parameter name, followed by
the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Return value:

A non-zero return value indicates that there was a problem creating the environment. Refer
to the Error Code table for a list of possible return values.

Arguments:

envP: The location in which the pointer to the newly created environment should be placed.
logfilename: The name of the log file for this environment. May be NULL (or an empty
string), in which case no log file is created.

GRBemptyenv

‘int GRBemptyenv (GRBenv **envP)

Create an empty environment. Note that you will need to call GRBstartenv before you can use
this environment.

You should use this routine if you want to set parameters before actually starting the environ-
ment. This can be useful if you want to connect to a Compute Server, a Token Server, the Gurobi
Instant Cloud or a Cluster Manager. See the Environment Section for more details.

Return value:

A non-zero return value indicates that there was a problem creating the environment. Refer
to the Error Code table for a list of possible return values.

Arguments:

envP: The location in which the pointer to the newly created environment should be placed.

GRBstartenv

‘int GRBstartenv (GRBenv *env)

15

Start an empty environment. This routine starts an empty environment created by GRBemp-
tyenv. If the environment has already been started, this routine will do nothing. If the routine
fails, the environment will have the same state as it had before the call to this function.

This routine will also populate any parameter (ComputeServer, TokenServer, ServerPassword,
etc.) specified in your gurobi.lic file. This routine will also check the current working directory
for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.
The file should be in PRM format (briefly, each line should contain a parameter name, followed by
the desired value for that parameter). After that, it will apply all parameter changes specified by
the user prior to this call. Note that this might overwrite parameters set in the license file, or in
the gurobi.env file, if present.

After all these changes are performed, the code will actually activate the environment, and
make it ready to work with models.

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Return value:

A non-zero return value indicates that there was a problem starting the environment. Refer
to the Error Code table for a list of possible return values.

Arguments:

env: The empty environment to start.

GRBfreeenv

‘void GRBfreeenv (GRBenv *env)

Free an environment that was previously allocated by GRBloadenv, and release the associated
memory. This routine should be called when an environment is no longer needed. In particular, it
should only be called once all models built using the environment have been freed.

Arguments:

env: The environment to be freed.

GRBgetconcurrentenv

GRBenv * GRBgetconcurrentenv (GRBmodel x*model,
int num)

Create/retrieve a concurrent environment for a model.

This routine provides fine-grained control over the concurrent optimizer. By creating your
own concurrent environments and setting appropriate parameters on these environments (e.g., the
Method parameter), you can control exactly which strategies the concurrent optimizer employs.
For example, if you create two concurrent environments, and set Method to primal simplex for
one and dual simplex for the other, subsequent concurrent optimizer runs will use the two simplex
algorithms rather than the default choices.

16

Note that you must create contiguously numbered concurrent environments, starting with
num=0. For example, if you want three concurrent environments, they must be numbered 0, 1,
and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent
optimization on that model. Use GRBdiscardconcurrentenvs to revert back to default concurrent
optimizer behavior.

Return value:

The concurrent environment. A NULL return value indicates that there was a problem
creating the environment.

Arguments:

model: The model for the concurrent environment.
num: The concurrent environment number.

Example usage:

GRBenv *env0 = GRBgetconcurrentenv(model, 0);
GRBenv *envl = GRBgetconcurrentenv(model, 1);

GRBgetmultiobjenv

GRBenv* GRBgetmultiobjenv (GRBmodel *model,
int num)

Create/retrieve a multi-objective environment for the objective with the given index. This
environment enables fine-grained control over the multi-objective optimization process. Specifically,
by changing parameters on this environment, you modify the behavior of the optimization that
occurs during the corresponding pass of the multi-objective optimization.

Each multi-objective environment starts with a copy of the current model environment.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.

Return value:

The environment associated with a given multiobjective number in the model. A NULL
return value indicates that there was a problem retrieving the environment.

Arguments:

model: The model from where we want to retrieve the multiobjecitve environment.
num: The multiobjective number.

Example usage:

GRBenv *env0O = GRBgetmultiobjenv(model,O) ;
GRBenv *envl = GRBgetmultiobjenv(model,1);

GRBsetintparam(envO, "Method", 2);
GRBsetintparam(envl, "Method", 1);

GRBoptimize (model) ;

GRBdiscardmultiobjenvs(model) ;

17

GRBdiscardconcurrentenvs

‘void GRBdiscardconcurrentenvs (GRBmodel * model)

Discard concurrent environments for a model.
The concurrent environments created by GRBgetconcurrentenv will be used by every subsequent
call to the concurrent optimizer until the concurrent environments are discarded.
Arguments:
model: The model for the concurrent environment.
Example usage:

GRBdiscardconcurrentenvs (model) ;

GRBdiscardmultiobjenvs

| void GRBdiscardmultiobjenvs (GRBmodel *model)

Discard all multi-objective environments associated with the model, thus restoring multi objec-
tive optimization to its default behavior.
Please refer to the discussion of Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.
Arguments:
model: The model in which all multi objective environments will be discarded.
Example usage:

GRBenv *env0 = GRBgetmultiobjenv(model,O);
GRBenv *envl = GRBgetmultiobjenv(model,1);

GRBsetintparam(envO, "Method", 2);
GRBsetintparam(envl, "Method", 1);

GRBoptimize (model) ;

GRBdiscardmultiobjenvs (model) ;

18

3.2 Model Creation and Modification

GRBloadmodel

int GRBloadmodel (

GRBenv
GRBmodel
const char
int

int

int

double
double
char
double

int

int

int

double
double
double
char

const char
const char

*env,
*x*modelP,
*Pname,
numvars,
numconstrs,
objsense,
objcon,
*obj,
*sense,
*rhs,
*vbeg,
*vlen,
*vind,
*vval,

*1b,

*ub,
*vtype,
*kyarnames,
*xconstrnames)

Create a new optimization model, using the provided arguments to initialize the model data
(objective function, variable bounds, constraint matrix, etc.). The model is then ready for opti-
mization, or for modification (e.g., addition of variables or constraints, changes to variable types

or bounds, etc.).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXloadmodel variant of this routine.

Return value:

A non-zero return value indicates that a problem occurred while creating the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:

env: The environment in which the new model should be created. Note that the new model
gets a copy of this environment, so subsequent modifications to the original environment
(e.g., parameter changes) won’t affect the new model. Use GRBgetenv to modify the
environment associated with a model.

modelP: The location in which the pointer to the newly created model should be placed.

Pname: The name of the model.

numvars: The number of variables in the model.

numconstrs: The number of constraints in the model.

objsense: The sense of the objective function. Allowed values are 1 (minimization) or -1

(maximization).

objcon: Constant objective offset.

19

obj: Objective coefficients for the new variables. This argument can be NULL, in which case
the objective coefficients are set to 0.0.

sense: The senses of the new constraints. Options are >=’ (equal), ><’ (less-than-or-equal),
or ’>’ (greater-than-or-equal). You can also use constants GRB_EQUAL, GRB_LESS_EQUAL,
or GRB_GREATER_EQUAL.

rhs: Right-hand side values for the new constraints. This argument can be NULL if you are
not adding any constraint.

vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Column (CSC) format. Each column in the constraint matrix is represented as a list of
index-value pairs, where each index entry provides the constraint index for a non-zero
coefficient, and each value entry provides the corresponding non-zero value. Each variable
in the model has a vbeg and vlen value, indicating the start position of the non-zeros for
that variable in the vind and vval arrays, and the number of non-zero values for that
variable, respectively. Thus, for example, if vbeg[2] = 10 and vlen[2] = 2, that would
indicate that variable 2 has two non-zero values associated with it. Their constraint indices
can be found in vind[10] and vind[11], and the numerical values for those non-zeros
can be found in vval[10] and vval[11]. Note that the columns of the matrix must be
ordered from first to last, implying that the values in vbeg must be non-decreasing.

vlen: Number of constraint matrix non-zero values associated with each variable. See the
description of the vbeg argument for more information.

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

1b: Lower bounds for the new variables. This argument can be NULL, in which case all
variables get lower bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

Important notes:
We recommend that you build a model one constraint or one variable at a time, using GRBad-

dconstr or GRBaddvar, rather than using this routine to load the entire constraint matrix at once.
It is much simpler, less error prone, and it introduces no significant overhead.

Example usage:

/* maximize x+ y+2z
subject to x+ 2y + 3z <=4
X+ y >= 1

X, y, z binary */

20

int vars = 3;

int constrs = 2;

int vbegll = {0, 2, 4};

int vlien[]l] = {2, 2, 1};

int vind[]l = {0, 1, 0, 1, 0};

double vval[] = {1.0, 1.0, 2.0, 1.0, 3.0%};

double obj[] = {1.0, 1.0, 2.0%};
char sense[] = {GRB_LESS EQUAL, GRB_GREATER_EQUAL};
double rhs(] = {4.0, 1.0};

char vtypel[l = {GRB_BINARY, GRB_BINARY, GRB_BINARY};

error = GRBloadmodel(env, &model, "example", vars, constrs, -1, 0.0,
obj, sense, rhs, vbeg, vlen, vind, vval,
NULL, NULL, vtype, NULL, NULL);

GRBnewmodel

int GRBnewmodel (GRBenv *env,
GRBmodel *xmodelP,
const char *Pname,

int numvars,
double *obj,
double *1b,
double *ub,
char *vtype,

const char **varnames)
Create a new optimization model. This routine allows you to specify an initial set of vari-
ables (with objective coefficients, bounds, types, and names), but the initial model will have no
constraints. Constraints can be added later with GRBaddconstr or GRBaddconstrs.
Return value:
A non-zero return value indicates that a problem occurred while creating the new model.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
env: The environment in which the new model should be created. Note that the new
model will get a copy of this environment, so subsequent modifications to the original
environment (e.g., parameter changes) won’t affect the new model. Use GRBgetenv to
modify the environment associated with a model.
modelP: The location in which the pointer to the new model should be placed.
Pname: The name of the model.
numvars: The number of variables in the model.
obj: Objective coefficients for the new variables. This argument can be NULL, in which case
the objective coeflicients are set to 0.0.
1b: Lower bounds for the new variables. This argument can be NULL, in which case all
variables get lower bounds of 0.0.

21

ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

Example usage:

double obj[] = {1.0, 1.0};
char *names[] = {"varl", "var2"};
error = GRBnewmodel(env, &model, "New", 2, obj, NULL, NULL, NULL, names);

GRBcopymodel

| GRBmodel * GRBcopymodel (GRBmodel #model)

Create a copy of an existing model. Note that due to the lazy update approach in Gurobi, you
have to call GRBupdatemodel before copying it.
Return value:
A copy of the input model. A NULL return value indicates that a problem was encountered.
Arguments:
model: The model to copy.
Example usage:

GRBupdatemodel (orig); /* if you have unstaged changes in orig */
GRBmodel *copy = GRBcopymodel (orig) ;

GRBaddconstr
int GRBaddconstr (GRBmodel *model,
int numnz,
int *cind,
double *cval,
char sense,
double rhs,

const char *constrname)

Add a new linear constraint to a model. Note that, due to our lazy update approach, the new
constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while adding the constraint.

Refer to the Error Code table for a list of possible return values. Details on the error can

be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new constraint should be added.

numnz: The number of non-zero coefficients in the new constraint.

22

cind: Variable indices for non-zero values in the new constraint.

cval: Numerical values for non-zero values in the new constraint.

sense: Sense for the new constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

rhs: Right-hand side value for the new constraint.

constrname: Name for the new constraint. This argument can be NULL, in which case the
constraint is given a default name.

Example usage:

int ind[] {1, 3, 4};

double vall] {1.0, 2.0, 1.0};

/* x1 + 2 x3 + x4 =1 %/

error = GRBaddconstr(model, 3, ind, val, GRB_EQUAL, 1.0, "New");

GRBaddconstrs

int GRBaddconstrs (GRBmodel *model,
int numconstrs,
int numnz,
int *cbeg,
int *cind,
double *xcval,
char *sense,
double *rhs,

const char **constrnames)
Add new linear constraints to a model. Note that, due to our lazy update approach, the
new constraints won’t actually be added until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

We recommend that you build your model one constraint at a time (using GRBaddconstr),
since it introduces no significant overhead and we find that it produces simpler code. Feel free to
use this routine if you disagree, though.

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXaddconstrs variant of this routine.

Return value:

A non-zero return value indicates that a problem occurred while adding the constraints.

Refer to the Error Code table for a list of possible return values. Details on the error can

be obtained by calling GRBgeterrormsg.
Arguments:

model: The model to which the new constraints should be added.

numconstrs: The number of new constraints to add.

numnz: The total number of non-zero coefficients in the new constraints.

cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse

Row (CSR) format by this routine. Each constraint in the constraint matrix is represented
as a list of index-value pairs, where each index entry provides the variable index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each new
constraint has an associated cbeg value, indicating the start position of the non-zeros for

23

that constraint in the cind and cval arrays. This routine requires that the non-zeros for
constraint i immediately follow those for constraint i-1 in cind and cval. Thus, cbegl[i]
indicates both the index of the first non-zero in constraint i and the end of the non-zeros
for constraint i-1. To give an example of how this representation is used, consider a case
where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has two
non-zero values associated with it. Their variable indices can be found in cind[10] and
cind[11], and the numerical values for those non-zeros can be found in cval[10] and
cvall[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

sense: Sense for the new constraints. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

rhs: Right-hand side values for the new constraints. This argument can be NULL, in which
case the right-hand side values are set to 0.0.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

GRBaddgenconstrXxx

Each of the functions described below adds a new general constraint to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types:
variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and
SOS constraints. These are typically treated directly by the underlying solver (although not always),
and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general
(function) constraints. These are typically not treated directly by the solver. Rather, they are
transformed by presolve into constraints (and variables) chosen from among the fundamental types
listed above. In some cases, the resulting constraint or constraints are mathematically equivalent
to the original; in others, they are approximations. If such constraints appear in your model, but
if you prefer to reformulate them yourself using fundamental constraint types instead, you can
certainly do so. However, note that Gurobi can sometimes exploit information contained in the
other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

e GRBaddgenconstrMax: y = maz(z1, x2, ..., C)

GRBaddgenconstrMin: y = min(z1, za, ..., ¢)

GRBaddgenconstrAbs: y = |z|

GRBaddgenconstrAnd: y = x1 A x2 A x3...

GRBaddgenconstrOr: y = x1 V x93 V x3...

GRBaddgenconstrNorm: y = norm(z, z2, x3...)

GRBaddgenconstrIndicator: y =1 — o’z < b (an indicator constraint)

24

e GRBaddgenconstrPWL: y = pwl(z) (a piecewise-linear function, specified using breakpoints)
e GRBaddgenconstrPoly: y = poz® + p12?~ ' + ... + pg_12 + pg

¢ GRBaddgenconstrExp: y = e

e GRBaddgenconstrExpA: y = a”

e GRBaddgenconstrLog: y = log.(x)

e GRBaddgenconstrLogA: y = log,(x)

e GRBaddgenconstrPow: y = 2

¢ GRBaddgenconstrSin: y = sin(x)

e GRBaddgenconstrCos: y = cos(x)

e GRBaddgenconstrTan: y = tan(z)

Please refer to this section for additional details on general constraints.

GRBaddgenconstrMax

int GRBaddgenconstrMax (GRBmodel *model,
const char *name,

int resvar,
int nvars,
const int *vars,
double constant)

Add a new general constraint of type GRB_GENCONSTR_MAX to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A MAX constraint 7 = max{z1,...,Z,,c} states that the resultant variable r should be equal
to the maximum of the operand variables x1,...,x, and the constant c.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

resvar: The index of the resultant variable » whose value will be equal to the max of the
other variables.

nvars: The number n of operand variables over which the max will be taken.

vars: An array containing the indices of the operand variables x; over which the max will
be taken.

25

constant: An additional operand that allows you to include a constant ¢ among the argu-
ments of the max operation.

Example usage:

/* x5 = max(x1, x3, x4, 2.0) */

int ind[] = {1, 3, 4};

error = GRBaddgenconstrMax(model, "maxconstr", 5,
3, ind, 2.0);

GRBaddgenconstrMin

int GRBaddgenconstrMin (GRBmodel *model,
const char *name,

int resvar,
int nvars,
const int *vars,
double constant)

Add a new general constraint of type GRB_GENCONSTR_MIN to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A MIN constraint » = min{z1,...,Z,, c} states that the resultant variable r should be equal to
the minimum of the operand variables x1,...,x, and the constant c.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

resvar: The index of the resultant variable » whose value will be equal to the min of the
other variables.

nvars: The number n of operand variables over which the min will be taken.

vars: An array containing the indices of the operand variables x; over which the min will
be taken.

constant: An additional operand that allows you to include a constant ¢ among the argu-
ments of the min operation.

Example usage:

/* x5 = min(x1, x3, x4, 2.0) *x/

int ind[] = {1, 3, 4};

error = GRBaddgenconstrMin(model, "minconstr", 5,
3, ind, 2.0);

26

GRBaddgenconstrAbs

int GRBaddgenconstrAbs (GRBmodel *model,
const char *name,
int resvar,
int argvar)

Add a new general constraint of type GRB_GENCONSTR_ABS to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

An ABS constraint r = abs{z} states that the resultant variable r should be equal to the
absolute value of the argument variable z.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.
resvar: The index of the resultant variable r whose value will be to equal the absolute
value of the argument variable.
argvar: The index of the argument variable x for which the absolute value will be taken.
Example usage:

/* x5 = abs(x1) */
error = GRBaddgenconstrAbs(model, "absconstr", 5, 1);
GRBaddgenconstrAnd

int GRBaddgenconstrAnd (GRBmodel *model,
const char *name,
int resvar,
int nvars,
const int *vars)

Add a new general constraint of type GRB_GENCONSTR_AND to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

An AND constraint » = and{x1, ..., z,} states that the binary resultant variable r should be 1
if and only if all of the operand variables x1, ..., z, are equal to 1. If any of the operand variables
is 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent
of how they were created.

Arguments:

model: The model to which the new general constraint should be added.

27

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.
resvar: The index of the binary resultant variable r whose value will be equal to the AND
concatenation of the other variables.
nvars: The number n of binary operand variables over which the AND will be taken.
vars: An array containing the indices of the binary operand variables x; over which the
AND concatenation will be taken.
Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Example usage:

/* x5 = and(x1, x3, x4) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrAnd(model, "andconstr", 5, 3, ind);

GRBaddgenconstrOr

int GRBaddgenconstrOr (GRBmodel *model,
const char *name,
int resvar,
int nvars,
const int *vars)

Add a new general constraint of type GRB_GENCONSTR_OR to a model. Note that, due to our
lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

An OR constraint r = or{zy,...,z,} states that the binary resultant variable r should be 1 if
and only if any of the operand variables x1, ..., x, is equal to 1. If all operand variables are 0, then
the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent
of how they were created.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

resvar: The index of the binary resultant variable r whose value will be equal to the OR
concatenation of the other variables.

nvars: The number n of binary operand variables over which the OR will be taken.

vars: An array containing the indices of the binary operand variables z; over which the OR
concatenation will be taken.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

28

Example usage:

/* x5 = or(xl, x3, x4) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrOr(model, "orcomnstr", 5, 3, ind);

GRBaddgenconstrNorm

int GRBaddgenconstrNorm (GRBmodel *model,
const char *name,
int resvar,
int nvars,
const int *vars,
double which)

Add a new general constraint of type GRB_GENCONSTR_NORM to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A NORM constraint r = norm{x1, ..., z,} states that the resultant variable r should be equal
to the vector norm of the argument vector z1, ..., z,.
Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

resvar: The index of the resultant variable r whose value will be equal to the NORM of
the other variables.

nvars: The number n of operand variables over which the NORM will be taken.

vars: An array containing the indices of the operand variables x; over which the NORM
will be taken. Note that this array may not contain duplicates.

which: Which norm to use. Options are 0, 1, 2, and GRB_INFINITY.
Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Example usage:

/* x5 = 2-norm(x1, x3, x4) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrNorm(model, "orcomnstr", 5, 3, ind, 2.0);

29

GRBaddgenconstrindicator

int GRBaddgenconstrIndicator (GRBmodel *model,
const char *name,
int binvar,
int binval,
int nvars,
const int *ind,
const double *val,
char sense,
double rhs)

Add a new general constraint of type GRB_GENCONSTR_INDICATOR to a model. Note that, due
to our lazy update approach, the new constraint won’t actually be added until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

An INDICATOR constraint z = f — a”x < b states that if the binary indicator variable z is
equal to f, where f € {0,1}, then the linear constraint a”2 < b should hold. On the other hand,
if z=1— f, the linear constraint may be violated. The sense of the linear constraint can also be
specified to be “=" or “>".

Note that the indicator variable z of a constraint will be forced to be binary, independent of
how it was created.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

binvar: The index of the binary indicator variable z.

binval: The value f for the binary indicator variable that would force the linear constraint
to be satisfied (0 or 1).

nvars: The number n of non-zero coefficients in the linear constraint triggered by the
indicator.

ind: Indices for the variables z; with non-zero values in the linear constraint.

val: Numerical values for non-zero values a; in the linear constraint.

sense: Sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

rhs: Right-hand side value for the linear constraint.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Example usage:

/¥ x7T =1 ->x1 + 2 x3 + x4 =1 %/
int ind[] = {1, 3, 43};
double vall] {1.0, 2.0, 1.03};
error = GRBaddgenconstrIndicator(model, NULL, 7, 1,
3, ind, val, GRB_EQUAL, 1.0);

30

GRBaddgenconstrPWL

int GRBaddgenconstrPWL (GRBmodel *model,
const char *name,
int xvar,
int yvar,
int npts,
double *xpts,
double *xypts)

Add a new general constraint of type GRB_GENCONSTR_PWL to a model. = Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A piecewise-linear (PWL) constraint states that the relationship y = f(z) must hold between
variables x and y, where f is a piecewise-linear function. The breakpoints for f are provided as
arguments. Refer to the description of piecewise-linear objectives for details of how piecewise-linear
functions are defined.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

xvar: The index of variable x.

yvar: The index of variable y.

npts: The number of points that define the piecewise-linear function.

xpts: The x values for the points that define the piecewise-linear function. Must be in
non-decreasing order.

ypts: The y values for the points that define the piecewise-linear function.

Example usage:

double xpts[] = {1, 3, 5};
double ypts[] = {1, 2, 4};
error = GRBaddgenconstr(model, "pwl", xvar, yvar, 3, X, y);

GRBaddgenconstrPoly

int GRBaddgenconstrPoly (GRBmodel *model,
const char *name,

int xvar,
int yvar,
int plen,
double *p,

const char *options)

31

Add a new general constraint of type GRB_GENCONSTR_POLY to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A polynomial function constraint states that the relationship y = pox®+piz® ' +... 4 pg_12+pg
should hold between variables x and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

xvar: The index of variable .

yvar: The index of variable y.

plen: The length of coefficient array p. If % is the highest power term, then plen should
be d+ 1.

p: The coefficients for the polynomial function (starting with the coefficient for the highest
power).

options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Example usage:

/¥ y=3%x4+7Tx+3=3x4+0x"3+0x"2+7zx+3x*/
int plen = 5;
double p[] = {3, 0, 0, 7, 3};

error = GRBaddgenconstrPoly(model, "poly", xvar, yvar, 5, p, "");

GRBaddgenconstrExp

int GRBaddgenconstrExp (GRBmodel *model,
const char *name,
int xvar,
int yvar,
const char *options)
Add a new general constraint of type GRB_GENCONSTR_EXP to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model

32

(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A natural exponential function constraint states that the relationship y = exp(z) should hold
for variables x and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

xvar: The index of variable z.

yvar: The index of variable y.

options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Example usage:

/* y = exp(x) */
error = GRBaddgenconstrExp(model, "exp", xvar, yvar, "");
GRBaddgenconstrExpA

int GRBaddgenconstrExpA (GRBmodel *model,
const char *name,

int xvar,
int yvar,
double a,

const char =*options)

Add a new general constraint of type GRB_GENCONSTR_EXPA to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

An exponential function constraint states that the relationship ¥ = a® should hold for variables
x and y, where a > 0 is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

33

Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.
xvar: The index of variable x.
yvar: The index of variable y.
a: The base of the function, a > 0.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").
Example usage:

/* y = 37x */
error = GRBaddgenconstrExpA(model, "expa", xvar, yvar, 3.0, "");

GRBaddgenconstrLog

int GRBaddgenconstrLog (GRBmodel *model,
const char *name,
int xvar,
int yvar,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_LOG to a model. = Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A natural logarithmic function constraint states that the relationship y = log(z) should hold
for variables x and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

34

xvar: The index of variable z.

yvar: The index of variable y.

options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Example usage:

/* y = log(x) */
error = GRBaddgenconstrLog(model, "log", xvar, yvar, "FuncPieces=-1 FuncPieceError=0.00:
GRBaddgenconstrLogA

int GRBaddgenconstrLogA (GRBmodel xmodel,
const char *name,

int xvar,
int yvar,
double a,

const char *options)
Add a new general constraint of type GRB_GENCONSTR_LOGA to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A logarithmic function constraint states that the relationship y = log,(x) should hold for
variables x and y, where a > 0 is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

xvar: The index of variable .

yvar: The index of variable y.

a: The base of the function, a > 0.

options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

35

Example usage:
/* y = log_10(x) */
error = GRBaddgenconstrLogA(model, "loga", xvar, yvar, 10.0, "");
GRBaddgenconstrPow

int GRBaddgenconstrPow (GRBmodel *model,
const char *name,

int xvar,
int yvar,
double a,

const char *options)
Add a new general constraint of type GRB_GENCONSTR_POW to a model. = Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A power function constraint states that the relationship y = x® should hold for variables x and
y, where a > 0 is the (constant) exponent. The lower bound of variable z must be nonnegative,
even if a is an integer.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-

straint. Refer to the Error Code table for a list of possible return values. Details on the

error can be obtained by calling GRBgeterrormsg.
Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the

constraint is given a default name.

xvar: The index of variable z.

yvar: The index of variable y.

a: The exponent of the function.

options: A string that can be used to set the attributes that control the piecewise-linear

approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Example usage:

/* y = sqrt(x) */
error = GRBaddgenconstrPow(model, "pow", xvar, yvar, 0.5, "");

36

GRBaddgenconstrSin

int GRBaddgenconstrSin (GRBmodel *model,
const char *name,
int xvar,
int yvar,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_SIN to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A sine function constraint states that the relationship y = sin(z) should hold for variables x
and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

xvar: The index of variable z.

yvar: The index of variable y.

options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Example usage:

/* y = sin(x) */
error = GRBaddgenconstrSin(model, "sin", xvar, yvar, "");

GRBaddgenconstrCos

int GRBaddgenconstrCos (GRBmodel *model ,
const char *name,
int xvar,
int yvar,
const char *options)
Add a new general constraint of type GRB_GENCONSTR_COS to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model

37

(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A cosine function constraint states that the relationship y = cos(z) should hold for variables x
and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

xvar: The index of variable x.

yvar: The index of variable y.

options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Example usage:

/* y = cos(x) */
error = GRBaddgenconstrCos(model, "cos", xvar, yvar, "FuncPieces=-2");

GRBaddgenconstrTan

int GRBaddgenconstrTan (GRBmodel *model,
const char *name,
int xvar,
int yvar,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_TAN to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A tangent function constraint states that the relationship y = tan(z) should hold for variables
x and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Return value:

38

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.
xvar: The index of variable z.
yvar: The index of variable y.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").
Example usage:

/* y = tan(x) */

error = GRBaddgenconstrTan(model, "tan", xvar, yvar, "y
GRBaddqconstr

int GRBaddqconstr (GRBmodel *model,
int numlnz,
int *1lind,
double x1val,
int numqnz,
int *qrow,
int *qcol,
double *qval,
char sense,
double rhs,

const char *constrname)

Add a new quadratic constraint to a model. Note that, due to our lazy update approach,
the new constraint won’t actually be added until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A quadratic constraint consists of a set of quadratic terms, a set of linear terms, a sense, and a
right-hand side value: 27 Qx + ¢T2 < b. The quadratic terms are input through the numgnz, qrow,
qgcol, and qval arguments, and the linear terms are input through the numlnz, 1ind, and lval
arguments.

Important note: Gurobi can handle both convex and non-convex quadratic constraints. The
differences between them can be both important and subtle. Refer to this discussion for additional
information.

Return value:

A non-zero return value indicates that a problem occurred while adding the quadratic con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

39

Arguments:

model: The model to which the new constraint should be added.

numlnz: The number of linear terms in the new quadratic constraint.

lind: Variable indices associated with linear terms.

lval: Numerical values associated with linear terms.

numglnz: The number of quadratic terms in the new quadratic constraint.

grow: Row indices associated with quadratic terms. A quadratic term is represented using
three values: a pair of indices (stored in qrow and qcol), and a coefficient (stored in qval).
The associated arguments arrays provide the corresponding values for each quadratic term.
To give an example, if you wish to input quadratic terms 223 + zox1 + 27, you would call
this routine with numgnz=3, qrow[] = {0, 0, 1}, qcol[l = {0, 1, 1}, and qval[] =
{2.0, 1.0, 1.0%}.

gcol: Column indices associated with quadratic terms. See the description of the qrow
argument for more information.

gval: Numerical values associated with quadratic terms. See the description of the qrow
argument for more information.

sense: Sense for the new quadratic constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL,
or GRB_GREATER_EQUAL.

rhs: Right-hand side value for the new quadratic constraint.

constrname: Name for the new quadratic constraint. This argument can be NULL, in which
case the constraint is given a default name.

Example usage:

int lind[] = {1, 2};

double 1lval[] = {2.0, 1.03};
int grow[] = {0, 0, 1};
int gcol(] = {0, 1, 1};

double qvall] {2.0, 1.0, 1.03};

/¥ 2 x072 + x0 x1 + x172 + 2 x1 + x2 <=1 %/

error = GRBaddqconstr(model, 2, lind, lval, 3, qrow, qcol, qval,
GRB_LESS_EQUAL, 1.0, "New");

GRBaddgpterms
int GRBaddgqpterms (GRBmodel =*model,
int numqnz,
int *qrow,
int *qcol,

double *qval)

Add new quadratic objective terms into an existing model. Note that new terms are (numer-
ically) added into existing terms, and that adding a term in row i and column j is equivalent to
adding a term in row j and column i. You can add all quadratic objective terms in a single call,
or you can add them incrementally in multiple calls.

Note that, due to our lazy update approach, the new quadratic terms won’t actually be added
until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize),
or write the model to disk (using GRBwrite).

40

To build an objective that contains both linear and quadratic terms, use this routine to add the
quadratic terms and use the Obj attribute to add the linear terms.

If you wish to change a quadratic term, you can either add the difference between the current
term and the desired term using this routine, or you can call GRBdelq to delete all quadratic terms,
and then rebuild your new quadratic objective from scratch.

Return value:

A non-zero return value indicates that a problem occurred while adding the quadratic terms.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new quadratic objective terms should be added.

numgnz: The number of new quadratic objective terms to add.

grow: Row indices associated with quadratic terms. A quadratic term is represented using
three values: a pair of indices (stored in qrow and qcol), and a coefficient (stored in qval).
The three argument arrays provide the corresponding values for each quadratic term. To
give an example, to represent 222 + xox1 + 2%, you would have numgnz=3, qrow[] = {0,
0, 1}, qcoll] = {0, 1, 1}, and qval[] = {2.0, 1.0, 1.0}

gcol: Column indices associated with quadratic terms. See the description of the qrow
argument for more information.

gval: Numerical values associated with quadratic terms. See the description of the qrow
argument for more information.

Important notes:

Note that building quadratic objectives requires some care, particularly if you are migrating
an application from another solver. Some solvers require you to specify the entire () matrix, while
others only accept the lower triangle. In addition, some solvers include an implicit 0.5 multiplier
on (), while others do not. The Gurobi interface is built around quadratic terms, rather than a @
matrix. If your quadratic objective contains a term 2 x y, you can enter it as a single term, 2 x vy,
or as a pair of terms, x y and y x.

Example usage:

int grow[] = {0, 0, 1};

int qcoll[] {0, 1, 13};

double qvall] {2.0, 1.0, 3.03};

/* minimize 2 x72 + x*y + 3 y~2 */

error = GRBaddgpterms(model, 3, qrow, qcol, gval);

GRBaddrangeconstr

int GRBaddrangeconstr (GRBmodel *model,
int numnz,
int *cind,
double *cval,
double lower,
double upper,
const char *constrname)

Add a new range constraint to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution. Note that,

41

due to our lazy update approach, the new constraint won’t actually be added until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while adding the constraint.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new constraint should be added.

numnz: The number of non-zero coefficients in the linear expression.

cind: Variable indices for non-zero values in the linear expression.

cval: Numerical values for non-zero values in the linear expression.

lower: Lower bound on linear expression.

upper: Upper bound on linear expression.

constrname: Name for the new constraint. This argument can be NULL, in which case the
constraint is given a default name.

Important notes:

Note that adding a range constraint to the model adds both a new constraint and a new variable.
If you are keeping a count of the variables in the model, remember to add one whenever you add
a range.

Note also that range constraints are stored internally as equality constraints. We use the extra
variable that is added with a range constraint to capture the range information. Thus, the Sense
attribute on a range constraint will always be GRB_EQUAL.

Example usage:

int ind[] = {1, 3, 4};

double vall] {1.0, 2.0, 3.0%};

/* 1 <= x1 + 2 x3 + 3 x4 <=2 %/

error = GRBaddrangeconstr(model, 3, ind, val, 1.0, 2.0, "NewRange");

GRBaddrangeconstrs

int GRBaddrangeconstrs (GRBmodel *xmodel,
int numconstrs,
int numnz,
int *cbeg,
int *cind,
double *cval,
double *lower,
double *upper,
const char **constrnames)

Add new range constraints to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution. Note that,
due to our lazy update approach, the new constraints won’t actually be added until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

42

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXaddrangeconstrs variant of this routine.

Return value:

A non-zero return value indicates that a problem occurred while adding the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new constraints should be added.
numconstrs: The number of new constraints to add.
numnz: The total number of non-zero coefficients in the new constraints.

cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Row (CSR) format by this routine. Each constraint in the constraint matrix is represented
as a list of index-value pairs, where each index entry provides the variable index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each new
constraint has an associated cbeg value, indicating the start position of the non-zeros for
that constraint in the cind and cval arrays. This routine requires that the non-zeros for
constraint i immediately follow those for constraint i-1 in cind and cval. Thus, cbeg[i]
indicates both the index of the first non-zero in constraint i and the end of the non-zeros
for constraint i-1. To give an example of how this representation is used, consider a case
where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has two
non-zero values associated with it. Their variable indices can be found in cind[10] and
cind[11], and the numerical values for those non-zeros can be found in cval[10] and
cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

lower: Lower bounds for the linear expressions.
upper: Upper bounds for the linear expressions.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

Important notes:

Note that adding a range constraint to the model adds both a new constraint and a new
variable. If you are keeping a count of the variables in the model, remember to add one for each
range constraint.

Note also that range constraints are stored internally as equality constraints. We use the extra
variable that is added with a range constraint to capture the range information. Thus, the Sense
attribute on a range constraint will always be GRB_EQUAL.

43

GRBaddsos

int GRBaddsos (GRBmodel *model,

int numsos,

int nummembers,
int *types,

int *beg,

int *ind,

double *weight)
Add new Special Ordered Set (SOS) constraints to a model. Note that, due to our lazy update

approach, the new SOS constraints won’t actually be added until you update the model (using
GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using
GRBwrite).

Please refer to this section for details on SOS constraints.
Return value:
A non-zero return value indicates that a problem occurred while adding the SOS constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to which the new SOSs should be added.
numsos: The number of new SOSs to add.
nummembers: The total number of SOS members in the new SOSs.
types: The types of the SOS sets. SOS sets can be of type GRB_SOS_TYPE1 or GRB_S0S_-
TYPE2.
beg: The members of the added SOS sets are passed into this routine in Compressed Sparse
Row (CSR) format. Each SOS is represented as a list of index-value pairs, where each
index entry provides the variable index for an SOS member, and each value entry provides
the weight of that variable in the corresponding SOS set. Each new SOS has an associated
beg value, indicating the start position of the SOS member list in the ind and weight
arrays. This routine requires that the members for SOS i immediately follow those for
SOS i-1 in ind and weight. Thus, beg[i] indicates both the index of the first non-zero
in constraint i and the end of the non-zeros for constraint i-1. To give an example of
how this representation is used, consider a case where beg[2] = 10 and beg[3] = 12.
This would indicate that SOS number 2 has two members. Their variable indices can be
found in ind[10] and ind[11], and the associated weights can be found in weight [10]
and weight [11].
ind: Variable indices associated with SOS members. See the description of the beg argument
for more information.
weight: Weights associated with SOS members. See the description of the beg argument
for more information.
Example usage:

int typesI[] {GRB_S0S_TYPE1, GRB_SOS_TYPE1};

int beg[] = {0, 2};

int ind[] ={1, 2, 1, 3};

double weight[] = {1, 2, 1, 2};

error = GRBaddsos(model, 2, 4, types, beg, ind, weight);

44

GRBaddvar

int GRBaddvar (GRBmodel *model,

int numnz,
int *vind,
double *xyval,
double obj,
double 1b,
double ub,
char vtype,

const char *varname)

Add a new variable to a model. Note that, due to our lazy update approach, the new variable
won’t actually be added until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while adding the variable. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new variable should be added.
numnz: The number of non-zero coefficients in the new column.
vind: Constraint indices associated with non-zero values for the new variable.
vval: Numerical values associated with non-zero values for the new variable.
obj: Objective coeflicient for the new variable.
1b: Lower bound for the new variable.
ub: Upper bound for the new variable.

vtype: Type for the new variable. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT.

varname: Name for the new variable. This argument can be NULL, in which case the variable
is given a default name.

Example usage:

int ind[] {1, 3, 4};

double vall] {1.0, 1.0, 1.03};

error = GRBaddvar (model, 3, ind, val, 1.0, 0.0, GRB_INFINITY,
GRB_CONTINUQUS, "New");

45

GRBaddvars

int GRBaddvars (GRBmodel *model,

int numvars,
int numnz,
int *vbeg,
int *vind,
double *vval,
double *obj,
double *1b,
double *ub,
char *vtype,

const char **varnames)

Add new variables to a model. Note that, due to our lazy update approach, the new variables

won’t actually be added until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider

using the GRBXaddvars variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while adding the variables. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: The model to which the new variables should be added.
numvars: The number of new variables to add.
numnz: The total number of non-zero coefficients in the new columns.
vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse

Column (CSC) format. Each column in the constraint matrix is represented as a list of
index-value pairs, where each index entry provides the constraint index for a non-zero
coefficient, and each value entry provides the corresponding non-zero value. Each variable
in the model has a vbeg, indicating the start position of the non-zeros for that variable
in the vind and vval arrays. This routine requires columns to be stored contiguously,
so the start position for a variable is the end position for the previous variable. To give
an example, if vbeg[2] = 10 and vbeg[3] = 12, that would indicate that variable 2 has
two non-zero values associated with it. Their constraint indices can be found in vind[10]
and vind[11], and the numerical values for those non-zeros can be found in vval[10]
and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg

argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of

the vbeg argument for more information.

obj: Objective coefficients for the new variables. This argument can be NULL, in which case

the objective coefficients are set to 0.0.

1b: Lower bounds for the new variables. This argument can be NULL, in which case all

variables get lower bounds of 0.0.

46

ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

GRBchgcoeffs
int GRBchgcoeffs (GRBmodel *model,
int numchgs,
int *cind,
int *vind,

double xval)

Change a set of constraint matrix coefficients. This routine can be used to set a non-zero
coefficient to zero, to create a non-zero coefficient where the coefficient is currently zero, or to
change an existing non-zero coefficient to a new non-zero value. If you make multiple changes to
the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the changes won’t actually be integrated into the
model until you update the model (using GRBupdatemodel), optimize the model (using GRBop-
timize), or write the model to disk (using GRBwrite).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXchgcoeffs variant of this routine.

Return value:

A non-zero return value indicates that a problem occurred while performing the modification.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.
numchgs: The number of coefficients to modify.
cind: Constraint indices for the coeflicients to modify.
vind: Variable indices for the coefficients to modify.

val: The new values for the coefficients. For example, if cind[0] = 1, vind[0] = 3, and
val[0] = 2.0, then the coefficient in constraint 1 associated with variable 3 would be
changed to 2.0.

Example usage:

int cind[] = {0, 1};

int vind[] = {0, 0};

double val[] = {1.0, 1.03};

error = GRBchgcoeffs(model, 2, cind, vind, val);

47

GRBdelconstrs

int GRBdelconstrs (GRBmodel x*model,
int numdel,
int *ind)

Delete a list of constraints from an existing model. Note that, due to our lazy update approach,
the constraints won’t actually be removed until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while deleting the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to modify.
numdel: The number of constraints to remove.
ind: The indices of the constraints to remove.

Example usage:

int first_four[] = {0, 1, 2, 3};
error = GRBdelconstrs(model, 4, first_four);

GRBdelgenconstrs
int GRBdelgenconstrs (GRBmodel *model,
int numdel,
int *ind)

Delete a list of general constraints from an existing model. Note that, due to our lazy update
approach, the general constraints won’t actually be removed until you update the model (using
GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using
GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while deleting the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to modify.
numdel: The number of general constraints to remove.
ind: The indices of the general constraints to remove.

Example usage:

int first _four([] = {0, 1, 2, 3};
error = GRBdelgenconstrs(model, 4, first_four);

GRBdelq

| int GRBdelq (GRBmodel #*model)

48

Delete all quadratic objective terms from an existing model. Note that, due to our lazy
update approach, the quadratic terms won’t actually be removed until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while deleting the quadratic
objective terms. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to modify.
Example usage:

error = GRBdelq(model) ;

GRBdelqconstrs

int GRBdelqconstrs (GRBmodel *model,
int numdel,
int *xind)

Delete a list of quadratic constraints from an existing model. Note that, due to our lazy update
approach, the quadratic constraints won’t actually be removed until you update the model (using
GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using
GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while deleting the quadratic
constraints. Refer to the Error Code table for a list of possible return values. Details on
the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to modify.
numdel: The number of quadratic constraints to remove.
ind: The indices of the quadratic constraints remove.

Example usage:

int first_four([] = {0, 1, 2, 3};
error = GRBdelqconstrs(model, 4, first_four);

GRBdelsos
int GRBdelsos (GRBmodel *model,
int numdel,
int *ind)

Delete a list of Special Ordered Set (SOS) constraints from an existing model. Note that, due
to our lazy update approach, the SOS constraints won’t actually be removed until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

Return value:

49

A non-zero return value indicates that a problem occurred while deleting the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.
numdel: The number of SOSs to remove.
ind: The indices of the SOSs to remove.

Example usage:

int first_four[] = {0, 1, 2, 3};
error = GRBdelsos(model, 4, first_four);

GRBdelvars

int GRBdelvars (GRBmodel *model,
int numdel,
int *ind)

Delete a list of variables from an existing model. Note that, due to our lazy update approach,
the variables won’t actually be removed until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while deleting the variables.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to modify.
numdel: The number of variables to remove.
ind: The indices of the variables to remove.

Example usage:

int first_two[] = {0, 1};
error = GRBdelvars(model, 2, first_two);

GRBsetobjectiven

int GRBsetobjectiven (GRBmodel *model,
int index,
int priority,
double weight,
double abstol,
double reltol,
const char *name,
double constant,
int 1nz,
int *1ind,
double *1val)

Set an alternative optimization objective equal to a linear expression.

50

Please refer to the discussion of Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.

Note that you can also modify an alternative objective using the ObjN variable attribute. If
you wish to mix and match these two approaches, please note that this method replaces the entire
existing objective, while the 0bjN attribute can be used to modify individual terms.

Note that, due to our lazy update approach, the new alternative objective won’t actually be
added until you update the model (using GRBupdatemodel), optimize the model (using GRBopti-
mize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while setting the alternative
objective. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model in which the new alternative objective should be set.

index: Index for new objective. If you use an index of 0, this routine will change the primary
optimization objective.

priority: Priority for the alternative objective. This initializes the ObjNPriority attribute
for this objective.

weight: Weight for the alternative objective. This initializes the ObjNWeight attribute for
this objective.

abstol: Absolute tolerance for the alternative objective. This initializes the ObjNAbsTol
attribute for this objective.

reltol: Relative tolerance for the alternative objective. This initializes the ObjNRelTol
attribute for this objective.

name: Name of the alternative objective. This initializes the ObjNName attribute for this
objective.

constant: Constant part of the linear expression for the new alternative objective.

1nz: Number of non-zero coefficients in new alternative objective.

lind: Variable indices for non-zero values in new alternative objective.

lval: Numerical values for non-zero values in new alternative objective.

Example usage:

int ind[] = {0, 1, 2};

double vall[] = {1.0, 1.0, 1.0};

/* Objective expression: x0 + x1 + x2 */

error = GRBsetobjectiven(model, 0, 1, 0.0, 0.0, 0.0, "primary",
0.0, 3, ind, val);

GRBsetpwlobj
int GRBsetpwlobj (GRBmodel x*model,
int var,
int npoints,
double *X,

double xy)
Set a piecewise-linear objective function for a variable.

o1

The arguments to this method specify a list of points that define a piecewise-linear objective
function for a single variable. Specifically, the = and y arguments give coordinates for the vertices
of the function.

For additional details on piecewise-linear objective functions, refer to this discussion.

Note that, due to our lazy update approach, the new piecewise-linear objective won’t actu-
ally be added until you update the model (using GRBupdatemodel), optimize the model (using
GRBoptimize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while setting the piecewise-linear
objective. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to modify.
var: The variable whose objective function is being changed.
npoints: The number of points that define the piecewise-linear function.
x: The x values for the points that define the piecewise-linear function. Must be in non-
decreasing order.
y: The y values for the points that define the piecewise-linear function.
Example usage:

double x[] = {1, 3, B};
double y[1 = {1, 2, 4};
error = GRBsetpwlobj(model, var, 3, x, y);

GRBupdatemodel

| int GRBupdatemodel (GRBmodel #model)

Process any pending model modifications.

Return value:
A non-zero return value indicates that a problem occurred while updating the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: The model to update.

Example usage:

error = GRBupdatemodel (model) ;
GRBfreemodel
| int GRBfreemodel (GRBmodel *model)

Free a model and release the associated memory.
Return value:

52

A non-zero return value indicates that a problem occurred while freeing the model. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:
model: The model to be freed.

Example usage:

error = GRBfreemodel (model);

GRBXaddconstrs

int GRBXaddconstrs (GRBmodel *model,
int numconstrs,
size_t numnz,
size_t *cbeg,
int *cind,
double *xcval,
char *xsense,
double *rhs,

const char **constrnames)

The size_t version of GRBaddconstrs. The two arguments that count non-zero values are of
type size_t in this version to support models with more than 2 billion non-zero values.

Add new linear constraints to a model. Note that, due to our lazy update approach, the
new constraints won’t actually be added until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

We recommend that you build your model one constraint at a time (using GRBaddconstr),
since it introduces no significant overhead and we find that it produces simpler code. Feel free to
use this routine if you disagree, though.

Return value:

A non-zero return value indicates that a problem occurred while adding the constraints
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new constraints should be added.

numconstrs: The number of new constraints to add.

numnz: The total number of non-zero coefficients in the new constraints.

cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Row (CSR) format by this routine. Each constraint in the constraint matrix is represented
as a list of index-value pairs, where each index entry provides the variable index for a non-
zero coeflicient, and each value entry provides the corresponding non-zero value. Each new
constraint has an associated cbeg value, indicating the start position of the non-zeros for
that constraint in the cind and cval arrays. This routine requires that the non-zeros for
constraint i immediately follow those for constraint i-1 in cind and cval. Thus, cbegl[i]
indicates both the index of the first non-zero in constraint i and the end of the non-zeros
for constraint i-1. To give an example of how this representation is used, consider a case
where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has two

93

non-zero values associated with it. Their variable indices can be found in cind[10] and
cind[11], and the numerical values for those non-zeros can be found in cval[10] and
cvall11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

sense: Sense for the new constraints. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

rhs: Right-hand side values for the new constraints. This argument can be NULL, in which
case the right-hand side values are set to 0.0.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

GRBXaddrangeconstrs

int GRBXaddrangeconstrs (GRBmodel xmodel,
int numconstrs,
size_t numnz,
size_t *cbeg,
int *cind,
double *xcval,
double *]lower,
double *upper,

const char **constrnames)

The size_t version of GRBaddrangeconstrs. The argument that counts non-zero values is of
type size_t in this version to support models with more than 2 billion non-zero values.

Add new range constraints to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution. Note that,
due to our lazy update approach, the new constraints won’t actually be added until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while adding the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new constraints should be added.

numconstrs: The number of new constraints to add.

numnz: The total number of non-zero coefficients in the new constraints.

cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Row (CSR) format by this routine. Each constraint in the constraint matrix is represented
as a list of index-value pairs, where each index entry provides the variable index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each new
constraint has an associated cbeg value, indicating the start position of the non-zeros for
that constraint in the cind and cval arrays. This routine requires that the non-zeros for

54

constraint i immediately follow those for constraint i-1 in cind and cval. Thus, cbeg[i]
indicates both the index of the first non-zero in constraint i and the end of the non-zeros
for constraint i-1. To give an example of how this representation is used, consider a case
where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has two
non-zero values associated with it. Their variable indices can be found in cind[10] and
cind[11], and the numerical values for those non-zeros can be found in cval[10] and
cvall[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

lower: Lower bounds for the linear expressions.

upper: Upper bounds for the linear expressions.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

Important notes:

Note that adding a range constraint to the model adds both a new constraint and a new
variable. If you are keeping a count of the variables in the model, remember to add one for each
range constraint.

Note also that range constraints are stored internally as equality constraints. We use the extra
variable that is added with a range constraint to capture the range information. Thus, the Sense
attribute on a range constraint will always be GRB_EQUAL.

GRBXaddvars

int GRBXaddvars (GRBmodel *model,
int numvars,
size_t numnz,
size_t *vbeg,
int *vind,
double *vval,
double *obj,
double *1b,
double *ub,
char *vtype,

const char #**varnames)

The size_t version of GRBaddvars. The two arguments that count non-zero values are of type
size_t in this version to support models with more than 2 billion non-zero values.

Add new variables to a model. Note that, due to our lazy update approach, the new variables
won’t actually be added until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while adding the variables. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:

95

model: The model to which the new variables should be added.

numvars: The number of new variables to add.

numnz: The total number of non-zero coefficients in the new columns.

vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Column (CSC) format. Each column in the constraint matrix is represented as a list of
index-value pairs, where each index entry provides the constraint index for a non-zero
coeflicient, and each value entry provides the corresponding non-zero value. Each variable
in the model has a vbeg, indicating the start position of the non-zeros for that variable
in the vind and vval arrays. This routine requires columns to be stored contiguously,
so the start position for a variable is the end position for the previous variable. To give
an example, if vbeg[2] = 10 and vbeg[3] = 12, that would indicate that variable 2 has
two non-zero values associated with it. Their constraint indices can be found in vind[10]
and vind[11], and the numerical values for those non-zeros can be found in vval[10]
and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

obj: Objective coefficients for the new variables. This argument can be NULL, in which case
the objective coefficients are set to 0.0.

1b: Lower bounds for the new variables. This argument can be NULL, in which case all
variables get lower bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUQUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

GRBXchgcoeffs
int GRBXchgcoeffs (GRBmodel *model,
size_t numchgs,
int *cind,
int *vind,

double *val)

The size_t version of GRBchgcoeffs. The argument that counts non-zero values is of type
size_t in this version to support models with more than 2 billion non-zero values.

Change a set of constraint matrix coefficients. This routine can be used to set a non-zero
coefficient to zero, to create a non-zero coefficient where the coefficient is currently zero, or to
change an existing non-zero coefficient to a new non-zero value. If you make multiple changes to
the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the changes won’t actually be integrated into the
model until you update the model (using GRBupdatemodel), optimize the model (using GRBop-
timize), or write the model to disk (using GRBwrite).

56

Return value:

A non-zero return value indicates that a problem occurred while performing the modification.
Refer to the Error Code table for a list of possible return values. Details on the error can

be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to modify.
numchgs: The number of coefficients to modify

cind: Constraint indices for the coeflicients to modify.

vind: Variable indices for the coefficients to modify.

val: The new values for the coefficients. For example, if cind[0]
val[0] = 2.0, then the coefficient in constraint 1 associated with variable 3 would be

changed to 2.0.
Example usage:

int cind[] = {0, 1};
int vind[] = {0, 0};
double vall[]l = {1.0, 1.0%};

error = GRBXchgcoeffs(model, 2, cind, vind, val);

1, vind[0] = 3, and

GRBXloadmodel

int GRBXloadmodel (GRBenv *env,
GRBmodel *x*modelP,
const char *Pname,
int numvars,
int numconstrs,
int objsense,
double objcon,
double *obj,
char *xsense,
double *rhs,
size_t *vbeg,
int *vlen,
int *vind,
double *xvval,
double *x1b,
double *ub,
char *vtype,
const char **varnames,

const char **constrnames)

The size_t version of GRBloadmodel. The argument that counts non-zero values is of type
size_t in this version to support models with more than 2 billion non-zero values.
Create a new optimization model, using the provided arguments to initialize the model data

(objective function, variable bounds, constraint matrix, etc.).

The model is then ready for opti-

mization, or for modification (e.g., addition of variables or constraints, changes to variable types
or bounds, etc.).

o7

Return value:

A non-zero return value indicates that a problem occurred while creating the model. Refer

to the Error Code table for a list of possible return values. Details on the error can be

obtained by calling GRBgeterrormsg.

Arguments:

env: The environment in which the new model should be created. Note that the new model
gets a copy of this environment, so subsequent modifications to the original environment
(e.g., parameter changes) won'’t affect the new model. Use GRBgetenv to modify the
environment associated with a model.

modelP: The location in which the pointer to the newly created model should be placed.

Pname: The name of the model.

numvars: The number of variables in the model.

numconstrs: The number of constraints in the model.

objsense: The sense of the objective function. Allowed values are 1 (minimization) or -1
(maximization).

objcon: Constant objective offset.

obj: Objective coefficients for the new variables. This argument can be NULL, in which case
the objective coefficients are set to 0.0.

sense: The senses of the new constraints. Options are *=’ (equal), ’<’ (less-than-or-equal),
or ’>’ (greater-than-or-equal). You can also use constants GRB_EQUAL, GRB_LESS_EQUAL,
or GRB_GREATER_EQUAL.

rhs: Right-hand side values for the new constraints. This argument can be NULL, in which
case the right-hand side values are set to 0.0.

vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Column (CSC) format. Each column in the constraint matrix is represented as a list of
index-value pairs, where each index entry provides the constraint index for a non-zero
coefficient, and each value entry provides the corresponding non-zero value. Each variable
in the model has a vbeg and vlen value, indicating the start position of the non-zeros for
that variable in the vind and vval arrays, and the number of non-zero values for that
variable, respectively. Thus, for example, if vbeg[2] = 10 and vlen[2] = 2, that would
indicate that variable 2 has two non-zero values associated with it. Their constraint indices
can be found in vind[10] and vind[11], and the numerical values for those non-zeros
can be found in vval[10] and vval[11]. Note that the columns of the matrix must be
ordered from first to last, implying that the values in vbeg must be non-decreasing.

vlen: Number of constraint matrix non-zero values associated with each variable. See the
description of the vbeg argument for more information.

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

1b: Lower bounds for the new variables. This argument can be NULL, in which case all
variables get lower bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,

GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

Important notes:

We recommend that you build a model one constraint or one variable at a time, using GRBad-
dconstr or GRBaddvar, rather than using this routine to load the entire constraint matrix at once.
It is much simpler, less error prone, and it introduces no significant overhead.

Example usage:

/* maximize X+ y+2z
subject to x+ 2y + 3z <=4
X+ y >= 1

X, y, z binary */

int vars = 3;

int constrs = 2;

size_t vbegl[l = {0, 2, 4};

int vlien[] = {2, 2, 1};

int vind[] = {0, 1, 0, 1, 0};

double vvall]
double obj[]
char sensel[]
double rhs[]
char vtypel]

{1.0, 1.0, 2.0, 1.0, 3.0};

{1.0, 1.0, 2.0%};

{GRB_LESS_EQUAL, GRB_GREATER_EQUAL};
{4.0, 1.03};

{GRB_BINARY, GRB_BINARY, GRB_BINARY};

error = GRBXloadmodel (env, &model, "example", vars, constrs, -1, 0.0,
obj, sense, rhs, vbeg, vlen, vind, vval,
NULL, NULL, vtype, NULL, NULL);

99

3.3 Model Solution
GRBoptimize

‘int GRBoptimize (GRBmodel #*model)

Optimize a model. The algorithm used for the optimization depends on the model type (simplex
or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful completion,
this method will populate the solution related attributes of the model. See the Attributes section
for more information on attributes.

Please consult this section for a discussion of some of the practical issues associated with solving
a precisely defined mathematical model using finite-precision floating-point arithmetic.

Note that this routine will process all pending model modifications.

Return value:

A non-zero return value indicates that a problem occurred while optimizing the model.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to optimize. Note that this routine only reports whether the optimization
ran into an error. Query the Status attribute to determine the result of the optimization
(see the Attributes section for more information on querying attributes).
Example usage:

error = GRBoptimize (model);

GRBoptimizeasync

| int GRBoptimizeasync (GRBmodel #model)

Optimize a model asynchronously. This routine returns immediately. Your program can perform
other computations while optimization proceeds in the background. To check the state of the
asynchronous optimization, query the Status attribute for the model. A value of IN_PROGRESS
indicates that the optimization has not yet completed. When you are done with your foreground
tasks, you must call GRBsync to sync your foreground program with the asynchronous optimization
task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in
the background is severely limited. Specifically, you can only perform attribute queries, and only
for a few attributes (listed below). Any other calls on the running model, or on any other models that
were built within the same Gurobi environment, will fail with error code OPTIMIZATION_IN_PROGRESS.

Note that there are no such restrictions on models built in other environments. Thus, for
example, you could create multiple environments, and then have a single foreground program
launch multiple simultaneous asynchronous optimizations, each in its own environment.

As already noted, you are allowed to query the value of the Status attribute while an asyn-
chronous optimization is in progress. The other attributes that can be queried are: ObjVal, Ob-
jBound, IterCount, NodeCount, and BarlterCount. In each case, the returned value reflects progress
in the optimization to that point. Any attempt to query the value of an attribute not on this list
will return an OPTIMIZATION_IN_PROGRESS error.

60

Return value:
A non-zero return value indicates that a problem occurred while optimizing the model.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to optimize. Note that this routine only reports whether launching the
asynchronous job ran into an error. Query the Status attribute to determine the result of
the optimization (see the Attributes section for more information on querying attributes).
The return value of GRBsync indicates whether the background optimization ran into an
error.
Example usage:

error = GRBoptimizeasync(model) ;
/* ... perform other compute-intensive tasks... */

error = GRBsync(model) ;

GRBcomputellS

‘int GRBcomputeIIS (GRBmodel +*model)

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and
variable bounds with the following properties:

e It is still infeasible, and
e If a single constraint or bound is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily
the smallest one; there may exist others with fewer constraints or bounds.

IIS results are returned in a number of attributes: IISConstr, IISLB, IISUB, IISSOS, IISQCon-
str, and IISGenConstr. Each indicates whether the corresponding model element is a member of
the computed IIS.

The IIS log provides information about the progress of the algorithm, including a guess at the
eventual IIS size.

If an IIS computation is interrupted before completion, Gurobi will return the smallest infeasible
subsystem found to that point.

The IISConstrForce, IISLBForce, IISUBForce, IISSOSForce, IISQConstrForce, and IISGenCon-
strForce attributes allow you mark model elements to either include or exclude from the computed
IIS. Setting the attribute to 1 forces the corresponding element into the IIS, setting it to 0 forces
it out of the IIS, and setting it to -1 allows the algorithm to decide.

To give an example of when these attributes might be useful, consider the case where an initial
model is known to be feasible, but it becomes infeasible after adding constraints or tightening
bounds. If you are only interested in knowing which of the changes caused the infeasibility, you can
force the unmodified bounds and constraints into the IIS. That allows the IIS algorithm to focus
exclusively on the new constraints, which will often be substantially faster.

61

Note that setting any of the Force attributes to 0 may make the resulting subsystem fea-
sible, which would then make it impossible to construct an IIS. Trying anyway will result in a
GRB_ERROR_IIS_NOT_INFEASIBLE error. Similarly, setting this attribute to 1 may result in an IIS
that is not irreducible. More precisely, the system would only be irreducible with respect to the
model elements that have force values of -1 or 0.

This routine populates the IISConstr, IISGenConstr, IISQConstr, IISSOS, IISLB, and IISUB
attributes. You can also obtain information about the results of the IIS computation by writing a
.ilp format file (see GRBwrite). This file contains only the IIS from the original model.

Use the IISMethod parameter to adjust the behavior of the IIS algorithm.

Note that this routine can be used to compute IISs for both continuous and MIP models.

Return value:

A non-zero return value indicates that a problem occurred while computing the IIS. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:

model: The infeasible model. This routine will return an error if the input model is feasible.

Important note:

This routine only reports whether the computation ran into an error. Query the IISConstr,
IISGenConstr, 1ISQConstr, IISSOS, IISLB, or IISUB attributes to determine the result of the
computation (see the Attributes section for more information on querying attributes).

Example usage:

error = GRBcomputeIIS(model);

GRBfeasrelax
int GRBfeasrelax (GRBmodel #*model,
int relaxobjtype,
int minrelax,

double *1bpen,
double *ubpen,
double *rhspen,
double xfeasobjP)
Modifies the input model to create a feasibility relaxation. Note that you need to call GRBop-
timize on the result to compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the
solution violates the bounds and linear constraints of the original model. This routine provides a
number of options for specifying the relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the
sum of the weighted magnitudes of the bound and constraint violations. The 1bpen, ubpen, and
rhspen arguments specify the cost per unit violation in the lower bounds, upper bounds, and linear
constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the
weighted sum of the squares of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the coefficients on the squares of the lower bound, upper bound, and
linear constraint violations, respectively.

62

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the
weighted count of bound and constraint violations. The 1lbpen, ubpen, and rhspen arguments
specify the cost of violating a lower bound, upper bound, and linear constraint, respectively.

To give an example, a violation of 2.0 on constraint i would contribute 2*rhspen[i] to the
feasibility relaxation objective for relaxobjtype=0, it would contribute 2*2*rhspen[i] for
relaxobjtype=1, and it would contribute rhspen[i] for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is
created. If minrelax=0, optimizing the returned model gives a solution that minimizes the cost of
the violation. If minrelax=1, optimizing the returned model finds a solution that minimizes the
original objective, but only from among those solutions that minimize the cost of the violation. Note
that GRBfeasrelax must solve an optimization problem to find the minimum possible relaxation
for minrelax=1, which can be quite expensive.

In all cases, you can specify a penalty of GRB_INFINITY to indicate that a specific bound or
linear constraint may not be violated.

Note that this is a destructive routine: it modifies the model passed to it. If you don’t want to
modify your original model, use GRBcopymodel to create a copy before calling this routine.

Return value:

A non-zero return value indicates that a problem occurred while computing the feasibility
relaxation. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The original (infeasible) model. The model is modified by this routine.

relaxobjtype: The cost function used when finding the minimum cost relaxation.

minrelax: The type of feasibility relaxation to perform.

lbpen: The penalty associated with violating a lower bound. Can be NULL, in which case
no lower bound violations are allowed.

ubpen: The penalty associated with violating an upper bound. Can be NULL, in which case
no upper bound violations are allowed.

rhspen: The penalty associated with violating a linear constraint. Can be NULL, in which
case no constraint violations are allowed.

feasobjP: When minrelax=1, this returns the objective value for the minimum cost relax-
ation.

Example usage:

double penalties[];
error = GRBfeasrelax(model, 0, O, NULL, NULL, penalties, NULL);
error = GRBoptimize (model);

GRBfixmodel

int GRBfixmodel (GRBmodel *model,
GRBmodel **fixedP)

Create the fixed model associated with a MIP model. The MIP model must have a solution
loaded (e.g., after a call to GRBoptimize). In the fixed model, each integer variable is fixed to the
value that variable takes in the MIP solution. In addition, continuous variables may be fixed to

63

satisfy SOS or general constraints. The result is a model without any integrality constraints, SOS
constraints, or general constraints.

Note that, while the fixed problem is always a continuous model, it may contain a non-convex
quadratic objective or non-convex quadratic constraints. As a result, it may still be solved using
the MIP algorithm.

Return value:

A non-zero return value indicates that a problem occurred while creating the fixed model.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The MIP model (with a solution loaded).
fixedP: The computed fixed model.

Example usage:

GRBmodel *fixed;
error = GRBfixmodel (model, &fixed);

GRBreset

int GRBreset (GRBmodel *model,
int clearall)

Reset the model to an unsolved state, discarding any previously computed solution information.
Return value:
A non-zero return value indicates that a problem occurred while resetting the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: The model to reset.
clearall: A value of 1 discards additional information that affects the solution process but
not the actual model (currently MIP starts, variable hints, branching priorities, lazy flags,
and partition information). Pass 0 to just discard the solution.
Example usage:

error = GRBreset(model, 0);

GRBsync

‘int GRBsync (GRBmodel +*model)

Wait for a previous asynchronous optimization call to complete.

Calling GRBoptimizeasync returns control to the calling routine immediately. The caller can
perform other computations while optimization proceeds, and can check on the progress of the opti-
mization by querying various model attributes. The GRBsync call forces the calling program to wait
until the asynchronous optimization completes. You must call GRBsync before the corresponding
model is freed.

64

The GRBsync call returns a non-zero error code if the optimization itself ran into any problems.
In other words, error codes returned by this method are those that GRBoptimize itself would have

returned, had the original method not been asynchronous.

Note that you need to call GRBsync even if you know that the asynchronous optimization has

already completed.
Return value:

A non-zero return value indicates that a problem occurred while solving the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be

obtained by calling GRBgeterrormsg.
Arguments:

model: The model that is currently being solved.
Example usage:

error = GRBoptimizeasync(model) ;
/* ... perform other compute-intensive tasks... */

error = GRBsync(model) ;

65

3.4 Model Queries

While most model related queries are handled through the attribute interface, a few fall outside of
that interface. These are described here.

GRBgetcoeff
int GRBgetcoeff (GRBmodel =*model,
int constrind,
int varind,

double *valP)

Retrieve a single constraint matrix coefficient.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the coefficient.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model from which the coefficient should be retrieved.

constrind: The constraint index for the desired coefficient.

varind: The variable index for the desired coefficient.

valP: The location in which the requested matrix coefficient should be placed.
Example usage:

double A12;
error = GRBgetcoeff (model, 1, 2, &A12);

GRBgetconstrbyname

int GRBgetconstrbyname (GRBmodel *model,
const char *name,
int *constrnumP)

Retrieves a linear constraint from its name. If multiple linear constraints have the same name,
this routine chooses one arbitrarily.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the constraint.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the linear constraint should be retrieved.
name: The name of the desired linear constraint.

constrnumP: Constraint number for a linear constraint with the indicated name. Returns
-1 if no matching name is found.

66

GRBgetconstrs

int GRBgetconstrs (GRBmodel *model,
int *numnzP ,
int *cbeg,
int *cind,
double *xcval,
int start,
int len)

Retrieve the non-zeros for a set of linear constraints from the constraint matrix. Typical usage
is to call this routine twice. In the first call, you specify the requested set of constraints, with
NULL values for cbeg, cind, and cval. The routine returns the number of non-zero values for the
specified constraint range in numnzP. That allows you to make certain that cind and cval are of
sufficient size to hold the result of the second call.

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXgetconstrs variant of this routine.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the constraint
coefficients. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model from which the linear constraints should be retrieved.

numnzP: The number of non-zero values retrieved.

cbeg: Constraint matrix non-zero values are returned in Compressed Sparse Row (CSR) for-
mat. Each constraint in the constraint matrix is represented as a list of index-value pairs,
where each index entry provides the variable index for a non-zero coefficient, and each
value entry provides the corresponding non-zero value. Each constraint has an associated
cbeg value, indicating the start position of the non-zeros for that constraint in the cind
and cval arrays. The non-zeros for constraint i immediately follow those for constraint
i-1 in cind and cval. Thus, cbegl[i] indicates both the index of the first non-zero in
constraint i and the end of the non-zeros for constraint i-1. For example, consider the
case where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has
two non-zero values associated with it. Their variable indices can be found in cind[10]
and cind[11], and the numerical values for those non-zeros can be found in cval[10]
and cvall[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

start: The index of the first linear constraint to retrieve.

len: The number of linear constraints to retrieve.

GRBgetenv

| GRBenv * GRBgetenv (GRBmodel #model)

67

Retrieve the environment associated with a model.

Return value:
The environment associated with the model. A NULL return value indicates that there was
a problem retrieving the environment.

Arguments:
model: The model from which the environment should be retrieved.

Example usage:

GRBenv *env = GRBgetenv(model);

GRBgetgenconstrMax
int GRBgetgenconstrMax (GRBmodel #*model,
int id,
int *xresvarP,
int *nvarsP,
int *vars,
double *constantP)

Retrieve the data associated with a general constraint of type MAX. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in nvarsP. That allows you to make certain
that the vars array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrMax for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the resultant variable of the constraint.
nvarsP: The number of operand variables of the constraint.
vars: An array to store the variable indices associated with the variable operands of the
constraint.
constantP: The additional constant operand of the constraint.
Example usage:

int type;

int resvar;

int nvars;

int *vars;
double constant;

68

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_MAX) {
error = GRBgetgenconstrMax(model, 3, &resvar, &nvars, NULL, &constant);
/* ...allocate vars to hold ’nvars’ values... */
error = GRBgetgenconstrMax(model, 3, NULL, NULL, vars, NULL);

GRBgetgenconstrMin

int GRBgetgenconstrMin (GRBmodel *model,

int id,

int *resvarP,
int *nvarsP,

int *vars,
double *constantP)

Retrieve the data associated with a general constraint of type MIN. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in nvarsP. That allows you to make certain
that the vars array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrMin for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the resultant variable of the constraint.
nvarsP: The number of operand variables of the constraint.
vars: An array to store the variable indices associated with the variable operands of the
constraint.
constantP: The additional constant operand of the constraint.
Example usage:

int type;

int resvar;

int nvars;

int *vars;
double constant;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_MIN) {

69

error = GRBgetgenconstrMin(model, 3, &resvar, &nvars, NULL, &constant);
/* ...allocate vars to hold ’nvars’ values... */
error = GRBgetgenconstrMin(model, 3, NULL, NULL, vars, NULL);

}
GRBgetgenconstrAbs
int GRBgetgenconstrAbs (GRBmodel #*model,
int id,
int *resvarP,
int xargvarP)

Retrieve the data associated with a general constraint of type ABS. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

See also GRBaddgenconstrAbs for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the resultant variable of the constraint.
argvarP: The variable index associated with the argument variable of the constraint.
Example usage:

int type;
int resvar;
int argvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTIYPE, 3, &type);
if (type == GRB_GENCONSTR_ABS) {
error = GRBgetgenconstrAbs(model, 3, &resvar, &argvar);

}
GRBgetgenconstrAnd
int GRBgetgenconstrAnd (GRBmodel x*model,
int id,
int *xresvarP,
int *nvarsP,
int *vars)

Retrieve the data associated with a general constraint of type AND. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

70

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in nvarsP. That allows you to make certain
that the vars array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrAnd for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the binary resultant variable of the constraint.
nvarsP: The number of binary operand variables of the constraint.
vars: An array to store the variable indices associated with the binary variable operands of
the constraint.
Example usage:

int type;

int resvar;
int nvars;
int *vars;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_AND) {
error = GRBgetgenconstrAnd(model, 3, &resvar, &nvars, NULL);

/* ...allocate vars to hold ’nvars’ values... */
error = GRBgetgenconstrAnd(model, 3, NULL, NULL, vars);
}
GRBgetgenconstrOr
int GRBgetgenconstrOr (GRBmodel *model,

int id,
int *resvarpP,
int *nvarsP,
int *vars)

Retrieve the data associated with a general constraint of type OR. Calling this method for a gen-
eral constraint of a different type leads to an error return code. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in nvarsP. That allows you to make certain
that the vars array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrOr for a description of the semantics of this general constraint type.

71

Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the binary resultant variable of the constraint.
nvarsP: The number of binary operand variables of the constraint.
vars: An array to store the variable indices associated with the binary variable operands of
the constraint.
Example usage:
int type;
int resvar;
int nvars;
int *vars;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_OR) {
error = GRBgetgenconstrOr(model, 3, &resvar, &nvars, NULL);

/* ...allocate vars to hold ’nvars’ values... */
error = GRBgetgenconstrOr (model, 3, NULL, NULL, vars);
}
GRBgetgenconstrNorm
int GRBgetgenconstrNorm (GRBmodel =*model,

int id,
int *resvarP,
int *nvarsP,
int *xvars,

double *whichP)

Retrieve the data associated with a general constraint of type NORM. Calling this method
for a general constraint of a different type leads to an error return code. You can query the
GenConstrType attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in nvarsP. That allows you to make certain
that the vars array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrNorm for a description of the semantics of this general constraint
type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

72

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the resultant variable of the constraint.
nvarsP: The number of operand variables of the constraint.
vars: An array to store the variable indices associated with the variable operands of the
constraint.
whichP: Which norm is used. Options are 0, 1, 2, and GRB__INFINITY.
Example usage:

int type;

int resvar;
int nvars;
int *vars;
double which;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_NORM) {

error = GRBgetgenconstrNorm(model, 3, &resvar, &nvars, NULL, &which);

/* ...allocate vars to hold ’nvars’ values... */

error = GRBgetgenconstrNorm(model, 3, NULL, NULL, vars);

GRBgetgenconstrindicator

int GRBgetgenconstrIndicator (GRBmodel *model,

int id,

int *binvarP,
int *binvalP,
int *nvarsP,
int *ind,
double *val,
char *senseP,

double *rhsP)

Retrieve the data associated with a general constraint of type INDICATOR. Calling this method
for a general constraint of a different type leads to an error return code. You can query the
GenConstrType attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with NULL values for the ind and val arguments. The routine returns the total number
of non-zero coefficients in the linear constraint associated with the specified indicator constraint in
nvarsP. That allows you to make certain that the ind and val arrays are of sufficient size to hold
the result of the second call.

See also GRBaddgenconstrIndicator for a description of the semantics of this general constraint
type.

Return value:

73

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.

binvarP: The variable index associated with the binary indicator variable.

binvalP: The value that the indicator variable has to take in order to trigger the linear
constraint.

nvarsP: The number of non-zero coefficients in the linear constraint triggered by the indi-
cator.

ind: An array to store the variable indices for non-zero values in the linear constraint.

val: An array to store the numerical values for non-zero values in the linear constraint.

senseP: Sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

rhsP: Right-hand side value for the linear constraint.

Example usage:

int type;
int binvar;
int binval:
int nvars;
int *ind;
double *val;
char sense;
double rhs;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_INDICATOR) {
error = GRBgetgenconstrIndicator(model, 3, &binvar, &binval, &nvars,
NULL, NULL, &sense, &rhs);
/* ...allocate ind and val to hold ’nvars’ values... */
error = GRBgetgenconstrIndicator(model, 3, NULL, NULL, NULL,
ind, val, NULL, NULL);

}
GRBgetgenconstrPWL
int GRBgetgenconstrPWL (GRBmodel #*model,
int id,
int *xvarP,
int *yvarP,
int *nptsP,

double *xpts,
double xypts)

74

Retrieve the data associated with a general constraint of type PWL. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the xpts and ypts arguments. The routine returns the length
for the xpts and ypts arrays in nptsP. That allows you to make certain that the xpts and ypts
arrays are of sufficient size to hold the result of the second call.

See also GRBaddgenconstrPWL for a description of the semantics of this general constraint
type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the

general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable z.
yvarP: The index of variable y.
nptsP: The number of points that define the piecewise-linear function.
xpts: The z values for the points that define the piecewise-linear function.
ypts: The y values for the points that define the piecewise-linear function.
Example usage:

int type;
int xvar;
int yvar;
int npts;
double *xpts;
double *ypts;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_PWL) {
error = GRBgetgenconstrPWL(model, 3, &xvar, &yvar, &npts, NULL, NULL);
/* ...allocate xpts and ypts arrays with length npts */
error = GRBgetgenconstrPWL(model, 3, NULL, NULL, NULL, xpts, ypts);

+
GRBgetgenconstrPoly

int GRBgetgenconstrPoly (GRBmodel =*model,
int id,
int *xvarP,
int *yvarP,
int *plenP,
double *p)

75

Retrieve the data associated with a general constraint of type POLY. Calling this method
for a general constraint of a different type leads to an error return code. You can query the
GenConstrType attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the p argument. The routine returns the length of the p array in
plenP. That allows you to make certain that the p array is of sufficient size to hold the result of
the second call.

See also GRBaddgenconstrPoly for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable z.
yvarP: The index of variable y.
plenP: Pointer to store the array length for p. If 2¢ is the highest power term, then d + 1
will be returned.
p: The coefficients for polynomial function.
Example usage:

int type;
int xvar;
int yvar;
int plen;
double *p;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_POLY) {

error = GRBgetgenconstrPoly(model, 3, &xvar, &yvar, &plen, NULL);

/* ...allocate p array with length plen */

error = GRBgetgenconstrPoly(model, 3, NULL, NULL, NULL, p);

}
GRBgetgenconstrExp
int GRBgetgenconstrExp (GRBmodel x*model,
int id,
int *xvarP,
int xyvarP)

Retrieve the data associated with a general constraint of type EXP. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

See also GRBaddgenconstrExp for a description of the semantics of this general constraint type.

76

Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.
Example usage:

int type;
int xvar;
int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_EXP) {
error = GRBgetgenconstrExp(model, 3, &xvar, &yvar);

}
GRBgetgenconstrExpA
int GRBgetgenconstrExpA (GRBmodel =*model,
int id,
int *xvarP,
int *yvarP,

double *aP)

Retrieve the data associated with a general constraint of type EXPA. Calling this method
for a general constraint of a different type leads to an error return code. You can query the
GenConstrType attribute to determine the type of the general constraint.

See also GRBaddgenconstrExpA for a description of the semantics of this general constraint
type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.
aP: The base of the function.
Example usage:

77

int type;
int xvar;
int yvar;
double a;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTIYPE, 3, &type);
if (type == GRB_GENCONSTR_EXPA) {
error = GRBgetgenconstrExpA(model, 3, &xvar, &yvar, &a);

}
GRBgetgenconstrLog
int GRBgetgenconstrLog (GRBmodel x*model,
int id,
int *xvarP,
int xyvarP)

Retrieve the data associated with a general constraint of type LOG. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

See also GRBaddgenconstrLog for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable z.
yvarP: The index of variable y.

Example usage:

int type;
int xvar;
int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTIYPE, 3, &type);
if (type == GRB_GENCONSTR_L0OG) {
error = GRBgetgenconstrLog(model, 3, &xvar, &yvar);

}

78

GRBgetgenconstrLogA

int GRBgetgenconstrLogA (GRBmodel =*model,

int id,
int *xvarP,
int *yvarP,

double *aP)

Retrieve the data associated with a general constraint of type LOGA. Calling this method
for a general constraint of a different type leads to an error return code. You can query the
GenConstrType attribute to determine the type of the general constraint.

See also GRBaddgenconstrLogA for a description of the semantics of this general constraint
type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable z.
yvarP: The index of variable y.
aP: The base of the function.
Example usage:

int type;
int xvar;
int yvar;
double a;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTIYPE, 3, &type);
if (type == GRB_GENCONSTR_LOGA) {
error = GRBgetgenconstrLogA(model, 3, &xvar, &yvar, &a);

}
GRBgetgenconstrPow
int GRBgetgenconstrPow (GRBmodel x*model,
int id,
int *xvarP,
int *yvarP,

double *xaP)

Retrieve the data associated with a general constraint of type POW. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

See also GRBaddgenconstrPow for a description of the semantics of this general constraint type.

Return value:

79

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable z.
yvarP: The index of variable y.
aP: The exponent of the function.
Example usage:

int type;
int xvar;
int yvar;
double a;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_POW) {
error = GRBgetgenconstrPow(model, 3, &xvar, &yvar, &a);

3

GRBgetgenconstrSin

int GRBgetgenconstrSin (GRBmodel *model,

int id,
int *xvarP,
int xyvarP)

Retrieve the data associated with a general constraint of type SIN. Calling this method for a

general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

See also GRBaddgenconstrSin for a description of the semantics of this general constraint type.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.
Example usage:

int type;
int xvar;

80

int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_SIN) {
error = GRBgetgenconstrSin(model, 3, &xvar, &yvar);

X
GRBgetgenconstrCos
int GRBgetgenconstrCos (GRBmodel *model,
int id,
int *xvarP,
int xyvarP)

Retrieve the data associated with a general constraint of type COS. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

See also GRBaddgenconstrCos for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.
Example usage:

int type;
int xvar;
int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_COS) {
error = GRBgetgenconstrCos(model, 3, &xvar, &yvar);

X
GRBgetgenconstrTan
int GRBgetgenconstrTan (GRBmodel *model,
int id,
int *xvarP,
int xyvarP)

81

Retrieve the data associated with a general constraint of type TAN. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

See also GRBaddgenconstrTan for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable z.
yvarP: The index of variable y.
Example usage:

int type;
int xvar;
int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_TAN) {
error = GRBgetgenconstrTan(model, 3, &xvar, &yvar);

}

GRBgetjsonsolution

int GRBgetjsonsolution (GRBmodel model,
char*x buffP)

After a call to optimize, this method returns the resulting solution and related model attributes
as a JSON string. Please refer to the JSON solution format section for details.

Return value:

A non-zero return value indicates that there was a problem generating the JSON solution
string. Refer to the Error Code table for a list of possible return values.

Arguments:

model: Model from which to query its current JSON solution string.

buffP: The location in which the pointer to the newly created JSON string should be placed.
Important note:

On Windows, the string returned in buffP is allocated in a different heap from the calling
program. You must call GRBfree to free it.

82

GRBgetpwlobj

int GRBgetpwlobj (GRBmodel x*model,

int var,
int *npointsP,
double *X,

double xy)

Retrieve the piecewise-linear objective function for a variable. The x and y arguments must
be large enough to hold the result. If either are NULL, then npointsP will contain the number of
points in the function on return.

Refer to this discussion for additional information on what the values in x and y mean.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the piecewise-
linear objective function. Refer to the Error Code table for a list of possible return values.
Details on the error can be obtained by calling GRBgeterrormsg,.

Arguments:

model: The model from which the piecewise-linear objective function is being retrieved.
var: The variable whose objective function is being retrieved.
npointsP: The number of points that define the piecewise-linear function.
x: The x values for the points that define the piecewise-linear function. These will always
be in non-decreasing order.
y: The y values for the points that define the piecewise-linear function.
Example usage:

double *x;
double *y;

error = GRBgetpwlobj(model, var, &npoints, NULL, NULL);
/* ...allocate x and y to hold ’npoints’ values... */
error = GRBgetpwlobj(model, var, &npoints, x, y);

GRBgetq
int GRBgetq (GRBmodel *model,
int *numqnzpP,
int *qrow,
int *qcol,

double xqval)

Retrieve all quadratic objective terms. The qrow, qcol, and qval arguments must be large
enough to hold the result. You can query the NumQNZs attribute to determine how many terms
will be returned.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the quadratic
objective terms. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model from which the quadratic objective terms should be retrieved.

83

numqnzP: The number of quadratic objective terms retrieved.

grow: Row indices associated with quadratic terms. A quadratic term is represented using
three values: a pair of indices (stored in qrow and qcol), and a coefficient (stored in qval).
The three argument arrays provide the corresponding values for each quadratic term. To
give an example, to represent 2% + wox1 + 7, you would have *numqnzP=3, qrow[] =
{0, 0, 1}, qcol[]l = {0, 1, 1}, and qval[]l = {2.0, 1.0, 1.0}.

gcol: Column indices associated with quadratic terms. See the description of the qrow
argument for more information.

gval: Numerical values associated with quadratic terms. See the description of the qrow
argument for more information.

Example usage:

int qnz;
int *gqrow, *qcol;
double *qval;

error = GRBgetdblattr(model, GRB_DBL_ATTR_NUMQNZS, &qnz);
/* ...allocate qrow, qcol, qval to hold ’qnz’ values... */
error = GRBgetq(model, &gnz, qrow, qcol, qval);

GRBgetqconstr

int GRBgetqconstr (GRBmodel =*model,
int qconstr,
int *numlnzP,
int *1ind,
double *x1val,
int *numqnzP,
int *qrow,
int *qcol,
double *qval)

Retrieve the linear and quadratic terms associated with a single quadratic constraint. Typical
usage is to call this routine twice. In the first call, you specify the requested quadratic constraint,
with NULL values for the array arguments. The routine returns the total number of linear and
quadratic terms in the specified quadratic constraint in numlnzP and numgnzP, respectively. That
allows you to make certain that 1ind, 1val, qrow, qcol, and gval are of sufficient size to hold the
result of the second call.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the quadratic
constraint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model from which the quadratic constraint should be retrieved.
gconstr: The index of the requested quadratic constraint.

numlnzP: The number of linear terms retrieved for the requested quadratic constraint.
lind: Variable indices associated with linear terms.

84

lval: Numerical coefficients associated with linear terms.

numqnzP: The number of quadratic terms retrieved for the requested quadratic constraint.

grow: Row indices associated with quadratic terms. A quadratic term is represented using
three values: a pair of indices (stored in qrow and qcol), and a coefficient (stored in qval).
The associated arguments arrays provide the corresponding values for each quadratic term.
To give an example, if the requested quadratic constraint has quadratic terms 223 +zox1 +
22, this routine would return *numqnzP=3, qrow[] = {0, 0, 1}, qcol[] = {0, 1, 1},
and qval[]l = {2.0, 1.0, 1.0}.

gcol: Column indices associated with quadratic terms. See the description of the qrow
argument for more information.

gval: Numerical values associated with quadratic terms. See the description of the qrow
argument for more information.

GRBgetqconstrbyname

int GRBgetqconstrbyname (GRBmodel *model,
const char *name,
int *constrnumP)

Retrieves a quadratic constraint from its name. If multiple quadratic constraints have the same
name, this routine chooses one arbitrarily.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the quadratic
constraint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model from which the quadratic constraint should be retrieved.
name: The name of the desired quadratic constraint.
constrnumP: Constraint number for a quadratic constraint with the indicated name. Returns
-1 if no matching name is found.

GRBgetsos

int GRBgetsos (GRBmodel *model,
int *nummembersP,
int *sostype,
int *beg,
int *ind,
double *weight,
int start,
int len)

Retrieve the members and weights of a set of SOS constraints. Typical usage is to call this
routine twice. In the first call, you specify the requested SOS constraints, with NULL values for ind
and weight. The routine returns the total number of members for the specified SOS constraints in
nummembersP. That allows you to make certain that ind and weight are of sufficient size to hold
the result of the second call.

Return value:

85

A non-zero return value indicates that a problem occurred while retrieving the SOS members.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the SOS constraints should be retrieved.
nummembersP: The total number of SOS members retrieved.

sostype: The types of the SOS constraints. Possible values are GRB_S0S_TYPE1 or GRB_-
SOS_TYPE2

beg: SOS constraints are returned in Compressed Sparse Row (CSR) format. Each SOS
constraint in the model is represented as a list of index-value pairs, where each index
entry provides the variable index for an SOS member, and each value entry provides the
corresponding SOS constraint weight. Each SOS constraint has an associated beg value,
indicating the start position of the members of that constraint in the ind and weight
arrays. The members for SOS constraint i immediately follow those for constraint i-1
in ind and weight. Thus, begl[i] indicates both the index of the first member of SOS
constraint i and the end of the member list for SOS constraint i-1. For example, consider
the case where beg[2] = 10 and beg[3] = 12. This would indicate that SOS constraint
2 has two members. Their variable indices can be found in ind[10] and ind[11], and
their SOS weights can be found in weight [10] and weight [11].

ind: Variable indices associated with SOS members. See the description of the beg argument
for more information.

weight: Weights associated with SOS members. See the description of the beg argument
for more information.

start: The index of the first SOS constraint to retrieve.

len: The number of SOS constraints to retrieve.

GRBgetvarbyname

int GRBgetvarbyname (GRBmodel *model,
const char *name,
int *varnumP)

Retrieves a variable from its name. If multiple variables have the same name, this routine
chooses one arbitrarily.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the variable.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the variable should be retrieved.
name: The name of the desired variable.

varnumP: Variable number for a variable with the indicated name. Returns -1 if no matching
name is found.

86

GRBgetvars

int GRBgetvars (GRBmodel *model,

int *numnzP,
int *vbeg,
int *vind,
double *vval,
int start,
int len)

Retrieve the non-zeros for a set of variables from the constraint matrix. Typical usage is to call
this routine twice. In the first call, you specify the requested set of variables, with NULL values for
vbeg, vind, and vval. The routine returns the number of non-zero values for the specified variables
in numnzP. That allows you to make certain that vind and vval are of sufficient size to hold the
result of the second call.

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXgetvars variant of this routine.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the variable
coeflicients. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model from which the variables should be retrieved.

numnzP: The number of non-zero values retrieved.

vbeg: Constraint matrix non-zero values are returned in Compressed Sparse Column (CSC)
format by this routine. Each column in the constraint matrix is represented as a list
of index-value pairs, where each index entry provides the constraint index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each
variable has an associated vbeg value, indicating the start position of the non-zeros for
that constraint in the vind and vval arrays. The non-zeros for variable i immediately
follow those for variable i-1 in vind and vval. Thus, vbeg[i] indicates both the index
of the first non-zero in variable i and the end of the non-zeros for variable i-1. For
example, consider the case where vbeg[2] = 10 and vbeg[3] = 12. This would indicate
that variable 2 has two non-zero values associated with it. Their constraint indices can
be found in vind[10] and vind[11], and the numerical values for those non-zeros can be
found in vval[10] and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

start: The index of the first variable to retrieve.

len: The number of variables to retrieve.

GRBsinglescenariomodel

int GRBsinglescenariomodel (GRBmodel #*model,
GRBmodel **singlescenarioP)

87

Capture a single scenario from a multi-scenario model. Use the ScenarioNumber parameter to
indicate which scenario to capture.

Return value:
A non-zero return value indicates that a problem occurred while extracting the single-
scenario model. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the scenario should be extracted.
singlescenarioP: The location in which the pointer to the requested single-scenario model

should be placed.

GRBXgetconstrs

int GRBXgetconstrs (GRBmodel =*model,
size_t *numnzP,
size_t *cbeg,
int *cind,
double *xcval,
int start,
int len)

The size_t version of GRBgetconstrs. The two arguments that count non-zero values are of
type size_t in this version to support models with more than 2 billion non-zero values.

Retrieve the non-zeros for a set of linear constraints from the constraint matrix. Typical usage
is to call this routine twice. In the first call, you specify the requested set of constraints, with
NULL values for cbeg, cind, and cval. The routine returns the number of non-zero values for the
specified constraint range in numnzP. That allows you to make certain that cind and cval are of
sufficient size to hold the result of the second call.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the constraint
coefficients. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model from which the constraints should be retrieved.

numnzP: The number of non-zero values retrieved.

cbeg: Constraint matrix non-zero values are returned in Compressed Sparse Row (CSR) for-
mat. Each constraint in the constraint matrix is represented as a list of index-value pairs,
where each index entry provides the variable index for a non-zero coefficient, and each
value entry provides the corresponding non-zero value. Each constraint has an associated
cbeg value, indicating the start position of the non-zeros for that constraint in the cind
and cval arrays. The non-zeros for constraint i immediately follow those for constraint
i-1 in cind and cval. Thus, cbeg[i] indicates both the index of the first non-zero in
constraint i and the end of the non-zeros for constraint i-1. For example, consider the
case where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has
two non-zero values associated with it. Their variable indices can be found in cind[10]
and cind[11], and the numerical values for those non-zeros can be found in cval[10]
and cval[11].

88

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

start: The index of the first constraint to retrieve.

len: The number of constraints to retrieve.

GRBXgetvars

int GRBXgetvars (GRBmodel *model,
size_t *numnzP,
size_t *vbeg,
int *vind,
double *xvval,
int start,
int len)

The size_t version of GRBgetvars. The two arguments that count non-zero values are of type
size_t in this version to support models with more than 2 billion non-zero values.

Retrieve the non-zeros for a set of variables from the constraint matrix. Typical usage is to call
this routine twice. In the first call, you specify the requested set of variables, with NULL values for
vbeg, vind, and vval. The routine returns the number of non-zero values for the specified variables
in numnzP. That allows you to make certain that vind and vval are of sufficient size to hold the
result of the second call.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the variable
coefficients. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model from which the variables should be retrieved.

numnzP: The number of non-zero values retrieved.

vbeg: Constraint matrix non-zero values are returned in Compressed Sparse Column (CSC)
format by this routine. Each column in the constraint matrix is represented as a list
of index-value pairs, where each index entry provides the constraint index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each
variable has an associated vbeg value, indicating the start position of the non-zeros for
that constraint in the vind and vval arrays. The non-zeros for variable i immediately
follow those for variable i-1 in vind and vval. Thus, vbeg[i] indicates both the index
of the first non-zero in variable i and the end of the non-zeros for variable i-1. For
example, consider the case where vbeg[2] = 10 and vbeg[3] = 12. This would indicate
that variable 2 has two non-zero values associated with it. Their constraint indices can
be found in vind[10] and vind[11], and the numerical values for those non-zeros can be
found in vval[10] and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

89

start: The index of the first variable to retrieve.
len: The number of variables to retrieve.

90

3.5 Input/Output
GRBreadmodel

int GRBreadmodel (GRBenv *env,
const char x*xfilename,
GRBmodel **modelP)

Read a model from a file.
Return value:
A non-zero return value indicates that a problem occurred while reading the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
env: The environment in which to load the new model. This should come from a previous
call to GRBloadenv.
filename: The path to the file to be read. Note that the type of the file is encoded in the
file name suffix. Valid suffixes are .mps, .rew, .1p, .rlp, .dua, .dlp, .ilp, or .opb. The
files can be compressed, so additional suffixes of .zip, .gz, .bz2, or .7z are accepted.
modelP: The location in which the pointer to the model should be placed.
Example usage:

GRBmodel *model;
error = GRBreadmodel(env, "/tmp/model.mps.bz2", &model);

GRBread

int GRBread (GRBmodel *model,
const char *filename)

Import optimization data from a file. This routine is the general entry point for importing data
from a file into a model. It can be used to read start vectors for MIP models, basis files for LP
models, or parameter settings. The type of data read is determined by the file suffix. File formats
are described in the File Format section.

Return value:

A non-zero return value indicates that a problem occurred while reading the file. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:

model: The model that will receive the start vector.
filename: The path to the file to be read. The suffix on the file must be either .mst or
.sol for a MIP start file, .hnt for a MIP hint file, .ord for a priority order file, .bas for
a basis file, or .prm for a parameter file, The suffix may optionally be followed by .zip,
.gz, .bz2, or .7z.
Example usage:

error = GRBread(model, "/tmp/model.mst.bz2");

91

GRBwrite

int GRBwrite (GRBmodel *model,
const char *filename)

This routine is the general entry point for writing optimization data to a file. It can be used
to write optimization models, solutions vectors, basis vectors, start vectors, or parameter settings.
The type of data written is determined by the file suffix. File formats are described in the File
Format section.

Note that writing a model to a file will process all pending model modifications. However,
writing other model information (solutions, bases, etc.) will not.

Note also that when you write a Gurobi parameter file (PRM), both integer or double parameters
not at their default value will be saved, but no string parameter will be saved into the file.

Return value:

A non-zero return value indicates that a problem occurred while writing the file. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:

model: The model containing the data to be written.

filename: The name of the file to be written. The file type is encoded in the file name
suffix. Valid suffixes are .mps, .rew, .lp, or .rlp for writing the model itself, .dua
or .dlp for writing the dualized model (only pure LP), .ilp for writing just the IIS
associated with an infeasible model (see GRBcomputelIS for further information), .sol
for writing the solution selected by the SolutionNumber parameter, .mst for writing a
start vector, .hnt for writing a hint file, .bas for writing an LP basis, .prm for writing
modified parameter settings, .attr for writing model attributes, or .json for writing
solution information in JSON format. If your system has compression utilities installed
(e.g., 7z or zip for Windows, and gzip, bzip2, or unzip for Linux or macOS), then the
files can be compressed, so additional suffixes of .gz, .bz2, or .7z are accepted.

Example usage:

error = GRBwrite(model, "/tmp/model.rlp.gz");

92

3.6 Attribute Management
GRBgetattrinfo

int GRBgetattrinfo (GRBmodel *model,
const char *attrname,

int *datatypeP,
int *attrtypeP,
int x*settableP)

Obtain information about an attribute.
Return value:
A non-zero return value indicates that a problem occurred while obtaining information about
the attribute. Refer to the Error Code table for a list of possible return values. Details on
the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of an attribute. Available attributes are listed and described in the
Attributes section of this document.
datatypeP: On completion, the integer pointed to by this argument will indicate the data
type of the attribute. Possible types are char (0), int (1), double (2), or string(3). This
argument can be NULL.
attrtypeP: On completion, the integer pointed to by this argument will indicate the type
of the attribute. Possible types are model attribute (0), variable attribute (1), linear
constraint attribute (2), (3) SOS constraint attribute, (4) quadratic constraint attribute,
or (5) general constraint attribute. This argument can be NULL.
settableP: On completion, the integer pointed to by this argument will indicate whether
the attribute can be set (1) or not (0). This argument can be NULL.
Example usage:

int datatype, attrtype, settable;
error = GRBgetattrinfo(model, "ModelName", &datatype, &attrtype, &settable);

GRBgetintattr

int GRBgetintattr (GRBmodel *xmodel,
const char *attrname,
int *valueP)

Query the value of an integer-valued model attribute.

Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-

readmodel.

93

attrname: The name of an integer-valued model attribute. Available attributes are listed
and described in the Attributes section of this document.
valueP: The location in which the current value of the requested attribute should be placed.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To
query a single element of an array attribute, use GRBgetintattrelement instead.
Example usage:

error = GRBgetintattr (model, "NumBinVars", &numbin);

GRBsetintattr

int GRBsetintattr (GRBmodel *model,
const char *attrname,
int newvalue)

Set the value of an integer-valued model attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of an integer-valued model attribute. Available attributes are listed
and described in the Attributes section of this document.
newvalue: The desired new value of this attribute.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To
modify a single element of an array attribute, use GRBsetintattrelement instead.
Example usage:

error = GRBsetintattr(model, "ModelSense", -1);

GRBgetintattrelement

int GRBgetintattrelement (GRBmodel *model,
const char *attrname,
int element,
int *valueP)

Query a single value from an integer-valued array attribute.

Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

94

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
element: The index of the requested array element.
valueP: A pointer to the location where the requested value should be returned.
Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint
attributes). To query a scalar attribute (i.e., a model attribute), use GRBgetintattr instead.
Example usage:

int first_one;
error = GRBgetintattrelement(model, "VBasis", 0, &first_one);

GRBsetintattrelement

int GRBsetintattrelement (GRBmodel *model,
const char *attrname,
int element,
int newvalue)

Set a single value in an integer-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.
Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint
attributes). To modify a scalar attribute (i.e., a model attribute), use GRBsetintattr instead.
Example usage:

error = GRBsetintattrelement (model, "VBasis", 0, GRB_BASIC);

GRBgetintattrarray

int GRBgetintattrarray (GRBmodel *model,
const char *attrname,

int start,
int len,
int *values)

Query the values of an integer-valued array attribute.

95

Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.

values: A pointer to the location where the array attribute should be returned. Note that
the result array must be as long as the requested sub-array.
Example usage:

int cbasis[NUMCONSTRS] ;
error = GRBgetintattrarray(model, "CBasis", 0, NUMCONSTRS, cbasis);
GRBsetintattrarray

int GRBsetintattrarray (GRBmodel *model,
const char *attrname,

int start,
int len,
int *values)

Set the values of an integer-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer

to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute.
Note that the values array must be as long as the sub-array to be changed.
Example usage:

int cbasis[] = {GRB_BASIC, GRB_BASIC, GRB_NONBASIC_LOWER, GRB_BASIC};
error = GRBsetintattrarray(model, "CBasis", 0, 4, cbasis);

96

GRBgetintattrlist

int GRBgetintattrlist (GRBmodel *model,
const char *attrname,

int len,
int *ind,
int *values)

Query the values of an integer-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
len: The number of attribute elements to retrieve.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned.
Note that the result array must be as long as the requested index list.
Example usage:

int desired[] = {0, 2, 4, 63};
int cbasis[4];
error = GRBgetintattrlist(model, "CBasis", 4, desired, cbasis);

GRBsetintattrlist

int GRBsetintattrlist (GRBmodel *model,
const char *attrname,

int len,
int *ind,
int *values)

Set the values of an integer-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.

97

values: A pointer to the desired new values for the specified elements of the attribute. Note
that the values array must be as long as the list of indices.
Example usage:

int change[] = {0, 1, 3};
int newbas[] {GRB_BASIC, GRB_NONBASIC_LOWER, GRB_NONBASIC_LOWER};
error = GRBsetintattrlist(model, "VBasis", 3, change, newbas);

GRBgetdblattr

int GRBgetdblattr (GRBmodel *xmodel,

const char *attrname,
double *valueP)

Query the value of a double-valued model attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a double-valued model attribute. Available attributes are listed and
described in the Attributes section of this document.
valueP: The location in which the current value of the requested attribute should be placed.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To

query a single element of an array attribute, use GRBgetdblattrelement instead.

Example usage:

error = GRBgetdblattr(model, "ObjCon", &objcon);

GRBsetdblattr

int GRBsetdblattr (GRBmodel *model,

const char *attrname,
double newvalue)

Set the value of a double-valued model attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a double-valued model attribute. Available attributes are listed and
described in the Attributes section of this document.

98

newvalue: The desired new value of this attribute.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To
modify a single element of an array attribute, use GRBsetdblattrelement instead.
Example usage:

error = GRBsetdblattr(model, "ObjCon", 0.0);

GRBgetdblattrelement

int GRBgetdblattrelement (GRBmodel *model,
const char *attrname,
int element,
double *valueP)

Query a single value from a double-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
element: The index of the requested array element.
values: A pointer to the location where the requested value should be returned.
Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint
attributes). To query a scalar attribute (i.e., a model attribute), use GRBgetdblattr instead.
Example usage:

double first_one;
error = GRBgetdblattrelement(model, "X", 0, &first_one);

GRBsetdblattrelement

int GRBsetdblattrelement (GRBmodel *model,
const char *attrname,
int element,
double newvalue)

Set a single value in a double-valued array attribute.

Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:

99

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.
Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint
attributes). To modify a scalar attribute (i.e., a model attribute), use GRBsetdblattr instead.
Example usage:

error = GRBsetdblattrelement(model, "Start", 0, 1.0);

GRBgetdblattrarray

int GRBgetdblattrarray (GRBmodel *model,
const char *attrname,

int start,
int len,
double *values)

Query the values of a double-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.
values: A pointer to the location where the array attribute should be returned. Note that
the result array must be as long as the requested sub-array.
Example usage:

double 1b[NUMVARS];
error = GRBgetdblattrarray(model, "LB", 0, cols, 1lb);
GRBsetdblattrarray

int GRBsetdblattrarray (GRBmodel *model,
const char *attrname,

int start,
int len,
double *values)

Set the values of a double-valued array attribute.

100

Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute.
Note that the values array must be as long as the sub-array to be changed.
Example usage:

double start[] = {1.0, 1.0, 0.0, 1.0%};
error = GRBsetdblattrarray(model, "Start", 0, 4, start);

GRBgetdblattrlist

int GRBgetdblattrlist (GRBmodel *model,
const char *attrname,

int len,
int *ind,
double *values)

Query the values of a double-valued array attribute.

Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
len: The number of attribute elements to retrieve.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned.
Note that the result array must be as long as the requested index list.
Example usage:

int desired[] = {0, 2, 4, 6};
double x[4];
error = GRBgetdblattrlist(model, "X", 4, desired, cbasis);

101

GRBsetdblattrlist

int GRBsetdblattrlist (GRBmodel *model,
const char *attrname,

int len,
int *ind,
double *values)

Set the values of a double-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.
values: A pointer to the desired new values for the specified elements of the attribute. Note
that the values array must be as long as the list of indices.
Example usage:

int change[] = {0, 1, 3};
double start[] = {1.0, 3.0, 2.0};
error = GRBsetdblattrlist(model, "Start", 3, change, start);

GRBgetcharattrelement

int GRBgetcharattrelement (GRBmodel *model,
const char *attrname,
int element,
char *valueP)

Query a single value from a character-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
element: The index of the requested array element.
values: A pointer to the location where the requested value should be returned.
Example usage:

102

char first_one;
error = GRBgetcharattrelement (model, "VType", 0, &first_one);

GRBsetcharattrelement

int GRBsetcharattrelement (GRBmodel *model,
const char *attrname,
int element,
char newvalue)

Set a single value in a character-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.
Example usage:

error = GRBsetcharattrelement (model, "VType", O, GRB_BINARY);

GRBgetcharattrarray

int GRBgetcharattrarray (GRBmodel *model,
const char *attrname,

int start,
int len,
char *values)

Query the values of a character-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.

103

values: A pointer to the location where the array attribute should be returned. Note that
the result array must be as long as the requested sub-array.
Example usage:

char vtypes[NUMVARS];
error = GRBgetcharattrarray(model, "VType", O, NUMVARS, vtypes);
GRBsetcharattrarray

int GRBsetcharattrarray (GRBmodel *model,
const char *attrname,

int start,
int len,
char *values)

Set the values of a character-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute.
Note that the values array must be as long as the sub-array to be changed.
Example usage:

char vtypes[] = {GRB_BINARY, GRB_CONTINUQOUS, GRB_INTEGER, GRB_BINARY};
error = GRBsetcharattrarray(model, "VType", 0, 4, vtypes);

GRBgetcharattrlist

int GRBgetcharattrlist (GRBmodel *model,
const char *attrname,

int len,
int *ind,
char *values)

Query the values of a character-valued array attribute.

Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

104

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

len: The number of attribute elements to retrieve.

ind: The indices of the desired attribute elements.

values: A pointer to the location where the requested attribute elements should be returned.
Note that the result array must be as long as the requested index list.

Example usage:

int desired[] = {0, 2, 4, 6};
char vtypes[4];
error = GRBgetcharattrlist(model, "VType", 4, desired, vtypes);

GRBsetcharattrlist

int GRBsetcharattrlist (GRBmodel *model,
const char *attrname,

int len,
int *ind,
char *values)

Set the values of a character-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.
len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.
values: A pointer to the desired new values for the specified elements of the attribute. Note
that the values array must be as long as the list of indices.
Example usage:

int change[] = {0, 1, 3};
char vtypes[] = {GRB_BINARY, GRB_BINARY, GRB_BINARY};
error = GRBsetcharattrlist(model, "Vtype", 3, change, vtypes);

GRBgetstrattr

int GRBgetstrattr (GRBmodel *model,
const char *attrname,
char **valueP)

Query the value of a string-valued model attribute.

105

Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued model attribute. Available attributes are listed and
described in the Attributes section of this document.

valueP: The location in which the current value of the requested attribute should be placed.

Important notes:

Note that all interface routines that return string-valued attributes are returning pointers into
internal Gurobi data structures. The user should copy the contents of the pointer to a different
data structure before the next call to a Gurobi library routine. The user should also be careful to
never modify the data pointed to by the returned character pointer.

Note that this method should be used for scalar attributes only (i.e., model attributes). To
query a single element of an array attribute, use GRBgetstrattrelement instead.

Example usage:

char *modelname;
error = GRBgetstrattr(model, "ModelName", &modelname);

GRBsetstrattr

int GRBsetstrattr (GRBmodel *model,
const char *attrname,
const char *newvalue)

Set the value of a string-valued model attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a string-valued model attribute. Available attributes are listed and
described in the Attributes section of this document.
newvalue: The desired new value of this attribute.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To
modify a single element of an array attribute, use GRBsetstrattrelement instead.
Example usage:

error = GRBsetstrattr(model, "ModelName", "Modified name");

106

GRBgetstrattrelement

int GRBgetstrattrelement (GRBmodel *model,
const char *attrname,
int element,
char **valueP)

Query a single value from a string-valued array attribute.

Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

element: The index of the requested array element.

valueP: A pointer to the location where the requested value should be returned.

Important notes:

Note that all interface routines that return string-valued attributes are returning pointers into
internal Gurobi data structures. The user should copy the contents of the pointer to a different
data structure before the next call to a Gurobi library routine. The user should also be careful to
never modify the data pointed to by the returned character pointer.

Note that this method should be used for array attributes only (i.e., variable or constraint
attributes). To query a scalar attribute (i.e., a model attribute), use GRBgetstrattr instead.

Example usage:

char **varname;
error = GRBgetstrattrelement(model, "VarName", 1, varname);

GRBsetstrattrelement

int GRBsetstrattrelement (GRBmodel *model,
const char *attrname,
int element,
char *newvalue)

Set a single value in a string-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

107

element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.
Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint
attributes). To modify a scalar attribute (i.e., a model attribute), use GRBsetstrattr instead.
Example usage:

error = GRBsetstrattrelement (model, "ConstrName", 0, "NewConstr");

GRBgetstrattrarray

int GRBgetstrattrarray (GRBmodel *model,
const char *attrname,

int start,
int len,
char *xvalues)

Query the values of a string-valued array attribute.

Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

start: The index of the first entry in the array to retrieve.

len: The number of array entries to retrieve.

values: A pointer to the location where the array attribute should be returned. Note that
the result array must be as long as the requested sub-array.

Important notes:

Note that all interface routines that return string-valued attributes are returning pointers into
internal Gurobi data structures. The user should copy the contents of the pointer to a different
data structure before the next call to a Gurobi library routine. The user should also be careful to
never modify the data pointed to by the returned character pointer.

Example usage:

char **varnames [NUMVARS] ;
error = GRBgetstrattrarray(model, "VarName", O, NUMVARS, varnames);
GRBsetstrattrarray

int GRBsetstrattrarray (GRBmodel *model,
const char *attrname,

int start,
int len,
char *xvalues)

108

Set the values of a string-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute.
Note that the values array must be as long as the sub-array to be changed.
Example usage:

char **varnames [NUMVARS] ;
error = GRBsetstrattrarray(model, "VarName", O, NUMVARS, varnames);

GRBgetstrattrlist

int GRBgetstrattrlist (GRBmodel *model,
const char *attrname,

int len,
int *ind,
char **xvalues)

Query the values of a string-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
len: The number of attribute elements to retrieve.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned.
Note that the result array must be as long as the requested index list.
Important notes:
Note that all interface routines that return string-valued attributes are returning pointers into

internal Gurobi data structures. The user should copy the contents of the pointer to a different
data structure before the next call to a Gurobi library routine. The user should also be careful to
never modify the data pointed to by the returned character pointer.

Example usage:

109

int desired[] = {0, 2, 4, 6};
char **varnames[4];
error = GRBgetstrattrlist(model, "VarName", 4, desired, varnames);

GRBsetstrattrlist

int GRBsetstrattrlist (GRBmodel *model,
const char *attrname,

int len,
int *ind,
char *xvalues)

Set the values of a string-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.
attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.
len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.
values: A pointer to the desired new values for the specified elements of the attribute. Note
that the values array must be as long as the list of indices.
Example usage:

int chage[] = {0, 1, 3};
char **varnames[] = {"VarO", "Varl", "Var3"};
error = GRBsetstrattrlist(model, "VarName", 3, change, varnames);

GRBgetbatchattrinfo

int GRBgetbatchattrinfo (GRBbatch xbatch,
const char *attrname,
int *datatypeP,
int *gsettableP)

Obtain information about a Batch attribute.

Return value:
A non-zero return value indicates that a problem occurred while obtaining information about
a batch attribute. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
batch: A batch request handle, typically created by routine GRBgetbatch.

110

attrname: The name of a batch attribute. Available attributes are listed and described in
the Attributes section of this document.

datatypeP: On completion, the integer pointed to by this argument will indicate the data
type of the attribute. Possible types are char (0), int (1), double (2), or string(3). This
argument can be NULL.

settableP: On completion, the integer pointed to by this argument will indicate whether
the attribute can be set (1) or not (0). This argument can be NULL.

Example usage:

int datatype, settable;
error = GRBgetbatchattrinfo(batch, "BatchID", &datatype, &settable);

111

3.7 Parameter Management and Tuning

GRBtunemodel

| int GRBtunemodel (GRBmodel *model)

Perform an automated search for parameter settings that improve performance on a model.
Upon completion, this routine stores the best parameter sets it found. The number of stored
parameter sets can be determined by querying the value of the TuneResultCount attribute. The
actual settings can be retrieved using GRBgettuneresult.

Please refer to the parameter tuning section for details on the tuning tool.

Return value:

A non-zero return value indicates that a problem occurred while tuning the model. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:

model: The model to be tuned.
Example usage:

error = GRBtunemodel (model);
if (error) goto QUIT;

error = GRBgetintattr(model, "TuneResultCount", &nresults);
if (error) goto QUIT;

GRBgettuneresult

int GRBgettuneresult (GRBmodel #*model,
int n)

Use this routine to retrieve the results of a previous GRBtunemodel call. Calling this routine
with argument n causes tuned parameter set n to be copied into the model. Parameter sets are
stored in order of decreasing quality, with parameter set 0 being the best. The number of available
sets is stored in attribute TuneResultCount.

Once you have retrieved a tuning result, you can call GRBoptimize to use these parameter
settings to optimize the model, or GRBwrite to write the changed parameters to a .prm file.

Please refer to the parameter tuning section for details on the tuning tool.

Return value:

A non-zero return value indicates that a problem occurred while retrieving a tuning result.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: A model that has previously been used as the argument of GRBtunemodel.
n: The index of the tuning result to retrieve. The best result is available as index 0. The
number of stored results is available in attribute TuneResultCount.

Example usage:

112

error = GRBtunemodel (model);
if (error) goto QUIT;

error = GRBgetintattr(model, "TuneResultCount", &nresults);
if (error) goto QUIT;

if (nresults > 0) {
error = GRBgettuneresult(model, 0);
if (error) goto QUIT;

}

GRBgetdblparam

int GRBgetdblparam (GRBenv *xenv,
const char *paramname,
double *valueP)

Retrieve the value of a double-valued parameter.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being queried.
paramname: The name of the parameter. Please consult the parameter section for a

complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.
valueP: The location in which the current value of the requested parameter should be placed.
Example usage:

double cutoff;
error = GRBgetdblparam(GRBgetenv(model), "Cutoff", &cutoff);

GRBgetintparam

int GRBgetintparam (GRBenv *env,
const char *paramname,
int xvalueP)

Retrieve the value of an integer-valued parameter.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being queried.

113

paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

valueP: The location in which the current value of the requested parameter should be placed.

Example usage:

int limit;
error = GRBgetintparam(GRBgetenv(model), "SolutionLimit", &limit);

GRBgetstrparam
int GRBgetstrparam (GRBenv *env,
const char *paramname,
char *value)

Retrieve the value of a string-valued parameter.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being queried.
paramname: The name of the parameter. Please consult the parameter section for a

complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.
value: The location in which the current value of the requested parameter should be placed.
Example usage:

char logfilename [GRB_MAX_STRLEN];
error = GRBgetstrparam(GRBgetenv(model), "LogFile", logfilename);

GRBsetdblparam
int GRBsetdblparam (GRBenv *env,
const char *paramname,
double newvalue)

Modify the value of a double-valued parameter.

Return value:
A non-zero return value indicates that a problem occurred while modifying the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being modified.
paramname: The name of the parameter. Please consult the parameter section for a

complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.
newvalue: The desired new value of the parameter.

114

Important note:

Note that a model gets its own copy of the environment when it is created. Changes to the
original environment have no effect on the copy. Use GRBgetenv to retrieve the environment
associated with a model if you would like a parameter change to affect that model.

Example usage:

error = GRBsetdblparam(GRBgetenv(model), "Cutoff", 100.0);

GRBsetintparam

int GRBsetintparam (GRBenv *xenv,
const char *paramname,
int newvalue)

Modify the value of an integer-valued parameter.

Return value:
A non-zero return value indicates that a problem occurred while modifying the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being modified.
paramname: The name of the parameter. Please consult the parameter section for a

complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.
newvalue: The desired new value of the parameter.

Important note:

Note that a model gets its own copy of the environment when it is created. Changes to the
original environment have no effect on the copy. Use GRBgetenv to retrieve the environment
associated with a model if you would like a parameter change to affect that model.

Example usage:

error = GRBsetintparam(GRBgetenv(model), "SolutionLimit", 5);

GRBsetstrparam

int GRBsetstrparam (GRBenv *env,
const char *paramname,
const char *newvalue)

Modify the value of a string-valued parameter.

Return value:
A non-zero return value indicates that a problem occurred while modifying the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being modified.
paramname: The name of the parameter. Please consult the parameter section for a

complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

115

newvalue: The desired new value of the parameter.
Important note:

Note that a model gets its own copy of the environment when it is created. Changes to the
original environment have no effect on the copy. Use GRBgetenv to retrieve the environment
associated with a model if you would like a parameter change to affect that model.

Example usage:

error = GRBsetstrparam(GRBgetenv(model), "LogFile", "/tmp/new.log");

GRBgetdblparaminfo

int GRBgetdblparaminfo (GRBenv *env,
const char *paramname,
double *valueP,
double *minP,
double *maxP,
double *defaultP)

Retrieve information about a double-valued parameter. Specifically, retrieve the current value
of the parameter, the minimum and maximum allowed values, and the default value.

Return value:

A non-zero return value indicates that a problem occurred while retrieving parameter in-
formation. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter information is being queried.

paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

valueP (optional): The location in which the current value of the specified parameter
should be placed.

minP (optional): The location in which the minimum allowed value of the specified pa-
rameter should be placed.

maxP (optional): The location in which the maximum allowed value of the specified pa-
rameter should be placed.

defaultP (optional): The location in which the default value of the specified parameter
should be placed.

Example usage:

error = GRBgetdblparaminfo (GRBgetenv(model), "MIPGap", ¤tGap,
&minAllowedGap, NULL, &defaultGap);

116

GRBgetintparaminfo

int GRBgetintparaminfo (GRBenv *xenv,
const char *paramname,
int *valueP,
int *minP,
int *maxP,
int xdefaultP)

Retrieve information about an int-valued parameter. Specifically, retrieve the current value of
the parameter, the minimum and maximum allowed values, and the default value.
Return value:
A non-zero return value indicates that a problem occurred while retrieving parameter in-
formation. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter information is being queried.
paramname: The name of the parameter. Please consult the parameter section for a

complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

valueP (optional): The location in which the current value of the specified parameter
should be placed.

minP (optional): The location in which the minimum allowed value of the specified pa-
rameter should be placed.

maxP (optional): The location in which the maximum allowed value of the specified pa-
rameter should be placed.

defaultP (optional): The location in which the default value of the specified parameter
should be placed.

Example usage:

error = GRBgetintparaminfo(GRBgetenv(model), "SolutionLimit", ¤t,
&minAllowedLimit, NULL, &defaultLimit);

GRBgetstrparaminfo

int GRBgetstrparaminfo (GRBenv *env,
const char *paramname,
char *value,
char xdefault)

Retrieve information about a string-valued parameter. Specifically, retrieve the current and
default values of the parameter.

Return value:
A non-zero return value indicates that a problem occurred while retrieving parameter in-
formation. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter information is being queried.

117

paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

value (optional): The location in which the current value of the specified parameter
should be placed.

default (optional): The location in which the default value of the specified parameter
should be placed.

Example usage:

char defaultval[GRB_MAX_STRLEN];

char currentval [GRB_MAX_STRLEN];

error = GRBgetstrparaminfo(GRBgetenv(model), "LogFile", currentval,
defaultval);

GRBreadparams

int GRBreadparams (GRBenv *env,
const char *filename)

Import a set of parameter modifications from a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

Return value:
A non-zero return value indicates that a problem occurred while reading the parameter file.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment into which the parameter changes should be imported.
filename: The path to the file to be read. The suffix on a parameter file should be .prm,

optionally followed by .zip, .gz, .bz2, or .7z.
Example usage:

error = GRBreadparams(env, "/tmp/model.prm.bz2");

GRBwriteparams

int GRBwriteparams (GRBenv *env,
const char *filename)

Write the set of changed parameter values to a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

Return value:
A non-zero return value indicates that a problem occurred while writing the parameter file.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter changes are being written.

118

filename: The path to the file to be written. The suffix on a parameter file should be .prm,
optionally followed by .gz, .bz2, or .7z.
Example usage:

error = GRBwriteparams(env, "/tmp/model.prm");

119

3.8 Monitoring Progress - Logging and Callbacks
GRBmsg

void GRBmsg (GRBenv *xenv,
const char *message)

Insert a message into the Gurobi log file.

Arguments:
env: The environment whose log file should receive the message.
message: The message to be appended to the log.

Example usage:

error = GRBmsg(env, "Add this message to the log");

GRBsetcallbackfunc

int GRBsetcallbackfunc (GRBmodel x*model,

int (*cb) (GRBmodel *model, void *cbdata, int
where, void *usrdata),
void xusrdata)

Set up a user callback function. Note that a model can only have a single callback method, so
this call will replace an existing callback. To disable a previously set callback, call this function
with a cb argument of NULL.

When solving a model using multiple threads, the user callback is only ever called from a single
thread, so you don’t need to worry about the thread-safety of your callback.

Note that changing parameters from within a callback is not supported, doing so may lead to
undefined behavior.

Return value:

A non-zero return value indicates that a problem occurred while setting the user callback.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

model: The model in which the callback should be installed.

cb: A function pointer to the user callback function. The callback will be called regularly
from the Gurobi optimizer. The where argument to the callback function will indicate
where in the optimization process the callback was invoked. Possible values are described
in the Callback Codes section. The user callback can then call a number of routines
to retrieve additional details about the state of the optimization (e.g., GRBcbget), or
to inject new information (e.g., GRBcbcut, GRBcbsolution). The user callback function
should return 0 if no error was encountered, or it can return one of the Gurobi Error Codes
if the user callback would like the optimization to stop and return an error result.

usrdata: An optional pointer to user data that will be passed back to the user callback
function each time it is invoked (in the usrdata argument).

Example usage:

int mycallback(GRBmodel #*model, void *cbdata, int where, void *usrdata);
error = GRBsetcallbackfunc(model, mycallback, NULL);

120

GRBgetcallbackfunc

int GRBgetcallbackfunc (GRBmodel *model,

int (**cb) (GRBmodel *model, void *cbdata,
int where, void *usrdata))

Retrieve the current user callback function.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the user callback.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model in which the callback should be installed.
cb: A function pointer to the user callback function.

Example usage:

int (*mycallback) (GRBmodel *model, void *cbdata, int where, void *usrdata);
error = GRBgetcallbackfunc(model, &mycallback);

GRBcbget

int GRBcbget (void *cbdata,
int where,
int what,
void *resultP)

Retrieve additional information about the progress of the optimization. Note that this routine
can only be called from within a user callback function.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the requested
data. Refer to the Error Code table for a list of possible return values. Details on the error
can be obtained by calling GRBgeterrormsg.
Arguments:
cbdata: The cbdata argument that was passed into the user callback by the Gurobi opti-
mizer. This argument must be passed unmodified from the user callback to GRBcbget ().
where: The where argument that was passed into the user callback by the Gurobi optimizer.
This argument must be passed unmodified from the user callback to GRBcbget ().
what: The data requested by the user callback. Valid values are described in the Callback
Codes section.
resultP: The location in which the requested data should be placed.
Example usage:

if (where == GRB_CB_MIP) {
double nodecount;
error = GRBcbget(cbdata, where, GRB_CB_MIP_NODECNT, (void *) &nodecount);
if (error) return O;
printf ("MIP node count is %d\n", nodecount);

121

GRBversion

void GRBversion (int *majorP,
int *minorP,
int *technicalP)

Return the Gurobi library version number (major, minor, and technical).
Arguments:
majorP: The location in which the major version number should be placed. May be NULL.
minorP: The location in which the minor version number should be placed. May be NULL.
technicalP: The location in which the technical version number should be placed. May be
NULL.
Example usage:

int major, minor, technical;
GRBversion(&major, &minor, &technical);
printf ("Gurobi library version %d.%d.%d\n", major, minor, technical);

122

3.9 Modifying Solver Behavior - Callbacks

GRBcbcut
int GRBcbcut (void *cbdata,
int cutlen,
const int *cutind,
const double *cutval,
char cutsense,
double cutrhs)

Add a new cutting plane to the MIP model from within a user callback routine. Note that this
routine can only be called when the where value on the callback routine is GRB_CB_MIPNODE (see
the Callback Codes section for more information).

Cutting planes can be added at any node of the branch-and-cut tree. Note that cuts should be
added sparingly, since they increase the size of the relaxation model that is solved at each node
and can significantly degrade node processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the
relaxation solution at the current node, call GRBcbget with what = GRB_CB_MIPNODE_REL.

You should consider setting parameter PreCrush to value 1 when adding your own cuts. This
setting shuts off a few presolve reductions that can sometimes prevent your cut from being applied
to the presolved model (which would result in your cut being silently ignored).

One very important note: you should only add cuts that are implied by the constraints in your
model. If you cut off an integer solution that is feasible according to the original model constraints,
you are likely to obtain an incorrect solution to your MIP problem.

Return value:

A non-zero return value indicates that a problem occurred while adding the cut. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:

cbdata: The cbdata argument that was passed into the user callback by the Gurobi opti-
mizer. This argument must be passed unmodified from the user callback to GRBcbcut ().

cutlen: The number of non-zero coefficients in the new cutting plane.

cutind: Variable indices for non-zero values in the new cutting plane.

cutval: Numerical values for non-zero values in the new cutting plane.

cutsense: Sense for the new cutting plane. Options are GRB_LESS_EQUAL, GRB_EQUAL, or
GRB_GREATER_EQUAL.

cutrhs: Right-hand side value for the new cutting plane.

Example usage:

if (where == GRB_CB_MIPNODE) {
int cutind[] = {0, 13};
double cutvall[] = {1.0, 1.0};
error = GRBcbcut(cbdata, 2, cutind, cutval, GRB_LESS EQUAL, 1.0);
if (error) return O;

123

GRBcblazy

int GRBcblazy (void xcbdata,
int lazylen,
const int *lazyind,
const double *lazyval,
char lazysense,
double lazyrhs)

Add a new lazy constraint to the MIP model from within a user callback routine. Note that this
routine can only be called when the where value on the callback routine is either GRB_CB_MIPNODE
or GRB_CB_MIPSOL (see the Callback Codes section for more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large
to represent explicitly. By only including the constraints that are actually violated by solutions
found during the branch-and-cut search, it is sometimes possible to find a proven optimal solution
while only adding a fraction of the full set of constraints.

You would typically add a lazy constraint by querying the current node solution (by calling
GRBcbget from a GRB_CB_MIPSOL or GRB_CB_MIPNODE callback, using what=GRB_CB_MIPSOL_SOL
or what=GRB_CB_MIPNODE_REL), and then calling GRBcblazy () to add a constraint that cuts off the
solution. Gurobi guarantees that you will have the opportunity to cut off any solutions that would
otherwise be considered feasible.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints,
including those that have already been added. Node solutions will usually respect previously added
lazy constraints, but not always.

Note that you must set the LazyConstraints parameter if you want to use lazy constraints.

Return value:

A non-zero return value indicates that a problem occurred while adding the lazy constraint.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

cbdata: The cbdata argument that was passed into the user callback by the Gurobi opti-
mizer. This argument must be passed unmodified from the user callback to GRBcblazy ().

lazylen: The number of non-zero coefficients in the new lazy constraint.

lazyind: Variable indices for non-zero values in the new lazy constraint.

lazyval: Numerical values for non-zero values in the new lazy constraint.

lazysense: Sense for the new lazy constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL,
or GRB_GREATER_EQUAL.

lazyrhs: Right-hand side value for the new lazy constraint.

Example usage:

if (where == GRB_CB_MIPSOL) {
int lazyind[] = {0, 1};
double lazyvall[]l = {1.0, 1.03};
error = GRBcblazy(cbdata, 2, lazyind, lazyval, GRB_LESS_EQUAL, 1.0);
if (error) return 0;

124

GRBcbsolution

int GRBcbsolution (void *cbdata,
const double *solution,
double *objP)

Provide a new feasible solution for a MIP model from within a user callback routine. Note
that this routine can only be called when the where value on the callback routine is GRB_CB_MIP,
GRB_CB_MIPNODE, or GRB_CB_MIPSOL (see the Callback Codes section for more information).

Heuristics solutions are typically built from the current relaxation solution. To retrieve the
relaxation solution at the current node, call GRBcbget with what = GRB_CB_MIPNODE_REL.

When providing a solution, you can specify values for any subset of the variables in the model.
To leave a variable value unspecified, set the variable to GRB_UNDEFINED in the solution vector.
The Gurobi MIP solver will attempt to extend the specified partial solution to a complete solution.

Return value:

A non-zero return value indicates that a problem occurred while adding the new solution.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

cbdata: The cbdata argument that was passed into the user callback by the Gurobi opti-

mizer. This argument must be passed unmodified from the user callback to GRBcbsolution().

solution: The solution vector. You must provide one entry for each variable in the model.
Note that you can leave an entry unspecified by setting it to GRB_UNDEFINED. The Gurobi
optimizer will attempt to find appropriate values for the unspecified variables.
objP: Objective value for solution that results from this call. Returns GRB_INFINITY if no
solution is found.
Example usage:

if (where == GRB_CB_MIPNODE) {
error = GRBcbsolution(cbdata, solution, &obj);
if (error) return 0;

}

GRBcbproceed

| void GRBcbproceed (GRBModel *model)

Generate a request to proceed to the next phase of the computation. This routine can be called
from any callback. Note that the request is only accepted in a few phases of the algorithm, and it
won’t be acted upon immediately.

In the current Gurobi version, this callback allows you to proceed from the NoRel heuristic
to the standard MIP search. You can determine the current algorithm phase using MIP_PHASE,
MIPNODE_PHASE, or MIPSOL_PHASE queries from a callback.

Arguments:

model: The model.
Example usage:

125

if (solution_objective < target_value) {
GRBcbproceed(model) ;
}

GRBcbstoponemultiobj

int GRBcbstoponemultiobj (GRBmodel =*model,
void* cbdata,
int objnum)

Interrupt the optimization process of one of the optimization steps in a multi-objective MIP
problem without stopping the hierarchical optimization process. Note that this routine can only
be called for multi-objective MIP models and when the where value on the callback routine is not
equal to GRB_CB_MULTIOBJ (see the Callback Codes section for more information)

You would typically stop a multi-objective optimization step by querying the last finished num-
ber of multi-objectives steps, and using that number to stop the current step and move on to the
next hierarchical objective (if any) as shown in the following example:

Example usage:

#include <time.h>
typedef struct {
int objcnt;

time_t starttime;
} usrdata_t;

int mycallback(GRBmodel #*model,

void *cbdata,
int where,
void *usrdata)

int error = 0;
usrdata_t *ud = (usrdata_t*)usrdata;

if (where == GRB_CB_MULTIOBJ) {
/* get current objective number */
error = GRBcbget(cbdata, where, MULTIOBJ_OBJCNT, (void#*)&ud->objcnt);
if (error) goto QUIT;

/* reset start time to current time */
ud->starttime = time();

} else if (time() - ud->starttime > BIG ||
/* takes too long or good enough */) {
/* stop only this optimization step */
error = GRBcbstoponemultiobj(model, cbdata, ud->objcnt);

126

if (error) goto QUIT;
}

QUIT:
return error;

}

You should refer to the section on Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.
Return value:
A non-zero return value indicates that a problem occurred while stopping the multi-objective
step specified by objcnt. Refer to the Error Code table for a list of possible return values.
Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model argument that was passed into the user callback by the Gurobi optimizer.
This argument must be passed unmodified from the user callback to GRBcbstoponemultiobj ().
cbdata: The cbdata argument that was passed into the user callback by the Gurobi opti-
mizer. This argument must be passed unmodified from the user callback to GRBcbstoponemultiobj ().
objnum: The number of the multi-objective optimization step to interrupt. For processes
running locally, this argument can have the special value -1, meaning to stop the current
step.

GRBterminate

| void GRBterminate (GRBmodel *model)

Generate a request to terminate the current optimization. This routine can be called at any
time during an optimization (from a callback, from another thread, from an interrupt handler,
etc.). Note that, in general, the request won’t be acted upon immediately.

When the optimization stops, the Status attribute will be equal to GRB_INTERRUPTED.

Arguments:

model: The model to terminate.
Example usage:

if (time_to_quit)
GRBterminate (model) ;

127

3.10 Batch Requests
GRBabortbatch

| int GRBabortbatch (GRBbatch #batch)

This function instructs the Cluster Manager to abort the processing of this batch request,
changing its status to ABORTED. Please refer to the Batch Status Codes section for further details.

Return value:
A non-zero return value indicates that a problem occurred while aborting the batch request.

Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
batch: The batch that will be aborted.

Example usage:
/* request to abort the batch */

error = GRBabortbatch(batch);
if (error) goto QUIT;

GRBdiscardbatch

| int GRBdiscardbatch (GRBbatch #batch)

This function instructs the Cluster Manager to remove all information related to the batch
request in question, including the stored solution if available. Further queries for the associated
batch request will fail with error code GRB_ERROR_DATA_NOT_AVAILABLE. Use this function with
care, as the removed information can not be recovered later on.

Return value:
A non-zero return value indicates that a problem occurred while discarding the batch. Refer

to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
batch: The batch that will be discarded.

Example usage:
/* discard the batch object in the manager x/

error = GRBdiscardbatch(batch);
if (error) goto QUIT;

GRBfreebatch

\int GRBfreebatch (GRBbatch *batch)

Free a batch structure and release the associated memory.

Return value:

128

A non-zero return value indicates that a problem occurred while freeing the batch. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:
batch: The batch structure to be freed.

Example usage:

GRBfreebatch(batch);

GRBgetbatch

int GRBgetbatch (GRBenv *env,
const char *BatchlID,
GRBbatch **xbatchP)

Given a BatchID, as returned by GRBoptimizebatch, and a Gurobi environment that can
connect to the appropriate Cluster Manager (i.e., one where parameters CSManager, UserName,
and ServerPassword have been set appropriately), this function returns a GRBbatch structure.
With it, you can query the current status of the associated batch request and, once the batch
request has been processed, you can query its solution. Please refer to the Batch Optimization
section for details and examples.

Return value:

A non-zero return value indicates that a problem occurred while creating a GRBbatch struc-
ture. Refer to the Error Code table for a list of possible return values. Details on the error
can be obtained by calling GRBgeterrormsg.

Arguments:

env: The environment in which the new batch structure should be created.
BatchID: ID of the batch you want to access.
batchP: The location in which the pointer to the batch structure should be placed.
Example usage:
/* create batch-object */

error = GRBgetbatch(env, BatchID, &batch);
if (error) goto QUIT;

GRBgetbatchenv

| GRBenv * GRBgetbatchenv (GRBbatch #batch)

Retrieve the environment associated with a batch.

Return value:
The environment associated with the batch. A NULL return value indicates that there was
a problem retrieving the environment.

Arguments:
batch: The batch from which the environment should be retrieved.

Example usage:

GRBenv *env = GRBgetbatchenv(batch);

129

GRBgetbatchintattr

int GRBgetbatchintattr (GRBbatch *batch,
const char *attrname,
int *valueP)

Query the value of an integer-valued batch attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
batch: A batch structure, typically created by routine GRBgetbatch.
attrname: The name of an integer-valued batch attribute. Available attributes are listed
and described in the Attributes section of this document.
valueP: The location in which the current value of the requested attribute should be placed.
Example usage:

/* query the last error code x*/
error = GRBgetbatchintattr (batch, "BatchErrorCode", &errorCode);
if (error || !errorCode) goto QUIT;

Important notes:

Note that all Batch attributes are cached locally, and are only updated when you create a
client-side batch object or when you explicitly update this cache (by calling the appropriate update
function - GRBupdatebatch for C, update for Python, etc.).

GRBgetbatchjsonsolution

int GRBgetbatchjsonsolution (GRBbatch *batch,
char*x jsonsolP)

This function retrieves the solution of a completed batch request from a Cluster Manager. The
solution is returned as a JSON solution string. For this call to succeed, the status of the batch
request must be COMPLETED. Please refer to the Batch Status Codes section for further details.

Return value:

A non-zero return value indicates that a problem occurred while querying the batch solution.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

batch: The batch to query.
jsonsolP: The location in which the pointer to the newly created JSON string should be
placed.

Important note:

On Windows, the string returned in buffP is allocated in a different heap from the calling
program. You must call GRBfree to free it.

Example usage:

130

/* print JSON solution into string */

error = GRBgetbatchjsonsolution(batch, &jsonsol);
if (error) goto QUIT;

printf ("JSON solution: %s\n", jsonsol);

GRBgetbatchstrattr

int GRBgetbatchstrattr (GRBbatch *batch,
const char *attrname,
char **xvalueP)

Query the value of a string-valued batch attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
batch: A batch structure, typically created by routine GRBgetbatch.
attrname: The name of a string-valued batch attribute. Available attributes are listed and
described in the Attributes section of this document.
valueP: The location in which the current value of the requested attribute should be placed.
Example usage:

/* query the last error message */
error = GRBgetbatchstrattr (batch, "BatchErrorMessage", &errorMsg);
if (error) goto QUIT;

Important notes:

Note that all interface routines that return string-valued attributes are returning pointers into
internal Gurobi data structures. The user should copy the contents of the pointer to a different
data structure before the next call to a Gurobi library routine. The user should also be careful to
never modify the data pointed to by the returned character pointer.

Note that all Batch attributes are cached locally, and are only updated when you create a
client-side batch object or when you explicitly update this cache (by calling the appropriate update
function - GRBupdatebatch for C, update for Python, etc.).

GRBoptimizebatch

int GRBoptimizebatch (GRBmodel *model,
char *BatchID)

Submit a new batch request to the Cluster Manager. Returns the BatchID (a string), which
uniquely identifies the job in the Cluster Manager and can be used to query the status of this
request (from this program or from any other). Once the request has completed, the BatchID can
also be used to retrieve the associated solution. To submit a batch request, you must tag at least
one element of the model by setting one of the VTag, CTag or QCTag attributes. For more details
on batch optimization, please refer to the Batch Optimization section.

Note that this routine will process all pending model modifications.

131

Return value:
A non-zero return value indicates that a problem occurred while submit a batch request.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to optimize in batch mode. Note that this routine only reports whether
the batch request ran into an error.
BatchID: On success, the location in which the BatchID of the newly created batch request
should be stored. The pointer must point to a string of length GRB_MAX_STRLEN+1 or more.
Example usage:
/* submit batch request to the Manager */

error = GRBoptimizebatch(model, BatchID);
if (error) goto QUIT;

GRBretrybatch

| int GRBretrybatch (GRBbatch #batch)

This function instructs the Cluster Manager to retry optimization of a failed or aborted batch
request, changing its status to SUBMITTED. Please refer to the Batch Status Codes section for further
details.

Return value:

A non-zero return value indicates that a problem occurred while retrying the batch. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:

batch: The batch to retry.

Example usage:

/* retry the batch request */

error = GRBretrybatch(batch);
if (error) goto QUIT;

GRBupdatebatch

| int GRBupdatebatch (GRBbatch *batch)

All Batch attribute values are cached locally, so queries return the value received during the last
communication with the Cluster Manager. This function refreshes the values of all attributes with
the values currently available in the Cluster Manager (which involves network communication).

Return value:

A non-zero return value indicates that a problem occurred while updating the batch request.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

batch: The batch that will be updated.
Example usage:

132

/* update local attributes */
error = GRBupdatebatch(batch);
if (error) goto QUIT;

GRBwritebatchjsonsolution

int GRBwritebatchjsonsolution (GRBbatch xbatch,
const char*x filename)

This function returns the stored solution of a completed batch request from a Cluster Manager.
The solution is returned in a gzip-compressed JSON file. The file name you provide must end with
a .json.gz extension. The JSON format is described in the JSON solution format section. Note
that for this call to succeed, the status of the batch request must be COMPLETED. Please refer to the
Batch Status Codes section for further details.

Return value:

A non-zero return value indicates that a problem occurred while writing the JSON solution
string into the given filename. Refer to the Error Code table for a list of possible return
values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

batch: The batch request from ghere to query its solution.
filename: The name of the file in which to store the JSON solution. It must be a file name
ending with the . json.gz extension.

Example usage:

/* save solution into a file */
error = GRBwritebatchjsonsolution(batch, "batch-sol.json.gz");
if (error) goto QUIT;

133

3.11 Error Handling
GRBgeterrormsg

| char * GRBgeterrormsg (GRBenv *env)

Retrieve the error message associated with the most recent error that occurred in an environ-
ment.
Return value:
A string containing the error message.
Arguments:
env: The environment in which the error occurred.
Example usage:

error = GRBgetintattr(model, "DOES_NOT_EXIST", &attr);
if (error)
printf("%s\n", GRBgeterrormsg(env));

134

3.12 Advanced simplex routines

This section describes a set of advanced basis routines. These routines allow you to compute
solutions to various linear systems involving the simplex basis matrix. Note that these should only
be used by advanced users. We provide no technical support for these routines.
Before describing the routines, we should first describe the GRBsvec data structure that is used
to input or return sparse vectors:
typedef struct SVector {

int len;
int *ind;
double *val;
} GRBsvec;

The len field gives the number of non-zero values in the vector. The ind and val fields
give the index and value for each non-zero, respectively. Indices are zero-based. To give an ex-
ample, the sparse vector [0, 2.0, 0, 1.0] would be represented as len=2, ind = [1, 3], and
val = [2.0, 1.0].

The user is responsible for allocating and freeing the ind and val fields. The length of the
result vector for these routines is not known in advance, so the user must allocate these arrays to
hold the longest possible result (whose length is noted in the documentation for each routine).

GRBFSolve

int GRBFSolve (GRBmodel *model,
GRBsvec *b,
GRBsvec *x)

Computes the solution to the linear system Bx = b, where B is the current simplex basis matrix,
b is an input vector, and x is the result vector.
Return value:
A non-zero return value indicates that a problem occurred while computing the desired
vector. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.
b: The sparse right-hand side vector. It should contain one entry for each non-zero value in
the input.
x: The sparse result vector. The user is responsible for allocating the ind and val fields to
be large enough to hold as many as one non-zero entry per constraint in the model.

GRBBSolve

int GRBBSolve (GRBmodel *model,
GRBsvec *b,
GRBsvec *xX)

Computes the solution to the linear system BTz = b, where B” is the transpose of the current
simplex basis matrix, b is an input vector, and z is the result vector.

135

Return value:
A non-zero return value indicates that a problem occurred while computing the desired
vector. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.
b: The sparse right-hand side vector. It should contain one entry for each non-zero value in
the input.
x: The sparse result vector. The user is responsible for allocating the ind and val fields to
be large enough to hold as many as one non-zero entry per constraint in the model.

GRBBinvColj

int GRBBinvColj (GRBmodel *model,
int J»
GRBsvec *x)
Computes the solution to the linear system Bx = A;, where B is the current simplex basis
matrix and A; is the column of the constraint matrix A associated with variable j.
Return value:
A non-zero return value indicates that a problem occurred while computing the desired
vector. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.
j: Indicates the index of the column of A to use as the right-hand side for the linear solve.
The index j must be between 0 and cols-1, where cols is the number of columns in the
model.
x: The sparse result vector. The user is responsible for allocating the ind and val fields to
be large enough to hold as many as one non-zero entry per constraint in the model.

GRBBinvRowi

int GRBBinvRowi (GRBmodel #*model,
int i,
GRBsvec *x)

Computes a single tableau row. More precisely, this routine returns row ¢ from the matrix
B7'A, where B! is the inverse of the basis matrix and A is the constraint matrix. Note that
the tableau will contain columns corresponding to the variables in the model, and also columns
corresponding to artificial and slack variables associated with constraints.

Return value:

A non-zero return value indicates that a problem occurred while computing the desired
vector. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

136

Arguments:

model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.

i: The index of the desired tableau row.

x: The result vector. The result will contain one entry for each non-zero value. Note that
the result may contain values for slack variables; the slack on row i will have index cols+i,
where cols is the number of columns in the model. The user is responsible for allocating
the ind and val fields to be large enough to hold the largest possible result. For this
routine, the result could have one entry for each variable in the model, plus one entry for
each constraint.

GRBgetBasisHead

int GRBgetBasisHead (GRBmodel *model,
int *bhead)

Returns the indices of the variables that make up the current basis matrix.
Return value:
A non-zero return value indicates that a problem occurred while extracting the basis. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.
bhead: The constraint matrix columns that make up the current basis. The result contains
one entry per constraint in A. If bhead[i]=j, then column i in the basis matrix B
is column j from the constraint matrix A. Note that the basis may contain slack or
artificial variables. If bhead[i] is greater than or equal to cols (the number of columns
in A), then the corresponding basis column is the artificial or slack variable from row
bhead[i]-cols.

137

This section documents the Gurobi C++ interface. This manual begins with a quick overview of
the classes exposed in the interface and the most important methods on those classes. It then
continues with a comprehensive presentation of all of the available classes and methods.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide
or the Example Tour. These documents provide concrete examples of how to use the classes and
methods described here.

Environments

The first step in using the Gurobi C++ interface is to create an environment object. Environments
are represented using the GRBEnv class. An environment acts as the container for all data associ-
ated with a set of optimization runs. You will generally only need one environment object in your
program.

For more advanced use cases, you can use an empty environment to create an uninitialized
environment and then, programmatically, set all required options for your specific requirements.
For further details see the Environment section.

Models

You can create one or more optimization models within an environment. Each model is repre-
sented as an object of class GRBModel. A model consists of a set of decision variables (objects of
class GRBVar), a linear or quadratic objective function on those variables (specified using GRB-
Model::setObjective), and a set of constraints on these variables (objects of class GRBConstr,
GRBQConstr, GRBSOS, or GRBGenConstr). Each variable has an associated lower bound, upper
bound, and type (continuous, binary, etc.). Each linear or quadratic constraint has an associated
sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side value. Refer to this
section for more information on variables, constraints, and objectives.

Linear constraints are specified by building linear expressions (objects of class GRBLinExpr),
and then specifying relationships between these expressions (for example, requiring that one expres-
sion be equal to another). Quadratic constraints are built in a similar fashion, but using quadratic
expressions (objects of class GRBQuadExpr) instead.

An optimization model may be specified all at once, by loading the model from a file (using the
appropriate GRBModel constructor), or built incrementally, by first constructing an empty object of
class GRBModel and then subsequently calling GRBModel::addVar or GRBModel::add Vars to add
additional variables, and GRBModel::addConstr, GRBModel::addQConstr, GRBModel::addSOS,
or any of the GRBModel::addGenConstrXxx methods to add constraints. Models are dynamic
entities; you can always add or remove variables or constraints.

We often refer to the class of an optimization model. A model with a linear objective function,
linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic,
the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is
a Quadratically-Constrained Program (QCP). We will sometimes refer to a few special cases of
QCP: QCPs with convex constraints, QCPs with non-convex constraints, bilinear programs, and

138

C++ API Overview

https://www.gurobi.com/documentation/9.5/quickstart_windows/index.html
https://www.gurobi.com/documentation/9.5/examples/index.html

Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-continuous
variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the
model is a Mized Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, in-
cluding Mized Integer Linear Programs (MILP), Mized Integer Quadratic Programs (MIQP), Mized
Integer Quadratically-Constrained Programs (MIQCP), and Mized Integer Second-Order Cone Pro-
grams (MISOCP). The Gurobi Optimizer handles all of these model classes.

Solving a Model

Once you have built a model, you can call GRBModel::optimize to compute a solution. By default,
optimize will use the concurrent optimizer to solve LP models, the barrier algorithm to solve QP
models with convex objectives and QCP models with convex constraints, and the branch-and-cut
algorithm otherwise. The solution is stored in a set of attributes of the model. These attributes
can be queried using a set of attribute query methods on the GRBModel, GRBVar, GRBConstr,
GRBQConstr, GRBSOS, and GRBGenConstr classes.

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBModel::optimize
will only perform further optimization if relevant data has changed since the model was last op-
timized. If you would like to discard previously computed solution information and restart the
optimization from scratch without changing the model, you can call GRBModel::reset.

After a MIP model has been solved, you can call GRBModel::fixedModel to compute the as-
sociated fized model. This model is identical to the original, except that the integer variables are
fixed to their values in the MIP solution. If your model contains SOS constraints, some continuous
variables that appear in these constraints may be fixed as well. In some applications, it can be
useful to compute information on this fixed model (e.g., dual variables, sensitivity information,
etc.), although you should be careful in how you interpret this information.

Multiple Solutions, Objectives, and Scenarios

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to
a single model with a single objective function. Gurobi provides the following features that allow
you to relax these assumptions:

e Solution Pool: Allows you to find more solutions.
e Multiple Scenarios: Allows you to find solutions to multiple, related models.

e Multiple Objectives: Allows you to specify multiple objective functions and control the trade-
off between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the
infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be useful
for diagnosing the cause of an infeasibility, call GRBModel::computellS to compute an Irreducible
Inconsistent Subsystem (IIS). This method can be used for both continuous and MIP models, but
you should be aware that the MIP version can be quite expensive. This method populates a set of
IIS attributes.

To attempt to repair an infeasibility, call GRBModel::feasRelax to compute a feasibility relax-
ation for the model. This relaxation allows you to find a solution that minimizes the magnitude of
the constraint violation.

139

Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some
attributes are associated with the variables of the model, some with the constraints of the model,
and some with the model itself. To give a simple example, solving an optimization model causes
the X variable attribute to be populated. Attributes such as X that are computed by the Gurobi
optimizer cannot be modified directly by the user, while others, such as the variable lower bound
(the LB attribute) can.

Attributes are queried using GRBVar::get, GRBConstr::get, GRBQConstr::get, GRBSOS::get,
GRBGenConstr::get, or GRBModel::get, and modified using GRBVar::set, GRBConstr::set, GR-
BQConstr::set, GRBGenConstr::set, or GRBModel::set. Attributes are grouped into a set of enums
by type (GRB_ CharAttr, GRB_DoubleAttr, GRB_ IntAttr, GRB_ StringAttr). The get() and
set () methods are overloaded, so the type of the attribute determines the type of the returned
value. Thus, constr.get (GRB.DoubleAttr.RHS) returns a double, while
constr.get (GRB.CharAttr.Sense) returns a char.

If you wish to retrieve attribute values for a set of variables or constraints, it is usually more
efficient to use the array methods on the associated GRBModel object. Method GRBModel::get
includes signatures that allow you to query or modify attribute values for arrays of variables or
constraints.

The full list of attributes can be found in the Attributes section.

Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to
variable bounds, constraint right-hand sides, etc.). The main exceptions are modifications to the
constraint matrix and the objective function.

The constraint matrix can be modified in a few ways. The first is to call the chgCoeffs method
on a GRBModel object to change individual matrix coefficients. This method can be used to
modify the value of an existing non-zero, to set an existing non-zero to zero, or to create a new
non-zero. The constraint matrix is also modified when you remove a variable or constraint from the
model (through the GRBModel::remove method). The non-zero values associated with the deleted
constraint or variable are removed along with the constraint or variable itself.

The model objective function can also be modified in a few ways. The easiest is to build an
expression that captures the objective function (a GRBLinExpr or GRBQuadExpr object), and
then pass that expression to method GRBModel::setObjective. If you wish to modify the objective,
you can simply call setObjective again with a new GRBLinExpr or GRBQuadExpr object.

For linear objective functions, an alternative to setObjective is to use the Obj variable attribute
to modify individual linear objective coefficients.

If your variables have piecewise-linear objectives, you can specify them using the
GRBModel::set PWLObj method. Call this method once for each relevant variable. The Gurobi
simplex solver includes algorithmic support for convex piecewise-linear objective functions, so for
continuous models you should see a substantial performance benefit from using this feature. To
clear a previously specified piecewise-linear objective function, simply set the 0bj attribute on the
corresponding variable to 0.

Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed
in a lazy fashion, meaning that modifications don’t affect the model immediately. Rather, they

140

are queued and applied later. If your program simply creates a model and solves it, you will
probably never notice this behavior. However, if you ask for information about the model before
your modifications have been applied, the details of the lazy update approach may be relevant to
you.

As we just noted, model modifications (bound changes, right-hand side changes, objective
changes, etc.) are placed in a queue. These queued modifications can be applied to the model
in three different ways. The first is by an explicit call to GRBModel::update. The second is by a
call to GRBModel::optimize. The third is by a call to GRBModel::write to write out the model.
The first case gives you fine-grained control over when modifications are applied. The second
and third make the assumption that you want all pending modifications to be applied before you
optimize your model or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is
that this approach makes it much easier to perform multiple modifications to a model, since the
model remains unchanged between modifications. The second is that processing model modifica-
tions can be expensive, particularly in a Compute Server environment, where modifications require
communication between machines. Thus, it is useful to have visibility into exactly when these
modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then
update, then make more modifications, then update again, etc. Updating after each individual
modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value
of the requested data from the point of the last update. If the object you tried to query didn’t
exist then, you’ll get a NOT_IN_MODEL exception instead.

The semantics of lazy updates have changed since earlier Gurobi versions. While the vast
majority of programs are unaffected by this change, you can use the UpdateMode parameter to
revert to the earlier behavior if you run into an issue.

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of
the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms,
strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters
before beginning the optimization. Parameters can be of type int, double, or string.

The simplest way to set parameters is through the GRBModel::set method on the model object.
Similarly, parameter values can be queried with GRBModel::get.

Parameters can also be set on the Gurobi environment object, using GRBEnv::set. Note that
each model gets its own copy of the environment when it is created, so parameter changes to the
original environment have no effect on existing models.

You can read a set of parameter settings from a file using GRBEnv::readParams, or write the
set of changed parameters using GRBEnv::writeParams.

We also include an automated parameter tuning tool that explores many different sets of pa-
rameter changes in order to find a set that improves performance. You can call GRBModel::tune to
invoke the tuning tool on a model. Refer to the parameter tuning tool section for more information.

The full list of Gurobi parameters can be found in the Parameters section.

141

Memory Management

Memory management must always be considered in C++ programs. In particular, the Gurobi
library and the user program share the same C++ heap, so the user must be aware of certain
aspects of how the Gurobi library uses this heap. The basic rules for managing memory when using
the Gurobi optimizer are as follows:

e As with other dynamically allocated C++ objects, GRBEnv or GRBModel objects should be
freed using the associated destructors. In other words, given a GRBModel object m, you should
call delete m when you are no longer using m.

e Objects that are associated with a model (e.g., GRBConstr, GRBQConstr, GRBSOS, GRB-
GenConstr, and GRBVar objects) are managed by the model. In particular, deleting a model
will delete all of the associated objects. Similarly, removing an object from a model (using
GRBModel::remove) will also delete the object.

e Some Gurobi methods return an array of objects or values. For example, GRBModel::addVars
returns an array of GRBVar objects. It is the user’s responsibility to free the returned array
(using delete[]). The reference manual indicates when a method returns a heap-allocated
result.

One consequence of these rules is that you must be careful not to use an object once it has been
freed. This is no doubt quite clear for environments and models, where you call the destructors
explicitly, but may be less clear for constraints and variables, which are implicitly deleted when the
associated model is deleted.

Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will
send output to the screen. A few simple controls are available for modifying the default logging
behavior. If you would like to direct output to a file as well as to the screen, specify the log file
name in the GRBEnv constructor. You can modify the LogFile parameter if you wish to redirect
the log to a different file after creating the environment object. The frequency of logging output can
be controlled with the Displaylnterval parameter, and logging can be turned off entirely with the
OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging
section.

More detailed progress monitoring can be done through the GRBCallback class. The GRB-
Model::setCallback method allows you to receive a periodic callback from the Gurobi optimizer.
You do this by sub-classing the GRBCallback abstract class, and writing your own callback()
method on this class. You can call GRBCallback::getDoublelnfo, GRBCallback::getIntInfo, GRB-
Callback::getStringInfo, or GRBCallback::getSolution from within the callback to obtain additional
information about the state of the optimization.

Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. The simplest control
callback is GRBCallback::abort, which asks the optimizer to terminate at the earliest convenient
point. Method GRBCallback::setSolution allows you to inject a feasible solution (or partial solution)
during the solution of a MIP model. Methods GRBCallback::addCut and GRBCallback::addLazy
allow you to add cutting planes and lazy constraints during a MIP optimization, respectively.

142

Method GRBCallback::stopOneMultiObj allows you to interrupt the optimization process of one
of the optimization steps in a multi-objective MIP problem without stopping the hierarchical opti-
mization process.

Batch Optimization

Gurobi Compute Server enables programs to offload optimization computations onto dedicated
servers. The Gurobi Cluster Manager adds a number of additional capabilities on top of this.
One important one, batch optimization, allows you to build an optimization model with your client
program, submit it to a Compute Server cluster (through the Cluster Manager), and later check
on the status of the model and retrieve its solution. You can use a Batch object to make it easier
to work with batches. For details on batches, please refer to the Batch Optimization section.

Error Handling

All of the methods in the Gurobi C++ library can throw an exception of type GRBException.
When an exception occurs, additional information on the error can be obtained by retrieving the
error code (using method GRBException: :getErrorCode), or by retrieving the exception message
(using method GRBException: :getMessage). The list of possible error return codes can be found
in the Error Codes section.

143

4.1 GRBEnv

Gurobi environment object. Gurobi models are always associated with an environment. You must
create an environment before can you create and populate a model. You will generally only need
a single environment object in your program.

The methods on environment objects are mainly used to manage Gurobi parameters (e.g., get,
getParamlInfo, set).

GRBEnv()

Constructor for GRBEnv object. You have the option of constructing either a local environment,
which solves Gurobi models on the local machine, a client environment for a Gurobi Compute
Server, which will solve Gurobi models on a server machine, or an Instant Cloud environment,
which will launch a Gurobi Cloud server and solve models on that server. Choose the appropriate
signature for the type of environment you wish to launch.

| GRBEnv GRBEnv ()

Create a Gurobi environment (with logging disabled). This method will also populate any
parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified in your gurobi.lic
file. This method will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM
format (briefly, each line should contain a parameter name, followed by the desired value for that
parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Return value:

An environment object (with no associated log file).

‘GRBEnv GRBEnv (bool empty)

Create an empty Gurobi environment. Use GRBEnv::start to start the environment.

If the environment is not empty, This method will also populate any parameter (ComputeServer,
TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check
the current working directory for a file named gurobi.env, and it will attempt to read parameter
settings from this file if it exists. The file should be in PRM format (briefly, each line should contain
a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Arguments:

144

empty: Indicates whether the environment should be empty. You should use empty=true if
you want to set parameters before actually starting the environment. This can be useful
if you want to connect to a Compute Server, a Token Server, the Gurobi Instant Cloud or
a Cluster Manager. See the Environment Section for more details.
Return value:
An environment object.

| GRBEnv GRBEnv (const string& logFileName)

Create a Gurobi environment (with logging enabled). This method will also populate any
parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified in your gurobi.lic
file. This method will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM
format (briefly, each line should contain a parameter name, followed by the desired value for that
parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Arguments:

logFileName: The desired log file name.
Return value:
An environment object.

GRBEnv GRBEnv (const string& logFileName,
const string& computeServer,
const string& router,
const string& password,
const string& group,

int CStlsInsecure,
int priority,
double timeout)

Create a client Gurobi environment on a Compute Server. This method will also check the
current working directory for a file named gurobi.env, and it will attempt to read parameter
settings from this file if it exists. The file should be in PRM format (briefly, each line should
contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Arguments:

logFileName: The name of the log file for this environment. Pass an empty string for no
log file.

145

computeServer: A Compute Server. You can refer to the server using its name or its IP
address. If you are using a non-default port, the server name should be followed by the
port number (e.g., server1:61000)

router: The router for a Compute Server cluster. A router can be used to improve the
robustness of a Compute Server deployment. You should refer to the router using either
its name or its IP address. If no router is used (which is the typical case), pass an empty
string.

password: The password for gaining access to the specified Compute Server cluster. Pass
an empty string if no password is required.

group: The name of the Compute Server group.

CStlsInsecure: Indicates whether to use insecure mode in the TLS (Transport Layer Se-
curity). Set this to 0 unless your server administrator tells you otherwise.

priority: The priority of the job. Priorities must be between -100 and 100, with a default
value of 0 (by convention). Higher priority jobs are chosen from the server job queue before
lower priority jobs. Depending on the configuration of the server, a job with priority 100
runs immediately, bypassing the job queue and ignoring the job limit on the server. You
should exercise caution with priority 100 jobs, since they can severely overload a server,
which can cause jobs to fail, and in extreme cases can cause the server to crash. This
behavior is managed by the HARDJOBLIMIT, and is disabled by default. Refer to the
Gurobi Remote Services Reference Manual for more information on starting Compute
Server options.

timeout: Queue timeout (in seconds). If the job doesn’t reach the front of the queue before
the specified timeout, the call will exit with a JOB_REJECTED error. Use -1 to indicate that
the call should never timeout.

Return value:
An environment object.

GRBEnv GRBEnv (const string& logFileName,
const string& accessID,
const string& secretKey,
const string& pool,
int priority)

Create a Gurobi Instant Cloud environment. This method will also check the current working
directory for a file named gurobi.env, and it will attempt to read parameter settings from this file
if it exists. The file should be in PRM format (briefly, each line should contain a parameter name,
followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Arguments:

logfilename: The name of the log file for this environment. May be NULL (or an empty
string), in which case no log file is created.

146

https://www.gurobi.com/documentation/9.5/remoteservices/remoteservices.html

accessID: The access ID for your Gurobi Instant Cloud license. This can be retrieved from
the Gurobi Instant Cloud website. When used in combination with your secretKey, this
allows you to launch Instant Cloud instances and submit jobs to them.

secretKey: The secret key for your Gurobi Instant Cloud license. This can be retrieved
from the Gurobi Instant Cloud website. When used in combination with your accessID,
this allows you to launch Instant Cloud instances and submit jobs to them. Note that you
should keep your secret key private.

pool: The machine pool. Machine pools allow you to create fixed configurations on the
Instant Cloud website (capturing things like type of machine, geographic region, etc.),
and then launch and share machines from client programs without having to restart the
configuration information each time you launch a machine. May be NULL (or an empty
string), in which case your job will be launched in the default pool associated with your
cloud license.

priority: The priority of the job. Priorities must be between -100 and 100, with a default
value of 0 (by convention). Higher priority jobs are chosen from the server job queue
before lower priority jobs.

Return value:
An environment object.

GRBEnv::get()

Query the value of a parameter.

| double get (GRB_DoubleParam param)

Query the value of a double-valued parameter.
Arguments:
param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
Return value:
The current value of the requested parameter.

| int get (GRB_IntParam param)

Query the value of an int-valued parameter.
Arguments:
param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
Return value:
The current value of the requested parameter.

‘string get (GRB_StringParam param)

147

Query the value of a string-valued parameter.
Arguments:
param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
Return value:
The current value of the requested parameter.

GRBEnv::getErrorMsg()

Query the error message for the most recent exception associated with this environment.

‘ const string getErrorMsg ()
Return value:
The error string.

GRBEnv::getParamlinfo()

Obtain information about a parameter.

void getParamInfo (GRB_DoubleParam param,

doublex* valP,
doublex* minP,
doublex* maxP,
doublex* *defP)
Obtain detailed information about a double parameter.

Arguments:

param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

valP: The current value of the parameter.

minP: The minimum allowed value of the parameter.

maxP: The maximum allowed value of the parameter.

defP: The default value of the parameter.

void getParamInfo (GRB_IntParam param,

intx* valP,

int* minP,

intx* maxP,

intx* defP)
Obtain detailed information about an integer parameter.

Arguments:
param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

148

valP: The current value of the parameter.
minP: The minimum allowed value of the parameter.
maxP: The maximum allowed value of the parameter.
defP: The default value of the parameter.

void getParamInfo (GRB_StringParam param,

stringx* valP,
stringx defP)
Obtain detailed information about a string parameter.

Arguments:
param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
valP: The current value of the parameter.
defP: The default value of the parameter.

GRBEnv::message()

Write a message to the console and the log file.

| void message (const stringk message)

Arguments:
message: Print a message to the console and to the log file. Note that this call has no effect
unless the OutputFlag parameter is set.

GRBEnv::readParams()

Read new parameter settings from a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

‘void readParams (const string& paramfile)

Arguments:
paramfile: Name of the file containing parameter settings. Parameters should be listed
one per line, with the parameter name first and the desired value second. For example:

Gurobi parameter file
Threads 1
MIPGap O

Blank lines and lines that begin with the hash symbol are ignored.

149

GRBEnv::resetParams()

Reset all parameters to their default values.
Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

| void resetParams ()

GRBEnv::set()

Set the value of a parameter.

Important notes:

Note that a model gets its own copy of the environment when it is created. Changes to the
original environment have no effect on the copy. Use GRBModel::set to change a parameter on an
existing model.

void set (GRB_DoubleParam param,
double newvalue)
Set the value of a double-valued parameter.
Arguments:
param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
newvalue: The desired new value of the parameter.

void set (GRB_IntParam param,
int newvalue)
Set the value of an int-valued parameter.
Arguments:
param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
newvalue: The desired new value of the parameter.

void set (GRB_StringParam param,
const string& newvalue)
Set the value of a string-valued parameter.
Arguments:
param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
newvalue: The desired new value of the parameter.

150

void set (const string& param,
const string& newvalue)
Set the value of any parameter using strings alone.
Arguments:
param: The name of the parameter being modified. Please consult the parameter section
for a complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.
newvalue: The desired new value of the parameter.

GRBEnv::start()

Start an empty environment. If the environment has already been started, this method will do
nothing. If the call fails, the environment will have the same state as it had before the call to this
method.

This method will also populate any parameter (ComputeServer, TokenServer, ServerPassword,
etc.) specified in your gurobi.lic file. This method will also check the current working directory
for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.
The file should be in PRM format (briefly, each line should contain a parameter name, followed by
the desired value for that parameter). After that, it will apply all parameter changes specified by
the user prior to this call. Note that this might overwrite parameters set in the license file, or in
the gurobi.env file, if present.

After all these changes are performed, the code will actually activate the environment, and
make it ready to work with models.

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

| void start ()

GRBEnv::writeParams()

Write all non-default parameter settings to a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

‘void writeParams (const string& paramfile)

Arguments:
paramfile: Name of the file to which non-default parameter settings should be written.
The previous contents are overwritten.

151

4.2 GRBModel

Gurobi model object. Commonly used methods include addVar (adds a new decision variable to the
model), addConstr (adds a new constraint to the model), optimize (optimizes the current model),
and get (retrieves the value of an attribute).

GRBModel()

Constructor for GRBModel. The simplest version creates an empty model. You can then call
addVar and addConstr to populate the model with variables and constraints. The more complex
constructors can read a model from a file, or make a copy of an existing model.

‘ GRBModel GRBModel (const GRBEnv& env)

Model constructor.
Arguments:
env: Environment for new model.
Return value:
New model object. Model initially contains no variables or constraints.

GRBModel GRBModel (const GRBEnv& env,
const string& filename)

Read a model from a file. Note that the type of the file is encoded in the file name suffix. Valid
suffixes are .mps, .rew, .1lp, .rlp, .dua, .dlp, .ilp, or .opb. The files can be compressed, so
additional suffixes of .zip, .gz, .bz2, or .7z are accepted.

Arguments:

env: Environment for new model.

modelname: Name of the file containing the model.
Return value:

New model object.

‘ GRBModel GRBModel (const GRBModel& model)

Create a copy of an existing model. Note that due to the lazy update approach in Gurobi, you
have to call update before copying it.
Arguments:
model: Model to copy.
Return value:
New model object. Model is a clone of the input model.

152

GRBModel::addConstr()

Add a single linear constraint to a model. Multiple signatures are available.

GRBConstr addConstr (const GRBLinExpr& lhsExpr,

char sense,

const GRBLinExpr& rhsExpr,

string name="")
Add a single linear constraint to a model.

Arguments:
lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).
rhsExpr: Right-hand side expression for new linear constraint.
name (optional): Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr (const GRBLinExpr& lhsExpr,

char sense,

GRBVar rhsVar,

string name="")
Add a single linear constraint to a model.

Arguments:
lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).
rhsVar: Right-hand side variable for new linear constraint.
name (optional): Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr (const GRBLinExpr& lhsExpr,

char sense,

double rhsVal,

string name="")
Add a single linear constraint to a model.

Arguments:
lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).
rhsVal: Right-hand side value for new linear constraint.
name (optional): Name for new constraint.
Return value:

153

New constraint object.

GRBConstr addConstr (GRBVar 1lhsVar,

char sense,
GRBVar rhsVar,
string name="")

Add a single linear constraint to a model.
Arguments:
lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).
rhsVar: Right-hand side variable for new linear constraint.
name (optional): Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr (GRBVar 1lhsVar,

char sense,
double rhsVal,
string name="")

Add a single linear constraint to a model.
Arguments:
lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).
rhsVal: Right-hand side value for new linear constraint.
name (optional): Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr (GRBTempConstr& tc,
string name="")

Add a single linear constraint to a model.
Arguments:
tc: Temporary constraint object, created using an overloaded comparison operator. See
GRBTempConstr for more information.
name (optional): Name for new constraint.
Return value:
New constraint object.

154

GRBModel::addConstrs()

Add new linear constraints to a model.

We recommend that you build your model one constraint at a time (using addConstr), since it
introduces no significant overhead and we find that it produces simpler code. Feel free to use these
methods if you disagree, though.

‘GRBConstr* addConstrs (int count)

Add count new linear constraints to a model.
Arguments:
count: Number of constraints to add to the model. The new constraints are all of the form
0 <= 0.
Return value:
Array of new constraint objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBConstr* addConstrs (const GRBLinExpr* lhsExprs,

const charx senses,

const double* rhsVals,

const string* names,

int count)
Add count new linear constraints to a model.

Arguments:
lhsExprs: Left-hand side expressions for the new linear constraints.
senses: Senses for new linear constraints (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).
rhsVals: Right-hand side values for the new linear constraints.
names: Names for new constraints.
count: Number of constraints to add.
Return value:
Array of new constraint objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBModel::addGenConstrXxx()

Each of the functions described below adds a new general constraint to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types:
variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and
SOS constraints. These are typically treated directly by the underlying solver (although not always),
and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general
(function) constraints. These are typically not treated directly by the solver. Rather, they are
transformed by presolve into constraints (and variables) chosen from among the fundamental types
listed above. In some cases, the resulting constraint or constraints are mathematically equivalent

155

to the original; in others, they are approximations. If such constraints appear in your model, but

if you prefer to reformulate them yourself using fundamental constraint types instead, you can

certainly do so. However, note that Gurobi can sometimes exploit information contained in the

other constraints in the model to build a more efficient formulation than what you might create.
The additional constraint types that fall under this general constraint umbrella are:

e addGenConstrMax: y = maz(x1,x2, ...,)

e addGenConstrMin: y = min(xy, z2, ...,)

e addGenConstrAbs: y = |z|

e addGenConstrAnd: y = x1 A 2 A 3...

e addGenConstrOr: y =1 V 22 V x3...

e addGenConstrNorm: y = norm(z1, x2, z3...)

e addGenConstrIndicator: y =1 — a/z < b (an indicator constraint)
e addGenConstrPWL: y = pwl(x) (a piecewise-linear function, specified using breakpoints)
e addGenConstrPoly: y = poz? + p12%~ ' + ... + pa_1z + p4

e addGenConstrExp: y = e

e addGenConstrExpA: y = a*

e addGenConstrLog: y = log.(x)

e addGenConstrLogA: y = log,(x)

e addGenConstrPow: y = z¢

e addGenConstrSin: y = sin(x)

e addGenConstrCos: y = cos(x)

e addGenConstrTan: y = tan(x)

Please refer to this section for additional details on general constraints.

GRBModel::addGenConstrMax()
Add a new general constraint of type GRB_GENCONSTR_MAX to a model.

A MAX constraint r = max{z1,...,Z,,c} states that the resultant variable r should be equal
to the maximum of the operand variables x1,...,x, and the constant c.
GRBGenConstr addGenConstrMax (GRBVar resvar,
const GRBVar* vars,
int len,
double constant=-GRB_INFINITY,
string name="")

156

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
constant (optional): The additional constant operand of the new constraint.
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrMin()
Add a new general constraint of type GRB_GENCONSTR_MIN to a model.

A MIN constraint 7 = min{x1, ..., x,, c} states that the resultant variable r should be equal to
the minimum of the operand variables x1,...,x, and the constant c.
GRBGenConstr addGenConstrMin (GRBVar resvar,
const GRBVar* vars,
int len,
double constant=GRB_INFINITY,
string name="")
Arguments:

resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
constant (optional): The additional constant operand of the new constraint.
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrAbs()

Add a new general constraint of type GRB_GENCONSTR_ABS to a model.
An ABS constraint r = abs{z} states that the resultant variable r should be equal to the
absolute value of the argument variable z.

GRBGenConstr addGenConstrAbs (GRBVar resvar,
GRBVar argvar,
string name="")

Arguments:
resvar: The resultant variable of the new constraint.
argvar: The argument variable of the new constraint.
name (optional): Name for the new general constraint.
Return value:
New general constraint.

157

GRBModel::addGenConstrAnd()

Add a new general constraint of type GRB_GENCONSTR_AND to a model.

An AND constraint » = and{x1, ..., z,} states that the binary resultant variable r should be 1
if and only if all of the operand variables x1,...,z, are equal to 1. If any of the operand variables
is 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent
of how they were created.

GRBGenConstr addGenConstrAnd (GRBVar resvar,
const GRBVar* vars,
int len,
string name="")
Arguments:

resvar: The resultant binary variable of the new constraint.
vars: Array of binary variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrOr()

Add a new general constraint of type GRB_GENCONSTR_OR to a model.

An OR constraint r = or{zy,...,z,} states that the binary resultant variable r should be 1 if
and only if any of the operand variables x1, ..., x, is equal to 1. If all operand variables are 0, then
the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent
of how they were created.

GRBGenConstr addGenConstrOr (GRBVar resvar,
const GRBVar* vars,
int len,
string name="")
Arguments:

resvar: The resultant binary variable of the new constraint.
vars: Array of binary variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
name (optional): Name for the new general constraint.

Return value:
New general constraint.

158

GRBModel::addGenConstrNorm()
Add a new general constraint of type GRB_GENCONSTR_NORM to a model.

A NORM constraint 7 = norm{xy, ..., x,} states that the resultant variable r should be equal
to the vector norm of the argument vector 1, ..., T,.
GRBGenConstr addGenConstrNorm (GRBVar resvar,

const GRBVar* vars,
int len,
double which,
string name="")

Arguments:

resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint. Note that this array
may not contain duplicates.
len: Number of operands in the new constraint (length of vars array).
which: Which norm to use. Options are 0, 1, 2, and GRB_ INFINITY.
name (optional): Name for the new general constraint.
Return value:
New general constraint.

GRBModel::addGenConstrIndicator()

Add a new general constraint of type GRB_GENCONSTR_INDICATOR to a model.

An INDICATOR constraint z = f — a2 < b states that if the binary indicator variable z is
equal to f, where f € {0,1}, then the linear constraint a2 < b should hold. On the other hand,
if z =1 — f, the linear constraint may be violated. The sense of the linear constraint can also be
specified to be = or >.

Note that the indicator variable z of a constraint will be forced to be binary, independent of
how it was created.

Multiple signatures are available.

GRBGenConstr addGenConstrIndicator (GRBVar binvar,
int binval,
const GRBLinExpr& expr,
char sense,
double rhs,
string name="")

Arguments:

binvar: The binary indicator variable.

binval: The value for the binary indicator variable that would force the linear constraint
to be satisfied (0 or 1).

expr: Left-hand side expression for the linear constraint triggered by the indicator.

sense: Sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

159

rhs: Right-hand side value for the linear constraint.

name (optional): Name for the new general constraint.
Return value:

New general constraint.

GRBGenConstr addGenConstrIndicator (GRBVar binvar,
int binval,
const GRBTempConstr& constr,
string name="")

Arguments:

binvar: The binary indicator variable.

binval: The value for the binary indicator variable that would force the linear constraint
to be satisfied (0 or 1).

constr: Temporary constraint object defining the linear constraint that is triggered by the
indicator. The temporary constraint object is created using an overloaded comparison
operator. See GRBTempConstr for more information.

name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrPWL()

Add a new general constraint of type GRB_GENCONSTR_PWL to a model.

A piecewise-linear (PWL) constraint states that the relationship y = f(z) must hold between
variables x and y, where f is a piecewise-linear function. The breakpoints for f are provided as
arguments. Refer to the description of piecewise-linear objectives for details of how piecewise-linear
functions are defined.

GRBGenConstr addGenConstrPWL (GRBVar xvar,
GRBVar yvar,
int npts,

const doublex xpts,
const doublex ypts,
std: :string name="")

Arguments:
xvar: The z variable.
yvar: The y variable.
npts: The number of points that define the piecewise-linear function.
xpts: The x values for the points that define the piecewise-linear function. Must be in
non-decreasing order.
ypts: The y values for the points that define the piecewise-linear function.
name (optional): Name for the new general constraint.
Return value:
New general constraint.

160

GRBModel::addGenConstrPoly()

Add a new general constraint of type GRB_GENCONSTR_POLY to a model.

A polynomial function constraint states that the relationship y = pox®+p1a¢ 1 +...+ pg_12+pg
should hold between variables x and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrPoly (GRBVar xvar,
GRBVar yvar,
int plen,
const doublex p,
std::string name="",
std::string options="")
Arguments:

xvar: The z variable.

yvar: The y variable.

plen: The length of coefficient array p. If % is the highest power term, then plen should
be d + 1.

p: The coefficients for the polynomial function (starting with the coefficient for the highest
power).

name (optional): Name for the new general constraint.

options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addGenConstrExp()

Add a new general constraint of type GRB_GENCONSTR_EXP to a model.

A natural exponential function constraint states that the relationship y = exp(x) should hold
for variables x and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrExp (GRBVar xXvar,
GRBVar yvar,
std::string name="",
std::string options="")

161

Arguments:
xvar: The z variable.
yvar: The y variable.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").
Return value:
New general constraint.

GRBModel::addGenConstrExpA()

Add a new general constraint of type GRB_GENCONSTR_EXPA to a model.

An exponential function constraint states that the relationship y = a” should hold for variables
x and y, where a > 0 is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrExpA (GRBVar xvar,
GRBVar yvar,
double a,

std::string mname="",
std::string options="")
Arguments:
xvar: The z variable.
yvar: The y variable.
a: The base of the function, a > 0.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").
Return value:
New general constraint.

GRBModel::addGenConstrLog()

Add a new general constraint of type GRB_GENCONSTR_LOG to a model.
A natural logarithmic function constraint states that the relationship y = log(x) should hold
for variables x and y.

162

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrLog (GRBVar xvar,
GRBVar yvar,
std::string mname="",
std::string options="")
Arguments:

xvar: The x variable.

yvar: The y variable.

name (optional): Name for the new general constraint.

options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addGenConstrLogA()

Add a new general constraint of type GRB_GENCONSTR_LOGA to a model.

A logarithmic function constraint states that the relationship y = log,(x) should hold for
variables x and y, where a > 0 is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrLogA (GRBVar xvar,
GRBVar yvar,
double a,
std::string name="",
std::string options="")
Arguments:

xvar: The z variable.

yvar: The y variable.

a: The base of the function, a > 0.

name (optional): Name for the new general constraint.

options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

163

Return value:
New general constraint.

GRBModel::addGenConstrPow()

Add a new general constraint of type GRB_GENCONSTR_POW to a model.

A power function constraint states that the relationship y = x® should hold for variables x and
y, where @ is the (constant) exponent. The lower bound of variable must be nonnegative, even if
a is an integer.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrPow (GRBVar xvar,
GRBVar yvar,
double a,

std::string name="",
std::string options="")
Arguments:
xvar: The z variable.
yvar: The y variable.
a: The exponent of the function, a > 0.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").
Return value:
New general constraint.

GRBModel::addGenConstrSin()

Add a new general constraint of type GRB_GENCONSTR_SIN to a model.

A sine function constraint states that the relationship y = sin(z) should hold for variables x
and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrSin (GRBVar xvar,
GRBVar yvar,
std::string name="",
std::string options="")

164

Arguments:
xvar: The z variable.
yvar: The y variable.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").
Return value:
New general constraint.

GRBModel::addGenConstrCos()

Add a new general constraint of type GRB_GENCONSTR_COS to a model.

A cosine function constraint states that the relationship y = cos(z) should hold for variables x
and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrCos (GRBVar xvar,
GRBVar yvar,
std::string name="",
std::string options="")

Arguments:

xvar: The z variable.

yvar: The y variable.

name (optional): Name for the new general constraint.

options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addGenConstrTan()

Add a new general constraint of type GRB_GENCONSTR_TAN to a model.

A tangent function constraint states that the relationship y = tan(x) should hold for variables
z and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the

165

same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrTan (GRBVar xvar,
GRBVar yvar,
std::string mname="",
std::string options="")

Arguments:

xvar: The x variable.

yvar: The y variable.

name (optional): Name for the new general constraint.

options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addQConstr()

Add a quadratic constraint to a model. Multiple signatures are available.

Important note: Gurobi can handle both convex and non-convex quadratic constraints. The
differences between them can be both important and subtle. Refer to this discussion for additional
information.

GRBQConstr addQConstr (const GRBQuadExpr& lhsExpr,

char sense,

const GRBQuadExpr& rhsExpr,

string name="")
Add a quadratic constraint to a model.

Arguments:
lhsExpr: Left-hand side expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).
rhsExpr: Right-hand side expression for new quadratic constraint.
name (optional): Name for new constraint.
Return value:
New quadratic constraint object.

GRBQConstr addQConstr (const GRBQuadExpr& 1lhsExpr,

char sense,
GRBVar rhsVar,
string name="")

166

Add a quadratic constraint to a model.
Arguments:
lhsExpr: Left-hand side expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).
rhsVar: Right-hand side variable for new quadratic constraint.
name (optional): Name for new constraint.
Return value:
New quadratic constraint object.

GRBQConstr addQConstr (GRBTempConstr& tc,
string name="")
Add a quadratic constraint to a model.
Arguments:
tc: Temporary constraint object, created using an overloaded comparison operator. See
GRBTempConstr for more information.
name (optional): Name for new constraint.
Return value:
New quadratic constraint object.

GRBModel::addRange()

Add a single range constraint to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution.

Note that range constraints are stored internally as equality constraints. We add an extra
variable to the model to capture the range information. Thus, the Sense attribute on a range
constraint will always be GRB_EQUAL.

GRBConstr addRange (const GRBLinExpr& expr,

double lower,
double upper,
string name="")

Arguments:
expr: Linear expression for new range constraint.
lower: Lower bound for linear expression.
upper: Upper bound for linear expression.
name (optional): Name for new constraint.
Return value:
New constraint object.

GRBModel::addRanges()

Add new range constraints to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution.

167

GRBConstr* addRanges (const GRBLinExpr* exprs,

const doublex* lower,
const doublex* upper,
const string* names,
int count)

Arguments:
exprs: Linear expressions for the new range constraints.
lower: Lower bounds for linear expressions.
upper: Upper bounds for linear expressions.
name: Names for new range constraints.
count: Number of range constraints to add.
Return value:
Array of new constraint objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBModel::addSOS()

Add an SOS constraint to the model. Please refer to this section for details on SOS constraints.

GRBSOS addS0S (const GRBVar* vars,
const doublex weights,
int len,
int type)
Arguments:
vars: Array of variables that participate in the SOS constraint.
weights: Weights for the variables in the SOS constraint.
len: Number of members in the new SOS set (length of vars and weights arrays).
type: SOS type (can be GRB_SOS_TYPE1 or GRB_SOS_TYPE2).
Return value:
New SOS constraint.

GRBModel::addVar()

Add a single decision variable to a model.

GRBVar addVar (double 1b,

double ub,
double obj,
char type,
string name="")
Add a variable; non-zero entries will be added later.

Arguments:
1b: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.

168

type: Variable type for new variable (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_-

SEMICONT, or GRB_SEMIINT).

name (optional): Name for new variable.

Return value:
New variable object.

GRBVar addVar (double
double
double
char
int
const GRBConstrx*
const doublex*
string

1b,

ub,

obj,
type,
numnz,
constrs,
coeffs,
name="")

Add a variable, and the associated non-zero coefficients.

Arguments:
1b: Lower bound for new variable.
ub: Upper bound for new variable.

obj: Objective coeflicient for new variable.
type: Variable type for new variable (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_-

SEMICONT, or GRB_SEMIINT).

numnz: Number of constraints in which this new variable participates.
constrs: Array of constraints in which the variable participates.

coeffs: Array of coefficients for each constraint in which the variable participates.

name (optional): Name for new variable.

Return value:
New variable object.

GRBVar addVar (double
double
double
char
const GRBColumn&
string

1b,

ub,

obj,
type,
col,
name="")

Add a variable, and the associated non-zero coefficients.

Arguments:
1b: Lower bound for new variable.
ub: Upper bound for new variable.

obj: Objective coeflicient for new variable.
type: Variable type for new variable (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_-

SEMICONT, or GRB_SEMIINT).

col: GRBColumn object for specifying a set of constraints to which new variable belongs.
name (optional): Name for new variable.

Return value:
New variable object.

169

GRBModel::addVars()

Add new decision variables to a model.

GRBVar*x addVars (int
char

Arguments:

count: Number of variables to add.

count,

type=GRB_CONTINUOUS)
Add count new decision variables to a model. All associated attributes take their default values,
except the variable type, which is specified as an argument.

type (optional): Variable type for new variables (GRB_CONTINUOUS, GRB_BINARY, GRB_-
INTEGER,GRB_SEMICDNT,OTGRB_SEMIINT)

Return value:

Array of new variable objects. Note that the result is heap-allocated, and must be returned

to the heap by the user.

GRBVar* addVars (const
const
const
const
const
int

doublex*
doublex*
doublex*
charx*

string*

1b,

ub,
obj,
type,
names,
count)

Add count new decision variables to a model. This signature allows you to use arrays to hold
the various variable attributes (lower bound, upper bound, etc.).

Arguments:

1b: Lower bounds for new variables. Can be NULL, in which case the variables get lower

bounds of 0.0.

ub: Upper bounds for new variables. Can be NULL, in which case the variables get infinite

upper bounds.

obj: Objective coefficients for new variables. Can be NULL, in which case the variables get
objective coeflicients of 0.0.
type: Variable types for new variables (GRB_CONTINUQUS, GRB_BINARY, GRB_INTEGER, GRB_-
SEMICONT, or GRB_SEMIINT). Can be NULL, in which case the variables are assumed to be

continuous.

names: Names for new variables. Can be NULL, in which case all variables are given default

names.

count: The number of variables to add.

Return value:

Array of new variable objects. Note that the result is heap-allocated, and must be returned

to the heap by the user.

170

GRBVar* addVars (const doublex* 1b,

const doublex* ub,
const doublex* obj,
const charx* type,
const stringx* names,
const GRBColumn* cols,
int count)

Add new decision variables to a model. This signature allows you to specify the set of constraints
to which each new variable belongs using an array of GRBColumn objects.
Arguments:
1b: Lower bounds for new variables. Can be NULL, in which case the variables get lower
bounds of 0.0.
ub: Upper bounds for new variables. Can be NULL, in which case the variables get infinite
upper bounds.
obj: Objective coefficients for new variables. Can be NULL, in which case the variables get
objective coeflicients of 0.0.
type: Variable types for new variables (GRB_CONTINUQUS, GRB_BINARY, GRB_INTEGER, GRB_-
SEMICONT, or GRB_SEMIINT). Can be NULL, in which case the variables are assumed to be
continuous.
names: Names for new variables. Can be NULL, in which case all variables are given default
names.
cols: GRBColumn objects for specifying a set of constraints to which each new column
belongs.
count: The number of variables to add.
Return value:
Array of new variable objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBModel::chgCoeff()

Change one coefficient in the model. The desired change is captured using a GRBVar object, a
GRBConstr object, and a desired coefficient for the specified variable in the specified constraint. If
you make multiple changes to the same coeflicient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you
update the model (using GRBModel::update), optimize the model (using GRBModel::optimize),
or write the model to disk (using GRBModel::write).

void chgCoeff (GRBConstr constr,
GRBVar var,
double newvalue)
Arguments:
constr: Constraint for coefficient to be changed.
var: Variable for coefficient to be changed.
newvalue: Desired new value for coefficient.

171

GRBModel::chgCoeffs()

Change a list of coefficients in the model. Each desired change is captured using a GRBVar object,
a GRBConstr object, and a desired coefficient for the specified variable in the specified constraint.
The entries in the input arrays each correspond to a single desired coefficient change. If you make
multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you
update the model (using GRBModel::update), optimize the model (using GRBModel::optimize),
or write the model to disk (using GRBModel::write).

void chgCoeffs (const GRBConstr* constrs,

const GRBVar* vars,
const doublex* vals,
int len)

Arguments:
constrs: Constraints for coefficients to be changed.
vars: Variables for coefficients to be changed.
vals: Desired new values for coefficients.
len: Number of coefficients to change (length of vars, constrs, and vals arrays).

GRBModel::computelS()

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and
variable bounds with the following properties:

e It is still infeasible, and
e If a single constraint or bound is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily
the smallest one; there may exist others with fewer constraints or bounds.

IIS results are returned in a number of attributes: IISConstr, IISLB, IISUB, IISSOS, IISQCon-
str, and IISGenConstr. Each indicates whether the corresponding model element is a member of
the computed IIS.

The IIS log provides information about the progress of the algorithm, including a guess at the
eventual IIS size.

If an IIS computation is interrupted before completion, Gurobi will return the smallest infeasible
subsystem found to that point.

The IISConstrForce, IISLBForce, IISUBForce, IISSOSForce, IISQConstrForce, and IISGenCon-
strForce attributes allow you mark model elements to either include or exclude from the computed
IIS. Setting the attribute to 1 forces the corresponding element into the IIS, setting it to 0 forces
it out of the IIS, and setting it to -1 allows the algorithm to decide.

To give an example of when these attributes might be useful, consider the case where an initial
model is known to be feasible, but it becomes infeasible after adding constraints or tightening
bounds. If you are only interested in knowing which of the changes caused the infeasibility, you can
force the unmodified bounds and constraints into the IIS. That allows the IIS algorithm to focus
exclusively on the new constraints, which will often be substantially faster.

172

Note that setting any of the Force attributes to 0 may make the resulting subsystem fea-
sible, which would then make it impossible to construct an IIS. Trying anyway will result in a
GRB_ERROR_IIS_NOT_INFEASIBLE error. Similarly, setting this attribute to 1 may result in an IIS
that is not irreducible. More precisely, the system would only be irreducible with respect to the
model elements that have force values of -1 or 0.

This method populates the IISConstr, IISQConstr, and IISGenConstr constraint attributes, the
IISSOS, SOS attribute, and the IISLB and IISUB variable attributes. You can also obtain informa-
tion about the results of the IIS computation by writing a .ilp format file (see GRBModel::write).
This file contains only the IIS from the original model.

Use the IISMethod parameter to adjust the behavior of the IIS algorithm.

Note that this method can be used to compute IISs for both continuous and MIP models.

| void computeIIS ()

GRBModel::discardConcurrentEnvs()

Discard concurrent environments for a model.
The concurrent environments created by getConcurrentEnv will be used by every subsequent
call to the concurrent optimizer until the concurrent environments are discarded.

| void discardConcurrentEnvs ()

GRBModel::discardMultiobjEnvs()

Discard all multi-objective environments associated with the model, thus restoring multi objective
optimization to its default behavior.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.

Use getMultiobjEnv to create a multi-objective environment.

| void discardMultiobjEnvs ()

GRBModel::feasRelax()

Modifies the GRBModel object to create a feasibility relaxation. Note that you need to call optimize
on the result to compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the
solution violates the bounds and linear constraints of the original model. This method provides a
number of options for specifying the relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the
sum of the weighted magnitudes of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the cost per unit violation in the lower bounds, upper bounds, and linear
constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the
weighted sum of the squares of the bound and constraint violations. The lbpen, ubpen, and

173

rhspen arguments specify the coefficients on the squares of the lower bound, upper bound, and
linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the
weighted count of bound and constraint violations. The 1lbpen, ubpen, and rhspen arguments
specify the cost of violating a lower bound, upper bound, and linear constraint, respectively.

To give an example, if a constraint with rhspen value p is violated by 2.0, it would con-
tribute 2*p to the feasibility relaxation objective for relaxobjtype=0, it would contribute 2*2xp
for relaxobjtype=1, and it would contribute p for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is
created. If minrelax=false, optimizing the returned model gives a solution that minimizes the
cost of the violation. If minrelax=true, optimizing the returned model finds a solution that
minimizes the original objective, but only from among those solutions that minimize the cost of the
violation. Note that feasRelax must solve an optimization problem to find the minimum possible
relaxation when minrelax=true, which can be quite expensive.

There are two signatures for this method. The more complex one takes a list of variables
and constraints, as well as penalties associated with relaxing the corresponding lower bounds,
upper bounds, and constraints. If a variable or constraint is not included in one of these lists,
the associated bounds or constraints may not be violated. The simpler signature takes a pair of
boolean arguments, vrelax and crelax, that indicate whether variable bounds and/or constraints
can be violated. If vrelax/crelax is true, then every bound/constraint is allowed to be violated,
respectively, and the associated cost is 1.0.

Note that this is a destructive method: it modifies the model on which it is invoked. If you
don’t want to modify your original model, use the GRBModel constructor to create a copy before
invoking this method.

double feasRelax (int relaxobjtype,
bool minrelax,
int vlen,
const GRBVar* vars,
const doublex* lbpen,
const doublex* ubpen,
int clen,
const GRBConstr* constrs,
const doublex* rhspen)
Create a feasibility relaxation model.

Arguments:

relaxobjtype: The cost function used when finding the minimum cost relaxation.

minrelax: The type of feasibility relaxation to perform.

vlen: The length of the list of variables whose bounds are allowed to be violated.

vars: Variables whose bounds are allowed to be violated.

lbpen: Penalty for violating a variable lower bound. One entry for each variable in argument
vars.

ubpen: Penalty for violating a variable upper bound. One entry for each variable in argument
vars.

clen: The length of the list of linear constraints that are allowed to be violated.

174

constrs: Linear constraints that are allowed to be violated.
rhspen: Penalty for violating a linear constraint. One entry for each constraint in argument
constrs.
Return value:
Zero if minrelax is false. If minrelax is true, the return value is the objective value for
the relaxation performed. If the value is less than 0, it indicates that the method failed to
create the feasibility relaxation.

double feasRelax (int relaxobjtype,
bool minrelax,
bool vrelax,
bool crelax)
Simplified method for creating a feasibility relaxation model.
Arguments:
relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vrelax: Indicates whether variable bounds can be relaxed (with a cost of 1.0 for any viola-
tions.
crelax: Indicates whether linear constraints can be relaxed (with a cost of 1.0 for any
violations.
Return value:
Zero if minrelax is false. If minrelax is true, the return value is the objective value for
the relaxation performed. If the value is less than 0, it indicates that the method failed to
create the feasibility relaxation.

GRBModel::fixedModel()

Create the fixed model associated with a MIP model. The MIP model must have a solution loaded
(e.g., after a call to the optimize method). In the fixed model, each integer variable is fixed to the
value that variable takes in the MIP solution. In addition, continuous variables may be fixed to
satisfy SOS or general constraints. The result is a model without any integrality constraints, SOS
constraints, or general constraints.

Note that, while the fixed problem is always a continuous model, it may contain a non-convex
quadratic objective or non-convex quadratic constraints. As a result, it may still be solved using
the MIP algorithm.

| GRBModel fixedModel ()
Return value:
Fixed model associated with calling object.

GRBModel::get()

Query the value(s) of a parameter or attribute. Use this method for parameters, for scalar model
attributes, or for arrays of constraint or variable attributes.

175

| double get (GRB_DoubleParam param)

Query the value of a double-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

‘int get (GRB_IntParam param)

Query the value of an int-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

‘string get (GRB_StringParam param)

Query the value of a string-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

char* get (GRB_CharAttr attr,
const GRBVar* vars,
int count)
Query a char-valued variable attribute for an array of variables.
Arguments:
attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.
Return value:
The current values of the requested attribute for each input variable. Note that the result
is heap-allocated, and must be returned to the heap by the user.

charx get (GRB_CharAttr attr,
const GRBConstr* constrs,
int count)
Query a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.

176

count: The number of constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input constraint. Note that the result
is heap-allocated, and must be returned to the heap by the user.

char* get (GRB_CharAttr attr,
const GRBQConstr* qconstrs,
int count)
Query a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of quadratic constraints whose attribute values are being queried.
count: The number of quadratic constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input quadratic constraint. Note that
the result is heap-allocated, and must be returned to the heap by the user.

| double get (GRB_DoubleAttr attr)

Query the value of a double-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

doublex get (GRB_DoubleAttr attr,
const GRBVar* vars,
int count)
Query a double-valued variable attribute for an array of variables.
Arguments:
attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.
Return value:
The current values of the requested attribute for each input variable. Note that the result
is heap-allocated, and must be returned to the heap by the user.

doublex get (GRB_DoubleAttr attr,
const GRBConstr* constrs,
int count)
Query a double-valued constraint attribute for an array of constraints.
Arguments:
attr: The attribute being queried.

177

constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.
Return value:

The current values of the requested attribute for each input constraint. Note that the result
is heap-allocated, and must be returned to the heap by the user.

doublex get (GRB_DoubleAttr attr,
const GRBQConstr* qconstrs,
int count)
Query a double-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.

constrs: An array of quadratic constraints whose attribute values are being queried.
count: The number of quadratic constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input quadratic constraint. Note that
the result is heap-allocated, and must be returned to the heap by the user.

| int get (GRB_IntAttr attr)

Query the value of an int-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int* get (GRB_IntAttr attr,
const GRBVar* vars,
int count)
Query an int-valued variable attribute for an array of variables.
Arguments:
attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.
Return value:
The current values of the requested attribute for each input variable. Note that the result
is heap-allocated, and must be returned to the heap by the user.

int* get (GRB_IntAttr attr,
const GRBConstr* constrs,
int count)
Query an int-valued constraint attribute for an array of constraints.
Arguments:

178

attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.
Return value:
The current values of the requested attribute for each input constraint. Note that the result
is heap-allocated, and must be returned to the heap by the user.

‘string get (GRB_StringAttr attr)

Query the value of a string-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

stringx get (GRB_StringAttr attr,
const GRBVarx vars,
int count)
Query a string-valued variable attribute for an array of variables.
Arguments:
attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.
Return value:
The current values of the requested attribute for each input variable. Note that the result
is heap-allocated, and must be returned to the heap by the user.

string* get (GRB_StringAttr attr,
const GRBConstr* constrs,
int count)
Query a string-valued constraint attribute for an array of constraints.
Arguments:
attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.
Return value:
The current values of the requested attribute for each input constraint. Note that the result
is heap-allocated, and must be returned to the heap by the user.

string* get (GRB_StringAttr attr,
const GRBQConstr* qconstrs,
int count)

Query a string-valued quadratic constraint attribute for an array of quadratic constraints.

179

Arguments:
attr: The attribute being queried.
constrs: An array of quadratic constraints whose attribute values are being queried.
count: The number of quadratic constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input quadratic constraint. Note that
the result is heap-allocated, and must be returned to the heap by the user.

GRBModel::getCoeff()

Query the coefficient of variable var in linear constraint constr (note that the result can be zero).

double getCoeff (GRBConstr constr,
GRBVar var)
Arguments:
constr: The requested constraint.
var: The requested variable.
Return value:
The current value of the requested coefficient.

GRBModel::getCol()

Retrieve the list of constraints in which a variable participates, and the associated coefficients. The
result is returned as a GRBColumn object.

| GRBColumn getCol (GRBVar var)

Arguments:
var: The variable of interest.
Return value:
A GRBColumn object that captures the set of constraints in which the variable participates.

GRBModel::getConcurrentEnv()

Create/retrieve a concurrent environment for a model.

This method provides fine-grained control over the concurrent optimizer. By creating your
own concurrent environments and setting appropriate parameters on these environments (e.g., the
Method parameter), you can control exactly which strategies the concurrent optimizer employs.
For example, if you create two concurrent environments, and set Method to primal simplex for
one and dual simplex for the other, subsequent concurrent optimizer runs will use the two simplex
algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with
num=0. For example, if you want three concurrent environments, they must be numbered 0, 1,
and 2.

180

Once you create concurrent environments, they will be used for every subsequent concurrent
optimization on that model. Use discardConcurrentEnvs to revert back to default concurrent
optimizer behavior.

| GRBEnv getConcurrentEnv (int num)

Arguments:

num: The concurrent environment number.
Return value:

The concurrent environment for the model.

GRBModel::getConstrByName()

Retrieve a linear constraint from its name. If multiple linear constraints have the same name, this
method chooses one arbitrarily.

‘GRBConstr getConstrByName (const string& name)

Arguments:

name: The name of the desired linear constraint.
Return value:

The requested linear constraint.

GRBModel::getConstrs()

Retrieve an array of all linear constraints in the model.

‘ GRBConstr* getConstrs ()
Return value:
An array of all linear constraints in the model. Note that this array is heap-allocated, and
must be returned to the heap by the user.

GRBModel::getGenConstrXxx()

The following methods allow you to retrieve general constraints from your model.

GRBModel::getGenConstrMax

Retrieve the data associated with a general constraint of type MAX. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in 1lenP. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

181

See also addGenConstrMax for a description of the semantics of this general constraint type.

void getGenConstrMax (GRBGenConstr genc,

GRBVarx* resvarP,
GRBVarx* vars,

intx* lenP,
doublex* constantP)

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.
constantP: Pointer to store the additional constant operand of the constraint.

GRBModel::getGenConstrMin

Retrieve the data associated with a general constraint of type MIN. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in 1enP. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrMin for a description of the semantics of this general constraint type.

void getGenConstrMin (GRBGenConstr genc,

GRBVarx* resvarP,
GRBVarx* vars,

intx* lenP,
doublex* constantP)

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.
constantP: Pointer to store the additional constant operand of the constraint.

GRBModel::getGenConstrAbs

Retrieve the data associated with a general constraint of type ABS. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrAbs for a description of the semantics of this general constraint type.

182

void getGenConstrAbs (GRBGenConstr genc,
GRBVarx* resvarP,
GRBVarx* argvarP)
Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
argvarP: Pointer to store the argument variable of the constraint.

GRBModel::getGenConstrAnd

Retrieve the data associated with a general constraint of type AND. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in 1enP. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrAnd for a description of the semantics of this general constraint type.

void getGenConstrAnd (GRBGenConstr genc,

GRBVarx* resvarP,
GRBVarx* vars,
int* lenP)

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.

GRBModel::getGenConstrOr

Retrieve the data associated with a general constraint of type OR. Calling this method for a general
constraint of a different type leads to an exception. You can query the GenConstrType attribute
to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in 1enP. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrOr for a description of the semantics of this general constraint type.

void getGenConstrOr (GRBGenConstr genc,

GRBVarx* resvarP,
GRBVarx vars,
int* lenP)

183

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.

GRBModel::getGenConstrNorm

Retrieve the data associated with a general constraint of type NORM. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in 1enP. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrNorm for a description of the semantics of this general constraint type.

void getGenConstrNorm (GRBGenConstr genc,

GRBVarx* resvarP,
GRBVarx* vars,
intx* lenP,
doublex* whichP)

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.
whichP: Pointer to store the norm type (possible values are 0, 1, 2, or GRB__INFINITY).

GRBModel::getGenConstrindicator

Retrieve the data associated with a general constraint of type INDICATOR. Calling this method
for a general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrIndicator for a description of the semantics of this general constraint

type.

void getGenConstrIndicator (GRBGenConstr genc,
GRBVarx* binvarP,
intx* binvalP,
GRBLinExpr* exprP,
charx senseP,
doublex rhsP)

184

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
binvarP: Pointer to store the binary indicator variable of the constraint.
binvalP: Pointer to store the value that the indicator variable has to take in order to trigger
the linear constraint.
exprP: Pointer to a GRBLinExpr object to store the left-hand side expression of the linear
constraint that is triggered by the indicator.
senseP: Pointer to store the sense for the linear constraint. Options are GRB_LESS_EQUAL,
GRB_EQUAL, or GRB_GREATER_EQUAL.
rhsP: Pointer to store the right-hand side value for the linear constraint.

GRBModel::getGenConstrPWL

Retrieve the data associated with a general constraint of type PWL. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the xpts and ypts arguments. The routine returns the length
for the xpts and ypts arrays in nptsP. That allows you to make certain that the xpts and ypts
arrays are of sufficient size to hold the result of the second call.

See also addGenConstrPWL for a description of the semantics of this general constraint type.

void getGenConstrPWL (GRBGenConstr genc,
GRBVarx* xvarP,
GRBVarx* yvarP,
int* nptsP,
doublex* xpts,
doublex* ypts)

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.
nptsP: Pointer to store the number of points that define the piecewise-linear function.
xpts: The z values for the points that define the piecewise-linear function.
ypts: The y values for the points that define the piecewise-linear function.

GRBModel::getGenConstrPoly

Retrieve the data associated with a general constraint of type POLY. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the p argument. The routine returns the length of the p array in

185

plenP. That allows you to make certain that the p array is of sufficient size to hold the result of
the second call.
See also addGenConstrPoly for a description of the semantics of this general constraint type.

void getGenConstrPoly (GRBGenConstr genc,

GRBVarx* xvarP,
GRBVarx* yvarP,
int* plenP,
doublex* p)

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.
plenP: Pointer to store the array length for p. If 2¢ is the highest power term, then d + 1
will be returned.
p: The coeflicients for polynomial function.

GRBModel::getGenConstrExp

Retrieve the data associated with a general constraint of type EXP. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrExp for a description of the semantics of this general constraint type.

void getGenConstrExp (GRBGenConstr genc,
GRBVarx* xvarP,
GRBVar* yvarP)
Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.

GRBModel::getGenConstrExpA

Retrieve the data associated with a general constraint of type EXPA. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrExpA for a description of the semantics of this general constraint type.

void getGenConstrExpA (GRBGenConstr genc,

GRBVarx* xvarP,
GRBVarx* yvarP,
doublex* aP)

186

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.
aP: Pointer to store the base of the function.

GRBModel::getGenConstrLog

Retrieve the data associated with a general constraint of type LOG. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrLog for a description of the semantics of this general constraint type.

void getGenConstrLog (GRBGenConstr genc,
GRBVarx* xvarP,
GRBVar* yvarP)
Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.

GRBModel::getGenConstrLogA

Retrieve the data associated with a general constraint of type LOGA. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrLogA for a description of the semantics of this general constraint type.

void getGenConstrLogA (GRBGenConstr genc,

GRBVarx* xvarP,
GRBVarx* yvarP,
doublex* aP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.
aP: Pointer to store the base of the function.

187

GRBModel::getGenConstrPow

Retrieve the data associated with a general constraint of type POW. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrPow for a description of the semantics of this general constraint type.

void getGenConstrPow (GRBGenConstr genc,

GRBVarx* xvarP,
GRBVarx* yvarP,
doublex* aP)

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.
aP: Pointer to store the exponent of the function.

GRBModel::getGenConstrSin

Retrieve the data associated with a general constraint of type SIN. Calling this method for a general
constraint of a different type leads to an exception. You can query the GenConstrType attribute
to determine the type of the general constraint.

See also addGenConstrSin for a description of the semantics of this general constraint type.

void getGenConstrSin (GRBGenConstr genc,
GRBVarx* xvarP,
GRBVar* yvarP)
Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.

GRBModel::getGenConstrCos

Retrieve the data associated with a general constraint of type COS. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrCos for a description of the semantics of this general constraint type.

void getGenConstrCos (GRBGenConstr genc,
GRBVarx* xvarP,
GRBVarx* yvarP)
Arguments:

188

genc: The general constraint object.
Any of the following arguments can be NULL.

xvarP: Pointer to store the x variable.

yvarP: Pointer to store the y variable.

GRBModel::getGenConstrTan

Retrieve the data associated with a general constraint of type TAN. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrTan for a description of the semantics of this general constraint type.

void getGenConstrTan (GRBGenConstr genc,
GRBVarx* xvarP,
GRBVar* yvarP)
Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.

GRBModel::getGenConstrs()

Retrieve an array of all general constraints in the model.

| GRBGenConstr* getGenConstrs ()
Return value:
An array of all general constraints in the model. Note that this array is heap-allocated, and
must be returned to the heap by the user.

GRBModel::getJSONSolution()

After a call to optimize, this method returns the resulting solution and related model attributes as
a JSON string. Please refer to the JSON solution format section for details.

| getJSONSolution GRBModel ()
Return value:
A JSON string.

189

GRBModel::getMultiobjEnv()

Create/retrieve a multi-objective environment for the objective with the given index. This envi-
ronment enables fine-grained control over the multi-objective optimization process. Specifically, by
changing parameters on this environment, you modify the behavior of the optimization that occurs
during the corresponding pass of the multi-objective optimization.

Each multi-objective environment starts with a copy of the current model environment.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.

Use discardMultiobjEnvs to discard multi-objective environments and return to standard be-
havior.

| GRBEnv getMultiobjEnv (int index)

Arguments:
index: The objective index.
Return value:
The multi-objective environment for the model.

GRBModel::getObjective()

Retrieve the optimization objective(s).

| GRBQuadExpr getObjective ()
Retrieve the optimization objective.
Note that the constant and linear portions of the objective can also be retrieved using the
ObjCon and Obj attributes.
Return value:
The model objective.

| GRBLinExpr getObjective (int index)

Retrieve an alternative optimization objective. Alternative objectives will always be linear. You
can also use this routine to retrieve the primary objective (using index = 0), but you will get an
exception if the primary objective contains quadratic terms.

Please refer to the discussion of Multiple Objectives for more information on the use of alter-
native objectives.

Note that alternative objectives can also be retrieved using the ObjNCon and ObjN attributes.

Arguments:

index: The index for the requested alternative objective.
Return value:
The requested alternate objective.

190

GRBMaodel::getPWLObj()

Retrieve the piecewise-linear objective function for a variable. The return value gives the number
of points that define the function, and the x and y arguments give the coordinates of the points,
respectively. The x and y arguments must be large enough to hold the result. Call this method
with NULL values for x and y if you just want the number of points.

Refer to this discussion for additional information on what the values in z and y mean.

int getPWLObj (GRBVar var,
double[] x,
double[] 1y)
Arguments:
var: The variable whose objective function is being retrieved.
x: The x values for the points that define the piecewise-linear function. These will always
be in non-decreasing order.
y: The y values for the points that define the piecewise-linear function.
Return value:
The number of points that define the piecewise-linear objective function.

GRBModel::getQCRow()

Retrieve the left-hand side expression from a quadratic constraint. The result is returned as a
GRBQuadExpr object.

‘GRBQuadExpr getQCRow (GRBQConstr qconstr)

Arguments:
gconstr: The quadratic constraint of interest.
Return value:
A GRBQuadExpr object that captures the left-hand side of the quadratic constraint.

GRBModel::getQConstrs()

Retrieve an array of all quadratic constraints in the model.

‘ GRBQConstr* getQConstrs ()
Return value:
An array of all quadratic constraints in the model. Note that this array is heap-allocated,
and must be returned to the heap by the user.

191

GRBModel::getRow()

Retrieve a list of variables that participate in a constraint, and the associated coefficients. The
result is returned as a GRBLinExpr object.

GRBLinExpr getRow (GRBConstr constr)

Arguments:
constr: The constraint of interest. A GRBConstr object, typically obtained from addConstr
or getConstrs.
Return value:
A GRBLinExpr object that captures the set of variables that participate in the constraint.

GRBModel::getSOS()

Retrieve the list of variables that participate in an SOS constraint, and the associated coeflicients.
The return value is the length of this list. If you would like to allocate space for the result before
retrieving the result, call the method first with NULL array arguments to determine the appropriate

array lengths.

int getSOS (GRBSOS sos,
GRBVar* vars,
double* weights,
int* typeP)
Arguments:
sos: The SOS set of interest.
vars: A list of variables that participate in sos.
weights: The SOS weights for each participating variable.
typeP: The type of the SOS set (either GRB_SOS_TYPE1 or GRB_SOS_TYPE2).
Return value:
The length of the result arrays.

GRBModel::getSOSs()

Retrieve an array of all SOS constraints in the model.

| GRBSOS* getS0Ss ()

Return value:
An array of all SOS constraints in the model. Note that this array is heap-allocated, and
must be returned to the heap by the user.

192

GRBModel::get TuneResult()

Use this method to retrieve the results of a previous tune call. Calling this method with argument
n causes tuned parameter set n to be copied into the model. Parameter sets are stored in order of
decreasing quality, with parameter set 0 being the best. The number of available sets is stored in
attribute TuneResultCount.

Once you have retrieved a tuning result, you can call optimize to use these parameter settings
to optimize the model, or write to write the changed parameters to a .prm file.

Please refer to the parameter tuning section for details on the tuning tool.

void getTuneResult (int =n)

n: The index of the tuning result to retrieve. The best result is available as index 0. The
number of stored results is available in attribute TuneResultCount.

GRBModel::getVarByName()

Retrieve a variable from its name. If multiple variables have the same name, this method chooses
one arbitrarily.

| GRBVar getVarByName (const string& name)

Arguments:

name: The name of the desired variable.
Return value:

The requested variable.

GRBModel::getVars()

Retrieve an array of all variables in the model.

| GRBVar* getVars ()
Return value:
An array of all variables in the model. Note that this array is heap-allocated, and must be
returned to the heap by the user.

GRBModel::optimize()

Optimize the model. The algorithm used for the optimization depends on the model type (simplex
or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful completion,
this method will populate the solution related attributes of the model. See the Attributes section
for more information on attributes.

Please consult this section for a discussion of some of the practical issues associated with solving
a precisely defined mathematical model using finite-precision floating-point arithmetic.

Note that this method will process all pending model modifications.

193

| void optimize ()

GRBModel::optimizeasync()

Optimize a model asynchronously. This routine returns immediately. Your program can perform
other computations while optimization proceeds in the background. To check the state of the
asynchronous optimization, query the Status attribute for the model. A value of IN_PROGRESS
indicates that the optimization has not yet completed. When you are done with your foreground
tasks, you must call sync to sync your foreground program with the asynchronous optimization
task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in
the background is severely limited. Specifically, you can only perform attribute queries, and only
for a few attributes (listed below). Any other calls on the running model, or on any other models that
were built within the same Gurobi environment, will fail with error code OPTIMIZATION_IN_PROGRESS.

Note that there are no such restrictions on models built in other environments. Thus, for
example, you could create multiple environments, and then have a single foreground program
launch multiple simultaneous asynchronous optimizations, each in its own environment.

As already noted, you are allowed to query the value of the Status attribute while an asyn-
chronous optimization is in progress. The other attributes that can be queried are: ObjVal, Ob-
jBound, IterCount, NodeCount, and BarlterCount. In each case, the returned value reflects progress
in the optimization to that point. Any attempt to query the value of an attribute not on this list
will return an OPTIMIZATION_IN_PROGRESS error.

| void optimizeasync ()

GRBModel::optimizeBatch()

Submit a new batch request to the Cluster Manager. Returns the BatchID (a string), which
uniquely identifies the job in the Cluster Manager and can be used to query the status of this
request (from this program or from any other). Once the request has completed, the BatchID can
also be used to retrieve the associated solution. To submit a batch request, you must tag at least
one element of the model by setting one of the VTag, CTag or QCTag attributes. For more details
on batch optimization, please refer to the Batch Optimization section.

Note that this routine will process all pending model modifications.

| string optimizeBatch ()
Example usage:

GRBModel::presolve()

Perform presolve on a model.

| GRBModel presolve ()
Return value:
Presolved version of original model.

194

GRBModel::read()

This method is the general entry point for importing data from a file into a model. It can be used
to read basis files for continuous models, start vectors for MIP models, or parameter settings. The
type of data read is determined by the file suffix. File formats are described in the File Format
section.

Note that this is not the method to use if you want to read a new model from a file. For that,
use the GRBModel constructor. One variant of the constructor takes the name of the file that
contains the new model as its argument.

‘ void read (const string& filename)

Arguments:
filename: Name of the file to read. The suffix on the file must be either .bas (for an LP
basis), .mst or .sol (for a MIP start), .hnt (for MIP hints), .ord (for a priority order),
or .prm (for a parameter file). The suffix may optionally be followed by .zip, .gz, .bz2,

or .7z.

GRBModel::remove()

Remove a variable, constraint, or SOS from a model.

‘void remove (GRBConstr constr)

Remove a linear constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel::update), optimize
the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

Arguments:

constr: The linear constraint to remove.

‘void remove (GRBGenConstr genconstr)

Remove a general constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel::update), optimize
the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

Arguments:

genconstr: The general constraint to remove.

‘void remove (GRBQConstr qconstr)

Remove a quadratic constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel::update), optimize
the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

195

Arguments:
qgconstr: The quadratic constraint to remove.

| void remove (GRBSOS sos)

Remove an SOS constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel::update), optimize
the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

Arguments:

sos: The SOS constraint to remove.

‘void remove (GRBVar var)

Remove a variable from the model. Note that, due to our lazy update approach, the change
won’t actually take effect until you update the model (using GRBModel::update), optimize the
model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

Arguments:

var: The variable to remove.

GRBModel::reset()

‘void reset (int clearall=0)

Reset the model to an unsolved state, discarding any previously computed solution information.
Note that, due to our lazy update approach, the change won’t actually take effect until you update
the model (using GRBModel::update), optimize the model (using GRBModel::optimize), or write
the model to disk (using GRBModel::write).

clearall (optional): A value of 1 discards additional information that affects the solution
process but not the actual model (currently MIP starts, variable hints, branching priorities,
lazy flags, and partition information). The default value of 0 just discards the solution.

Arguments:

GRBModel::setCallback()

Set the callback object for a model. The callback() method on this object will be called period-
ically from the Gurobi solver. You will have the opportunity to obtain more detailed information
about the state of the optimization from this callback. See the documentation for GRBCallback
for additional information.

Note that a model can only have a single callback method, so this call will replace an existing
callback. To disable a previously set callback, call this method with a NULL argument.

| void setCallback (GRBCallback* cb)

196

GRBModel::set()

Set the value(s) of a parameter or attribute. Use this method for parameters, for scalar model
attributes, and for arrays of constraint or variable attributes.

void set (GRB_DoubleParam param,
double newvalue)

Set the value of a double-valued parameter.

The difference between setting a parameter on a model and setting it on an environment (i.e.,
through GRBEnv::set) is that the former modifies the parameter for a single model, while the
latter modifies the parameter for every model that is subsequently built using that environment
(and leaves the parameter unchanged for models that were previously built using that environment).

Arguments:

param: The parameter being modified.
newvalue: The desired new value for the parameter.

void set (GRB_IntParam param,
int newvalue)

Set the value of an int-valued parameter.

The difference between setting a parameter on a model and setting it on an environment (i.e.,
through GRBEnv::set) is that the former modifies the parameter for a single model, while the
latter modifies the parameter for every model that is subsequently built using that environment
(and leaves the parameter unchanged for models that were previously built using that environment).

Arguments:

param: The parameter being modified.
newvalue: The desired new value for the parameter.

void set (GRB_StringParam param,
string newvalue)

Set the value of a string-valued parameter.

The difference between setting a parameter on a model and setting it on an environment (i.e.,
through GRBEnv::set) is that the former modifies the parameter for a single model, while the
latter modifies the parameter for every model that is subsequently built using that environment
(and leaves the parameter unchanged for models that were previously built using that environment).

Arguments:

param: The parameter being modified.
newvalue: The desired new value for the parameter.

void set (GRB_CharAttr attr,
const GRBVar* vars,

charx newvalues,
int count)
Set a char-valued variable attribute for an array of variables.

Arguments:

197

attr: The attribute being modified.

vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

void set (GRB_CharAttr attr,
const GRBConstr* constrs,
charx newvalues,
int count)
Set a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.

constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

void set (GRB_CharAttr attr,
const GRBQConstr* qconstrs,
charx* newvalues,
int count)
Set a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.

constrs: An array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
count: The number of quadratic constraint attributes to set.

void set (GRB_DoubleAttr attr,
double newvalue)
Set the value of a double-valued model attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void set (GRB_DoubleAttr attr,
const GRBVar* vars,

doublex* newvalues,
int count)
Set a double-valued variable attribute for an array of variables.

Arguments:
attr: The attribute being modified.
vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

198

void

set (GRB_DoubleAttr attr,
const GRBConstr* constrs,
doublex* newvalues,
int count)

Set a double-valued constraint attribute for an array of constraints.
Arguments:

void

attr: The attribute being modified.

constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

set (GRB_DoubleAttr attr,
const GRBQConstr* qconstrs,
doublex* newvalues,
int count)

Set a double-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

void

attr: The attribute being modified.

constrs: An array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
count: The number of quadratic constraint attributes to set.

set (GRB_IntAttr attr,
int newvalue)

Set the value of an int-valued model attribute.
Arguments:

void

attr: The attribute being modified.
newvalue: The desired new value for the attribute.

set (GRB_IntAttr attr,
const GRBVar* vars,
intx* newvalues,
int count)

Set an int-valued variable attribute for an array of variables.
Arguments:

void

attr: The attribute being modified.

vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

set (GRB_IntAttr attr,
const GRBConstr* constrs,
intx* newvalues,
int count)

199

Set an int-valued constraint attribute for an array of constraints.

Arguments:
attr: The attribute being modified.
constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

void set (GRB_StringAttr attr,
string newvalue)
Set the value of a string-valued model attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void set (GRB_StringAttr attr,
const GRBVar* vars,

string* newvalues,
int count)
Set a string-valued variable attribute for an array of variables.

Arguments:
attr: The attribute being modified.
vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

void set (GRB_StringAttr attr,
const GRBConstr* constrs,

stringk* newvalues,
int count)
Set a string-valued constraint attribute for an array of constraints.

Arguments:
attr: The attribute being modified.
constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

void set (GRB_StringAttr attr,
const GRBQConstr* qconstrs,
string* newvalues,
int count)
Set a string-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.

constrs: An array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
count: The number of quadratic constraint attributes to set.

200

GRBModel::setObjective()

Set the model objective equal to a linear or quadratic expression (for multi-objective optimization,
see setObjectiveN).

Note that you can also modify the linear portion of a model objective using the Obj variable
attribute. If you wish to mix and match these two approaches, please note that this method replaces
the entire existing objective, while the 0bj attribute can be used to modify individual linear terms.

void setObjective (GRBLinExpr linexpr,
int sense=0)
Arguments:
linexpr: New linear model objective.
sense (optional): Optimization sense (GRB_MINIMIZE for minimization, GRB_MAXIMIZE
for maximization). Omit this argument to use the ModelSense attribute value to determine
the sense.

void setObjective (GRBQuadExpr quadexpr,
int sense=0)
Arguments:
quadexpr: New quadratic model objective.
sense (optional): Optimization sense (GRB_MINIMIZE for minimization, GRB_MAXIMIZE
for maximization). Omit this argument to use the ModelSense attribute value.

GRBModel::setObjectiveN()

void setObjectiveN (GRBLinExpr expr,
int index,
int priority=0,
double weight=1,
double abstol=0,
double reltol=0,
string name="")

Set an alternative optimization objective equal to a linear expression.

Please refer to the discussion of Multiple Objectives for more information on the use of alter-
native objectives.

Note that you can also modify an alternative objective using the ObjN variable attribute. If
you wish to mix and match these two approaches, please note that this method replaces the entire
existing objective, while the 0bjN attribute can be used to modify individual terms.

Arguments:

expr: New alternative objective.

index: Index for new objective. If you use an index of 0, this routine will change the primary
optimization objective.

priority: Priority for the alternative objective. This initializes the ObjNPriority attribute
for this objective.

201

weight: Weight for the alternative objective. This initializes the ObjNWeight attribute for
this objective.

abstol: Absolute tolerance for the alternative objective. This initializes the ObjNAbsTol
attribute for this objective.

reltol: Relative tolerance for the alternative objective. This initializes the ObjNRelTol
attribute for this objective.

name: Name of the alternative objective. This initializes the ObjNName attribute for this
objective.

GRBModel::setPWLObj()

Set a piecewise-linear objective function for a variable.

The arguments to this method specify a list of points that define a piecewise-linear objective
function for a single variable. Specifically, the z and y arguments give coordinates for the vertices
of the function.

For additional details on piecewise-linear objective functions, refer to this discussion.

void setPWLObj (GRBvar var,
int npoints,
double[] x,
double[] 1y)
Set the piecewise-linear objective function for a variable.
Arguments:
var: The variable whose objective function is being set.
npoints: Number of points that define the piecewise-linear function.
x: The x values for the points that define the piecewise-linear function. Must be in non-
decreasing order.
y: The y values for the points that define the piecewise-linear function.

GRBModel::singleScenarioModel()

Capture a single scenario from a multi-scenario model. Use the ScenarioNumber parameter to
indicate which scenario to capture.

The model on which this method is invoked must be a multi-scenario model, and the result will
be a single-scenario model.

| GRBModel singleScenarioModel ()
Return value:
Model for a single scenario.

GRBModel::sync()

Wait for a previous asynchronous optimization call to complete.
Calling optimizeasync returns control to the calling routine immediately. The caller can perform
other computations while optimization proceeds, and can check on the progress of the optimization

202

by querying various model attributes. The sync call forces the calling program to wait until the
asynchronous optimization call completes. You must call sync before the corresponding model
object is deleted.

The sync call throws an exception if the optimization itself ran into any problems. In other
words, exceptions thrown by this method are those that optimize itself would have thrown, had
the original method not been asynchronous.

Note that you need to call sync even if you know that the asynchronous optimization has
already completed.

| void sync ()

GRBModel::terminate()

Generate a request to terminate the current optimization. This method can be called at any time
during an optimization (from a callback, from another thread, from an interrupt handler, etc.).
Note that, in general, the request won’t be acted upon immediately.

When the optimization stops, the Status attribute will be equal to GRB_INTERRUPTED.

| void terminate ()

GRBModel::tune()

Perform an automated search for parameter settings that improve performance. Upon completion,
this method stores the best parameter sets it found. The number of stored parameter sets can be
determined by querying the value of the TuneResultCount attribute. The actual settings can be
retrieved using getTuneResult.

Please refer to the parameter tuning section for details on the tuning tool.

| void tune ()

GRBModel::update()

Process any pending model modifications.

‘ void wupdate ()

GRBModel::write()

This method is the general entry point for writing optimization data to a file. It can be used to
write optimization models, solutions vectors, basis vectors, start vectors, or parameter settings.
The type of data written is determined by the file suffix. File formats are described in the File
Format section.

Note that writing a model to a file will process all pending model modifications. However,
writing other model information (solutions, bases, etc.) will not.

203

Note also that when you write a Gurobi parameter file (PRM), both integer or double parameters
not at their default value will be saved, but no string parameter will be saved into the file.

void write (const string& filename)

Arguments:

filename: The name of the file to be written. The file type is encoded in the file name
suffix. Valid suffixes are .mps, .rew, .1p, or .rlp for writing the model itself, .dua or .d1lp
for writing the dualized model (only pure LP), .ilp for writing just the IIS associated
with an infeasible model (see GRBModel::computellS for further information), .sol for
writing the solution selected by the SolutionNumber parameter, .mst for writing a start
vector, .hnt for writing a hint file, .bas for writing an LP basis, . prm for writing modified
parameter settings, .attr for writing model attributes, or .json for writing solution
information in JSON format. If your system has compression utilities installed (e.g., 7z
or zip for Windows, and gzip, bzip2, or unzip for Linux or macOS), then the files can
be compressed, so additional suffixes of .gz, .bz2, or .7z are accepted.

204

4.3 GRBVar

Gurobi variable object. Variables are always associated with a particular model. You create a
variable object by adding a variable to a model (using GRBModel::addVar), rather than by using

a GRBVar constructor.

The methods on variable objects are used to get and set variable attributes.

For example,

solution information can be queried by calling get(GRB_DoubleAttr_X). Note that you can also
query attributes for a set of variables at once. This is done using the attribute query method on

the GRBModel object (GRBModel::get).

GRBVar::get()

Query the value of a variable attribute.

| char get (GRB_CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| double get (GRB_DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| int get (GRB_IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| string get (GRB_StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

205

GRBVar::index()

| int index ()
This method returns the current index, or order, of the variable in the underlying constraint
matrix.
Return value:
-2: removed, -1: not in model, otherwise: index of the variable in the model
Note that the index of a variable may change after subsequent model modifications.

GRBVar::sameAs()

‘bool sameAs (GRBVar var2)

Check whether two variable objects refer to the same variable.
Arguments:
var2: The other variable.
Return value:
Boolean result indicates whether the two variable objects refer to the same model variable.

GRBVar::set()

Set the value of a variable attribute.

void set (GRB_CharAttr attr,
char newvalue)
Set the value of a char-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_DoubleAttr attr,
double newvalue)
Set the value of a double-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_IntAttr attr,
int newvalue)
Set the value of an int-valued attribute.
Arguments:
attr: The attribute being modified.

206

newvalue: The desired new value of the attribute.

void set (GRB_StringAttr attr,
const string& newvalue)
Set the value of a string-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

207

4.4 GRBConstr

Gurobi constraint object. Constraints are always associated with a particular model. You create
a constraint object by adding a constraint to a model (using GRBModel::addConstr), rather than
by using a GRBConstr constructor.

The methods on constraint objects are used to get and set constraint attributes. For example,
constraint right-hand sides can be queried by calling get(GRB_DoubleAttr_RHS). Note that you
can also query attributes for a set of constraints at once. This is done using the attribute query
method on the GRBModel object (GRBModel::get).

GRBConstr::get()

Query the value of a constraint attribute.

| char get (GRB_CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| double get (GRB_DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| int get (GRB_IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| string get (GRB_StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

208

GRBConstr::index()

| int index ()
This method returns the current index, or order, of the constraint in the underlying constraint
matrix.
Note that the index of a constraint may change after subsequent model modifications.
Return value:
-2: removed, -1: not in model, otherwise: index of the constraint in the model

GRBConstr::sameAs()

‘bool sameAs (GRBConstr constr2)

Check whether two constraint objects refer to the same constraint.

Arguments:
constr2: The other constraint.

Return value:
Boolean result indicates whether the two constraint objects refer to the same model con-
straint.

GRBConstr::set()

Set the value of a constraint attribute.

void set (GRB_CharAttr attr,
char newvalue)
Set the value of a char-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_DoubleAttr attr,
double newvalue)
Set the value of a double-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_IntAttr attr,
int newvalue)
Set the value of an int-valued attribute.
Arguments:

209

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_StringAttr attr,
const string& newvalue)
Set the value of a string-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

210

4.5 GRBQConstr

Gurobi quadratic constraint object. Quadratic constraints are always associated with a partic-
ular model. You create a quadratic constraint object by adding a constraint to a model (using

GRBModel::addQConstr), rather than by using a GRBQConstr constructor.

The methods on quadratic constraint objects are used to get and set quadratic constraint

attributes. For example, quadratic constraint right-hand sides can be queried by calling

get(GRB_DoubleAttr_QCRHS). Note, however, that it is generally more efficient to query attributes
for a set of constraints at once. This is done using the attribute query method on the GRBModel

object (GRBModel::get).

GRBQConstr::get()

Query the value of a quadratic constraint attribute.

‘char get (GRB_CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| double get (GRB_DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| int get (GRB_IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

‘string get (GRB_StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

211

attr: The attribute being queried.
Return value:
The current value of the requested attribute.

GRBQConstr::set()

Set the value of a quadratic constraint attribute.

void set (GRB_CharAttr attr,
char newvalue)
Set the value of a char-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_DoubleAttr attr,
double newvalue)
Set the value of a double-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_IntAttr attr,
int newvalue)
Set the value of an int-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_StringAttr attr,
const string& newvalue)
Set the value of a string-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

212

4.6 GRBSOS

Gurobi SOS constraint object. SOS constraints are always associated with a particular model.
You create an SOS object by adding an SOS constraint to a model (using GRBModel::addSOS),
rather than by using a GRBSOS constructor. Similarly, SOS constraints are removed using the

GRBModel::remove method.

An SOS constraint can be of type 1 or 2 (GRB_SOS_TYPE1 or GRB_SOS_TYPE2). A type 1 SOS
constraint is a set of variables for which at most one variable in the set may take a value other than
zero. A type 2 SOS constraint is an ordered set of variables where at most two variables in the set
may take non-zero values. If two take non-zero values, they must be contiguous in the ordered set.

SOS constraint objects have one attribute, IISS0S, which can be queried with the GRBSOS::get

method.

GRBSO0S::get()
Query the value of an SOS attribute.

| int get (GRB_IntAttr attr)

Arguments:
attr: The attribute being queried.
Return value:
The current value of the requested attribute.

GRBSOS::set()

Set the value of an SOS attribute.

void set (GRB_IntAttr attr,
int newvalue)
Set the value of an int-valued attribute.
Arguments:
attr: The attribute being modified.

newvalue: The desired new value of the attribute.

213

4.7 GRBGenConstr

Gurobi general constraint object. General constraints are always associated with a particular
model. You create a general constraint object by adding a constraint to a model (using one of the
GRBModel::addGenConstrXxx methods), rather than by using a GRBGenConstr constructor.

The methods on general constraint objects are used to get and set general constraint attributes.
For example, general constraint types can be queried by calling
get(GRB_IntAttr_GenConstrType). Note, however, that it is generally more efficient to query
attributes for a set of constraints at once. This is done using the attribute query method on the
GRBModel object (GRBModel::get).

GRBGenConstr::get()

Query the value of a general constraint attribute.

| double get (GRB_DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| int get (GRB_IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

‘string get (GRB_StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBGenConstr::set()

Set the value of a general constraint attribute.

void set (GRB_DoubleAttr attr,
double newvalue)

214

Set the value of a double-valued attribute.
Arguments:
attr: The attribute being modified.

newvalue: The desired new value of the attribute.

void set (GRB_IntAttr attr,
int newvalue)
Set the value of an int-valued attribute.
Arguments:
attr: The attribute being modified.

newvalue: The desired new value of the attribute.

void set (GRB_StringAttr attr,
const string& newvalue)
Set the value of a string-valued attribute.
Arguments:
attr: The attribute being modified.

newvalue: The desired new value of the attribute.

215

4.8 GRBExpr

Abstract base class for the GRBLinExpr and GRBQuadExpr classes. Expressions are used to build
objectives and constraints. They are temporary objects that typically have short lifespans.

GRBExpr::getValue()

Compute the value of an expression for the current solution.

| double getValue ()
Return value:
Value of the expression for the current solution.

216

4.9 GRBLinExpr

Gurobi linear expression object. A linear expression consists of a constant term, plus a list of
coefficient-variable pairs that capture the linear terms. Linear expressions are used to build con-
straints. They are temporary objects that typically have short lifespans.

The GRBLinExpr class is a sub-class of the abstract base class GRBExpr.

You generally build linear expressions using overloaded operators. For example, if x is a GRB-
Var object, then x + 1 is a GRBLinExpr object. Expressions can be built from constants (e.g.,
expr = 0), variables (e.g.,expr = 1 * x + 2 * y), or from other expressions (e.g., expr2 = 2 * exprl + x,
or expr3 = exprl + 2 * expr2). You can also modify existing expressions (e.g., expr += x, or
expr2 -= exprl).

Another option for building expressions is to use the addTerms method, which adds an array
of new terms at once. Terms can also be removed from an expression, using remove.

Note that the cost of building expressions depends heavily on the approach you use. While
you can generally ignore this issue when building small expressions, you should be aware of a few
efficiency issues when building large expressions:

e You should avoid using expr = expr + xin aloop. It will lead to runtimes that are quadratic
in the number of terms in the expression.

e Using expr += x (or expr -= x) is much more efficient than expr = expr + x. Building a
large expression by looping over += statements is reasonably efficient, but it isn’t the most
efficient approach.

e The most efficient way to build a large expression is to make a single call to addTerms.

To add a linear constraint to your model, you generally build one or two linear expression
objects (exprl and expr2) and then use an overloaded comparison operator to build an argument
for GRBModel::addConstr. To give a few examples:

model.addConstr(exprl <= expr2)
model.addConstr(exprl == 1)
model.addConstr(2 x x + 3 xy <= 4)

Once you add a constraint to your model, subsequent changes to the expression object you used to
build the constraint will not change the constraint (you would use GRBModel::chgCoeff for that).
Individual terms in a linear expression can be queried using the getVar, getCoeff, and getCon-
stant methods. You can query the number of terms in the expression using the size method.
Note that a linear expression may contain multiple terms that involve the same variable. These
duplicate terms are merged when creating a constraint from an expression, but they may be visible
when inspecting individual terms in the expression (e.g., when using getVar).

GRBLinExpr()

Linear expression constructor. Create a constant expression or an expression with one term.

GRBLinExpr GRBLinExpr (double constant=0.0)

217

Create a constant linear expression.
Arguments:

constant (optional): Constant value for expression.
Return value:

A constant expression object.

GRBLinExpr GRBLinExpr (GRBVar var,
double coeff=1.0)

Create an expression with one term.
Arguments:

var: Variable for expression term.

coeff (optional): Coefficient for expression term.
Return value:

An expression object containing one linear term.

GRBLinExpr::addTerms()

Add new terms into a linear expression.

void addTerms (const double* coeffs,
const GRBVar* vars,
int count)
Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.
count: Number of terms to add to the expression.

GRBLinExpr::clear()

Set a linear expression to 0.
You should use the overloaded expr = 0 instead. The clear method is mainly included for
consistency with our interfaces to non-overloaded languages.

‘ void clear ()

GRBLinExpr::getConstant()

Retrieve the constant term from a linear expression.

| double getConstant ()
Return value:
Constant from expression.

218

GRBLinExpr::getCoeff()

Retrieve the coefficient from a single term of the expression.

| double getCoeff (int i)

Arguments:
i: Index for coefficient of interest.
Return value:
Coefficient for the term at index i in the expression.

GRBLinExpr::getValue()

Compute the value of a linear expression for the current solution.

| double getValue ()
Return value:
Value of the expression for the current solution.

GRBLinExpr::getVar()

Retrieve the variable object from a single term of the expression.

‘GRBVar getVar (int i)

Arguments:
i: Index for term of interest.
Return value:
Variable for the term at index i in the expression.

GRBLinExpr::operator=

Set an expressi