GUROBI OPTIMIZER
REFERENCE MANUAL

GUROBI

OPTIMIZATION




1 Introduction 1
2 Detailed Release Notes 10 3
3 C API Overview 9
3.1 Environment Creation and Destruction . . . . . . . . .. ... ... ... .. ..... 13
GRBloadenv . . . . . . .. 13
GRBemptyenv . . . . . ..o 13
GRBstartenv . . . . . . . . e 13
GRBfreeenv . . . . . . . e 14
GRBgetconcurrentenv . . . .. ..o Lo oL 14
GRBgetmultiobjenv . . . . . ... Lo 14
GRBdiscardconcurrentenvs . . . . ... L0000 oo 15
GRBdiscardmultiobjenvs . . . . . ... L oo 15

3.2 Model Creation and Modification . . . . . . . . . ... ... . 0 16
GRBloadmodel . . . . . . . . .. 16
GRBnewmodel . . . . . ... 17
GRBcopymodel . . . . . .o 18
GRBaddconstr . . . . . ... 18
GRBaddconstrs . . . . . . ..o 19
GRBaddgenconstrXxx . . . . . . ... Lo 20
GRBaddgenconstrMax . . . . . . ... L L L o 20
GRBaddgenconstrMin . . . . . .. ..o L oo 21
GRBaddgenconstrAbs . . . . ... .o 22
GRBaddgenconstrAnd . . . . .. ..o 22
GRBaddgenconstrOr . . . . . . . ... 23
GRBaddgenconstrNorm . . . . . . . . . ... 23
GRBaddgenconstrIndicator . . . . . . . ... 24
GRBaddgenconstrPWL . . . . ... oL 25
GRBaddgenconstrPoly . . . . . . ..o oo 25
GRBaddgenconstrExp . . . . . ..o o 26
GRBaddgenconstrExpA . . . . . ..o o 27
GRBaddgenconstrLog . . . . . . . ... oo 27
GRBaddgenconstrLogA . . . . . . . .. 28
GRBaddgenconstrLogistic . . . . . . . ... Lo oo 28
GRBaddgenconstrPow . . . . . ... oo 29
GRBaddgenconstrSin . . . . ... oL Lo 30
GRBaddgenconstrCos . . . . . . . . .. 30
GRBaddgenconstrTan . . . . . . . . . ... 31

Contents



GRBaddqconstr . . . . ..o 32

GRBaddgpterms . . . . . . ... 33
GRBaddrangeconstr . . . . . . .. . L Lo 33
GRBaddrangeconstrs . . . . . . . ... 34
GRBaddsos . . . . . .. 35
GRBaddvar . . . . . . . . 36
GRBaddvars . . . . . ... 37
GRBchgeoeffs . . . . . . . 37
GRBdelconstrs . . . . . ... 38
GRBdelgenconstrs . . . . . ..o 38
GRBdelq . . . . . . e 39
GRBdelqconstrs . . . . . ..o 39
GRBdelsos . . . . . . 39
GRBdelvars . . . . . . . e e 40
GRBsetobjectiven . . . . . ... Lo 40
GRBsetpwlobj . . . . . . 41
GRBupdatemodel . . . . . . ... 42
GRBfreemodel . . . . . . ... 42
GRBXaddconstrs . . . . . . ..o 42
GRBXaddrangeconstrs . . . . . . . .. ... 43
GRBXaddvars . . . . . ... 44
GRBXchgeoeffs . . . . . . . .o 45
GRBXloadmodel . . . . . . . ... 46
3.3 Model Solution . . . . . . . . 48
GRBoptimize . . . . . . . ... 48
GRBoptimizeasync . . . . . . ..o 48
GRBcomputellS . . . . . . . . .. 49
GRBfeasrelax . . . . . . . . . e 50
GRBfixmodel . . . . . . .. 51
GRBreset . . . . . . e 51
GRBsync . . . . . 51
3.4 Model Queries . . . ... e 53
GRBgetcoeff . . . . . 53
GRBgetconstrbyname . . . . .. ... L 53
GRBgetconstrs . . . . . ... 53
GRBgetenv . . . . . .. 54
GRBgetgenconstrMax . . . . . ... oL L 54
GRBgetgenconstrMin . . . . . . ..o Lo 55
GRBgetgenconstrAbs . . . . ... 56
GRBgetgenconstrAnd . . . . ... Lo 56
GRBgetgenconstrOr . . . . . . . . .. 57
GRBgetgenconstrNorm . . . . . . . . ..o 58
GRBgetgenconstrindicator . . . . . .. ... L 59
GRBgetgenconstrPWL . . . . . . ... oo 60

GRBgetgenconstrPoly . . . . . . ... 60




GRBgetgenconstrExp . . . .. .. Lo 61

GRBgetgenconstrExpA . . . . ..o oo 62
GRBgetgenconstrLog . . . . . . ... 62
GRBgetgenconstrLogA . . . . . . ..o 63
GRBgetgenconstrLogistic . . . . . .. .. .o o L 63
GRBgetgenconstrPow . . . . ... oL 64
GRBgetgenconstrSin . . . . . . ..o oL 65
GRBgetgenconstrCos . . . . . . . .. 65
GRBgetgenconstrTan . . . . . . ... . L L L oo 66
GRBgetjsonsolution . . . . . .. ..o 66
GRBgetpwlobj . . . . . ..o 67
GRBgetq . . . . . o 67
GRBgetqconstr . . . . . .. oL 68
GRBgetqconstrbyname . . . . . ..o 68
GRBgetsos . . . . . .. 69
GRBgetvarbyname . . . . . . . ..o 69
GRBgetvars . . . . . . .. 70
GRBsinglescenariomodel . . . . . . .. ... L 70
GRBXgetconstrs . . . . . . .. oL 71
GRBXgetvars . . . . . . . .. 71
3.5 Input/Output . . . . . . . o e 73
GRBreadmodel . . . . . ... 73
GRBread . . . . . . .. 73
GRBwrite . . . . . . e e 73
3.6 Attribute Management . . . . . ... oL oL 75
GRBgetattrinfo . . . . . . . ..o 75
GRBgetintattr . . . . . . ... 75
GRBsetintattr . . . . . . ..o 76
GRBgetintattrelement . . . . . . . ... oL 76
GRBsetintattrelement . . . . . . ... L Lo 76
GRBgetintattrarray . . . . . . . ..o 7
GRBsetintattrarray . . . . . . ..o 7
GRBgetintattrlist . . . . . . . . ..o 78
GRBsetintattrlist . . . . . . ... 78
GRBgetdblattr . . . . . ... 79
GRBsetdblattr . . . . . . .. 79
GRBgetdblattrelement . . . . . . . ... oL 79
GRBsetdblattrelement . . . . . . . ..o o 80
GRBgetdblattrarray . . . . . . . . .. 80
GRBsetdblattrarray . . . . . . . . ... 81
GRBgetdblattrlist . . . . . . . . ... 81
GRBsetdblattrlist . . . . . ... 81
GRBgetcharattrelement . . . . . . . ... ... 82
GRBsetcharattrelement . . . . .. ... .. ... ... .. ... ... 82
GRBgetcharattrarray . . . . . . . . . .. 83

iii



GRBsetcharattrarray . . . . . . . . .. L L Lo 83

GRBgetcharattrlist . . . . . . . . ... 83
GRBsetcharattrlist . . . . . . . .. L L L 84
GRBgetstrattr . . . . . ... 84
GRBsetstrattr . . . . . ..o 85
GRBgetstrattrelement . . . . . . .. ..o 85
GRBsetstrattrelement . . . . . . ... L oo 86
GRBgetstrattrarray . . . . . . . ..o 86
GRBsetstrattrarray . . . . . . .. Lo 87
GRBgetstrattrlist . . . . . . . .. 87
GRBsetstrattrlist . . . . . . ... 88
GRBgetbatchattrinfo . . . . . . . . ... L o 88
3.7 Parameter Management and Tuning . . . . . . . . ... ... oL 89
GRBtunemodel . . . . . . ... 89
GRBgettuneresult . . . . . .. .. Lo 89
GRBgetdblparam . . . . . . ... 90
GRBgetintparam . . . . . . .. ..o 90
GRBgetstrparam . . . . . . ... 90
GRBsetdblparam . . . . . . . .. 91
GRBsetintparam . . . . . . ... 91
GRBsetstrparam . . . . . . .. .. 91
GRBgetdblparaminfo . . . . .. ... o oo 92
GRBgetintparaminfo . . . . . . . ... oL 92
GRBgetstrparaminfo . . . . . . ... Lo 93
GRBreadparams . . . . . . . . ... 93
GRBwriteparams . . . . . . . ... 94
3.8 Monitoring Progress - Logging and Callbacks . . . . . ... ... ... ... ..... 95
GRBmsg . . . . . 95
GRBsetcallbackfunc . . . . . ... oo 95
GRBgetcallbackfunc . . . . . ... ... 95
GRBcbget . . . . . o 96
GRBversion . . . . . . .. e e 96
3.9 Modifying Solver Behavior - Callbacks . . . . . . ... ... ... ... ... ..., . 97
GRBcbcut . . . . . . e e 97
GRBcblazy . . . . . . 97
GRBcbsolution . . . . . . . ... 98
GRBcbproceed . . . . . .. 99
GRBcbstoponemultiobj . . . . ... oo 99
GRBterminate . . . . . . . . L 100
3.10 Batch Requests . . . . . . . . . e 101
GRBabortbatch . . . . . . . ... 101
GRBdiscardbatch . . . . . . . . ... . 101
GRBfreebatch . . . . . . . ... 101
GRBgetbatch . . . . . . . .. 102

GRBgetbatchenv . . . . . . . ... 102




GRBgetbatchintattr . . . . . . . ... oL Lo 102

GRBgetbatchjsonsolution . . . . . . . .. ... oo 103
GRBgetbatchstrattr . . . . . . . . L Lo 103
GRBoptimizebatch . . . . . .. ..o 104
GRBretrybatch . . . . . . ..o 104
GRBupdatebatch . . . . . . ... 105
GRBwritebatchjsonsolution . . . . . . . ... .. oL 105

3.11 Error Handling . . . . . . . . . . o e 106
GRBgeterrormsg . . . . . ..o 106

3.12 Advanced simplex routines. . . . . . . .. ..o 107
GRBFSolve . . . . . . 107

GRBBSolve . . . . . . 107
GRBBinvColj . . . . . . . 108
GRBBinvRowi . . . . . ... 108
GRBgetBasisHead . . . . . . . .. 108

4 C++ API Overview 109
4.1 GRBEnv. . . . . 113
GRBEnv() . . . . . 113
GRBEnv:uget() . . . . . . . 114
GRBEnv:getErrorMsg() . . . . . . . . . Lo 114
GRBEnv::getParamInfo() . . . . ... ... ... ... L L 115
GRBEnvimessage() . . . . . . ..o 115
GRBEnv:readParams() . . . . . . . ... L o 116
GRBEnv:resetParams() . . . . . . ... Lo o 116
GRBEnv:set() . . . . o v o 116
GRBEnvustart() . . . ... 117
GRBEnv:uwriteParams() . . . . . . . ..o 117

4.2 GRBModel . . . . . 118
GRBModel() . . . . . o e 118
GRBModel::addConstr() . . . . . . .. ..o 118
GRBModel::addConstrs() . . . . . . o oo 120
GRBModel::addGenConstrXxx() . . . . . . ..o oo 121
GRBModel::addQConstr() . . . . . . . oL 129
GRBModel::addRange() . . . . . . . ... 130
GRBModel::addRanges() . . . . ... ... 131
GRBModel::addSOS() . . . . . . o oo 131
GRBModel::addVar() . . . . . ... 131
GRBModel::addVars() . . . . . ..o oo 133
GRBModel::chgCoeff() . . . . . . . .o oo 134
GRBModel::chgCoeffs() . . . . . .. oo o 134
GRBModel::computellS() . . . . ... ... oo 134
GRBModel::discardConcurrentEnvs() . . . . ... ... ... L. 135
GRBModel::discardMultiobjEnvs() . . . . . . .. ... ... o L. 135
GRBModel::feasRelax() . . . . . .. .. o 136
GRBModel::fixedModel() . . . . .. ... . 137




4.3 GRBVar

4.4 GRBConstr

GRBModel:iget() . . . . . . o 137
GRBModel::getCoeff() . . . . . . . . o oo 141
GRBModel::getCol() . . . . . . . .o o 141
GRBModel::getConcurrentEnv() . . . ... ... ... 0oL 141
GRBModel::getConstrByName() . . . . . . ... ... ... ... ....... 141
GRBModel::getConstrs() . . . . . . o oo 142
GRBModel::getGenConstrXxx() . . . . . .. .. ... ... 142
GRBModel::getGenConstrs() . . . . . . . oo oo 149
GRBModel::getJSONSolution() . . . . . . ... ... ... ... ... ... 149
GRBModel::getMultiobjEnv() . . . . . . . . ... o 149
GRBModel::getObjective() . . . . . . .. .. .. o 149
GRBModel::getPWLODbj() . . . . . . o o oo 150
GRBModel::getQCRow() . . . . . . ... 150
GRBModel::getQConstrs() . . . . . . oo 150
GRBModel::getRow() . . . . . . .. 151
GRBModel::getSOS() . . . . . o oo 151
GRBModel::getSOSs() . . . . . . o o o 151
GRBModel::getTuneResult() . . . .. ... ... ... ... . ... ... 151
GRBModel::getVarByName() . . . . . . ... ... ... ... ... 152
GRBModel::getVars() . . . . . . ..o e 152
GRBModel::optimize() . . . . . . . ... Lo oo 152
GRBModel::optimizeasync() . . . . . . . ... oo 152
GRBModel::optimizeBatch() . . ... ... ... ... ... o L. 153
GRBModel::presolve() . . . . . ... o 153
GRBModel:iread() . . . . . oL 153
GRBModel:itemove() . . . . . oL 153
GRBModel:reset() . . . . . oL 154
GRBModel::setCallback() . . . . . . . oo oo 154
GRBModel:iset() . . . . o oo 155
GRBModel::setObjective() . . . . o o oo o 158
GRBModel::setObjectiveN() . . . . . . . . ..o oo 158
GRBModel::setPWLObj() . . . . o o 0o oo 159
GRBModel::singleScenarioModel() . . . . . ... ... 159
GRBModel:isync() . . o v v oo 159
GRBModel::terminate() . . . . . . ..o 160
GRBModel::tune() . . . . o oo 160
GRBModel::update() . . . . . . . ..o 160
GRBModel::write() . . .« o oo 160
........................................... 161
GRBVar:get() . . . . . o 161
GRBVarzindex() . . . . . o 161
GRBVar:sameAs() . . . . . . .o 162
GRBVaruzset() . ... ... 162
......................................... 163
GRBConstriget() . . . o o 163




GRBConstrzindex() . . . . . . ... 163

GRBConstrisameAs() . . . . . oo 164
GRBConstrzset() . . . . . . oL 164
4.5 GRBQConstr . . . . . . e 165
GRBQConstr:get() . . . . . ... 165
GRBQConstrset() . . . . . o 166
4.6 GRBSOS . . . e 167
GRBSOS::get() . . o v o o 167
GRBSOS:set() . . . . o oo 167
4.7 GRBGenConstr . . . . . . . . . e 168
GRBGenConstr:get() . . . . . ... 168
GRBGenConstrset() . . . . .o oo o 168
4.8 GRBE=Xpr . . . . . . e 170
GRBExpr::getValue() . . . . . ... L 170
4.9 GRBLInExpr . . . . . . . e 171
GRBLInEXpr() . . . . . o 171
GRBLinExpr:addTerms() . . . . . . . . ..o oo 172
GRBLinExpr:clear() . . . . . . ... o 172
GRBLinExpr::getConstant() . . . . . . ... ... ... ... ... 172
GRBLinExpr::getCoeff() . . . . . . . . ... 172
GRBLinExpr:getValue() . . . ... ... ... oo 172
GRBLinExpr:getVar() . . . . . . .. oo 173
GRBLinExpr::operator=. . . . . . . . . . ... 173
GRBLinExpr::operator+ . . . . . . . ..o oo 173
GRBLIinExpr::operator- . . . . . . . . . .. 173
GRBLinExpr::operator+=. . . . . . . . ..o 173
GRBLinExpr::operator-= . . . . . . . . . ... 174
GRBLinExpr::operator®*= . . . . . . . .. ... 174
GRBLinExpriremove() . . . . . ... 174
GRBLinExpr:size() . . . . . ... o e 174
4.10 GRBQuadExpr . . . . . . . e e 175
GRBQuadExpr() . . . . . . . . 175
GRBQuadExpr:addTerm() . . . . . . . . ... 176
GRBQuadExpr::addTerms() . . . . . . . . ... 176
GRBQuadExpr:clear() . . . . .. ... 177
GRBQuadExpr::getCoeff() . . . . . . . . ... 177
GRBQuadExpr::getLinExpr() . . . . . . .. ... 177
GRBQuadExpr::getValue() . . . . .. ... ... 177
GRBQuadExpr:getVarl() . . . . . . . . ... 177
GRBQuadExpr::getVar2() . . . . . . . ... 178
GRBQuadExpr::operator= . . . . . . . ... ... 178
GRBQuadExpr::operator+ . . . . . ... oL 178
GRBQuadExpr::operator- . . . . . . .. ... 178
GRBQuadExpr::operator+= . . . . . .. ..o 178
GRBQuadExpr::operator-= . . . . . . . .. ... 179

vii



GRBQuadExpr::operator*= . . . . . ... ... 179

GRBQuadExpriremove() . . . . .. L 179
GRBQuadExpr:size() . . . . . ... 179
4.11 GRBTempConstr . . . . . . . . . e 180
4.12 GRBColumn . . . . . . 181
GRBColumn() . . . . .. 181
GRBColumn::addTerm() . . . . ... ... ... 181
GRBColumn::addTerms() . . . . . . . ..o o 181
GRBColumn::clear() . . . . . . ... L 181
GRBColumn::getCoeff() . . . . . . . . ... 182
GRBColumn::getConstr() . . . . .. . . ... ... 182
GRBColumn:remove() . . . . . o oo oo 182
GRBColumn:size() . . . . . ... 182
4.13 GRBCallback . . . . . . . 183
GRBCallback() . . . . . . . . 183
GRBCallback::abort() . . . . . . .. 183
GRBCallback:addCut() . . . . . .. ... .o o 183
GRBCallback::addLazy() . . . . . . . ... . 184
GRBCallback::getDoublelnfo() . . . . .. ... ... ... ... . ....... 185
GRBCallback::getIntInfo() . . . . .. ... ... . L o 185
GRBCallback::getNodeRel() . . . . . . . ... ... ... L 185
GRBCallback::getSolution() . . . . . . . . .. .. 186
GRBCallback::getStringInfo() . . . . . . . ... ... oo L 186
GRBCallback::proceed() . . . . . . . . oL 186
GRBCallback::setSolution() . . . . . . . . .. .. Lo 187
GRBCallback::stopOneMultiObj() . . . . . . . . . ... o .. 187
GRBCallback::useSolution() . . . . . . ... ... oL oo 188
4.14 GRBE=xception . . . . . . . . . 189
GRBException() . . . .. ... ... 189
GRBException::getErrorCode() . . . . . . . . ... oo 189
GRBException::getMessage() . . . . . . . .. ..o 189
4.15 GRBBatch . . . . . .. 190
GRBBatch() . . .. .. 190
GRBBatch::abort() . . . . . . ..o 190
GRBBatch::discard() . . . . . . ..o 191
GRBBatch::getJSONSolution() . . . . . . . .. ... . o 191
GRBBatch:get() . . . . . . . o 191
GRBBatchuretry() . . . o o L 191
GRBBatch:update() . . . . . . ..o 192
GRBBatch::writeJSONSolution() . . . . . . . ... ... . 192
4.16 Non-Member Functions . . . . ... ... ... ... .. 193
operator== . . . . . . ... 193
OPETatoOr<C= . . . . . . . e e e e e e e e 193
operator>= . . . . . . ... 193
Operator+ . . . . . .. e e e e 193

viii



operator- . ... oL Lo 194

operator® . ..o L 195

operator/ . ... 197

4.17 Attribute Enums . . . . ..o Lo 198
GRB_ CharAttr . . . . . . e 198

GRB_ DoubleAttr . . . . . . . e 198

GRB IntAttr. . . . . . . . e 198
GRB_StringAttr . . . . . . . . 198

4.18 Parameter Enums . . . . . . . ..o 199
GRB DoubleParam . . . . . . . . . ... 199

GRB IntParam . . . .. . . . . ... 199

GRB_ StringParam . . . . . . ... L Lo 199

5 Java API Overview 200
5.1 GRBEnNv. . . . . . e 205
GRBEDV() .+« o o o e e e e e e e e e e e e 205
GRBEnv.dispose() . . . . . ... 206
GRBEnv.get() . .. .. ... . 206
GRBEnv.getErrorMsg() . . . . . . . . . L 207
GRBEnv.getParamInfo() . . . . ... ... ... .. o o 207
GRBEnv.message() . . . . . . . . .. o 207
GRBEnv.readParams() . . . . ... ... .. Lo 208
GRBEnv.release() . . . . . . . ... 208
GRBEnv.resetParams() . . . . ... ... ... oo 208
GRBEDVSCH() -+« o o o oo e e e e e e e e e e 208
GRBEnv.setLogCallback() . . . . . . . . . . ... 209
GRBEnv.start() . . . ... ... 209
GRBEnv.writeParams() . . . . . ... ... o 210

5.2 GRBModel . . . . . 211
GRBModel() . . . . . .o 211
GRBModel.addConstr() . . . . . .. .. ... 211
GRBModel.addConstrs() . . . . . . .o 214
GRBModel.addGenConstrXxx() . . . . .. ... ... Lo 214
GRBModel.addQConstr() . . . . . . . .. L 223
GRBModel.addRange() . . . . . . . ... 225
GRBModel.addRanges() . . . . . . . . ... 225
GRBModel.addSOS() . . . . . . oo o 226
GRBModel.addVar() . . . . . .. .. . 226
GRBModel.addVars() . . . . . ... e 227
GRBModel.chgCoeff() . . . . . . ... ... 228
GRBModel.chgCoeffs() . . . . . ... . . 229
GRBModel.computellS() . . . ... ... ... ... . ... ... 229
GRBModel.discardConcurrentEnvs() . . . . . ... ... ... L. 230
GRBModel.discardMultiobjEnvs() . . . . .. ... ... ... ... .. 230
GRBModel.dispose() . . . . . . ..o 230
GRBModel.feasRelax() . . . . . ... 230

ix



GRBModel.fixedModel() . . . . . ... ... oo 232

GRBModel.get() . . . .« o 232
GRBModel.getCoeff() . . . . . . .. . 244
GRBModel.getCol() . . . . . . .. o 244
GRBModel.getConcurrentEnv() . . . . . .. ... ... o L. 244
GRBModel.getConstrByName() . . . . . ... . ... .. ... 245
GRBModel.getConstrs() . . . . . . . . ... 245
GRBModel.getGenConstrXxx() . . . . . v o v v v v v i 245
GRBModel.getGenConstrs() . . . . . . . .. ... 252
GRBModel.getJSONSolution() . . . . . . . ... o 252
GRBModel.getMultiobjEnv() . . . ... ... ... ... o L. 252
GRBModel.getObjective() . . . . . . . .. .o 253
GRBModel.getPWLODbj() . . . . . . . .. . 253
GRBModel.getQCRow() . . . . . . o o oo 253
GRBModel.getQConstrs() . . . . . . . . . ..o 254
GRBModel.getRow() . . . . . . . . .o 254
GRBModel.getSOS() . . . . . . . . . o 254
GRBModel.getSOSs() . . . . . o o oo 254
GRBModel.getTuneResult() . . . . .. ... ... ... ... ... ... . 255
GRBModel.getVarByName() . . . . . .. ... ... ... 255
GRBModel.getVars() . . . . . . . ... 255
GRBModel.optimize() . . . . . . . . 255
GRBModel.optimizeasync() . . . . . . . . .. ..o 256
GRBModel.optimizeBatch() . . . . . . ... ... Lo 256
GRBModel.presolve() . . . . .. ... ... 256
GRBModel.read() . . . . . . .. 256
GRBModel.remove() . . . . . . ... 257
GRBModel.reset() . . . . . .. 258
GRBModel.setCallback() . . . . ... ... ... .. .. 258
GRBModel.set() . . . . .o 258
GRBModel.setLogCallback() . . . . ... ... ... ... ... ....... 269
GRBModel.setObjective() . . . . . . . o o o 269
GRBModel.setObjectiveN() . . . . . . ... ... . Lo 269
GRBModel.setPWLODj() . . . . . . . o oo 270
GRBModel.singleScenarioModel() . . . ... ... ... ... .. ....... 270
GRBModel.sync() . . . . 270
GRBModel.terminate() . . . .. ... ... ... 271
GRBModel.tune() . . . .. ... 271
GRBModel.update() . . . . . . . .. 271
GRBModel.write() . . . . . . . 271
53 GRBVar . . . . . . 272
GRBVar.get() . . . . . . o o 272
GRBVar.index() . . . . . . .o o 272
GRBVarssameAs() . . . . .. ... 273

GRBVarset() . . . . . .o e 273




5.4 GRBConstr . . . . . . 274
GRBConstr.get() . . . . . o 274
GRBConstrindex() . . . . . .. .. 274
GRBConstr.sameAs() . . . . ... 275
GRBConstrset() . . . . . . . 275

5.5 GRBQConstr . . . . . . . 276
GRBQConstr.get() . . . . . . ... 276
GRBQConstr.set() . . . . . o 277

5.6 GRBSOS . . . . 278
GRBSOS.get() . . . v v o o 278
GRBSOS.set() . . . . . o 278

5.7 GRBGenConstr . . . . . . . . ... e 279
GRBGenConstr.get() . . . . .. ... ... 279
GRBGenConstr.set() . . . . . .o oL o 279

58 GRBEXDE .« « o o o oo oo e 281
GRBExpr.getValue() . . . . . . . .. o 281

5.9 GRBLIinExpr . . . . . . . . e 282
GRBLInEXpr() . . . . . o 282
GRBLinExpr.add() . . . . . . . . .. 282
GRBLinExpr.addConstant() . . . . . .. ... .. ... ... ... 283
GRBLinExpr.addTerm() . . . . . ... ... ... 283
GRBLinExpr.addTerms() . . . . . .. .. ... 283
GRBLinExpr.clear() . . . . . . . .. . 283
GRBLinExpr.getConstant() . . . . . . . . ... . .o 284
GRBLinExpr.getCoeff() . . . . . . . . ... 284
GRBLinExpr.getValue() . . . . . . . . .. ... 284
GRBLinExpr.getVar() . . . . . . . . ... 284
GRBLinExpr.multAdd() . . . . . . .. ... . 284
GRBLinExpr.remove() . . . . . . . ..o 285
GRBLinExpr.size() . . . . . . . .. o 285

5.10 GRBQuadExpr . . . . . . . . e 286
GRBQuadExpr() . . . . . . . . 286
GRBQuadExpradd() . .. ... ... ... 287
GRBQuadExpr.addConstant() . . . ... ... ... ... ... .. ... ... 287
GRBQuadExpr.addTerm() . . ... .. ... ... ... ... .. ... ... 287
GRBQuadExpr.addTerms() . . . . . . . . . ... o 288
GRBQuadExpr.clear() . . . . . . .. ... . 289
GRBQuadExpr.getCoeff() . . . . . . . . . ... 289
GRBQuadExpr.getLinExpr() . . . . ... ... ... 289
GRBQuadExpr.getValue() . . . . . . . . .. ... 289
GRBQuadExpr.getVarl() . . . . . . . .. ... 289
GRBQuadExpr.getVar2() . . . . . . . . ... 290
GRBQuadExpr.multAdd() . ... ... ... ... 290
GRBQuadExpr.remove() . . . . ... 290
GRBQuadExpr.size() . . . . . ..o o 291

xi



5.11 GRBColumn . . . . . . . 292

GRBColumn() . . . . .. 292
GRBColumn.addTerm() . . . . . ... ... ... 292
GRBColumn.addTerms() . . . . ... .. ... 292
GRBColumn.clear() . . . . ... ... ... 293
GRBColumn.getCoeff() . . . . . . ... 293
GRBColumn.getConstr() . . . . ... ... ... 293
GRBColumn.remove() . . . . . . .. o 293
GRBColumn.size() . . . . . . . ... 294
5.12 GRBCallback . . . . . . . 295
GRBCallback() . . . . . . . .. 295
GRBCallback.abort() . . . . . . .. .. 295
GRBCallback.addCut() . . . .. ... ... ... 295
GRBCallback.addLazy() . . . . . . . . .. . 296
GRBCallback.getDoublelnfo() . . . . . . ... .. ... ... L. 296
GRBCallback.getIntInfo() . . . . . .. ... ... o 297
GRBCallback.getNodeRel() . . . . ... ... ... .. ... L. 297
GRBCallback.getSolution() . . . . . ... .. .. .. 297
GRBCallback.getStringInfo() . . . . . ... ... ... o L. 298
GRBCallback.proceed() . . . . . . . . . 298
GRBCallback.setSolution() . . . .. .. ... ... ... ... ... 298
GRBCallback.stopOneMultiObj() . . . . . . . . .. ... ... 299
GRBCallback.useSolution() . . . . . .. ... ... Lo 300
5.13 GRBException . . . . . . . . . e 301
GRBException() . . . . .. ... .. 301
GRBException.getErrorCode() . . . . . . .. ... .o 301
5.14 GRBBatch . . . . . . .. 302
GRBBatch() . . .. .. 302
GRBBatch.abort() . . . . ... ... 302
GRBBatch.discard() . . . . . . ... 303
GRBBatch.dispose() . . . . . . . .. 303
GRBBatch.getJSONSolution() . . . . . . ... ... ... ... . ... ... 303
GRBBatch.get() . . . ... . . ... 303
GRBBatch.retry() . . . . . . .. 304
GRBBatch.update() . . . . ... .. L 304
GRBBatch.writeJSONSolution() . . . . . .. ... ... ... ... ...... 304
515 GRB . . . L L 305
Constants . . . . . . . . L 305
GRB.CharAttr . . . .. .. . 310
GRB.DoubleAttr . . . . . . .. 311
GRB.DoubleParam . . . . . ... ... ... ... 311
GRB.IntAttr . . . . .. 311
GRB.IntParam . . . .. .. .. ... ... 311
GRB.StringAttr . . . . . . . 311
GRB.StringParam . . . . . ... ... 311

xii



6 .NET API Overview 312

6.1 GRBEnv. .. . . . . . e 316
GRBEDV() .+« o o o oo e e e e e e e e e e 316
GRBEnv.Dispose() . . . . . . . 317
GRBEnv.ErrorMsg . . . . . . . .. L 317
GRBEnv.Get() . . . . . . o e 317
GRBEnv.GetParamInfo() . . . . . ... ... ... ... ... .. 318
GRBEnv.Message() . . . . . o v v i i 318
GRBEnv.ReadParams() . . . . . .. ... ... ... ... .. 318
GRBEnv.Release() . . . . . . . ... 319
GRBEnv.ResetParams() . . . . . ... ... ... Lo 319
GRBEnv.Set() . . . . . e 319
GRBEnv.Start() . . . ... ... 320
GRBEnv.WriteParams() . . . . . . . ... ... 320

6.2 GRBModel . .. . .. .. 321
GRBModel() . . . . . o 321
GRBModel.AddConstr() . . . . . . . ... 321
GRBModel.AddConstrs() . . . . . . o v v it 322
GRBModel.AddGenConstrXxx() . . . . . .. ... o 323
GRBModel.AddQConstr() . . . . . .« v v 331
GRBModel.AddRange() . . . . . . . ... ... 332
GRBModel.AddRanges() . . . . . . . e 333
GRBModel.AddSOS() . . . . . . .. o 333
GRBModel.AddVar() . . . . . ... 333
GRBModel.AddVars() . . . . .. ... 334
GRBModel.ChgCoeff() . . . . . . . . . o o 336
GRBModel.ChgCoeffs() . . . . . .. . ... ... 336
GRBModel.ComputelIS() . . . . . .. ... o 336
GRBModel.DiscardConcurrentEnvs() . . .. ... ... ... ... ... ... 337
GRBModel.DiscardMultiobjEnvs() . . . . . ... ... ... o L. 337
GRBModel.Dispose() . . . . . . .. 337
GRBModel.FeasRelax() . . . . . . . ... . 337
GRBModel.FixedModel() . . .. .. ... ... ... . . ... ... 339
GRBModel.Get() . . . . . . 339
GRBModel.GetCoeff() . . . . . . . ... 348
GRBModel.GetCol() . . . . . . .o oo 349
GRBModel.GetConcurrentEnv() . . . . .. ... ... L oL 349
GRBModel.GetConstrByName() . . . . . ... .. ... ... ... ... ... 349
GRBModel.GetConstrs() . . . . . o v v v 349
GRBModel.GetGenConstrXxx() . . . . . .. ..o 349
GRBModel.GetGenConstrs() . . . . .« v oo v i i 356
GRBModel.GetJSONSolution() . . . . . . .. ... . o 356
GRBModel.GetMultiobjEnv() . . . . . . .. .. ... 356
GRBModel.GetObjective() . . . . . . .. ..o 356
GRBModel.GetPWLODbj() . . . . . . . ..o o 357




6.3

6.4

6.5

6.6

6.7

GRBModel.GetQConstr() . . . . . .. . ... 357

GRBModel.GetQConstrs() . . . . . . . e 357
GRBModel.GetQCRow() . . . . . . . ... 358
GRBModel.GetRow() . . . . . . .. 358
GRBModel.GetSOS() . . . . . . . . o 358
GRBModel.GetSOSs() . . . . . v v v o 358
GRBModel.GetTuneResult() . . .. ... ... ... ... ... ....... 358
GRBModel.GetVarByName() . . . . . . . . ... . o 359
GRBModel.GetVars() . . . . .. ... ... 359
GRBModel.Optimize() . . . . . . . .. o 359
GRBModel.OptimizeAsync() . . . .. .. ... .. .o 359
GRBModel.OptimizeBatch() . . . . ... ... ... .. ... ... 360
GRBModel.Presolve() . . . ... ... .. ... 360
GRBModel.Read() . . . . . . ... o 360
GRBModel.Remove() . . . ... ... ... o 360
GRBModel.Reset() . . . . . . . .o 361
GRBModel.SetCallback() . . . . . ... ... ... . . ... . 361
GRBModel.Set() . . . . . 361
GRBModel.SetObjective() . . . . . . . . . ..o 371
GRBModel.SetObjectiveN() . . . . . . . . ... o 371
GRBModel.SetPWLObj() . . . . . .. ... 372
GRBModel.SingleScenarioModel() . . . . ... .. ... ... o L. 372
GRBModel.Sync() . . . . . ... 372
GRBModel. Terminate() . . . . . . . .. o 373
GRBModel. Tune() . . . . ... ... 373
GRBModel.Update() . . . . . . . .. o 373
GRBModel.Write() . . . . . . . ... 373
GRBVar . . . . o e 374
GRBVar.Get() . ... ... . . .. 374
GRBVar.Index . ... ... ... ... 374
GRBVar.SameAs() . . . . . . . ... 374
GRBVar.Set() . . . . . .. . 375
GRBConstr . . . . . . . 376
GRBConstr.Get() . . . .. ... 376
GRBConstrIndex . . . ... .. ... 376
GRBConstr.SameAs() . . . . . ... 376
GRBConstr.Set() . . . . . . . .. 377
GRBQConstr . . . . . . . e e 378
GRBQConstr.Get() . . . . . . o 378
GRBQConstr.Set() . . . . . . . o 378
GRBSOS . . . 380
GRBSOS.Get() . . . v v v o 380
GRBSOS.Set() . . . . .o 380
GRBGenConstr . . . . . . ... 381
GRBGenConstr.Get() . . . . . . .. e 381

Xiv



GRBGenConstr.Set() . . . . .. ... ... 381

6.8 GRBExXpr . . . . . . . 383
GRBExpr.Value . . . . . . .. . 383
6.9 GRBLinExpr . . . . . . . e 384
GRBLInExpr() . . . . . .. 384
GRBLinExpr.Add() . . . . . . .. 385
GRBLinExpr.AddConstant() . . . . . .. ... ... ... ... .. ..., . 385
GRBLinExpr.AddTerm() . . . . .. ... ... 385
GRBLinExpr.AddTerms() . . . . . .. ... ... 385
GRBLinExpr.Clear() . . . . . . . . . o 386
GRBLinExpr.Constant . . . . . . . . . . . . . . ... ... .. 386
GRBLinExpr.GetCoeff() . . . . . . . . ... 386
GRBLinExpr.GetVar() . . . . . . ... ... .. 386
GRBLinExpr.MultAdd() . . . . . . . ... 386
GRBLinExpr.Remove() . . . .. ... ... ... o 386
GRBLinExpr.Size . . . . . . . . . 387
GRBLinExpr.Value . . .. . .. . ... . ... . 387
6.10 GRBQuadExpr . . . . . . . . e 388
GRBQuadExpr() . . . . . . ... 388
GRBQuadExpr.Add() . . . . . ... 389
GRBQuadExpr.AddConstant() . . . . . . ... ... ... ... ... ... 389
GRBQuadExpr.AddTerm() . . . . . . .. ... 389
GRBQuadExpr.AddTerms() . . . . . . . . . ... o 390
GRBQuadExpr.Clear() . . . .. ... ... .. 391
GRBQuadExpr.GetCoeff() . . . ... ... ... oo 391
GRBQuadExpr.GetVarl() . . . . . .. .. ... 391
GRBQuadExpr.GetVar2() . . . . ... ... ... 391
GRBQuadExpr.LinExpr() . . . . . . . ... 391
GRBQuadExpr.MultAdd() . .. .. ... ... ... .. ... .. ... ... 391
GRBQuadExpr.Remove() . . . . .. ... ... 392
GRBQuadExpr.Size . . . . . . . ... 392
GRBQuadExpr.Value . . .. ... ... . ... .. ... 392
6.11 GRBTempConstr . . . . . . . . . . e 393
6.12 GRBColumn . . . . . . . 394
GRBColumn() . . . .. ... . 394
GRBColumn.AddTerm() . . . . . . . . . . o 394
GRBColumn.AddTerms() . . . . ... ... ... ... 394
GRBColumn.Clear() . . . . . . . .. e 395
GRBColumn.GetCoeff() . . . . . . . . ... 395
GRBColumn.GetConstr() . . . . . . . .. ... 395
GRBColumn.Remove() . . . . ... .. e 395
GRBColumn.Size . . . . . . . . L 395
6.13 Overloaded Operators . . . . . . . . . . . . . . . i e 396
operator <= . . . ... 396
Operator >= . . . . . .. e 396

p.q%



operator == . . . . ... L e 396

operator + . . ... L 396
operator - . . ... L. 398
operator * . . . L 398
operator / . . ... 400
implicit cast . . . . . . L e 400
6.14 GRBCallback . . . . . . . . . 402
GRBCallback() . . . . . . .. 402
GRBCallback.Abort() . . . . . . .. ... . 402
GRBCallback.AddCut() . . . . . . .. ... 402
GRBCallback.AddLazy() . . . . . .« o 403
GRBCallback.GetDoubleInfo() . . . . ... ... ... ... L. 403
GRBCallback.GetIntInfo() . . . ... .. ... .. oo 404
GRBCallback.GetNodeRel() . . . . . . ... ... .. oo 404
GRBCallback.GetSolution() . . . . . . . . . ... 404
GRBCallback.GetStringInfo() . . . . . . .. ... o Lo 405
GRBCallback.Proceed() . . . . . . .. ... ... 405
GRBCallback.SetSolution() . . . . . . ... ... 405
GRBCallback.StopOneMultiObj() . . . . . . .. ... ... ... 405
GRBCallback.UseSolution() . . . . . . . .. ... .. Lo 406
6.15 GRBException . . . . . . . . . . . e 407
GRBException() . . . . . . . .. 407
GRBException.ErrorCode . . . . . . . . ... o 407
6.16 GRBBatch . . . . . . . . e 408
GRBBatch() . . .. .. 408
GRBBatch.Abort() . . . . . . . ... 408
GRBBatch.Discard() . . . . . . . . .. 409
GRBBatch.GetJSONSolution() . . . . . .. ... ... . .. 409
GRBBatch.Get() . . . . ... ... 409
GRBBatch.Retry() . . . . . . .. .. 409
GRBBatch.Update() . . . . . . ... 410
GRBBatch.WriteJSONSolution() . . . . . . .. .. ... ... ... ... 410
6.17 GRB . . . . . 411
Constants . . . . . . . . . L 411
GRB.CharAttr . . . . . . . o 423
GRB.DoubleAttr . . . . . . ..o 423
GRB.DoubleParam . . . . . ... ... ... ... 423
GRB.IntAttr . . . . .. 423
GRB.IntParam . . . . .. ... 423
GRB.StringAttr . . . . . .. 423
GRB.StringParam . . . . ... ..o o 423

xvi



7 Python API Overview 424

7.1 Global Functions . . . . . . . . . ... 428
models() . . . . .. 428
disposeDefaultEnv() . . . . . ... ..o 428
multidict() . . . . ... 428
paramHelp() . . . . . ... 429
quicksum() . ... 429
read() . ..o 429
readParams() . . . . . ... L 429
resetParams() . . . . . ... o 430
setParam() . . . . ... 430
system() . ..o 430
writeParams() . . . . ... 430

7.2 Model . . . . 431
Model() . . . . . . 431
Model.addConstr() . . . . . . . 431
Model.addConstrs() . . . . . . . ... o 432
Model.addGenConstrXxx() . . . . . v v v v 433
Model.addGenConstrMax() . . . . . . . .. ... o 433
Model.addGenConstrMin() . . . . . . . . .. Lo o 434
Model.addGenConstrAbs() . . . . . . . . ... 434
Model.addGenConstrAnd() . . . . . . . . . Lo 435
Model.addGenConstrOr() . . . . . .. ... .o 435
Model.addGenConstrNorm() . . . . . . . .. ... o 435
Model.addGenConstrIndicator() . . . . ... ... ... ... ... ... ... 436
Model.addGenConstrPWL() . . . . .. ... .. o 436
Model.addGenConstrPoly() . . . . . .. . ... ... oo 437
Model.addGenConstrExp() . . . . . . . ... L oo 437
Model.addGenConstrExpA() . . . . . .. ... ... oo 438
Model.addGenConstrLog() . . . . . . . . ... 438
Model.addGenConstrLogA() . . . . ... ... ... Lo 439
Model.addGenConstrLogistic() . . . . . . ... ... . 0. 439
Model.addGenConstrPow() . . . . . .. ... ... o Lo 440
Model.addGenConstrSin() . . . . . . . . .. Lo 440
Model.addGenConstrCos() . . . . . . . . ... .. o 440
Model.addGenConstrTan() . . . . . . . . ... o 441
Model.addLConstr() . . . . . . . . ... 441
Model.addMConstr() . . . . . . . . ..o 442
Model.addMQConstr() . . . . . . ..o 442
Model.addMVar() . . . .. .. ... 443
Model.addQConstr() . . . . . o v oo 443
Model.addRange() . . . . . . . . ... 444
Model.addSOS() . . . . . . o o 444
Model.addVar() . . . . . . . .. L 445
Model.addVars() . . . . . .« 445




Model.chCut() . . . . . .. o 446

Model.cbGet() . . . . . o o o 447
Model.cbGetNodeRel() . . . . ... ... . . .. 447
Model.cbGetSolution() . . . . . . . . ... 447
Model.cbLazy() . . . . . . . . . 448
Model.cbProceed() . . . . . . . . L 449
Model.cbSetSolution() . . . . . . . . .. . 449
Model.cbStopOneMultiObj() . . . . . . . .. .. o 449
Model.cbUseSolution() . . . . . . . . .. .. . L 450
Model.chgCoeff() . . . . . . . . . 450
Model.computelIS() . . . . . . .. ... 451
Model.copy() . . . . v v v 451
Model.discardConcurrentEnvs() . . . . . . ... ... oo 452
Model.discardMultiobjEnvs() . . . . . . . .. ... o 452
Model.dispose() . . . . . . . . . L 452
Model.feasRelaxS() . . . . . . . . 452
Model.feasRelax() . . . . . . . ... 453
Modelfixed() . . . . . . . . 454
Model.getA() . . . . . . . . 454
Model.getAttr() . . . . . . . 455
Model.getCoeff() . . . . . . . .. 455
Model.getCol() . . . . . o o o 455
Model.getConcurrentEnv() . . . . ... ... .o Lo 455
Model.getConstrByName() . . . . . .. ... ... o 456
Model.getConstrs() . . . . . . . . . ... 456
Model.getGenConstrMax() . . . . . . . . ..o 456
Model.getGenConstrMin() . . . . . . . . . ... o 457
Model.getGenConstrAbs() . . . . . . . . .. o 457
Model.getGenConstrAnd() . . . . . . ... ..o 458
Model.getGenConstrOr() . . . . . . .. .. 458
Model.getGenConstrNorm() . . . . . . . . . ... .. Lo 458
Model.getGenConstrIndicator() . . . . . . . . .. ... oL 459
Model.getGenConstrPWL() . . . . . .. ... ... o oL 459
Model.getGenConstrPoly() . . . . . .. . ... o 459
Model.getGenConstrExp() . . . . . . . ... Lo 460
Model.getGenConstrExpA() . . . . . . . . . oo 460
Model.getGenConstrLog() . . . . . . . . 461
Model.getGenConstrLogA() . . . . . . . . ... 461
Model.getGenConstrLogistic() . . . .. .. ... ... ... ... ... ... 461
Model.getGenConstrPow() . . . . .. .. ... o Lo 462
Model.getGenConstrSin() . . . . . . . . oo 462
Model.getGenConstrCos() . . . . . . . . ... 462
Model.getGenConstrTan() . . . . . . . . oo v v 463
Model.getGenConstrs() . . . . . . . ... 463
Model.getJSONSolution() . . . . . . . . oo 463

xviii



7.4 MVar

Model.getMultiobjEnv() . . . . . . .. ... Lo 464

Model.getObjective() . . . . . . o o o o 464
Model.getParamInfo() . . . . . ... ... ..o o 464
Model.getPWLODbj() . . . . . . o 465
Model.getQConstrs() . . . . . . . ... 465
Model.getQCROW() . . . . o o o v 465
Model.getRow() . . . . . . . . L 465
Model.getSOS() . . . . o o o o 466
Model.getSOSs() . . . . . . o oo 466
Model.getTuneResult() . . . . . . . . .. o 466
Model.getVarByName() . . . . . . . ... ... ... 467
Model.getVars() . . . . . . . 467
Model.message() . . . . . . . . 467
Model.optimize() . . . . . . . . L 467
Model.optimizeBatch() . . . . . . . . ... Lo o 468
Model.presolve() . . . . . . . . 468
Model.printAttr() . . . . . . . L 468
Model.printQuality() . . . . . . . . .. 468
Model.printStats() . . . . . . . ... 469
Model.read() . . . . . . .. 469
Model.relax() . . . . . . . . o 469
Model.remove() . . . . . . . oo 469
Model.reset() . . . . . . .. 470
Model.resetParams() . . . . . . . ... 470
Model.setAttr() . . . . . . . .. 470
Model.setMObjective() . . . . . . . ... o 471
Model.setObjective() . . . . . . . . . .. 471
Model.setObjectiveN() . . . . . . . ... 471
Model.setPWLObj() . . . . . . . ..o o 472
Model.setParam() . . . . . . .. ... 472
Model.singleScenarioModel() . . . . .. .. ... ... Lo 473
Model.terminate() . . . . . . . ... 473
Model.tune() . . . . . . .. 473
Model.update() . . . . . . . . 473
Model.write() . . v v v v v e 474
............................................ 475
Var.getAttr() . . . . . ... 475
VarsameAs() . . . . . .o 475
Varindex . . . . .. .. 475
VarssetAttr() . . . . . .o 476
............................................ 477
MVar.copy() . . . . o oo 477
MVar.diagonal() . . . . . . . . 477
MVar.fromlist() . . . . . . . . . 478
MVar.fromvar() . . . . . o oo 478

Xix



MVar.getAttr() . . . . . . . 478

MVar.item() . . . . ... 479
MVarndim . . . . ... 0 479
MVar.reshape() . . . . . . . o 479
MVar.setAttr() . . . . . . .o 480
MVar.shape . . . . . . . o 480
MVarsize . . . . . . o e 480
MVar.sum() . . . . o oo o 480
MVar. T . . . .o e 481
MVar.tolist() . . . . . oo 481
MVar.transpose() . . . . . . .o 481
7.5 Constr . . . . L e 482
Constr.getAttr() . . . .. . . . 482
Constr.index . . . . . . ... 482
Constr.sameAs() . . . . . . ... 482
Constr.setAttr() . . . . . . . 483
7.6 MConstr . . . . . . .. 484
MConstr.tolist() . . . . . . . 484
MConstr.getAttr() . . . . . . . L 484
MConstr.setAttr() . . . . . oo 484
7.7 MConstr . . . . ..o 486
MQConstr.tolist() . . . . . . . 486
MQConstr.getAttr() . . . . . .. 486
MQConstr.setAttr() . . . . .. 487
7.8 QConstr . . . . . . 488
QConstr.getAttr() . . . . . . . 488
QConstr.setAttr() . . . . .. 488
7.9 SOS . . 489
SOS.getAttr() . . . . . . L 489
SOS.setAttr() . . . . o o 489
710 GenConstr. . . . . . .. . 490
GenConstr.getAttr() . . . . . . ... 490
GenConstr.setAttr() . . . . . . .. 490
711 LinEXpr . . . 0 0 490
LinExpr() . . . . . 491
LinExpr.add() . . . . ... 491
LinExpr.addConstant() . . . . . . .. ... 491
LinExpr.addTerms() . . . . . . . . ..o o 492
LinExpr.clear() . . . . . . . oo 492
LinEXpr.copy() . . v v v v v o e e e e e 492
LinExpr.getConstant() . . . . . . . . . . . 492
LinExpr.getCoeff() . . . . . . . . . 493
LinExpr.getValue() . . . . . . .. .. 493
LinExpr.getVar() . . . . . . . . 493

LinExproremove() . . . . . . . ..o 493




LinExpr.size() . . . . . . . 493

LinExpr. eq () . ..o o 494
LinExpr.  le (). .. .. 494
LinExpr. ge () . ... o 494
712 QuadExXpr . . . . . L e 495
QuadExXpr() . . . . .. 495
QuadExpr.add() . . .. .. ... 496
QuadExpr.addConstant() . . . . . . . .. ... 496
QuadExpr.addTerms() . . . . . . .. ..o 496
QuadExpr.clear() . . . . . . .. 496
QuadExpr.copy() . . . . o oo 496
QuadExpr.getCoeff() . . . . . . ... o 497
QuadExpr.getLinExpr() . . . . . .. ... 497
QuadExpr.getValue() . . . . . ... L 497
QuadExpr.getVarl() . . . . . . . .. 497
QuadExpr.getVar2() . . . . . . ... 498
QuadExpr.oremove() . . . ... 498
QuadExpr.size() . . . . ... 498
QuadExpr.__eq () . . . .o 498
QuadExpr.  le (). . ... 498
QuadExpr.  ge () .. ... 499
713 GenExpr. . . . .o 500
7.14 MLInEXPr . . . . . o o e 501
MLinExpr.clear() . . . . . . . . 501
MLInEXPr.copy() - - - - v v o v o 501
MLinExpr.getValue() . . . . .. .. .. 501
MLinExpr.item() . . . . . . .. L 502
MLinExpr.ndim . . . . . ..o 502
MLinExpr.shape . . . . . . . . . 502
MLinExpr.size . . . . . . .. e 502
MLinExpr.sum() . . . . . ... 503
MLInEXPr.zeros() . . . . . o o v v 503
MLIinExpr. eq () . . .« 503
MLinExpr. ge () . .. 503
MLinExpr. getitem () . . . ... ... ... 504
MLinExpr. le (). ... 504
MLinExpr. setitem () . . . ... ... ... 504
7.15 MQuadExpr . . . . . . e 505
MQuadExpr.clear() . . . . . . ... 505
MQuadEXpr.copy() - « « v v v v o e e e e 505
MQuadExpr.getValue() . . . . . .. .. . 505
MQuadExpr.item() . . . . . . ... 506
MQuadExpr.ndim . . . . . ... 506
MQuadExpr.shape . . . . . . .. e 506
MQuadExpr.size . . . . . . . .. e 506

xxi



MQuadExpr.sum() . . . . . .. 507

MQuadExpr.zeros() . . . . . ... 507
MQuadExpr.  eq () . . . ... 507
MQuadExpr. ge () . .« 507
MQuadExpr.  getitem () . . ... ... 508
MQuadExpr. le () . . ... . 508
MQuadExpr.  setitem () . . .. ... ... 508
7.16 TempConstr . . . . . . . o L e 509
717 Column . . . . . L e 510
Column() . . . . . o oo 510
Column.addTerms() . . . . . .. ... ... 510
Column.clear() . . . . . . . . . e 510
Column.copy() . . . . v v o 511
Column.getCoeff() . . . . . . . . . 511
Column.getConstr() . . . . . .. ... .. 511
Column.remove() . . . . . . v 511
Column.size() . . . . . . . . 511
7.18 Callbacks . . . . . . .. 512
7.19 GurobiError . . . . . . ..o 513
720 Env . oo 514
BV © v vt 514
Env.resetParams() . . . . . . ..o 515
Env.setParam() . . . . . . . .. Lo 515
Envesstart() . . . ... 515
Env.writeParams() . . . . . . . ... o 516
Env.dispose() . . . . . o o o 516
7.21 Batch . . ... 017
Batch() . . . . . 517
Batch.abort() . . . . . . .. 517
Batch.discard() . . . . . . . . 518
Batch.dispose() . . . . . . . . 518
Batch.getJSONSolution() . . . . . ... . . . 518
Batch.retry() . . . . . . . 518
Batch.update() . . . . . .. 519
Batch.writeJSONSolution() . . . . . . . ... 519
722 GRB . . e 520
Constants . . . . . . . . L 520
GRB.Attr . . . . 522
GRB.Param . . . . . .. .. ... 522
7.23 tuplelist . . . . .. 523
tuplelist() . . . . o 523
tuplelist.select() . . . . ..o 523
tuplelist.clean() . . . . . ... 523
tuplelist.  contains () . . . . . ... 524
7.24 tupledict . . . . .. L e 525

xxii



tupledict() . . . . ... 525

tupledict.select() . . . . . . . L 525
tupledict.sum() . . . . . ..o 526
tupledict.prod() . . . . . . . .. 526
tupledict.clean() . . . . . ... 526

7.25 General Constraint Helper Functions . . . . . . . . . . .. ... ... ... ...... 527
abs () . . . 527

and () ..o 527

Max_ () ... 527

min_ () ... 528

Or () o 528

NOTIN() « v v v o e 528

8 MATLAB API Overview 529
8.1 Common Arguments . . . . . . . . . ... 531
The model argument . . . . . . . .. .. L 531

The params argument . . . . . . . . ... Lo 541

8.2 Solvinga Model. . . . . . .. 544
gurobi() . . .. 544

gurobi dis() . . . ... 546

gurobi feasrelax() . . . . . . ... ... L 547
gurobi_relax() . . . . ... 548

8.3 Input/Output . . . . . . .. e 549
gurobi read() . . . . . ... 549
gurobi_write() . . . ... 549

8.4 Using Gurobi within MATLAB’s Problem-Based Optimization . ... ... ... .. 550
8.5 Setting up the Gurobi MATLAB interface . . . . . . . ... ... ... ... ..... 552
9 R API Overview 553
9.1 Common Arguments . . . . . . . . . oL e e e 554
The model argument . . . . . . . .. .. L 555

The params argument . . . . . . .. .. L Lo 565

9.2 Solvinga Model. . . . . . . .. 567
gurobi() . . .. 567

gurobi dis() . . . . ... 569
gurobi_feasrelax() . . . . . . .. ..o 571
gurobi_relax() . . . ... 571

9.3 Input/Output . . . . . . .. 572
gurobi_read() . . . . . ... 572
gurobi_write() . . . ... 572

9.4 Installing the R package . . . . . . . . . . . . 573
10 Variables and Constraints and Objectives 574
10.1 Variables . . . . . . . L L o974
10.2 Constraints . . . . . . . .. e 575
10.3 Objectives . . . . . . o o e 580

xxiii



10.4 Tolerances and Ill Conditioning -- A Caveat . . . . . . . . ... . ... ... ..... 585

11 Environments 586
11.1 Session boundaries . . . . . . . . . .. e e e e e 586
11.2 Configuration parameters . . . . . . . . . . . .. e 587
11.3 Algorithmic parameters . . . . . . . . . . . . L 588
11.4 Concurrent environments . . . . . . . . . . . ... e e 589
11.5 Multi-objective environments . . . . . . . .. L L L oL o 589

12 Attributes 591
12.1 Model Attributes . . . . . . . . . e 596

NumConstrs . . . . . . . . e 596
NumVars . . . . . . e e 596
NumSOS . . . . e 596
NumQConstrs . . . . . . . . e 597
NumGenConstrs . . . . . . . . . . e 597
NumNZs . . . o e e e e e 597
DNumNZs . . . . . e 597
NumQNZs . . . . 597
NumQCNZSs . . . . o 597
NumIntVars . . . . . . . . . 597
NumBinVars . . . . . . . . 598
NumPWLObDbjVars . . . . . . . . . e 598
ModelName . . . . . . . . . . e e 598
ModelSense . . . . . . . .. 598
ObjCon . . . .« . . o 598
Fingerprint . . . . . . . . . . 598
ObjVal . . . . . e 598
ObjBound . . . . . . . . 599
ObjBoundC . . . . . . . . 599
PoolObjBound . . . . . . .. . 599
PoolObjVal . . . . . . 599
MIPGap . . . . o o o 599
Runtime . . . . . . . . . 600
Work . . e 600
Status . . . . . e 600
SolCount . . . . . . . . e 600
IterCount . . . . . . . . e 600
BarlterCount . . . . . . . . . . . e 600
NodeCount . . . . . . . . . . . e 601
ConcurrentWinMethod . . . . . . . . . . . .. ... 601
IsMIP . . . e 601
IsSQP . . . e 601
IsSQCP . . . e e 601
IsMultiObj . . . . . e 601
IISMinimal . . . . . . . . e 602

xxiv



MaxCoefl . . . . . . e 602

MinCoeff . . . . . . . e 602
MaxBound . . . . . . . .. 602
MinBound . . . . . . . .. 602
MaxObjCoeff . . . . . . . o e 602
MinObjCoeff . . . . . . . o 602
MaxRHS . . . . . e 603
MinRHS . . . . . . e 603
MaxQCCoeff . . . . . . . e 603
MinQCCoeff . . . . . . 603
MaxQCLCoeff . . . . . . . . e 603
MinQCLCoeff . . . . . . . o e 603
MaxQCRHS . . . . . . e 603
MinQCRHS . . . . . . . e 604
MaxQObjCoeff . . . . . . o o 604
MinQObjCoeff . . . . . . o e 604
OpenNodeCount . . . . . . . . . . . e 604
Kappa . . . . o e 604
KappaExact . . . . . . . . e 604
FarkasProof . . . . . . . . . . . 604
TuneResultCount . . . . . . . . . . . . . . e 605
NumStart . . . . . . . e 605
LicenseExpiration . . . . . . . . . L o 605
SEIVET . . . o o o e e e e 606
12.2 Variable Attributes . . . . . . . . . . 606
LB . e 606
UB . . e e e 606
L) o 606
VarName . . . . . . . . e 606
VTag . . . e e e 607
VIType . . o o e 607
X e 607
XN .o e 607
RC . . e 607
BarX . . e 608
Start . . . . L e 608
VarHintVal . . . . . . . . . . 608
VarHintPri . . . . . . . . 609
BranchPriority . . . . . . . . . 609
Partition . . . . . . . . 609
VBasis . . . . . . e 610
PStart . . . . . e 610
IISLB . . . . e 610
IISLBForce . . . . . . . . . e 610
IISUB . . . e 611

XXV



IISUBForce . . . . . .« . 611

Poollgnore . . . . . . . . e 611
PWLODbJCVX . . . . o e 611
SAODbJLoOwW . . . . . 612
SAODbJUp . . . . o 612
SALBLOW . . . . . . e 612
SALBUDp . . . . e 612
SAUBLOW . . . . . . e 612
SAUBUD . . . . e 612
UnbdRay . . . . . 613
12.3 Linear Constraint Attributes . . . . . . . . . . . . . . ... ... ... 613
SENSE . . . . e 613
RHS . . . e 613
ConstrName . . . . . . . . . . e e 613
CTag . . . 613
Pl 614
Slack . . . . . o e e e 614
CBasis . . . . . . e 614
DStart . . . . . e 615
Lazy . . . o 615
IISConstr . . . . . . . e 615
IISConstrForce . . . . . . . . . . . . e 616
SARHSLow . . . . . . . . e 616
SARHSUp . . . . . 616
FarkasDual . . . . . . . . . . . e 616
12.4 SOS Attributes . . . . . . . e 617
IISSOS . . . e 617
IISSOSForce . . . . . . . . . . e 617
12.5 Quadratic Constraint Attributes . . . . . . . . . . . .. .. ... .. ... 617
QCSense . . .. 618
QCRHS . . . . e 618
QCName . . . . . . . 618
QCPI . . . e 618
QCSlack . . . . 618
QCTag . . . . 618
IISQConstr . . . . . . o 619
IISQConstrForce . . . . . . . . . 619
12.6 General Constraint Attributes . . . . . . . . . . ... .. 619
FuncPieceError . . . . . . . . .. 619
FuncPieceLength . . . . . . . .. .. 619
FuncPieceRatio . . . . . . . . . . .. 620
FuncPieces . . . . . . . . 620
GenConstrType . . . . . . . . o 620
GenConstrName . . . . . . . . . . e 620
IISGenConstr . . . . . . . . e 620

XXVI



IISGenConstrForce . . . . . . . . . . . 621

12.7 Quality Attributes . . . . . . . oL 621
MaxVio . . . . . o e e e 621
BoundVio . . . . . . . 621
BoundSVio . . . . . . e 621
BoundViolndex . . . . . . . . .. 622
BoundSViolndex . . . . . . . . ... 622
BoundVioSum . . . . . . .. 622
BoundSVioSum . . . . . . . .. 622
ConstrVio . . . . . . . e 622
ConstrSVio . . . . . . . e e e 622
ConstrViolndex . . . . . . . . . . e 623
ConstrSViolndex . . . . . . . . . . . e 623
ConstrVioSum . . . . . . . . . e 623
ConstrSVioSum . . . . . . . . . . e e 623
ConstrResidual . . . . . . . . . . 623
ConstrSResidual . . . . . . . . .. e 623
ConstrResiduallndex . . . . . . . . . . . . .. 624
ConstrSResiduallndex . . . . . . . . . . . .. 624
ConstrResidualSum . . . . . . . ... 624
ConstrSResidualSum . . . . . . . . .. .. 624
DualVio . . . . . . e 624
DualSVio . . . . . . . e 625
DualViolndex . . . . . . . . . . 625
DualSViolndex . . . . . . . . . . . e 625
DualVioSum . . . . . . . . . e 625
DualSVioSum . . . . . . . . . . e 625
DualResidual . . . . . . . . . . e 625
DualSResidual . . . . . . . . . e 626
DualResiduallndex . . . . . . . . . . .. 626
DualSResiduallndex . . . . . . . . . .. . .. 626
DualResidualSum . . . . . . . . ... 626
DualSResidualSum . . . . . . . . . .. 626
ComplVio . . . . . 626
ComplViolndex . . . . . . . . . . 627
ComplVioSum . . . . . . . . 627
IntVio . . . . . . e 627
IntViolndex . . . . . . . . . . 627
IntVioSum . . . . . . .. 627

12.8 Multi-objective Attributes . . . . . . . . . .. L 627
ObjN . 627
ObjNCon . . . . . 628
ObjNPriority . . . . . . . 628
ObjNWeight . . . . . . . . . 628
ObjNRelTol . . . . . . . 628




ObjNADbsTol . . . . . . 629

ObjNVal . . . . . e 629

ObjNName . . . . . . . . o 629

NumODbj . . . . o e 629

12.9 Multi-Scenario Attributes . . . . . . . . ... 630
ScenNLB . . . . . . e 630

ScenNUB . . . . . . . e 630

ScenNODbj . . . . . 630

ScenNRHS . . . . . . . . . e 630
ScenNName . . . . . . . . o 631
ScenNObjBound . . . . . .. ... 631
ScenNObjVal . . . . . . . o 631

ScenNX . . .. e e 631
NumScenarios . . . . . . . . . L 631

12.10Batch Attributes . . . . . . . . . e 632
BatchErrorCode . . . . . . . .. oL e 632
BatchErrorMessage . . . . . . . . . . L Lo 632

BatchID . . . . . . o e 632
BatchStatus . . . . . . . . .. 632
12.11Attribute Examples . . . . . . . . . 632
C Attribute Examples . . . . . . . . .. 633

C++ Attribute Examples . . . . . . . . ... 634

C# Attribute Examples . . . . . . . . .. 635

Java Attribute Examples . . . . . . ... L L 635

Python Attribute Examples . . . . . . . . . .. ... o L 636

Visual Basic Attribute Examples . . . . . . . ... ... 0oL 636

13 Parameters 637
13.1 Parameter Guidelines . . . . . . . . . L L L 643
Continuous Models . . . . . . . . . . .. . e 643

MIP Models . . . . . . o . o e 644

13.2 Parameter Descriptions . . . . . . . . . . L 646
AggFill . . . o 646

Aggregate . . . . . L 646
BarConvTol . . . . . . . . . e 647
BarCorrectors . . . . . . . .. 647
BarHomogeneous . . . . . . . .. L e 647
BarlterLimit . . . . . . . ... 648

BarOrder . . . . . . . . . . e 648
BarQCPConvTol . . . . . .. o o 648
BestBdStop . . . . . . 649
BestObjStop . . . . . oL 649

BQPCuts . . . . . 649

BranchDir . . . . . oo oL o 650

CliqueCuts . . . . . . o e 650
CloudAccessID . . . . . . . . 650

xxviii



CloudHost . . . . . . . . e 651

CloudSecretKey . . . . . . . . 651
CloudPool . . . . . . . e 651
ComputeServer . . . . . . . . .. e 651
ConcurrentJobs . . . . . . . . e 652
ConcurrentMIP . . . . . . . . . e 652
ConcurrentSettings . . . . . . . .. Lo 653
CoverCuts . . . . . . . e 653
CroSSOVET . . . v v v i i e e e e e e e e 654
CrossoverBasis . . . . . . . . . e 654
CSAPIAccessID . . . . . . . e 654
CSAPISecret . . . . . . . . e 655
CSAppName . . . . . . . . 655
CSAuthToken . . . . . . . . . . . e 655
CSBatchMode . . . . . . . . . . . e 656
CSClientLog . . . . . . . 656
CSGroup . . . . o o e 656
CSIdleTimeout . . . . . . . . . . . e 656
CSManager . . . . . . . . oo e 657
CSPriority . . . . . . 657
CSQueueTimeout . . . . . . . . . . 658
CSRouter . . . . . . . e 658
CSTLSInsecure . . . . . . . . . . e e e 658
CutAggPasses . . . . . . . . . 658
Cutoff . . . . . e 659
CutPasses . . . . . . . e 659
Cuts . . . . e 660
DegenMoves . . . . . . . . 660
Disconnected . . . . . . . . e 660
Displaylnterval . . . . . . . . .. 660
DistributedMIPJobs . . . . . . . . . ... 661
DualReductions . . . . . . . . . . e 661
FeasibilityTol . . . . . . . . . o o 661
FeasRelaxBigM . . . . . . . . . . . 662
FlowCoverCuts . . . . . . . . . . . e 662
FlowPathCuts . . . . . . . . . . . . 662
FuncPieceError . . . . . . . . .. 663
FuncPieceLength . . . . . . . .. .. 663
FuncPieceRatio . . . . . . . . . . . .. 663
FuncPieces . . . . . . . . 663
FuncMaxVal . . . . . . . . . e 664
GomoryPasses . . . ... 664
GUBCoverCuts . . . . . . . . o e 664
Heuristics . . . . . . . . 665
IgnoreNames . . . . . . . . . . 665




IISMethod . . . . . . . . . 665

ImpliedCuts . . . . . . . . . e 666
ImproveStartGap . . . . . . . . ..o 666
ImproveStartNodes . . . . . . . . . . . 666
ImproveStartTime . . . . . . . . .. .. L L 667
InfProofCuts . . . . . . . . . 667
InfUnbdInfo . . . . . . . . . . . . 667
InputFile . . . . . . o 668
IntegralityFocus . . . . . . . ..o 668
IntFeasTol . . . . . . . . . . . 668
TterationLimit . . . . . . . . ..o 669
JobID . ..o e 669
JSONSolDetail . . . . . . . . e 669
LazyConstraints . . . . . . . . . . . . e 669
LicenseID . . . . . . . . e 670
LiftProjectCuts . . . . . . . . . . . 670
LPWarmStart . . . . . . . . . . e 670
LogFile . . . . . o o 671
LogToConsole . . . . . . . . . . o e 671
MarkowitzTol . . . . . . . . . 672
MemLimit . . . . . . . . . 672
Method . . . . . . . . 672
MinRelNodes . . . . . . . . . . e 673
MIPFoOCUS . . . . . o o o e e e e e e e 674
MIPGap . . . . o o e 674
MIPGapAbs . . . . . 674
MIPSepCuts . . . . o o o e e 675
MIQCPMethod . . . . . . . . . . e 675
MIRCuUts . . . . . e 675
ModKCuts . . . . . . e 675
MultiObjMethod . . . . . . . . . . L 676
MultiObjPre . . . . . . . e 676
MultiObjSettings . . . . . . . . . . 676
NetworkAlg . . . . . . o e 677
NetworkCuts . . . . . . . . . e 677
NLPHeur . . . . . . e e 677
NodefileDir . . . . . . . . . e 678
NodefileStart . . . . . . . . . . . e 678
NodeLimit . . . . . . . . e 678
NodeMethod . . . . . . . . . . . . e 679
NonConvex . . . . . . . . v i e e 679
NoRelHeurTime . . . . . . . . . . . . . e 679
NoRelHeurWork . . . . . . . . . . . e 680
NormAdjust . . . . . . . . 680

NumericFocus . . . . . . . . . 680




OBBT . . . . e 681

ObjNumber . . . . . . . . e 681
ObjScale . . . . . . . 681
OptimalityTol . . . . . . . . . o 682
OutputFlag . . . . . . . . o 682
PartitionPlace . . . . . . . . . 682
PerturbValue . . . . . . . . .. 683
PoolGap . . . . . . . 683
PoolGapAbs . . . . . e 683
PoolSearchMode . . . . . . . . . 684
PoolSolutions . . . . . . . ... 684
PreCrush . . . . . . . 684
PreDepRow . . . . . . . 685
PreDual . . . . . . . . 685
PreMIQCPForm . . . . . . . . . . 685
PrePasses . . . . . . . 686
PreQLinearize . . . . . . . . . .. 686
Presolve . . . . . . . 686
PreSOSIBigM . . . . . . o 687
PreSOS1Encoding . . . . . . . . .. . 687
PreSOS2BigM . . . . . .. 688
PreSOS2Encoding . . . . . . . . .. 688
PreSparsify . . . . . . 688
ProjlmpliedCuts . . . . . . . . . . 689
PSDCuts . . . . . . e 689
PSDTol . . . . . e e e 689
PumpPasses . . . . . . . 690
QCPDual . . . . . . 690
Quad . . . . 690
Record . . . . . . . . e 691
ResultFile . . . . . . . . 691
RINS . 691
RelaxLiftCuts . . . . . . . . . . e 692
RLTCuts . . . . . e e 692
ScaleFlag . . . . . . . 692
ScenarioNumber . . . . . . . . L 693
Seed . . . . e e 693
ServerPassword . . . . . . . . .. 693
ServerTimeout . . . . . . . . . . . . .. e 694
Sifting . . . . . 694
SiftMethod . . . . . . . . . e 694
SimplexPricing . . . . . . . ..o 695
SoftMemLimit . . . . . . . . . . . .. 695
SolutionLimit . . . . . . . . . . e 695
SolFiles . . . . . . e 696




SolutionNumber . . . . . . . . e 696

StartNodeLimit . . . . . . . . . . . . . . e 696
StartNumber . . . . . . . . . e 697
StrongCGCuts . . . . . . . . .. 697
SubMIPCuts . . . . . . . 697
SubMIPNodes . . . . . . . . . . e 698
Symmetry . . ..o 698
Threads . . . . . . . . e 698
TimeLimit . . . . . . . . e 699
TokenServer . . . . . . . . .. e 699
TSPort . . . . . e 699
TuneBaseSettings . . . . . . . . . . 700
TuneCleanup . . . . . . . . . . . 700
TuneCriterion . . . . . . . . . . e 700
TuneJobs . . . . . . e 701
TuneMetric . . . . . . . . e 701
TuneOutput . . . . . . . . . 701
TuneResults . . . . . . . . . . 701
TuneTargetMIPGap . . . . . . . . . . . . 702
TuneTargetTime . . . . . . . .. . . 702
TuneTimeLimit . . . . . . . . . . . . 702
TuneTrials . . . . . . . e 703
UpdateMode . . . . . . . . . e 703
UserName . . . . . . . . . e e e 704
VarBranch . . . . . . . . . . e 704
WLSAccessID . . . . . . . e 704
WLSSecret . . . . . 704
WLSToken . . . . . . . . . e 705
WLSTokenDuration . . . . . .. ... . ... ... 705
WLSTokenRefresh . . . . . . . .. . .. .. ... . 705
WorkerPassword . . . . . . . .. 705
WorkerPool . . . . . . . . e 706
WorkLimit . . . . . . . e 706
ZeroHalfCuts . . . . . . . . . . e 706
ZeroObjNodes . . . . . . . . 707
13.3 Parameter Examples . . . . . . . . oL Lo 707
C Parameter Examples . . . . . . . . . ... 707
C++ Parameter Examples . . . . . . .. .. Lo oo 708
C# Parameter Examples . . . . . . . . ... o 708
Java Parameter Examples . . . . . . .. .. o o o0 709
MATLAB Parameter Examples . . . . . . . . ... ... ... ... ... 709
Python Parameter Examples . . . . . . .. ... ... L. 709
R Parameter Examples . . . . . . . ... oo 710
Visual Basic Parameter Examples . . . . . .. ... ... ... ........ 710
14 Optimization Status Codes 711

Xxxii



15 Batch Status Codes 713

16 Callback Codes 714
17 Error Codes 718
18 Model File Formats 720
18.1 MPS format . . . . . . . . e 720
18.2 REW format . . . . . . . . . e 727
18.3 DUA format . . . . . . . . . 727
18.4 LP format . . . . . . . . . e 727
18.5 RLP format . . . . . . . . . . e 732
18.6 DLP format . . . . . . . . . . e 732
18.7 ILP format . . . . . . . . . . e 733
18.8 OPB format . . . . . . . . . . e 733
189 MST format . . . . . . . . . . e 733
18.10HNT format . . . . . . . . . . e 734
18.110RD format . . . . . . . . . e 734
18.12BAS format . . . . . . . 734
18.13SOL format . . . . . . . . . e 735
18.14JSON solution format . . . . . . . . . . . ... 735
18.15ATTR format . . . . . . . . . e 740
18.16PRM format . . . . . . . . . e 741
19 Logging 743
19.1 Header . . . . . . . . . e 743
19.2 Simplex Logging . . . . . . . . L 743
19.3 Barrier Logging . . . . . . . . . L 744
19.4 Sifting Logging . . . . . . . . . e 747
19.5 MIP Logging . . . . . . . . . o e 748
19.6 Solution Pool and Multi-Scenario Logging . . . . . . . . ... ... ... ... .... 750
19.7 Multi-Objective Logging . . . . . . . . . . . . 751
19.8 Distributed MIP Logging . . . . . . . . . . . . 751
19.9 TIS Logging . . . . . . . o o o e 752
20 Gurobi Command-Line Tool 754
20.1 Solving a Model . . . . . . . . . . e 754
20.2 Replaying Recording Files . . . . . . . . . . . . . 756
21 Solution Pool 757
21.1 Finding Multiple Solutions . . . . . . . . . . .. .. L 757
21.2 Retrieving Solutions . . . . . . . .. L 757
21.3 Examples . . . ..o Lo 758
21.4 Subtleties and Limitations . . . . . . . . . . . . ... 759

xxxiii



22 Multiple Objectives
22.1 Specifying Multiple Objectives . . . . . . . .. . ..
22.2 Working With Multiple Objectives . . . . . . . . . . . . .. . ...
22.3 Additional Details . . . . . . . ..

23 Multiple Scenarios
23.1 Definition of a Multi-Scenario Model . . . . . . . . .. ... ... oL,
23.2 Specifying Multiple Scenarios . . . . . . . ... Lo
23.3 Logging . . . . . . . e
23.4 Retrieving Solutions for Multiple Scenarios . . . . . . . . . ... ... ... ... ..
23.5 Tipsand Tricks . . . . . . . . . e
23.6 Limitations and Additional Considerations . . . . . . . . . . . ... ... ... ....

24 Batch Optimization
24.1 Setting Up a Batch Environment . . . . . . . ... .. ... oL,
24.2 Tagging Variables or Constraints . . . . . . . . . . ... ... . .
24.3 Submitting a Batch Optimization Request . . . . . . . . .. . ... ... ... ....
24.4 Interacting with Batch Requests . . . . . . .. .. ... ... .
24.5 Interpreting the JSON Solution . . . . . . . . . .. .. . .
24.6 A Complete Example . . . . . . . . . . e
24.7 Limitations . . . . . . . ..

25 Recording

API Calls

25.1 Recording . . . . . . . . L e

25.2 Replay

25.3 Limitations . . . . . . . .

26 Concurrent Optimizer

27 Parameter

Tuning Tool

27.1 Command-Line Tuning . . . . . . . . . . .. . L e
27.2 Tuning APL . . . . . o L

28 Gurobi Instant Cloud
28.1 Client Setup . . . . . . o o o e e
28.2 Instant Cloud Setup . . . . . . . . . . e

29 Guidelines

for Numerical Issues

29.1 Avoid rounding of input . . . . . .. ..o
29.2 Real numbers are not real . . . . . . .. Lo Lo
29.3 Tolerances and user-scaling . . . . . . . .. .. L L L

Models at the edge of infeasibility . . . . ... ... ... ... .. ......
Gurobi tolerances and the limitations of double-precision arithmetic . . . . .
Why scaling and geometry is relevant . . . . . . .. ... ...
Recommended ranges for variables and constraints . . . . . . ... ... ...
Improving ranges for variables and constraints . . . . .. ... ... ... ..
Advanced user scaling . . . . .. ...

760
760
761
763

765
765
765
766
766
767
767

769
769
769
770
770
771
771
774

775
775
776
776

T

779
779
782

783
783
784

XXX1V



Avoid hiding large coefficients . . . . . .. ... o oL 792

Dealing with big-M constraints . . . . . . . . ... ... ... 793

29.4 Does my model have numerical issues? . . . . . . . . . .. ... oL 793
29.5 Solver parameters to manage numerical issues . . . . . . . . .. ... ... ... ... 794
Presolve . . . . . . e 795

Choosing the right algorithm . . . . . . ... .. ... 0 0 0. 795

Making the algorithm less sensitive . . . . . . . . . ... ... ... 796

29.6 Instability and the geometry of optimization problems . . . . . . . . ... ... ... 796
The case of linear systems: . . . . . . .. ... oo 797

The geometry of linear optimization problems . . . . . . . . .. .. ... ... 797

Multiple optimal solutions . . . . . . . . . ... oo 799

Dealing with epsilon-optimal solutions . . . . . . . ... ... ... .. .... 800

Thin feasible regions . . . . . . . . Lo 801

Optimizing over the circle: . . . . . . . .. .. oo 803

Optimizing over thin regions: . . . . . . . . . .. ... o 804

Stability and convergence . . . . . . .. ... 805

29.7 Further reading . . . . . . . . . . e 805
Source code for the experiment of optimizing over a circle . . . . . .. .. .. 805

Source code for the experiment on a thin feasible region . . . . . . . ... .. 806

Source code for the experiment with column scalings . . . . .. ... ... .. 807

30 Copyright Notices for 3rd Party Libraries 808

XXXV



Introduction

C++ API Maodel Data

Java AP

NET API
Gurobi
Interactive Python API \

Shell ¥e
MATLAB API AP

Y

Gurobi Algorithms

R API

Gurobi
Command
Line

y
Solution Data

This is the reference manual for the Gurobi™ Optimizer. It contains documentation for the
following Gurobi language interfaces:

e C

o C++

o Java®

e Microsoft® NET

e Python®

« MATLAB®

« R
The Gurobi interactive shell is also documented in the Python section.

The different Gurobi language interfaces share many common features. These are described at
the end of this manual. Two particularly important common features are the Attribute interface

and the Gurobi Parameter set. You may wish to bookmark these pages, since you are likely to refer
to them frequently as you develop applications that use the Gurobi Optimizer.




Additional Topics

This document covers a number of additional topics, which are listed here:
e Detailed Release Notes
e Variables and Constraints and Objectives
e Environments
o Attributes
o Parameters
e Optimization Status Codes
o Callback Codes
e Error Codes
o File Formats
o Logging
e Command-Line Tool
e Solution Pool
e Multiple Objectives
e Multiple Scenarios
e Batch Optimization
e Recording API Calls
e Concurrent Optimizer
e Parameter Tuning Tool
o Instant Cloud
e Guidelines for Numerical Issues

Additional Resources

You can consult the Gurobi Quick Start for a high-level overview of the Gurobi Optimizer, or the
Gurobi Example Tour for a quick tour of the examples provided with the Gurobi distribution, or the
Gurobi Remote Services Reference Manual for an overview of Gurobi Compute Server, Distributed
Algorithms, and Gurobi Remote Services.

Getting Help

If you have a question that is not answered in this document, please visit the Gurobi support site at
https://support.gurobi.com. There, you can read knowledge base articles and join the community
discussion forum. Also, if you have a current maintenance contract, you can use the Gurobi support
site to submit a request to the Gurobi support team.



https://www.gurobi.com/documentation/10.0/quickstart_windows/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html
https://www.gurobi.com/documentation/10.0/remoteservices/remoteservices.html
https://support.gurobi.com

Supported Platforms

Platform (port) Operating System

Detailed Release Notes for Gurobi 10.0.0

Compiler

Notes

Windows Windows 10, 11, Windows Visual Studio 2017-2022 Use gurobi_c++md2017.1ib
64-bit (win64) Server 2012 R2, 2016, 2019, (e.g.) for C++

2022
Linux x86-64 Red Hat Enterprise Linux 7 GCC >= 4.8 Use libgurobi_g++5.2.a
64-bit (linux64) (and corresponding CentOS for newer C++ compilers

distribution), 8, and 9
SUSE Enterprise Linux 12, 15
Ubuntu 18.04, 20.04, 22.04*

Amazon Linux 2

macOS 11 (Big Sur), 12 (Monterey)
64-bit universal2
(macos__universal2)

Xcode 12/13

Linux arm64 Red Hat Enterprise Linux 7
64-bit (armlinux64)  (and corresponding CentOS
distribution), 8, and 9

SUSE Enterprise Linux 12, 15
Ubuntu 20.04, 22.04

Amazon Linux 2

GCC >=4.38

AIX AIX 7.1,7.2,7.3
64-bit (power64)

XL C/C++ 9

Due to limited Python sup-
port on AIX, this port
does not include the Inter-
active Shell or the Python

libraries.

*On Ubuntu 22.04 for x86-64, user code that calls dlopen()/dlclose() to load/unload 1ibgurobil00.so is known
to fail. We have investigated the issue, and unfortunately we have not yet found a workaround.

Additional Supported Platform Information

Gurobi 10.0.0 supports the following language/platform versions:

Language Version

Python 3.7, 3.8, 3.9, 3.10, 3.11
MATLAB  R2019a-R2022a

R 4.2
JDK 8, 11, 17
NET 6.0




NuGet package for .NET

We now provide an official NuGet package for .NET users. You can find the package at https://www.nuget.org/
packages/Gurobi.Optimizer. Additional information is available in the .NET Interface section of the Gurobi Quick
Start Guide.

Changed in Gurobi 10.0

Changes to C API

The parameter for method GRBcbproceed has changed. The signature was:
int GRBcbproceed(GRBmodel *model)

and is now:

int GRBcbproceed(void *cbdata)

Changes to attributes

The VBasis variable attribute for a fixed variable will now return either -1 (non-basic at lower bound) or -2 (non-basic
at upper bound), depending on the sign of the reduced cost (it previously always returned -1).

Changes to callback

User callbacks could previously be called from a variety of Gurobi methods. They will now only be called from
methods that solve an optimization model. The list of such methods of course includes optimize, but also feasRelax,
computeIIS, and a few others.

Removed in Gurobi 10.0

End of support for Python 2.7
This version has dropped support for Python 2.7.
Only one set of C++ libraries for Windows

We now only ship a single set of C++ libraries (gurobi_c++md2017.1ib, gurobi_c++mdd2017.1ib, etc.), built with
Visual Studio 2017. These are binary compatible with Visual Studio versions 2017-2022.

Removed attributes

Attributes JobID and ComputeServer are no longer available. The same information can be obtained via the read-only
parameters JobID and ComputeServer, which have been available since Gurobi 8.0.

Removed GRBgetlogfile method
The C API method GRBgetlogfile has been removed. Use the LogFile parameter to obtain the name of the log file.
Removed legacy methods for creating Compute Server and Instant Cloud environments

The following legacy methods and constructors for creating Compute Server and Instant Cloud environments have
been removed:

e C: GRBloadclientenv, GRBloadcloudenv
e C++:

GRBEnv(const std::string& logfilename, const std::string& computeserver,
const std::string& router, const std::string& password,
const std::string& group, int CStlsInsecure, int priority,
double timeout)

GRBEnv (const std::string& logfilename, const std::string& accessID,
const std::stringk secretKey, const std::string& pool,
int priority)

e Java:



https://www.nuget.org/packages/Gurobi.Optimizer
https://www.nuget.org/packages/Gurobi.Optimizer

GRBEnv (String logFileName, String computeServer, String router,
String password, String group, int CStlsInsecure, int priority,
double timeout)

GRBEnv (String logfilename, String accessID, String secretKey, String pool,
int priority)

o NET:

GRBEnv (string logfilename, string computeserver, string router,
string password, string group, int CStlsInsecure, int priority,
double timeout)
GRBEnv (string logfilename, string accessID, string secretKey, string pool,
int priority)
e gurobipy: Env.ClientEnv, Env.CloudEnv,

e Matlab and R: The env parameter to the Gurobi functions. See Matlab and R changes below for conversion
details.

You should use the configuration parameters instead, which were introduced in Gurobi 8.0 to simplify this process.

New features affecting all APls

Licensing

The Gurobi Web License Service (WLS) previously only worked within containerized environments. With Gurobi 10.0,
it now works outside of containers as well (on Windows, macOS and Linux).

New parameters
The following parameters are new in Gurobi 10.0:
e NetworkAlg to control the network simplex algorithm.
e OBBT to control the aggressiveness of Optimality-Based Bound Tightening.

o SoftMemLimit to limit the total amount of memory available to an optimization (leading to a graceful exit
when the limit is hit).

o WLSTokenRefresh to specify the refresh interval of a Web License Service token.
Logistic General Constraint

Added support for piecewise-linear approximation of the logistic function as a general constraint. With this feature,
you can model the logistic function y = H% on problem variables x and y. As with all general constraints, you
can control how fine-grained the piecewise-linear approximation should be. See the General Constraint section for
more information.

Specific performance improvements
In addition to general performance improvements across all supported problem classes, we have added the following
enhancements for specific problem types:

e Added a network simplex algorithm to speed up the solution of LPs with pure network structure.

¢ Added a new QUBO heuristic to improve our ability to quickly find good feasible solutions for Quadratic
Unconstrained Boolean Optimization problems.

e Reorganized the concurrent LP solver to improve performance and reduce memory consumption.

o Significantly improved performance on MIP models that contain constraints that model neural networks with
ReLU activation functions.

Behavior changes affecting the Python matrix-friendly API

With version 10.0 we have extended the capabilities of the existing MVar, MLinExpr, and MQuadExpr modeling classes
and improved their behaviour in many respects. Some of the changes may cause incompatibilities with existing code
that uses these objects, so we suggest that you read the following summary carefully and adapt your code accordingly.




More arithmetic operations supported

You can now perform point-wise multiplication involving combinations of matrix-friendly modeling objects and
NumPy ndarrays. For example:

a = numpy.random.rand(3)
x = model.addMVar(3)
y = model.addMVar(3)

# Add three linear constraints al[il*x[i] = y[i]
model.addConstr(a * x == y)

# Add three quadratic constraints x[i]*y[i] = a[i]
model.addConstr(x * y == a)

Arbitrary dimensions now supported
The classes MVar, MLinExpr, and MQuadExpr now support arbitrary numbers of dimensions. For example, you can

now create 2-D matrix linear expressions:

A = numpy.random.rand(4,3)
B = numpy.random.rand(4,2)
X = model.addMVar((3,2))

# Add 8 linear comnstraints A[i, :] @ X[:, j] == B[i, j]
model.addConstr(A @ X == B)

Dimensionality and consistency

The classes MVar, MLinExpr, and MQuadExpr now behave similarly to NumPy’s ndarray when it comes to dimension
handling. For example:

X = model.addMVar((3,3))

subl = X[:, 1] # Gives 1-D (3,) Mvar
sub2 = X[:, 1:2] # Gives 2-D (3, 1) Mvar
sub3 = X[0, 1] # Gives 0-D () Mvar

In addition, a 0-D MVar object now acts like a “scalar” Var object, but it keeps its dimensionality properties.
Furthermore, in previous versions all MQuadExpr objects containing just one element had shape (1,). Such objects
now follow the shape rules of Python’s matrix multiplication operator:

Q = np.random.rand((3,3)); Q = Q + Q.T
x = model.addMVar((3,1))
exprl = x.T@Q @x # exprl.shape is (1,1)

expr2 = x[:, 0] @ Q @ x[:, 0] # expr2.shape is ()

Arithmetic operations embrace NumPy’s broadcasting rules

The behaviour of arithmetic operations among the matrix friendly modeling objects of different shapes now follows
NumPy’s broadcasting rules. For example:

a
X

numpy . random.rand (3)
model.addMVar ((3,3))

# a is broadcast along the first dimension of x; result is (3,3)
expr = a * X

Broadcasting is also applied implicitly when adding broadcastable expressions as constraints:




a = numpy.random.rand(3)

e
]

model.addMVar ((3,3))

# a is broadcast along the first dimension of x.
# The effect is the same as doing addConstr(x - a == 0)
model.addConstr(x == a)

For detailed information on broadcasting we refer you to NumPy’s documentation.

Other changes

Creating MVar objects through Model.addMVar is now roughly 40% faster.

The optional attribute initializers for Model.addMVar now need to be passed in a broadcastable shape. In older
versions, any list with an appropriate number of elements could be used, which is ambiguous in the case of a
multi-dimensional MVar. Please refer to the documentation of Model.addMVar for details.

Using the MVar constructor to convert a list of Var objects to an MVar object is deprecated. A dedicated,
faster method (MVar.fromlist) has been introduced for this purpose.

The method MVar.sum now takes an optional axis argument to select an axis along which the summation
should happen. Also, the shape of the resulting MLinExpr after summing all elements is now (), (0-D), as
opposed to (1,) in older versions.

The method MLinExpr.copy now returns a deep copy, as opposed to a shallow copy in earlier versions.

Invalid or incompatible matrix multiplication invocations now raise a ValueError instead of a GurobiError.

To check whether your program calls any deprecated methods you can set an appropriate filter in Python’s
warnings module. For example, you can turn all warnings to runtime errors by starting the Python interpreter with
the option -W error.

Changes in the Matlab and R APIs

The env argument to Matlab and R API functions has been removed. This argument was previously used to provide
the data required to connect to a Compute Server or to Gurobi Instant Cloud. This information should now be
passed through parameters in the params struct.

For example, the new signature of the "gurobi" function is gurobi(model, params). To update a program that
uses the env argument, just set the appropriate parameters in params to match the fields you previously used in env.
The following table shows the correspondence between the field names of the deprecated env argument and Gurobi

parameters:
env params
router CSRouter
password ServerPassword
group CSGroup
priority CSPriority
timeout CSQueueTimeout

accessid CloudAccessID
secretkey CloudSecretKey
pool CloudPool

A client MATLAB program that solves a model on a Compute Server should now look something like the

following:

m.A = sparse(0,0); % Just a minimal model struct for demonstration
params.Method = 2; Y Use barrier method (for demonstration)
params.ComputeServer = 'myserver.mycompany.com'; % Set server name
params.ServerPassword = 'pass'; J Set password

gurobi(m, params); % Solve model on server with barrier

Similarly for R, client code to solve a model on a Compute Server should look like:




m <- list(A = matrix(0)) # Just a minimal model struct for demonstration
params <- list()

params$Method <- 2 # Use barrier method (for demonstration)
params$ComputeServer <- "myserver.mycompany.com"; # Set server name
params$ServerPassword <- "pass"; # Set password

gurobi(m, params); # Solve model on server with barrier

In summary, this is now the full list of signatures for Matlab and R API functions:

gurobi(model, params)

gurobi_feasrelax(model, relaxobjtype, minrelax, penalties, params)
gurobi_iis(model, params)

gurobi_read(filename, params)

gurobi_relax(model, params)

gurobi_write(model, filename, params)

Compute Server, Cluster Manager, and Instant Cloud

Detailed release notes for Compute Server, Cluster Manager, and Instant Cloud can be found here



https://www.gurobi.com/release-notes/server/v10.0/

C API Overview

This section documents the Gurobi C interface. This manual begins with a quick overview of the functions in the
interface, and continues with detailed descriptions of all of the available interface routines.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide or the Example
Tour. These documents provide concrete examples of how to use the routines described here.

Environments

The first step in using the Gurobi C optimizer is to create an environment, using the GRBloadenv call. The
environment acts as a container for all data associated with a set of optimization runs. You will generally only need
one environment in your program, even if you wish to work with multiple optimization models. Once you are done
with an environment, you should call GRBfreeenv to release the associated resources.

For more advanced use cases, you can use the GRBemptyenv routine to create an uninitialized environment and
then, programmatically, set all required options for your specific requirements. For further details see the Environment
section.

Models

You can create one or more optimization models within an environment. A model consists of a set of variables, a
linear, quadratic, or piecewise-linear objective function on those variables, and a set of constraints. Each variable has
an associated lower bound, upper bound, type (continuous, binary, integer, semi-continuous, or semi-integer), and
linear objective coefficient. Each linear constraint has an associated sense (less-than-or-equal, greater-than-or-equal,
or equal), and right-hand side value. Refer to this section for more information on variables and constraints.

An optimization model may be specified all at once, through the GRBloadmodel routine, or built incrementally,
by first calling GRBnewmodel and then calling GRBaddvars to add variables and GRBaddconstr, GRBaddqconstr,
GRBaddsos, or any of the GRBaddgenconstrXxx methods to add constraints. Models are dynamic entities; you can
always add or delete variables or constraints.

Specific variables and constraints are referred to throughout the Gurobi C interface using their indices. Variable
indices are assigned as variables are added to the model, in a contiguous fashion. The same is true for constraints.
In adherence to C language conventions, indices all start at 0.

We often refer to the class of an optimization model. A model with a linear objective function, linear constraints,
and continuous variables is a Linear Program (LP). If the objective is quadratic, the model is a Quadratic Program
(QP). If any of the constraints are quadratic, the model is a Quadratically-Constrained Program (QCP). We will
sometimes refer to a few special cases of QCP: QCPs with convex constraints, QCPs with non-convex constraints,
bilinear programs, and Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-
continuous variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the model
is a Mized Integer Program (MIP). We'll also sometimes discuss special cases of MIP, including Mized Integer Linear
Programs (MILP), Mized Integer Quadratic Programs (MIQP), Mized Integer Quadratically-Constrained Programs
(MIQCP), and Mized Integer Second-Order Cone Programs (MISOCP). The Gurobi Optimizer handles all of these
model classes.

Solving a Model

Once you have built a model, you can call GRBoptimize to compute a solution. By default, GRBoptimize () will use
the concurrent optimizer to solve LP models, the barrier algorithm to solve QP models with convex objectives and
QCP models with convex constraints, and the branch-and-cut algorithm otherwise. The solution is stored as a set of
attributes of the model. The C interface contains an extensive set of routines for querying these attributes.

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBoptimize () will only perform
further optimization if relevant data has changed since the model was last optimized. If you would like to discard
previously computed solution information and restart the optimization from scratch without changing the model, you
can call GRBreset.

After a MIP model has been solved, you can call GRBfixmodel to compute the associated fixred model. This
model is identical to the original, except that the integer variables are fixed to their values in the MIP solution. If
your model contains SOS constraints, some continuous variables that appear in these constraints may be fixed as well.



https://www.gurobi.com/documentation/10.0/quickstart_windows/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html

In some applications, it can be useful to compute information on this fixed model (e.g., dual variables, sensitivity
information, etc.), although you should be careful in how you interpret this information.

Multiple Solutions, Objectives, and Scenarios

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to a single model
with a single objective function. Gurobi provides the following features that allow you to relax these assumptions:

e Solution Pool: Allows you to find more solutions.
e Multiple Scenarios: Allows you to find solutions to multiple, related models.
e Multiple Objectives: Allows you to specify multiple objective functions and control the trade-off between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the infeasibility,
attempt to repair the infeasibility, or both. To obtain information that can be useful for diagnosing the cause of an
infeasibility, call GRBcomputellS to compute an Irreducible Inconsistent Subsystem (IIS). This routine can be used
for both continuous and MIP models, but you should be aware that the MIP version can be quite expensive. This
routine populates a set of IIS attributes.

To attempt to repair an infeasibility, call GRBfeasrelax to compute a feasibility relaxation for the model. This
relaxation allows you to find a solution that minimizes the magnitude of the constraint violation.

Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some attributes are associated
with the variables of the model, some with the constraints of the model, and some with the model itself. To give
a simple example, solving an optimization model causes the X variable attribute to be populated. Attributes such
as X that are computed by the Gurobi optimizer cannot be modified directly by the user, while others, such as the
variable lower bound array (the LB attribute) can.

The Gurobi C interface contains an extensive set of routines for querying or modifying attribute values. The
exact routine to use for a particular attribute depends on the type of the attribute. As mentioned earlier, attributes
can be either variable attributes, constraint attributes, or model attributes. Variable and constraint attributes are
arrays, and use a set of array attribute routines. Model attributes are scalars, and use a set of scalar routines.
Attribute values can additionally be of type char, int, double, or string (really char *).

Scalar model attributes are accessed through a set of GRBget*attr () routines (e.g., GRBgetintattr). In addition,
those model attributes that can be set directly by the user (e.g., the objective sense) may be modified through the
GRBset*attr() routines (e.g., GRBsetdblattr).

Array attributes are accessed through three sets of routines. The first set, the GRBget*attrarray() routines
(e.g., GRBgetcharattrarray) return a contiguous sub-array of the attribute array, specified using the index of the
first member and the length of the desired sub-array. The second set, the GRBget*attrelement() routines (e.g.,
GRBgetcharattrelement) return a single entry from the attribute array. Finally, the GRBget*attrlist () routines
(e.g., GRBgetdblattrlist) retrieve attribute values for a list of indices.

Array attributes that can be set by the user are modified through the GRBset*attrarray(), GRBset*attrelement (),
and GRBset*attrlist() routines.

The full list of Gurobi attributes can be found in the Attributes section.

Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to variable bounds,
constraint right-hand sides, etc.). The main exceptions are modifications to the constraints themselves, and to the
quadratic and piecewise-linear portions of the objective function.

The constraint matrix can be modified in a few ways. The first is to call GRBchgcoeffs to change individual
matrix coefficients. This routine can be used to modify the value of an existing non-zero, to set an existing non-zero
to zero, or to create a new non-zero. The constraint matrix is also modified when you remove constraints (through
GRBdelconstrs) or variables (through GRBdelvars). The non-zero values associated with the deleted constraints or
variables are removed along with the constraints or variables themselves.

Quadratic objective terms are added to the objective function using the GRBaddqpterms routine. You can add
a list of quadratic terms in one call, or you can add terms incrementally through multiple calls. The GRBdelq
routine allows you to delete all quadratic terms from the model. Note that quadratic models will typically have both
quadratic and linear terms. Linear terms are entered and modified through the Obj attribute, in the same way that
they are handled for models with purely linear objective functions.

10



If your variables have piecewise-linear objectives, you can specify them using the GRBsetpwlobj routine. Call
this routine once for each relevant variable. The Gurobi simplex solver includes algorithmic support for convex
piecewise-linear objective functions, so for continuous models you should see a substantial performance benefit from
using this feature. To clear a previously specified piecewise-linear objective function, simply set the 0bj attribute on
the corresponding variable to 0.

Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed in a lazy fashion,
meaning that modifications don’t affect the model immediately. Rather, they are queued and applied later. If your
program simply creates a model and solves it, you will probably never notice this behavior. However, if you ask for
information about the model before your modifications have been applied, the details of the lazy update approach
may be relevant to you.

As we just noted, model modifications (bound changes, right-hand side changes, objective changes, etc.) are
placed in a queue. These queued modifications can be applied to the model in three different ways. The first is by
an explicit call to GRBupdatemodel. The second is by a call to GRBoptimize. The third is by a call to GRBwrite to
write out the model. The first case gives you fine-grained control over when modifications are applied. The second
and third make the assumption that you want all pending modifications to be applied before you optimize your model
or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is that this approach
makes it much easier to perform multiple modifications to a model, since the model remains unchanged between
modifications. The second is that processing model modifications can be expensive, particularly in a Compute Server
environment, where modifications require communication between machines. Thus, it is useful to have visibility into
exactly when these modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then update, then make
more modifications, then update again, etc. Updating after each individual modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value of the requested
data from the point of the last update. If the object you tried to query didn’t exist then, you'll get an INDEX_OUT_-
OF _RANGE error instead.

The semantics of lazy updates have changed since earlier Gurobi versions. While the vast majority of programs
are unaffected by this change, you can use the UpdateMode parameter to revert to the earlier behavior if you run
into an issue.

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of the optimization
process. Factors like feasibility and optimality tolerances, choices of algorithms, strategies for exploring the MIP search
tree, etc., can be controlled by modifying Gurobi parameters before beginning the optimization. Parameters are set
using the GRBset*param() routines (e.g., GRBsetintparam). Current values can be retrieved with the GRBget*param()
routines (e.g., GRBgetdblparam). Parameters can be of type int, double, or char * (string). You can also read a set of
parameter settings from a file using GRBreadparams, or write the set of changed parameters using GRBwriteparams.

We also include an automated parameter tuning tool that explores many different sets of parameter changes in
order to find a set that improves performance. You can call GRBtunemodel to invoke the tuning tool on a model.
Refer to the parameter tuning tool section for more information.

One thing we should note is that each model gets its own copy of the environment when it is created. Parameter
changes to the original environment therefore have no effect on existing models. Use GRBgetenv to retrieve the
environment associated with a particular model if you want to change a parameter for that model.

Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will send output to the
screen. A few simple controls are available for modifying the default logging behavior. If you would like to direct
output to a file as well as to the screen, specify the log file name in GRBloadenv when you create your environment.
You can modify the LogFile parameter if you wish to redirect the log to a different file after creating the environment.
The frequency of logging output can be controlled with the DisplayInterval parameter, and logging can be turned off
entirely with the OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging
section.

More detailed progress monitoring can be done through the Gurobi callback function. The GRBsetcallbackfunc
routine allows you to install a function that the Gurobi optimizer will call regularly during the optimization process.
You can call GRBcbget from within the callback to obtain additional information about the state of the optimization.

11



Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. If you call routine GRBterminate from
within a callback, for example, the optimizer will terminate at the earliest convenient point. Routine GRBcbsolution
allows you to inject a feasible solution (or partial solution) during the solution of a MIP model. Routines GRBcbcut
and GRBcblazy allow you to add cutting planes and lazy constraints during a MIP optimization, respectively. Routine
GRBcbstoponemultiobj allows you to interrupt the optimization process of one of the optimization steps in a multi-
objective MIP problem without stopping the hierarchical optimization process.

Batch Optimization

Gurobi Compute Server enables programs to offload optimization computations onto dedicated servers. The Gurobi
Cluster Manager adds a number of additional capabilities on top of this. One important one, batch optimization,
allows you to build an optimization model with your client program, submit it to a Compute Server cluster (through
the Cluster Manager), and later check on the status of the model and retrieve its solution. You can use a Batch
object to make it easier to work with batches. For details on batches, please refer to the Batch Optimization section.

Error Handling

Most of the Gurobi C library routines return an integer error code. A zero return value indicates that the routine
completed successfully, while a non-zero value indicates that an error occurred. The list of possible error return codes
can be found in the Error Codes section.

When an error occurs, additional information on the error can be obtained by calling GRBgeterrormsg.

12



3.1 Environment Creation and Destruction

GRBloadenv

int GRBloadenv ( GRBenv **envP,
const char *logfilename )

Create an environment. Optimization models live within an environment, so this is typically the first Gurobi
routine called in an application.

This routine will also populate any parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified
in your gurobi.lic file. This routine will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each
line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Return value:

A non-zero return value indicates that there was a problem creating the environment. Refer to the Error
Code table for a list of possible return values.
Arguments:
envP: The location in which the pointer to the newly created environment should be placed.
logfilename: The name of the log file for this environment. May be NULL (or an empty string), in which
case no log file is created.

GRBemptyenv

‘int GRBemptyenV( GRBenv  **envP )

Create an empty environment. Note that you will need to call GRBstartenv before you can use this environment.
You should use this routine if you want to set parameters before actually starting the environment. This can be
useful if you want to connect to a Compute Server, a Token Server, the Gurobi Instant Cloud, a Cluster Manager or
use a WLS license. See the Environment Section for more details.
Return value:
A non-zero return value indicates that there was a problem creating the environment. Refer to the Error
Code table for a list of possible return values.
Arguments:
envP: The location in which the pointer to the newly created environment should be placed.

GRBstartenv
| int GRBstartenv ( GRBenv *env )

Start an empty environment. This routine starts an empty environment created by GRBemptyenv. If the
environment has already been started, this routine will do nothing. If the routine fails, the environment will have the
same state as it had before the call to this function.

This routine will also populate any parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified
in your gurobi.lic file. This routine will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each
line should contain a parameter name, followed by the desired value for that parameter). After that, it will apply
all parameter changes specified by the user prior to this call. Note that this might overwrite parameters set in the
license file, or in the gurobi.env file, if present.

After all these changes are performed, the code will actually activate the environment, and make it ready to work
with models.

13



In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.
Return value:
A non-zero return value indicates that there was a problem starting the environment. Refer to the Error
Code table for a list of possible return values.

Arguments:
env: The empty environment to start.

GRBfreeenv

‘void GRBfreeenv ( GRBenv *env )

Free an environment that was previously allocated by GRBloadenv, and release the associated memory. This
routine should be called when an environment is no longer needed. In particular, it should only be called once all
models built using the environment have been freed.

Arguments:

env: The environment to be freed.

GRBgetconcurrentenv

GRBenv * GRBgetconcurrentenv ( GRBmodel *model,
int num )

Create/retrieve a concurrent environment for a model.

This routine provides fine-grained control over the concurrent optimizer. By creating your own concurrent
environments and setting appropriate parameters on these environments (e.g., the Method parameter), you can control
exactly which strategies the concurrent optimizer employs. For example, if you create two concurrent environments,
and set Method to primal simplex for one and dual simplex for the other, subsequent concurrent optimizer runs will
use the two simplex algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with num=0. For example,
if you want three concurrent environments, they must be numbered 0, 1, and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent optimization on
that model. Use GRBdiscardconcurrentenvs to revert back to default concurrent optimizer behavior.

Return value:

The concurrent environment. A NULL return value indicates that there was a problem creating the environ-
ment.

Arguments:

model: The model for the concurrent environment.
num: The concurrent environment number.

Example usage:

GRBenv *envO
GRBenv *envl

GRBgetconcurrentenv(model, 0);
GRBgetconcurrentenv (model, 1);

GRBgetmultiobjenv

GRBenv¢ GRBgetmultiobjenv ( GRBmodel *model,
int num )

Create/retrieve a multi-objective environment for the objective with the given index. This environment enables
fine-grained control over the multi-objective optimization process. Specifically, by changing parameters on this
environment, you modify the behavior of the optimization that occurs during the corresponding pass of the multi-
objective optimization.

Each multi-objective environment starts with a copy of the current model environment.

14



Please refer to the discussion of Multiple Objectives for information on how to specify multiple objective functions
and control the trade-off between them.
Return value:
The environment associated with a given multiobjective number in the model. A NULL return value indicates
that there was a problem retrieving the environment.
Arguments:
model: The model from where we want to retrieve the multiobjecitve environment.
num: The multiobjective number.
Example usage:
GRBenv *envO = GRBgetmultiobjenv(model,O);
GRBenv *envl = GRBgetmultiobjenv(model,1);

GRBsetintparam(envO, "Method", 2);
GRBsetintparam(envl, "Method", 1);

GRBoptimize (model) ;

GRBdiscardmultiobjenvs (model) ;

GRBdiscardconcurrentenvs

| void GRBdiscardconcurrentenvs ( GRBmodel * model )

Discard concurrent environments for a model.
The concurrent environments created by GRBgetconcurrentenv will be used by every subsequent call to the
concurrent optimizer until the concurrent environments are discarded.
Arguments:
model: The model for the concurrent environment.
Example usage:

GRBdiscardconcurrentenvs (model) ;

GRBdiscardmultiobjenvs

| void GRBdiscardmultiobjenvs ( GRBmodel #*model )

Discard all multi-objective environments associated with the model, thus restoring multi objective optimization
to its default behavior.
Please refer to the discussion of Multiple Objectives for information on how to specify multiple objective functions
and control the trade-off between them.
Arguments:
model: The model in which all multi objective environments will be discarded.
Example usage:

GRBenv *envO
GRBenv *envl

GRBgetmultiobjenv(model,O);
GRBgetmultiobjenv(model,1);

GRBsetintparam(envO, "Method", 2);
GRBsetintparam(envl, "Method", 1);

GRBoptimize (model) ;

GRBdiscardmultiobjenvs(model) ;

15



3.2

Model Creation and Modification

GRBloadmodel

int GRBloadmodel ( GRBenv *env,
GRBmodel *xmodelP,
const char *Pname,
int numvars,
int numconstrs,
int objsense,
double objcon,
double *obj,
char *sense,
double *rhs,
int *vbeg,
int *vlen,
int *vind,
double *vval,
double *1b,
double *ub,
char *vtype,

const char **varnames,
const char **constrnames )

Create a new optimization model, using the provided arguments to initialize the model data (objective function,
variable bounds, constraint matrix, etc.). The model is then ready for optimization, or for modification (e.g., addition
of variables or constraints, changes to variable types or bounds, etc.).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider using the GR-
BXloadmodel variant of this routine.
Return value:

A non-zero return value indicates that a problem occurred while creating the model. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

env: The environment in which the new model should be created. Note that the new model gets a copy of
this environment, so subsequent modifications to the original environment (e.g., parameter changes) won’t
affect the new model. Use GRBgetenv to modify the environment associated with a model.

modelP: The location in which the pointer to the newly created model should be placed.

Pname: The name of the model.

numvars: The number of variables in the model.

numconstrs: The number of constraints in the model.

objsense: The sense of the objective function. Allowed values are 1 (minimization) or -1 (maximization).

objcon: Constant objective offset.

obj: Objective coefficients for the new variables. This argument can be NULL, in which case the objective
coefficients are set to 0.0.

sense: The senses of the new constraints. Options are ’=’ (equal), ’<’ (less-than-or-equal), or *>’ (greater-
than-or-equal). You can also use constants GRB_EQUAL, GRB_LESS_EQUAL, or GRB_GREATER_EQUAL.

rhs: Right-hand side values for the new constraints. This argument can be NULL if you are not adding any
constraint.

vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse Column (CSC)
format. Each column in the constraint matrix is represented as a list of index-value pairs, where each
index entry provides the constraint index for a non-zero coefficient, and each value entry provides the
corresponding non-zero value. Each variable in the model has a vbeg and vlen value, indicating the
start position of the non-zeros for that variable in the vind and vval arrays, and the number of non-zero
values for that variable, respectively. Thus, for example, if vbeg[2] = 10 and vlen[2] = 2, that would
indicate that variable 2 has two non-zero values associated with it. Their constraint indices can be found
in vind[10] and vind[11], and the numerical values for those non-zeros can be found in vval[10] and

16



vval[11]. Note that the columns of the matrix must be ordered from first to last, implying that the values
in vbeg must be non-decreasing.

vlen: Number of constraint matrix non-zero values associated with each variable. See the description of the
vbeg argument for more information.

vind: Constraint indices associated with non-zero values. See the description of the vbeg argument for more
information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of the vbeg argument
for more information.

1b: Lower bounds for the new variables. This argument can be NULL, in which case all variables get lower
bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all variables get infinite
upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUQOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or
GRB_SEMIINT. This argument can be NULL, in which case all variables are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all variables are given
default names.

constrnames: Names for the new constraints. This argument can be NULL, in which case all constraints are
given default names.

Important notes:

We recommend that you build a model one constraint or one variable at a time, using GRBaddconstr or GR-
Baddvar, rather than using this routine to load the entire constraint matrix at once. It is much simpler, less error
prone, and it introduces no significant overhead.

Example usage:

/* maximize x+ y+2z
subject to x + 2y + 3z <=4
X + y >= 1

X, ¥, z binary */

int vars = 3;

int constrs 2;

int vbegl[l = {0, 2, 4};

int vlen[]l = {2, 2, 1};

int vind[l = {0, 1, 0, 1, 0};

double vvalll = {1.0, 1.0, 2.0, 1.0, 3.03};

double obj[l = {1.0, 1.0, 2.03};
char sense[] = {GRB_LESS_EQUAL, GRB_GREATER_EQUAL};
double rhs[] = {4.0, 1.0};

char  vtypel[] = {GRB_BINARY, GRB_BINARY, GRB_BINARY};

error = GRBloadmodel(env, &model, "example", vars, comnstrs, -1, 0.0,
obj, sense, rhs, vbeg, vlen, vind, vval,
NULL, NULL, vtype, NULL, NULL);

GRBnewmodel

int GRBnewmodel ( GRBenv *env,
GRBmodel *x*modelP,
const char *Pname,
int numvars,
double *obj,
double *x1b,
double *ub,
char *vtype,

const char **varnames )

17



Create a new optimization model. This routine allows you to specify an initial set of variables (with objective
coefficients, bounds, types, and names), but the initial model will have no constraints. Constraints can be added
later with GRBaddconstr or GRBaddconstrs.

Return value:

A non-zero return value indicates that a problem occurred while creating the new model. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

env: The environment in which the new model should be created. Note that the new model will get a copy of
this environment, so subsequent modifications to the original environment (e.g., parameter changes) won’t
affect the new model. Use GRBgetenv to modify the environment associated with a model.

modelP: The location in which the pointer to the new model should be placed.

Pname: The name of the model.

numvars: The number of variables in the model.

obj: Objective coefficients for the new variables. This argument can be NULL, in which case the objective
coefficients are set to 0.0.

1b: Lower bounds for the new variables. This argument can be NULL, in which case all variables get lower
bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all variables get infinite
upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or
GRB_SEMIINT. This argument can be NULL, in which case all variables are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all variables are given
default names.

Example usage:

double obj[] = {1.0, 1.0};
char *names[] = {"varl", "var2"};
error = GRBnewmodel (env, &model, "New", 2, obj, NULL, NULL, NULL, names);

GRBcopymodel

| GRBmodel * GRBcopymodel ( GRBmodel *model )

Create a copy of an existing model. Note that due to the lazy update approach in Gurobi, you have to call
GRBupdatemodel before copying it.
Return value:

A copy of the input model. A NULL return value indicates that a problem was encountered.

Arguments:

model: The model to copy.

Example usage:

GRBupdatemodel(orig); /* if you have unstaged changes in orig */
GRBmodel *copy = GRBcopymodel(orig) ;

GRBaddconstr
int GRBaddconstr ( GRBmodel *model,
int numnz,
int *cind,
double *cval,
char sense,
double rhs,

const char *constrname )

Add a new linear constraint to a model. Note that, due to our lazy update approach, the new constraint won’t
actually be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize),
or write the model to disk (using GRBwrite).

Return value:

18



A non-zero return value indicates that a problem occurred while adding the constraint. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new constraint should be added.

numnz: The number of non-zero coefficients in the new constraint.

cind: Variable indices for non-zero values in the new constraint.

cval: Numerical values for non-zero values in the new constraint.

sense: Sense for the new constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL.

rhs: Right-hand side value for the new constraint.

constrname: Name for the new constraint. This argument can be NULL, in which case the constraint is given

a default name.

Example usage:

int ind[] = {1, 3, 4};

double vall] {1.0, 2.0, 1.0};

/¥ x1 + 2 x3 + x4 =1 %/

error = GRBaddconstr(model, 3, ind, val, GRB_EQUAL, 1.0, "New");

GRBaddconstrs

int

GRBaddconstrs ( GRBmodel *model,
int numconstrs,
int numnz,
int *cbeg,
int *cind,
double *cval,
char *sense,
double *rhs,

const char **constrnames )

Add new linear constraints to a model. Note that, due to our lazy update approach, the new constraints won’t
actually be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize),
or write the model to disk (using GRBwrite).

We recommend that you build your model one constraint at a time (using GRBaddconstr), since it introduces no
significant overhead and we find that it produces simpler code. Feel free to use this routine if you disagree, though.

If your constraint matrix may contain more than 2 billion non-zero values, you should consider using the GR-
BXaddconstrs variant of this routine.

Return value:

A non-zero return value indicates that a problem occurred while adding the constraints. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new constraints should be added.

numconstrs: The number of new constraints to add.

numnz: The total number of non-zero coefficients in the new constraints.

cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse Row (CSR)

format by this routine. Each constraint in the constraint matrix is represented as a list of index-value
pairs, where each index entry provides the variable index for a non-zero coefficient, and each value entry
provides the corresponding non-zero value. Each new constraint has an associated cbeg value, indicating
the start position of the non-zeros for that constraint in the cind and cval arrays. This routine requires
that the non-zeros for constraint i immediately follow those for constraint i-1 in cind and cval. Thus,
cbeg[i] indicates both the index of the first non-zero in constraint i and the end of the non-zeros for
constraint i-1. To give an example of how this representation is used, consider a case where cbeg[2] = 10
and cbeg[3] = 12. This would indicate that constraint 2 has two non-zero values associated with it. Their
variable indices can be found in cind[10] and cind[11], and the numerical values for those non-zeros can
be found in cval[10] and cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg argument for more

information.

19



cval: Numerical values associated with constraint matrix non-zeros. See the description of the cbeg argument
for more information.

sense: Sense for the new constraints. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL.

rhs: Right-hand side values for the new constraints. This argument can be NULL, in which case the right-hand
side values are set to 0.0.

constrnames: Names for the new constraints. This argument can be NULL, in which case all constraints are
given default names.

GRBaddgenconstrXxx

Each of the functions described below adds a new general constraint to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types: variable bound
constraints, linear constraints, quadratic constraints, integrality constraints, and SOS constraints. These are typically
treated directly by the underlying solver (although not always), and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general (function)
constraints. These are typically not treated directly by the solver. Rather, they are transformed by presolve into
constraints (and variables) chosen from among the fundamental types listed above. In some cases, the resulting
constraint or constraints are mathematically equivalent to the original; in others, they are approximations. If such
constraints appear in your model, but if you prefer to reformulate them yourself using fundamental constraint types
instead, you can certainly do so. However, note that Gurobi can sometimes exploit information contained in the
other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

¢ GRBaddgenconstrMax: y = maz(x1, z2, ..., ¢)

¢ GRBaddgenconstrMin: y = min(z1,x2, ..., )

« GRBaddgenconstrAbs: y = |z|

¢ GRBaddgenconstrAnd: y = 1 A x2 A T3...

o GRBaddgenconstrOr: y = x1 V z2 V x3...

¢ GRBaddgenconstrNorm: y = norm(x1,x2,x3...)

o GRBaddgenconstrIndicator: y =1 — a’z < b (an indicator constraint)
¢ GRBaddgenconstrPWL: y = pwl(z) (a piecewise-linear function, specified using breakpoints)
o GRBaddgenconstrPoly: y = poz? + p1z?~ ' + ... + pa_12 + pa

« GRBaddgenconstrExp: y = e”

¢« GRBaddgenconstrExpA: y = a”

¢ GRBaddgenconstrLog: y = loge(z)

o GRBaddgenconstrLogA: y = loga(z)

¢« GRBaddgenconstrPow: y = z°

o GRBaddgenconstrSin: y = sin(x)

o GRBaddgenconstrCos: y = cos(x)

« GRBaddgenconstrTan: y = tan(x)

Please refer to this section for additional details on general constraints.

GRBaddgenconstrMax

int GRBaddgenconstrMax ( GRBmodel *model,
const char *name,

int resvar,
int nvars,
const int *vars,
double constant )

20



Add a new general constraint of type GRB_GENCONSTR_MAX to a model.  Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A MAX constraint » = max{z1, ..., Zn, c} states that the resultant variable r should be equal to the maximum
of the operand variables 1, ..., x, and the constant c.

Return value:

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

resvar: The index of the resultant variable r whose value will be equal to the max of the other variables.

nvars: The number n of operand variables over which the max will be taken.

vars: An array containing the indices of the operand variables x; over which the max will be taken.

constant: An additional operand that allows you to include a constant ¢ among the arguments of the max
operation.

Example usage:

/* x5 = max(x1l, x3, x4, 2.0) */

int ind[] = {1, 3, 4};

error = GRBaddgenconstrMax(model, "maxconstr", 5,
3, ind, 2.0);

GRBaddgenconstrMin

int GRBaddgenconstrMin ( GRBmodel *model,
const char *name,

int resvar,
int nvars,
const int *xvars,
double constant )

Add a new general constraint of type GRB_GENCONSTR_MIN to a model.  Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A MIN constraint » = min{z1, ..., zn, ¢} states that the resultant variable r should be equal to the minimum of
the operand variables x1, ..., 2, and the constant c.

Return value:

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

resvar: The index of the resultant variable » whose value will be equal to the min of the other variables.

nvars: The number n of operand variables over which the min will be taken.

vars: An array containing the indices of the operand variables x; over which the min will be taken.

constant: An additional operand that allows you to include a constant ¢ among the arguments of the min
operation.

Example usage:

/* x5 = min(x1, x3, x4, 2.0) */

int ind[] = {1, 3, 4};

error = GRBaddgenconstrMin(model, "minconstr", 5,
3, ind, 2.0);

21



GRBaddgenconstrAbs

int GRBaddgenconstrAbs ( GRBmodel *model,
const char *name,
int resvar,
int argvar )

Add a new general constraint of type GRB_GENCONSTR_ABS to a model. = Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

An ABS constraint r = abs{z} states that the resultant variable r should be equal to the absolute value of the
argument variable x.

Return value:

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

resvar: The index of the resultant variable » whose value will be to equal the absolute value of the argument
variable.

argvar: The index of the argument variable = for which the absolute value will be taken.

Example usage:
/* x5 = abs(x1) */
error = GRBaddgenconstrAbs(model, "absconstr", 5, 1);

GRBaddgenconstrAnd

int GRBaddgenconstrAnd ( GRBmodel *model,
const char *name,

int resvar,
int nvars,
const int *vars )

Add a new general constraint of type GRB_GENCONSTR_AND to a model. = Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

An AND constraint r = and{z1,...,z,} states that the binary resultant variable r should be 1 if and only if all
of the operand variables x1,...,z, are equal to 1. If any of the operand variables is 0, then the resultant should be
0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent of how they
were created.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

resvar: The index of the binary resultant variable r whose value will be equal to the AND concatenation of
the other variables.

nvars: The number n of binary operand variables over which the AND will be taken.

vars: An array containing the indices of the binary operand variables z; over which the AND concatenation
will be taken.

Return value:

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Example usage:

22



/* x5 = and(x1, x3, x4) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrAnd(model, "andconstr", 5, 3, ind);

GRBaddgenconstrOr

int GRBaddgenconstrOr ( GRBmodel *model,
const char *name,

int resvar,
int nvars,
const int *vars )

Add a new general constraint of type GRB_GENCONSTR_OR to a model. Note that, due to our lazy update approach,
the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

An OR constraint r = or{x1, ...,z } states that the binary resultant variable r should be 1 if and only if any of
the operand variables x1, ..., x, is equal to 1. If all operand variables are 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent of how they
were created.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

resvar: The index of the binary resultant variable r whose value will be equal to the OR concatenation of
the other variables.

nvars: The number n of binary operand variables over which the OR will be taken.

vars: An array containing the indices of the binary operand variables x; over which the OR concatenation
will be taken.

Return value:

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Example usage:

/* x5 = or(xl, x3, x4) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrOr(model, "orconstr", 5, 3, ind);

GRBaddgenconstrNorm
int GRBaddgenconstrNorm ( GRBmodel *model,
const char *name,
int resvar,
int nvars,
const int *vars,
double which )

Add a new general constraint of type GRB_GENCONSTR_NORM to a model. Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A NORM constraint r = norm{z1,...,x,} states that the resultant variable r should be equal to the vector
norm of the argument vector z1,...,Zn.
Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

resvar: The index of the resultant variable » whose value will be equal to the NORM of the other variables.

23



nvars: The number n of operand variables over which the NORM will be taken.
vars: An array containing the indices of the operand variables x; over which the NORM will be taken. Note
that this array may not contain duplicates.

which: Which norm to use. Options are 0, 1, 2, and GRB_ INFINITY.

Return value:
A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Example usage:

/* x5 = 2-norm(x1, x3, x4) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrNorm(model, "orconstr", 5, 3, ind, 2.0);

GRBaddgenconstrindicator

int GRBaddgenconstrIndicator ( GRBmodel *model,
const char *name,
int binvar,
int binval,
int nvars,
const int *ind,
const double *val,
char sense,
double rhs )

Add a new general constraint of type GRB_GENCONSTR_INDICATOR to a model. Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

An INDICATOR constraint z = f — a”x < b states that if the binary indicator variable z is equal to f, where
f € {0,1}, then the linear constraint a” = < b should hold. On the other hand, if z = 1 — £, the linear constraint may
be violated. The sense of the linear constraint can also be specified to be “=" or “>”.

Note that the indicator variable z of a constraint will be forced to be binary, independent of how it was created.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

binvar: The index of the binary indicator variable z.

binval: The value f for the binary indicator variable that would force the linear constraint to be satisfied
(0 or1).

nvars: The number n of non-zero coefficients in the linear constraint triggered by the indicator.

ind: Indices for the variables x; with non-zero values in the linear constraint.

val: Numerical values for non-zero values a; in the linear constraint.

sense: Sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL.

rhs: Right-hand side value for the linear constraint.

Return value:

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Example usage:

/¥ x7 =1 ->x1 +2x3+x4=1%/
int ind[] = {1, 3, 4};
double val[] = {1.0, 2.0, 1.0};
error = GRBaddgenconstrIndicator(model, NULL, 7, 1,
3, ind, val, GRB_EQUAL, 1.0);

24



GRBaddgenconstrPWL

int GRBaddgenconstrPWL ( GRBmodel *model,
const char *name,
int xvar,
int yvar,
int npts,
double *xXpts,
double *ypts )

Add a new general constraint of type GRB_GENCONSTR_PWL to a model. = Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A piecewise-linear (PWL) constraint states that the relationship y = f(x) must hold between variables x and vy,
where f is a piecewise-linear function. The breakpoints for f are provided as arguments. Refer to the description of
piecewise-linear objectives for details of how piecewise-linear functions are defined.

Return value:

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

xvar: The index of variable x.

yvar: The index of variable y.

npts: The number of points that define the piecewise-linear function.

xpts: The x values for the points that define the piecewise-linear function. Must be in non-decreasing order.

ypts: The y values for the points that define the piecewise-linear function.

Example usage:

double xpts[] = {1, 3, 53};
double ypts[] = {1, 2, 4};
error = GRBaddgenconstr (model, "pwl", xvar, yvar, 3, x, y);

GRBaddgenconstrPoly

int GRBaddgenconstrPoly ( GRBmodel *model,
const char *name,

int xvar,
int yvar,
int plen,
double *p,

const char *options )

Add a new general constraint of type GRB_GENCONSTR_POLY to a model. Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A polynomial function constraint states that the relationship y = poz? + p1z?~! + ... + pa—1z + pg should hold
between variables z and y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.
Return value:

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to

the Error Code table for a list of possible return values. Details on the error can be obtained by calling

GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.

25



name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

xvar: The index of variable x.

yvar: The index of variable y.

plen: The length of coefficient array p. If z¢ is the highest power term, then plen should be d + 1.

p: The coefficients for the polynomial function (starting with the coefficient for the highest power).

options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign

and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Example usage:

/¥y =3%x4+T7Tx+3=3x4+0x3+0x"2+7zx+3x*/

int plen = 5;

double p[] = {3, 0, 0, 7, 3};

error = GRBaddgenconstrPoly(model, "poly", xvar, yvar, 5, p, "");

GRBaddgenconstrExp

int GRBaddgenconstrEXp ( GRBmodel *model,
const char *name,
int xvar,
int yvar,
const char *options )

Add a new general constraint of type GRB_GENCONSTR_EXP to a model.  Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A natural exponential function constraint states that the relationship y = exp(z) should hold for variables = and
Y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

xvar: The index of variable x.
yvar: The index of variable y.

options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Example usage:

/* y = exp(x) */

error = GRBaddgenconstrExp(model, "exp", xvar, yvar, "");

26



GRBaddgenconstrExpA

int GRBaddgenconstrExpA ( GRBmodel *model,
const char *name,

int xvar,
int yvar,
double a,

const char *options )

Add a new general constraint of type GRB_GENCONSTR_EXPA to a model. Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

An exponential function constraint states that the relationship y = a® should hold for variables x and y, where
a > 0 is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

xvar: The index of variable x.

yvar: The index of variable y.

a: The base of the function, a > 0.

options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Example usage:
/xy = 37x %/
error = GRBaddgenconstrExpA(model, "expa", xvar, yvar, 3.0, "");

GRBaddgenconstrLog

int GRBaddgenconstrLog ( GRBmodel *model,
const char *name,
int xvar,
int yvar,
const char *options )

Add a new general constraint of type GRB_GENCONSTR_LOG to a model.  Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A natural logarithmic function constraint states that the relationship y = log(z) should hold for variables x and
Y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

27



name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

xvar: The index of variable x.

yvar: The index of variable y.

options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Example usage:
/* y = log(x) */
error = GRBaddgenconstrLog(model, "log", xvar, yvar, "FuncPieces=-1 FuncPieceError=0.001");

GRBaddgenconstrLogA

int GRBaddgenconstrLogA ( GRBmodel *model,
const char *name,

int xvar,
int yvar,
double a,

const char *options )

Add a new general constraint of type GRB_GENCONSTR_LOGA to a model. Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A logarithmic function constraint states that the relationship y = log,(z) should hold for variables = and v,
where a > 0 is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

xvar: The index of variable x.

yvar: The index of variable y.

a: The base of the function, a > 0.

options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Example usage:

/* y = log_10(x) */
error = GRBaddgenconstrLogA (model, "loga", xvar, yvar, 10.0, "");

GRBaddgenconstrlLogistic

int GRBaddgenconstrLogistic ( GRBmodel *model,
const char *name,
int xvar,
int yvar,

const char *options )

28



Add a new general constraint of type GRB_GENCONSTR_LOGISTIC to a model. Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A logistic function constraint states that the relationship y = 5 +i—z should hold for variables x and y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.
Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.
xvar: The index of variable x.
yvar: The index of variable y.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").
Example usage:

/¥y =1/ (1 + exp(-x)) */

error = GRBaddgenconstrLogistic(model, "logistic", xvar, yvar, "");
GRBaddgenconstrPow
int GRBaddgenconstrPow ( GRBmodel *model,
const char *name,
int xvar,
int yvar,
double a,

const char *options )

Add a new general constraint of type GRB_GENCONSTR_POW to a model.  Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A power function constraint states that the relationship y = z® should hold for variables = and y, where a > 0
is the (constant) exponent. The lower bound of variable  must be nonnegative, even if a is an integer.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

xvar: The index of variable x.

yvar: The index of variable y.

a: The exponent of the function.

options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign

29



and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").
Example usage:

/* y = sqrt(x) */
error = GRBaddgenconstrPow(model, "pow", xvar, yvar, 0.5, "");

GRBaddgenconstrSin

int GRBaddgenconstrSin ( GRBmodel *model,
const char *name,
int xvar,
int yvar,
const char *options )

Add a new general constraint of type GRB_GENCONSTR_SIN to a model. = Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A sine function constraint states that the relationship y = sin(z) should hold for variables z and y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

xvar: The index of variable x.

yvar: The index of variable y.

options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Example usage:

/* y = sin(x) */

error = GRBaddgenconstrSin(model, "sin", xvar, yvar, "");
GRBaddgenconstrCos
int GRBaddgenconstrCos ( GRBmodel *model,
const char *name,
int xvar,
int yvar,

const char *options )

Add a new general constraint of type GRB_GENCONSTR_COS to a model.  Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A cosine function constraint states that the relationship y = cos(z) should hold for variables = and y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Return value:

30



A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

xvar: The index of variable x.
yvar: The index of variable y.

options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Example usage:

/* y = cos(x) */
error = GRBaddgenconstrCos(model, "cos", xvar, yvar, "FuncPieces=-2");

GRBaddgenconstrTan
int GRBaddgenconstrTan ( GRBmodel *model,
const char *name,
int xvar,
int yvar,

const char *options )

Add a new general constraint of type GRB_GENCONSTR_TAN to a model. = Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A tangent function constraint states that the relationship y = tan(x) should hold for variables z and y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

xvar: The index of variable x.
yvar: The index of variable y.

options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Example usage:

/* y = tan(x) */
error = GRBaddgenconstrTan(model, "tan", xvar, yvar, "");

31



GRBaddqconstr

int

GRBaddqconstr ( GRBmodel *model,

int numlnz,
int *1lind,
double *x1val,
int numgnz,
int *qrow,
int *qcol,
double *qval,
char sense,
double rhs,

const char *constrname )

Add a new quadratic constraint to a model. Note that, due to our lazy update approach, the new constraint won’t
actually be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize),
or write the model to disk (using GRBwrite).

A quadratic constraint consists of a set of quadratic terms, a set of linear terms, a sense, and a right-hand side
value: z7Qxz + ¢Tx < b. The quadratic terms are input through the numqnz, qrow, qcol, and qval arguments, and
the linear terms are input through the numlnz, 1lind, and lval arguments.

Important note: Gurobi can handle both convex and non-convex quadratic constraints. The differences between
them can be both important and subtle. Refer to this discussion for additional information.
Return value:

A non-zero return value indicates that a problem occurred while adding the quadratic constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model to which the new constraint should be added.

numlnz: The number of linear terms in the new quadratic constraint.

lind: Variable indices associated with linear terms.

lval: Numerical values associated with linear terms.

numglnz: The number of quadratic terms in the new quadratic constraint.

grow: Row indices associated with quadratic terms. A quadratic term is represented using three values: a
pair of indices (stored in gqrow and gcol), and a coefficient (stored in qval). The associated arguments
arrays provide the corresponding values for each quadratic term. To give an example, if you wish to input
quadratic terms 222 4+ zox1 + 5, you would call this routine with numqnz=3, qrow[] = {0, 0, 1}, qcoll[]
= {0, 1, 1}, and qvalll = {2.0, 1.0, 1.0}

qcol: Column indices associated with quadratic terms. See the description of the grow argument for more
information.

qval: Numerical values associated with quadratic terms. See the description of the grow argument for more
information.

sense: Sense for the new quadratic constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL.

rhs: Right-hand side value for the new quadratic constraint.

constrname: Name for the new quadratic constraint. This argument can be NULL, in which case the constraint
is given a default name.

Example usage:

int lind[] = {1, 2};

double 1lval[l = {2.0, 1.0};
int grow[] = {0, 0, 1};
int gcol[l = {0, 1, 1};

double qvall[] {2.0, 1.0, 1.03};

/* 2 x072 + x0 x1 + x172 + 2 x1 + x2 <=1 %/

error = GRBaddqconstr (model, 2, lind, lval, 3, grow, qcol, gval,
GRB_LESS_EQUAL, 1.0, "New");

32



GRBaddgpterms

int GRBaddqpterms ( GRBmodel *model,

int numgnz,
int *qrow,
int *qcol,
double xqval )

Add new quadratic objective terms into an existing model. Note that new terms are (numerically) added into
existing terms, and that adding a term in row i and column j is equivalent to adding a term in row j and column i.
You can add all quadratic objective terms in a single call, or you can add them incrementally in multiple calls.

Note that, due to our lazy update approach, the new quadratic terms won’t actually be added until you update
the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using
GRBwrite).

To build an objective that contains both linear and quadratic terms, use this routine to add the quadratic terms
and use the Obj attribute to add the linear terms.

If you wish to change a quadratic term, you can either add the difference between the current term and the
desired term using this routine, or you can call GRBdelq to delete all quadratic terms, and then rebuild your new
quadratic objective from scratch.

Return value:

A non-zero return value indicates that a problem occurred while adding the quadratic terms. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model to which the new quadratic objective terms should be added.

numgnz: The number of new quadratic objective terms to add.

qrow: Row indices associated with quadratic terms. A quadratic term is represented using three values: a
pair of indices (stored in qrow and qcol), and a coefficient (stored in qval). The three argument arrays
provide the corresponding values for each quadratic term. To give an example, to represent 22 +zox1 + 2,
you would have numgnz=3, qrow[] = {0, 0, 1}, qcol[] = {0, 1, 1}, and qval[]l = {2.0, 1.0, 1.0}.

gcol: Column indices associated with quadratic terms. See the description of the qrow argument for more
information.

qval: Numerical values associated with quadratic terms. See the description of the qrow argument for more
information.

Important notes:

Note that building quadratic objectives requires some care, particularly if you are migrating an application from
another solver. Some solvers require you to specify the entire () matrix, while others only accept the lower triangle.
In addition, some solvers include an implicit 0.5 multiplier on @, while others do not. The Gurobi interface is built
around quadratic terms, rather than a @ matrix. If your quadratic objective contains a term 2 x y, you can enter it
as a single term, 2 x y, or as a pair of terms, x y and y x.

Example usage:

{0, 0, 1};

int qrow[]
int qcolll = {0, 1, 1};

double qvall] {2.0, 1.0, 3.0%};

/* minimize 2 x72 + x*y + 3 y~2 %/

error = GRBaddgpterms(model, 3, qrow, qcol, qval);

GRBaddrangeconstr

int GRBaddrangeconstr ( GRBmodel *model,
int numnz,
int *xcind,
double *xcval,
double lower,
double upper,
const char *constrname )

33



Add a new range constraint to a model. A range constraint states that the value of the input expression must
be between the specified lower and upper bounds in any solution. Note that, due to our lazy update approach, the
new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while adding the constraint. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to which the new constraint should be added.
numnz: The number of non-zero coefficients in the linear expression.
cind: Variable indices for non-zero values in the linear expression.
cval: Numerical values for non-zero values in the linear expression.
lower: Lower bound on linear expression.
upper: Upper bound on linear expression.
constrname: Name for the new constraint. This argument can be NULL, in which case the constraint is given
a default name.
Important notes:

Note that adding a range constraint to the model adds both a new constraint and a new variable. If you are
keeping a count of the variables in the model, remember to add one whenever you add a range.

Note also that range constraints are stored internally as equality constraints. We use the extra variable that is
added with a range constraint to capture the range information. Thus, the Sense attribute on a range constraint will
always be GRB_EQUAL. In particular introducing a range constraint

L < aTz <U
is equivalent to adding a slack variable s and the following constraints

atz—s =1L
0<s <U-L.

Example usage:
int ind[] = {1, 3, 4};
double vall] {1.0, 2.0, 3.0};
/¥ 1 <=x1 + 2 x3 + 3 x4 <=2 %/
error = GRBaddrangeconstr(model, 3, ind, val, 1.0, 2.0, "NewRange");

GRBaddrangeconstrs

int GRBaddrangeconstrs ( GRBmodel *model,
int numconstrs,
int numnz,
int *cbeg,
int *xcind,
double *xcval,
double *]lower,
double *upper,

const char **constrnames )

Add new range constraints to a model. A range constraint states that the value of the input expression must be
between the specified lower and upper bounds in any solution. Note that, due to our lazy update approach, the
new constraints won’t actually be added until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider using the GR-
BXaddrangeconstrs variant of this routine.

Return value:

A non-zero return value indicates that a problem occurred while adding the constraints. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

34



Arguments:

model: The model to which the new constraints should be added.

numconstrs: The number of new constraints to add.

numnz: The total number of non-zero coefficients in the new constraints.

cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse Row (CSR)
format by this routine. Each constraint in the constraint matrix is represented as a list of index-value
pairs, where each index entry provides the variable index for a non-zero coefficient, and each value entry
provides the corresponding non-zero value. Each new constraint has an associated cbeg value, indicating
the start position of the non-zeros for that constraint in the cind and cval arrays. This routine requires
that the non-zeros for constraint i immediately follow those for constraint i-1 in cind and cval. Thus,
cbeg[i] indicates both the index of the first non-zero in constraint i and the end of the non-zeros for
constraint i-1. To give an example of how this representation is used, consider a case where cbeg[2] = 10
and cbeg[3] = 12. This would indicate that constraint 2 has two non-zero values associated with it. Their
variable indices can be found in cind[10] and cind[11], and the numerical values for those non-zeros can
be found in cval[10] and cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg argument for more
information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of the cbeg argument
for more information.

lower: Lower bounds for the linear expressions.

upper: Upper bounds for the linear expressions.

constrnames: Names for the new constraints. This argument can be NULL, in which case all constraints are
given default names.

Important notes:
Note that adding a range constraint to the model adds both a new constraint and a new variable. If you are
keeping a count of the variables in the model, remember to add one for each range constraint.

Note also that range constraints are stored internally as equality constraints. We use the extra variable that is
added with a range constraint to capture the range information. Thus, the Sense attribute on a range constraint will
always be GRB_EQUAL.

GRBaddsos

int

GRBaddsos ( GRBmodel *model,
int numsos,
int nummembers,
int *types,
int *beg,
int *ind,
double *xweight )

Add new Special Ordered Set (SOS) constraints to a model. Note that, due to our lazy update approach, the
new SOS constraints won’t actually be added until you update the model (using GRBupdatemodel), optimize the
model (using GRBoptimize), or write the model to disk (using GRBwrite).

Please refer to this section for details on SOS constraints.

Return value:

A non-zero return value indicates that a problem occurred while adding the SOS constraints. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model to which the new SOSs should be added.

numsos: The number of new SOSs to add.

nummembers: The total number of SOS members in the new SOSs.

types: The types of the SOS sets. SOS sets can be of type GRB_S0S_TYPE1 or GRB_SO0S_TYPE2.

beg: The members of the added SOS sets are passed into this routine in Compressed Sparse Row (CSR)
format. Each SOS is represented as a list of index-value pairs, where each index entry provides the variable
index for an SOS member, and each value entry provides the weight of that variable in the corresponding

35



SOS set. Each new SOS has an associated beg value, indicating the start position of the SOS member list
in the ind and weight arrays. This routine requires that the members for SOS i immediately follow those
for SOS i-1 in ind and weight. Thus, beg[i] indicates both the index of the first non-zero in constraint
i and the end of the non-zeros for constraint i-1. To give an example of how this representation is used,
consider a case where beg[2] = 10 and beg[3] = 12. This would indicate that SOS number 2 has two
members. Their variable indices can be found in ind[10] and ind[11], and the associated weights can be
found in weight [10] and weight[11].

ind: Variable indices associated with SOS members. See the description of the beg argument for more
information.

weight: Weights associated with SOS members. See the description of the beg argument for more informa-
tion.

Example usage:

int  types[] = {GRB_SOS_TYPE1, GRB_SOS_TYPE1};

int beg[] = {0, 2};
int  ind[] ={1, 2, 1, 3}
double weight[] = {1, 2, 1, 2};

error = GRBaddsos(model, 2, 4, types, beg, ind, weight);

GRBaddvar

int GRBaddvar ( GRBmodel *model,
int numnz,
int *vind,
double *xvval,
double obj,
double 1b,
double ub,
char vtype,
const char *varname )

Add a new variable to a model. Note that, due to our lazy update approach, the new variable won’t actually
be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write
the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while adding the variable. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new variable should be added.

numnz: The number of non-zero coefficients in the new column.

vind: Constraint indices associated with non-zero values for the new variable.

vval: Numerical values associated with non-zero values for the new variable.

obj: Objective coefficient for the new variable.

1b: Lower bound for the new variable.

ub: Upper bound for the new variable.

vtype: Type for the new variable. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT,
or GRB_SEMIINT.

varname: Name for the new variable. This argument can be NULL, in which case the variable is given a default
name.

Example usage:

int ind[] = {1, 3, 4};

double val[] = {1.0, 1.0, 1.0};

error = GRBaddvar(model, 3, ind, val, 1.0, 0.0, GRB_INFINITY,
GRB_CONTINUQUS, "New");

36



GRBaddvars

int GRBaddvars ( GRBmodel *model,
int numvars,
int numnz,
int *vbeg,
int *vind,
double *xvval,
double *obj,
double *1b,
double *ub,
char *vtype,

const char *xvarnames )

Add new variables to a model. Note that, due to our lazy update approach, the new variables won’t actually
be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write
the model to disk (using GRBwrite).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider using the GR-
BXaddvars variant of this routine.

Return value:

A non-zero return value indicates that a problem occurred while adding the variables. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new variables should be added.

numvars: The number of new variables to add.

numnz: The total number of non-zero coefficients in the new columns.

vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse Column (CSC)
format. Each column in the constraint matrix is represented as a list of index-value pairs, where each
index entry provides the constraint index for a non-zero coefficient, and each value entry provides the
corresponding non-zero value. Each variable in the model has a vbeg, indicating the start position of
the non-zeros for that variable in the vind and vval arrays. This routine requires columns to be stored
contiguously, so the start position for a variable is the end position for the previous variable. To give an
example, if vbeg[2] = 10 and vbeg[3] = 12, that would indicate that variable 2 has two non-zero values
associated with it. Their constraint indices can be found in vind[10] and vind[11], and the numerical
values for those non-zeros can be found in vval[10] and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg argument for more
information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of the vbeg argument
for more information.

obj: Objective coefficients for the new variables. This argument can be NULL, in which case the objective
coefficients are set to 0.0.

1b: Lower bounds for the new variables. This argument can be NULL, in which case all variables get lower
bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all variables get infinite

upper bounds.
vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or
GRB_SEMIINT. This argument can be NULL, in which case all variables are assumed to be continuous.
varnames: Names for the new variables. This argument can be NULL, in which case all variables are given
default names.

GRBchgcoeffs
int GRBchgcoeffs ( GRBmodel #model,
int numchgs,
int *cind,
int *xvind,
double *val )

37



Change a set of constraint matrix coefficients. This routine can be used to set a non-zero coefficient to zero, to
create a non-zero coefficient where the coefficient is currently zero, or to change an existing non-zero coefficient to a
new non-zero value. If you make multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the changes won’t actually be integrated into the model until you
update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider using the GR-
BXchgcoeffs variant of this routine.

Return value:

A non-zero return value indicates that a problem occurred while performing the modification. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model to modify.
numchgs: The number of coefficients to modify.
cind: Constraint indices for the coefficients to modify.
vind: Variable indices for the coefficients to modify.
val: The new values for the coefficients. For example, if cind[0] = 1, vind[0] = 3, and val[0] = 2.0,
then the coefficient in constraint 1 associated with variable 3 would be changed to 2.0.
Example usage:

int cind[] = {0, 1};

int vind[] = {0, 0};

double val[]l = {1.0, 1.0};

error = GRBchgcoeffs(model, 2, cind, vind, val);

GRBdelconstrs

int GRBdelconstrs ( GRBmodel #*model,
int numdel,
int *ind )

Delete a list of constraints from an existing model. = Note that, due to our lazy update approach, the con-
straints won’t actually be removed until you update the model (using GRBupdatemodel), optimize the model (using
GRBoptimize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while deleting the constraints. Refer to the Error

Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:

model: The model to modify.

numdel: The number of constraints to remove.

ind: The indices of the constraints to remove.
Example usage:

int first_four[] = {0, 1, 2, 3};

error = GRBdelconstrs(model, 4, first_four);

GRBdelgenconstrs

int GRBdelgenconstrs ( GRBmodel #model,
int numdel,
int *ind )

Delete a list of general constraints from an existing model. Note that, due to our lazy update approach, the
general constraints won’t actually be removed until you update the model (using GRBupdatemodel), optimize the
model (using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:

38



A non-zero return value indicates that a problem occurred while deleting the constraints. Refer to the Error

Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:

model: The model to modify.

numdel: The number of general constraints to remove.

ind: The indices of the general constraints to remove.
Example usage:

int first_four[] = {0, 1, 2, 3};

error = GRBdelgenconstrs(model, 4, first_four);

GRBdelq

‘int GRBdelq( GRBmodel *model )

Delete all quadratic objective terms from an existing model. Note that, due to our lazy update approach, the
quadratic terms won’t actually be removed until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while deleting the quadratic objective terms.
Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by
calling GRBgeterrormsg.

Arguments:

model: The model to modify.
Example usage:
error = GRBdelq(model);

GRBdelqconstrs

int GRBdelqconstrs ( GRBmodel #*model,
int numdel,
int *ind )

Delete a list of quadratic constraints from an existing model. Note that, due to our lazy update approach, the
quadratic constraints won’t actually be removed until you update the model (using GRBupdatemodel), optimize the
model (using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while deleting the quadratic constraints. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model to modify.

numdel: The number of quadratic constraints to remove.

ind: The indices of the quadratic constraints remove.
Example usage:

int first_four[] = {0, 1, 2, 3};

error = GRBdelqconstrs(model, 4, first_four);

GRBdelsos
int GRBdelsos ( GRBmodel #*model,
int numdel,
int *ind )

Delete a list of Special Ordered Set (SOS) constraints from an existing model. Note that, due to our lazy update
approach, the SOS constraints won’t actually be removed until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

39



Return value:

A non-zero return value indicates that a problem occurred while deleting the constraints. Refer to the Error

Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:

model: The model to modify.

numdel: The number of SOSs to remove.

ind: The indices of the SOSs to remove.
Example usage:

int first_four[] = {0, 1, 2, 3};

error = GRBdelsos(model, 4, first_four);

GRBdelvars
int GRBdelvars ( GRBmodel #*model,
int numdel,
int *ind )

Delete a list of variables from an existing model. Note that, due to our lazy update approach, the variables won’t
actually be removed until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize),
or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while deleting the variables. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to modify.
numdel: The number of variables to remove.
ind: The indices of the variables to remove.
Example usage:

int first_twol[l = {0, 1};
error = GRBdelvars(model, 2, first_two);

GRBsetobjectiven

int GRBsetobjectiven ( GRBmodel *model,
int index,
int priority,
double weight,
double abstol,
double reltol,
const char *name,
double constant,
int 1nz,
int *1lind,
double *1lval )

Set an alternative optimization objective equal to a linear expression.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple objective functions
and control the trade-off between them.

Note that you can also modify an alternative objective using the ObjN variable attribute. If you wish to mix
and match these two approaches, please note that this method replaces the entire existing objective, while the ObjN
attribute can be used to modify individual terms.

Note that, due to our lazy update approach, the new alternative objective won’t actually be added until you
update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

Return value:

40



A non-zero return value indicates that a problem occurred while setting the alternative objective. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.
Arguments:
model: The model in which the new alternative objective should be set.
index: Index for new objective. If you use an index of 0, this routine will change the primary optimization
objective.
priority: Priority for the alternative objective. This initializes the ObjNPriority attribute for this objective.
weight: Weight for the alternative objective. This initializes the ObjNWeight attribute for this objective.
abstol: Absolute tolerance for the alternative objective. This initializes the ObjNAbsTol attribute for this
objective.
reltol: Relative tolerance for the alternative objective. This initializes the ObjNRelTol attribute for this
objective.
name: Name of the alternative objective. This initializes the ObjNName attribute for this objective.
constant: Constant part of the linear expression for the new alternative objective.
1nz: Number of non-zero coefficients in new alternative objective.
lind: Variable indices for non-zero values in new alternative objective.
lval: Numerical values for non-zero values in new alternative objective.
Example usage:

int ind[] = {0, 1, 2};

double val[] = {1.0, 1.0, 1.0};

/* Objective expression: x0 + xl1 + x2 x/

error = GRBsetobjectiven(model, 0, 1, 0.0, 0.0, 0.0, "primary",
0.0, 3, ind, val);

GRBsetpwlobj
int GRBsetpwlobj ( GRBmodel #model,
int var,
int npoints,
double *X,
double *y )

Set a piecewise-linear objective function for a variable.

The arguments to this method specify a list of points that define a piecewise-linear objective function for a single
variable. Specifically, the x and y arguments give coordinates for the vertices of the function.

For additional details on piecewise-linear objective functions, refer to this discussion.

Note that, due to our lazy update approach, the new piecewise-linear objective won’t actually be added until you
update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while setting the piecewise-linear objective. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model to modify.
var: The variable whose objective function is being changed.
npoints: The number of points that define the piecewise-linear function.
x: The x values for the points that define the piecewise-linear function. Must be in non-decreasing order.
y: The y values for the points that define the piecewise-linear function.
Example usage:
double x[] {1, 3, 5};

double y[1 = {1, 2, 4};
error = GRBsetpwlobj(model, var, 3, x, y);

41



GRBupdatemodel

| int GRBupdatemodel ( GRBmodel #*model )

Process any pending model modifications.
Return value:
A non-zero return value indicates that a problem occurred while updating the model. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to update.
Example usage:

error = GRBupdatemodel (model) ;

GRBfreemodel

‘int GRBfreemodel ( GRBmodel #*model )

Free a model and release the associated memory.
Return value:
A non-zero return value indicates that a problem occurred while freeing the model. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to be freed.
Example usage:

error = GRBfreemodel (model);

GRBXaddconstrs

int GRBXaddconstrs ( GRBmodel *model,
int numconstrs,
size_t numnz,
size_t *cbeg,
int *cind,
double *cval,
char *sense,
double *rhs,
const char **constrnames )

The size_t version of GRBaddconstrs. The two arguments that count non-zero values are of type size_t in this
version to support models with more than 2 billion non-zero values.

Add new linear constraints to a model. Note that, due to our lazy update approach, the new constraints won’t
actually be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize),
or write the model to disk (using GRBwrite).

We recommend that you build your model one constraint at a time (using GRBaddconstr), since it introduces no
significant overhead and we find that it produces simpler code. Feel free to use this routine if you disagree, though.

Return value:

A non-zero return value indicates that a problem occurred while adding the constraints. Refer to the Error

Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new constraints should be added.

numconstrs: The number of new constraints to add.

numnz: The total number of non-zero coefficients in the new constraints.

cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse Row (CSR)
format by this routine. Each constraint in the constraint matrix is represented as a list of index-value
pairs, where each index entry provides the variable index for a non-zero coefficient, and each value entry
provides the corresponding non-zero value. Each new constraint has an associated cbeg value, indicating

42



the start position of the non-zeros for that constraint in the cind and cval arrays. This routine requires
that the non-zeros for constraint i immediately follow those for constraint i-1 in cind and cval. Thus,
cbeg[i] indicates both the index of the first non-zero in constraint i and the end of the non-zeros for
constraint i-1. To give an example of how this representation is used, consider a case where cbeg[2] = 10
and cbeg[3] = 12. This would indicate that constraint 2 has two non-zero values associated with it. Their
variable indices can be found in cind[10] and cind[11], and the numerical values for those non-zeros can
be found in cval[10] and cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg argument for more

information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of the cbeg argument

for more information.

sense: Sense for the new constraints. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL.
rhs: Right-hand side values for the new constraints. This argument can be NULL, in which case the right-hand

side values are set to 0.0.

constrnames: Names for the new constraints. This argument can be NULL, in which case all constraints are

given default names.

GRBXaddrangeconstrs

int GRBXaddrangeconstrs ( GRBmodel *model,
int numconstrs,
size_t numnz,
size_t *cbeg,
int *cind,
double *cval,
double *]lower,
double *upper,

const char **constrnames )

The size_t version of GRBaddrangeconstrs. The argument that counts non-zero values is of type size_t in this
version to support models with more than 2 billion non-zero values.

Add new range constraints to a model. A range constraint states that the value of the input expression must be
between the specified lower and upper bounds in any solution. Note that, due to our lazy update approach, the
new constraints won’t actually be added until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while adding the constraints. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new constraints should be added.

numconstrs: The number of new constraints to add.

numnz: The total number of non-zero coefficients in the new constraints.

cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse Row (CSR)

format by this routine. Each constraint in the constraint matrix is represented as a list of index-value
pairs, where each index entry provides the variable index for a non-zero coefficient, and each value entry
provides the corresponding non-zero value. Each new constraint has an associated cbeg value, indicating
the start position of the non-zeros for that constraint in the cind and cval arrays. This routine requires
that the non-zeros for constraint i immediately follow those for constraint i-1 in cind and cval. Thus,
cbegl[i] indicates both the index of the first non-zero in constraint i and the end of the non-zeros for
constraint i-1. To give an example of how this representation is used, consider a case where cbeg[2] = 10
and cbeg[3] = 12. This would indicate that constraint 2 has two non-zero values associated with it. Their
variable indices can be found in cind[10] and cind[11], and the numerical values for those non-zeros can
be found in cval[10] and cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg argument for more

information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of the cbeg argument

for more information.

43



lower: Lower bounds for the linear expressions.
upper: Upper bounds for the linear expressions.
constrnames: Names for the new constraints. This argument can be NULL, in which case all constraints are

given default names.

Important notes:

Note that adding a range constraint to the model adds both a new constraint and a new variable. If you are
keeping a count of the variables in the model, remember to add one for each range constraint.

Note also that range constraints are stored internally as equality constraints. We use the extra variable that is
added with a range constraint to capture the range information. Thus, the Sense attribute on a range constraint will
always be GRB_EQUAL.

GRBXaddvars

int

GRBXaddvars ( GRBmodel *model,
int numvars,
size_t numnz,
size_t *vbeg,
int *vind,
double *xvval,
double *obj,
double *x1b,
double *ub,
char *vtype,

const char **varnames )

The size_t version of GRBaddvars. The two arguments that count non-zero values are of type size_t in this
version to support models with more than 2 billion non-zero values.

Add new variables to a model. Note that, due to our lazy update approach, the new variables won’t actually
be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write
the model to disk (using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while adding the variables. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new variables should be added.

numvars: The number of new variables to add.

numnz: The total number of non-zero coefficients in the new columns.

vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse Column (CSC)

format. Each column in the constraint matrix is represented as a list of index-value pairs, where each
index entry provides the constraint index for a non-zero coefficient, and each value entry provides the
corresponding non-zero value. Each variable in the model has a vbeg, indicating the start position of
the non-zeros for that variable in the vind and vval arrays. This routine requires columns to be stored
contiguously, so the start position for a variable is the end position for the previous variable. To give an
example, if vbeg[2] = 10 and vbeg[3] = 12, that would indicate that variable 2 has two non-zero values
associated with it. Their constraint indices can be found in vind[10] and vind[11], and the numerical
values for those non-zeros can be found in vval[10] and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg argument for more

information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of the vbeg argument

for more information.

obj: Objective coefficients for the new variables. This argument can be NULL, in which case the objective

coefficients are set to 0.0.

1b: Lower bounds for the new variables. This argument can be NULL, in which case all variables get lower

bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all variables get infinite

upper bounds.

44



vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or
GRB_SEMIINT. This argument can be NULL, in which case all variables are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all variables are given
default names.

GRBXchgcoeffs

int GRBXchgcoeffs ( GRBmodel #*model,

size_t numchgs,
int *xcind,
int *vind,
double *val )

The size_t version of GRBchgcoeffs. The argument that counts non-zero values is of type size_t in this version
to support models with more than 2 billion non-zero values.

Change a set of constraint matrix coefficients. This routine can be used to set a non-zero coeflicient to zero, to
create a non-zero coefficient where the coefficient is currently zero, or to change an existing non-zero coefficient to a
new non-zero value. If you make multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the changes won’t actually be integrated into the model until you
update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while performing the modification. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model to modify.
numchgs: The number of coefficients to modify.
cind: Constraint indices for the coefficients to modify.
vind: Variable indices for the coefficients to modify.

val: The new values for the coefficients. For example, if cind[0] = 1, vind[0] = 3, and val[0] = 2.0,
then the coefficient in constraint 1 associated with variable 3 would be changed to 2.0.

Example usage:

int cind[] = {0, 1};

int vind[] = {0, 0};

double val[] = {1.0, 1.03};

error = GRBXchgcoeffs(model, 2, cind, vind, val);

45



GRBXloadmodel

int

GRBXloadmodel ( GRBenv *env,
GRBmodel *xmodelP,
const char *Pname,
int numvars,
int numconstrs,
int objsense,
double objcon,
double *obj,
char *sense,
double *rhs,
size_t *vbeg,
int *vlen,
int *vind,
double *vval,
double *1b,
double *ub,
char *vtype,

const char **varnames,
const char **constrnames )

The size_t version of GRBloadmodel. The argument that counts non-zero values is of type size_t in this
version to support models with more than 2 billion non-zero values.

Create a new optimization model, using the provided arguments to initialize the model data (objective function,
variable bounds, constraint matrix, etc.). The model is then ready for optimization, or for modification (e.g., addition
of variables or constraints, changes to variable types or bounds, etc.).

Return value:

A non-zero return value indicates that a problem occurred while creating the model. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

env: The environment in which the new model should be created. Note that the new model gets a copy of
this environment, so subsequent modifications to the original environment (e.g., parameter changes) won’t
affect the new model. Use GRBgetenv to modify the environment associated with a model.

modelP: The location in which the pointer to the newly created model should be placed.

Pname: The name of the model.

numvars: The number of variables in the model.

numconstrs: The number of constraints in the model.

objsense: The sense of the objective function. Allowed values are 1 (minimization) or -1 (maximization).

objcon: Constant objective offset.

obj: Objective coefficients for the new variables. This argument can be NULL, in which case the objective
coefficients are set to 0.0.

sense: The senses of the new constraints. Options are ’=’ (equal), ’<’ (less-than-or-equal), or >>’ (greater-
than-or-equal). You can also use constants GRB_EQUAL, GRB_LESS_EQUAL, or GRB_GREATER_EQUAL.

rhs: Right-hand side values for the new constraints. This argument can be NULL, in which case the right-hand
side values are set to 0.0.

vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse Column (CSC)
format. Each column in the constraint matrix is represented as a list of index-value pairs, where each
index entry provides the constraint index for a non-zero coefficient, and each value entry provides the
corresponding non-zero value. Each variable in the model has a vbeg and vlen value, indicating the
start position of the non-zeros for that variable in the vind and vval arrays, and the number of non-zero
values for that variable, respectively. Thus, for example, if vbeg[2] = 10 and vlen[2] = 2, that would
indicate that variable 2 has two non-zero values associated with it. Their constraint indices can be found
in vind[10] and vind[11], and the numerical values for those non-zeros can be found in vval[10] and
vval[11]. Note that the columns of the matrix must be ordered from first to last, implying that the values
in vbeg must be non-decreasing.

46



vlen: Number of constraint matrix non-zero values associated with each variable. See the description of the
vbeg argument for more information.

vind: Constraint indices associated with non-zero values. See the description of the vbeg argument for more
information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of the vbeg argument
for more information.

1b: Lower bounds for the new variables. This argument can be NULL, in which case all variables get lower
bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all variables get infinite
upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or
GRB_SEMIINT. This argument can be NULL, in which case all variables are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all variables are given
default names.

constrnames: Names for the new constraints. This argument can be NULL, in which case all constraints are
given default names.

Important notes:

We recommend that you build a model one constraint or one variable at a time, using GRBaddconstr or GR-
Baddvar, rather than using this routine to load the entire constraint matrix at once. It is much simpler, less error
prone, and it introduces no significant overhead.

Example usage:

/* maximize X+ y+2z
subject to x + 2y + 3 z <=4
x + y >= 1

X, y, z binary */

int vars = 3;

int constrs = 2;

size_t vbegll = {0, 2, 4};

int vlen[l = {2, 2, 1};

int vind[] = {0, 1, 0, 1, 0};

double vvall[] = {1.0, 1.0, 2.0, 1.0, 3.0};

double obj[] ={1.0, 1.0, 2.0};
char sense[] = {GRB_LESS_EQUAL, GRB_GREATER_EQUAL};
double rhs[] = {4.0, 1.0%};

char  vtypel[]l = {GRB_BINARY, GRB_BINARY, GRB_BINARY};

error = GRBXloadmodel(env, &model, "example", vars, comnstrs, -1, 0.0,
obj, sense, rhs, vbeg, vlen, vind, vval,
NULL, NULL, vtype, NULL, NULL);

47



3.3 Model Solution
GRBoptimize

‘int GRBoptimize( GRBmodel *model )

Optimize a model. The algorithm used for the optimization depends on the model type (simplex or barrier for
a continuous model; branch-and-cut for a MIP model). Upon successful completion, this method will populate the
solution related attributes of the model. See the Attributes section for more information on attributes.
Please consult this section for a discussion of some of the practical issues associated with solving a precisely
defined mathematical model using finite-precision floating-point arithmetic.
Note that this routine will process all pending model modifications.
Return value:
A non-zero return value indicates that a problem occurred while optimizing the model. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to optimize. Note that this routine only reports whether the optimization ran into an
error. Query the Status attribute to determine the result of the optimization (see the Attributes section
for more information on querying attributes).
Example usage:

error = GRBoptimize(model);

GRBoptimizeasync

| int GRBoptimizeasync ( GRBmodel *model )

Optimize a model asynchronously. This routine returns immediately. Your program can perform other compu-
tations while optimization proceeds in the background. To check the state of the asynchronous optimization, query
the Status attribute for the model. A value of IN_PROGRESS indicates that the optimization has not yet completed.
When you are done with your foreground tasks, you must call GRBsync to sync your foreground program with the
asynchronous optimization task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in the background
is severely limited. Specifically, you can only perform attribute queries, and only for a few attributes (listed below).
Any other calls on the running model, or on any other models that were built within the same Gurobi environment,
will fail with error code OPTIMIZATION_IN_PROGRESS.

Note that there are no such restrictions on models built in other environments. Thus, for example, you could
create multiple environments, and then have a single foreground program launch multiple simultaneous asynchronous
optimizations, each in its own environment.

As already noted, you are allowed to query the value of the Status attribute while an asynchronous optimization
is in progress. The other attributes that can be queried are: ObjVal, ObjBound, IterCount, NodeCount, and
BarlterCount. In each case, the returned value reflects progress in the optimization to that point. Any attempt to
query the value of an attribute not on this list will return an OPTIMIZATION_IN_PROGRESS error.

Return value:

A non-zero return value indicates that a problem occurred while optimizing the model. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to optimize. Note that this routine only reports whether launching the asynchronous
job ran into an error. Query the Status attribute to determine the result of the optimization (see the
Attributes section for more information on querying attributes). The return value of GRBsync indicates
whether the background optimization ran into an error.
Example usage:

error = GRBoptimizeasync(model);

/* ... perform other compute-intensive tasks... */

48



error = GRBsync(model) ;

GRBcomputellS
| int GRBcomputeIIS ( GRBmodel #*model )

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and variable bounds
with the following properties:

o [t is still infeasible, and

o If a single constraint or bound is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily the smallest
one; there may exist others with fewer constraints or bounds.

IIS results are returned in a number of attributes: IISConstr, IISLB, IISUB, IISSOS, IISQConstr, and IISGen-
Constr. Each indicates whether the corresponding model element is a member of the computed IIS.

The IIS log provides information about the progress of the algorithm, including a guess at the eventual IIS size.

If an IIS computation is interrupted before completion, Gurobi will return the smallest infeasible subsystem found
to that point.

The IISConstrForce, IISLBForce, IISUBForce, IISSOSForce, IISQConstrForce, and IISGenConstrForce attributes
allow you mark model elements to either include or exclude from the computed IIS. Setting the attribute to 1 forces
the corresponding element into the IIS, setting it to 0 forces it out of the IIS, and setting it to -1 allows the algorithm
to decide.

To give an example of when these attributes might be useful, consider the case where an initial model is known
to be feasible, but it becomes infeasible after adding constraints or tightening bounds. If you are only interested
in knowing which of the changes caused the infeasibility, you can force the unmodified bounds and constraints into
the IIS. That allows the IIS algorithm to focus exclusively on the new constraints, which will often be substantially
faster.

Note that setting any of the Force attributes to 0 may make the resulting subsystem feasible, which would
then make it impossible to construct an IIS. Trying anyway will result in a GRB_ERROR_IIS_NOT_INFEASIBLE error.
Similarly, setting this attribute to 1 may result in an IIS that is not irreducible. More precisely, the system would
only be irreducible with respect to the model elements that have force values of -1 or 0.

This routine populates the IISConstr, IISGenConstr, IISQConstr, IISSOS, IISLB, and IISUB attributes. You
can also obtain information about the results of the IIS computation by writing a .ilp format file (see GRBwrite).
This file contains only the IIS from the original model.

Use the IISMethod parameter to adjust the behavior of the IIS algorithm.
Note that this routine can be used to compute IISs for both continuous and MIP models.
Return value:

A non-zero return value indicates that a problem occurred while computing the IIS. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The infeasible model. This routine will return an error if the input model is feasible.
Important note:

This routine only reports whether the computation ran into an error. Query the IISConstr, IISGenConstr,
IISQConstr, IISSOS, IISLB, or IISUB attributes to determine the result of the computation (see the Attributes
section for more information on querying attributes).

Example usage:

error = GRBcomputeIIS(model);

49



GRBfeasrelax

int GRBfeasrelax ( GRBmodel *model,

int relaxobjtype,
int minrelax,
double *1bpen,
double *ubpen,
double *rhspen,
double *feasobjP )

Modifies the input model to create a feasibility relaxation. Note that you need to call GRBoptimize on the result
to compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the solution violates the
bounds and linear constraints of the original model. This routine provides a number of options for specifying the
relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the sum of the weighted
magnitudes of the bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the cost per
unit violation in the lower bounds, upper bounds, and linear constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the weighted sum of the
squares of the bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the coefficients on
the squares of the lower bound, upper bound, and linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the weighted count of
bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the cost of violating a lower
bound, upper bound, and linear constraint, respectively.

To give an example, a violation of 2.0 on constraint i would contribute 2*rhspen[i] to the feasibility relaxation
objective for relaxobjtype=0, it would contribute 2*2*rhspen[i] for
relaxobjtype=1, and it would contribute rhspen[i] for relaxobjtype=2

The minrelax argument is a boolean that controls the type of feasibility relaxation that is created. If minrelax=0,
optimizing the returned model gives a solution that minimizes the cost of the violation. If minrelax=1, optimizing
the returned model finds a solution that minimizes the original objective, but only from among those solutions that
minimize the cost of the violation. Note that GRBfeasrelax must solve an optimization problem to find the minimum
possible relaxation for minrelax=1, which can be quite expensive.

In all cases, you can specify a penalty of GRB_INFINITY to indicate that a specific bound or linear constraint may
not be violated.

Note that this is a destructive routine: it modifies the model passed to it. If you don’t want to modify your
original model, use GRBcopymodel to create a copy before calling this routine.

Return value:

A non-zero return value indicates that a problem occurred while computing the feasibility relaxation. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The original (infeasible) model. The model is modified by this routine.

relaxobjtype: The cost function used when finding the minimum cost relaxation.

minrelax: The type of feasibility relaxation to perform.

lbpen: The penalty associated with violating a lower bound. Can be NULL, in which case no lower bound
violations are allowed.

ubpen: The penalty associated with violating an upper bound. Can be NULL, in which case no upper bound
violations are allowed.

rhspen: The penalty associated with violating a linear constraint. Can be NULL, in which case no constraint
violations are allowed.

feasobjP: When minrelax=1, this returns the objective value for the minimum cost relaxation.

Example usage:

double penalties[];
error = GRBfeasrelax(model, O, O, NULL, NULL, penalties, NULL);
error = GRBoptimize(model);

50



GRBfixmodel

int GRBfixmodel ( GRBmodel #*model,
GRBmodel **fixedP )

Create the fixed model associated with a MIP model. The MIP model must have a solution loaded (e.g., after a
call to GRBoptimize). In the fixed model, each integer variable is fixed to the value that variable takes in the MIP
solution. In addition, continuous variables may be fixed to satisfy SOS or general constraints. The result is a model
without any integrality constraints, SOS constraints, or general constraints.

Note that, while the fixed problem is always a continuous model, it may contain a non-convex quadratic objective
or non-convex quadratic constraints. As a result, it may still be solved using the MIP algorithm.

Return value:

A non-zero return value indicates that a problem occurred while creating the fixed model. Refer to the Error

Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:

model: The MIP model (with a solution loaded).

fixedP: The computed fixed model.
Example usage:

GRBmodel *fixed;

error = GRBfixmodel (model, &fixed);

GRBreset

int GRBreset ( GRBmodel #*model,
int clearall )

Reset the model to an unsolved state, discarding any previously computed solution information.
Return value:
A non-zero return value indicates that a problem occurred while resetting the model. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to reset.
clearall: A value of 1 discards additional information that affects the solution process but not the actual
model (currently MIP starts, variable hints, branching priorities, lazy flags, and partition information).
Pass 0 to just discard the solution.
Example usage:

error = GRBreset(model, 0);

GRBsync

| int GRBsync ( GRBmodel #*model )

Wait for a previous asynchronous optimization call to complete.

Calling GRBoptimizeasync returns control to the calling routine immediately. The caller can perform other
computations while optimization proceeds, and can check on the progress of the optimization by querying various
model attributes. The GRBsync call forces the calling program to wait until the asynchronous optimization completes.
You must call GRBsync before the corresponding model is freed.

The GRBsync call returns a non-zero error code if the optimization itself ran into any problems. In other words,
error codes returned by this method are those that GRBoptimize itself would have returned, had the original method
not been asynchronous.

Note that you need to call GRBsync even if you know that the asynchronous optimization has already completed.

Return value:

A non-zero return value indicates that a problem occurred while solving the model. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model that is currently being solved.

o1



Example usage:

error = GRBoptimizeasync(model);
/* ... perform other compute-intensive tasks... */

error = GRBsync(model) ;

52



3.4 Model Queries

While most model related queries are handled through the attribute interface, a few fall outside of that interface.
These are described here.

GRBgetcoeff
int GRBgetcoeff ( GRBmodel *model,
int constrind,
int varind,
double *valP )

Retrieve a single constraint matrix coefficient.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the coefficient. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model from which the coefficient should be retrieved.
constrind: The constraint index for the desired coefficient.
varind: The variable index for the desired coefficient.
valP: The location in which the requested matrix coefficient should be placed.
Example usage:

double A12;
error = GRBgetcoeff(model, 1, 2, &A12);

GRBgetconstrbyname
int GRBgetconstrbyname ( GRBmodel *model,
const char *name,
int *constrnumP )

Retrieves a linear constraint from its name. If multiple linear constraints have the same name, this routine
chooses one arbitrarily.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the constraint. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model from which the linear constraint should be retrieved.
name: The name of the desired linear constraint.
constrnumP: Constraint number for a linear constraint with the indicated name. Returns -1 if no matching
name is found.

GRBgetconstrs

int GRBgetconstrs ( GRBmodel #*model,
int *numnzP,
int *cbeg,
int *xcind,
double *xcval,
int start,
int len )

Retrieve the non-zeros for a set of linear constraints from the constraint matrix. Typical usage is to call this
routine twice. In the first call, you specify the requested set of constraints, with NULL values for cbeg, cind, and
cval. The routine returns the number of non-zero values for the specified constraint range in numnzP. That allows
you to make certain that cind and cval are of sufficient size to hold the result of the second call.

93



If your constraint matrix may contain more than 2 billion non-zero values, you should consider using the GR-
BXgetconstrs variant of this routine.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the constraint coefficients. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.
Arguments:
model: The model from which the linear constraints should be retrieved.
numnzP: The number of non-zero values retrieved.
cbeg: Constraint matrix non-zero values are returned in Compressed Sparse Row (CSR) format. Each
constraint in the constraint matrix is represented as a list of index-value pairs, where each index entry
provides the variable index for a non-zero coefficient, and each value entry provides the corresponding non-
zero value. Each constraint has an associated cbeg value, indicating the start position of the non-zeros for
that constraint in the cind and cval arrays. The non-zeros for constraint i immediately follow those for
constraint i-1 in cind and cval. Thus, cbeg[i] indicates both the index of the first non-zero in constraint
i and the end of the non-zeros for constraint i-1. For example, consider the case where cbeg[2] = 10 and
cbeg[3] = 12. This would indicate that constraint 2 has two non-zero values associated with it. Their
variable indices can be found in cind[10] and cind[11], and the numerical values for those non-zeros can
be found in cval[10] and cval[11].
cind: Variable indices associated with non-zero values. See the description of the cbeg argument for more
information.
cval: Numerical values associated with constraint matrix non-zeros. See the description of the cbeg argument
for more information.
start: The index of the first linear constraint to retrieve.
len: The number of linear constraints to retrieve.

GRBgetenv

| GRBenv * GRBgetenv ( GRBmodel *model )

Retrieve the environment associated with a model.
Note that this environment is a model environment, not the original environment on which the model was created.
See Algorithmic parameters for more information.

Return value:
The environment associated with the model. A NULL return value indicates that there was a problem retrieving
the environment.

Arguments:
model: The model from which the environment should be retrieved.

Example usage:

GRBenv *env = GRBgetenv(model) ;

GRBgetgenconstrMax
int GRBgetgenconstrMax ( GRBmodel *model,
int id,
int *xresvarP,
int *nvarsP,
int *vars,
double *constantP )

Retrieve the data associated with a general constraint of type MAX. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
NULL value for the vars argument. The routine returns the total number of operand variables in the specified general

54



constraint in nvarsP. That allows you to make certain that the vars array is of sufficient size to hold the result of
the second call.

See also GRBaddgenconstrMax for a description of the semantics of this general constraint type.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the resultant variable of the constraint.
nvarsP: The number of operand variables of the constraint.
vars: An array to store the variable indices associated with the variable operands of the constraint.
constantP: The additional constant operand of the constraint.

Example usage:
int type;
int resvar;
int nvars;
int *vars;
double constant;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_MAX) {
error = GRBgetgenconstrMax(model, 3, &resvar, &nvars, NULL, &constant);
/* ...allocate vars to hold 'nvars' values... */
error = GRBgetgenconstrMax(model, 3, NULL, NULL, vars, NULL);

}
GRBgetgenconstrMin
int GRBgetgenconstrMin ( GRBmodel *model,
int id,
int *xresvarP,
int *nvarsP,
int *xvars,
double *constantP )

Retrieve the data associated with a general constraint of type MIN. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
NULL value for the vars argument. The routine returns the total number of operand variables in the specified general
constraint in nvarsP. That allows you to make certain that the vars array is of sufficient size to hold the result of
the second call.

See also GRBaddgenconstrMin for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the resultant variable of the constraint.
nvarsP: The number of operand variables of the constraint.

95



vars: An array to store the variable indices associated with the variable operands of the constraint.
constantP: The additional constant operand of the constraint.
Example usage:
int type;
int resvar;
int nvars;
int *vars;
double constant;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_MIN) {
error = GRBgetgenconstrMin(model, 3, &resvar, &nvars, NULL, &constant);
/* ...allocate vars to hold 'nvars' values... */
error = GRBgetgenconstrMin(model, 3, NULL, NULL, vars, NULL);

}
GRBgetgenconstrAbs
int GRBgetgenconstrAbs ( GRBmodel *model,
int id,
int *xresvarP,
int *xargvarP )

Retrieve the data associated with a general constraint of type ABS. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

See also GRBaddgenconstrAbs for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the resultant variable of the constraint.
argvarP: The variable index associated with the argument variable of the constraint.
Example usage:
int type;
int resvar;
int argvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_ABS) {
error = GRBgetgenconstrAbs(model, 3, &resvar, &argvar);

}
GRBgetgenconstrAnd
int GRBgetgenconstrAnd ( GRBmodel *model,
int id,
int *resvarP,
int *nvarsP,
int *vars )

56



Retrieve the data associated with a general constraint of type AND. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
NULL value for the vars argument. The routine returns the total number of operand variables in the specified general
constraint in nvarsP. That allows you to make certain that the vars array is of sufficient size to hold the result of
the second call.

See also GRBaddgenconstrAnd for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.

id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.

resvarP: The variable index associated with the binary resultant variable of the constraint.

nvarsP: The number of binary operand variables of the constraint.

vars: An array to store the variable indices associated with the binary variable operands of the constraint.
Example usage:

int type;

int resvar;

int nvars;

int *vars;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_AND) {

error = GRBgetgenconstrAnd(model, 3, &resvar, &nvars, NULL);

/* ...allocate vars to hold 'nvars' values... */

error = GRBgetgenconstrAnd(model, 3, NULL, NULL, vars);

}
GRBgetgenconstrOr
int GRBgetgenconstrOr ( GRBmodel #*model,
int id,
int *resvarP,
int *nvarsP,
int *vars )

Retrieve the data associated with a general constraint of type OR. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
NULL value for the vars argument. The routine returns the total number of operand variables in the specified general
constraint in nvarsP. That allows you to make certain that the vars array is of sufficient size to hold the result of
the second call.

See also GRBaddgenconstrOr for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.

o7



resvarP: The variable index associated with the binary resultant variable of the constraint.

nvarsP: The number of binary operand variables of the constraint.

vars: An array to store the variable indices associated with the binary variable operands of the constraint.
Example usage:

int type;

int resvar;

int nvars;

int *vars;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_OR) {

error = GRBgetgenconstrOr(model, 3, &resvar, &nvars, NULL);

/* ...allocate vars to hold 'nvars' values... */

error = GRBgetgenconstrOr (model, 3, NULL, NULL, vars);

}
GRBgetgenconstrNorm

int GRBgetgenconstrNorm ( GRBmodel *model,
int id,
int *resvarP,
int *nvarsP,
int *xvars,
double *whichP )

Retrieve the data associated with a general constraint of type NORM. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
NULL value for the vars argument. The routine returns the total number of operand variables in the specified general
constraint in nvarsP. That allows you to make certain that the vars array is of sufficient size to hold the result of
the second call.

See also GRBaddgenconstrNorm for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the resultant variable of the constraint.
nvarsP: The number of operand variables of the constraint.
vars: An array to store the variable indices associated with the variable operands of the constraint.
whichP: Which norm is used. Options are 0, 1, 2, and GRB_INFINITY.

Example usage:

int type;

int resvar;
int nvars;
int *vars;
double which;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_NORM) {
error = GRBgetgenconstrNorm(model, 3, &resvar, &nvars, NULL, &which);
/* ...allocate vars to hold 'nvars' values... */

58



error = GRBgetgenconstrNorm(model, 3, NULL, NULL, vars);

GRBgetgenconstrindicator

int GRBgetgenconstrIndicator ( GRBmodel #*model,

int id,

int *binvarP,
int *binvalP,
int *nvarsP,
int *ind,
double *xval,
char *senseP,
double *rhsP )

Retrieve the data associated with a general constraint of type INDICATOR. Calling this method for a general
constraint of a different type leads to an error return code. You can query the GenConstrType attribute to determine
the type of the general constraint.
Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with
NULL values for the ind and val arguments. The routine returns the total number of non-zero coefficients in the
linear constraint associated with the specified indicator constraint in nvarsP. That allows you to make certain that
the ind and val arrays are of sufficient size to hold the result of the second call.
See also GRBaddgenconstrIndicator for a description of the semantics of this general constraint type.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.
Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
binvarP: The variable index associated with the binary indicator variable.
binvalP: The value that the indicator variable has to take in order to trigger the linear constraint.
nvarsP: The number of non-zero coefficients in the linear constraint triggered by the indicator.
ind: An array to store the variable indices for non-zero values in the linear constraint.
val: An array to store the numerical values for non-zero values in the linear constraint.
senseP: Sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL.
rhsP: Right-hand side value for the linear constraint.

Example usage:

int type;
int binvar;
int binval:
int nvars;
int *ind;
double *val;
char sense;
double rhs;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_INDICATOR) {
error = GRBgetgenconstrIndicator(model, 3, &binvar, &binval, &nvars,
NULL, NULL, &sense, &rhs);
/* ...allocate ind and val to hold 'nvars' values... */
error = GRBgetgenconstrIndicator(model, 3, NULL, NULL, NULL,
ind, val, NULL, NULL);

99



GRBgetgenconstrPWL

int GRBgetgenconstrPWL ( GRBmodel +*model,

int id,

int *xvarP,
int *yvarP,
int *nptsP,
double *xpts,
double *ypts )

Retrieve the data associated with a general constraint of type PWL. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
NULL value for the xpts and ypts arguments. The routine returns the length for the xpts and ypts arrays in nptsP.
That allows you to make certain that the xpts and ypts arrays are of sufficient size to hold the result of the second
call.

See also GRBaddgenconstrPWL for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.

id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.

xvarP: The index of variable x.

yvarP: The index of variable y.

nptsP: The number of points that define the piecewise-linear function.

xpts: The x values for the points that define the piecewise-linear function.

ypts: The y values for the points that define the piecewise-linear function.
Example usage:

int type;

int xvar;

int yvar;

int npts;

double *xpts;

double *ypts;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_PWL) {
error = GRBgetgenconstrPWL(model, 3, &xvar, &yvar, &npts, NULL, NULL);
/* ...allocate xpts and ypts arrays with length npts */
error = GRBgetgenconstrPWL(model, 3, NULL, NULL, NULL, xpts, ypts);

}

GRBgetgenconstrPoly

int GRBgetgenconstrPoly ( GRBmodel *model,
int id,
int *xvarP,
int *yvarP,
int *plenP,
double *p )

Retrieve the data associated with a general constraint of type POLY. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

60



Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with
a NULL value for the p argument. The routine returns the length of the p array in plenP. That allows you to make
certain that the p array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrPoly for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable z.
yvarP: The index of variable y.
plenP: Pointer to store the array length for p. If 2% is the highest power term, then d + 1 will be returned.
p: The coefficients for polynomial function.
Example usage:
int type;
int xvar;
int yvar;
int plen;
double *p;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_POLY) {

error = GRBgetgenconstrPoly(model, 3, &xvar, &yvar, &plen, NULL);

/* ...allocate p array with length plen */

error = GRBgetgenconstrPoly(model, 3, NULL, NULL, NULL, p);

}
GRBgetgenconstrExp
int GRBgetgenconstrExXp ( GRBmodel *model,
int id,
int *xvarP,
int *yvarP )

Retrieve the data associated with a general constraint of type EXP. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

See also GRBaddgenconstrExp for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.
Example usage:
int type;
int xvar;
int yvar;

61



error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_EXP) {
error = GRBgetgenconstrExp(model, 3, &xvar, &yvar);

}
GRBgetgenconstrExpA
int GRBgetgenconstrEXpA ( GRBmodel *model,
int id,
int *xvarP,
int *yvarP,
double *aP )

Retrieve the data associated with a general constraint of type EXPA. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

See also GRBaddgenconstrExpA for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable z.
yvarP: The index of variable y.
aP: The base of the function.
Example usage:
int type;
int xvar;
int yvar;
double a;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_EXPA) {
error = GRBgetgenconstrExpA(model, 3, &xvar, &yvar, &a);

}
GRBgetgenconstrLog
int GRBgetgenconstrLog ( GRBmodel *model,
int id,
int *xvarP,
int xyvarP )

Retrieve the data associated with a general constraint of type LOG. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

See also GRBaddgenconstrLog for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.

62



Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.
Example usage:
int type;
int xvar;
int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_LOG) {
error = GRBgetgenconstrLog(model, 3, &xvar, &yvar);

}
GRBgetgenconstrLogA
int GRBgetgenconstrLogA ( GRBmodel *model,
int id,
int *xxvarP,
int *yvarP,
double *aP )

Retrieve the data associated with a general constraint of type LOGA. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

See also GRBaddgenconstrLogA for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.
aP: The base of the function.
Example usage:
int type;
int xvar;
int yvar;
double a;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_LOGA) {

error = GRBgetgenconstrLogh(model, 3, &xvar, &yvar, &a);
}

GRBgetgenconstrlLogistic

int GRBgetgenconstrLogistic ( GRBmodel #model,

int id,
int *xvarP,
int *yvarP )

Retrieve the data associated with a general constraint of type LOGISTIC. Calling this method for a general
constraint of a different type leads to an error return code. You can query the GenConstrType attribute to determine
the type of the general constraint.

63



See also GRBaddgenconstrLogistic for a description of the semantics of this general constraint type.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.
Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable z.
yvarP: The index of variable y.
Example usage:
int type;
int xvar;
int yvar;
double a;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_LOGISTIC) {
error = GRBgetgenconstrLogistic(model, 3, &xvar, &yvar);

b
GRBgetgenconstrPow
int GRBgetgenconstrPow ( GRBmodel *model,
int id,
int *xvarP,
int *yvarP,
double *aP )

Retrieve the data associated with a general constraint of type POW. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

See also GRBaddgenconstrPow for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.
aP: The exponent of the function.
Example usage:
int type;
int xvar;
int yvar;
double a;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_POW) {
error = GRBgetgenconstrPow(model, 3, &xvar, &yvar, &a);

3

64



GRBgetgenconstrSin

int GRBgetgenconstrSin ( GRBmodel *model,

int id,
int *xvarP,
int *yvarP )

Retrieve the data associated with a general constraint of type SIN. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

See also GRBaddgenconstrSin for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.
Example usage:
int type;
int xvar;
int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_SIN) {
error = GRBgetgenconstrSin(model, 3, &xvar, &yvar);

}
GRBgetgenconstrCos
int GRBgetgenconstrCos ( GRBmodel *model,
int id,
int *xvarP,
int *yvarP )

Retrieve the data associated with a general constraint of type COS. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

See also GRBaddgenconstrCos for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.
Example usage:
int type;
int xvar;
int yvar;

65



error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_CO0S) {
error = GRBgetgenconstrCos(model, 3, &xvar, &yvar);

}
GRBgetgenconstrTan
int GRBgetgenconstrTan ( GRBmodel *model,
int id,
int *xvarP,
int *xyvarP )

Retrieve the data associated with a general constraint of type TAN. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

See also GRBaddgenconstrTan for a description of the semantics of this general constraint type.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable z.
yvarP: The index of variable y.
Example usage:

int type;
int xvar;
int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_TAN) {
error = GRBgetgenconstrTan(model, 3, &xvar, &yvar);

}

GRBgetjsonsolution

int GRBgetjsonsolution ( GRBmodel model,
char*x* buffP )

After a call to optimize, this method returns the resulting solution and related model attributes as a JSON string.
Please refer to the JSON solution format section for details.
Return value:
A non-zero return value indicates that there was a problem generating the JSON solution string. Refer to
the Error Code table for a list of possible return values.
Arguments:
model: Model from which to query its current JSON solution string.
buffP: The location in which the pointer to the newly created JSON string should be placed.
Important note:
On Windows, the string returned in buffP is allocated in a different heap from the calling program. You must
call GRBfree to free it.

66



GRBgetpwlobj

int GRBgetpwlobj ( GRBmodel #model,

int var,
int *npointsP,
double *X,

double *y )
Retrieve the piecewise-linear objective function for a variable. The z and y arguments must be large enough to
hold the result. If either are NULL, then npointsP will contain the number of points in the function on return.
Refer to this discussion for additional information on what the values in  and y mean.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the piecewise-linear objective
function. Refer to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: The model from which the piecewise-linear objective function is being retrieved.
var: The variable whose objective function is being retrieved.
npointsP: The number of points that define the piecewise-linear function.
x: The x values for the points that define the piecewise-linear function. These will always be in non-decreasing
order.
y: The y values for the points that define the piecewise-linear function.
Example usage:

double *x;
double *y;

error = GRBgetpwlobj(model, var, &npoints, NULL, NULL);
/* ...allocate x and y to hold 'mpoints' values... */
error = GRBgetpwlobj(model, var, &npoints, x, y);

GRBgetq
int GRBgetq ( GRBmodel *model,
int *numqnzP,
int *qrow,
int *qcol,
double xqval )

Retrieve all quadratic objective terms. The qrow, gcol, and gqval arguments must be large enough to hold the
result. You can query the NumQNZs attribute to determine how many terms will be returned.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the quadratic objective terms.
Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by
calling GRBgeterrormsg.
Arguments:
model: The model from which the quadratic objective terms should be retrieved.
numgnzP: The number of quadratic objective terms retrieved.
grow: Row indices associated with quadratic terms. A quadratic term is represented using three values: a pair
of indices (stored in qrow and qcol), and a coefficient (stored in qval). The three argument arrays provide
the corresponding values for each quadratic term. To give an example, to represent 22 + zox1 + %, you
would have *numgnzP=3, qrow[] = {0, 0, 1}, qcol[]l = {0, 1, 1}, and qval[]l = {2.0, 1.0, 1.0}.
gcol: Column indices associated with quadratic terms. See the description of the qrow argument for more
information.
gval: Numerical values associated with quadratic terms. See the description of the qrow argument for more
information.
Example usage:

67



int qnz;
int *qrow, *qcol;
double *qval;

error = GRBgetdblattr(model, GRB_DBL_ATTR_NUMQNZS, &gnz);
/* ...allocate grow, qcol, gqval to hold 'gnz' values... */
error = GRBgetq(model, &qnz, qrow, qcol, qval);

GRBgetqconstr

int GRBgetqconstr ( GRBmodel #model,
int qconstr,
int *numlnzP,
int *x1lind,
double *x1lval,
int *numgnzpP,
int *qrow,
int *qcol,
double *qval )

Retrieve the linear and quadratic terms associated with a single quadratic constraint. Typical usage is to call
this routine twice. In the first call, you specify the requested quadratic constraint, with NULL values for the array
arguments. The routine returns the total number of linear and quadratic terms in the specified quadratic constraint
in numlnzP and numgnzP, respectively. That allows you to make certain that 1ind, 1val, qrow, qcol, and gval are of
sufficient size to hold the result of the second call.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the quadratic constraint. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model from which the quadratic constraint should be retrieved.

qgconstr: The index of the requested quadratic constraint.

numlnzP: The number of linear terms retrieved for the requested quadratic constraint.

lind: Variable indices associated with linear terms.

lval: Numerical coefficients associated with linear terms.

numgnzP: The number of quadratic terms retrieved for the requested quadratic constraint.

qrow: Row indices associated with quadratic terms. A quadratic term is represented using three values: a
pair of indices (stored in gqrow and qcol), and a coefficient (stored in qval). The associated arguments
arrays provide the corresponding values for each quadratic term. To give an example, if the requested
quadratic constraint has quadratic terms 2z3 4+ xox1 + 22, this routine would return *numqnzP=3, qrow[]
= {0, 0, 1}, qcol[] = {0, 1, 1}, and qval[]l = {2.0, 1.0, 1.0}.

qcol: Column indices associated with quadratic terms. See the description of the grow argument for more
information.

gval: Numerical values associated with quadratic terms. See the description of the qrow argument for more
information.

GRBgetqconstrbyname

int

GRBgetqconstrbyname ( GRBmodel *model,

const char *name,
int *constrnumP )

Retrieves a quadratic constraint from its name. If multiple quadratic constraints have the same name, this routine
chooses one arbitrarily.
Return value:

68



A non-zero return value indicates that a problem occurred while retrieving the quadratic constraint. Refer

to the Error Code table for a list of possible return values. Details on the error can be obtained by calling

GRBgeterrormsg.

Arguments:

model: The model from which the quadratic constraint should be retrieved.

name: The name of the desired quadratic constraint.

constrnumP: Constraint number for a quadratic constraint with the indicated name. Returns -1 if no matching
name is found.

GRBgetsos

int GRBgetsos ( GRBmodel #*model,
int *nummembersP,
int *sostype,
int *beg,
int *ind,
double *weight,
int start,
int len )

Retrieve the members and weights of a set of SOS constraints. Typical usage is to call this routine twice. In the
first call, you specify the requested SOS constraints, with NULL values for ind and weight. The routine returns the
total number of members for the specified SOS constraints in nummembersP. That allows you to make certain that
ind and weight are of sufficient size to hold the result of the second call.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the SOS members. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model from which the SOS constraints should be retrieved.

nummembersP: The total number of SOS members retrieved.

sostype: The types of the SOS constraints. Possible values are GRB_SOS_TYPE1 or GRB_SOS_TYPE2

beg: SOS constraints are returned in Compressed Sparse Row (CSR) format. Each SOS constraint in the
model is represented as a list of index-value pairs, where each index entry provides the variable index
for an SOS member, and each value entry provides the corresponding SOS constraint weight. Each SOS
constraint has an associated beg value, indicating the start position of the members of that constraint in
the ind and weight arrays. The members for SOS constraint i immediately follow those for constraint i-1
in ind and weight. Thus, beg[i] indicates both the index of the first member of SOS constraint i and
the end of the member list for SOS constraint i-1. For example, consider the case where beg[2] = 10 and
beg[3] = 12. This would indicate that SOS constraint 2 has two members. Their variable indices can be
found in ind[10] and ind[11], and their SOS weights can be found in weight [10] and weight [11].

ind: Variable indices associated with SOS members. See the description of the beg argument for more
information.

weight: Weights associated with SOS members. See the description of the beg argument for more informa-
tion.

start: The index of the first SOS constraint to retrieve.

len: The number of SOS constraints to retrieve.

GRBgetvarbyname
int GRBgetvarbyname ( GRBmodel *model,
const char *name,
int *varnumP )

Retrieves a variable from its name. If multiple variables have the same name, this routine chooses one arbitrarily.
Return value:

69



A non-zero return value indicates that a problem occurred while retrieving the variable. Refer to the Error

Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:

model: The model from which the variable should be retrieved.

name: The name of the desired variable.

varnumP: Variable number for a variable with the indicated name. Returns -1 if no matching name is found.

GRBgetvars

int GRBgetvars (  GRBmodel *model,
int *numnzpP ,
int *vbeg,
int *vind,
double *xvval,
int start,
int len )

Retrieve the non-zeros for a set of variables from the constraint matrix. Typical usage is to call this routine
twice. In the first call, you specify the requested set of variables, with NULL values for vbeg, vind, and vval. The
routine returns the number of non-zero values for the specified variables in numnzP. That allows you to make certain
that vind and vval are of sufficient size to hold the result of the second call.

If your constraint matrix may contain more than 2 billion non-zero values, you should consider using the GR-
BXgetvars variant of this routine.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the variable coefficients. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model from which the variables should be retrieved.

numnzP: The number of non-zero values retrieved.

vbeg: Constraint matrix non-zero values are returned in Compressed Sparse Column (CSC) format by this
routine. Each column in the constraint matrix is represented as a list of index-value pairs, where each
index entry provides the constraint index for a non-zero coefficient, and each value entry provides the
corresponding non-zero value. Each variable has an associated vbeg value, indicating the start position of
the non-zeros for that constraint in the vind and vval arrays. The non-zeros for variable i immediately
follow those for variable i-1 in vind and vval. Thus, vbeg[i] indicates both the index of the first non-zero
in variable i and the end of the non-zeros for variable i-1. For example, consider the case where vbeg[2]
= 10 and vbeg[3] = 12. This would indicate that variable 2 has two non-zero values associated with
it. Their constraint indices can be found in vind[10] and vind[11], and the numerical values for those
non-zeros can be found in vval[10] and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg argument for more
information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of the vbeg argument
for more information.

start: The index of the first variable to retrieve.

len: The number of variables to retrieve.

GRBsinglescenariomodel

int GRBsinglescenariomodel ( GRBmodel #model,
GRBmodel **singlescenarioP )

Capture a single scenario from a multi-scenario model. Use the ScenarioNumber parameter to indicate which
scenario to capture.
Return value:

70



A non-zero return value indicates that a problem occurred while extracting the single-scenario model. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model from which the scenario should be extracted.
singlescenarioP: The location in which the pointer to the requested single-scenario model should be placed.

GRBXgetconstrs

int GRBXgetconstrs ( GRBmodel *model,
size_t *numnzpP,
size_t *cbeg,
int *cind,
double *cval,
int start,
int len )

The size_t version of GRBgetconstrs. The two arguments that count non-zero values are of type size_t in this
version to support models with more than 2 billion non-zero values.

Retrieve the non-zeros for a set of linear constraints from the constraint matrix. Typical usage is to call this
routine twice. In the first call, you specify the requested set of constraints, with NULL values for cbeg, cind, and
cval. The routine returns the number of non-zero values for the specified constraint range in numnzP. That allows
you to make certain that cind and cval are of sufficient size to hold the result of the second call.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the constraint coefficients. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model from which the constraints should be retrieved.

numnzP: The number of non-zero values retrieved.

cbeg: Constraint matrix non-zero values are returned in Compressed Sparse Row (CSR) format. Each
constraint in the constraint matrix is represented as a list of index-value pairs, where each index entry
provides the variable index for a non-zero coefficient, and each value entry provides the corresponding non-
zero value. Each constraint has an associated cbeg value, indicating the start position of the non-zeros for
that constraint in the cind and cval arrays. The non-zeros for constraint i immediately follow those for
constraint i-1 in cind and cval. Thus, cbeg[i] indicates both the index of the first non-zero in constraint
i and the end of the non-zeros for constraint i-1. For example, consider the case where cbeg[2] = 10 and
cbeg[3] = 12. This would indicate that constraint 2 has two non-zero values associated with it. Their
variable indices can be found in cind[10] and cind[11], and the numerical values for those non-zeros can
be found in cval[10] and cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg argument for more
information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of the cbeg argument
for more information.

start: The index of the first constraint to retrieve.

len: The number of constraints to retrieve.

GRBXgetvars

int GRBXgetvars ( GRBmodel *model,
size_t *numnzpP,
size_t *vbeg,
int *vind,
double *yval,
int start,
int len )

71



The size_t version of GRBgetvars. The two arguments that count non-zero values are of type size_t in this
version to support models with more than 2 billion non-zero values.

Retrieve the non-zeros for a set of variables from the constraint matrix. Typical usage is to call this routine
twice. In the first call, you specify the requested set of variables, with NULL values for vbeg, vind, and vval. The
routine returns the number of non-zero values for the specified variables in numnzP. That allows you to make certain
that vind and vval are of sufficient size to hold the result of the second call.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the variable coefficients. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model from which the variables should be retrieved.

numnzP: The number of non-zero values retrieved.

vbeg: Constraint matrix non-zero values are returned in Compressed Sparse Column (CSC) format by this
routine. Each column in the constraint matrix is represented as a list of index-value pairs, where each
index entry provides the constraint index for a non-zero coefficient, and each value entry provides the
corresponding non-zero value. Each variable has an associated vbeg value, indicating the start position of
the non-zeros for that constraint in the vind and vval arrays. The non-zeros for variable i immediately
follow those for variable i-1 in vind and vval. Thus, vbeg[i] indicates both the index of the first non-zero
in variable i and the end of the non-zeros for variable i-1. For example, consider the case where vbeg[2]
= 10 and vbeg[3] = 12. This would indicate that variable 2 has two non-zero values associated with
it. Their constraint indices can be found in vind[10] and vind[11], and the numerical values for those
non-zeros can be found in vval[10] and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg argument for more
information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of the vbeg argument
for more information.

start: The index of the first variable to retrieve.

len: The number of variables to retrieve.

72



3.5 Input/Output

GRBreadmodel
int GRBreadmodel ( GRBenv *env,
const char *filename,
GRBmodel *xmodelP )

Read a model from a file.
Return value:
A non-zero return value indicates that a problem occurred while reading the model. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
env: The environment in which to load the new model. This should come from a previous call to GRBloadenv.
filename: The path to the file to be read. Note that the type of the file is encoded in the file name suffix.
Valid suffixes are .mps, .rew, .lp, .rlp, .dua, .dlp, .ilp, or .opb. The files can be compressed, so
additional suffixes of .zip, .gz, .bz2, or .7z are accepted.
modelP: The location in which the pointer to the model should be placed.
Example usage:

GRBmodel *model;
error = GRBreadmodel(env, "/tmp/model.mps.bz2", &model);

GRBread

int GRBread ( GRBmodel *xmodel,
const char *filename )

Import optimization data from a file. This routine is the general entry point for importing data from a file into
a model. It can be used to read start vectors for MIP models, basis files for LP models, or parameter settings. The
type of data read is determined by the file suffix. File formats are described in the File Format section.
Return value:
A non-zero return value indicates that a problem occurred while reading the file. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model that will receive the start vector.
filename: The path to the file to be read. The suffix on the file must be either .mst or .sol for a MIP start
file, .hnt for a MIP hint file, .ord for a priority order file, .bas for a basis file, or .prm for a parameter
file, The suffix may optionally be followed by .zip, .gz, .bz2, or .7z.
Example usage:

error = GRBread(model, "/tmp/model.mst.bz2");

GRBwrite

int GRBwrite ( GRBmodel *model,
const char *filename )

This routine is the general entry point for writing optimization data to a file. It can be used to write optimization
models, solutions vectors, basis vectors, start vectors, or parameter settings. The type of data written is determined
by the file suffix. File formats are described in the File Format section.

Note that writing a model to a file will process all pending model modifications. This is also true when writing
other model information such as solutions, bases, etc.

Note also that when you write a Gurobi parameter file (PRM), both integer or double parameters not at their
default value will be saved, but no string parameter will be saved into the file.

Return value:

A non-zero return value indicates that a problem occurred while writing the file. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

73



Arguments:
model: The model containing the data to be written.
filename: The name of the file to be written. The file type is encoded in the file name suffix. Valid suffixes
are .mps, .rew, .lp, or .rlp for writing the model itself, .dua or .dlp for writing the dualized model
(only pure LP), .ilp for writing just the IIS associated with an infeasible model (see GRBcomputellIS for
further information), .sol for writing the solution selected by the SolutionNumber parameter, .mst for
writing a start vector, .hnt for writing a hint file, .bas for writing an LP basis, .prm for writing modified
parameter settings, .attr for writing model attributes, or . json for writing solution information in JSON
format. If your system has compression utilities installed (e.g., 7z or zip for Windows, and gzip, bzip2,
or unzip for Linux or macOS), then the files can be compressed, so additional suffixes of .gz, .bz2, or .7z
are accepted.
Example usage:

error = GRBwrite(model, "/tmp/model.rlp.gz");

74



3.6 Attribute Management

GRBgetattrinfo

int GRBgetattrinfo ( GRBmodel *model,
const char *attrname,

int *datatypeP,
int *attrtypeP,
int xsettableP )

Obtain information about an attribute.
Return value:

A non-zero return value indicates that a problem occurred while obtaining information about the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by
calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.

attrname: The name of an attribute. Available attributes are listed and described in the Attributes section
of this document.

datatypeP: On completion, the integer pointed to by this argument will indicate the data type of the attribute.
Possible types are char (0), int (1), double (2), or string(3). This argument can be NULL.

attrtypeP: On completion, the integer pointed to by this argument will indicate the type of the attribute.
Possible types are model attribute (0), variable attribute (1), linear constraint attribute (2), (3) SOS
constraint attribute, (4) quadratic constraint attribute, or (5) general constraint attribute. This argument
can be NULL.

settableP: On completion, the integer pointed to by this argument will indicate whether the attribute can
be set (1) or not (0). This argument can be NULL.

Example usage:

int datatype, attrtype, settable;
error = GRBgetattrinfo(model, "ModelName", &datatype, &attrtype, &settable);

GRBgetintattr

int GRBgetintattr ( GRBmodel *model,
const char *attrname,
int *valueP )

Query the value of an integer-valued model attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.

attrname: The name of an integer-valued model attribute. Available attributes are listed and described in
the Attributes section of this document.

valueP: The location in which the current value of the requested attribute should be placed.
Important note:

Note that this method should be used for scalar attributes only (i.e., model attributes). To query a single element
of an array attribute, use GRBgetintattrelement instead.

Example usage:

error = GRBgetintattr(model, "NumBinVars", &numbin);

75



GRBsetintattr

int GRBsetintattr ( GRBmodel xmodel,
const char *attrname,
int newvalue )

Set the value of an integer-valued model attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of an integer-valued model attribute. Available attributes are listed and described in
the Attributes section of this document.
newvalue: The desired new value of this attribute.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To modify a single
element of an array attribute, use GRBsetintattrelement instead.
Example usage:

error = GRBsetintattr(model, "ModelSense", -1);

GRBgetintattrelement

int GRBgetintattrelement ( GRBmodel *model,
const char *attrname,
int element,
int *valueP )

Query a single value from an integer-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed and described in
the Attributes section of this document.
element: The index of the requested array element.
valueP: A pointer to the location where the requested value should be returned.
Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint attributes). To query
a scalar attribute (i.e., a model attribute), use GRBgetintattr instead.
Example usage:
int first_onme;
error = GRBgetintattrelement(model, "VBasis", 0, &first_one);

GRBsetintattrelement
int GRBsetintattrelement ( GRBmodel *model,
const char *attrname,
int element,
int newvalue )

Set a single value in an integer-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:

76



model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed and described in
the Attributes section of this document.
element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.
Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint attributes). To modify
a scalar attribute (i.e., a model attribute), use GRBsetintattr instead.
Example usage:

error = GRBsetintattrelement (model, "VBasis", 0, GRB_BASIC);

GRBgetintattrarray

int GRBgetintattrarray ( GRBmodel *model,
const char *attrname,

int start,
int len,
int *values )

Query the values of an integer-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed and described in
the Attributes section of this document.
start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.
values: A pointer to the location where the array attribute should be returned. Note that the result array
must be as long as the requested sub-array.
Example usage:

int cbasis [NUMCONSTRS] ;
error = GRBgetintattrarray(model, "CBasis", O, NUMCONSTRS, cbasis);

GRBsetintattrarray
int GRBsetintattrarray ( GRBmodel *model,
const char *attrname,
int start,
int len,
int *values )

Set the values of an integer-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed and described in
the Attributes section of this document.
start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute. Note that the values
array must be as long as the sub-array to be changed.
Example usage:

77



int cbasis[] = {GRB_BASIC, GRB_BASIC, GRB_NONBASIC_LOWER, GRB_BASIC};
error = GRBsetintattrarray(model, "CBasis", 0, 4, cbasis);

GRBgetintattrlist

int GRBgetintattrlist ( GRBmodel *model,
const char *attrname,

int len,
int *xind,
int *values )

Query the values of an integer-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.

attrname: The name of an integer-valued array attribute. Available attributes are listed and described in
the Attributes section of this document.

len: The number of attribute elements to retrieve.
ind: The indices of the desired attribute elements.

values: A pointer to the location where the requested attribute elements should be returned. Note that the
result array must be as long as the requested index list.
Example usage:

int desired[] = {0, 2, 4, 6};
int cbasis[4];
error = GRBgetintattrlist(model, "CBasis", 4, desired, cbasis);

GRBsetintattrlist

int GRBsetintattrlist ( GRBmodel *model,
const char *attrname,

int len,
int *ind,
int *values )

Set the values of an integer-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.

attrname: The name of an integer-valued array attribute. Available attributes are listed and described in
the Attributes section of this document.

len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.

values: A pointer to the desired new values for the specified elements of the attribute. Note that the values
array must be as long as the list of indices.
Example usage:

int change[] = {0, 1, 3};

int newbas[] = {GRB_BASIC, GRB_NONBASIC_LOWER, GRB_NONBASIC_LOWER};
error = GRBsetintattrlist(model, "VBasis", 3, change, newbas);

78



GRBgetdblattr
int GRBgetdblattr( GRBmodel *model,

const char *attrname,
double *valueP )

Query the value of a double-valued model attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a double-valued model attribute. Available attributes are listed and described in the
Attributes section of this document.
valueP: The location in which the current value of the requested attribute should be placed.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To query a single element
of an array attribute, use GRBgetdblattrelement instead.
Example usage:

error = GRBgetdblattr(model, "ObjCon", &objcon);

GRBsetdblattr

int GRBsetdblattr ( GRBmodel *model,
const char *attrname,
double newvalue )

Set the value of a double-valued model attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a double-valued model attribute. Available attributes are listed and described in the
Attributes section of this document.
newvalue: The desired new value of this attribute.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To modify a single
element of an array attribute, use GRBsetdblattrelement instead.
Example usage:

error = GRBsetdblattr(model, "ObjCon", 0.0);

GRBgetdblattrelement

int GRBgetdblattrelement ( GRBmodel *model,
const char *attrname,
int element,
double *valueP )

Query a single value from a double-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and described in the
Attributes section of this document.

79



element: The index of the requested array element.
values: A pointer to the location where the requested value should be returned.
Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint attributes). To query
a scalar attribute (i.e., a model attribute), use GRBgetdblattr instead.
Example usage:

double first_one;
error = GRBgetdblattrelement(model, "X", O, &first_one);

GRBsetdblattrelement

int GRBsetdblattrelement ( GRBmodel *model,
const char *attrname,
int element,
double newvalue )

Set a single value in a double-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and described in the
Attributes section of this document.
element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.
Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint attributes). To modify
a scalar attribute (i.e., a model attribute), use GRBsetdblattr instead.
Example usage:

error = GRBsetdblattrelement(model, "Start", 0, 1.0);

GRBgetdblattrarray

int GRBgetdblattrarray ( GRBmodel *model,
const char *attrname,

int start,
int len,
double *values )

Query the values of a double-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and described in the
Attributes section of this document.
start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.
values: A pointer to the location where the array attribute should be returned. Note that the result array
must be as long as the requested sub-array.
Example usage:

double 1b[NUMVARS];
error = GRBgetdblattrarray(model, "LB", 0, cols, 1b);

80



GRBsetdblattrarray

int GRBsetdblattrarray ( GRBmodel *model,
const char *attrname,

int start,
int len,
double *values )

Set the values of a double-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and described in the
Attributes section of this document.
start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute. Note that the values
array must be as long as the sub-array to be changed.
Example usage:

double start[] = {1.0, 1.0, 0.0, 1.0};
error = GRBsetdblattrarray(model, "Start", 0, 4, start);

GRBgetdblattrlist

int GRBgetdblattrlist (  GRBmodel *model,
const char *attrname,

int len,
int *xind,
double *values )

Query the values of a double-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and described in the
Attributes section of this document.
len: The number of attribute elements to retrieve.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned. Note that the
result array must be as long as the requested index list.
Example usage:
int desired[] = {0, 2, 4, 6};
double x[4];
error = GRBgetdblattrlist(model, "X", 4, desired, cbasis);

GRBsetdblattrlist

int GRBsetdblattrlist ( GRBmodel *model,
const char *attrname,

int len,
int *xind,
double *values )

Set the values of a double-valued array attribute.

81



Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and described in the
Attributes section of this document.
len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.
values: A pointer to the desired new values for the specified elements of the attribute. Note that the values
array must be as long as the list of indices.
Example usage:
int change[] = {0, 1, 3};
double start[] = {1.0, 3.0, 2.0};
error = GRBsetdblattrlist(model, "Start", 3, change, start);

GRBgetcharattrelement

int GRBgetcharattrelement ( GRBmodel *model,
const char *attrname,
int element,
char *valueP )

Query a single value from a character-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed and described in
the Attributes section of this document.
element: The index of the requested array element.
values: A pointer to the location where the requested value should be returned.
Example usage:

char first_one;
error = GRBgetcharattrelement(model, "VType", O, &first_one);

GRBsetcharattrelement

int GRBsetcharattrelement ( GRBmodel *model,
const char *attrname,
int element,
char newvalue )

Set a single value in a character-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed and described in
the Attributes section of this document.
element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.
Example usage:

error = GRBsetcharattrelement (model, "VType", O, GRB_BINARY);

82



GRBgetcharattrarray

int GRBgetcharattrarray ( GRBmodel *model,
const char *attrname,

int start,
int len,
char *values )

Query the values of a character-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed and described in
the Attributes section of this document.
start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.
values: A pointer to the location where the array attribute should be returned. Note that the result array
must be as long as the requested sub-array.
Example usage:

char vtypes [NUMVARS];
error = GRBgetcharattrarray(model, "VType", O, NUMVARS, vtypes);

GRBsetcharattrarray
int GRBsetcharattrarray ( GRBmodel *model,
const char *attrname,
int start,
int len,
char *values )

Set the values of a character-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed and described in
the Attributes section of this document.
start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute. Note that the values
array must be as long as the sub-array to be changed.
Example usage:

char vtypes[] = {GRB_BINARY, GRB_CONTINUOUS, GRB_INTEGER, GRB_BINARY};
error = GRBsetcharattrarray(model, "VType", O, 4, vtypes);

GRBgetcharattrlist

int GRBgetcharattrlist ( GRBmodel *model,
const char *attrname,

int len,
int *ind,
char *values )

Query the values of a character-valued array attribute.
Return value:

83



A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed and described in
the Attributes section of this document.
len: The number of attribute elements to retrieve.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned. Note that the
result array must be as long as the requested index list.
Example usage:
int desired[] = {0, 2, 4, 6};
char vtypes[4];
error = GRBgetcharattrlist(model, "VType", 4, desired, vtypes);

GRBsetcharattrlist
int GRBsetcharattrlist ( GRBmodel *model,
const char *attrname,
int len,
int *ind,
char *values )

Set the values of a character-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed and described in
the Attributes section of this document.
len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.
values: A pointer to the desired new values for the specified elements of the attribute. Note that the values
array must be as long as the list of indices.
Example usage:

int change[] = {0, 1, 3};
char vtypes[] = {GRB_BINARY, GRB_BINARY, GRB_BINARY};
error = GRBsetcharattrlist(model, "Vtype", 3, change, vtypes);

GRBgetstrattr

int GRBgetstrattr ( GRBmodel *model,
const char *attrname,
char **xvalueP )

Query the value of a string-valued model attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a string-valued model attribute. Available attributes are listed and described in the
Attributes section of this document.
valueP: The location in which the current value of the requested attribute should be placed.
Important notes:

84



Note that all interface routines that return string-valued attributes are returning pointers into internal Gurobi
data structures. The user should copy the contents of the pointer to a different data structure before the next call
to a Gurobi library routine. The user should also be careful to never modify the data pointed to by the returned
character pointer.

Note that this method should be used for scalar attributes only (i.e., model attributes). To query a single element
of an array attribute, use GRBgetstrattrelement instead.

Example usage:

char *modelname;
error = GRBgetstrattr(model, "ModelName", &modelname);

GRBsetstrattr

int GRBsetstrattr ( GRBmodel *model,
const char *attrname,
const char *newvalue )

Set the value of a string-valued model attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a string-valued model attribute. Available attributes are listed and described in the
Attributes section of this document.
newvalue: The desired new value of this attribute.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To modify a single
element of an array attribute, use GRBsetstrattrelement instead.
Example usage:

error = GRBsetstrattr(model, "ModelName", "Modified name");

GRBgetstrattrelement

int GRBgetstrattrelement ( GRBmodel *model,
const char *attrname,
int element,
char **valueP )

Query a single value from a string-valued array attribute.

Return value:

A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error

Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:

model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.

attrname: The name of a string-valued array attribute. Available attributes are listed and described in the

Attributes section of this document.

element: The index of the requested array element.

valueP: A pointer to the location where the requested value should be returned.

Important notes:

Note that all interface routines that return string-valued attributes are returning pointers into internal Gurobi
data structures. The user should copy the contents of the pointer to a different data structure before the next call
to a Gurobi library routine. The user should also be careful to never modify the data pointed to by the returned
character pointer.

Note that this method should be used for array attributes only (i.e., variable or constraint attributes). To query
a scalar attribute (i.e., a model attribute), use GRBgetstrattr instead.

Example usage:

85



char **varname;
error = GRBgetstrattrelement(model, "VarName", 1, varname);

GRBsetstrattrelement
int GRBsetstrattrelement ( GRBmodel *model,
const char *attrname,
int element,
char *newvalue )

Set a single value in a string-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a string-valued array attribute. Available attributes are listed and described in the
Attributes section of this document.
element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.
Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint attributes). To modify
a scalar attribute (i.e., a model attribute), use GRBsetstrattr instead.
Example usage:

error = GRBsetstrattrelement (model, "ConstrName", 0, "NewConstr");

GRBgetstrattrarray
int GRBgetstrattrarray ( GRBmodel *model,
const char *attrname,
int start,
int len,
char **values )

Query the values of a string-valued array attribute.

Return value:

A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error

Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.

attrname: The name of a string-valued array attribute. Available attributes are listed and described in the
Attributes section of this document.

start: The index of the first entry in the array to retrieve.

len: The number of array entries to retrieve.

values: A pointer to the location where the array attribute should be returned. Note that the result array
must be as long as the requested sub-array.

Important notes:

Note that all interface routines that return string-valued attributes are returning pointers into internal Gurobi
data structures. The user should copy the contents of the pointer to a different data structure before the next call
to a Gurobi library routine. The user should also be careful to never modify the data pointed to by the returned
character pointer.

Example usage:

char **varnames [NUMVARS] ;
error = GRBgetstrattrarray(model, "VarName", O, NUMVARS, varnames);

86



GRBsetstrattrarray

int GRBsetstrattrarray ( GRBmodel *model,
const char *attrname,

int start,
int len,
char **values )

Set the values of a string-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a string-valued array attribute. Available attributes are listed and described in the
Attributes section of this document.
start: The index of the first entry in the array to set.
len: The number of array entries to set.

values: A pointer to the desired new values for the specified sub-array of the attribute. Note that the values
array must be as long as the sub-array to be changed.

Example usage:

char **varnames [NUMVARS] ;
error = GRBsetstrattrarray(model, "VarName", O, NUMVARS, varnames);

GRBgetstrattrlist

int GRBgetstrattrlist ( GRBmodel *model,
const char *attrname,

int len,
int *ind,
char *xvalues )

Query the values of a string-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.

attrname: The name of a string-valued array attribute. Available attributes are listed and described in the
Attributes section of this document.

len: The number of attribute elements to retrieve.

ind: The indices of the desired attribute elements.

values: A pointer to the location where the requested attribute elements should be returned. Note that the
result array must be as long as the requested index list.

Important notes:

Note that all interface routines that return string-valued attributes are returning pointers into internal Gurobi
data structures. The user should copy the contents of the pointer to a different data structure before the next call
to a Gurobi library routine. The user should also be careful to never modify the data pointed to by the returned
character pointer.

Example usage:

int desired[] = {0, 2, 4, 6};
char **varnames[4];
error = GRBgetstrattrlist(model, "VarName", 4, desired, varnames);

87



GRBsetstrattrlist

int GRBsetstrattrlist ( GRBmodel *model,
const char *attrname,
int len,
int *xind,
char **values )

Set the values of a string-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a string-valued array attribute. Available attributes are listed and described in the
Attributes section of this document.
len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.
values: A pointer to the desired new values for the specified elements of the attribute. Note that the values
array must be as long as the list of indices.
Example usage:
int chagel]l = {0, 1, 3};
char **varnames[] = {"Var0", "Varil", "Var3"};
error = GRBsetstrattrlist(model, "VarName", 3, change, varnames);

GRBgetbatchattrinfo

int GRBgetbatchattrinfo ( GRBbatch *batch,

const char *attrname,
int *datatypeP,
int *settableP )

Obtain information about a Batch attribute.
Return value:
A non-zero return value indicates that a problem occurred while obtaining information about a batch at-
tribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.
Arguments:
batch: A batch request handle, typically created by routine GRBgetbatch.
attrname: The name of a batch attribute. Available attributes are listed and described in the Attributes
section of this document.
datatypeP: On completion, the integer pointed to by this argument will indicate the data type of the attribute.
Possible types are char (0), int (1), double (2), or string(3). This argument can be NULL.
settableP: On completion, the integer pointed to by this argument will indicate whether the attribute can
be set (1) or not (0). This argument can be NULL.
Example usage:

int datatype, settable;
error = GRBgetbatchattrinfo(batch, "BatchID", &datatype, &settable);

88



3.7 Parameter Management and Tuning

GRBtunemodel
‘int GRBtunemodel ( GRBmodel #*model )

Perform an automated search for parameter settings that improve performance on a model. Upon completion,
this routine stores the best parameter sets it found. The number of stored parameter sets can be determined by
querying the value of the TuneResultCount attribute. The actual settings can be retrieved using GRBgettuneresult.

Please refer to the parameter tuning section for details on the tuning tool.

Return value:

A non-zero return value indicates that a problem occurred while tuning the model. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to be tuned.
Example usage:

error = GRBtunemodel (model) ;
if (error) goto QUIT;

error = GRBgetintattr(model, "TuneResultCount", &nresults);
if (error) goto QUIT;

GRBgettuneresult

int GRBgettuneresult ( GRBmodel #*model,

int n )

Use this routine to retrieve the results of a previous GRBtunemodel call. Calling this routine with argument n
causes tuned parameter set n to be copied into the model. Parameter sets are stored in order of decreasing quality,
with parameter set 0 being the best. The number of available sets is stored in attribute TuneResultCount.

Once you have retrieved a tuning result, you can call GRBoptimize to use these parameter settings to optimize
the model, or GRBwrite to write the changed parameters to a .prm file.

Please refer to the parameter tuning section for details on the tuning tool.

Return value:

A non-zero return value indicates that a problem occurred while retrieving a tuning result. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: A model that has previously been used as the argument of GRBtunemodel.
n: The index of the tuning result to retrieve. The best result is available as index 0. The number of stored
results is available in attribute TuneResultCount.
Example usage:

error = GRBtunemodel (model);
if (error) goto QUIT;

error = GRBgetintattr(model, "TuneResultCount", &nresults);
if (error) goto QUIT;

if (nresults > 0) {
error = GRBgettuneresult(model, 0);
if (error) goto QUIT;

}

89



GRBgetdblparam

int GRBgetdblparam ( GRBenv *env,
const char *paramname,
double *valueP )

Retrieve the value of a double-valued parameter.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the parameter. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
env: The environment whose parameter value is being queried.
paramname: The name of the parameter. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.
valueP: The location in which the current value of the requested parameter should be placed.
Example usage:

double cutoff;
error = GRBgetdblparam(GRBgetenv(model), "Cutoff", &cutoff);

GRBgetintparam
int GRBgetintparam ( GRBenv *env,
const char *paramname,
int *xvalueP )

Retrieve the value of an integer-valued parameter.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the parameter. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
env: The environment whose parameter value is being queried.
paramname: The name of the parameter. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.
valueP: The location in which the current value of the requested parameter should be placed.
Example usage:
int limit;
error = GRBgetintparam(GRBgetenv(model), "SolutionLimit", &limit);

GRBgetstrparam
int GRBgetstrparam ( GRBenv *env,
const char *paramname,
char *value )

Retrieve the value of a string-valued parameter.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the parameter. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
env: The environment whose parameter value is being queried.
paramname: The name of the parameter. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.
value: The location in which the current value of the requested parameter should be placed.
Example usage:

char logfilename [GRB_MAX_STRLEN] ;
error = GRBgetstrparam(GRBgetenv(model), "LogFile", logfilename);

90



GRBsetdblparam

int GRBsetdblparam ( GRBenv *env,
const char *paramname,
double newvalue )

Modify the value of a double-valued parameter.
Return value:
A non-zero return value indicates that a problem occurred while modifying the parameter. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
env: The environment whose parameter value is being modified.
paramname: The name of the parameter. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.
newvalue: The desired new value of the parameter.

Important note:

Note that a model gets its own copy of the environment when it is created. Changes to the original environment
have no effect on the copy. Use GRBgetenv to retrieve the environment associated with a model if you would like a
parameter change to affect that model.

Example usage:

error = GRBsetdblparam(GRBgetenv(model), "Cutoff", 100.0);

GRBsetintparam
int GRBsetintparam ( GRBenv *env,
const char *paramname,
int newvalue )

Modify the value of an integer-valued parameter.
Return value:
A non-zero return value indicates that a problem occurred while modifying the parameter. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
env: The environment whose parameter value is being modified.
paramname: The name of the parameter. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.
newvalue: The desired new value of the parameter.

Important note:

Note that a model gets its own copy of the environment when it is created. Changes to the original environment
have no effect on the copy. Use GRBgetenv to retrieve the environment associated with a model if you would like a
parameter change to affect that model.

Example usage:

error = GRBsetintparam(GRBgetenv(model), "SolutionLimit", 5);

GRBsetstrparam

int GRBsetstrparam ( GRBenv *env,
const char *paramname,
const char *newvalue )

Modify the value of a string-valued parameter.
Return value:
A non-zero return value indicates that a problem occurred while modifying the parameter. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
env: The environment whose parameter value is being modified.

91



paramname: The name of the parameter. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.
newvalue: The desired new value of the parameter.
Important note:
Note that a model gets its own copy of the environment when it is created. Changes to the original environment
have no effect on the copy. Use GRBgetenv to retrieve the environment associated with a model if you would like a

parameter change to affect that model.
Example usage:

error = GRBsetstrparam(GRBgetenv(model), "LogFile", "/tmp/new.log");

GRBgetdblparaminfo
int GRBgetdblparaminfo ( GRBenv *env,
const char *paramname,
double *xvalueP,
double *minP,
double *maxP,
double *defaultP )

Retrieve information about a double-valued parameter. Specifically, retrieve the current value of the parameter,
the minimum and maximum allowed values, and the default value.
Return value:
A non-zero return value indicates that a problem occurred while retrieving parameter information. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.
Arguments:
env: The environment whose parameter information is being queried.
paramname: The name of the parameter. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.
valueP (optional): The location in which the current value of the specified parameter should be placed.
minP (optional): The location in which the minimum allowed value of the specified parameter should be
placed.
maxP (optional): The location in which the maximum allowed value of the specified parameter should be
placed.
defaultP (optional): The location in which the default value of the specified parameter should be placed.
Example usage:

error = GRBgetdblparaminfo(GRBgetenv(model), "MIPGap", &currentGap,
&minAllowedGap, NULL, &defaultGap);

GRBgetintparaminfo
int GRBgetintparaminfo ( GRBenv *env,
const char *paramname,
int *xvalueP,
int *minP,
int *maxP,
int *defaultP )

Retrieve information about an int-valued parameter. Specifically, retrieve the current value of the parameter,
the minimum and maximum allowed values, and the default value.

Return value:
A non-zero return value indicates that a problem occurred while retrieving parameter information. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
env: The environment whose parameter information is being queried.

92



paramname: The name of the parameter. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

valueP (optional): The location in which the current value of the specified parameter should be placed.

minP (optional): The location in which the minimum allowed value of the specified parameter should be
placed.

maxP (optional): The location in which the maximum allowed value of the specified parameter should be
placed.

defaultP (optional): The location in which the default value of the specified parameter should be placed.

Example usage:

error = GRBgetintparaminfo(GRBgetenv(model), "SolutionLimit", &current,
&minAllowedLimit, NULL, &defaultLimit);

GRBgetstrparaminfo
int GRBgetstrparaminfo ( GRBenv *env,
const char *paramname,
char *xvalue,
char *default )

Retrieve information about a string-valued parameter. Specifically, retrieve the current and default values of the
parameter.

Return value:
A non-zero return value indicates that a problem occurred while retrieving parameter information. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
env: The environment whose parameter information is being queried.
paramname: The name of the parameter. Please consult the parameter section for a complete list of Gurobi

parameters, including descriptions of their purposes and their minimum, maximum, and default values.

value (optional): The location in which the current value of the specified parameter should be placed.
default (optional): The location in which the default value of the specified parameter should be placed.

Example usage:

char defaultval [GRB_MAX_STRLEN];

char currentval [GRB_MAX_STRLEN];

error = GRBgetstrparaminfo(GRBgetenv(model), "LogFile", currentval,
defaultval);

GRBreadparams

int GRBreadparams ( GRBenv *env,
const char *filename )

Import a set of parameter modifications from a file.
Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their
purposes and their minimum, maximum, and default values.
Return value:
A non-zero return value indicates that a problem occurred while reading the parameter file. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
env: The environment into which the parameter changes should be imported.
filename: The path to the file to be read. The suffix on a parameter file should be .prm, optionally followed
by .zip, .gz, .bz2, or .7z.
Example usage:

error = GRBreadparams(env, "/tmp/model.prm.bz2");

93



GRBwriteparams

int GRBwriteparams ( GRBenv *env,
const char *filename )

Write the set of changed parameter values to a file.
Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their
purposes and their minimum, maximum, and default values.
Return value:
A non-zero return value indicates that a problem occurred while writing the parameter file. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
env: The environment whose parameter changes are being written.
filename: The path to the file to be written. The suffix on a parameter file should be .prm, optionally
followed by .gz, .bz2, or .7z.
Example usage:

error = GRBwriteparams(env, "/tmp/model.prm");

94



3.8 Monitoring Progress - Logging and Callbacks
GRBmsg

void GRBmsg( GRBenv *env,
const char *message )

Insert a message into the Gurobi log file.

Arguments:
env: The environment whose log file should receive the message.
message: The message to be appended to the log.

Example usage:

error = GRBmsg(env, "Add this message to the log");

GRBsetcallbackfunc
int GRBsetcallbackfunc ( GRBmodel #model,
int (*cb) (GRBmodel *model, void *cbdata, int where, void
*usrdata),
void *usrdata )

Set up a user callback function. Note that a model can only have a single callback method, so this call will
replace an existing callback. To disable a previously set callback, call this function with a cb argument of NULL.
When solving a model using multiple threads, the user callback is only ever called from a single thread, so you
don’t need to worry about the thread-safety of your callback.
Note that changing parameters from within a callback is not supported, doing so may lead to undefined behavior.
Return value:
A non-zero return value indicates that a problem occurred while setting the user callback. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model in which the callback should be installed.
cb: A function pointer to the user callback function. The callback will be called regularly from the Gurobi
optimizer. The where argument to the callback function will indicate where in the optimization process
the callback was invoked. Possible values are described in the Callback Codes section. The user callback
can then call a number of routines to retrieve additional details about the state of the optimization (e.g.,
GRBcbget), or to inject new information (e.g., GRBcbcut, GRBcbsolution). The user callback function
should return 0 if no error was encountered, or it can return one of the Gurobi Error Codes if the user
callback would like the optimization to stop and return an error result.
usrdata: An optional pointer to user data that will be passed back to the user callback function each time
it is invoked (in the usrdata argument).
Example usage:

int mycallback(GRBmodel *model, void *cbdata, int where, void *usrdata);
error = GRBsetcallbackfunc(model, mycallback, NULL);

GRBgetcallbackfunc

int GRBgetcallbackfunc ( GRBmodel *model,
int (**cb) (GRBmodel *model, void *cbdata, int where,
void *usrdata) )

Retrieve the current user callback function.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the user callback. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

95



model: The model in which the callback should be installed.
cb: A function pointer to the user callback function.
Example usage:
int (*mycallback) (GRBmodel #*model, void *cbdata, int where, void *usrdata);
error = GRBgetcallbackfunc(model, &mycallback) ;

GRBcbget
int GRBcbget (  void *cbdata,
int where,
int what,

void *resultP )

Retrieve additional information about the progress of the optimization. Note that this routine can only be called
from within a user callback function.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the requested data. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.
Arguments:
cbdata: The cbdata argument that was passed into the user callback by the Gurobi optimizer. This argument
must be passed unmodified from the user callback to GRBcbget ().
where: The where argument that was passed into the user callback by the Gurobi optimizer. This argument
must be passed unmodified from the user callback to GRBcbget ().
what: The data requested by the user callback. Valid values are described in the Callback Codes section.
resultP: The location in which the requested data should be placed.
Example usage:
if (where == GRB_CB_MIP) {
double nodecount;
error = GRBcbget(cbdata, where, GRB_CB_MIP_NODECNT, (void *) &nodecount) ;
if (error) return O;
printf ("MIP node count is %d\n", nodecount);

}

GRBversion

void GRBversion ( int *majorP,
int *minorP,
int *technicalP )

Return the Gurobi library version number (major, minor, and technical).
Arguments:
majorP: The location in which the major version number should be placed. May be NULL.
minorP: The location in which the minor version number should be placed. May be NULL.
technicalP: The location in which the technical version number should be placed. May be NULL.
Example usage:
int major, minor, technical;
GRBversion(&major, &minor, &technical);
printf ("Gurobi library version 7%d.%d.%d\n", major, minor, technical);

96



3.9 Modifying Solver Behavior - Callbacks

GRBcbcut
int GRBcbcut ( void *cbdata,
int cutlen,
const int *cutind,
const double *cutval,
char cutsense,
double cutrhs )

Add a new cutting plane to the MIP model from within a user callback routine. Note that this routine can only
be called when the where value on the callback routine is GRB_CB_MIPNODE (see the Callback Codes section for more
information).

Cutting planes can be added at any node of the branch-and-cut tree. Note that cuts should be added sparingly,
since they increase the size of the relaxation model that is solved at each node and can significantly degrade node
processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the relaxation solution
at the current node, call GRBcbget with what = GRB_CB_MIPNODE_REL.

You should consider setting parameter PreCrush to value 1 when adding your own cuts. This setting shuts off
a few presolve reductions that can sometimes prevent your cut from being applied to the presolved model (which
would result in your cut being silently ignored).

One very important note: you should only add cuts that are implied by the constraints in your model. If you cut
off an integer solution that is feasible according to the original model constraints, you are likely to obtain an incorrect
solution to your MIP problem.

Return value:

A non-zero return value indicates that a problem occurred while adding the cut. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

cbdata: The cbdata argument that was passed into the user callback by the Gurobi optimizer. This argument
must be passed unmodified from the user callback to GRBcbcut ().

cutlen: The number of non-zero coefficients in the new cutting plane.

cutind: Variable indices for non-zero values in the new cutting plane.

cutval: Numerical values for non-zero values in the new cutting plane.

cutsense: Sense for the new cutting plane. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL.

cutrhs: Right-hand side value for the new cutting plane.

Example usage:

if (where == GRB_CB_MIPNODE) {
int cutind[] = {0, 1};
double cutval[] = {1.0, 1.03};
error = GRBcbcut(cbdata, 2, cutind, cutval, GRB_LESS_EQUAL, 1.0);
if (error) return O;

}
GRBcblazy

int GRBcblazy ( void *cbdata,
int lazylen,
const int *lazyind,
const double *lazyval,
char lazysense,
double lazyrhs )

Add a new lazy constraint to the MIP model from within a user callback routine. Note that this routine can only
be called when the where value on the callback routine is either GRB_CB_MIPNODE or GRB_CB_MIPSOL (see the Callback
Codes section for more information).

97



Lazy constraints are typically used when the full set of constraints for a MIP model is too large to represent
explicitly. By only including the constraints that are actually violated by solutions found during the branch-and-cut
search, it is sometimes possible to find a proven optimal solution while only adding a fraction of the full set of
constraints.

You would typically add a lazy constraint by querying the current node solution (by calling GRBcbget from
a GRB_CB_MIPSOL or GRB_CB_MIPNODE callback, using what=GRB_CB_MIPSOL_SOL or what=GRB_CB_MIPNODE_REL), and
then calling GRBcblazy() to add a constraint that cuts off the solution. Gurobi guarantees that you will have the
opportunity to cut off any solutions that would otherwise be considered feasible.

MIP solutions may be generated outside of a MIP node. Thus, generating lazy constraints is optional when the
where value in the callback function equals GRB_CB_MIPNODE. To avoid this, we recommend to always check when the
where value equals GRB_CB_MIPSOL.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints, including those
that have already been added. Node solutions will usually respect previously added lazy constraints, but not always.

Note that you must set the LazyConstraints parameter if you want to use lazy constraints.

Return value:

A non-zero return value indicates that a problem occurred while adding the lazy constraint. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
cbdata: The cbdata argument that was passed into the user callback by the Gurobi optimizer. This argument
must be passed unmodified from the user callback to GRBcblazy ().
lazylen: The number of non-zero coefficients in the new lazy constraint.
lazyind: Variable indices for non-zero values in the new lazy constraint.
lazyval: Numerical values for non-zero values in the new lazy constraint.
lazysense: Sense for the new lazy constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL.
lazyrhs: Right-hand side value for the new lazy constraint.
Example usage:

if (where == GRB_CB_MIPSOL) {
int lazyind[] = {0, 1};
double lazyvall[] = {1.0, 1.03};
error = GRBcblazy(cbdata, 2, lazyind, lazyval, GRB_LESS_EQUAL, 1.0);
if (error) return O;

}
GRBcbsolution
int GRBcbsolution ( void *xcbdata,
const double *solution,
double *0bjP )

Provide a new feasible solution for a MIP model from within a user callback routine. Note that this routine can
only be called when the where value on the callback routine is GRB_CB_MIP, GRB_CB_MIPNODE, or GRB_CB_MIPSOL (see
the Callback Codes section for more information).

Heuristics solutions are typically built from the current relaxation solution. To retrieve the relaxation solution
at the current node, call GRBcbget with what = GRB_CB_MIPNODE_REL.

When providing a solution, you can specify values for any subset of the variables in the model. To leave a variable
value unspecified, set the variable to GRB_UNDEFINED in the solution vector. The Gurobi MIP solver will attempt to
extend the specified partial solution to a complete solution.

Note that this method is not supported in a Compute Server environment.

Return value:

A non-zero return value indicates that a problem occurred while adding the new solution. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
cbdata: The cbdata argument that was passed into the user callback by the Gurobi optimizer. This argument
must be passed unmodified from the user callback to GRBcbsolution().

98



solution: The solution vector. You must provide one entry for each variable in the model. Note that you
can leave an entry unspecified by setting it to GRB_UNDEFINED. The Gurobi optimizer will attempt to find
appropriate values for the unspecified variables.

objP: Objective value for solution that results from this call. Returns GRB_INFINITY if no solution is found.

Example usage:

if (where == GRB_CB_MIPNODE) {
error = GRBcbsolution(cbdata, solution, &obj);
if (error) return O;

}

GRBcbproceed

| void GRBcbproceed ( GRBModel #model )

Generate a request to proceed to the next phase of the computation. This routine can be called from any callback.
Note that the request is only accepted in a few phases of the algorithm, and it won’t be acted upon immediately.

In the current Gurobi version, this callback allows you to proceed from the NoRel heuristic to the standard MIP
search. You can determine the current algorithm phase using MIP_PHASE, MIPNODE_PHASE, or MIPSOL_PHASE queries
from a callback.

Arguments:

model: The model.
Example usage:

if (solution_objective < target_value) {
GRBcbproceed (model) ;
}

GRBcbstoponemultiobj

int GRBcbstoponemultiobj ( GRBmodel *model,
void* cbdata,
int objnum )

Interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem without
stopping the hierarchical optimization process. Note that this routine can only be called for multi-objective MIP
models and when the where value on the callback routine is not equal to GRB_CB_MULTIOBJ (see the Callback Codes
section for more information).

You would typically stop a multi-objective optimization step by querying the last finished number of multi-
objectives steps, and using that number to stop the current step and move on to the next hierarchical objective (if
any) as shown in the following example:

Example usage:

#include <time.h>

typedef struct {
int objcnt;
time_t starttime;
} usrdata_t;

int mycallback(GRBmodel *model,

void *cbdata,
int where,
void *usrdata)

int error = 0O;
usrdata_t *ud = (usrdata_t*)usrdata;

99



if (where == GRB_CB_MULTIOBJ) {
/* get current objective number */
error = GRBcbget(cbdata, where, MULTIOBJ_OBJCNT, (void*)&ud->objcnt);
if (error) goto QUIT;

/* reset start time to current time */
ud->starttime = time();

} else if (time() - ud->starttime > BIG ||
/* takes too long or good enough */) {
/* stop only this optimization step */
error = GRBcbstoponemultiobj(model, cbdata, ud->objcnt);
if (error) goto QUIT;

QUIT:
return error;

}

You should refer to the section on Multiple Objectives for information on how to specify multiple objective
functions and control the trade-off between them.
Return value:
A non-zero return value indicates that a problem occurred while stopping the multi-objective step specified
by objcnt. Refer to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.
Arguments:
model: The model argument that was passed into the user callback by the Gurobi optimizer. This argument
must be passed unmodified from the user callback to GRBcbstoponemultiobj ().
cbdata: The cbdata argument that was passed into the user callback by the Gurobi optimizer. This argument
must be passed unmodified from the user callback to GRBcbstoponemultiobj().
objnum: The number of the multi-objective optimization step to interrupt. For processes running locally,
this argument can have the special value -1, meaning to stop the current step.

GRBterminate

| void GRBterminate ( GRBmodel #model )

Generate a request to terminate the current optimization. This routine can be called at any time during an
optimization (from a callback, from another thread, from an interrupt handler, etc.). Note that, in general, the
request won’t be acted upon immediately.

When the optimization stops, the Status attribute will be equal to GRB_INTERRUPTED.

Arguments:

model: The model to terminate.
Example usage:
if (time_to_quit)
GRBterminate (model) ;

100



3.10 Batch Requests
GRBabortbatch

| int GRBabortbatch ( GRBbatch #batch )

This function instructs the Cluster Manager to abort the processing of this batch request, changing its status to
ABORTED. Please refer to the Batch Status Codes section for further details.

Return value:
A non-zero return value indicates that a problem occurred while aborting the batch request. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
batch: The batch that will be aborted.

Example usage:

/* request to abort the batch */
error = GRBabortbatch(batch);
if (error) goto QUIT;

GRBdiscardbatch

| int GRBdiscardbatch ( GRBbatch #*batch )

This function instructs the Cluster Manager to remove all information related to the batch request in question,
including the stored solution if available. Further queries for the associated batch request will fail with error code
GRB_ERROR_DATA_NOT_AVAILABLE. Use this function with care, as the removed information can not be recovered later
on.

Return value:
A non-zero return value indicates that a problem occurred while discarding the batch. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
batch: The batch that will be discarded.
Example usage:

/* discard the batch object in the manager */
error = GRBdiscardbatch(batch);
if (error) goto QUIT;

GRBfreebatch

| int GRBfreebatch ( GRBbatch *batch )

Free a batch structure and release the associated memory.
Return value:
A non-zero return value indicates that a problem occurred while freeing the batch. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
batch: The batch structure to be freed.
Example usage:

GRBfreebatch(batch);

101



GRBgetbatch

int GRBgetbatch (  GRBenv *env,
const char *BatchID,
GRBbatch **batchP )

Given a BatchID, as returned by GRBoptimizebatch, and a Gurobi environment that can connect to the ap-
propriate Cluster Manager (i.e., one where parameters CSManager, UserName, and ServerPassword have been set
appropriately), this function returns a GRBbatch structure. With it, you can query the current status of the asso-
ciated batch request and, once the batch request has been processed, you can query its solution. Please refer to the
Batch Optimization section for details and examples.

Return value:

A non-zero return value indicates that a problem occurred while creating a GRBbatch structure. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

env: The environment in which the new batch structure should be created.

BatchID: ID of the batch you want to access.

batchP: The location in which the pointer to the batch structure should be placed.
Example usage:

/* create batch-object */
error = GRBgetbatch(env, BatchID, &batch);
if (error) goto QUIT;

GRBgetbatchenv

| GRBenv * GRBgetbatchenv ( GRBbatch *batch )

Retrieve the environment associated with a batch.

Return value:
The environment associated with the batch. A NULL return value indicates that there was a problem retrieving
the environment.

Arguments:
batch: The batch from which the environment should be retrieved.

Example usage:

GRBenv *env = GRBgetbatchenv(batch) ;

GRBgetbatchintattr

int GRBgetbatchintattr ( GRBbatch *batch,
const char *attrname,
int *valueP )

Query the value of an integer-valued batch attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
batch: A batch structure, typically created by routine GRBgetbatch.
attrname: The name of an integer-valued batch attribute. Available attributes are listed and described in
the Attributes section of this document.
valueP: The location in which the current value of the requested attribute should be placed.
Example usage:

102



/* query the last error code */
error = GRBgetbatchintattr (batch, "BatchErrorCode", &errorCode);
if (error || !errorCode) goto QUIT;

Important notes:

Note that all Batch attributes are cached locally, and are only updated when you create a client-side batch
object or when you explicitly update this cache (by calling the appropriate update function - GRBupdatebatch for
C, update for Python, etc.).

GRBgetbatchjsonsolution

int GRBgetbatchjsonsolution ( GRBbatch #batch,
charx* jsonsolP )

This function retrieves the solution of a completed batch request from a Cluster Manager. The solution is
returned as a JSON solution string. For this call to succeed, the status of the batch request must be COMPLETED.
Please refer to the Batch Status Codes section for further details.

Return value:

A non-zero return value indicates that a problem occurred while querying the batch solution. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

batch: The batch to query.
jsonsolP: The location in which the pointer to the newly created JSON string should be placed.

Important note:

On Windows, the string returned in buffP is allocated in a different heap from the calling program. You must
call GRBfree to free it.

Example usage:

/* print JSON solution into string */

error = GRBgetbatchjsonsolution(batch, &jsonsol);
if (error) goto QUIT;

printf ("JSON solution: %s\n", jsonsol);

GRBgetbatchstrattr

int GRBgetbatchstrattr ( GRBbatch *batch,
const char *attrname,
char **valueP )

Query the value of a string-valued batch attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
batch: A batch structure, typically created by routine GRBgetbatch.
attrname: The name of a string-valued batch attribute. Available attributes are listed and described in the
Attributes section of this document.
valueP: The location in which the current value of the requested attribute should be placed.
Example usage:

/* query the last error message */
error = GRBgetbatchstrattr (batch, "BatchErrorMessage", &errorMsg);
if (error) goto QUIT;

103



Important notes:

Note that all interface routines that return string-valued attributes are returning pointers into internal Gurobi
data structures. The user should copy the contents of the pointer to a different data structure before the next call
to a Gurobi library routine. The user should also be careful to never modify the data pointed to by the returned
character pointer.

Note that all Batch attributes are cached locally, and are only updated when you create a client-side batch
object or when you explicitly update this cache (by calling the appropriate update function - GRBupdatebatch for
C, update for Python, etc.).

GRBoptimizebatch

int GRBoptimizebatch (  GRBmodel *model,
char *BatchID )

Submit a new batch request to the Cluster Manager. Returns the BatchID (a string), which uniquely identifies
the job in the Cluster Manager and can be used to query the status of this request (from this program or from any
other). Once the request has completed, the BatchID can also be used to retrieve the associated solution. To submit a
batch request, you must tag at least one element of the model by setting one of the VTag, CTag or QCTag attributes.
For more details on batch optimization, please refer to the Batch Optimization section.

Note that this routine will process all pending model modifications.

Return value:

A non-zero return value indicates that a problem occurred while submit a batch request. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model to optimize in batch mode. Note that this routine only reports whether the batch request
ran into an error.
BatchID: On success, the location in which the BatchlID of the newly created batch request should be stored.
The pointer must point to a string of length GRB_MAX_STRLEN+1 or more.
Example usage:

/* submit batch request to the Manager */
error = GRBoptimizebatch(model, BatchID);
if (error) goto QUIT;

GRBretrybatch
| int GRBretrybatch ( GRBbatch #batch )

This function instructs the Cluster Manager to retry optimization of a failed or aborted batch request, changing
its status to SUBMITTED. Please refer to the Batch Status Codes section for further details.
Return value:
A non-zero return value indicates that a problem occurred while retrying the batch. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
batch: The batch to retry.
Example usage:

/* retry the batch request */
error = GRBretrybatch(batch);
if (error) goto QUIT;

104



GRBupdatebatch

| int GRBupdatebatch ( GRBbatch *batch )

All Batch attribute values are cached locally, so queries return the value received during the last communication
with the Cluster Manager. This function refreshes the values of all attributes with the values currently available in
the Cluster Manager (which involves network communication).

Return value:

A non-zero return value indicates that a problem occurred while updating the batch request. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

batch: The batch that will be updated.
Example usage:

/* update local attributes x*/
error = GRBupdatebatch(batch);
if (error) goto QUIT;

GRBwritebatchjsonsolution

int GRBwritebatchjsonsolution ( GRBbatch *batch,
const charx filename )

This function returns the stored solution of a completed batch request from a Cluster Manager. The solution
is returned in a gzip-compressed JSON file. The file name you provide must end with a .json.gz extension. The
JSON format is described in the JSON solution format section. Note that for this call to succeed, the status of the
batch request must be COMPLETED. Please refer to the Batch Status Codes section for further details.

Return value:

A non-zero return value indicates that a problem occurred while writing the JSON solution string into the
given filename. Refer to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:

batch: The batch request from ghere to query its solution.
filename: The name of the file in which to store the JSON solution. It must be a file name ending with the
.json.gz extension.
Example usage:

/* save solution into a file */
error = GRBwritebatchjsonsolution(batch, "batch-sol.json.gz");
if (error) goto QUIT;

105



3.11 Error Handling
GRBgeterrormsg

| char * GRBgeterrormsg ( GRBenv *env )

Retrieve the error message associated with the most recent error that occurred in an environment.
Return value:

A string containing the error message.
Arguments:
env: The environment in which the error occurred.
Example usage:
error = GRBgetintattr(model, "DOES_NOT_EXIST", &attr);
if (error)
printf ("%s\n", GRBgeterrormsg(env));

106



3.12 Advanced simplex routines

This section describes a set of advanced basis routines. These routines allow you to compute solutions to various
linear systems involving the simplex basis matrix. Note that these should only be used by advanced users. We provide
no technical support for these routines.
Before describing the routines, we should first describe the GRBsvec data structure that is used to input or return
sparse vectors:
typedef  struct SVector {

int len;
int *ind;
double *val;
} GRBsvec;

The len field gives the number of non-zero values in the vector. The ind and val fields give the index and value
for each non-zero, respectively. Indices are zero-based. To give an example, the sparse vector [0, 2.0, 0, 1.0]
would be represented as len=2, ind = [1, 3], and val = [2.0, 1.0].

The user is responsible for allocating and freeing the ind and val fields. The length of the result vector for these
routines is not known in advance, so the user must allocate these arrays to hold the longest possible result (whose
length is noted in the documentation for each routine).

GRBFSolve

int GRBFSolve ( GRBmodel #*model,
GRBsvec *b,
GRBsvec *X )

Computes the solution to the linear system Bx = b, where B is the current simplex basis matrix, b is an input
vector, and x is the result vector.

Return value:
A non-zero return value indicates that a problem occurred while computing the desired vector. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model. Note that the model must have a current optimal basis, as computed by GRBoptimize.
b: The sparse right-hand side vector. It should contain one entry for each non-zero value in the input.
x: The sparse result vector. The user is responsible for allocating the ind and val fields to be large enough

to hold as many as one non-zero entry per constraint in the model.

GRBBSolve

int GRBBSolve ( GRBmodel #model,
GRBsvec *b,
GRBsvec *X )

Computes the solution to the linear system BTz = b, where B” is the transpose of the current simplex basis
matrix, b is an input vector, and x is the result vector.

Return value:
A non-zero return value indicates that a problem occurred while computing the desired vector. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model. Note that the model must have a current optimal basis, as computed by GRBoptimize.
b: The sparse right-hand side vector. It should contain one entry for each non-zero value in the input.
x: The sparse result vector. The user is responsible for allocating the ind and val fields to be large enough

to hold as many as one non-zero entry per constraint in the model.

107



GRBBinvColj

int GRBBiIlVCOlj (  GRBmodel *model,
int J»
GRBsvec *xX )
Computes the solution to the linear system Bx = Aj, where B is the current simplex basis matrix and A; is the
column of the constraint matrix A associated with variable j.
Return value:
A non-zero return value indicates that a problem occurred while computing the desired vector. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.
Arguments:
model: The model. Note that the model must have a current optimal basis, as computed by GRBoptimize.
j: Indicates the index of the column of A to use as the right-hand side for the linear solve. The index j must
be between 0 and cols-1, where cols is the number of columns in the model.
x: The sparse result vector. The user is responsible for allocating the ind and val fields to be large enough
to hold as many as one non-zero entry per constraint in the model.

GRBBinvRowi

int GRBBinvRowi ( GRBmodel #*model,
int i,
GRBsvec *xX )

Computes a single tableau row. More precisely, this routine returns row 4 from the matrix B~' A, where B~ is the
inverse of the basis matrix and A is the constraint matrix. Note that the tableau will contain columns corresponding to
the variables in the model, and also columns corresponding to artificial and slack variables associated with constraints.

Return value:

A non-zero return value indicates that a problem occurred while computing the desired vector. Refer to

the Error Code table for a list of possible return values. Details on the error can be obtained by calling

GRBgeterrormsg.

Arguments:

model: The model. Note that the model must have a current optimal basis, as computed by GRBoptimize.

i: The index of the desired tableau row.

x: The result vector. The result will contain one entry for each non-zero value. Note that the result may
contain values for slack variables; the slack on row i will have index cols+i, where cols is the number of
columns in the model. The user is responsible for allocating the ind and val fields to be large enough to
hold the largest possible result. For this routine, the result could have one entry for each variable in the
model, plus one entry for each constraint.

GRBgetBasisHead

int GRBgetBasisHead ( GRBmodel *model,
int *bhead )

Returns the indices of the variables that make up the current basis matrix.
Return value:
A non-zero return value indicates that a problem occurred while extracting the basis. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:
model: The model. Note that the model must have a current optimal basis, as computed by GRBoptimize.
bhead: The constraint matrix columns that make up the current basis. The result contains one entry per
constraint in A. If bhead[il=j, then column i in the basis matrix B is column j from the constraint
matrix A. Note that the basis may contain slack or artificial variables. If bhead[i] is greater than or
equal to cols (the number of columns in A), then the corresponding basis column is the artificial or slack
variable from row bhead[i]-cols.

108



This section documents the Gurobi C++ interface. This manual begins with a quick overview of the classes exposed in
the interface and the most important methods on those classes. It then continues with a comprehensive presentation
of all of the available classes and methods.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide or the Example
Tour. These documents provide concrete examples of how to use the classes and methods described here.

Environments

The first step in using the Gurobi C++ interface is to create an environment object. Environments are represented
using the GRBEnv class. An environment acts as the container for all data associated with a set of optimization
runs. You will generally only need one environment object in your program.

For more advanced use cases, you can use an empty environment to create an uninitialized environment and then,
programmatically, set all required options for your specific requirements. For further details see the Environment
section.

Models

You can create one or more optimization models within an environment. Each model is represented as an object of
class GRBModel. A model consists of a set of decision variables (objects of class GRBVar), a linear or quadratic
objective function on those variables (specified using GRBModel::setObjective), and a set of constraints on these
variables (objects of class GRBConstr, GRBQConstr, GRBSOS, or GRBGenConstr). Each variable has an associated
lower bound, upper bound, and type (continuous, binary, etc.). Each linear or quadratic constraint has an associated
sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side value. Refer to this section for more
information on variables, constraints, and objectives.

Linear constraints are specified by building linear expressions (objects of class GRBLinExpr), and then specifying
relationships between these expressions (for example, requiring that one expression be equal to another). Quadratic
constraints are built in a similar fashion, but using quadratic expressions (objects of class GRBQuadExpr) instead.

An optimization model may be specified all at once, by loading the model from a file (using the appropriate GRB-
Model constructor), or built incrementally, by first constructing an empty object of class GRBModel and then subse-
quently calling GRBModel::addVar or GRBModel::addVars to add additional variables, and GRBModel::addConstr,
GRBModel::addQConstr, GRBModel::addSOS, or any of the GRBModel::addGenConstrXxx methods to add con-
straints. Models are dynamic entities; you can always add or remove variables or constraints.

We often refer to the class of an optimization model. A model with a linear objective function, linear constraints,
and continuous variables is a Linear Program (LP). If the objective is quadratic, the model is a Quadratic Program
(QP). If any of the constraints are quadratic, the model is a Quadratically-Constrained Program (QCP). We will
sometimes refer to a few special cases of QCP: QCPs with convex constraints, QCPs with non-convex constraints,
bilinear programs, and Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-
continuous variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the model
is a Mized Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, including Mized Integer Linear
Programs (MILP), Mized Integer Quadratic Programs (MIQP), Mized Integer Quadratically-Constrained Programs
(MIQCP), and Mized Integer Second-Order Cone Programs (MISOCP). The Gurobi Optimizer handles all of these
model classes.

Solving a Model

Once you have built a model, you can call GRBModel::optimize to compute a solution. By default, optimize will use
the concurrent optimizer to solve LP models, the barrier algorithm to solve QP models with convex objectives and
QCP models with convex constraints, and the branch-and-cut algorithm otherwise. The solution is stored in a set of
attributes of the model. These attributes can be queried using a set of attribute query methods on the GRBModel,
GRBVar, GRBConstr, GRBQConstr, GRBSOS, and GRBGenConstr classes.

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBModel::optimize will only
perform further optimization if relevant data has changed since the model was last optimized. If you would like to

109

C++ API Overview


https://www.gurobi.com/documentation/10.0/quickstart_windows/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html

discard previously computed solution information and restart the optimization from scratch without changing the
model, you can call GRBModel::reset.

After a MIP model has been solved, you can call GRBModel::fixedModel to compute the associated fized model.
This model is identical to the original, except that the integer variables are fixed to their values in the MIP solution.
If your model contains SOS constraints, some continuous variables that appear in these constraints may be fixed as
well. In some applications, it can be useful to compute information on this fixed model (e.g., dual variables, sensitivity
information, etc.), although you should be careful in how you interpret this information.

Multiple Solutions, Objectives, and Scenarios

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to a single model
with a single objective function. Gurobi provides the following features that allow you to relax these assumptions:

e Solution Pool: Allows you to find more solutions.

e Multiple Scenarios: Allows you to find solutions to multiple, related models.

e Multiple Objectives: Allows you to specify multiple objective functions and control the trade-off between them.
Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the infeasibility,
attempt to repair the infeasibility, or both. To obtain information that can be useful for diagnosing the cause of an
infeasibility, call GRBModel::computellS to compute an Irreducible Inconsistent Subsystem (IIS). This method can
be used for both continuous and MIP models, but you should be aware that the MIP version can be quite expensive.
This method populates a set of IIS attributes.

To attempt to repair an infeasibility, call GRBModel::feasRelax to compute a feasibility relaxation for the model.
This relaxation allows you to find a solution that minimizes the magnitude of the constraint violation.

Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some attributes are associated
with the variables of the model, some with the constraints of the model, and some with the model itself. To give
a simple example, solving an optimization model causes the X variable attribute to be populated. Attributes such
as X that are computed by the Gurobi optimizer cannot be modified directly by the user, while others, such as the
variable lower bound (the LB attribute) can.

Attributes are queried using GRBVar::get, GRBConstr::get, GRBQConstr::get, GRBSOS::get, GRBGenCon-
str::get, or GRBModel::get, and modified using GRBVar::set, GRBConstr::set, GRBQConstr::set, GRBGenCon-
str::set, or GRBModel::set. Attributes are grouped into a set of enums by type (GRB_ CharAttr, GRB_ Dou-
bleAttr, GRB_ IntAttr, GRB_ StringAttr). The get() and set() methods are overloaded, so the type of the at-
tribute determines the type of the returned value. Thus, constr.get (GRB.DoubleAttr.RHS) returns a double, while
constr.get (GRB.CharAttr.Sense) returns a char.

If you wish to retrieve attribute values for a set of variables or constraints, it is usually more efficient to use the
array methods on the associated GRBModel object. Method GRBModel::get includes signatures that allow you to
query or modify attribute values for arrays of variables or constraints.

The full list of attributes can be found in the Attributes section.

Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to variable bounds,
constraint right-hand sides, etc.). The main exceptions are modifications to the constraint matrix and the objective
function.

The constraint matrix can be modified in a few ways. The first is to call the chgCoeffs method on a GRBModel
object to change individual matrix coefficients. This method can be used to modify the value of an existing non-zero,
to set an existing non-zero to zero, or to create a new non-zero. The constraint matrix is also modified when you
remove a variable or constraint from the model (through the GRBModel::remove method). The non-zero values
associated with the deleted constraint or variable are removed along with the constraint or variable itself.

The model objective function can also be modified in a few ways. The easiest is to build an expression that
captures the objective function (a GRBLinExpr or GRBQuadExpr object), and then pass that expression to method
GRBModel::setObjective. If you wish to modify the objective, you can simply call setObjective again with a new
GRBLinExpr or GRBQuadExpr object.

For linear objective functions, an alternative to setObjective is to use the Obj variable attribute to modify
individual linear objective coefficients.

110



If your wvariables have piecewise-linear  objectives, you can specify them wusing the
GRBModel::set PWLODbj method. Call this method once for each relevant variable. The Gurobi simplex solver
includes algorithmic support for convex piecewise-linear objective functions, so for continuous models you should see
a substantial performance benefit from using this feature. To clear a previously specified piecewise-linear objective
function, simply set the Obj attribute on the corresponding variable to 0.

Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed in a lazy fashion,
meaning that modifications don’t affect the model immediately. Rather, they are queued and applied later. If your
program simply creates a model and solves it, you will probably never notice this behavior. However, if you ask for
information about the model before your modifications have been applied, the details of the lazy update approach
may be relevant to you.

As we just noted, model modifications (bound changes, right-hand side changes, objective changes, etc.) are
placed in a queue. These queued modifications can be applied to the model in three different ways. The first is by
an explicit call to GRBModel::update. The second is by a call to GRBModel::optimize. The third is by a call to
GRBModel::write to write out the model. The first case gives you fine-grained control over when modifications are
applied. The second and third make the assumption that you want all pending modifications to be applied before
you optimize your model or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is that this approach
makes it much easier to perform multiple modifications to a model, since the model remains unchanged between
modifications. The second is that processing model modifications can be expensive, particularly in a Compute Server
environment, where modifications require communication between machines. Thus, it is useful to have visibility into
exactly when these modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then update, then make
more modifications, then update again, etc. Updating after each individual modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value of the requested
data from the point of the last update. If the object you tried to query didn’t exist then, you’ll get a NOT_IN_MODEL
exception instead.

The semantics of lazy updates have changed since earlier Gurobi versions. While the vast majority of programs
are unaffected by this change, you can use the UpdateMode parameter to revert to the earlier behavior if you run
into an issue.

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of the optimization
process. Factors like feasibility and optimality tolerances, choices of algorithms, strategies for exploring the MIP
search tree, etc., can be controlled by modifying Gurobi parameters before beginning the optimization. Parameters
can be of type int, double, or string.

The simplest way to set parameters is through the GRBModel::set method on the model object. Similarly,
parameter values can be queried with GRBModel::get.

Parameters can also be set on the Gurobi environment object, using GRBEnv::set. Note that each model gets
its own copy of the environment when it is created, so parameter changes to the original environment have no effect
on existing models.

You can read a set of parameter settings from a file using GRBEnv::readParams, or write the set of changed
parameters using GRBEnv::writeParams.

We also include an automated parameter tuning tool that explores many different sets of parameter changes in
order to find a set that improves performance. You can call GRBModel::tune to invoke the tuning tool on a model.
Refer to the parameter tuning tool section for more information.

The full list of Gurobi parameters can be found in the Parameters section.

Memory Management

Memory management must always be considered in C++ programs. In particular, the Gurobi library and the user
program share the same C++ heap, so the user must be aware of certain aspects of how the Gurobi library uses this
heap. The basic rules for managing memory when using the Gurobi optimizer are as follows:

e As with other dynamically allocated C++ objects, GRBEnv or GRBModel objects should be freed using the
associated destructors. In other words, given a GRBModel object m, you should call delete m when you are no
longer using m.

111



¢ Objects that are associated with a model (e.g., GRBConstr, GRBQConstr, GRBSOS, GRBGenConstr, and
GRBVar objects) are managed by the model. In particular, deleting a model will delete all of the associated
objects. Similarly, removing an object from a model (using GRBModel::remove) will also delete the object.

e Some Gurobi methods return an array of objects or values. For example, GRBModel::addVars returns an array
of GRBVar objects. It is the user’s responsibility to free the returned array (using delete[]). The reference
manual indicates when a method returns a heap-allocated result.

One consequence of these rules is that you must be careful not to use an object once it has been freed. This is
no doubt quite clear for environments and models, where you call the destructors explicitly, but may be less clear for
constraints and variables, which are implicitly deleted when the associated model is deleted.

Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will send output to the
screen. A few simple controls are available for modifying the default logging behavior. If you would like to direct
output to a file as well as to the screen, specify the log file name in the GRBEnv constructor. You can modify
the LogFile parameter if you wish to redirect the log to a different file after creating the environment object. The
frequency of logging output can be controlled with the DisplayInterval parameter, and logging can be turned off
entirely with the OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging
section.

More detailed progress monitoring can be done through the GRBCallback class. The GRBModel::setCallback
method allows you to receive a periodic callback from the Gurobi optimizer. You do this by sub-classing the
GRBCallback abstract class, and writing your own callback() method on this class. You can call GRBCall-
back::getDoublelnfo, GRBCallback::getIntInfo, GRBCallback::getStringInfo, or GRBCallback::getSolution from within
the callback to obtain additional information about the state of the optimization.

Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. The simplest control callback is GRBCall-
back::abort, which asks the optimizer to terminate at the earliest convenient point. Method GRBCallback::setSolution
allows you to inject a feasible solution (or partial solution) during the solution of a MIP model. Methods GRB-
Callback::addCut and GRBCallback::addLazy allow you to add cutting planes and lazy constraints during a MIP
optimization, respectively. Method GRBCallback::stopOneMultiObj allows you to interrupt the optimization process
of one of the optimization steps in a multi-objective MIP problem without stopping the hierarchical optimization
process.

Batch Optimization

Gurobi Compute Server enables programs to offload optimization computations onto dedicated servers. The Gurobi
Cluster Manager adds a number of additional capabilities on top of this. One important one, batch optimization,
allows you to build an optimization model with your client program, submit it to a Compute Server cluster (through
the Cluster Manager), and later check on the status of the model and retrieve its solution. You can use a Batch
object to make it easier to work with batches. For details on batches, please refer to the Batch Optimization section.

Error Handling

All of the methods in the Gurobi C++ library can throw an exception of type GRBException. When an ex-
ception occurs, additional information on the error can be obtained by retrieving the error code (using method
GRBException: :getErrorCode), or by retrieving the exception message (using method GRBException: :getMessage).
The list of possible error return codes can be found in the Error Codes section.

112



4.1 GRBEnv

Gurobi environment object. Gurobi models are always associated with an environment. You must create an environ-
ment before can you create and populate a model. You will generally only need a single environment object in your
program.

The methods on environment objects are mainly used to manage Gurobi parameters (e.g., get, getParamlInfo,
set).

GRBEnv()

Constructor for GRBEnv object. You have the option of constructing either a local environment, which solves Gurobi
models on the local machine, a client environment for a Gurobi Compute Server, which will solve Gurobi models on
a server machine, or an Instant Cloud environment, which will launch a Gurobi Cloud server and solve models on
that server. Choose the appropriate signature for the type of environment you wish to launch.

| GRBEnv  GRBEnv ()

Create a Gurobi environment (with logging disabled). This method will also populate any parameter (ComputeServer,
TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current work-
ing directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.
The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value
for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Return value:

An environment object (with no associated log file).

‘ GRBEnv GRBEnv ( bool empty )

Create an empty Gurobi environment. Use GRBEnv::start to start the environment.

If the environment is not empty, This method will also populate any parameter (ComputeServer, TokenServer,
ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current working directory for
a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in
PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Arguments:

empty: Indicates whether the environment should be empty. You should use empty=true if you want to
set parameters before actually starting the environment. This can be useful if you want to connect to a
Compute Server, a Token Server, the Gurobi Instant Cloud, a Cluster Manager or use a WLS license. See
the Environment Section for more details.

Return value:

An environment object.

‘ GRBEnv GRBEnNv ( const string& logFileName )

Create a Gurobi environment (with logging enabled). This method will also populate any parameter (ComputeServer,
TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current work-
ing directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.

113



The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value
for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Arguments:

logFileName: The desired log file name.
Return value:
An environment object.

GRBEnv::get()

Query the value of a parameter.

‘double get ( GRB_DoubleParam param )

Query the value of a double-valued parameter.
Arguments:
param: The parameter being queried. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.
Return value:
The current value of the requested parameter.

‘int get ( GRB_IntParam param )

Query the value of an int-valued parameter.
Arguments:
param: The parameter being queried. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.
Return value:
The current value of the requested parameter.

| string get ( GRB_StringParam param )

Query the value of a string-valued parameter.
Arguments:
param: The parameter being queried. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.
Return value:
The current value of the requested parameter.

GRBEnv::getErrorMsg()

Query the error message for the most recent exception associated with this environment.

| const string getErrorMsg ()
Return value:
The error string.

114



GRBEnv::getParamlinfo()

Obtain information about a parameter.

void getParamInfo( GRB_DoubleParam param,

double* valP,
doublex* minP,
double* maxP,
doublex* *defP )
Obtain detailed information about a double parameter.
Arguments:
param: The parameter of interest. Please consult the parameter section for a complete list of Gurobi

parameters, including descriptions of their purposes and their minimum, maximum, and default values.

valP: The current value of the parameter

minP: The minimum allowed value of the parameter.

maxP: The maximum allowed value of the

defP: The default value of the parameter.

parameter.

void getParamInfo ( GRB_IntParam param,
int* valP,
int* minP,
intx* maxP,
int* defP )
Obtain detailed information about an integer parameter.
Arguments:
param: The parameter of interest. Please consult the parameter section for a complete list of Gurobi

parameters, including descriptions of their purposes and their minimum, maximum, and default values.

valP: The current value of the parameter

minP: The minimum allowed value of the parameter.

maxP: The maximum allowed value of the

defP: The default value of the parameter.

parameter.

void getParamInfo ( GRB_StringParam param,

string* valP,
string* defP )
Obtain detailed information about a string parameter.
Arguments:
param: The parameter of interest. Please consult the parameter section for a complete list of Gurobi

parameters, including descriptions of their purposes and their minimum, maximum, and default values.
valP: The current value of the parameter.

defP: The default value of the parameter.

GRBEnv::message()

Write a message to the console and the log file.

‘ void message ( const string& message )

Arguments:

message: Print a message to the console and to the log file. Note that this call has no effect unless the

OutputFlag parameter is set.

115



GRBEnv::readParams()

Read new parameter settings from a file.
Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their
purposes and their minimum, maximum, and default values.

| void readParams ( const string& paramfile )

Arguments:
paramfile: Name of the file containing parameter settings. Parameters should be listed one per line, with
the parameter name first and the desired value second. For example:

# Gurobi parameter file
Threads 1
MIPGap O

Blank lines and lines that begin with the hash symbol are ignored.

GRBEnv::resetParams()

Reset all parameters to their default values.
Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their
purposes and their minimum, maximum, and default values.

| void resetParams ()

GRBEnv::set()

Set the value of a parameter.

Important notes:

Note that a model gets its own copy of the environment when it is created. Changes to the original environment
have no effect on the copy. Use GRBModel::set to change a parameter on an existing model.

void sSet ( GRB_DoubleParam param,
double newvalue )
Set the value of a double-valued parameter.
Arguments:
param: The parameter being modified. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.
newvalue: The desired new value of the parameter.

void sSet ( GRB_IntParam param,
int newvalue )
Set the value of an int-valued parameter.
Arguments:
param: The parameter being modified. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.
newvalue: The desired new value of the parameter.

void Set ( GRB_StringParam param,
const string& newvalue )
Set the value of a string-valued parameter.

116



Arguments:
param: The parameter being modified. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.
newvalue: The desired new value of the parameter.

void sSet ( const string& param,
const string& newvalue )
Set the value of any parameter using strings alone.
Arguments:
param: The name of the parameter being modified. Please consult the parameter section for a complete list
of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default
values.
newvalue: The desired new value of the parameter.

GRBEnv::start()

Start an empty environment. If the environment has already been started, this method will do nothing. If the call
fails, the environment will have the same state as it had before the call to this method.

This method will also populate any parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified
in your gurobi.lic file. This method will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each
line should contain a parameter name, followed by the desired value for that parameter). After that, it will apply
all parameter changes specified by the user prior to this call. Note that this might overwrite parameters set in the
license file, or in the gurobi.env file, if present.

After all these changes are performed, the code will actually activate the environment, and make it ready to work
with models.

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their
purposes and their minimum, maximum, and default values.

| void start ()

GRBEnv::writeParams()

Write all non-default parameter settings to a file.
Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their
purposes and their minimum, maximum, and default values.

‘ void writeParams ( const string& paramfile )
Arguments:

paramfile: Name of the file to which non-default parameter settings should be written. The previous
contents are overwritten.

117



4.2 GRBModel

Gurobi model object. Commonly used methods include addVar (adds a new decision variable to the model), addConstr
(adds a new constraint to the model), optimize (optimizes the current model), and get (retrieves the value of an
attribute).

GRBModel()

Constructor for GRBModel. The simplest version creates an empty model. You can then call addVar and addConstr
to populate the model with variables and constraints. The more complex constructors can read a model from a file,
or make a copy of an existing model.

| GRBModel GRBModel ( const GRBEnv& env )

Model constructor.
Arguments:
env: Environment for new model.
Return value:
New model object. Model initially contains no variables or constraints.

GRBModel GRBModel ( const GRBEnv& env,
const string& filename )

Read a model from a file. Note that the type of the file is encoded in the file name suffix. Valid suffixes are .mps,
.rew, .1lp, .rlp, .dua, .dlp, .ilp, or .opb. The files can be compressed, so additional suffixes of .zip, .gz, .bz2, or
.7z are accepted.

Arguments:

env: Environment for new model.

modelname: Name of the file containing the model.
Return value:

New model object.

| GRBModel ~GRBModel ( const GRBModel% model )

Create a copy of an existing model. Note that due to the lazy update approach in Gurobi, you have to call
update before copying it.
Arguments:
model: Model to copy.
Return value:
New model object. Model is a clone of the input model.

GRBModel::addConstr()

Add a single linear constraint to a model. Multiple signatures are available.

GRBConstr addConstr ( const GRBLinExpr& 1lhsExpr,
char sense,
const GRBLinExpr& rhsExpr,
string name="" )

Add a single linear constraint to a model.
Arguments:
lhsExpr: Left-hand side expression for new linear constraint.

118



sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsExpr: Right-hand side expression for new linear constraint.
name (optional): Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr ( const GRBLinExpr& 1hsExpr,

char sense,

GRBVar rhsVar,

string name="" )
Add a single linear constraint to a model.

Arguments:
lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsVar: Right-hand side variable for new linear constraint.
name (optional): Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr ( const GRBLinExpr& 1hsExpr,

char sense,

double rhsVal,

string name="" )
Add a single linear constraint to a model.

Arguments:
lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsVal: Right-hand side value for new linear constraint.
name (optional): Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr ( GRBVar 1lhsVar,

char sense,

GRBVar rhsVar,

string name="" )
Add a single linear constraint to a model.

Arguments:
lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsVar: Right-hand side variable for new linear constraint.
name (optional): Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr ( GRBVar 1hsVar,

char sense,

double rhsVal,

string name="" )
Add a single linear constraint to a model.

Arguments:
lhsVar: Left-hand side variable for new linear constraint.

119



sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsVal: Right-hand side value for new linear constraint.
name (optional): Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr ( GRBTempConstr& tc,
string name="" )
Add a single linear constraint to a model.
Arguments:

tc: Temporary constraint object, created using an overloaded comparison operator. See GRBTempConstr
for more information.

name (optional): Name for new constraint.
Return value:
New constraint object.

GRBModel::addConstrs()

Add new linear constraints to a model.

We recommend that you build your model one constraint at a time (using addConstr), since it introduces no
significant overhead and we find that it produces simpler code. Feel free to use these methods if you disagree, though.

‘GRBConstr* addConstrs ( int count )

Add count new linear constraints to a model.
Arguments:

count: Number of constraints to add to the model. The new constraints are all of the form 0 <= 0.
Return value:

Array of new constraint objects. Note that the result is heap-allocated, and must be returned to the heap
by the user.

GRBConstr* addConstrs ( const GRBLinExpr* lhsExprs,

const char* senses,
const doublex rhsVals,
const stringk names,

int count )

Add count new linear constraints to a model.
Arguments:
lhsExprs: Left-hand side expressions for the new linear constraints.
senses: Senses for new linear constraints (GRB_LESS_EQUAL7 GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsVals: Right-hand side values for the new linear constraints.
names: Names for new constraints.
count: Number of constraints to add.
Return value:
Array of new constraint objects. Note that the result is heap-allocated, and must be returned to the heap
by the user.

120



GRBModel::addGenConstrXxx()

Each of the functions described below adds a new general constraint to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types: variable bound
constraints, linear constraints, quadratic constraints, integrality constraints, and SOS constraints. These are typically
treated directly by the underlying solver (although not always), and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general (function)
constraints. These are typically not treated directly by the solver. Rather, they are transformed by presolve into
constraints (and variables) chosen from among the fundamental types listed above. In some cases, the resulting
constraint or constraints are mathematically equivalent to the original; in others, they are approximations. If such
constraints appear in your model, but if you prefer to reformulate them yourself using fundamental constraint types
instead, you can certainly do so. However, note that Gurobi can sometimes exploit information contained in the
other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

o addGenConstrMax: y = maz(z1,z2,...,C)
¢ addGenConstrMin: y = min(x1,x2, ..., )
o addGenConstrAbs: y = |z|
¢ addGenConstrAnd: y = z1 A z2 A x3...
¢ addGenConstrOr: y = 1 V 22 V T3...
¢ addGenConstrNorm: y = norm(z1, x2,xs...)
e addGenConstrIndicator: y =1 — a’x < b (an indicator constraint)
o addGenConstrPWL: y = pwl(x) (a piecewise-linear function, specified using breakpoints)
o addGenConstrPoly: y = poz® + p12? ™" + ... + pa_12 + pa
¢ addGenConstrExp: y = e”
o addGenConstrExpA: y = a”
¢ addGenConstrLog: y = loge(z)
¢ addGenConstrLogA: y = loga(x)
¢ addGenConstrPow: y = z°
¢ addGenConstrSin: y = sin(x)
¢ addGenConstrCos: y = cos(x)
¢ addGenConstrTan: y = tan(x)
Please refer to this section for additional details on general constraints.

GRBModel::addGenConstrMax()
Add a new general constraint of type GRB_GENCONSTR_MAX to a model.

A MAX constraint » = max{x1, ..., Zn, c} states that the resultant variable r should be equal to the maximum
of the operand variables x1,...,x, and the constant c.
GRBGenConstr addGenConstrMax ( GRBVar resvar,

const GRBVar*x vars,
int len,
double constant=-GRB_INFINITY,
string name="" )

Arguments:

resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
constant (optional): The additional constant operand of the new constraint.
name (optional): Name for the new general constraint.

Return value:
New general constraint.

121



GRBModel::addGenConstrMin()
Add a new general constraint of type GRB_GENCONSTR_MIN to a model.

A MIN constraint » = min{z1, ..., zn, ¢} states that the resultant variable r should be equal to the minimum of
the operand variables x1, ..., 2, and the constant c.
GRBGenConstr addGenConstrMin ( GRBVar resvar,

const GRBVar*x vars,
int len,
double constant=GRB_INFINITY,
string name="" )

Arguments:

resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
constant (optional): The additional constant operand of the new constraint.
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrAbs()

Add a new general constraint of type GRB_GENCONSTR_ABS to a model.
An ABS constraint r» = abs{z} states that the resultant variable r should be equal to the absolute value of the
argument variable x.

GRBGenConstr addGenConstrAbs ( GRBVar resvar,
GRBVar argvar,
string name="" )

Arguments:
resvar: The resultant variable of the new constraint.
argvar: The argument variable of the new constraint.
name (optional): Name for the new general constraint.
Return value:
New general constraint.

GRBModel::addGenConstrAnd()

Add a new general constraint of type GRB_GENCONSTR_AND to a model.

An AND constraint r = and{z1,...,z,} states that the binary resultant variable r should be 1 if and only if all
of the operand variables z1, ..., x, are equal to 1. If any of the operand variables is 0, then the resultant should be
0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent of how they
were created.

GRBGenConstr addGenConstrAnd ( GRBVar resvar,
const GRBVar*x vars,
int len,
string name="" )
Arguments:

resvar: The resultant binary variable of the new constraint.
vars: Array of binary variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
name (optional): Name for the new general constraint.

Return value:
New general constraint.

122



GRBModel::addGenConstrOr()

Add a new general constraint of type GRB_GENCONSTR_OR to a model.
An OR constraint r = or{z1,...,x,} states that the binary resultant variable r should be 1 if and only if any of
the operand variables 1, ..., zy is equal to 1. If all operand variables are 0, then the resultant should be 0 as well.
Note that all variables participating in such a constraint will be forced to be binary, independent of how they
were created.

GRBGenConstr addGenConstrOr ( GRBVar resvar,
const GRBVar*x vars,
int len,
string name="" )
Arguments:

resvar: The resultant binary variable of the new constraint.
vars: Array of binary variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrNorm()
Add a new general constraint of type GRB_GENCONSTR_NORM to a model.

A NORM constraint » = norm{z1,...,x,} states that the resultant variable r should be equal to the vector
norm of the argument vector z1,...,xx.
GRBGenConstr addGenConstrNorm ( GRBVar resvar,

const GRBVar* vars,
int len,
double which,
string name="" )

Arguments:

resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint. Note that this array may not contain
duplicates.
len: Number of operands in the new constraint (length of vars array).
which: Which norm to use. Options are 0, 1, 2, and GRB_INFINITY.
name (optional): Name for the new general constraint.
Return value:
New general constraint.

GRBModel::addGenConstrIndicator()

Add a new general constraint of type GRB_GENCONSTR_INDICATOR to a model.

An INDICATOR constraint z = f — aTa < b states that if the binary indicator variable z is equal to f, where
f € 40,1}, then the linear constraint a”x < b should hold. On the other hand, if z = 1 — f, the linear constraint may
be violated. The sense of the linear constraint can also be specified to be = or >.

Note that the indicator variable z of a constraint will be forced to be binary, independent of how it was created.

Multiple signatures are available.

GRBGenConstr addGenConstrIndicator ( GRBVar binvar,
int binval,
const GRBLinExpr& expr,
char sense,
double rhs,
string name="" )

123



Arguments:
binvar: The binary indicator variable.
binval: The value for the binary indicator variable that would force the linear constraint to be satisfied (0
or 1).
expr: Left-hand side expression for the linear constraint triggered by the indicator.
sense: Sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL.
rhs: Right-hand side value for the linear constraint.
name (optional): Name for the new general constraint.
Return value:
New general constraint.

GRBGenConstr addGenConstrIndicator ( GRBVar binvar,
int binval,
const GRBTempConstr& comnstr,
string name="" )

Arguments:

binvar: The binary indicator variable.

binval: The value for the binary indicator variable that would force the linear constraint to be satisfied (0
or 1).

constr: Temporary constraint object defining the linear constraint that is triggered by the indicator. The
temporary constraint object is created using an overloaded comparison operator. See GRBTempConstr
for more information.

name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrPWL()

Add a new general constraint of type GRB_GENCONSTR_PWL to a model.

A piecewise-linear (PWL) constraint states that the relationship y = f(z) must hold between variables = and vy,
where f is a piecewise-linear function. The breakpoints for f are provided as arguments. Refer to the description of
piecewise-linear objectives for details of how piecewise-linear functions are defined.

GRBGenConstr addGenConstrPWL ( GRBVar xvar,
GRBVar yvar,
int npts,

const doublex xpts,
const doublex ypts,
std::string name="" )
Arguments:
xvar: The x variable.
yvar: The y variable.
npts: The number of points that define the piecewise-linear function.
xpts: The x values for the points that define the piecewise-linear function. Must be in non-decreasing order.
ypts: The y values for the points that define the piecewise-linear function.
name (optional): Name for the new general constraint.
Return value:
New general constraint.

124



GRBModel::addGenConstrPoly()

Add a new general constraint of type GRB_GENCONSTR_POLY to a model.

A polynomial function constraint states that the relationship y = poz? + p12?~! + ... + pa—1& + pa should hold
between variables x and y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrPoly (  GRBVar xvar,
GRBVar yvar,
int plen,
const doublex p,
std::string name="",
std: :string options="" )
Arguments:

xvar: The x variable.

yvar: The y variable.

plen: The length of coefficient array p. If % is the highest power term, then plen should be d + 1.

p: The coefficients for the polynomial function (starting with the coefficient for the highest power).

name (optional): Name for the new general constraint.

options (optional): A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the attribute name
with an equal sign and the desired value (with no spaces). Assignments for different attributes should be
separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addGenConstrExp()

Add a new general constraint of type GRB_GENCONSTR_EXP to a model.

A natural exponential function constraint states that the relationship y = exp(x) should hold for variables = and
Y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrExp ( GRBVar xvar,
GRBVar yvar,
std::string name="",
std::string options="" )

Arguments:

xvar: The x variable.

yvar: The y variable.

name (optional): Name for the new general constraint.

options (optional): A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the attribute name
with an equal sign and the desired value (with no spaces). Assignments for different attributes should be
separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

125



GRBModel::addGenConstrExpA()

Add a new general constraint of type GRB_GENCONSTR_EXPA to a model.

An exponential function constraint states that the relationship y = a® should hold for variables « and y, where
a > 0 is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrEpr (  GRBVar xvar,
GRBVar yvar,
double a,
std::string name="",
std::string options="" )
Arguments:

xvar: The x variable.

yvar: The y variable.

a: The base of the function, a > 0.

name (optional): Name for the new general constraint.

options (optional): A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the attribute name
with an equal sign and the desired value (with no spaces). Assignments for different attributes should be
separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addGenConstrLog()

Add a new general constraint of type GRB_GENCONSTR_LOG to a model.

A natural logarithmic function constraint states that the relationship y = log(x) should hold for variables z and
Y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrLog (  GRBVar xvar,
GRBVar yvar,
std::string name="",
std::string options="" )

Arguments:

xvar: The x variable.

yvar: The y variable.

name (optional): Name for the new general constraint.

options (optional): A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the attribute name
with an equal sign and the desired value (with no spaces). Assignments for different attributes should be
separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

126



GRBModel::addGenConstrLogA()

Add a new general constraint of type GRB_GENCONSTR_LOGA to a model.

A logarithmic function constraint states that the relationship y = log.(z) should hold for variables = and v,
where a > 0 is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrLogA (  GRBVar xvar,
GRBVar yvar,
double a,
std::string name="",
std::string options="" )
Arguments:

xvar: The x variable.

yvar: The y variable.

a: The base of the function, a > 0.

name (optional): Name for the new general constraint.

options (optional): A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the attribute name
with an equal sign and the desired value (with no spaces). Assignments for different attributes should be
separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addGenConstrLogistic()

Add a new general constraint of type GRB_GENCONSTR_LOGISTIC to a model.

A logistic function constraint states that the relationship y = should hold for variables x and y.

1
Tre s

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,

FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrLogi stic ( GRBVar xvar,
GRBVar yvar,
std::string name="",
std::string options="" )
Arguments:

xvar: The x variable.

yvar: The y variable.

name (optional): Name for the new general constraint.

options (optional): A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the attribute name
with an equal sign and the desired value (with no spaces). Assignments for different attributes should be
separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

127



GRBModel::addGenConstrPow()

Add a new general constraint of type GRB_GENCONSTR_POW to a model.

A power function constraint states that the relationship y = x® should hold for variables x and y, where a is the
(constant) exponent. The lower bound of variable z must be nonnegative, even if a is an integer.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrPow ( GRBVar xvar,
GRBVar yvar,
double a,
std::string name="",
std::string options="" )
Arguments:

xvar: The x variable.

yvar: The y variable.

a: The exponent of the function, a > 0.

name (optional): Name for the new general constraint.

options (optional): A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the attribute name
with an equal sign and the desired value (with no spaces). Assignments for different attributes should be
separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addGenConstrSin()

Add a new general constraint of type GRB_GENCONSTR_SIN to a model.

A sine function constraint states that the relationship y = sin(z) should hold for variables z and y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrSin ( GRBVar xvar,
GRBVar yvar,
std::string name="",
std::string options="" )

Arguments:

xvar: The x variable.

yvar: The y variable.

name (optional): Name for the new general constraint.

options (optional): A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the attribute name
with an equal sign and the desired value (with no spaces). Assignments for different attributes should be
separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

128



GRBModel::addGenConstrCos()

Add a new general constraint of type GRB_GENCONSTR_COS to a model.

A cosine function constraint states that the relationship y = cos(z) should hold for variables z and y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrCos ( GRBVar xvar,
GRBVar yvar,
std::string name="",
std::string options="" )
Arguments:
xvar: The x variable.
yvar: The y variable.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the attribute name
with an equal sign and the desired value (with no spaces). Assignments for different attributes should be
separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").
Return value:
New general constraint.

GRBModel::addGenConstrTan()

Add a new general constraint of type GRB_GENCONSTR_TAN to a model.

A tangent function constraint states that the relationship y = tan(x) should hold for variables z and y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrTan ( GRBVar xvar,
GRBVar yvar,
std::string name="",
std::string options="" )
Arguments:
xvar: The x variable.
yvar: The y variable.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the attribute name
with an equal sign and the desired value (with no spaces). Assignments for different attributes should be
separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").
Return value:
New general constraint.

GRBModel::addQConstr()

Add a quadratic constraint to a model. Multiple signatures are available.
Important note: Gurobi can handle both convex and non-convex quadratic constraints. The differences between
them can be both important and subtle. Refer to this discussion for additional information.

129



GRBQConstr addQConstr( const GRBQuadExpr& 1lhsExpr,

char sense,

const GRBQuadExpr& rhsExpr,

string name="" )
Add a quadratic constraint to a model.

Arguments:
lhsExpr: Left-hand side expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsExpr: Right-hand side expression for new quadratic constraint.
name (optional): Name for new constraint.
Return value:
New quadratic constraint object.

GRBQConstr addQConstr( const GRBQuadExpr& lhsExpr,

char sense,

GRBVar rhsVar,

string name="" )
Add a quadratic constraint to a model.

Arguments:
lhsExpr: Left-hand side expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsVar: Right-hand side variable for new quadratic constraint.
name (optional): Name for new constraint.
Return value:
New quadratic constraint object.

GRBQConstr addQConstr ( GRBTempConstr& tc,
string name="" )
Add a quadratic constraint to a model.
Arguments:
tc: Temporary constraint object, created using an overloaded comparison operator. See GRBTempConstr
for more information.
name (optional): Name for new constraint.
Return value:
New quadratic constraint object.

GRBModel::addRange()

Add a single range constraint to a model. A range constraint states that the value of the input expression must be
between the specified lower and upper bounds in any solution.

Note that range constraints are stored internally as equality constraints. We add an extra variable to the model
to capture the range information. Thus, the Sense attribute on a range constraint will always be GRB_EQUAL. In
particular introducing a range constraint

L<ala<U
is equivalent to adding a slack variable s and the following constraints

a*z—s =1L

0<s <U-L.

GRBConstr addRange( const GRBLinExpr& expr,

double lower,
double upper,
string name="" )

130



Arguments:

expr: Linear expression for new range constraint.

lower: Lower bound for linear expression.
upper: Upper bound for linear expression.
name (optional): Name for new constraint.
Return value:
New constraint object.

GRBModel::addRanges()

Add new range constraints to a model. A range constraint states that the value of the input expression must be
between the specified lower and upper bounds in any solution.

GRBConstr*

Arguments:
exprs: Linear expressions for the new range constraints.
lower: Lower bounds for linear expressions.
upper: Upper bounds for linear expressions.
name: Names for new range constraints.
count: Number of range constraints to add.

Return value:
Array of new constraint objects. Note that the result is heap-allocated, and must be returned to the heap
by the user.

addRanges (

GRBModel::addSOS()

Add an SOS constraint to the model. Please refer to this section for details on SOS constraints.

GRBSO0S

addsS0S ¢

Arguments:

vars: Array of variables that participate in the SOS constraint.

const GRBLinExpr*
const doublex
const doublex*
const stringk
int

const GRBVar*x vars,
const doublex weights,

int
int

len,
type )

exprs,
lower,
upper,
names,
count )

weights: Weights for the variables in the SOS constraint.

len: Number of members in the new SOS set (length of vars and weights arrays).
type: SOS type (can be GRB_SO0S_TYPE1 or GRB_SOS_TYPE2).

Return value:
New SOS constraint.

GRBModel::addVar()

Add a single decision variable to a model.

GRBVar

addVar (

double
double
double
char

string

1b,

ub,

obj,
type,
name="" )

131



Add a variable; non-zero entries will be added later.
Arguments:
1b: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type ﬁn‘new7vaﬂabka(GRB_CONTINUOUS,GRB_BINARY,GRB_INTEGER,GRB_SEMICONT,or GRB_-
SEMIINT).
name (optional): Name for new variable.
Return value:
New variable object.

GRBVar addVar ( double 1b,
double ub,
double obj,
char type,
int numnz,
const GRBConstr* constrs,
const doublex coeffs,
string name="" )

Add a variable, and the associated non-zero coefficients.
Arguments:
1b: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coeflicient for new variable.
type: Variable type for new variable (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or GRB_-
SEMIINT).
numnz: Number of constraints in which this new variable participates.
constrs: Array of constraints in which the variable participates.
coeffs: Array of coefficients for each constraint in which the variable participates.
name (optional): Name for new variable.
Return value:
New variable object.

GRBVar addVar ( double 1b,

double ub,

double obj,

char type,

const GRBColumn& col,

string name="" )
Add a variable, and the associated non-zero coefficients.
Arguments:

1b: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or GRB_-
SEMIINT).
col: GRBColumn object for specifying a set of constraints to which new variable belongs.
name (optional): Name for new variable.
Return value:
New variable object.

132



GRBModel::addVars()

Add new decision variables to a model.

GRBVar* addVars ( int count,
char type=GRB_CONTINUOUS )
Add count new decision variables to a model. All associated attributes take their default values, except the
variable type, which is specified as an argument.

Arguments:
count: Number of variables to add.
type (optional): Variable type for new variables (GRB_CONTINUQUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT,

OrGRB_SEMIINT)

Return value:
Array of new variable objects. Note that the result is heap-allocated, and must be returned to the heap by
the user.

GRBVar* addVars ( const doublex 1b,
const double*x ub,
const double* obj,

const charx type,
const string* names,
int count )

Add count new decision variables to a model. This signature allows you to use arrays to hold the various variable
attributes (lower bound, upper bound, etc.).
Arguments:
1b: Lower bounds for new variables. Can be NULL, in which case the variables get lower bounds of 0.0.
ub: Upper bounds for new variables. Can be NULL, in which case the variables get infinite upper bounds.
obj: Objective coefficients for new variables. Can be NULL, in which case the variables get objective coefficients
of 0.0.
type: Variable types for new variables (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or GRB_-
SEMIINT). Can be NULL, in which case the variables are assumed to be continuous.
names: Names for new variables. Can be NULL, in which case all variables are given default names.
count: The number of variables to add.
Return value:
Array of new variable objects. Note that the result is heap-allocated, and must be returned to the heap by

the user.

GRBVar* addVars ( const doublex 1b,
const double* ub,
const double* obj,
const charx* type,
const string* names,
const GRBColumn* cols,
int count )

Add new decision variables to a model. This signature allows you to specify the set of constraints to which each
new variable belongs using an array of GRBColumn objects.
Arguments:
1b: Lower bounds for new variables. Can be NULL, in which case the variables get lower bounds of 0.0.
ub: Upper bounds for new variables. Can be NULL, in which case the variables get infinite upper bounds.
obj: Objective coefficients for new variables. Can be NULL, in which case the variables get objective coefficients
of 0.0.
type: Variable types for new variables (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or GRB_-
SEMIINT). Can be NULL, in which case the variables are assumed to be continuous.
names: Names for new variables. Can be NULL, in which case all variables are given default names.

133



cols: GRBColumn objects for specifying a set of constraints to which each new column belongs.
count: The number of variables to add.
Return value:
Array of new variable objects. Note that the result is heap-allocated, and must be returned to the heap by
the user.

GRBModel::chgCoeff()

Change one coefficient in the model. The desired change is captured using a GRBVar object, a GRBConstr object, and
a desired coefficient for the specified variable in the specified constraint. If you make multiple changes to the same
coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you update the model
(using GRBModel::update), optimize the model (using GRBModel::optimize), or write the model to disk (using
GRBModel::write).

void cthoeff (  GRBConstr constr,
GRBVar var,
double newvalue )
Arguments:
constr: Constraint for coefficient to be changed.
var: Variable for coefficient to be changed.
newvalue: Desired new value for coefficient.

GRBModel::chgCoeffs()

Change a list of coefficients in the model. Each desired change is captured using a GRBVar object, a GRBConstr object,
and a desired coefficient for the specified variable in the specified constraint. The entries in the input arrays each
correspond to a single desired coefficient change. If you make multiple changes to the same coefficient, the last one
will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you update the model
(using GRBModel::update), optimize the model (using GRBModel::optimize), or write the model to disk (using
GRBModel::write).

void chgCoeffs ( const GRBConstr* constrs,

const GRBVarx vars,
const doublex vals,
int len )

Arguments:
constrs: Constraints for coefficients to be changed.
vars: Variables for coefficients to be changed.
vals: Desired new values for coefficients.
len: Number of coefficients to change (length of vars, constrs, and vals arrays).

GRBModel::computellS()

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and variable bounds with
the following properties:

o It is still infeasible, and

o If a single constraint or bound is removed, the subsystem becomes feasible.

134



Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily the smallest
one; there may exist others with fewer constraints or bounds.

IIS results are returned in a number of attributes: IISConstr, IISLB, IISUB, IISSOS, IISQConstr, and IISGen-
Constr. Each indicates whether the corresponding model element is a member of the computed IIS.

The IIS log provides information about the progress of the algorithm, including a guess at the eventual IIS size.

If an IIS computation is interrupted before completion, Gurobi will return the smallest infeasible subsystem found
to that point.

The IISConstrForce, IISLBForce, IISUBForce, IISSOSForce, IISQConstrForce, and IISGenConstrForce attributes
allow you mark model elements to either include or exclude from the computed IIS. Setting the attribute to 1 forces
the corresponding element into the IIS, setting it to 0 forces it out of the IIS, and setting it to -1 allows the algorithm
to decide.

To give an example of when these attributes might be useful, consider the case where an initial model is known
to be feasible, but it becomes infeasible after adding constraints or tightening bounds. If you are only interested
in knowing which of the changes caused the infeasibility, you can force the unmodified bounds and constraints into
the IIS. That allows the IIS algorithm to focus exclusively on the new constraints, which will often be substantially
faster.

Note that setting any of the Force attributes to 0 may make the resulting subsystem feasible, which would
then make it impossible to construct an IIS. Trying anyway will result in a GRB_ERROR_IIS_NOT_INFEASIBLE error.
Similarly, setting this attribute to 1 may result in an IIS that is not irreducible. More precisely, the system would
only be irreducible with respect to the model elements that have force values of -1 or 0.

This method populates the IISConstr, IISQConstr, and IISGenConstr constraint attributes, the IISSOS, SOS
attribute, and the IISLB and IISUB variable attributes. You can also obtain information about the results of the IIS
computation by writing a .ilp format file (see GRBModel::write). This file contains only the IIS from the original
model.

Use the IISMethod parameter to adjust the behavior of the IIS algorithm.

Note that this method can be used to compute IISs for both continuous and MIP models.

| void computeIIS ()

GRBModel::discardConcurrentEnvs()

Discard concurrent environments for a model.

The concurrent environments created by getConcurrentEnv will be used by every subsequent call to the concurrent
optimizer until the concurrent environments are discarded.

| void discardConcurrentEnvs ()

GRBModel::discardMultiobjEnvs()

Discard all multi-objective environments associated with the model, thus restoring multi objective optimization to
its default behavior.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple objective functions
and control the trade-off between them.

Use getMultiobjEnv to create a multi-objective environment.

void discardMultiobjEnvs ()

135



GRBModel::feasRelax()

Modifies the GRBModel object to create a feasibility relaxation. Note that you need to call optimize on the result to
compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the solution violates the
bounds and linear constraints of the original model. This method provides a number of options for specifying the
relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the sum of the weighted
magnitudes of the bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the cost per
unit violation in the lower bounds, upper bounds, and linear constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the weighted sum of the
squares of the bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the coefficients on
the squares of the lower bound, upper bound, and linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the weighted count of
bound and constraint violations. The 1lbpen, ubpen, and rhspen arguments specify the cost of violating a lower
bound, upper bound, and linear constraint, respectively.

To give an example, if a constraint with rhspen value p is violated by 2.0, it would contribute 2#*p to the feasibility
relaxation objective for relaxobjtype=0, it would contribute 2*2#*p for relaxobjtype=1, and it would contribute p
for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is created. If minrelax=false,
optimizing the returned model gives a solution that minimizes the cost of the violation. If minrelax=true, optimizing
the returned model finds a solution that minimizes the original objective, but only from among those solutions that
minimize the cost of the violation. Note that feasRelax must solve an optimization problem to find the minimum
possible relaxation when minrelax=true, which can be quite expensive.

There are two signatures for this method. The more complex one takes a list of variables and constraints, as well
as penalties associated with relaxing the corresponding lower bounds, upper bounds, and constraints. If a variable
or constraint is not included in one of these lists, the associated bounds or constraints may not be violated. The
simpler signature takes a pair of boolean arguments, vrelax and crelax, that indicate whether variable bounds
and/or constraints can be violated. If vrelax/crelax is true, then every bound/constraint is allowed to be violated,
respectively, and the associated cost is 1.0.

Note that this is a destructive method: it modifies the model on which it is invoked. If you don’t want to modify
your original model, use the GRBModel constructor to create a copy before invoking this method.

double feasRelax ( int relaxobjtype,

bool minrelax,
int vlen,
const GRBVarx vars,
const doublex* lbpen,
const doublex ubpen,
int clen,
const GRBConstr* constrs,
const doublex* rhspen )

Create a feasibility relaxation model.

Arguments:

relaxobjtype: The cost function used when finding the minimum cost relaxation.

minrelax: The type of feasibility relaxation to perform.

vlen: The length of the list of variables whose bounds are allowed to be violated.

vars: Variables whose bounds are allowed to be violated.

lbpen: Penalty for violating a variable lower bound. One entry for each variable in argument vars.

ubpen: Penalty for violating a variable upper bound. One entry for each variable in argument vars.

clen: The length of the list of linear constraints that are allowed to be violated.

constrs: Linear constraints that are allowed to be violated.

rhspen: Penalty for violating a linear constraint. One entry for each constraint in argument constrs.
Return value:

Zero if minrelax is false. If minrelax is true, the return value is the objective value for the relaxation

performed. If the value is less than 0, it indicates that the method failed to create the feasibility relaxation.

136



double feasRelax ( int relaxobjtype,
bool minrelax,
bool vrelax,
bool crelax )
Simplified method for creating a feasibility relaxation model.
Arguments:
relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vrelax: Indicates whether variable bounds can be relaxed (with a cost of 1.0 for any violations.
crelax: Indicates whether linear constraints can be relaxed (with a cost of 1.0 for any violations.
Return value:
Zero if minrelax is false. If minrelax is true, the return value is the objective value for the relaxation
performed. If the value is less than 0, it indicates that the method failed to create the feasibility relaxation.

GRBModel::fixedModel()

Create the fixed model associated with a MIP model. The MIP model must have a solution loaded (e.g., after a call
to the optimize method). In the fixed model, each integer variable is fixed to the value that variable takes in the MIP
solution. In addition, continuous variables may be fixed to satisfy SOS or general constraints. The result is a model
without any integrality constraints, SOS constraints, or general constraints.

Note that, while the fixed problem is always a continuous model, it may contain a non-convex quadratic objective
or non-convex quadratic constraints. As a result, it may still be solved using the MIP algorithm.

| GRBModel fixedModel ()
Return value:
Fixed model associated with calling object.

GRBModel::get()

Query the value(s) of a parameter or attribute. Use this method for parameters, for scalar model attributes, or for
arrays of constraint or variable attributes.

‘double get ( GRB_DoubleParam param )

Query the value of a double-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

| int get ( GRB_IntParam param )

Query the value of an int-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

‘string get ( GRB_StringParam param )

Query the value of a string-valued parameter.

137



Arguments:
param: The parameter being queried.
Return value:
The current value of the requested parameter.

charx get ( GRB_CharAttr attr,
const GRBVar* vars,
int count )
Query a char-valued variable attribute for an array of variables.
Arguments:
attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.
Return value:
The current values of the requested attribute for each input variable. Note that the result is heap-allocated,
and must be returned to the heap by the user.

charx get ( GRB_CharAttr attr,
const GRBConstr* constrs,
int count )
Query a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.
Return value:
The current values of the requested attribute for each input constraint. Note that the result is heap-allocated,
and must be returned to the heap by the user.

charx get ( GRB_CharAttr attr,
const GRBQConstr* qconstrs,
int count )
Query a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of quadratic constraints whose attribute values are being queried.
count: The number of quadratic constraint attributes to retrieve.
Return value:
The current values of the requested attribute for each input quadratic constraint. Note that the result is
heap-allocated, and must be returned to the heap by the user.

| double get ( GRB_DoubleAttr attr )

Query the value of a double-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

doublex get ( GRB_DoubleAttr attr,
const GRBVarx vars,
int count )

138



Query a double-valued variable attribute for an array of variables.
Arguments:
attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.
Return value:
The current values of the requested attribute for each input variable. Note that the result is heap-allocated,
and must be returned to the heap by the user.

doublex get ( GRB_DoubleAttr attr,
const GRBConstr* constrs,
int count )
Query a double-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.
Return value:
The current values of the requested attribute for each input constraint. Note that the result is heap-allocated,
and must be returned to the heap by the user.

doublex get ( GRB_DoubleAttr attr,
const GRBQConstr* qconstrs,
int count )
Query a double-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of quadratic constraints whose attribute values are being queried.
count: The number of quadratic constraint attributes to retrieve.
Return value:
The current values of the requested attribute for each input quadratic constraint. Note that the result is
heap-allocated, and must be returned to the heap by the user.

‘int get (  GRB_IntAttr attr )

Query the value of an int-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int*x get ( GRB_IntAttr attr,
const GRBVar*x vars,
int count )
Query an int-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.
Return value:
The current values of the requested attribute for each input variable. Note that the result is heap-allocated,
and must be returned to the heap by the user.

139



intx get ( GRB_IntAttr attr,
const GRBConstr* constrs,
int count )
Query an int-valued constraint attribute for an array of constraints.
Arguments:
attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.
Return value:
The current values of the requested attribute for each input constraint. Note that the result is heap-allocated,
and must be returned to the heap by the user.

| string get ( GRB_StringAttr attr )

Query the value of a string-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

stringx get ( GRB_StringAttr attr,

const GRBVarx vars,
int count )
Query a string-valued variable attribute for an array of variables.

Arguments:
attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.
Return value:
The current values of the requested attribute for each input variable. Note that the result is heap-allocated,
and must be returned to the heap by the user.

stringx get ( GRB_StringAttr attr,
const GRBConstr* constrs,
int count )
Query a string-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.
Return value:
The current values of the requested attribute for each input constraint. Note that the result is heap-allocated,
and must be returned to the heap by the user.

stringx get ( GRB_StringAttr attr,
const GRBQConstr* qconstrs,
int count )
Query a string-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of quadratic constraints whose attribute values are being queried.
count: The number of quadratic constraint attributes to retrieve.
Return value:
The current values of the requested attribute for each input quadratic constraint. Note that the result is
heap-allocated, and must be returned to the heap by the user.

140



GRBModel::getCoeff()

Query the coefficient of variable var in linear constraint constr (note that the result can be zero).

double getCoeff (  GRBConstr constr,
GRBVar var )
Arguments:
constr: The requested constraint.
var: The requested variable.
Return value:
The current value of the requested coefficient.

GRBModel::getCol()

Retrieve the list of constraints in which a variable participates, and the associated coefficients. The result is returned
as a GRBColumn object.

| GRBColumn getCol ( GRBVar var )

Arguments:
var: The variable of interest.
Return value:
A GRBColumn object that captures the set of constraints in which the variable participates.

GRBModel::getConcurrentEnv()

Create/retrieve a concurrent environment for a model.

This method provides fine-grained control over the concurrent optimizer. By creating your own concurrent
environments and setting appropriate parameters on these environments (e.g., the Method parameter), you can control
exactly which strategies the concurrent optimizer employs. For example, if you create two concurrent environments,
and set Method to primal simplex for one and dual simplex for the other, subsequent concurrent optimizer runs will
use the two simplex algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with num=0. For example,
if you want three concurrent environments, they must be numbered 0, 1, and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent optimization on
that model. Use discardConcurrentEnvs to revert back to default concurrent optimizer behavior.

| GRBEnv getConcurrentEnv ( int num)

Arguments:

num: The concurrent environment number.
Return value:

The concurrent environment for the model.

GRBModel::getConstrByName()

Retrieve a linear constraint from its name. If multiple linear constraints have the same name, this method chooses
one arbitrarily.

| GRBConstr getConstrByName ( const string& name )

141



Arguments:

name: The name of the desired linear constraint.
Return value:

The requested linear constraint.

GRBModel::getConstrs()

Retrieve an array of all linear constraints in the model.

| GRBConstr* getConstrs ()
Return value:
An array of all linear constraints in the model. Note that this array is heap-allocated, and must be returned
to the heap by the user.

GRBModel::getGenConstrXxx()

The following methods allow you to retrieve general constraints from your model.

GRBModel::getGenConstrMax

Retrieve the data associated with a general constraint of type MAX. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
NULL value for the vars argument. The routine returns the total number of operand variables in the specified general
constraint in lenP. That allows you to make certain that the vars array is of sufficient size to hold the result of the
second call.

See also addGenConstrMax for a description of the semantics of this general constraint type.

void getGenConstrMax ( GRBGenConstr genc,

GRBVar* resvarP,
GRBVar* vars,

int* lenP,
doublex* constantP )

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.
constantP: Pointer to store the additional constant operand of the constraint.

GRBModel::getGenConstrMin

Retrieve the data associated with a general constraint of type MIN. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
NULL value for the vars argument. The routine returns the total number of operand variables in the specified general
constraint in lenP. That allows you to make certain that the vars array is of sufficient size to hold the result of the
second call.

See also addGenConstrMin for a description of the semantics of this general constraint type.

142



void getGenConstrMin ( GRBGenConstr genc,

GRBVar* resvarP,
GRBVar* vars,

int* lenP,
doublex* constantP )

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.
constantP: Pointer to store the additional constant operand of the constraint.

GRBModel::getGenConstrAbs

Retrieve the data associated with a general constraint of type ABS. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrAbs for a description of the semantics of this general constraint type.

void getGenConstrAbs ( GRBGenConstr genc,
GRBVar* resvarP,
GRBVar* argvarP )
Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
argvarP: Pointer to store the argument variable of the constraint.

GRBModel::getGenConstrAnd

Retrieve the data associated with a general constraint of type AND. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
NULL value for the vars argument. The routine returns the total number of operand variables in the specified general
constraint in lenP. That allows you to make certain that the vars array is of sufficient size to hold the result of the
second call.

See also addGenConstrAnd for a description of the semantics of this general constraint type.

void getGenConstrAnd ( GRBGenConstr genc,

GRBVar* resvarP,
GRBVar* vars,
intx* lenP )

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.

143



GRBModel::getGenConstrOr

Retrieve the data associated with a general constraint of type OR. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
NULL value for the vars argument. The routine returns the total number of operand variables in the specified general
constraint in lenP. That allows you to make certain that the vars array is of sufficient size to hold the result of the
second call.

See also addGenConstrOr for a description of the semantics of this general constraint type.

void getGenConstrOr ( GRBGenConstr genc,

GRBVar* resvarP,
GRBVar* vars,
intx* lenP )

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.

GRBModel::getGenConstrNorm

Retrieve the data associated with a general constraint of type NORM. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
NULL value for the vars argument. The routine returns the total number of operand variables in the specified general
constraint in lenP. That allows you to make certain that the vars array is of sufficient size to hold the result of the
second call.

See also addGenConstrNorm for a description of the semantics of this general constraint type.

void getGenConstrNorm ( GRBGenConstr genc,

GRBVarx* resvarP,
GRBVar* vars,
int* lenP,
doublex* whichP )

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.
whichP: Pointer to store the norm type (possible values are 0, 1, 2, or GRB_INFINITY).

GRBModel::getGenConstrindicator

Retrieve the data associated with a general constraint of type INDICATOR. Calling this method for a general
constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the
type of the general constraint.

See also addGenConstrIndicator for a description of the semantics of this general constraint type.

144



void getGenConstrIndicator ( GRBGenConstr genc,

GRBVar* binvarP,
int* binvalP,
GRBLinExprx* exprP,
charx* senseP,
doublex* rhsP )

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
binvarP: Pointer to store the binary indicator variable of the constraint.
binvalP: Pointer to store the value that the indicator variable has to take in order to trigger the linear
constraint.
exprP: Pointer to a GRBLinExpr object to store the left-hand side expression of the linear constraint that is
triggered by the indicator.

senseP: Pointer to store the sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or
GRB_GREATER_EQUAL.

rhsP: Pointer to store the right-hand side value for the linear constraint.

GRBModel::getGenConstrPWL

Retrieve the data associated with a general constraint of type PWL. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
NULL value for the xpts and ypts arguments. The routine returns the length for the xpts and ypts arrays in nptsP.
That allows you to make certain that the xpts and ypts arrays are of sufficient size to hold the result of the second
call.

See also addGenConstrPWL for a description of the semantics of this general constraint type.

void getGenConstrPWL ( GRBGenConstr genc,

GRBVar* xvarP,
GRBVar* yvarP,
int* nptsP,
doublex* xpts,

double* ypts )

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.
nptsP: Pointer to store the number of points that define the piecewise-linear function.
xpts: The x values for the points that define the piecewise-linear function.
ypts: The y values for the points that define the piecewise-linear function.

GRBModel::getGenConstrPoly

Retrieve the data associated with a general constraint of type POLY. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with
a NULL value for the p argument. The routine returns the length of the p array in plenP. That allows you to make
certain that the p array is of sufficient size to hold the result of the second call.

See also addGenConstrPoly for a description of the semantics of this general constraint type.

145



void getGenConstrPoly ( GRBGenConstr genc,

GRBVarx* xvarP,
GRBVarx* yvarP,
int* plenP,
doublex p)

Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.
plenP: Pointer to store the array length for p. If z¢ is the highest power term, then d + 1 will be returned.
p: The coefficients for polynomial function.

GRBModel::getGenConstrExp

Retrieve the data associated with a general constraint of type EXP. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrExp for a description of the semantics of this general constraint type.

void getGenConstrEXp ( GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP )
Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.

GRBModel::getGenConstrExpA

Retrieve the data associated with a general constraint of type EXPA. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrExpA for a description of the semantics of this general constraint type.

void getGenConstrEXpA ( GRBGenConstr genc,

GRBVarx* xvarP,
GRBVarx* yvarP,
doublex aP )

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.
aP: Pointer to store the base of the function.

GRBModel::getGenConstrLog

Retrieve the data associated with a general constraint of type LOG. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrLog for a description of the semantics of this general constraint type.

146



void getGenConstrLog ( GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP )
Arguments:

genc: The general constraint object.
Any of the following arguments can be NULL.

xvarP: Pointer to store the x variable.

yvarP: Pointer to store the y variable.

GRBModel::getGenConstrLogA

Retrieve the data associated with a general constraint of type LOGA. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrLogA for a description of the semantics of this general constraint type.

void getGenConstrLogA ( GRBGenConstr genc,
GRBVarx* xvarP,
GRBVarx* yvarP,
doublex aP )
Arguments:

genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.
aP: Pointer to store the base of the function.

GRBModel::getGenConstrLogistic

Retrieve the data associated with a general constraint of type LOGISTIC. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrLogistic for a description of the semantics of this general constraint type.

void getGenConstrLogistic ( GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP )
Arguments:

genc: The general constraint object.
Any of the following arguments can be NULL.

xvarP: Pointer to store the x variable.

yvarP: Pointer to store the y variable.

GRBModel::getGenConstrPow

Retrieve the data associated with a general constraint of type POW. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrPow for a description of the semantics of this general constraint type.

void getGenConstrPow ( GRBGenConstr genc,
GRBVar* xvarP,
GRBVarx* yvarP,
doublex aP )

147



Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.
aP: Pointer to store the exponent of the function.

GRBModel::getGenConstrSin

Retrieve the data associated with a general constraint of type SIN. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrSin for a description of the semantics of this general constraint type.

void getGenConstrSin ( GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP )
Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.

GRBModel::getGenConstrCos

Retrieve the data associated with a general constraint of type COS. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrCos for a description of the semantics of this general constraint type.

void getGenConstrCos ( GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP )
Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.

GRBModel::getGenConstrTan

Retrieve the data associated with a general constraint of type TAN. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrTan for a description of the semantics of this general constraint type.

void getGenConstrTan ( GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP )
Arguments:
genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.

148



GRBModel::getGenConstrs()

Retrieve an array of all general constraints in the model.

| GRBGenConstr* getGenConstrs ()
Return value:
An array of all general constraints in the model. Note that this array is heap-allocated, and must be returned
to the heap by the user.

GRBModel::getJSONSolution()

After a call to optimize, this method returns the resulting solution and related model attributes as a JSON string.
Please refer to the JSON solution format section for details.

| getJSONSolution GRBModel ()
Return value:
A JSON string.

GRBModel::getMultiobjEnv()

Create/retrieve a multi-objective environment for the objective with the given index. This environment enables
fine-grained control over the multi-objective optimization process. Specifically, by changing parameters on this
environment, you modify the behavior of the optimization that occurs during the corresponding pass of the multi-
objective optimization.

Each multi-objective environment starts with a copy of the current model environment.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple objective functions
and control the trade-off between them.

Use discardMultiobjEnvs to discard multi-objective environments and return to standard behavior.

| GRBEnv getMultiobjEnv ( int index )

Arguments:
index: The objective index.
Return value:
The multi-objective environment for the model.

GRBModel::getObjective()

Retrieve the optimization objective(s).

| GRBQuadExpr getObjective ()
Retrieve the optimization objective.
Note that the constant and linear portions of the objective can also be retrieved using the ObjCon and Obj
attributes.
Return value:
The model objective.

GRBLinExpr getObjective ( int index )

149



Retrieve an alternative optimization objective. Alternative objectives will always be linear. You can also use this
routine to retrieve the primary objective (using index = 0), but you will get an exception if the primary objective
contains quadratic terms.

Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.

Note that alternative objectives can also be retrieved using the ObjNCon and ObjN attributes.

Arguments:

index: The index for the requested alternative objective.
Return value:
The requested alternate objective.

GRBModel::getPWLODbj()

Retrieve the piecewise-linear objective function for a variable. The return value gives the number of points that define
the function, and the z and y arguments give the coordinates of the points, respectively. The x and y arguments
must be large enough to hold the result. Call this method with NULL values for x and y if you just want the number
of points.

Refer to this discussion for additional information on what the values in  and y mean.

int getPWLObj ( GRBVar var,
double[] x,
double[] y)
Arguments:
var: The variable whose objective function is being retrieved.
x: The x values for the points that define the piecewise-linear function. These will always be in non-decreasing
order.
y: The y values for the points that define the piecewise-linear function.
Return value:
The number of points that define the piecewise-linear objective function.

GRBModel::getQCRow()

Retrieve the left-hand side expression from a quadratic constraint. The result is returned as a GRBQuadExpr object.

‘GRBQuadExpr getQCRow ( GRBQConstr qconstr )

Arguments:
qconstr: The quadratic constraint of interest.
Return value:
A GRBQuadExpr object that captures the left-hand side of the quadratic constraint.

GRBModel::getQConstrs()

Retrieve an array of all quadratic constraints in the model.

| GRBQConstr* getQConstrs ()
Return value:
An array of all quadratic constraints in the model. Note that this array is heap-allocated, and must be
returned to the heap by the user.

150



GRBModel::getRow()

Retrieve a list of variables that participate in a constraint, and the associated coefficients. The result is returned as
a GRBLinExpr object.

‘GRBLinExpr getRow ( GRBConstr constr )

Arguments:

constr: The constraint of interest. A GRBConstr object, typically obtained from addConstr or getConstrs.
Return value:

A GRBLinExpr object that captures the set of variables that participate in the constraint.

GRBModel::getSOS()

Retrieve the list of variables that participate in an SOS constraint, and the associated coefficients. The return value
is the length of this list. If you would like to allocate space for the result before retrieving the result, call the method
first with NULL array arguments to determine the appropriate array lengths.

int getS0S ( GRBSOS  sos,
GRBVar* vars,
double* weights,
int* typeP )
Arguments:
sos: The SOS set of interest.
vars: A list of variables that participate in sos.
weights: The SOS weights for each participating variable.
typeP: The type of the SOS set (either GRB_SOS_TYPE1 or GRB_SOS_TYPE2).
Return value:
The length of the result arrays.

GRBModel::getSOSs()

Retrieve an array of all SOS constraints in the model.

| GrBsOs* getSOSs ()
Return value:
An array of all SOS constraints in the model. Note that this array is heap-allocated, and must be returned
to the heap by the user.

GRBModel::get TuneResult()

Use this method to retrieve the results of a previous tune call. Calling this method with argument n causes tuned
parameter set n to be copied into the model. Parameter sets are stored in order of decreasing quality, with parameter
set 0 being the best. The number of available sets is stored in attribute TuneResultCount.

Once you have retrieved a tuning result, you can call optimize to use these parameter settings to optimize the
model, or write to write the changed parameters to a .prm file.

Please refer to the parameter tuning section for details on the tuning tool.

| void getTuneResult ( int n)

n: The index of the tuning result to retrieve. The best result is available as index 0. The number of stored
results is available in attribute TuneResultCount.

151



GRBModel::getVarByName()

Retrieve a variable from its name. If multiple variables have the same name, this method chooses one arbitrarily.

| GRBVar getVarByName ( const string& name )

Arguments:

name: The name of the desired variable.
Return value:

The requested variable.

GRBModel::getVars()

Retrieve an array of all variables in the model.

| GRBVar* getVars ()
Return value:
An array of all variables in the model. Note that this array is heap-allocated, and must be returned to the
heap by the user.

GRBModel::optimize()

Optimize the model. The algorithm used for the optimization depends on the model type (simplex or barrier for
a continuous model; branch-and-cut for a MIP model). Upon successful completion, this method will populate the
solution related attributes of the model. See the Attributes section for more information on attributes.

Please consult this section for a discussion of some of the practical issues associated with solving a precisely
defined mathematical model using finite-precision floating-point arithmetic.

Note that this method will process all pending model modifications.

| void optimize ()

GRBModel::optimizeasync()

Optimize a model asynchronously. This routine returns immediately. Your program can perform other computations
while optimization proceeds in the background. To check the state of the asynchronous optimization, query the
Status attribute for the model. A value of IN_PROGRESS indicates that the optimization has not yet completed. When
you are done with your foreground tasks, you must call sync to sync your foreground program with the asynchronous
optimization task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in the background
is severely limited. Specifically, you can only perform attribute queries, and only for a few attributes (listed below).
Any other calls on the running model, or on any other models that were built within the same Gurobi environment,
will fail with error code OPTIMIZATION_IN_PROGRESS.

Note that there are no such restrictions on models built in other environments. Thus, for example, you could
create multiple environments, and then have a single foreground program launch multiple simultaneous asynchronous
optimizations, each in its own environment.

As already noted, you are allowed to query the value of the Status attribute while an asynchronous optimization
is in progress. The other attributes that can be queried are: ObjVal, ObjBound, IterCount, NodeCount, and
BarlterCount. In each case, the returned value reflects progress in the optimization to that point. Any attempt to
query the value of an attribute not on this list will return an OPTIMIZATION_IN_PROGRESS error.

| void optimizeasync ()

152



GRBModel::optimizeBatch()

Submit a new batch request to the Cluster Manager. Returns the BatchID (a string), which uniquely identifies the
job in the Cluster Manager and can be used to query the status of this request (from this program or from any other).
Once the request has completed, the BatchID can also be used to retrieve the associated solution. To submit a batch
request, you must tag at least one element of the model by setting one of the VTag, CTag or QCTag attributes. For
more details on batch optimization, please refer to the Batch Optimization section.

Note that this routine will process all pending model modifications.

| string optimizeBatch ()
Example usage:

GRBModel::presolve()

Perform presolve on a model.

| GRBModel presolve ()
Return value:
Presolved version of original model.

GRBModel::read()

This method is the general entry point for importing data from a file into a model. It can be used to read basis files
for continuous models, start vectors for MIP models, or parameter settings. The type of data read is determined by
the file suffix. File formats are described in the File Format section.

Note that this is not the method to use if you want to read a new model from a file. For that, use the GRBModel
constructor. One variant of the constructor takes the name of the file that contains the new model as its argument.

‘ void read ( const string& filename )

Arguments:
filename: Name of the file to read. The suffix on the file must be either .bas (for an LP basis), .mst or
.sol (for a MIP start), .hnt (for MIP hints), .ord (for a priority order), or .prm (for a parameter file).
The suffix may optionally be followed by .zip, .gz, .bz2, or .7z.

GRBModel::remove()

Remove a variable, constraint, or SOS from a model.

‘void remove ( GRBConstr constr )

Remove a linear constraint from the model. Note that, due to our lazy update approach, the change won’t actually
take effect until you update the model (using GRBModel::update), optimize the model (using GRBModel::optimize),
or write the model to disk (using GRBModel::write).

Arguments:

constr: The linear constraint to remove.

void remove ( GRBGenConstr genconstr )

153



Remove a general constraint from the model. Note that, due to our lazy update approach, the change won’t actu-
ally take effect until you update the model (using GRBModel::update), optimize the model (using GRBModel::optimize),
or write the model to disk (using GRBModel::write).

Arguments:

genconstr: The general constraint to remove.

‘void remove ( GRBQConstr qconstr )

Remove a quadratic constraint from the model. Note that, due to our lazy update approach, the change
won’t actually take effect until you update the model (using GRBModel::update), optimize the model (using GRB-
Model::optimize), or write the model to disk (using GRBModel::write).

Arguments:

qgconstr: The quadratic constraint to remove.

| void remove ( GRBSOS sos )

Remove an SOS constraint from the model. Note that, due to our lazy update approach, the change won’t actually
take effect until you update the model (using GRBModel::update), optimize the model (using GRBModel::optimize),
or write the model to disk (using GRBModel::write).

Arguments:

sos: The SOS constraint to remove.

‘void remove ( GRBVar var )

Remove a variable from the model. Note that, due to our lazy update approach, the change won’t actually take
effect until you update the model (using GRBModel::update), optimize the model (using GRBModel::optimize), or
write the model to disk (using GRBModel::write).

Arguments:

var: The variable to remove.

GRBModel::reset()

‘void reset ( int clearall=0 )

Reset the model to an unsolved state, discarding any previously computed solution information. Note that,
due to our lazy update approach, the change won’t actually take effect until you update the model (using GRB-
Model::update), optimize the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

clearall (optional): A value of 1 discards additional information that affects the solution process but
not the actual model (currently MIP starts, variable hints, branching priorities, lazy flags, and partition
information). The default value of 0 just discards the solution.

Arguments:

GRBModel::setCallback()

Set the callback object for a model. The callback() method on this object will be called periodically from the
Gurobi solver. You will have the opportunity to obtain more detailed information about the state of the optimization
from this callback. See the documentation for GRBCallback for additional information.

Note that a model can only have a single callback method, so this call will replace an existing callback. To disable
a previously set callback, call this method with a NULL argument.

| void setCallback ( GRBCallback* cb )

154



GRBModel::set()

Set the value(s) of a parameter or attribute. Use this method for parameters, for scalar model attributes, and for
arrays of constraint or variable attributes.

void sSet ( GRB_DoubleParam param,
double newvalue )

Set the value of a double-valued parameter.

The difference between setting a parameter on a model and setting it on an environment (i.e., through GR-
BEnv::set) is that the former modifies the parameter for a single model, while the latter modifies the parameter for
every model that is subsequently built using that environment (and leaves the parameter unchanged for models that
were previously built using that environment).

Arguments:

param: The parameter being modified.
newvalue: The desired new value for the parameter.

void Set ( GRB_IntParam param,
int newvalue )

Set the value of an int-valued parameter.

The difference between setting a parameter on a model and setting it on an environment (i.e., through GR-
BEnv::set) is that the former modifies the parameter for a single model, while the latter modifies the parameter for
every model that is subsequently built using that environment (and leaves the parameter unchanged for models that
were previously built using that environment).

Arguments:

param: The parameter being modified.
newvalue: The desired new value for the parameter.

void sSet ( GRB_StringParam param,
string newvalue )

Set the value of a string-valued parameter.

The difference between setting a parameter on a model and setting it on an environment (i.e., through GR-
BEnv::set) is that the former modifies the parameter for a single model, while the latter modifies the parameter for
every model that is subsequently built using that environment (and leaves the parameter unchanged for models that
were previously built using that environment).

Arguments:

param: The parameter being modified.
newvalue: The desired new value for the parameter.

void sSet ( GRB_CharAttr attr,
const GRBVar*x vars,

charx* newvalues,
int count )
Set a char-valued variable attribute for an array of variables.

Arguments:
attr: The attribute being modified.
vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

void sSet ( GRB_CharAttr attr,
const GRBConstr* constrs,
charx* newvalues,
int count )

155



Set a char-valued constraint attribute for an array of constraints.

Arguments:

attr: The attribute being modified.

constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

void sSet ( GRB_CharAttr
const GRBQConstr*
charx*

int

attr,
qconstrs,
newvalues,
count )

Set a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:
attr: The attribute being modified.
constrs: An array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
count: The number of quadratic constraint attributes to set.

void sSet ( GRB_DoubleAttr attr,
double newvalue )
Set the value of a double-valued model attribute.
Arguments:

attr: The attribute being modified.

newvalue: The desired new value for the attribute.

void set ( GRB_DoubleAttr attr,
const GRBVarx vars,
doublex* newvalues,
int count )
Set a double-valued variable attribute for an array of variables.
Arguments:
attr: The attribute being modified.
vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.
void set ( GRB_DoubleAttr attr,
const GRBConstr* constrs,
doublex* newvalues,
int count )

Set a double-valued constraint attribute for an array of constraints.

Arguments:

attr: The attribute being modified.

constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

void set ( GRB_DoubleAttr
const GRBQConstr*
doublex*

int

attr,
qconstrs,
newvalues,
count )

Set a double-valued quadratic constraint attribute for an array of quadratic constraints.

156



Arguments:

void

attr: The attribute being modified.
constrs: An array of quadratic constraints whose attribute values are being modified.

newvalues: The desired new values for the attribute for each input quadratic constraint.

count: The number of quadratic constraint attributes to set.

set ( GRB_IntAttr attr,
int newvalue )

Set the value of an int-valued model attribute.
Arguments:

void

attr: The attribute being modified.
newvalue: The desired new value for the attribute.

set ( GRB_IntAttr attr,
const GRBVar* vars,
int* newvalues,
int count )

Set an int-valued variable attribute for an array of variables.
Arguments:

void

attr: The attribute being modified.

vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

set ( GRB_IntAttr attr,
const GRBConstr* constrs,
int* newvalues,
int count )

Set an int-valued constraint attribute for an array of constraints.
Arguments:

void

attr: The attribute being modified.

constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

set ( GRB_StringAttr attr,
string newvalue )

Set the value of a string-valued model attribute.
Arguments:

void

attr: The attribute being modified.
newvalue: The desired new value for the attribute.

set ( GRB_StringAttr attr,

const GRBVarx* vars,
string* newvalues,
int count )

Set a string-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.

vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

157



void set ( GRB_StringAttr attr,
const GRBConstr* constrs,

string* newvalues,
int count )
Set a string-valued constraint attribute for an array of constraints.

Arguments:
attr: The attribute being modified.
constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

void Set ( GRB_StringAttr attr,
const GRBQConstr* qconstrs,
string* newvalues,
int count )
Set a string-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.

constrs: An array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
count: The number of quadratic constraint attributes to set.

GRBModel::setObjective()

Set the model objective equal to a linear or quadratic expression (for multi-objective optimization, see setObjectiveN).

Note that you can also modify the linear portion of a model objective using the Obj variable attribute. If you
wish to mix and match these two approaches, please note that this method replaces the entire existing objective,
while the Obj attribute can be used to modify individual linear terms.

void setObjective ( GRBLinExpr Llinexpr,
int sense=0 )

Arguments:
linexpr: New linear model objective.
sense (optional): Optimization sense (GRB_MINIMIZE for minimization, GRB_MAXIMIZE for maximization).
Omit this argument to use the ModelSense attribute value to determine the sense.

void setObjective ( GRBQuadExpr quadexpr,
int sense=0 )

Arguments:
quadexpr: New quadratic model objective.
sense (optional): Optimization sense (GRB_MINIMIZE for minimization, GRB_MAXIMIZE for maximization).
Omit this argument to use the ModelSense attribute value.

GRBModel::setObjectiveN()

void setObjectiveN ( GRBLinExpr expr,
int index,
int priority=0,
double weight=1,
double abstol=0,
double reltol=0,
string name="" )

158



Set an alternative optimization objective equal to a linear expression.
Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.
Note that you can also modify an alternative objective using the ObjN variable attribute. If you wish to mix
and match these two approaches, please note that this method replaces the entire existing objective, while the 0bjN
attribute can be used to modify individual terms.
Arguments:
expr: New alternative objective.
index: Index for new objective. If you use an index of 0, this routine will change the primary optimization
objective.
priority: Priority for the alternative objective. This initializes the ObjNPriority attribute for this objective.
weight: Weight for the alternative objective. This initializes the ObjNWeight attribute for this objective.
abstol: Absolute tolerance for the alternative objective. This initializes the ObjNAbsTol attribute for this
objective.
reltol: Relative tolerance for the alternative objective. This initializes the ObjNRelTol attribute for this
objective.
name: Name of the alternative objective. This initializes the ObjNName attribute for this objective.

GRBMaodel::setPWLObj()

Set a piecewise-linear objective function for a variable.

The arguments to this method specify a list of points that define a piecewise-linear objective function for a single
variable. Specifically, the x and y arguments give coordinates for the vertices of the function.

For additional details on piecewise-linear objective functions, refer to this discussion.

void setPWLObj ( GRBvar var,
int npoints,
double[] x,
double[] 7y )
Set the piecewise-linear objective function for a variable.
Arguments:
var: The variable whose objective function is being set.
npoints: Number of points that define the piecewise-linear function.
x: The x values for the points that define the piecewise-linear function. Must be in non-decreasing order.
y: The y values for the points that define the piecewise-linear function.

GRBModel::singleScenarioModel()

Capture a single scenario from a multi-scenario model. Use the ScenarioNumber parameter to indicate which scenario
to capture.

The model on which this method is invoked must be a multi-scenario model, and the result will be a single-scenario
model.

| GRBModel singleScenarioModel ()
Return value:
Model for a single scenario.

GRBModel::sync()

Wait for a previous asynchronous optimization call to complete.

Calling optimizeasync returns control to the calling routine immediately. The caller can perform other compu-
tations while optimization proceeds, and can check on the progress of the optimization by querying various model
attributes. The sync call forces the calling program to wait until the asynchronous optimization call completes. You
must call sync before the corresponding model object is deleted.

159



The sync call throws an exception if the optimization itself ran into any problems. In other words, excep-
tions thrown by this method are those that optimize itself would have thrown, had the original method not been
asynchronous.

Note that you need to call sync even if you know that the asynchronous optimization has already completed.

| void sync ()

GRBModel::terminate()

Generate a request to terminate the current optimization. This method can be called at any time during an opti-
mization (from a callback, from another thread, from an interrupt handler, etc.). Note that, in general, the request
won’t be acted upon immediately.

When the optimization stops, the Status attribute will be equal to GRB_INTERRUPTED.

| void terminate ()

GRBModel::tune()

Perform an automated search for parameter settings that improve performance. Upon completion, this method stores
the best parameter sets it found. The number of stored parameter sets can be determined by querying the value of
the TuneResultCount attribute. The actual settings can be retrieved using getTuneResult.

Please refer to the parameter tuning section for details on the tuning tool.

| void tune ()

GRBModel::update()

Process any pending model modifications.

| void update ()

GRBModel::write()

This method is the general entry point for writing optimization data to a file. It can be used to write optimization
models, solutions vectors, basis vectors, start vectors, or parameter settings. The type of data written is determined
by the file suffix. File formats are described in the File Format section.

Note that writing a model to a file will process all pending model modifications. This is also true when writing
other model information such as solutions, bases, etc.

Note also that when you write a Gurobi parameter file (PRM), both integer or double parameters not at their
default value will be saved, but no string parameter will be saved into the file.

‘ void Write ( const string& filename )

Arguments:

filename: The name of the file to be written. The file type is encoded in the file name suffix. Valid suffixes
are .mps, .rew, .1p, or .rlp for writing the model itself, .dua or .d1lp for writing the dualized model (only
pure LP), .ilp for writing just the IIS associated with an infeasible model (see GRBModel::computellS
for further information), .sol for writing the solution selected by the SolutionNumber parameter, .mst for
writing a start vector, .hnt for writing a hint file, .bas for writing an LP basis, .prm for writing modified
parameter settings, .attr for writing model attributes, or . json for writing solution information in JSON
format. If your system has compression utilities installed (e.g., 7z or zip for Windows, and gzip, bzip2,
or unzip for Linux or macOS), then the files can be compressed, so additional suffixes of .gz, .bz2, or .7z
are accepted.

160



4.3 GRBVar

Gurobi variable object. Variables are always associated with a particular model. You create a variable object by

adding a variable to a model (using GRBModel::addVar), rather than by using a GRBVar constructor.

The methods on variable objects are used to get and set variable attributes. For example, solution information
can be queried by calling get( GRB_DoubleAttr_X). Note that you can also query attributes for a set of variables at

once. This is done using the attribute query method on the GRBModel object (GRBModel::get).

GRBVar::get()

Query the value of a variable attribute.

‘char get ( GRB_CharAttr attr )

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| double get ( GRB_DoubleAttr attr )

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

‘int get (  GRB_IntAttr attr )

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| string get ( GRB_StringAttr attr )

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBVar::index()

| int index ()

This method returns the current index, or order, of the variable in the underlying constraint matrix.

Return value:

-2: removed, -1: not in model, otherwise: index of the variable in the model
Note that the index of a variable may change after subsequent model modifications.

161



GRBVar::sameAs()

‘bool sameAs ( GRBVar var2 )

Check whether two variable objects refer to the same variable.
Arguments:
var2: The other variable.
Return value:
Boolean result indicates whether the two variable objects refer to the same model variable.

GRBVar::set()

Set the value of a variable attribute.

void set ( GRB_CharAttr attr,
char newvalue )
Set the value of a char-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set ( GRB_DoubleAttr attr,
double newvalue )
Set the value of a double-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set ( GRB_IntAttr attr,
int newvalue )
Set the value of an int-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void sSet ( GRB_StringAttr attr,
const string& newvalue )
Set the value of a string-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

162



4.4 GRBConstr

Gurobi constraint object. Constraints are always associated with a particular model. You create a constraint object
by adding a constraint to a model (using GRBModel::addConstr), rather than by using a GRBConstr constructor.
The methods on constraint objects are used to get and set constraint attributes. For example, constraint right-
hand sides can be queried by calling get( GRB_DoubleAttr_RHS). Note that you can also query attributes for a set of
constraints at once. This is done using the attribute query method on the GRBModel object (GRBModel::get).

GRBConstr::get()

Query the value of a constraint attribute.

‘char get ( GRB_CharAttr attr )

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| double get ( GRB_DoubleAttr attr )

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

‘int get (  GRB_IntAttr attr )

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| string get ( GRB_StringAttr attr )

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBConstr::index()

| int index ()
This method returns the current index, or order, of the constraint in the underlying constraint matrix.
Note that the index of a constraint may change after subsequent model modifications.
Return value:
-2: removed, -1: not in model, otherwise: index of the constraint in the model

163



GRBConstr::sameAs()

‘bool sameAs ( GRBConstr constr2 )

Check whether two constraint objects refer to the same constraint.
Arguments:
constr2: The other constraint.
Return value:
Boolean result indicates whether the two constraint objects refer to the same model constraint.

GRBConstr::set()

Set the value of a constraint attribute.

void set ( GRB_CharAttr attr,
char newvalue )
Set the value of a char-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set ( GRB_DoubleAttr attr,
double newvalue )
Set the value of a double-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set ( GRB_IntAttr attr,
int newvalue )
Set the value of an int-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void sSet ( GRB_StringAttr attr,
const string& newvalue )
Set the value of a string-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

164



4.5 GRBQConstr

Gurobi quadratic constraint object. Quadratic constraints are always associated with a particular model. You create
a quadratic constraint object by adding a constraint to a model (using GRBModel::addQConstr), rather than by

using a GRBQConstr constructor.

The methods on quadratic constraint objects are used to get and set quadratic constraint attributes. For exam-

ple, quadratic constraint right-hand sides can be queried by calling

get(GRB_DoubleAttr_QCRHS). Note, however, that it is generally more efficient to query attributes for a set of con-

straints at once. This is done using the attribute query method on the GRBModel object (GRBModel::get).

GRBQConstr::get()

Query the value of a quadratic constraint attribute.

‘char get (  GRB_CharAttr attr )

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| double get ( GRB_DoubleAttr attr )

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| int get ( GRB_IntAttr attr )

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| string get ( GRB_StringAttr attr )

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

165



GRBQConstr::set()

Set the value of a quadratic constraint attribute.

void sSet ( GRB_CharAttr attr,
char newvalue )
Set the value of a char-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void sSet ( GRB_DoubleAttr attr,
double newvalue )
Set the value of a double-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void sSet ( GRB_IntAttr attr,
int newvalue )
Set the value of an int-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void sSet ( GRB_StringAttr attr,
const string& newvalue )
Set the value of a string-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

166



4.6 GRBSOS

Gurobi SOS constraint object. SOS constraints are always associated with a particular model.

You create an

SOS object by adding an SOS constraint to a model (using GRBModel::addSOS), rather than by using a GRBSOS

constructor. Similarly, SOS constraints are removed using the GRBModel::remove method.

An SOS constraint can be of type 1 or 2 (GRB_S0S_TYPE1 or GRB_SOS_TYPE2). A type 1 SOS constraint is a set of
variables for which at most one variable in the set may take a value other than zero. A type 2 SOS constraint is an
ordered set of variables where at most two variables in the set may take non-zero values. If two take non-zero values,

they must be contiguous in the ordered set.

SOS constraint objects have one attribute, IISS0S, which can be queried with the GRBSOS::get method.

GRBSO0S::get()

Query the value of an SOS attribute.

| int get ( GRB_IntAttr attr )

Arguments:
attr: The attribute being queried.
Return value:
The current value of the requested attribute.

GRBSOS::set()

Set the value of an SOS attribute.

void sSet ( GRB_IntAttr attr,
int newvalue )
Set the value of an int-valued attribute.
Arguments:
attr: The attribute being modified.

newvalue: The desired new value of the attribute.

167



4.7 GRBGenConstr

Gurobi general constraint object. General constraints are always associated with a particular model. You create
a general constraint object by adding a constraint to a model (using one of the GRBModel::addGenConstrXxx
methods), rather than by using a GRBGenConstr constructor.

The methods on general constraint objects are used to get and set general constraint attributes. For example,
general constraint types can be queried by calling
get(GRB_IntAttr_GenConstrType). Note, however, that it is generally more efficient to query attributes for a set of
constraints at once. This is done using the attribute query method on the GRBModel object (GRBModel::get).

GRBGenConstr::get()

Query the value of a general constraint attribute.

| double get ( GRB_DoubleAttr attr )

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| int get ( GRB_IntAttr attr )

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| string get ( GRB_StringAttr attr )

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBGenConstr::set()

Set the value of a general constraint attribute.

void set ( GRB_DoubleAttr attr,
double newvalue )
Set the value of a double-valued attribute.
Arguments:
attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set ( GRB_IntAttr attr,
int newvalue )

168



Set the value of an int-valued attribute.
Arguments:
attr: The attribute being modified.

newvalue: The desired new value of the attribute.

void Set ( GRB_StringAttr attr,
const stringk newvalue )
Set the value of a string-valued attribute.
Arguments:
attr: The attribute being modified.

newvalue: The desired new value of the attribute.

169



4.8 GRBExpr

Abstract base class for the GRBLinExpr and GRBQuadExpr classes. Expressions are used to build objectives and
constraints. They are temporary objects that typically have short lifespans.

GRBExpr::getValue()

Compute the value of an expression for the current solution.

| double getValue ()
Return value:
Value of the expression for the current solution.

170



4.9 GRBLinExpr

Gurobi linear expression object. A linear expression consists of a constant term, plus a list of coefficient-variable
pairs that capture the linear terms. Linear expressions are used to build constraints. They are temporary objects
that typically have short lifespans.

The GRBLinExpr class is a sub-class of the abstract base class GRBExpr.

You generally build linear expressions using overloaded operators. For example, if x is a GRBVar object,
then x + 1 is a GRBLinExpr object. Expressions can be built from constants (e.g., expr = 0), variables (e.g.,
expr = 1 * x + 2 * y), or from other expressions (e.g., expr2 = 2 * exprl + x, or expr3 = exprl + 2 * expr2).
You can also modify existing expressions (e.g., expr += x, or expr2 -= exprl).

Another option for building expressions is to use the addTerms method, which adds an array of new terms at
once. Terms can also be removed from an expression, using remove.

Note that the cost of building expressions depends heavily on the approach you use. While you can generally
ignore this issue when building small expressions, you should be aware of a few efficiency issues when building large
expressions:

¢ You should avoid using expr = expr + x in a loop. It will lead to runtimes that are quadratic in the number
of terms in the expression.

e Using expr += x (or expr -= x) is much more efficient than expr = expr + x. Building a large expression
by looping over += statements is reasonably efficient, but it isn’t the most efficient approach.

e The most efficient way to build a large expression is to make a single call to addTerms.

To add a linear constraint to your model, you generally build one or two linear expression objects (exprl and
expr2) and then use an overloaded comparison operator to build an argument for GRBModel::addConstr. To give a
few examples:

model.addConstr(exprl <= expr2)

model.addConstr(exprl == 1)

model.addConstr(2 * z + 3 xy <= 4)
Once you add a constraint to your model, subsequent changes to the expression object you used to build the constraint
will not change the constraint (you would use GRBModel::chgCoeff for that).

Individual terms in a linear expression can be queried using the getVar, getCoeff, and getConstant methods. You
can query the number of terms in the expression using the size method.

Note that a linear expression may contain multiple terms that involve the same variable. These duplicate terms
are merged when creating a constraint from an expression, but they may be visible when inspecting individual terms
in the expression (e.g., when using getVar).

GRBLinExpr()

Linear expression constructor. Create a constant expression or an expression with one term.

| GRBLinExpr GRBLinEXpr ( double constant=0.0 )

Create a constant linear expression.
Arguments:

constant (optional): Constant value for expression.
Return value:

A constant expression object.

GRBLinExpr GRBLinExpr ( GRBVar var,
double coeff=1.0 )

Create an expression with one term.
Arguments:

var: Variable for expression term.

coeff (optional): Coefficient for expression term.
Return value:

An expression object containing one linear term.

171



GRBLinExpr::addTerms()

Add new terms into a linear expression.

void addTerms ( const double* coeffs,
const GRBVar*x vars,
int count )
Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.
count: Number of terms to add to the expression.

GRBLinExpr::clear()

Set a linear expression to 0.
You should use the overloaded expr = 0 instead. The clear method is mainly included for consistency with our
interfaces to non-overloaded languages.

| void clear ()

GRBLinExpr::getConstant()

Retrieve the constant term from a linear expression.

| double getConstant ()
Return value:
Constant from expression.

GRBLinExpr::getCoeff()

Retrieve the coefficient from a single term of the expression.

| double getCoeff ( int i)

Arguments:
i: Index for coefficient of interest.
Return value:
Coefficient for the term at index i in the expression.

GRBLinExpr::getValue()

Compute the value of a linear expression for the current solution.

| double getValue ()
Return value:
Value of the expression for the current solution.

172



GRBLinExpr::getVar()

Retrieve the variable object from a single term of the expression.

| GRBVar getVar ( int i)

Arguments:
i: Index for term of interest.
Return value:
Variable for the term at index i in the expression.

GRBLinExpr::operator=

Set an expression equal to another expression.

‘ GRBLinExpr oOperator= ( const GRBLinExpr& rhs )

Arguments:

rhs: Source expression.
Return value:

New expression object.

GRBLinExpr::operator+

Add one expression into another, producing a result expression.

‘ GRBLinExpr operator+ ( const GRBLinExpr& rhs )

Arguments:
rhs: Expression to add.
Return value:

Expression object which is equal the sum of the invoking expression and the argument expression.

GRBLinExpr::operator-

Subtract one expression from another, producing a result expression.

‘ GRBLinExpr operator— ( const GRBLinExpr& rhs )
Arguments:
rhs: Expression to subtract.

Return value:
Expression object which is equal the invoking expression minus the argument expression.

GRBLinExpr::operator+=
Add an expression into the invoking expression.

‘ void operator+= ( const GRBLinExpr& expr )

Arguments:
expr: Expression to add.

173



GRBLinExpr::operator-=

Subtract an expression from the invoking expression.

| void operator-= ( const GRBLinExpr& expr )

Arguments:
expr: Expression to subtract.

GRBLinExpr::operator*=

Multiply the invoking expression by a constant.

| void operator*= ( double multiplier )

Arguments:
multiplier: Constant multiplier.

GRBLinExpr::remove()

Remove a term from a linear expression.

| void remove ( int i)

Remove the term stored at index i of the expression.
Arguments:
i: The index of the term to be removed.

‘boolean remove ( GRBVar var )

Remove all terms associated with variable var from the expression.
Arguments:
var: The variable whose term should be removed.
Return value:
Returns true if the variable appeared in the linear expression (and was removed).

GRBLinExpr::size()

Retrieve the number of terms in the linear expression (not including the constant).

| unsigned int Size ()
Return value:
Number of terms in the expression.

174



4.10 GRBQuadExpr

Gurobi quadratic expression object. A quadratic expression consists of a linear expression, plus a list of coefficient-
variable-variable triples that capture the quadratic terms. Quadratic expressions are used to build quadratic objective
functions and quadratic constraints. They are temporary objects that typically have short lifespans.

The GRBQuadExpr class is a sub-class of the abstract base class GRBExpr.

You generally build quadratic expressions using overloaded operators. For example, if x is a GRBVar object,
then x * x is a GRBQuadExpr object. Expressions can be built from constants (e.g., expr = 0), variables (e.g.,
expr = 1 * x *x + 2 * x * y), or from other expressions (e.g., expr2 = 2 * exprl + x * x,0or expr3 = exprl + 2 * expr2).
You can also modify existing expressions (e.g., expr += x * x, or expr2 -= exprl).

The other option for building expressions is to start with an empty expression (using the GRBQuadExpr con-
structor), and then add terms. Terms can be added individually (using addTerm) or in groups (using addTerms).
Terms can also be removed from an expression (using remove).

Note that the cost of building expressions depends heavily on the approach you use. While you can generally
ignore this issue when building small expressions, you should be aware of a few efficiency issues when building large
expressions:

e You should avoid using expr = expr + x*xin a loop. It will lead to runtimes that are quadratic in the number
of terms in the expression.

o Using expr += x*x (or expr -= x*x) is much more efficient than expr = expr + x*x. Building a large ex-
pression by looping over += statements is reasonably efficient, but it isn’t the most efficient approach.

e The most efficient way to build a large expression is to make a single call addTerms.

To add a quadratic constraint to your model, you generally build one or two quadratic expression objects (qexpri
and gexpr2) and then use an overloaded comparison operator to build an argument for GRBModel::addQConstr. To
give a few examples:

model.addQConstr(gexprl <= gexpr2)
model.addQConstr(gexprl == 1)
model.addQConstr(2*xz xx + 3 *x yxy <= 4)

Once you add a constraint to your model, subsequent changes to the expression object you used to build the constraint
will have no effect on that constraint.

Individual terms in a quadratic expression can be queried using the getVarl, getVar2, and getCoeff methods.
You can query the number of quadratic terms in the expression using the size method. To query the constant and
linear terms associated with a quadratic expression, first obtain the linear portion of the quadratic expression using
getLinExpr, and then use the getConstant, getCoeff, or getVar on the resulting GRBLinExpr object.

Note that a quadratic expression may contain multiple terms that involve the same variable pair. These duplicate
terms are merged when creating the model objective from an expression, but they may be visible when inspecting
individual terms in the expression (e.g., when using getVarl and getVar2).

GRBQuadExpr()

Quadratic expression constructor. Create a constant expression or an expression with one term.

| GRBQuadExpr GRBQuadEXpr ( double constant=0.0 )

Create a constant quadratic expression.
Arguments:

constant (optional): Constant value for expression.
Return value:

A constant expression object.

GRBQuadExpr GRBQuadExpr ( GRBVar var,
double coeff=1.0 )
Create an expression with one term.

175



Arguments:

var: Variable for expression term.

coeff (optional): Coefficient for expression term.
Return value:

An expression object containing one quadratic term.

| GRBQuadExpr GRBQuadEXpr ( GRBLinExpr linexpr )

Initialize a quadratic expression from an existing linear expression.
Arguments:
orig: Existing linear expression to copy.
Return value:
Quadratic expression object whose initial value is taken from the input linear expression.

GRBQuadExpr::addTerm()

Add a single new term into a quadratic expression.

void addTerm ( double coeff,
GRBVar var )
Add a new linear term into a quadratic expression.
Arguments:
coeff: Coefficient for new linear term.
var: Variable for new linear term.

void addTerm ( double coeff,
GRBVar varl,
GRBVar var2 )
Add a new quadratic term into a quadratic expression.
Arguments:
coeff: Coefficient for new quadratic term.
varl: Variable for new quadratic term.
var2: Variable for new quadratic term.

GRBQuadExpr::addTerms()

Add new terms into a quadratic expression.

void addTerms ( const doublex coeffs,
const GRBVar* vars,
int count )
Add new linear terms into a quadratic expression.
Arguments:
coeffs: Coefficients for new linear terms.
vars: Variables for new linear terms.
count: Number of linear terms to add to the quadratic expression.

void addTerms ( const doublex coeffs,
const GRBVar*x varsi,
const GRBVar*x vars2,
int count )

176



Add new quadratic terms into a quadratic expression.
Arguments:
coeffs: Coefficients for new quadratic terms.
varsl: First variables for new quadratic terms.
vars2: Second variables for new quadratic terms.
count: Number of quadratic terms to add to the quadratic expression.

GRBQuadExpr::clear()

Set a quadratic expression to 0.
You should use the overloaded expr = 0 instead. The clear method is mainly included for consistency with our
interfaces to non-overloaded languages.

| void clear ()

GRBQuadExpr::getCoeff()

Retrieve the coefficient from a single quadratic term of the quadratic expression.

| double getCoeff ( int i)

Arguments:
i: Index for coefficient of interest.
Return value:
Coefficient for the quadratic term at index i in the quadratic expression.

GRBQuadExpr::getLinExpr()

A quadratic expression is represented as a linear expression, plus a list of quadratic terms. This method retrieves the
linear expression associated with the quadratic expression.

| GRBLinExpr getLinExpr ()
Return value:
Linear expression associated with the quadratic expression.

GRBQuadExpr::getValue()

Compute the value of a quadratic expression for the current solution.

| double getValue ()
Return value:
Value of the expression for the current solution.

GRBQuadExpr::getVarl()

Retrieve the first variable object associated with a single quadratic term from the expression.

| GRBVar getVarl ( int i)

Arguments:
i: Index for term of interest.
Return value:
First variable for the quadratic term at index i in the quadratic expression.

177



GRBQuadExpr::getVar2()

Retrieve the second variable object associated with a single quadratic term from the expression.

| GRBVar getVar2 ( int i)

Arguments:
i: Index for term of interest.
Return value:
Second variable for the quadratic term at index i in the quadratic expression.

GRBQuadExpr::operator=

Set a quadratic expression equal to another quadratic expression.

‘ GRBQuadExpr oOperator= ( const GRBQuadExpr& rhs )
Arguments:
rhs: Source quadratic expression.

Return value:
New quadratic expression object.

GRBQuadExpr::operator+

Add one expression into another, producing a result expression.

‘ GRBQuadExpr operator+ ( const GRBQuadExpr& rhs )
Arguments:
rhs: Expression to add.

Return value:
Expression object which is equal the sum of the invoking expression and the argument expression.

GRBQuadExpr::operator-

Subtract one expression from another, producing a result expression.

‘ GRBQuadExpr operator— (  const GRBQuadExpr& rhs )
Arguments:
rhs: Expression to subtract.

Return value:
Expression object which is equal the invoking expression minus the argument expression.

GRBQuadExpr::operator+=

Add an expression into the invoking expression.

‘ void operator+= ( const GRBQuadExpr& expr )

Arguments:
expr: Expression to add.

178



GRBQuadExpr::operator-=

Subtract an expression from the invoking expression.

| void operator-= ( const GRBQuadExpr& expr )

Arguments:
expr: Expression to subtract.

GRBQuadExpr::operator*=

Multiply the invoking expression by a constant.

| void operator*= ( double multiplier )

Arguments:
multiplier: Constant multiplier.

GRBQuadExpr::remove()

Remove a quadratic term from a quadratic expression.

| void remove ( int i)

Remove the quadratic term stored at index i of the expression.
Arguments:
i: The index of the term to be removed.

‘boolean remove ( GRBVar var )

Remove all quadratic terms associated with variable var from the quadratic expression.
Arguments:

var: The variable whose term should be removed.
Return value:

Returns true if the variable appeared in the quadratic expression (and was removed).

GRBQuadExpr::size()

Retrieve the number of quadratic terms in the quadratic expression.

| unsigned int Size ()
Return value:
Number of quadratic terms in the expression.

179



4.11 GRBTempConstr

Gurobi temporary constraint object. Objects of this class are created as intermediate results when building constraints
using overloaded operators. There are no member functions on this class. Instead, GRBTempConstr objects are created
by a set of non-member functions: ==, <=, and >=. You will generally never store objects of this class in your own
variables.

Consider the following examples:

model.addConstr(x + y <= 1);
model.addQConstr(x*x + y*y <= 1);

The overloaded <= operator creates an object of type GRBTempContr, which is then immediately passed to method
GRBModel::addConstr or GRBModel::addQConstr.

180



4.12 GRBColumn

Gurobi column object. A column consists of a list of coefficient, constraint pairs. Columns are used to represent the
set of constraints in which a variable participates, and the associated coefficients. They are temporary objects that

typically have short lifespans.

You generally build columns by starting with an empty column (using the GRBColumn constructor), and then
adding terms. Terms can be added individually, using addTerm, or in groups, using addTerms. Terms can also be

removed from a column, using remove.

Individual terms in a column can be queried using the getConstr, and getCoeff methods. You can query the

number of terms in the column using the size method.

GRBColumn()

Column constructor. Create an empty column.

| GRBColumn GRBColumn ()
Return value:
An empty column object.

GRBColumn::addTerm()

Add a single term into a column.

void addTerm ( double coeff,
GRBConstr constr )
Arguments:
coeff: Coefficient for new term.
constr: Constraint for new term.

GRBColumn::addTerms()

Add new terms into a column.

void addTerms ( const doublex coeffs,
const GRBConstr* constrs,
int count )
Add a list of terms into a column.
Arguments:

coeffs: Coefficients for new terms.
constrs: Constraints for new terms.
count: Number of terms to add to the column.

GRBColumn::clear()

Remove all terms from a column.

void clear ()

181



GRBColumn::getCoeff()

Retrieve the coefficient from a single term in the column.

| double getCoeff ( int i)

Return value:
Coefficient for the term at index i in the column.

GRBColumn::getConstr()

Retrieve the constraint object from a single term in the column.

‘GRBConstr getConstr ( int i)

Return value:
Constraint for the term at index i in the column.

GRBColumn::remove()

Remove a single term from a column.

| void remove ( int i)

Remove the term stored at index i of the column.
Arguments:
i: The index of the term to be removed.

‘boolean remove ( GRBConstr constr )

Remove the term associated with constraint constr from the column.
Arguments:

constr: The constraint whose term should be removed.
Return value:

Returns true if the constraint appeared in the column (and was removed).

GRBColumn::size()

Retrieve the number of terms in the column.

| unsigned int Size ()
Return value:
Number of terms in the column.

182



4.13 GRBCallback

Gurobi callback class. This is an abstract class. To implement a callback, you should create a subclass of this class
and implement a callback() method. If you pass an object of this subclass to method GRBModel::setCallback
before calling GRBModel::optimize or GRBModel::computellS, the callback() method of the class will be called
periodically. Depending on where the callback is called from, you can obtain various information about the progress
of the optimization.

Note that this class contains one protected int member variable: where. You can query this variable from your
callback() method to determine where the callback was called from.

Gurobi callbacks can be used both to monitor the progress of the optimization and to modify the behavior
of the Gurobi optimizer. A simple user callback function might call the GRBCallback::getIntInfo or GRBCall-
back::getDoubleInfo methods to produce a custom display, or perhaps to terminate optimization early (using GRB-
Callback::abort) or to proceed to the next phase of the computation (using GRBCallback::proceed). More sophisti-
cated MIP callbacks might use GRBCallback::getNodeRel or GRBCallback::getSolution to retrieve values from the
solution to the current node, and then use GRBCallback::addCut or GRBCallback::addLazy to add a constraint to
cut off that solution, or GRBCallback::setSolution to import a heuristic solution built from that solution. For multi-
objective problems, you might use GRBCallback::stopOneMultiObj to interrupt the optimization process of one of
the optimization steps in a multi-objective MIP problem without stopping the hierarchical optimization process.

When solving a model using multiple threads, the user callback is only ever called from a single thread, so you
don’t need to worry about the thread-safety of your callback.

Note that changing parameters from within a callback is not supported, doing so may lead to undefined behavior.

You can look at the callback_c++.cpp example for details of how to use Gurobi callbacks.

GRBCallback()

Callback constructor.

| GRBCallback GRBCallback ()
Return value:
A callback object.

GRBCallback::abort()

Abort  optimization. When the optimization stops, the Status attribute will be equal to
GRB_INTERRUPTED.

| void abort ()

GRBCallback::addCut()

Add a cutting plane to the MIP model from within a callback function. Note that this method can only be invoked
when the where member variable is equal to GRB_CB_MIPNODE (see the Callback Codes section for more information).

Cutting planes can be added at any node of the branch-and-cut tree. However, they should be added sparingly,
since they increase the size of the relaxation model that is solved at each node and can significantly degrade node
processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the relaxation solution
at the current node, you should first call getNodeRel.

You should consider setting parameter PreCrush to value 1 when adding your own cuts. This setting shuts off
a few presolve reductions that can sometimes prevent your cut from being applied to the presolved model (which
would result in your cut being silently ignored).

Note that cutting planes added through this method must truly be cutting planes -- they can cut off continuous
solutions, but they may not cut off integer solutions that respect the original constraints of the model. Ignoring this
restriction will lead to incorrect solutions.

183



void addCut ( const GRBLinExpr& lhsExpr,
char sense,
double rhsVal )
Arguments:
lhsExpr: Left-hand side expression for new cutting plane.
sense: Sense for new cutting plane (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsVal: Right-hand side value for new cutting plane.

| void addCut ( GRBTempConstr& tc )

Arguments:

tc: Temporary constraint object, created using an overloaded comparison operator. See GRBTempConstr
for more information.

GRBCallback::addLazy()

Add a lazy constraint to the MIP model from within a callback function. Note that this method can only be invoked
when the where member variable is equal to GRB_CB_MIPNODE or GRB_CB_MIPSOL (see the Callback Codes section for
more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large to represent
explicitly. By only including the constraints that are actually violated by solutions found during the branch-and-cut
search, it is sometimes possible to find a proven optimal solution while only adding a fraction of the full set of
constraints.

You would typically add a lazy constraint by first querying the current node solution (by calling getSolution from
a GRB_CB_MIPSOL callback, or getNodeRel from a GRB_CB_MIPNODE callback), and then calling addLazy() to add a
constraint that cuts off the solution. Gurobi guarantees that you will have the opportunity to cut off any solutions
that would otherwise be considered feasible.

MIP solutions may be generated outside of a MIP node. Thus, generating lazy constraints is optional when the
where value in the callback function equals GRB_CB_MIPNODE. To avoid this, we recommend to always check when the
where value equals GRB_CB_MIPSOL.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints, including those
that have already been added. Node solutions will usually respect previously added lazy constraints, but not always.
Note that you must set the LazyConstraints parameter if you want to use lazy constraints.

void addLazy (  const GRBLinExpr& lhsExpr,
char sense,
double rhsVal )
Arguments:
lhsExpr: Left-hand side expression for new lazy constraint.
sense: Sense for new lazy constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsVal: Right-hand side value for new lazy constraint.

‘void addLazy ( GRBTempConstrg& tc )

Arguments:

tc: Temporary constraint object, created using an overloaded comparison operator. See GRBTempConstr
for more information.

184



GRBCallback::getDoublelnfo()

Request double-valued callback information. The available information depends on the value of the where member.
For information on possible values of where, and the double-valued information that can be queried for different
values of where, please refer to the Callback section.

| double getDoubleInfo ( int what )

Arguments:

what: Information requested (refer the list of Gurobi Callback Codes for possible values).
Return value:

Value of requested callback information.

GRBCallback::getlIntinfo()

Request int-valued callback information. The available information depends on the value of the where member. For
information on possible values of where, and the int-valued information that can be queried for different values of
where, please refer to the Callback section.

| int getIntInfo ( int what)

Arguments:

what: Information requested (refer to the list of Gurobi Callback Codes for possible values).
Return value:

Value of requested callback information.

GRBCallback::getNodeRel()

Retrieve values from the node relaxation solution at the current node. Only available when the where member
variable is equal to GRB_CB_MIPNODE, and GRB_CB_MIPNODE_STATUS is equal to GRB_OPTIMAL.

| double getNodeRel ( GRBVar v )

Arguments:
v: The variable whose value is desired.
Return value:
The value of the specified variable in the node relaxation for the current node.

doublex getNodeRel ( const GRBVar* xvars,
int len )

Arguments:
xvars: The list of variables whose values are desired.
len: The number of variables in the list.

Return value:
The values of the specified variables in the node relaxation for the current node. Note that the result is
heap-allocated, and must be returned to the heap by the user.

185



GRBCallback::getSolution()

Retrieve values from the current solution vector. Only available when the where member variable is equal to GRB_-
CB_MIPSOL or GRB_CB_MULTIOBJ.

| double getSolution ( GRBVar v )

Arguments:
v: The variable whose value is desired.
Return value:
The value of the specified variable in the current solution vector.

doublex* getSolution (  const GRBVar* xvars,
int len )

Arguments:
xvars: The list of variables whose values are desired.
len: The number of variables in the list.

Return value:
The values of the specified variables in the current solution. Note that the result is heap-allocated, and must
be returned to the heap by the user.

GRBCallback::getStringinfo()

Request string-valued callback information. The available information depends on the value of the where member.
For information on possible values of where, and the string-valued information that can be queried for different values
of where, please refer to the Callback section.

| string getStringInfo ( int what)

Arguments:

what: Information requested (refer to the list of Gurobi Callback Codes for possible values).
Return value:

Value of requested callback information.

GRBCallback::proceed()

Generate a request to proceed to the next phase of the computation. Note that the request is only accepted in a few
phases of the algorithm, and it won’t be acted upon immediately.

In the current Gurobi version, this callback allows you to proceed from the NoRel heuristic to the standard MIP
search. You can determine the current algorithm phase using MIP_PHASE, MIPNODE_PHASE, or MIPSOL_PHASE queries
from a callback.

| void proceed ()

186



GRBCallback::setSolution()

Import solution values for a heuristic solution. Only available when the where member variable is equal to GRB_CB_MIP,

GRB_CB_MIPNODE, or GRB_CB_MIPSOL (see the Callback Codes section for more information).

When you specify a heuristic solution from a callback, variables initially take undefined values. You should use
this method to specify variable values. You can make multiple calls to setSolution from one callback invocation
to specify values for multiple sets of variables. After the callback, if values have been specified for any variables,
the Gurobi optimizer will try to compute a feasible solution from the specified values, possibly filling in values for
variables whose values were left undefined. You can also optionally call useSolution within your callback function to

try to immediately compute a feasible solution from the specified values.
Note that this method is not supported in a Compute Server environment.

void setSolution ( GRBVar v,
double val )
Arguments:
v: The variable whose values is being set.
val: The value of the variable in the new solution.

void setSolution ( const GRBVar* xvars,
const doublex sol,
int len )
Arguments:
xvars: The variables whose values are being set.
sol: The values of the variables in the new solution.
len: The number of variables.

GRBCallback::stopOneMultiObj()

Interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem without stopping
the hierarchical optimization process. Only available for multi-objective MIP models and when the where member

variable is not equal to GRB_CB_MULTIOBJ (see the Callback Codes section for more information).

You would typically stop a multi-objective optimization step by querying the last finished number of multi-
objectives steps, and using that number to stop the current step and move on to the next hierarchical objective (if

any) as shown in the following example:
Example usage:

#include <ctime>

class mycallback: public GDBCallback
{
public:
int objcnt 0;
time_t starttime = time();

protected:
void callback () {
if (where == GRB_CB_MULTIOBJ) {
/* get current objective number */

objcnt = getIntInfo(GRB_CB_MULTIOBJ_OBJCNT) ;

/* reset start time to current time */
starttime = time();
} else if (time() - startime > BIG ||

/* takes too long or good enough */) {

/* stop only this optimization step */

187



stopOneMultiObj (objcnt) ;
}
}
}

You should refer to the section on Multiple Objectives for information on how to specify multiple objective
functions and control the trade-off between them.

| void stopOneMultiObj ( int objent )

Arguments:
objnum: The number of the multi-objective optimization step to interrupt. For processes running locally,
this argument can have the special value -1, meaning to stop the current step.

GRBCallback::useSolution()

Once you have imported solution values using setSolution, you can optionally call useSolution in a GRB_CB_MIPNODE
callback to immediately use these values to try to compute a heuristic solution. Alternatively, you can call useSolution
in a GRB_CB_MIP or GRB_CB_MIPSOL callback, which will store the solution until it can be processed internally.

| double useSolution ()
Return value:
The objective value for the solution obtained from your solution values (or GRB_INFINITY if no improved
solution is found).

188



4.14 GRBException

Gurobi exception object. Exceptions can be thrown by nearly every method in the Gurobi C++ APIL.

GRBException()

Exception constructor.

| GRBException GRBException ( int errcode=0 )

Create a Gurobi exception.
Arguments:

errcode (optional): Error code for exception.
Return value:

An exception object.

GRBException GRBException ( string errmsg,
int errcode=0 )

Create a Gurobi exception.
Arguments:

errmsg: Error message for exception.

errcode (optional): Error code for exception.
Return value:

An exception object.

GRBException::getErrorCode()

Retrieve the error code associated with a Gurobi exception.

| int getErrorCode ()
Return value:
The error code associated with the exception.

GRBException::getMessage()

Retrieve the error message associated with a Gurobi exception.

| const string getMessage ()
Return value:
The error message associated with the exception.

189



4.15 GRBBatch

Gurobi batch object. Batch optimization is a feature available with the Gurobi Cluster Manager. It allows a client
program to build an optimization model, submit it to a Compute Server cluster (through a Cluster Manager), and
later check on the status of the model and retrieve its solution. For more information, please refer to the Batch
Optimization section.

Commonly used methods on batch objects include update (refresh attributes from the Cluster Manager), abort
(abort execution of a batch request), retry (retry optimization for an interrupted or failed batch), discard (remove
the batch request and all related information from the Cluster Manager), and getJSONSolution (query solution
information for the batch request).

These methods are built on top of calls to the Cluster Manager REST API. They are meant to simplify such
calls, but note that you always have the option of calling the REST API directly.

Batch objects have four attributes:

e BatchID: Unique ID for the batch request.
o BatchStatus: Last batch status.

o BatchErrorCode: Last error code.

o BatchErrorMessage: Last error message.

You can access their values by using get. Note that all Batch attributes are locally cached, and are only updated
when you create a client-side batch object or when you explicitly update this cache, which can done by calling update.

GRBBatch()

Constructor for GRBBatch.

Given a BatchID, as returned by optimizeBatch, and a Gurobi environment that can connect to the appropriate
Cluster Manager (i.e., one where parameters CSManager, UserName, and ServerPassword have been set appropri-
ately), this function returns a GRBBatch object. With it, you can query the current status of the associated
batch request and, once the batch request has been processed, you can query its solution. Please refer to the Batch
Optimization section for details and examples.

GRBBatch GRBBatch ( GRBEnv& env,
string& batchID )

Arguments:

env: The environment in which the new batch object should be created.

batchID: ID of the batch request for which you want to access status and other information.
Return value:

New batch object.
Example usage:

GRBBatch batch = GRBBatch(env, batchID);

GRBBatch::abort()

This method instructs the Cluster Manager to abort the processing of this batch request, changing its status to
ABORTED. Please refer to the Batch Status Codes section for further details. ‘ void abort ()

Example usage:

// Abort this batch if it is taking too long
time_t curtime = time (NULL);

if (curtime - starttime > maxwaittime) {
batch->abort () ;
break;

}

190



GRBBatch::discard()

This method instructs the Cluster Manager to remove all information related to the batch request in question,
including the stored solution if available. Further queries for the associated batch request will fail with error code
GRB_ERROR_DATA_NOT_AVAILABLE. Use this function with care, as the removed information can not be recovered later
on. | void discard ()

Example usage:

void
batchdiscard (string batchID)

GRBBatch::getJSONSolution()

This method retrieves the solution of a completed batch request from a Cluster Manager. The solution is returned
as a JSON solution string. For this call to succeed, the status of the batch request must be COMPLETED. Please refer
to the Batch Status Codes section for further details. ‘ string getJSONSolution () Return value:

The requested solution in JSON format.
Example usage:

// Pretty printing the general solution information
cout << "JSON solution:" << batch->getJSONSolution () << endl;

GRBBatch::get()

Query the value of an attribute.

| int get ( GRB_IntAttr attr )

Query the value of an int-valued batch attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

| string get ( GRB_StringAttr attr )

Query the value of a string-valued batch attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBBatch::retry()

This method instructs the Cluster Manager to retry optimization of a failed or aborted batch request, changing its
status to SUBMITTED. Please refer to the Batch Status Codes section for further details. | void retry ()

Example usage:

// If the batch failed, we try again
if (BatchStatus == GRB_BATCH_FAILED)
batch->retry ();

191



GRBBatch::update()

All Batch attribute values are cached locally, so queries return the value received during the last communication with
the Cluster Manager. This method refreshes the values of all attributes with the values currently available in the
Cluster Manager (which involves network communication). | void update ()

Example usage:

// Update the resident attribute cache of the Batch object with the
// latest values from the cluster manager.

batch->update () ;
BatchStatus = batch->get (GRB_IntAttr_BatchStatus);

GRBBatch::writeJSONSolution()

This method returns the stored solution of a completed batch request from a Cluster Manager. The solution
is returned in a gzip-compressed JSON file. The file name you provide must end with a .json.gz extension.
The JSON format is described in the JSON solution format section. Note that for this call to succeed, the sta-
tus of the batch request must be COMPLETED. Please refer to the Batch Status Codes section for further details.
| void writeJSONSolution ( string& filename )

Arguments:
filename: Name of file where the solution should be stored (in JSON format).

Example usage:

// Write the full JSON solution string to a file
batch->writeJSONSolution("batch-sol. json.gz");

192



4.16 Non-Member Functions

Several Gurobi C++ interface functions aren’t member functions on a particular object.

operator==

Create an equality constraint

GRBTempConstr oOperator== GRBQuadExpr lhsExpr,
GRBQuadExpr rhsExpr )
Arguments:
lhsExpr: Left-hand side of equality constraint.
rhsExpr: Right-hand side of equality constraint.
Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to GRBModel::addConstr.

operator<=

Create an inequality constraint

GRBTempConstr oOperator<= ( GRBQuadExpr lhsExpr,
GRBQuadExpr rhsExpr )

Arguments:
lhsExpr: Left-hand side of inequality constraint.
rhsExpr: Right-hand side of inequality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to GRBModel::addConstr
or GRBModel::addQConstr.

operator>=

Create an inequality constraint

GRBTempConstr oOperator>= ( GRBQuadExpr lhsExpr,
GRBQuadExpr rhsExpr )

Arguments:
lhsExpr: Left-hand side of inequality constraint.
rhsExpr: Right-hand side of inequality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to GRBModel::addConstr
or GRBModel::addQConstr.

operator+

Overloaded operator on expression objects.

GRBLinExpr operator+ (  const GRBLinExpr& exprl,
const GRBLinExpr& expr2 )
Add a pair of expressions.
Arguments:
exprl: First expression to be added.

193



expr2: Second expression to be added.
Return value:
Sum expression.

‘ GRBLinExpr oOperator+ ( const GRBLinExpr& expr )

Allow plus sign to be used before an expression.
Arguments:

expr: Expression.
Return value:

Result expression.

GRBLinExpr oOperator+ ( GRBVar x,
GRBVar vy )
Add a pair of variables.
Arguments:
x: First variable to be added.
y: Second variable to be added.
Return value:
Sum expression.

GRBQuadExpr operator+ ( const GRBQuadExpr& expri,
const GRBQuadExpr& expr2 )
Add a pair of expressions.
Arguments:
exprl: First expression to be added.
expr2: Second expression to be added.
Return value:
Sum expression.

‘ GRBQuadExpr operator+ ( const GRBQuadExpr& expr )

Allow plus sign to be used before an expression.
Arguments:

expr: Expression.
Return value:

Result expression.

operator-

Overloaded operator on expression objects.

GRBLinExpr operator— ( const GRBLinExpr& expri,
const GRBLinExpr& expr2 )
Subtract one expression from another.
Arguments:
expril: Start expression.
expr2: Expression to be subtracted.
Return value:
Difference expression.

194



‘ GRBLinExpr operator— ( const GRBLinExpr& expr )

Negate an expression.
Arguments:

expr: Expression.
Return value:

Negation of expression.

GRBQuadExpr operator- ( const GRBQuadExpr& exprl,
const GRBQuadExpr& expr2 )
Subtract one expression from another.
Arguments:
exprl: Start expression.
expr2: Expression to be subtracted.
Return value:
Difference expression.

‘ GRBQuadExpr operator- ( const GRBQuadExpr& expr )

Negate an expression.
Arguments:

expr: Expression.
Return value:

Negation of expression.

operator*®

Overloaded operator on expression objects.

GRBLinExpr operator* ( GRBVar x,
double a )
Multiply a variable and a constant.
Arguments:
x: Variable.
a: Constant multiplier.
Return value:
Expression that represents the result of multiplying the variable by a constant.

GRBLinExpr oOperator* ( double a,

GRBVar x )
Multiply a variable and a constant.
Arguments:
a: Constant multiplier.
x: Variable.

Return value:
Expression that represents the result of multiplying the variable by a constant.

GRBLinExpr oOperator* ( const GRBLinExpr& expr,
double a)
Multiply an expression and a constant.
Arguments:

195



expr: Expression.
a: Constant multiplier.
Return value:
Expression that represents the result of multiplying the expression by a constant.

GRBLinExpr operator* ( double a,
const GRBLinExpr& expr )
Multiply an expression and a constant.
Arguments:
a: Constant multiplier.
expr: Expression.
Return value:
Expression that represents the result of multiplying the expression by a constant.

GRBQuadExpr operator* ( const GRBQuadExpr& expr,
double a)
Multiply an expression and a constant.
Arguments:
expr: Expression.
a: Constant multiplier.
Return value:
Expression that represents the result of multiplying the expression by a constant.

GRBQuadExpr operator* ( double a,
const GRBQuadExpr& expr )
Multiply an expression and a constant.
Arguments:
a: Constant multiplier.
expr: Expression.
Return value:
Expression that represents the result of multiplying the expression by a constant.

GRBQuadExpr operator* ( GRBVar x,
GRBVar vy )
Multiply a pair of variables.
Arguments:
x: First variable.
y: Second variable.
Return value:
Expression that represents the result of multiplying the argument variables.

GRBQuadExpr oOperator* ( GRBVar var,
const GRBLinExpr& expr )
Multiply an expression and a variable.
Arguments:
var: Variable.
expr: Expression.
Return value:
Expression that represents the result of multiplying the expression by a variable.

196



GRBQuadExpr oOperator* ( const GRBLinExpr& expr,
GRBVar var )
Multiply an expression and a variable.
Arguments:
var: Variable.
expr: Expression.
Return value:
Expression that represents the result of multiplying the expression by a variable.

GRBQuadExpr operator* ( const GRBLinExpr& expri,
const GRBLinExpr& expr2 )
Multiply a pair of expressions.
Arguments:
exprl: First expression.
expr2: Second expression.
Return value:
Expression that represents the result of multiplying the argument expressions.

operator/

Overloaded operator to divide a variable or expression by a constant.

GRBLinExpr operator/ ( GRBVar x,
double a )
Arguments:
x: Variable.
a: Constant divisor.
Return value:
Expression that represents the result of dividing the variable by a constant.

GRBLinExpr operator/ (  const GRBLinExpr& expr,
double a)
Arguments:
expr: Expression.
a: Constant divisor.
Return value:
Expression that represents the result of dividing the expression by a constant.

GRBLinExpr operator/ (  const GRBQuadExpr& expr,
double a)
Arguments:
expr: Expression.
a: Constant divisor.
Return value:
Expression that represents the result of dividing the expression by a constant.

197



4.17 Attribute Enums

These enums are used to get or set Gurobi attributes. The complete list of attributes can be found in the Attributes
section.

GRB_CharAttr

This enum is used to get or set char-valued attributes (through GRBModel::get or GRBModel::set). Please refer to
the Attributes section to see a list of all char attributes and their functions.

GRB__DoubleAttr

This enum is used to get or set double-valued attributes (through GRBModel::get or GRBModel::set). Please refer
to the Attributes section to see a list of all double attributes and their functions.

GRB_IntAttr

This enum is used to get or set int-valued attributes (through GRBModel::get or GRBModel::set). Please refer to
the Attributes section to see a list of all int attributes and their functions.

GRB_StringAttr

This enum is used to get or set string-valued attributes (through GRBModel::get or GRBModel::set). Please refer to
the Attributes section to see a list of all string attributes and their functions.

198



4.18 Parameter Enums

These enums are used to get or set Gurobi parameters. The complete of parameters can be found in the Parameters
section.

GRB_DoubleParam

This enum is used to get or set double-valued parameters (through GRBModel::get, GRBModel::set. GRBEnv::get,
or GRBEnv::set). Please refer to the Parameters section to see a list of all double parameters and their functions.

GRB_IntParam

This enum is used to get or set int-valued parameters (through GRBModel::get, GRBModel::set. GRBEnv::get, or
GRBEnv::set). Please refer to the Parameters section to see a list of all int parameters and their functions.

GRB_StringParam

This enum is used to get or set string-valued parameters (through GRBModel::get, GRBModel::set, GRBEnv::get,
or GRBEnv::set). Please refer to the Parameters section to see a list of all int parameters and their functions.

199



This section documents the Gurobi Java interface. This manual begins with a quick overview of the classes exposed in
the interface and the most important methods on those classes. It then continues with a comprehensive presentation
of all of the available classes and methods.

Java API Overview

If you prefer Javadoc format, documentation for the Gurobi Java interface is also available in file gurobi-javadoc. jar.

Javadoc format is particularly helpful when used from an integrated development environment like Eclipse®. Please
consult the documentation for your IDE for information on how to import Javadoc files.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide or the Example
Tour. These documents provide concrete examples of how to use the classes and methods described here.

Environments

The first step in using the Gurobi Java interface is to create an environment object. Environments are represented
using the GRBEnv class. An environment acts as the container for all data associated with a set of optimization
runs. You will generally only need one environment object in your program.

For more advanced usecases, you can use an empty environment to create an uninitialized environment and then,
programmatically, set all required options for your specific requirements. For further details see the Environment
section.

Models

You can create one or more optimization models within an environment. Each model is represented as an object of class
GRBModel. A model consists of a set of decision variables (objects of class GRBVar), a linear or quadratic objective
function on these variables (specified using GRBModel.setObjective), and a set of constraints on these variables
(objects of class GRBConstr, GRBQConstr, GRBSOS, or GRBGenConstr). Each variable has an associated lower
bound, upper bound, and type (continuous, binary, etc.). Each linear or quadratic constraint has an associated sense
(less-than-or-equal, greater-than-or-equal, or equal), and right-hand side value. Refer to this section in the Reference
Manual for more information on variables, constraints, and objectives.

Linear constraints are specified by building linear expressions (objects of class GRBLinExpr), and then specifying
relationships between these expressions (for example, requiring that one expression be equal to another). Quadratic
constraints are built in a similar fashion, but using quadratic expressions (objects of class GRBQuadExpr) instead.

An optimization model may be specified all at once, by loading the model from a file (using the appropriate GRB-
Model constructor), or built incrementally, by first constructing an empty object of class GRBModel and then sub-
sequently calling GRBModel.addVar or GRBModel.addVars to add additional variables, and GRBModel.addConstr,
GRBModel.addQConstr, GRBModel.addSOS, or any of the GRBModel.addGenConstrXxx methods to add additional
constraints. Models are dynamic entities; you can always add or remove variables or constraints.

We often refer to the class of an optimization model. A model with a linear objective function, linear constraints,
and continuous variables is a Linear Program (LP). If the objective is quadratic, the model is a Quadratic Program
(QP). If any of the constraints are quadratic, the model is a Quadratically-Constrained Program (QCP). We will
sometimes refer to a few special cases of QCP: QCPs with convex constraints, QCPs with non-convex constraints,
bilinear programs, and Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-
continuous variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the model
is a Mized Integer Program (MIP). We'll also sometimes discuss special cases of MIP, including Mized Integer Linear
Programs (MILP), Mized Integer Quadratic Programs (MIQP), Mized Integer Quadratically-Constrained Programs
(MIQCP), and Mized Integer Second-Order Cone Programs (MISOCP). The Gurobi Optimizer handles all of these
model classes.

Solving a Model

Once you have built a model, you can call GRBModel.optimize to compute a solution. By default, optimize will use
the concurrent optimizer to solve LP models, the barrier algorithm to solve QP models with convex objectives and
QCP models with convex constraints, and the branch-and-cut algorithm otherwise. The solution is stored in a set of
attributes of the model. These attributes can be queried using a set of attribute query methods on the GRBModel,
GRBVar, GRBConstr, GRBQConstr, GRBSOS, and GRBGenConstr, and classes.

200


https://www.gurobi.com/documentation/10.0/quickstart_windows/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBModel.optimize will only
perform further optimization if relevant data has changed since the model was last optimized. If you would like to
discard previously computed solution information and restart the optimization from scratch without changing the
model, you can call GRBModel.reset.

After a MIP model has been solved, you can call GRBModel.fixedModel to compute the associated fized model.
This model is identical to the original, except that the integer variables are fixed to their values in the MIP solution.
If your model contains SOS constraints, some continuous variables that appear in these constraints may be fixed as
well. In some applications, it can be useful to compute information on this fixed model (e.g., dual variables, sensitivity
information, etc.), although you should be careful in how you interpret this information.

Multiple Solutions, Objectives, and Scenarios

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to a single model
with a single objective function. Gurobi provides the following features that allow you to relax these assumptions:

¢ Solution Pool: Allows you to find more solutions.

e Multiple Scenarios: Allows you to find solutions to multiple, related models.

o Multiple Objectives: Allows you to specify multiple objective functions and control the trade-off between them.
Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the infeasibility,
attempt to repair the infeasibility, or both. To obtain information that can be useful for diagnosing the cause of an
infeasibility, call GRBModel.computellS to compute an Irreducible Inconsistent Subsystem (IIS). This method can
be used for both continuous and MIP models, but you should be aware that the MIP version can be quite expensive.
This method populates a set of IIS attributes.

To attempt to repair an infeasibility, call GRBModel.feasRelax to compute a feasibility relaxation for the model.
This relaxation allows you to find a solution that minimizes the magnitude of the constraint violation.

Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some attributes are associated
with the variables of the model, some with the constraints of the model, and some with the model itself. To give
a simple example, solving an optimization model causes the X variable attribute to be populated. Attributes such
as X that are computed by the Gurobi optimizer cannot be modified directly by the user, while others, such as the
variable lower bound (the LB attribute) can.

Attributes are queried using GRBVar.get, GRBConstr.get, GRBQConstr.get, GRBSOS.get, GRBGenConstr.get,
or GRBModel.get, and modified using GRBVar.set, GRBConstr.set, GRBQConstr.set, GRBGenConstr.set, or GRB-
Model.set. Attributes are grouped into a set of enums by type (GRB.CharAttr, GRB.DoubleAttr, GRB.IntAttr,
GRB.StringAttr). The get () and set() methods are overloaded, so the type of the attribute determines the type of
the returned value. Thus, constr.get (GRB.DoubleAttr.RHS) returns a double, while constr.get (GRB.CharAttr.Sense)
returns a char.

If you wish to retrieve attribute values for a set of variables or constraints, it is usually more efficient to use the
array methods on the associated GRBModel object. Method GRBModel.get includes signatures that allow you to
query or modify attribute values for one-, two-, and three-dimensional arrays of variables or constraints.

The full list of attributes can be found in the Attributes section.

Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to variable bounds,
constraint right-hand sides, etc.). The main exceptions are modifications to the constraint matrix and to the objective
function.

The constraint matrix can be modified in a few ways. The first is to call the chgCoeff method on a GRBModel
object to change individual matrix coefficients. This method can be used to modify the value of an existing non-
zero, to set an existing non-zero to zero, or to create a new non-zero. The constraint matrix is also modified when
you remove a variable or constraint from the model (through the GRBModel.remove method). The non-zero values
associated with the deleted constraint or variable are removed along with the constraint or variable itself.

The model objective function can also be modified in a few ways. The easiest is to build an expression that
captures the objective function (a GRBLinExpr or GRBQuadExpr object), and then pass that expression to method
GRBModel.setObjective. If you wish to modify the objective, you can simply call setObjective again with a new
GRBLinExpr or GRBQuadExpr object.

201



For linear objective functions, an alternative to setObjective is to use the 0Obj variable attribute to modify
individual linear objective coefficients.

If your wvariables have piecewise-linear  objectives, you can specify them wusing the
GRBModel.setPWLODbj method. Call this method once for each relevant variable. The Gurobi simplex solver
includes algorithmic support for convex piecewise-linear objective functions, so for continuous models you should see
a substantial performance benefit from using this feature. To clear a previously specified piecewise-linear objective
function, simply set the Obj attribute on the corresponding variable to 0.

Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed in a lazy fashion,
meaning that modifications don’t affect the model immediately. Rather, they are queued and applied later. If your
program simply creates a model and solves it, you will probably never notice this behavior. However, if you ask for
information about the model before your modifications have been applied, the details of the lazy update approach
may be relevant to you.

As we just noted, model modifications (bound changes, right-hand side changes, objective changes, etc.) are
placed in a queue. These queued modifications can be applied to the model in three different ways. The first is
by an explicit call to GRBModel.update. The second is by a call to GRBModel.optimize. The third is by a call to
GRBModel.write to write out the model. The first case gives you fine-grained control over when modifications are
applied. The second and third make the assumption that you want all pending modifications to be applied before
you optimize your model or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is that this approach
makes it much easier to perform multiple modifications to a model, since the model remains unchanged between
modifications. The second is that processing model modifications can be expensive, particularly in a Compute Server
environment, where modifications require communication between machines. Thus, it is useful to have visibility into
exactly when these modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then update, then make
more modifications, then update again, etc. Updating after each individual modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value of the requested
data from the point of the last update. If the object you tried to query didn’t exist then, you’ll get a NOT_IN_MODEL
exception instead.

The semantics of lazy updates have changed since earlier Gurobi versions. While the vast majority of programs
are unaffected by this change, you can use the UpdateMode parameter to revert to the earlier behavior if you run
into an issue.

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of the optimization
process. Factors like feasibility and optimality tolerances, choices of algorithms, strategies for exploring the MIP
search tree, etc., can be controlled by modifying Gurobi parameters before beginning the optimization. Parameters
can be of type int, double, or string.

The simplest way to set parameters is through the GRBModel.set method on the model object. Similarly,
parameter values can be queried with GRBModel.get.

Parameters can also be set on the Gurobi environment object, using GRBEnv.set. Note that each model gets its
own copy of the environment when it is created, so parameter changes to the original environment have no effect on
existing models.

You can read a set of parameter settings from a file using GRBEnv.readParams, or write the set of changed
parameters using GRBEnv.writeParams.

We also include an automated parameter tuning tool that explores many different sets of parameter changes in
order to find a set that improves performance. You can call GRBModel.tune to invoke the tuning tool on a model.
Refer to the parameter tuning tool section for more information.

The full list of Gurobi parameters can be found in the Parameters section.

Memory Management

Users typically do not need to concern themselves with memory management in Java, since it is handled automatically
by the garbage collector. The Gurobi Java interface utilizes the same garbage collection mechanism as other Java
programs, but there are a few specifics of our memory management that users should be aware of.

In general, Gurobi objects live in the same Java heap as other Java objects. When they are no longer referenced,
they become candidates for garbage collection, and are returned to the pool of free space at the next invocation of

202



the garbage collector. Two important exceptions are the GRBEnv and GRBModel objects. A GRBModel object has a
small amount of memory associated with it in the Java heap, but the majority of the space associated with a model
lives in the heap of the Gurobi native code library (the Gurobi DLL in Windows, or the Gurobi shared library in
Linux or Mac). The Java heap manager is unaware of the memory associated with the model in the native code
library, so it does not consider this memory usage when deciding whether to invoke the garbage collector. When the
garbage collector eventually collects the Java GRBModel object, the memory associated with the model in the Gurobi
native code library will be freed, but this collection may come later than you might want. Similar considerations
apply to the GRBEnv object.

If you are writing a Java program that makes use of multiple Gurobi models or environments, we recommend that
you call GRBModel.dispose when you are done using the associated GRBModel object, and GRBEnv.dispose when
you are done using the associated GRBEnv object and after you have called GRBModel.dispose on all of the models
created using that GRBEnv object.

Native Code

As noted earlier, the Gurobi Java interface is a thin layer that sits on top of our native code library (the Gurobi
DLL on Windows, and the Gurobi shared library on Linux or Mac). Thus, an application that uses the Gurobi Java
library will load the Gurobi native code library at runtime. In order for this happen, you need to make sure that two
things are true. First, you need to make sure that the native code library is available in the search path of the target
machine (PATH on Windows, LD_LIBRARY_PATH on Linux, or DYLD_LIBRARY_PATH on Mac). These paths are set up as
part of the installation of the Gurobi Optimizer, but may not be configured appropriately on a machine where the
full Gurobi Optimizer has not been installed. Second, you need to be sure that the Java JVM and the Gurobi native
library use the same object format. In particular, you need to use a 64-bit Java JVM to use the 64-bit Gurobi native
library.

Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will send output to the
screen. A few simple controls are available for modifying the default logging behavior. If you would like to direct
output to a file as well as to the screen, specify the log file name in the GRBEnv constructor. You can modify
the LogFile parameter if you wish to redirect the log to a different file after creating the environment object. The
frequency of logging output can be controlled with the Displaylnterval parameter, and logging can be turned off
entirely with the OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging
section.

More detailed progress monitoring can be done through the GRBCallback class. The GRBModel.setCallback
method allows you to receive a periodic callback from the Gurobi optimizer. You do this by sub-classing the GRBCall-
back abstract class, and writing your own Callback () method on this class. You can call GRBCallback.getDoublelnfo,
GRBCallback.getIntInfo, GRBCallback.getStringInfo, or GRBCallback.getSolution from within the callback to ob-
tain additional information about the state of the optimization.

In addition, you can add a logging callback function to an environment object (GRBEnv.setLogCallback) or a
model object (GRBModelEnv.setLogCallback). With that you catch output posted by an environment object or a
model object.

Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. The simplest control callback is GRBCall-
back.abort, which asks the optimizer to terminate at the earliest convenient point. Method GRBCallback.setSolution
allows you to inject a feasible solution (or partial solution) during the solution of a MIP model. Methods GR-
BCallback.addCut and GRBCallback.addLazy allow you to add cutting planes and lazy constraints during a MIP
optimization, respectively. Method GRBCallback.stopOneMultiObj allows you to interrupt the optimization process
of one of the optimization steps in a multi-objective MIP problem without stopping the hierarchical optimization
process.

Batch Optimization

Gurobi Compute Server enables programs to offload optimization computations onto dedicated servers. The Gurobi
Cluster Manager adds a number of additional capabilities on top of this. One important one, batch optimization,
allows you to build an optimization model with your client program, submit it to a Compute Server cluster (through
the Cluster Manager), and later check on the status of the model and retrieve its solution. You can use a Batch
object to make it easier to work with batches. For details on batches, please refer to the Batch Optimization section.

203



Error Handling

All of the methods in the Gurobi Java library can throw an exception of type GRBException. When an exception
occurs, additional information on the error can be obtained by retrieving the error code (using method GRBEx-
ception.getErrorCode), or by retrieving the exception message (using method GRBException.getMessage from the
parent class). The list of possible error return codes can be found in the Error Codes section.

204



5.1 GRBEnv

Gurobi environment object. Gurobi models are always associated with an environment. You must create an environ-
ment before can you create and populate a model. You will generally only need a single environment object in your
program.

The methods on environment objects are mainly used to manage Gurobi parameters (e.g., get, getParamlInfo,
set).

While the Java garbage collector will eventually collect an unused GRBEnv object, an environment will hold onto
resources (Gurobi licenses, file descriptors, etc.) until that collection occurs. If your program creates multiple GRBEnv
objects, we recommend that you call GRBEnv.dispose when you are done using one.

GRBEnv()

Constructor for GRBEnv object. You have the option of constructing either a local environment, which solves Gurobi
models on the local machine, or a client environment for a Gurobi Compute Server, which will solve Gurobi models
on a server machine. For the latter, choose the signature that allows you to specify the names of the Gurobi Compute
Servers and the priority of the associated job.

| GRBEnv  GRBEnv ()

Create a Gurobi environment (with logging disabled). This method will also populate any parameter (ComputeServer,
TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current work-
ing directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.
The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value
for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Return value:

An environment object (with no associated log file).

‘GRBEnv GRBEnv ( boolean empty )

Create an empty Gurobi environment. Use start to start the environment.

If the environment is not empty, This method will also populate any parameter (ComputeServer, TokenServer,
ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current working directory for
a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in
PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Arguments:

empty: Indicates whether the environment should be empty. You should use empty=true if you want to
set parameters before actually starting the environment. This can be useful if you want to connect to a
Compute Server, a Token Server, the Gurobi Instant Cloud, a Cluster Manager or use a WLS license. See
the Environment Section for more details.

Return value:

An environment object.

GRBEnv GRBEnv ( String logFileName )

205



Create a Gurobi environment (with logging enabled). This method will also populate any parameter (ComputeServer,

TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current work-
ing directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.
The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value
for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Arguments:

logFileName: The desired log file name.
Return value:
An environment object.

GRBEnv.dispose()

Release the resources associated with a GRBEnv object. While the Java garbage collector will eventually reclaim these
resources, we recommend that you call the dispose method when you are done using an environment if your program
creates more than one.

The dispose method on a GRBEnv should be called only after you have called dispose on all of the models that
were created within that environment. You should not attempt to use a GRBEnv object after calling dispose.

| void dispose ()

GRBEnv.get()

Query the value of a parameter.

‘double get ( GRB.DoubleParam param )

Query the value of a double-valued parameter.
Arguments:
param: The parameter being queried. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.
Return value:
The current value of the requested parameter.

‘int get ( GRB.IntParam param )

Query the value of an int-valued parameter.
Arguments:
param: The parameter being queried. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.
Return value:
The current value of the requested parameter.

‘String get ( GRB.StringParam param )

Query the value of a string-valued parameter.
Arguments:
param: The parameter being queried. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.
Return value:
The current value of the requested parameter.

206



GRBEnv.getErrorMsg()

Query the error message for the most recent exception associated with this environment.

| string getErrorMsg ()
Return value:
The error string.

GRBEnv.getParamlinfo()

Obtain information about a parameter.

void getParamInfo ( GRB.DoubleParam param,

double[] info )
Obtain detailed information about a double parameter.
Arguments:
param: The parameter of interest. Please consult the parameter section for a complete list of Gurobi

parameters, including descriptions of their purposes and their minimum, maximum, and default values.
info: The returned information. The result will contain four entries: the current value of the parameter,
the minimum allowed value, the maximum allowed value, and the default value.

void getParamInfo ( GRB.IntParam param,

int[] info )
Obtain detailed information about an integer parameter.
Arguments:
param: The parameter of interest.  Please consult the parameter section for a complete list of Gurobi

parameters, including descriptions of their purposes and their minimum, maximum, and default values.
info: The returned information. The result will contain four entries: the current value of the parameter,
the minimum allowed value, the maximum allowed value, and the default value.

void getParamInfo ( GRB.StringParam param,

String[] info )
Obtain detailed information about a string parameter.
Arguments:
param: The parameter of interest. Please consult the parameter section for a complete list of Gurobi

parameters, including descriptions of their purposes and their minimum, maximum, and default values.
info: The returned information. The result will contain two entries: the current value of the parameter and
the default value.

GRBEnv.message()

Write a message to the console and the log file.

‘void message ( String message )

Arguments:
message: Print a message to the console and to the log file. Note that this call has no effect unless the
OutputFlag parameter is set.

207



GRBEnv.readParams()

Read new parameter settings from a file.
Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their
purposes and their minimum, maximum, and default values.

| void readParams ( String paranmFile )

Arguments:
paramFile: Name of the file containing parameter settings. Parameters should be listed one per line, with
the parameter name first and the desired value second. For example:

# Gurobi parameter file
Threads 1
MIPGap O

Blank lines and lines that begin with the hash symbol are ignored.

GRBEnv.release()

Release the license associated with this environment. You will no longer be able to call optimize on models created
with this environment after the license has been released.

| void release ()

GRBEnv.resetParams()

Reset all parameters to their default values.
Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their
purposes and their minimum, maximum, and default values.

| void resetParams ()

GRBEnv.set()

Set the value of a parameter.

Important notes:

Note that a model gets its own copy of the environment when it is created. Changes to the original environment
have no effect on the copy. Use GRBModel.set to change a parameter on an existing model.

void Set ( GRB.DoubleParam param,
double newval )
Set the value of a double-valued parameter.
Arguments:
param: The parameter being modified. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.
newval: The desired new value of the parameter.

void sSet ( GRB.IntParam param,
int newval )
Set the value of an int-valued parameter.
Arguments:

208



param: The parameter being modified. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.
newval: The desired new value of the parameter.

void sSet ( GRB.StringParam param,
String newval )
Set the value of a string-valued parameter.
Arguments:
param: The parameter being modified. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.
newval: The desired new value of the parameter.

void set ( String param,
String newval )
Set the value of any parameter using strings alone.
Arguments:
param: The name of the parameter being modified. Please consult the parameter section for a complete list
of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default
values.
newval: The desired new value of the parameter.

GRBEnv.setLogCallback()

Sets a logging callback function to query all output posted by the environment object. Can be set after an empty
environment was created.

‘void setLogCallback( java.util.function.Consumer<String> logCallback )

Arguments:
logCallback: The logging callback function.

GRBEnv.start()

Start an empty environment. If the environment has already been started, this method will do nothing. If the call
fails, the environment will have the same state as it had before the call to this method.

This method will also populate any parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified
in your gurobi.lic file. This method will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each
line should contain a parameter name, followed by the desired value for that parameter). After that, it will apply
all parameter changes specified by the user prior to this call. Note that this might overwrite parameters set in the
license file, or in the gurobi.env file, if present.

After all these changes are performed, the code will actually activate the environment, and make it ready to work
with models.

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their
purposes and their minimum, maximum, and default values.

void start ()

209



GRBEnv.writeParams()

Write all non-default parameter settings to a file.
Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their

purposes and their minimum, maximum, and default values.
| void writeParams ( String paranFile )
Arguments:

paramFile: Name of the file to which non-default parameter settings should be written. The previous
contents are overwritten.

210



5.2 GRBModel

Gurobi model object. Commonly used methods include addVar (adds a new decision variable to the model), addConstr
(adds a new constraint to the model), optimize (optimizes the current model), and get (retrieves the value of an
attribute).

While the Java garbage collector will eventually collect an unused GRBModel object, the vast majority of the
memory associated with a model is stored outside of the Java heap. As a result, the garbage collector can’t see this
memory usage, and thus it can’t take this quantity into account when deciding whether collection is necessary. We
recommend that you call GRBModel.dispose when you are done using a model.

GRBModel()

Constructor for GRBModel. The simplest version creates an empty model. You can then call addVar and addConstr
to populate the model with variables and constraints. The more complex constructors can read a model from a file,
or make a copy of an existing model.

| GRBModel GRBModel ( GRBEnv env )

Model constructor.
Arguments:
env: Environment for new model.
Return value:
New model object. Model initially contains no variables or constraints.

GRBModel GRBModel ( GRBEnv env,
String filename )

Read a model from a file. Note that the type of the file is encoded in the file name suffix. Valid suffixes are .mps,
.rew, .1p, .rlp, .dua, .dlp, .ilp, or .opb. The files can be compressed, so additional suffixes of .zip, .gz, .bz2, or
.7z are accepted.

Arguments:

env: Environment for new model.

filename: Name of the file containing the model.
Return value:

New model object.

| GRBModel ~GRBModel ( GRBModel model )

Create a copy of an existing model. Note that due to the lazy update approach in Gurobi, you have to call
update before copying it.
Arguments:
model: Model to copy.
Return value:
New model object. Model is a clone of the input model.

GRBModel.addConstr()

Add a single linear constraint to a model. Multiple signatures are available.

GRBConstr addConstr ( GRBLinExpr 1hsExpr,

char sense,
GRBLinExpr rhsExpr,
String name )

211



Add a single linear constraint to a model.
Arguments:
lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side expression for new linear constraint.
name: Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr ( GRBLinExpr 1hsExpr,

char sense,

GRBVar rhsVar,

String name )
Add a single linear constraint to a model.

Arguments:
lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL),
rhsVar: Right-hand side variable for new linear constraint.
name: Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr ( GRBLinExpr 1lhsExpr,

char sense,

double rhs,

String name )
Add a single linear constraint to a model.

Arguments:
lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhs: Right-hand side value for new linear constraint.
name: Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr ( GRBVar lhsVar,
char sense,
GRBLinExpr rhsExpr,
String name )
Add a single linear constraint to a model.
Arguments:

lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side expression for new linear constraint.
name: Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr ( GRBVar 1lhsVar,
char sense,
GRBVar rhsVar,
String name )

212



Add a single linear constraint to a model.
Arguments:
lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsVar: Right-hand side variable for new linear constraint.
name: Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr ( GRBVar 1lhsVar,
char sense,
double rhs,
String name )
Add a single linear constraint to a model.
Arguments:
lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhs: Right-hand side value for new linear constraint.
name: Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr ( double 1hs,
char sense,
GRBVar rhsVar,
String name )
Add a single linear constraint to a model.
Arguments:
lhs: Left-hand side value for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsVar: Right-hand side variable for new linear constraint.
name: Name for new constraint.
Return value:
New constraint object.

GRBConstr addConstr ( double 1hs,
char sense,
GRBLinExpr rhsExpr,
String name )

Add a single linear constraint to a model.
Arguments:
1lhs: Left-hand side value for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side expression for new linear constraint.
name: Name for new constraint.
Return value:
New constraint object.

213



GRBModel.addConstrs()

Add new linear constraints to a model.
We recommend that you build your model one constraint at a time (using addConstr), since it introduces no
significant overhead and we find that it produces simpler code. Feel free to use these methods if you disagree, though.

‘ GRBConstr[] addConstrs ( int count )

Add count new linear constraints to a model. The new constraints are all of the form 0 <= 0.
Arguments:

count: Number of constraints to add.
Return value:

Array of new constraint objects.

GRBConstr[] addConstrs ( GRBLinExpr[] 1hsExprs,

char[] senses,
double[] rhss,
Stringl[] names )

Add new linear constraints to a model. The number of added constraints is determined by the length of the
input arrays (which must be consistent across all arguments).
Arguments:
lhsExprs: Left-hand side expressions for the new linear constraints.
senses: Senses for new linear constraints (GRB.LESS_EQUAL7 GRB.EQUAL, or GRB.GREATER_EQUAL).
rhss: Right-hand side values for the new linear constraints.
names: Names for new constraints.
Return value:
Array of new constraint objects.

GRBConstr[] addConstrs ( GRBLinExpr[] 1lhsExprs,

char[] senses,
doublel] rhss,
String[] names,
int start,
int len )

Add new linear constraints to a model. This signature allows you to use arrays to hold the various constraint
attributes (left-hand side, sense, etc.), without forcing you to add one constraint for each entry in the array. The
start and len arguments allow you to specify which constraints to add.

Arguments:

lhsExprs: Left-hand side expressions for the new linear constraints.
senses: Senses for new linear constraints (GRB.LESS_EL’JUAL7 GRB.EQUAL, or GRB.GREATER_EQUAL).
rhss: Right-hand side values for the new linear constraints.
names: Names for new constraints.
start: The first constraint in the list to add.
len: The number of constraints to add.
Return value:
Array of new constraint objects.

GRBModel.addGenConstrXxx()

Each of the functions described below adds a new general constraint to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types: variable bound
constraints, linear constraints, quadratic constraints, integrality constraints, and SOS constraints. These are typically
treated directly by the underlying solver (although not always), and are fundamental to the overall algorithm.

214



Gurobi accepts a number of additional constraint types, which we collectively refer to as general (function)
constraints. These are typically not treated directly by the solver. Rather, they are transformed by presolve into
constraints (and variables) chosen from among the fundamental types listed above. In some cases, the resulting
constraint or constraints are mathematically equivalent to the original; in others, they are approximations. If such
constraints appear in your model, but if you prefer to reformulate them yourself using fundamental constraint types
instead, you can certainly do so. However, note that Gurobi can sometimes exploit information contained in the
other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

¢ addGenConstrMax: y = max(z1, T2, ..., C)

¢ addGenConstrMin: y = min(x1,x2, ..., )

¢ addGenConstrAbs: y = |z|

¢ addGenConstrAnd: y = x1 A xa A x3...

¢ addGenConstrOr: y = x1 V 22 V 3...

¢ addGenConstrNorm: y = norm(z1,x2,xs...)

o addGenConstrIndicator: y =1 — a’z < b (an indicator constraint)
¢ addGenConstrPWL: y = pwl(x) (a piecewise-linear function, specified using breakpoints)
o addGenConstrPoly: y = pox? + pr12?~ + ... + pa_12 + pa

¢ addGenConstrExp: y = e”

o addGenConstrExpA: y = a”

¢ addGenConstrLog: y = loge(z)

¢ addGenConstrLogA: y = loga(x)

¢ addGenConstrPow: y = x“

¢ addGenConstrSin: y = sin(x)

¢ addGenConstrCos: y = cos(x)

¢ addGenConstrTan: y = tan(x)

For additional details please refer to the General Constraints section in the Reference Manual.

GRBModel.addGenConstrMax()

Add a new general constraint of type GRB.GENCONSTR_MAX to a model.
A MAX constraint » = max{x1,...,Zn, c} states that the resultant variable r should be equal to the maximum
of the operand variables 1, ..., %, and the constant c.

GRBGenConstr addGenConstrMax ( GRBVar resvar,
GRBVar[] vars,
double constant,
String name )
Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
constant: The additional constant operand of the new constraint.
name: Name for the new general constraint.
Return value:
New general constraint.

215



GRBModel.addGenConstrMin()

Add a new general constraint of type GRB.GENCONSTR_MIN to a model.
A MIN constraint r = min{xl, ..., Tn,c} states that the resultant variable r should be equal to the minimum of
the operand variables x1,...,z, and the constant c.

GRBGenConstr addGenConstrMin ( GRBVar resvar,
GRBVar[] vars,
double constant,
String name )
Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
constant: The additional constant operand of the new constraint.
name: Name for the new general constraint.
Return value:
New general constraint.

GRBModel.addGenConstrAbs()

Add a new general constraint of type GRB.GENCONSTR_ABS to a model.
An ABS constraint » = abs{z} states that the resultant variable r should be equal to the absolute value of the
argument variable z.

GRBGenConstr addGenConstrAbs ( GRBVar resvar,
GRBVar argvar,
String name )
Arguments:
resvar: The resultant variable of the new constraint.
argvar: The argument variable of the new constraint.
name: Name for the new general constraint.
Return value:
New general constraint.

GRBModel.addGenConstrAnd()

Add a new general constraint of type GRB.GENCONSTR_AND to a model.

An AND constraint » = and{z1,...,z,} states that the binary resultant variable r should be 1 if and only if all
of the operand variables x1,...,z, are equal to 1. If any of the operand variables is 0, then the resultant should be
0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent of how they
were created.

GRBGenConstr addGenConstrAnd ( GRBVar resvar,
GRBVar[] vars,
String name )
Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
name: Name for the new general constraint.
Return value:
New general constraint.

216



GRBModel.addGenConstrOr()

Add a new general constraint of type GRB.GENCONSTR_OR to a model.
An OR constraint r = or{z1,...,x,} states that the binary resultant variable r should be 1 if and only if any of
the operand variables 1, ..., zy is equal to 1. If all operand variables are 0, then the resultant should be 0 as well.
Note that all variables participating in such a constraint will be forced to be binary, independent of how they
were created.

GRBGenConstr addGenConstrOr ( GRBVar resvar,
GRBVar[] vars,
String name )
Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
name: Name for the new general constraint.
Return value:
New general constraint.

GRBModel.addGenConstrNorm()

Add a new general constraint of type GRB.GENCONSTR_NORM to a model.
A NORM constraint » = norm{z1,...,x,} states that the resultant variable r should be equal to the vector
norm of the argument vector zi,...,Zy.

GRBGenConstr addGenConstrNorm ( GRBVar resvar,
GRBVar[] vars,
double which,
String name )
Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint. Note that this array may not contain
duplicates.
which: Which norm to use. Options are 0, 1, 2, and GRB.INFINITY.
name: Name for the new general constraint.
Return value:
New general constraint.

GRBModel.addGenConstrindicator()

Add a new general constraint of type GRB.GENCONSTR_INDICATOR to a model.

An INDICATOR constraint z = f — aTx < b states that if the binary indicator variable z is equal to f, where
f € {0,1}, then the linear constraint a” = < b should hold. On the other hand, if z = 1 — £, the linear constraint may
be violated. The sense of the linear constraint can also be specified to be = or >.

Note that the indicator variable z of a constraint will be forced to be binary, independent of how it was created.

GRBGenConstr addGenConstrIndicator ( GRBVar binvar,
int binval,
GRBLinExpr expr,
char sense,
double rhs,
String name )
Arguments:

binvar: The binary indicator variable.
binval: The value for the binary indicator variable that would force the linear constraint to be satisfied (0
or 1).

217



expr: Left-hand side expression for the linear constraint triggered by the indicator.
sense: Sense for the linear constraint. Options are GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL.
rhs: Right-hand side value for the linear constraint.
name: Name for the new general constraint.
Return value:
New general constraint.

GRBModel.addGenConstrPWL()

Add a new general constraint of type GRB.GENCONSTR_PWL to a model.

A piecewise-linear (PWL) constraint states that the relationship y = f(x) must hold between variables z and y,
where f is a piecewise-linear function. The breakpoints for f are provided as arguments. Refer to the description of
piecewise-linear objectives for details of how piecewise-linear functions are defined.

GRBGenConstr addGenConstrPWL ( GRBVar xvar,
GRBVar yvar,
double[] =xpts,
double[] ypts,
String name )
Arguments:
xvar: The x variable.
yvar: The y variable.
xpts: The x values for the points that define the piecewise-linear function. Must be in non-decreasing order.
ypts: The y values for the points that define the piecewise-linear function.
name: Name for the new general constraint.
Return value:
New general constraint.

GRBModel.addGenConstrPoly()

Add a new general constraint of type GRB.GENCONSTR_POLY to a model.

A polynomial function constraint states that the relationship y = poz? + p12?~! + ... + pa_1& + pa should hold
between variables  and y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrPoly (  GRBVar xvar,
GRBVar yvar,
double[] p,
String name,
String options )
Arguments:
xvar: The x variable.
yvar: The y variable.
p: The coefficients for the polynomial function (starting with the coefficient for the highest power).
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").
Return value:
New general constraint.

218



GRBModel.addGenConstrExp()

Add a new general constraint of type GRB.GENCONSTR_EXP to a model.

A natural exponential function constraint states that the relationship y = exp(x) should hold for variables z and
Y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrExp (  GRBVar «xvar,
GRBVar yvar,
String name,
String options )
Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").
Return value:
New general constraint.

GRBModel.addGenConstrExpA()

Add a new general constraint of type GRB.GENCONSTR_EXPA to a model.

An exponential function constraint states that the relationship y = a® should hold for variables x and y, where
a > 0 is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrExpA ( GRBVar xvar,
GRBVar yvar,
double a,
String name,
String options )
Arguments:
xvar: The x variable.
yvar: The y variable.
a: The base of the function, a > 0.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").
Return value:
New general constraint.

219



GRBModel.addGenConstrLog()

Add a new general constraint of type GRB.GENCONSTR_LOG to a model.

A natural logarithmic function constraint states that the relationship y = log(z) should hold for variables x and
y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrLog (  GRBVar «xvar,
GRBVar yvar,
String name,
String options )
Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").
Return value:
New general constraint.

GRBModel.addGenConstrLogA()

Add a new general constraint of type GRB.GENCONSTR_LOGA to a model.

A logarithmic function constraint states that the relationship y = log.(z) should hold for variables = and v,
where a > 0 is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrLogA ( GRBVar xvar,
GRBVar yvar,
double a,
String name,
String options )
Arguments:
xvar: The x variable.
yvar: The y variable.
a: The base of the function, a > 0.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").
Return value:
New general constraint.

220



GRBModel.addGenConstrLogistic()

Add a new general constraint of type GRB.GENCONSTR_LOGISTIC to a model.

A logistic function constraint states that the relationship y = should hold for variables x and y.

1
e e

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,

FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrLogi stic ( GRBVar xvar,
GRBVar yvar,
String name,
String options )
Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").
Return value:
New general constraint.

GRBModel.addGenConstrPow()

Add a new general constraint of type GRB.GENCONSTR_POW to a model.
A power function constraint states that the relationship y = z* should hold for variables x and y, where a is the
(constant) exponent. The lower bound of variable x must be nonnegative, even if a is an integer.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrPow ( GRBVar xvar,
GRBVar yvar,
double a,
String name,
String options )
Arguments:
xvar: The x variable.
yvar: The y variable.
a: The exponent of the function, a > 0.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").
Return value:
New general constraint.

221



GRBModel.addGenConstrSin()

Add a new general constraint of type GRB.GENCONSTR_SIN to a model.

A sine function constraint states that the relationship y = sin(z) should hold for variables = and y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrSin ( GRBVar xvar,
GRBVar yvar,
String name,
String options )
Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").
Return value:
New general constraint.

GRBModel.addGenConstrCos()

Add a new general constraint of type GRB.GENCONSTR_COS to a model.

A cosine function constraint states that the relationship y = cos(z) should hold for variables = and y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrCos ( GRBVar xvar,
GRBVar yvar,
String name,
String options )
Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").
Return value:
New general constraint.

GRBModel.addGenConstrTan()

Add a new general constraint of type GRB.GENCONSTR_TAN to a model.

A tangent function constraint states that the relationship y = tan(x) should hold for variables z and y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

222



GRBGenConstr addGenConstrTan ( GRBVar xvar,
GRBVar yvar,
String name,
String options )
Arguments:

xvar: The x variable.
yvar: The y variable.

name: Name for the new general constraint.
A string that can be used to set the attributes that control the piecewise-linear approximation of

options:

this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel.addQConstr()

Add a quadratic constraint to a model. Multiple signatures are available.
Important note: Gurobi can handle both convex and non-convex quadratic constraints. The differences between
them can be both important and subtle. Refer to this discussion for additional information.

GRBQConstr addQConstr ( GRBQuadExpr
char
GRBQuadExpr
String
Add a quadratic constraint to a model.
Arguments:

lhsExpr,
sense,
rhsExpr,
name )

lhsExpr: Left-hand side quadratic expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side quadratic expression for new quadratic constraint.

name: Name for new constraint.
Return value:
New quadratic constraint object.

GRBQConstr addQConstr ( GRBQuadExpr
char
GRBVar
String
Add a quadratic constraint to a model.
Arguments:

lhsExpr,
sense,
rhsVar,
name )

lhsExpr: Left-hand side quadratic expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsVar: Right-hand side variable for new quadratic constraint.

name: Name for new constraint.
Return value:
New quadratic constraint object.

GRBQConstr addQConstr ( GRBQuadExpr
char
GRBLinExpr
String
Add a quadratic constraint to a model.
Arguments:

lhsExpr,
sense,
rhsExpr,
name )

223



lhsExpr: Left-hand side quadratic expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side linear expression for new quadratic constraint.
name: Name for new constraint.
Return value:
New quadratic constraint object.

GRBQConstr addQConstr( GRBQuadExpr 1lhsExpr,

char sense,

double rhs,

String name )
Add a quadratic constraint to a model.

Arguments:
lhsExpr: Left-hand side quadratic expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhs: Right-hand side value for new quadratic constraint.
name: Name for new constraint.
Return value:
New quadratic constraint object.

GRBQConstr addQConstr ( GRBLinExpr  lhsExpr,

char sense,

GRBQuadExpr rhsExpr,

String name )
Add a quadratic constraint to a model.

Arguments:
lhsExpr: Left-hand side linear expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL7 GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side quadratic expression for new quadratic constraint.
name: Name for new constraint.
Return value:
New quadratic constraint object.

GRBQConstr addQConstr ( GRBVar lhsVar,
char sense,
GRBQuadExpr rhsExpr,
String name )
Add a quadratic constraint to a model.
Arguments:

lhsVar: Left-hand side variable for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side quadratic expression for new quadratic constraint.
name: Name for new constraint.
Return value:
New quadratic constraint object.

GRBQConstr addQConstr ( double 1lhs,
char sense,
GRBQuadExpr rhsExpr,
String name )
Add a quadratic constraint to a model.
Arguments:

224



1lhs: Left-hand side value for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side quadratic expression for new quadratic constraint.
name: Name for new constraint.
Return value:
New quadratic constraint object.

GRBModel.addRange()

Add a single range constraint to a model. A range constraint states that the value of the input expression must be
between the specified lower and upper bounds in any solution.

Note that range constraints are stored internally as equality constraints. We add an extra variable to the model
to capture the range information. Thus, the Sense attribute on a range constraint will always be GRB.EQUAL. In
particular introducing a range constraint

L<dfz<U
is equivalent to adding a slack variable s and the following constraints

aTe—s =1L
0<s <U-L.

GRBConstr addRange ( GRBLinExpr expr,

double lower,
double upper,
String name )

Arguments:
expr: Linear expression for new range constraint.
lower: Lower bound for linear expression.
upper: Upper bound for linear expression.
name: Name for new constraint.
Return value:
New constraint object.

GRBModel.addRanges()

Add new range constraints to a model. A range constraint states that the value of the input expression must be
between the specified lower and upper bounds in any solution.

GRBConstr[] addRange S (  GRBLinExpr[] exprs,

doublel] lower,
double[] upper,
String[] names )

Arguments:
exprs: Linear expressions for the new range constraints.
lower: Lower bounds for linear expressions.
upper: Upper bounds for linear expressions.
names: Names for new range constraints.
Return value:
Array of new constraint objects.

225



GRBModel.addSOS()

Add an SOS constraint to the model. Please refer to the SOS Constraints section in the Reference Manual for

additional details.

GRBSOS addSO0S ( GRBVar[] vars,
double[] weights,
int type )
Arguments:
vars: Array of variables that participate in the SOS constraint.
weights: Weights for the variables in the SOS constraint.
type: SOS type (can be GRB.S0S_TYPE1 or GRB.S0S_TYPE2).
Return value:
New SOS constraint.

GRBModel.addVar()

Add a single decision variable to a model.

GRBVar addVar ( double 1b,

double ub,
double obj,
char type,

String name )
Add a variable to a model; non-zero entries will be added later.
Arguments:
1b: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coeflicient for new variable.

type: Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,

GRB.SEMICONT, or GRB.SEMI INT).
name: Name for new variable.
Return value:
New variable object.

GRBVar addVar ( double 1b,
double ub,
double obj,
char type,
GRBConstr[] comstrs,
double[] coeffs,
String name )
Add a variable to a model, and the associated non-zero coefficients.
Arguments:

1b: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.

type: Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,

GRB.SEMICONT, or GRB.SEMI INT).
constrs: Array of constraints in which the variable participates.

coeffs: Array of coefficients for each constraint in which the variable participates.

constrs and coeffs arrays must be identical.
name: Name for new variable.

The lengths of the

226



Return value:
New variable object.

GRBVar addVar ( double 1b,
double ub,
double obj,
char type,
GRBColumn col,
String name )

Add a variable to a model. This signature allows you to specify the set of constraints to which the new variable
belongs using a GRBColumn object.
Arguments:
1b: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMI INT).
col: GRBColumn object for specifying a set of constraints to which new variable belongs.
name: Name for new variable.
Return value:
New variable object.

GRBModel.addVars()

Add new decision variables to a model.

GRBVar[] addVars ( int count,
char type )
Add count new decision variables to a model. All associated attributes take their default values, except the
variable type, which is specified as an argument.
Arguments:
count: Number of variables to add.
type: Variable type for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).
Return value:
Array of new variable objects.

GRBVar[] addVars ( double[l 1b,
double[] ub,
double[] obj,
char(] type,
String[] names )
Add new decision variables to a model. The number of added variables is determined by the length of the input
arrays (which must be consistent across all arguments).
Arguments:
1b: Lower bounds for new variables. Can be null, in which case the variables get lower bounds of 0.0.
ub: Upper bounds for new variables. Can be null, in which case the variables get infinite upper bounds.
obj: Objective coefficients for new variables. Can be null, in which case the variables get objective coefficients
of 0.0.
type: Variable types for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed to be continuous.
names: Names for new variables. Can be null, in which case all variables are given default names.
Return value:

227



Array of new variable objects.

GRBVar[] addVars ( double[] 1b,
double[] ub,
double[] obj,

char(] type,
String[] names,
int start,
int len )

Add new decision variables to a model. This signature allows you to use arrays to hold the various variable
attributes (lower bound, upper bound, etc.), without forcing you to add a variable for each entry in the array. The
start and len arguments allow you to specify which variables to add.

Arguments:

1b: Lower bounds for new variables. Can be null, in which case the variables get lower bounds of 0.0.

ub: Upper bounds for new variables. Can be null, in which case the variables get infinite upper bounds.

obj: Objective coefficients for new variables. Can be null, in which case the variables get objective coefficients
of 0.0.

type: Variable types for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed to be continuous.

names: Names for new variables. Can be null, in which case all variables are given default names.

start: The first variable in the list to add.

len: The number of variables to add.

Return value:
Array of new variable objects.

GRBVar[] addVars ( double[] 1b,
doublel] ub,
double[] obj,
char[] type,
String[] names,

GRBColumn[] cols )
Add new decision variables to a model. This signature allows you to specify the list of constraints to which each
new variable belongs using an array of GRBColumn objects.
Arguments:
1b: Lower bounds for new variables. Can be null, in which case the variables get lower bounds of 0.0.
ub: Upper bounds for new variables. Can be null, in which case the variables get infinite upper bounds.
obj: Objective coefficients for new variables. Can be null, in which case the variables get objective coefficients
of 0.0.
type: Variable types for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed to be continuous.
names: Names for new variables. Can be null, in which case all variables are given default names.
cols: GRBColumn objects for specifying a set of constraints to which each new column belongs.
Return value:
Array of new variable objects.

GRBModel.chgCoeff()

Change one coefficient in the model. The desired change is captured using a GRBVar object, a GRBConstr object,
and a desired coefficient for the specified variable in the specified constraint. If you make multiple changes to the
same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you update the model
(using GRBModel.update), optimize the model (using GRBModel.optimize), or write the model to disk (using GRB-
Model.write).

228



void cthoeff (  GRBConstr constr,
GRBVar var,
double newval )
Arguments:
constr: Constraint for coefficient to be changed.
var: Variable for coefficient to be changed.
newval: Desired new value for coefficient.

GRBModel.chgCoeffs()

Change a list of coefficients in the model. Each desired change is captured using a GRBVar object, a GRBConstr object,
and a desired coefficient for the specified variable in the specified constraint. The entries in the input arrays each
correspond to a single desired coefficient change. The lengths of the input arrays must all be the same. If you make
multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you update the model
(using GRBModel.update), optimize the model (using GRBModel.optimize), or write the model to disk (using GRB-
Model.write).

void cthoeffs (  GRBConstr[] constrs,
GRBVar/[] vars,
double[] newvals )
Arguments:
constrs: Constraints for coefficients to be changed.
vars: Variables for coefficients to be changed.
newvals: Desired new values for coefficients.

GRBModel.computellS()

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and variable bounds with
the following properties:

o It is still infeasible, and
o If a single constraint or bound is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily the smallest
one; there may exist others with fewer constraints or bounds.

IIS results are returned in a number of attributes: IISConstr, IISLB, IISUB, IISSOS, IISQConstr, and IISGen-
Constr. Each indicates whether the corresponding model element is a member of the computed IIS.

The IIS log provides information about the progress of the algorithm, including a guess at the eventual IIS size.

If an IIS computation is interrupted before completion, Gurobi will return the smallest infeasible subsystem found
to that point.

The IISConstrForce, IISLBForce, IISUBForce, IISSOSForce, IISQConstrForce, and IISGenConstrForce attributes
allow you mark model elements to either include or exclude from the computed IIS. Setting the attribute to 1 forces
the corresponding element into the IIS, setting it to 0 forces it out of the IIS, and setting it to -1 allows the algorithm
to decide.

To give an example of when these attributes might be useful, consider the case where an initial model is known
to be feasible, but it becomes infeasible after adding constraints or tightening bounds. If you are only interested
in knowing which of the changes caused the infeasibility, you can force the unmodified bounds and constraints into
the IIS. That allows the IIS algorithm to focus exclusively on the new constraints, which will often be substantially
faster.

Note that setting any of the Force attributes to 0 may make the resulting subsystem feasible, which would
then make it impossible to construct an IIS. Trying anyway will result in a GRB_ERROR_IIS_NOT_INFEASIBLE error.
Similarly, setting this attribute to 1 may result in an IIS that is not irreducible. More precisely, the system would
only be irreducible with respect to the model elements that have force values of -1 or 0.

This method populates the IISConstr, IISQConstr, and IISGenConstr constraint attributes, the IISSOS, SOS
attribute, and the IISLB and IISUB variable attributes. You can also obtain information about the results of the IIS

229



computation by writing a .ilp format file (see GRBModel.write). This file contains only the IIS from the original
model.

Use the IISMethod parameter to adjust the behavior of the IIS algorithm.

Note that this method can be used to compute IISs for both continuous and MIP models.

| void computelIIS ()

GRBModel.discardConcurrentEnvs()

Discard concurrent environments for a model.

The concurrent environments created by getConcurrentEnv will be used by every subsequent call to the concurrent
optimizer until the concurrent environments are discarded.

Use getMultiobjEnv to create a multi-objective environment.

| void discardConcurrentEnvs ()

GRBModel.discardMultiobjEnvs()

Discard all multi-objective environments associated with the model, thus restoring multi objective optimization to
its default behavior.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple objective functions
and control the trade-off between them.

Use getMultiobjEnv to create a multi-objective environments.

| void discardMultiobjEnvs ()

GRBModel.dispose()

Release the resources associated with a GRBModel object. While the Java garbage collector will eventually reclaim
these resources, we recommend that you call the dispose method when you are done using a model.
You should not attempt to use a GRBModel object after calling dispose on it.

| void dispose ()

GRBModel.feasRelax()

Modifies the GRBModel object to create a feasibility relaxation. Note that you need to call optimize on the result to
compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the solution violates the
bounds and linear constraints of the original model. This method provides a number of options for specifying the
relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the sum of the weighted
magnitudes of the bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the cost per
unit violation in the lower bounds, upper bounds, and linear constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the weighted sum of the
squares of the bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the coefficients on
the squares of the lower bound, upper bound, and linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the weighted count of
bound and constraint violations. The 1lbpen, ubpen, and rhspen arguments specify the cost of violating a lower
bound, upper bound, and linear constraint, respectively.

230



To give an example, if a constraint with rhspen value p is violated by 2.0, it would contribute 2#p to the feasibility
relaxation objective for relaxobjtype=0, it would contribute 2*2*p for relaxobjtype=1, and it would contribute p
for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is created. If minrelax=false,
optimizing the returned model gives a solution that minimizes the cost of the violation. If minrelax=true, optimizing
the returned model finds a solution that minimizes the original objective, but only from among those solutions that
minimize the cost of the violation. Note that feasRelax must solve an optimization problem to find the minimum
possible relaxation when minrelax=true, which can be quite expensive.

There are two signatures for this method. The more complex one takes a list of variables and constraints, as well
as penalties associated with relaxing the corresponding lower bounds, upper bounds, and constraints. If a variable
or constraint is not included in one of these lists, the associated bounds or constraints may not be violated. The
simpler signature takes a pair of boolean