
GUROBI OPTIMIZER
REFERENCE MANUAL

Version 10.0, Copyright © 2022, Gurobi Optimization, LLC

Contents

1 Introduction 1

2 Detailed Release Notes 10 3

3 C API Overview 9
3.1 Environment Creation and Destruction . 13

GRBloadenv . 13
GRBemptyenv . 13
GRBstartenv . 13
GRBfreeenv . 14
GRBgetconcurrentenv . 14
GRBgetmultiobjenv . 14
GRBdiscardconcurrentenvs . 15
GRBdiscardmultiobjenvs . 15

3.2 Model Creation and Modification . 16
GRBloadmodel . 16
GRBnewmodel . 17
GRBcopymodel . 18
GRBaddconstr . 18
GRBaddconstrs . 19
GRBaddgenconstrXxx . 20
GRBaddgenconstrMax . 20
GRBaddgenconstrMin . 21
GRBaddgenconstrAbs . 22
GRBaddgenconstrAnd . 22
GRBaddgenconstrOr . 23
GRBaddgenconstrNorm . 23
GRBaddgenconstrIndicator . 24
GRBaddgenconstrPWL . 25
GRBaddgenconstrPoly . 25
GRBaddgenconstrExp . 26
GRBaddgenconstrExpA . 27
GRBaddgenconstrLog . 27
GRBaddgenconstrLogA . 28
GRBaddgenconstrLogistic . 28
GRBaddgenconstrPow . 29
GRBaddgenconstrSin . 30
GRBaddgenconstrCos . 30
GRBaddgenconstrTan . 31

i

GRBaddqconstr . 32
GRBaddqpterms . 33
GRBaddrangeconstr . 33
GRBaddrangeconstrs . 34
GRBaddsos . 35
GRBaddvar . 36
GRBaddvars . 37
GRBchgcoeffs . 37
GRBdelconstrs . 38
GRBdelgenconstrs . 38
GRBdelq . 39
GRBdelqconstrs . 39
GRBdelsos . 39
GRBdelvars . 40
GRBsetobjectiven . 40
GRBsetpwlobj . 41
GRBupdatemodel . 42
GRBfreemodel . 42
GRBXaddconstrs . 42
GRBXaddrangeconstrs . 43
GRBXaddvars . 44
GRBXchgcoeffs . 45
GRBXloadmodel . 46

3.3 Model Solution . 48
GRBoptimize . 48
GRBoptimizeasync . 48
GRBcomputeIIS . 49
GRBfeasrelax . 50
GRBfixmodel . 51
GRBreset . 51
GRBsync . 51

3.4 Model Queries . 53
GRBgetcoeff . 53
GRBgetconstrbyname . 53
GRBgetconstrs . 53
GRBgetenv . 54
GRBgetgenconstrMax . 54
GRBgetgenconstrMin . 55
GRBgetgenconstrAbs . 56
GRBgetgenconstrAnd . 56
GRBgetgenconstrOr . 57
GRBgetgenconstrNorm . 58
GRBgetgenconstrIndicator . 59
GRBgetgenconstrPWL . 60
GRBgetgenconstrPoly . 60

ii

GRBgetgenconstrExp . 61
GRBgetgenconstrExpA . 62
GRBgetgenconstrLog . 62
GRBgetgenconstrLogA . 63
GRBgetgenconstrLogistic . 63
GRBgetgenconstrPow . 64
GRBgetgenconstrSin . 65
GRBgetgenconstrCos . 65
GRBgetgenconstrTan . 66
GRBgetjsonsolution . 66
GRBgetpwlobj . 67
GRBgetq . 67
GRBgetqconstr . 68
GRBgetqconstrbyname . 68
GRBgetsos . 69
GRBgetvarbyname . 69
GRBgetvars . 70
GRBsinglescenariomodel . 70
GRBXgetconstrs . 71
GRBXgetvars . 71

3.5 Input/Output . 73
GRBreadmodel . 73
GRBread . 73
GRBwrite . 73

3.6 Attribute Management . 75
GRBgetattrinfo . 75
GRBgetintattr . 75
GRBsetintattr . 76
GRBgetintattrelement . 76
GRBsetintattrelement . 76
GRBgetintattrarray . 77
GRBsetintattrarray . 77
GRBgetintattrlist . 78
GRBsetintattrlist . 78
GRBgetdblattr . 79
GRBsetdblattr . 79
GRBgetdblattrelement . 79
GRBsetdblattrelement . 80
GRBgetdblattrarray . 80
GRBsetdblattrarray . 81
GRBgetdblattrlist . 81
GRBsetdblattrlist . 81
GRBgetcharattrelement . 82
GRBsetcharattrelement . 82
GRBgetcharattrarray . 83

iii

GRBsetcharattrarray . 83
GRBgetcharattrlist . 83
GRBsetcharattrlist . 84
GRBgetstrattr . 84
GRBsetstrattr . 85
GRBgetstrattrelement . 85
GRBsetstrattrelement . 86
GRBgetstrattrarray . 86
GRBsetstrattrarray . 87
GRBgetstrattrlist . 87
GRBsetstrattrlist . 88
GRBgetbatchattrinfo . 88

3.7 Parameter Management and Tuning . 89
GRBtunemodel . 89
GRBgettuneresult . 89
GRBgetdblparam . 90
GRBgetintparam . 90
GRBgetstrparam . 90
GRBsetdblparam . 91
GRBsetintparam . 91
GRBsetstrparam . 91
GRBgetdblparaminfo . 92
GRBgetintparaminfo . 92
GRBgetstrparaminfo . 93
GRBreadparams . 93
GRBwriteparams . 94

3.8 Monitoring Progress - Logging and Callbacks . 95
GRBmsg . 95
GRBsetcallbackfunc . 95
GRBgetcallbackfunc . 95
GRBcbget . 96
GRBversion . 96

3.9 Modifying Solver Behavior - Callbacks . 97
GRBcbcut . 97
GRBcblazy . 97
GRBcbsolution . 98
GRBcbproceed . 99
GRBcbstoponemultiobj . 99
GRBterminate . 100

3.10 Batch Requests . 101
GRBabortbatch . 101
GRBdiscardbatch . 101
GRBfreebatch . 101
GRBgetbatch . 102
GRBgetbatchenv . 102

iv

GRBgetbatchintattr . 102
GRBgetbatchjsonsolution . 103
GRBgetbatchstrattr . 103
GRBoptimizebatch . 104
GRBretrybatch . 104
GRBupdatebatch . 105
GRBwritebatchjsonsolution . 105

3.11 Error Handling . 106
GRBgeterrormsg . 106

3.12 Advanced simplex routines . 107
GRBFSolve . 107
GRBBSolve . 107
GRBBinvColj . 108
GRBBinvRowi . 108
GRBgetBasisHead . 108

4 C++ API Overview 109
4.1 GRBEnv . 113

GRBEnv() . 113
GRBEnv::get() . 114
GRBEnv::getErrorMsg() . 114
GRBEnv::getParamInfo() . 115
GRBEnv::message() . 115
GRBEnv::readParams() . 116
GRBEnv::resetParams() . 116
GRBEnv::set() . 116
GRBEnv::start() . 117
GRBEnv::writeParams() . 117

4.2 GRBModel . 118
GRBModel() . 118
GRBModel::addConstr() . 118
GRBModel::addConstrs() . 120
GRBModel::addGenConstrXxx() . 121
GRBModel::addQConstr() . 129
GRBModel::addRange() . 130
GRBModel::addRanges() . 131
GRBModel::addSOS() . 131
GRBModel::addVar() . 131
GRBModel::addVars() . 133
GRBModel::chgCoeff() . 134
GRBModel::chgCoeffs() . 134
GRBModel::computeIIS() . 134
GRBModel::discardConcurrentEnvs() . 135
GRBModel::discardMultiobjEnvs() . 135
GRBModel::feasRelax() . 136
GRBModel::fixedModel() . 137

v

GRBModel::get() . 137
GRBModel::getCoeff() . 141
GRBModel::getCol() . 141
GRBModel::getConcurrentEnv() . 141
GRBModel::getConstrByName() . 141
GRBModel::getConstrs() . 142
GRBModel::getGenConstrXxx() . 142
GRBModel::getGenConstrs() . 149
GRBModel::getJSONSolution() . 149
GRBModel::getMultiobjEnv() . 149
GRBModel::getObjective() . 149
GRBModel::getPWLObj() . 150
GRBModel::getQCRow() . 150
GRBModel::getQConstrs() . 150
GRBModel::getRow() . 151
GRBModel::getSOS() . 151
GRBModel::getSOSs() . 151
GRBModel::getTuneResult() . 151
GRBModel::getVarByName() . 152
GRBModel::getVars() . 152
GRBModel::optimize() . 152
GRBModel::optimizeasync() . 152
GRBModel::optimizeBatch() . 153
GRBModel::presolve() . 153
GRBModel::read() . 153
GRBModel::remove() . 153
GRBModel::reset() . 154
GRBModel::setCallback() . 154
GRBModel::set() . 155
GRBModel::setObjective() . 158
GRBModel::setObjectiveN() . 158
GRBModel::setPWLObj() . 159
GRBModel::singleScenarioModel() . 159
GRBModel::sync() . 159
GRBModel::terminate() . 160
GRBModel::tune() . 160
GRBModel::update() . 160
GRBModel::write() . 160

4.3 GRBVar . 161
GRBVar::get() . 161
GRBVar::index() . 161
GRBVar::sameAs() . 162
GRBVar::set() . 162

4.4 GRBConstr . 163
GRBConstr::get() . 163

vi

GRBConstr::index() . 163
GRBConstr::sameAs() . 164
GRBConstr::set() . 164

4.5 GRBQConstr . 165
GRBQConstr::get() . 165
GRBQConstr::set() . 166

4.6 GRBSOS . 167
GRBSOS::get() . 167
GRBSOS::set() . 167

4.7 GRBGenConstr . 168
GRBGenConstr::get() . 168
GRBGenConstr::set() . 168

4.8 GRBExpr . 170
GRBExpr::getValue() . 170

4.9 GRBLinExpr . 171
GRBLinExpr() . 171
GRBLinExpr::addTerms() . 172
GRBLinExpr::clear() . 172
GRBLinExpr::getConstant() . 172
GRBLinExpr::getCoeff() . 172
GRBLinExpr::getValue() . 172
GRBLinExpr::getVar() . 173
GRBLinExpr::operator= . 173
GRBLinExpr::operator+ . 173
GRBLinExpr::operator- . 173
GRBLinExpr::operator+= . 173
GRBLinExpr::operator-= . 174
GRBLinExpr::operator*= . 174
GRBLinExpr::remove() . 174
GRBLinExpr::size() . 174

4.10 GRBQuadExpr . 175
GRBQuadExpr() . 175
GRBQuadExpr::addTerm() . 176
GRBQuadExpr::addTerms() . 176
GRBQuadExpr::clear() . 177
GRBQuadExpr::getCoeff() . 177
GRBQuadExpr::getLinExpr() . 177
GRBQuadExpr::getValue() . 177
GRBQuadExpr::getVar1() . 177
GRBQuadExpr::getVar2() . 178
GRBQuadExpr::operator= . 178
GRBQuadExpr::operator+ . 178
GRBQuadExpr::operator- . 178
GRBQuadExpr::operator+= . 178
GRBQuadExpr::operator-= . 179

vii

GRBQuadExpr::operator*= . 179
GRBQuadExpr::remove() . 179
GRBQuadExpr::size() . 179

4.11 GRBTempConstr . 180
4.12 GRBColumn . 181

GRBColumn() . 181
GRBColumn::addTerm() . 181
GRBColumn::addTerms() . 181
GRBColumn::clear() . 181
GRBColumn::getCoeff() . 182
GRBColumn::getConstr() . 182
GRBColumn::remove() . 182
GRBColumn::size() . 182

4.13 GRBCallback . 183
GRBCallback() . 183
GRBCallback::abort() . 183
GRBCallback::addCut() . 183
GRBCallback::addLazy() . 184
GRBCallback::getDoubleInfo() . 185
GRBCallback::getIntInfo() . 185
GRBCallback::getNodeRel() . 185
GRBCallback::getSolution() . 186
GRBCallback::getStringInfo() . 186
GRBCallback::proceed() . 186
GRBCallback::setSolution() . 187
GRBCallback::stopOneMultiObj() . 187
GRBCallback::useSolution() . 188

4.14 GRBException . 189
GRBException() . 189
GRBException::getErrorCode() . 189
GRBException::getMessage() . 189

4.15 GRBBatch . 190
GRBBatch() . 190
GRBBatch::abort() . 190
GRBBatch::discard() . 191
GRBBatch::getJSONSolution() . 191
GRBBatch::get() . 191
GRBBatch::retry() . 191
GRBBatch::update() . 192
GRBBatch::writeJSONSolution() . 192

4.16 Non-Member Functions . 193
operator== . 193
operator<= . 193
operator>= . 193
operator+ . 193

viii

operator- . 194
operator* . 195
operator/ . 197

4.17 Attribute Enums . 198
GRB_CharAttr . 198
GRB_DoubleAttr . 198
GRB_IntAttr . 198
GRB_StringAttr . 198

4.18 Parameter Enums . 199
GRB_DoubleParam . 199
GRB_IntParam . 199
GRB_StringParam . 199

5 Java API Overview 200
5.1 GRBEnv . 205

GRBEnv() . 205
GRBEnv.dispose() . 206
GRBEnv.get() . 206
GRBEnv.getErrorMsg() . 207
GRBEnv.getParamInfo() . 207
GRBEnv.message() . 207
GRBEnv.readParams() . 208
GRBEnv.release() . 208
GRBEnv.resetParams() . 208
GRBEnv.set() . 208
GRBEnv.setLogCallback() . 209
GRBEnv.start() . 209
GRBEnv.writeParams() . 210

5.2 GRBModel . 211
GRBModel() . 211
GRBModel.addConstr() . 211
GRBModel.addConstrs() . 214
GRBModel.addGenConstrXxx() . 214
GRBModel.addQConstr() . 223
GRBModel.addRange() . 225
GRBModel.addRanges() . 225
GRBModel.addSOS() . 226
GRBModel.addVar() . 226
GRBModel.addVars() . 227
GRBModel.chgCoeff() . 228
GRBModel.chgCoeffs() . 229
GRBModel.computeIIS() . 229
GRBModel.discardConcurrentEnvs() . 230
GRBModel.discardMultiobjEnvs() . 230
GRBModel.dispose() . 230
GRBModel.feasRelax() . 230

ix

GRBModel.fixedModel() . 232
GRBModel.get() . 232
GRBModel.getCoeff() . 244
GRBModel.getCol() . 244
GRBModel.getConcurrentEnv() . 244
GRBModel.getConstrByName() . 245
GRBModel.getConstrs() . 245
GRBModel.getGenConstrXxx() . 245
GRBModel.getGenConstrs() . 252
GRBModel.getJSONSolution() . 252
GRBModel.getMultiobjEnv() . 252
GRBModel.getObjective() . 253
GRBModel.getPWLObj() . 253
GRBModel.getQCRow() . 253
GRBModel.getQConstrs() . 254
GRBModel.getRow() . 254
GRBModel.getSOS() . 254
GRBModel.getSOSs() . 254
GRBModel.getTuneResult() . 255
GRBModel.getVarByName() . 255
GRBModel.getVars() . 255
GRBModel.optimize() . 255
GRBModel.optimizeasync() . 256
GRBModel.optimizeBatch() . 256
GRBModel.presolve() . 256
GRBModel.read() . 256
GRBModel.remove() . 257
GRBModel.reset() . 258
GRBModel.setCallback() . 258
GRBModel.set() . 258
GRBModel.setLogCallback() . 269
GRBModel.setObjective() . 269
GRBModel.setObjectiveN() . 269
GRBModel.setPWLObj() . 270
GRBModel.singleScenarioModel() . 270
GRBModel.sync() . 270
GRBModel.terminate() . 271
GRBModel.tune() . 271
GRBModel.update() . 271
GRBModel.write() . 271

5.3 GRBVar . 272
GRBVar.get() . 272
GRBVar.index() . 272
GRBVar.sameAs() . 273
GRBVar.set() . 273

x

5.4 GRBConstr . 274
GRBConstr.get() . 274
GRBConstr.index() . 274
GRBConstr.sameAs() . 275
GRBConstr.set() . 275

5.5 GRBQConstr . 276
GRBQConstr.get() . 276
GRBQConstr.set() . 277

5.6 GRBSOS . 278
GRBSOS.get() . 278
GRBSOS.set() . 278

5.7 GRBGenConstr . 279
GRBGenConstr.get() . 279
GRBGenConstr.set() . 279

5.8 GRBExpr . 281
GRBExpr.getValue() . 281

5.9 GRBLinExpr . 282
GRBLinExpr() . 282
GRBLinExpr.add() . 282
GRBLinExpr.addConstant() . 283
GRBLinExpr.addTerm() . 283
GRBLinExpr.addTerms() . 283
GRBLinExpr.clear() . 283
GRBLinExpr.getConstant() . 284
GRBLinExpr.getCoeff() . 284
GRBLinExpr.getValue() . 284
GRBLinExpr.getVar() . 284
GRBLinExpr.multAdd() . 284
GRBLinExpr.remove() . 285
GRBLinExpr.size() . 285

5.10 GRBQuadExpr . 286
GRBQuadExpr() . 286
GRBQuadExpr.add() . 287
GRBQuadExpr.addConstant() . 287
GRBQuadExpr.addTerm() . 287
GRBQuadExpr.addTerms() . 288
GRBQuadExpr.clear() . 289
GRBQuadExpr.getCoeff() . 289
GRBQuadExpr.getLinExpr() . 289
GRBQuadExpr.getValue() . 289
GRBQuadExpr.getVar1() . 289
GRBQuadExpr.getVar2() . 290
GRBQuadExpr.multAdd() . 290
GRBQuadExpr.remove() . 290
GRBQuadExpr.size() . 291

xi

5.11 GRBColumn . 292
GRBColumn() . 292
GRBColumn.addTerm() . 292
GRBColumn.addTerms() . 292
GRBColumn.clear() . 293
GRBColumn.getCoeff() . 293
GRBColumn.getConstr() . 293
GRBColumn.remove() . 293
GRBColumn.size() . 294

5.12 GRBCallback . 295
GRBCallback() . 295
GRBCallback.abort() . 295
GRBCallback.addCut() . 295
GRBCallback.addLazy() . 296
GRBCallback.getDoubleInfo() . 296
GRBCallback.getIntInfo() . 297
GRBCallback.getNodeRel() . 297
GRBCallback.getSolution() . 297
GRBCallback.getStringInfo() . 298
GRBCallback.proceed() . 298
GRBCallback.setSolution() . 298
GRBCallback.stopOneMultiObj() . 299
GRBCallback.useSolution() . 300

5.13 GRBException . 301
GRBException() . 301
GRBException.getErrorCode() . 301

5.14 GRBBatch . 302
GRBBatch() . 302
GRBBatch.abort() . 302
GRBBatch.discard() . 303
GRBBatch.dispose() . 303
GRBBatch.getJSONSolution() . 303
GRBBatch.get() . 303
GRBBatch.retry() . 304
GRBBatch.update() . 304
GRBBatch.writeJSONSolution() . 304

5.15 GRB . 305
Constants . 305
GRB.CharAttr . 310
GRB.DoubleAttr . 311
GRB.DoubleParam . 311
GRB.IntAttr . 311
GRB.IntParam . 311
GRB.StringAttr . 311
GRB.StringParam . 311

xii

6 .NET API Overview 312
6.1 GRBEnv . 316

GRBEnv() . 316
GRBEnv.Dispose() . 317
GRBEnv.ErrorMsg . 317
GRBEnv.Get() . 317
GRBEnv.GetParamInfo() . 318
GRBEnv.Message() . 318
GRBEnv.ReadParams() . 318
GRBEnv.Release() . 319
GRBEnv.ResetParams() . 319
GRBEnv.Set() . 319
GRBEnv.Start() . 320
GRBEnv.WriteParams() . 320

6.2 GRBModel . 321
GRBModel() . 321
GRBModel.AddConstr() . 321
GRBModel.AddConstrs() . 322
GRBModel.AddGenConstrXxx() . 323
GRBModel.AddQConstr() . 331
GRBModel.AddRange() . 332
GRBModel.AddRanges() . 333
GRBModel.AddSOS() . 333
GRBModel.AddVar() . 333
GRBModel.AddVars() . 334
GRBModel.ChgCoeff() . 336
GRBModel.ChgCoeffs() . 336
GRBModel.ComputeIIS() . 336
GRBModel.DiscardConcurrentEnvs() . 337
GRBModel.DiscardMultiobjEnvs() . 337
GRBModel.Dispose() . 337
GRBModel.FeasRelax() . 337
GRBModel.FixedModel() . 339
GRBModel.Get() . 339
GRBModel.GetCoeff() . 348
GRBModel.GetCol() . 349
GRBModel.GetConcurrentEnv() . 349
GRBModel.GetConstrByName() . 349
GRBModel.GetConstrs() . 349
GRBModel.GetGenConstrXxx() . 349
GRBModel.GetGenConstrs() . 356
GRBModel.GetJSONSolution() . 356
GRBModel.GetMultiobjEnv() . 356
GRBModel.GetObjective() . 356
GRBModel.GetPWLObj() . 357

xiii

GRBModel.GetQConstr() . 357
GRBModel.GetQConstrs() . 357
GRBModel.GetQCRow() . 358
GRBModel.GetRow() . 358
GRBModel.GetSOS() . 358
GRBModel.GetSOSs() . 358
GRBModel.GetTuneResult() . 358
GRBModel.GetVarByName() . 359
GRBModel.GetVars() . 359
GRBModel.Optimize() . 359
GRBModel.OptimizeAsync() . 359
GRBModel.OptimizeBatch() . 360
GRBModel.Presolve() . 360
GRBModel.Read() . 360
GRBModel.Remove() . 360
GRBModel.Reset() . 361
GRBModel.SetCallback() . 361
GRBModel.Set() . 361
GRBModel.SetObjective() . 371
GRBModel.SetObjectiveN() . 371
GRBModel.SetPWLObj() . 372
GRBModel.SingleScenarioModel() . 372
GRBModel.Sync() . 372
GRBModel.Terminate() . 373
GRBModel.Tune() . 373
GRBModel.Update() . 373
GRBModel.Write() . 373

6.3 GRBVar . 374
GRBVar.Get() . 374
GRBVar.Index . 374
GRBVar.SameAs() . 374
GRBVar.Set() . 375

6.4 GRBConstr . 376
GRBConstr.Get() . 376
GRBConstr.Index . 376
GRBConstr.SameAs() . 376
GRBConstr.Set() . 377

6.5 GRBQConstr . 378
GRBQConstr.Get() . 378
GRBQConstr.Set() . 378

6.6 GRBSOS . 380
GRBSOS.Get() . 380
GRBSOS.Set() . 380

6.7 GRBGenConstr . 381
GRBGenConstr.Get() . 381

xiv

GRBGenConstr.Set() . 381
6.8 GRBExpr . 383

GRBExpr.Value . 383
6.9 GRBLinExpr . 384

GRBLinExpr() . 384
GRBLinExpr.Add() . 385
GRBLinExpr.AddConstant() . 385
GRBLinExpr.AddTerm() . 385
GRBLinExpr.AddTerms() . 385
GRBLinExpr.Clear() . 386
GRBLinExpr.Constant . 386
GRBLinExpr.GetCoeff() . 386
GRBLinExpr.GetVar() . 386
GRBLinExpr.MultAdd() . 386
GRBLinExpr.Remove() . 386
GRBLinExpr.Size . 387
GRBLinExpr.Value . 387

6.10 GRBQuadExpr . 388
GRBQuadExpr() . 388
GRBQuadExpr.Add() . 389
GRBQuadExpr.AddConstant() . 389
GRBQuadExpr.AddTerm() . 389
GRBQuadExpr.AddTerms() . 390
GRBQuadExpr.Clear() . 391
GRBQuadExpr.GetCoeff() . 391
GRBQuadExpr.GetVar1() . 391
GRBQuadExpr.GetVar2() . 391
GRBQuadExpr.LinExpr() . 391
GRBQuadExpr.MultAdd() . 391
GRBQuadExpr.Remove() . 392
GRBQuadExpr.Size . 392
GRBQuadExpr.Value . 392

6.11 GRBTempConstr . 393
6.12 GRBColumn . 394

GRBColumn() . 394
GRBColumn.AddTerm() . 394
GRBColumn.AddTerms() . 394
GRBColumn.Clear() . 395
GRBColumn.GetCoeff() . 395
GRBColumn.GetConstr() . 395
GRBColumn.Remove() . 395
GRBColumn.Size . 395

6.13 Overloaded Operators . 396
operator <= . 396
operator >= . 396

xv

operator == . 396
operator + . 396
operator - . 398
operator * . 398
operator / . 400
implicit cast . 400

6.14 GRBCallback . 402
GRBCallback() . 402
GRBCallback.Abort() . 402
GRBCallback.AddCut() . 402
GRBCallback.AddLazy() . 403
GRBCallback.GetDoubleInfo() . 403
GRBCallback.GetIntInfo() . 404
GRBCallback.GetNodeRel() . 404
GRBCallback.GetSolution() . 404
GRBCallback.GetStringInfo() . 405
GRBCallback.Proceed() . 405
GRBCallback.SetSolution() . 405
GRBCallback.StopOneMultiObj() . 405
GRBCallback.UseSolution() . 406

6.15 GRBException . 407
GRBException() . 407
GRBException.ErrorCode . 407

6.16 GRBBatch . 408
GRBBatch() . 408
GRBBatch.Abort() . 408
GRBBatch.Discard() . 409
GRBBatch.GetJSONSolution() . 409
GRBBatch.Get() . 409
GRBBatch.Retry() . 409
GRBBatch.Update() . 410
GRBBatch.WriteJSONSolution() . 410

6.17 GRB . 411
Constants . 411
GRB.CharAttr . 423
GRB.DoubleAttr . 423
GRB.DoubleParam . 423
GRB.IntAttr . 423
GRB.IntParam . 423
GRB.StringAttr . 423
GRB.StringParam . 423

xvi

7 Python API Overview 424
7.1 Global Functions . 428

models() . 428
disposeDefaultEnv() . 428
multidict() . 428
paramHelp() . 429
quicksum() . 429
read() . 429
readParams() . 429
resetParams() . 430
setParam() . 430
system() . 430
writeParams() . 430

7.2 Model . 431
Model() . 431
Model.addConstr() . 431
Model.addConstrs() . 432
Model.addGenConstrXxx() . 433
Model.addGenConstrMax() . 433
Model.addGenConstrMin() . 434
Model.addGenConstrAbs() . 434
Model.addGenConstrAnd() . 435
Model.addGenConstrOr() . 435
Model.addGenConstrNorm() . 435
Model.addGenConstrIndicator() . 436
Model.addGenConstrPWL() . 436
Model.addGenConstrPoly() . 437
Model.addGenConstrExp() . 437
Model.addGenConstrExpA() . 438
Model.addGenConstrLog() . 438
Model.addGenConstrLogA() . 439
Model.addGenConstrLogistic() . 439
Model.addGenConstrPow() . 440
Model.addGenConstrSin() . 440
Model.addGenConstrCos() . 440
Model.addGenConstrTan() . 441
Model.addLConstr() . 441
Model.addMConstr() . 442
Model.addMQConstr() . 442
Model.addMVar() . 443
Model.addQConstr() . 443
Model.addRange() . 444
Model.addSOS() . 444
Model.addVar() . 445
Model.addVars() . 445

xvii

Model.cbCut() . 446
Model.cbGet() . 447
Model.cbGetNodeRel() . 447
Model.cbGetSolution() . 447
Model.cbLazy() . 448
Model.cbProceed() . 449
Model.cbSetSolution() . 449
Model.cbStopOneMultiObj() . 449
Model.cbUseSolution() . 450
Model.chgCoeff() . 450
Model.computeIIS() . 451
Model.copy() . 451
Model.discardConcurrentEnvs() . 452
Model.discardMultiobjEnvs() . 452
Model.dispose() . 452
Model.feasRelaxS() . 452
Model.feasRelax() . 453
Model.fixed() . 454
Model.getA() . 454
Model.getAttr() . 455
Model.getCoeff() . 455
Model.getCol() . 455
Model.getConcurrentEnv() . 455
Model.getConstrByName() . 456
Model.getConstrs() . 456
Model.getGenConstrMax() . 456
Model.getGenConstrMin() . 457
Model.getGenConstrAbs() . 457
Model.getGenConstrAnd() . 458
Model.getGenConstrOr() . 458
Model.getGenConstrNorm() . 458
Model.getGenConstrIndicator() . 459
Model.getGenConstrPWL() . 459
Model.getGenConstrPoly() . 459
Model.getGenConstrExp() . 460
Model.getGenConstrExpA() . 460
Model.getGenConstrLog() . 461
Model.getGenConstrLogA() . 461
Model.getGenConstrLogistic() . 461
Model.getGenConstrPow() . 462
Model.getGenConstrSin() . 462
Model.getGenConstrCos() . 462
Model.getGenConstrTan() . 463
Model.getGenConstrs() . 463
Model.getJSONSolution() . 463

xviii

Model.getMultiobjEnv() . 464
Model.getObjective() . 464
Model.getParamInfo() . 464
Model.getPWLObj() . 465
Model.getQConstrs() . 465
Model.getQCRow() . 465
Model.getRow() . 465
Model.getSOS() . 466
Model.getSOSs() . 466
Model.getTuneResult() . 466
Model.getVarByName() . 467
Model.getVars() . 467
Model.message() . 467
Model.optimize() . 467
Model.optimizeBatch() . 468
Model.presolve() . 468
Model.printAttr() . 468
Model.printQuality() . 468
Model.printStats() . 469
Model.read() . 469
Model.relax() . 469
Model.remove() . 469
Model.reset() . 470
Model.resetParams() . 470
Model.setAttr() . 470
Model.setMObjective() . 471
Model.setObjective() . 471
Model.setObjectiveN() . 471
Model.setPWLObj() . 472
Model.setParam() . 472
Model.singleScenarioModel() . 473
Model.terminate() . 473
Model.tune() . 473
Model.update() . 473
Model.write() . 474

7.3 Var . 475
Var.getAttr() . 475
Var.sameAs() . 475
Var.index . 475
Var.setAttr() . 476

7.4 MVar . 477
MVar.copy() . 477
MVar.diagonal() . 477
MVar.fromlist() . 478
MVar.fromvar() . 478

xix

MVar.getAttr() . 478
MVar.item() . 479
MVar.ndim . 479
MVar.reshape() . 479
MVar.setAttr() . 480
MVar.shape . 480
MVar.size . 480
MVar.sum() . 480
MVar.T . 481
MVar.tolist() . 481
MVar.transpose() . 481

7.5 Constr . 482
Constr.getAttr() . 482
Constr.index . 482
Constr.sameAs() . 482
Constr.setAttr() . 483

7.6 MConstr . 484
MConstr.tolist() . 484
MConstr.getAttr() . 484
MConstr.setAttr() . 484

7.7 MConstr . 486
MQConstr.tolist() . 486
MQConstr.getAttr() . 486
MQConstr.setAttr() . 487

7.8 QConstr . 488
QConstr.getAttr() . 488
QConstr.setAttr() . 488

7.9 SOS . 489
SOS.getAttr() . 489
SOS.setAttr() . 489

7.10 GenConstr . 490
GenConstr.getAttr() . 490
GenConstr.setAttr() . 490

7.11 LinExpr . 490
LinExpr() . 491
LinExpr.add() . 491
LinExpr.addConstant() . 491
LinExpr.addTerms() . 492
LinExpr.clear() . 492
LinExpr.copy() . 492
LinExpr.getConstant() . 492
LinExpr.getCoeff() . 493
LinExpr.getValue() . 493
LinExpr.getVar() . 493
LinExpr.remove() . 493

xx

LinExpr.size() . 493
LinExpr.__eq__() . 494
LinExpr.__le__() . 494
LinExpr.__ge__() . 494

7.12 QuadExpr . 495
QuadExpr() . 495
QuadExpr.add() . 496
QuadExpr.addConstant() . 496
QuadExpr.addTerms() . 496
QuadExpr.clear() . 496
QuadExpr.copy() . 496
QuadExpr.getCoeff() . 497
QuadExpr.getLinExpr() . 497
QuadExpr.getValue() . 497
QuadExpr.getVar1() . 497
QuadExpr.getVar2() . 498
QuadExpr.remove() . 498
QuadExpr.size() . 498
QuadExpr.__eq__() . 498
QuadExpr.__le__() . 498
QuadExpr.__ge__() . 499

7.13 GenExpr . 500
7.14 MLinExpr . 501

MLinExpr.clear() . 501
MLinExpr.copy() . 501
MLinExpr.getValue() . 501
MLinExpr.item() . 502
MLinExpr.ndim . 502
MLinExpr.shape . 502
MLinExpr.size . 502
MLinExpr.sum() . 503
MLinExpr.zeros() . 503
MLinExpr.__eq__() . 503
MLinExpr.__ge__() . 503
MLinExpr.__getitem__() . 504
MLinExpr.__le__() . 504
MLinExpr.__setitem__() . 504

7.15 MQuadExpr . 505
MQuadExpr.clear() . 505
MQuadExpr.copy() . 505
MQuadExpr.getValue() . 505
MQuadExpr.item() . 506
MQuadExpr.ndim . 506
MQuadExpr.shape . 506
MQuadExpr.size . 506

xxi

MQuadExpr.sum() . 507
MQuadExpr.zeros() . 507
MQuadExpr.__eq__() . 507
MQuadExpr.__ge__() . 507
MQuadExpr.__getitem__() . 508
MQuadExpr.__le__() . 508
MQuadExpr.__setitem__() . 508

7.16 TempConstr . 509
7.17 Column . 510

Column() . 510
Column.addTerms() . 510
Column.clear() . 510
Column.copy() . 511
Column.getCoeff() . 511
Column.getConstr() . 511
Column.remove() . 511
Column.size() . 511

7.18 Callbacks . 512
7.19 GurobiError . 513
7.20 Env . 514

Env() . 514
Env.resetParams() . 515
Env.setParam() . 515
Env.start() . 515
Env.writeParams() . 516
Env.dispose() . 516

7.21 Batch . 517
Batch() . 517
Batch.abort() . 517
Batch.discard() . 518
Batch.dispose() . 518
Batch.getJSONSolution() . 518
Batch.retry() . 518
Batch.update() . 519
Batch.writeJSONSolution() . 519

7.22 GRB . 520
Constants . 520
GRB.Attr . 522
GRB.Param . 522

7.23 tuplelist . 523
tuplelist() . 523
tuplelist.select() . 523
tuplelist.clean() . 523
tuplelist.__contains__() . 524

7.24 tupledict . 525

xxii

tupledict() . 525
tupledict.select() . 525
tupledict.sum() . 526
tupledict.prod() . 526
tupledict.clean() . 526

7.25 General Constraint Helper Functions . 527
abs_() . 527
and_() . 527
max_() . 527
min_() . 528
or_() . 528
norm() . 528

8 MATLAB API Overview 529
8.1 Common Arguments . 531

The model argument . 531
The params argument . 541

8.2 Solving a Model . 544
gurobi() . 544
gurobi_iis() . 546
gurobi_feasrelax() . 547
gurobi_relax() . 548

8.3 Input/Output . 549
gurobi_read() . 549
gurobi_write() . 549

8.4 Using Gurobi within MATLAB’s Problem-Based Optimization 550
8.5 Setting up the Gurobi MATLAB interface . 552

9 R API Overview 553
9.1 Common Arguments . 554

The model argument . 555
The params argument . 565

9.2 Solving a Model . 567
gurobi() . 567
gurobi_iis() . 569
gurobi_feasrelax() . 571
gurobi_relax() . 571

9.3 Input/Output . 572
gurobi_read() . 572
gurobi_write() . 572

9.4 Installing the R package . 573

10 Variables and Constraints and Objectives 574
10.1 Variables . 574
10.2 Constraints . 575
10.3 Objectives . 580

xxiii

10.4 Tolerances and Ill Conditioning -- A Caveat . 585

11 Environments 586
11.1 Session boundaries . 586
11.2 Configuration parameters . 587
11.3 Algorithmic parameters . 588
11.4 Concurrent environments . 589
11.5 Multi-objective environments . 589

12 Attributes 591
12.1 Model Attributes . 596

NumConstrs . 596
NumVars . 596
NumSOS . 596
NumQConstrs . 597
NumGenConstrs . 597
NumNZs . 597
DNumNZs . 597
NumQNZs . 597
NumQCNZs . 597
NumIntVars . 597
NumBinVars . 598
NumPWLObjVars . 598
ModelName . 598
ModelSense . 598
ObjCon . 598
Fingerprint . 598
ObjVal . 598
ObjBound . 599
ObjBoundC . 599
PoolObjBound . 599
PoolObjVal . 599
MIPGap . 599
Runtime . 600
Work . 600
Status . 600
SolCount . 600
IterCount . 600
BarIterCount . 600
NodeCount . 601
ConcurrentWinMethod . 601
IsMIP . 601
IsQP . 601
IsQCP . 601
IsMultiObj . 601
IISMinimal . 602

xxiv

MaxCoeff . 602
MinCoeff . 602
MaxBound . 602
MinBound . 602
MaxObjCoeff . 602
MinObjCoeff . 602
MaxRHS . 603
MinRHS . 603
MaxQCCoeff . 603
MinQCCoeff . 603
MaxQCLCoeff . 603
MinQCLCoeff . 603
MaxQCRHS . 603
MinQCRHS . 604
MaxQObjCoeff . 604
MinQObjCoeff . 604
OpenNodeCount . 604
Kappa . 604
KappaExact . 604
FarkasProof . 604
TuneResultCount . 605
NumStart . 605
LicenseExpiration . 605
Server . 606

12.2 Variable Attributes . 606
LB . 606
UB . 606
Obj . 606
VarName . 606
VTag . 607
VType . 607
X . 607
Xn . 607
RC . 607
BarX . 608
Start . 608
VarHintVal . 608
VarHintPri . 609
BranchPriority . 609
Partition . 609
VBasis . 610
PStart . 610
IISLB . 610
IISLBForce . 610
IISUB . 611

xxv

IISUBForce . 611
PoolIgnore . 611
PWLObjCvx . 611
SAObjLow . 612
SAObjUp . 612
SALBLow . 612
SALBUp . 612
SAUBLow . 612
SAUBUp . 612
UnbdRay . 613

12.3 Linear Constraint Attributes . 613
Sense . 613
RHS . 613
ConstrName . 613
CTag . 613
Pi . 614
Slack . 614
CBasis . 614
DStart . 615
Lazy . 615
IISConstr . 615
IISConstrForce . 616
SARHSLow . 616
SARHSUp . 616
FarkasDual . 616

12.4 SOS Attributes . 617
IISSOS . 617
IISSOSForce . 617

12.5 Quadratic Constraint Attributes . 617
QCSense . 618
QCRHS . 618
QCName . 618
QCPi . 618
QCSlack . 618
QCTag . 618
IISQConstr . 619
IISQConstrForce . 619

12.6 General Constraint Attributes . 619
FuncPieceError . 619
FuncPieceLength . 619
FuncPieceRatio . 620
FuncPieces . 620
GenConstrType . 620
GenConstrName . 620
IISGenConstr . 620

xxvi

IISGenConstrForce . 621
12.7 Quality Attributes . 621

MaxVio . 621
BoundVio . 621
BoundSVio . 621
BoundVioIndex . 622
BoundSVioIndex . 622
BoundVioSum . 622
BoundSVioSum . 622
ConstrVio . 622
ConstrSVio . 622
ConstrVioIndex . 623
ConstrSVioIndex . 623
ConstrVioSum . 623
ConstrSVioSum . 623
ConstrResidual . 623
ConstrSResidual . 623
ConstrResidualIndex . 624
ConstrSResidualIndex . 624
ConstrResidualSum . 624
ConstrSResidualSum . 624
DualVio . 624
DualSVio . 625
DualVioIndex . 625
DualSVioIndex . 625
DualVioSum . 625
DualSVioSum . 625
DualResidual . 625
DualSResidual . 626
DualResidualIndex . 626
DualSResidualIndex . 626
DualResidualSum . 626
DualSResidualSum . 626
ComplVio . 626
ComplVioIndex . 627
ComplVioSum . 627
IntVio . 627
IntVioIndex . 627
IntVioSum . 627

12.8 Multi-objective Attributes . 627
ObjN . 627
ObjNCon . 628
ObjNPriority . 628
ObjNWeight . 628
ObjNRelTol . 628

xxvii

ObjNAbsTol . 629
ObjNVal . 629
ObjNName . 629
NumObj . 629

12.9 Multi-Scenario Attributes . 630
ScenNLB . 630
ScenNUB . 630
ScenNObj . 630
ScenNRHS . 630
ScenNName . 631
ScenNObjBound . 631
ScenNObjVal . 631
ScenNX . 631
NumScenarios . 631

12.10Batch Attributes . 632
BatchErrorCode . 632
BatchErrorMessage . 632
BatchID . 632
BatchStatus . 632

12.11Attribute Examples . 632
C Attribute Examples . 633
C++ Attribute Examples . 634
C# Attribute Examples . 635
Java Attribute Examples . 635
Python Attribute Examples . 636
Visual Basic Attribute Examples . 636

13 Parameters 637
13.1 Parameter Guidelines . 643

Continuous Models . 643
MIP Models . 644

13.2 Parameter Descriptions . 646
AggFill . 646
Aggregate . 646
BarConvTol . 647
BarCorrectors . 647
BarHomogeneous . 647
BarIterLimit . 648
BarOrder . 648
BarQCPConvTol . 648
BestBdStop . 649
BestObjStop . 649
BQPCuts . 649
BranchDir . 650
CliqueCuts . 650
CloudAccessID . 650

xxviii

CloudHost . 651
CloudSecretKey . 651
CloudPool . 651
ComputeServer . 651
ConcurrentJobs . 652
ConcurrentMIP . 652
ConcurrentSettings . 653
CoverCuts . 653
Crossover . 654
CrossoverBasis . 654
CSAPIAccessID . 654
CSAPISecret . 655
CSAppName . 655
CSAuthToken . 655
CSBatchMode . 656
CSClientLog . 656
CSGroup . 656
CSIdleTimeout . 656
CSManager . 657
CSPriority . 657
CSQueueTimeout . 658
CSRouter . 658
CSTLSInsecure . 658
CutAggPasses . 658
Cutoff . 659
CutPasses . 659
Cuts . 660
DegenMoves . 660
Disconnected . 660
DisplayInterval . 660
DistributedMIPJobs . 661
DualReductions . 661
FeasibilityTol . 661
FeasRelaxBigM . 662
FlowCoverCuts . 662
FlowPathCuts . 662
FuncPieceError . 663
FuncPieceLength . 663
FuncPieceRatio . 663
FuncPieces . 663
FuncMaxVal . 664
GomoryPasses . 664
GUBCoverCuts . 664
Heuristics . 665
IgnoreNames . 665

xxix

IISMethod . 665
ImpliedCuts . 666
ImproveStartGap . 666
ImproveStartNodes . 666
ImproveStartTime . 667
InfProofCuts . 667
InfUnbdInfo . 667
InputFile . 668
IntegralityFocus . 668
IntFeasTol . 668
IterationLimit . 669
JobID . 669
JSONSolDetail . 669
LazyConstraints . 669
LicenseID . 670
LiftProjectCuts . 670
LPWarmStart . 670
LogFile . 671
LogToConsole . 671
MarkowitzTol . 672
MemLimit . 672
Method . 672
MinRelNodes . 673
MIPFocus . 674
MIPGap . 674
MIPGapAbs . 674
MIPSepCuts . 675
MIQCPMethod . 675
MIRCuts . 675
ModKCuts . 675
MultiObjMethod . 676
MultiObjPre . 676
MultiObjSettings . 676
NetworkAlg . 677
NetworkCuts . 677
NLPHeur . 677
NodefileDir . 678
NodefileStart . 678
NodeLimit . 678
NodeMethod . 679
NonConvex . 679
NoRelHeurTime . 679
NoRelHeurWork . 680
NormAdjust . 680
NumericFocus . 680

xxx

OBBT . 681
ObjNumber . 681
ObjScale . 681
OptimalityTol . 682
OutputFlag . 682
PartitionPlace . 682
PerturbValue . 683
PoolGap . 683
PoolGapAbs . 683
PoolSearchMode . 684
PoolSolutions . 684
PreCrush . 684
PreDepRow . 685
PreDual . 685
PreMIQCPForm . 685
PrePasses . 686
PreQLinearize . 686
Presolve . 686
PreSOS1BigM . 687
PreSOS1Encoding . 687
PreSOS2BigM . 688
PreSOS2Encoding . 688
PreSparsify . 688
ProjImpliedCuts . 689
PSDCuts . 689
PSDTol . 689
PumpPasses . 690
QCPDual . 690
Quad . 690
Record . 691
ResultFile . 691
RINS . 691
RelaxLiftCuts . 692
RLTCuts . 692
ScaleFlag . 692
ScenarioNumber . 693
Seed . 693
ServerPassword . 693
ServerTimeout . 694
Sifting . 694
SiftMethod . 694
SimplexPricing . 695
SoftMemLimit . 695
SolutionLimit . 695
SolFiles . 696

xxxi

SolutionNumber . 696
StartNodeLimit . 696
StartNumber . 697
StrongCGCuts . 697
SubMIPCuts . 697
SubMIPNodes . 698
Symmetry . 698
Threads . 698
TimeLimit . 699
TokenServer . 699
TSPort . 699
TuneBaseSettings . 700
TuneCleanup . 700
TuneCriterion . 700
TuneJobs . 701
TuneMetric . 701
TuneOutput . 701
TuneResults . 701
TuneTargetMIPGap . 702
TuneTargetTime . 702
TuneTimeLimit . 702
TuneTrials . 703
UpdateMode . 703
UserName . 704
VarBranch . 704
WLSAccessID . 704
WLSSecret . 704
WLSToken . 705
WLSTokenDuration . 705
WLSTokenRefresh . 705
WorkerPassword . 705
WorkerPool . 706
WorkLimit . 706
ZeroHalfCuts . 706
ZeroObjNodes . 707

13.3 Parameter Examples . 707
C Parameter Examples . 707
C++ Parameter Examples . 708
C# Parameter Examples . 708
Java Parameter Examples . 709
MATLAB Parameter Examples . 709
Python Parameter Examples . 709
R Parameter Examples . 710
Visual Basic Parameter Examples . 710

14 Optimization Status Codes 711

xxxii

15 Batch Status Codes 713

16 Callback Codes 714

17 Error Codes 718

18 Model File Formats 720
18.1 MPS format . 720
18.2 REW format . 727
18.3 DUA format . 727
18.4 LP format . 727
18.5 RLP format . 732
18.6 DLP format . 732
18.7 ILP format . 733
18.8 OPB format . 733
18.9 MST format . 733
18.10HNT format . 734
18.11ORD format . 734
18.12BAS format . 734
18.13SOL format . 735
18.14JSON solution format . 735
18.15ATTR format . 740
18.16PRM format . 741

19 Logging 743
19.1 Header . 743
19.2 Simplex Logging . 743
19.3 Barrier Logging . 744
19.4 Sifting Logging . 747
19.5 MIP Logging . 748
19.6 Solution Pool and Multi-Scenario Logging . 750
19.7 Multi-Objective Logging . 751
19.8 Distributed MIP Logging . 751
19.9 IIS Logging . 752

20 Gurobi Command-Line Tool 754
20.1 Solving a Model . 754
20.2 Replaying Recording Files . 756

21 Solution Pool 757
21.1 Finding Multiple Solutions . 757
21.2 Retrieving Solutions . 757
21.3 Examples . 758
21.4 Subtleties and Limitations . 759

xxxiii

22 Multiple Objectives 760
22.1 Specifying Multiple Objectives . 760
22.2 Working With Multiple Objectives . 761
22.3 Additional Details . 763

23 Multiple Scenarios 765
23.1 Definition of a Multi-Scenario Model . 765
23.2 Specifying Multiple Scenarios . 765
23.3 Logging . 766
23.4 Retrieving Solutions for Multiple Scenarios . 766
23.5 Tips and Tricks . 767
23.6 Limitations and Additional Considerations . 767

24 Batch Optimization 769
24.1 Setting Up a Batch Environment . 769
24.2 Tagging Variables or Constraints . 769
24.3 Submitting a Batch Optimization Request . 770
24.4 Interacting with Batch Requests . 770
24.5 Interpreting the JSON Solution . 771
24.6 A Complete Example . 771
24.7 Limitations . 774

25 Recording API Calls 775
25.1 Recording . 775
25.2 Replay . 776
25.3 Limitations . 776

26 Concurrent Optimizer 777

27 Parameter Tuning Tool 779
27.1 Command-Line Tuning . 779
27.2 Tuning API . 782

28 Gurobi Instant Cloud 783
28.1 Client Setup . 783
28.2 Instant Cloud Setup . 784

29 Guidelines for Numerical Issues 785
29.1 Avoid rounding of input . 785
29.2 Real numbers are not real . 786
29.3 Tolerances and user-scaling . 787

Models at the edge of infeasibility . 787
Gurobi tolerances and the limitations of double-precision arithmetic 788
Why scaling and geometry is relevant . 788
Recommended ranges for variables and constraints 791
Improving ranges for variables and constraints 791
Advanced user scaling . 792

xxxiv

Avoid hiding large coefficients . 792
Dealing with big-M constraints . 793

29.4 Does my model have numerical issues? . 793
29.5 Solver parameters to manage numerical issues . 794

Presolve . 795
Choosing the right algorithm . 795
Making the algorithm less sensitive . 796

29.6 Instability and the geometry of optimization problems 796
The case of linear systems: . 797
The geometry of linear optimization problems 797
Multiple optimal solutions . 799
Dealing with epsilon-optimal solutions . 800
Thin feasible regions . 801
Optimizing over the circle: . 803
Optimizing over thin regions: . 804
Stability and convergence . 805

29.7 Further reading . 805
Source code for the experiment of optimizing over a circle 805
Source code for the experiment on a thin feasible region 806
Source code for the experiment with column scalings 807

30 Copyright Notices for 3rd Party Libraries 808

xxxv

Introduction

This is the reference manual for the Gurobi™ Optimizer. It contains documentation for the
following Gurobi language interfaces:

• C

• C++

• Java®

• Microsoft®.NET

• Python®

• MATLAB®

• R

The Gurobi interactive shell is also documented in the Python section.
The different Gurobi language interfaces share many common features. These are described at

the end of this manual. Two particularly important common features are the Attribute interface
and the Gurobi Parameter set. You may wish to bookmark these pages, since you are likely to refer
to them frequently as you develop applications that use the Gurobi Optimizer.

1

Additional Topics

This document covers a number of additional topics, which are listed here:

• Detailed Release Notes

• Variables and Constraints and Objectives

• Environments

• Attributes

• Parameters

• Optimization Status Codes

• Callback Codes

• Error Codes

• File Formats

• Logging

• Command-Line Tool

• Solution Pool

• Multiple Objectives

• Multiple Scenarios

• Batch Optimization

• Recording API Calls

• Concurrent Optimizer

• Parameter Tuning Tool

• Instant Cloud

• Guidelines for Numerical Issues

Additional Resources

You can consult the Gurobi Quick Start for a high-level overview of the Gurobi Optimizer, or the
Gurobi Example Tour for a quick tour of the examples provided with the Gurobi distribution, or the
Gurobi Remote Services Reference Manual for an overview of Gurobi Compute Server, Distributed
Algorithms, and Gurobi Remote Services.
Getting Help

If you have a question that is not answered in this document, please visit the Gurobi support site at
https://support.gurobi.com. There, you can read knowledge base articles and join the community
discussion forum. Also, if you have a current maintenance contract, you can use the Gurobi support
site to submit a request to the Gurobi support team.

2

https://www.gurobi.com/documentation/10.0/quickstart_windows/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html
https://www.gurobi.com/documentation/10.0/remoteservices/remoteservices.html
https://support.gurobi.com

Detailed Release Notes for Gurobi 10.0.0

Supported Platforms

Platform (port) Operating System Compiler Notes
Windows
64-bit (win64)

Windows 10, 11, Windows
Server 2012 R2, 2016, 2019,
2022

Visual Studio 2017-2022 Use gurobi_c++md2017.lib

(e.g.) for C++

Linux x86-64
64-bit (linux64)

Red Hat Enterprise Linux 7
(and corresponding CentOS
distribution), 8, and 9

GCC >= 4.8 Use libgurobi_g++5.2.a
for newer C++ compilers

SUSE Enterprise Linux 12, 15
Ubuntu 18.04, 20.04, 22.04*
Amazon Linux 2

macOS
64-bit universal2
(macos_universal2)

11 (Big Sur), 12 (Monterey) Xcode 12/13

Linux arm64
64-bit (armlinux64)

Red Hat Enterprise Linux 7
(and corresponding CentOS
distribution), 8, and 9

GCC >= 4.8

SUSE Enterprise Linux 12, 15
Ubuntu 20.04, 22.04
Amazon Linux 2

AIX
64-bit (power64)

AIX 7.1, 7.2, 7.3 XL C/C++ 9 Due to limited Python sup-
port on AIX, this port
does not include the Inter-
active Shell or the Python
libraries.

*On Ubuntu 22.04 for x86-64, user code that calls dlopen()/dlclose() to load/unload libgurobi100.so is known
to fail. We have investigated the issue, and unfortunately we have not yet found a workaround.

Additional Supported Platform Information
Gurobi 10.0.0 supports the following language/platform versions:

Language Version
Python 3.7, 3.8, 3.9, 3.10, 3.11
MATLAB R2019a-R2022a
R 4.2
JDK 8, 11, 17
.NET 6.0

3

NuGet package for .NET

We now provide an official NuGet package for .NET users. You can find the package at https://www.nuget.org/
packages/Gurobi.Optimizer. Additional information is available in the .NET Interface section of the Gurobi Quick
Start Guide.

Changed in Gurobi 10.0
Changes to C API

The parameter for method GRBcbproceed has changed. The signature was:

int GRBcbproceed(GRBmodel *model)

and is now:

int GRBcbproceed(void *cbdata)

Changes to attributes

The VBasis variable attribute for a fixed variable will now return either -1 (non-basic at lower bound) or -2 (non-basic
at upper bound), depending on the sign of the reduced cost (it previously always returned -1).
Changes to callback

User callbacks could previously be called from a variety of Gurobi methods. They will now only be called from
methods that solve an optimization model. The list of such methods of course includes optimize, but also feasRelax,
computeIIS, and a few others.

Removed in Gurobi 10.0
End of support for Python 2.7

This version has dropped support for Python 2.7.
Only one set of C++ libraries for Windows

We now only ship a single set of C++ libraries (gurobi_c++md2017.lib, gurobi_c++mdd2017.lib, etc.), built with
Visual Studio 2017. These are binary compatible with Visual Studio versions 2017-2022.
Removed attributes

Attributes JobID and ComputeServer are no longer available. The same information can be obtained via the read-only
parameters JobID and ComputeServer, which have been available since Gurobi 8.0.
Removed GRBgetlogfile method

The C API method GRBgetlogfile has been removed. Use the LogFile parameter to obtain the name of the log file.
Removed legacy methods for creating Compute Server and Instant Cloud environments

The following legacy methods and constructors for creating Compute Server and Instant Cloud environments have
been removed:

• C: GRBloadclientenv, GRBloadcloudenv
• C++:

GRBEnv(const std::string& logfilename, const std::string& computeserver,
const std::string& router, const std::string& password,
const std::string& group, int CStlsInsecure, int priority,
double timeout)

GRBEnv(const std::string& logfilename, const std::string& accessID,
const std::string& secretKey, const std::string& pool,
int priority)

• Java:

4

https://www.nuget.org/packages/Gurobi.Optimizer
https://www.nuget.org/packages/Gurobi.Optimizer

GRBEnv(String logFileName, String computeServer, String router,
String password, String group, int CStlsInsecure, int priority,
double timeout)

GRBEnv(String logfilename, String accessID, String secretKey, String pool,
int priority)

• .NET:

GRBEnv(string logfilename, string computeserver, string router,
string password, string group, int CStlsInsecure, int priority,
double timeout)

GRBEnv(string logfilename, string accessID, string secretKey, string pool,
int priority)

• gurobipy: Env.ClientEnv, Env.CloudEnv,
• Matlab and R: The env parameter to the Gurobi functions. See Matlab and R changes below for conversion

details.
You should use the configuration parameters instead, which were introduced in Gurobi 8.0 to simplify this process.

New features affecting all APIs
Licensing

The Gurobi Web License Service (WLS) previously only worked within containerized environments. With Gurobi 10.0,
it now works outside of containers as well (on Windows, macOS and Linux).
New parameters

The following parameters are new in Gurobi 10.0:
• NetworkAlg to control the network simplex algorithm.
• OBBT to control the aggressiveness of Optimality-Based Bound Tightening.
• SoftMemLimit to limit the total amount of memory available to an optimization (leading to a graceful exit

when the limit is hit).
• WLSTokenRefresh to specify the refresh interval of a Web License Service token.

Logistic General Constraint

Added support for piecewise-linear approximation of the logistic function as a general constraint. With this feature,
you can model the logistic function y = 1

1+e−x on problem variables x and y. As with all general constraints, you
can control how fine-grained the piecewise-linear approximation should be. See the General Constraint section for
more information.
Specific performance improvements

In addition to general performance improvements across all supported problem classes, we have added the following
enhancements for specific problem types:

• Added a network simplex algorithm to speed up the solution of LPs with pure network structure.
• Added a new QUBO heuristic to improve our ability to quickly find good feasible solutions for Quadratic

Unconstrained Boolean Optimization problems.
• Reorganized the concurrent LP solver to improve performance and reduce memory consumption.
• Significantly improved performance on MIP models that contain constraints that model neural networks with

ReLU activation functions.

Behavior changes affecting the Python matrix-friendly API
With version 10.0 we have extended the capabilities of the existing MVar, MLinExpr, and MQuadExpr modeling classes
and improved their behaviour in many respects. Some of the changes may cause incompatibilities with existing code
that uses these objects, so we suggest that you read the following summary carefully and adapt your code accordingly.

5

More arithmetic operations supported

You can now perform point-wise multiplication involving combinations of matrix-friendly modeling objects and
NumPy ndarrays. For example:

a = numpy.random.rand(3)
x = model.addMVar(3)
y = model.addMVar(3)

Add three linear constraints a[i]*x[i] = y[i]
model.addConstr(a * x == y)
Add three quadratic constraints x[i]*y[i] = a[i]
model.addConstr(x * y == a)

Arbitrary dimensions now supported

The classes MVar, MLinExpr, and MQuadExpr now support arbitrary numbers of dimensions. For example, you can
now create 2-D matrix linear expressions:

A = numpy.random.rand(4,3)
B = numpy.random.rand(4,2)
X = model.addMVar((3,2))

Add 8 linear constraints A[i, :] @ X[:, j] == B[i, j]
model.addConstr(A @ X == B)

Dimensionality and consistency

The classes MVar, MLinExpr, and MQuadExpr now behave similarly to NumPy’s ndarray when it comes to dimension
handling. For example:

X = model.addMVar((3,3))

sub1 = X[:, 1] # Gives 1-D (3,) Mvar
sub2 = X[:, 1:2] # Gives 2-D (3, 1) Mvar
sub3 = X[0, 1] # Gives 0-D () Mvar

In addition, a 0-D MVar object now acts like a “scalar” Var object, but it keeps its dimensionality properties.
Furthermore, in previous versions all MQuadExpr objects containing just one element had shape (1,). Such objects

now follow the shape rules of Python’s matrix multiplication operator:

Q = np.random.rand((3,3)); Q = Q + Q.T
x = model.addMVar((3,1))

expr1 = x.T @ Q @ x # expr1.shape is (1,1)
expr2 = x[:, 0] @ Q @ x[:, 0] # expr2.shape is ()

Arithmetic operations embrace NumPy’s broadcasting rules

The behaviour of arithmetic operations among the matrix friendly modeling objects of different shapes now follows
NumPy’s broadcasting rules. For example:

a = numpy.random.rand(3)
x = model.addMVar((3,3))

a is broadcast along the first dimension of x; result is (3,3)
expr = a * x

Broadcasting is also applied implicitly when adding broadcastable expressions as constraints:

6

a = numpy.random.rand(3)
x = model.addMVar((3,3))

a is broadcast along the first dimension of x.
The effect is the same as doing addConstr(x - a == 0)
model.addConstr(x == a)

For detailed information on broadcasting we refer you to NumPy’s documentation.
Other changes

• Creating MVar objects through Model.addMVar is now roughly 40% faster.

• The optional attribute initializers for Model.addMVar now need to be passed in a broadcastable shape. In older
versions, any list with an appropriate number of elements could be used, which is ambiguous in the case of a
multi-dimensional MVar. Please refer to the documentation of Model.addMVar for details.

• Using the MVar constructor to convert a list of Var objects to an MVar object is deprecated. A dedicated,
faster method (MVar.fromlist) has been introduced for this purpose.

• The method MVar.sum now takes an optional axis argument to select an axis along which the summation
should happen. Also, the shape of the resulting MLinExpr after summing all elements is now (), (0-D), as
opposed to (1,) in older versions.

• The method MLinExpr.copy now returns a deep copy, as opposed to a shallow copy in earlier versions.

• Invalid or incompatible matrix multiplication invocations now raise a ValueError instead of a GurobiError.

To check whether your program calls any deprecated methods you can set an appropriate filter in Python’s
warnings module. For example, you can turn all warnings to runtime errors by starting the Python interpreter with
the option -W error.

Changes in the Matlab and R APIs
The env argument to Matlab and R API functions has been removed. This argument was previously used to provide
the data required to connect to a Compute Server or to Gurobi Instant Cloud. This information should now be
passed through parameters in the params struct.

For example, the new signature of the "gurobi" function is gurobi(model, params). To update a program that
uses the env argument, just set the appropriate parameters in params to match the fields you previously used in env.
The following table shows the correspondence between the field names of the deprecated env argument and Gurobi
parameters:

env params
router CSRouter
password ServerPassword
group CSGroup
priority CSPriority
timeout CSQueueTimeout
accessid CloudAccessID
secretkey CloudSecretKey
pool CloudPool

A client MATLAB program that solves a model on a Compute Server should now look something like the
following:

m.A = sparse(0,0); % Just a minimal model struct for demonstration
params.Method = 2; % Use barrier method (for demonstration)
params.ComputeServer = 'myserver.mycompany.com'; % Set server name
params.ServerPassword = 'pass'; % Set password
gurobi(m, params); % Solve model on server with barrier

Similarly for R, client code to solve a model on a Compute Server should look like:

7

m <- list(A = matrix(0)) # Just a minimal model struct for demonstration
params <- list()
params$Method <- 2 # Use barrier method (for demonstration)
params$ComputeServer <- "myserver.mycompany.com"; # Set server name
params$ServerPassword <- "pass"; # Set password
gurobi(m, params); # Solve model on server with barrier

In summary, this is now the full list of signatures for Matlab and R API functions:

gurobi(model, params)
gurobi_feasrelax(model, relaxobjtype, minrelax, penalties, params)
gurobi_iis(model, params)
gurobi_read(filename, params)
gurobi_relax(model, params)
gurobi_write(model, filename, params)

Compute Server, Cluster Manager, and Instant Cloud
Detailed release notes for Compute Server, Cluster Manager, and Instant Cloud can be found here

8

https://www.gurobi.com/release-notes/server/v10.0/

C API Overview

This section documents the Gurobi C interface. This manual begins with a quick overview of the functions in the
interface, and continues with detailed descriptions of all of the available interface routines.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide or the Example
Tour. These documents provide concrete examples of how to use the routines described here.
Environments

The first step in using the Gurobi C optimizer is to create an environment, using the GRBloadenv call. The
environment acts as a container for all data associated with a set of optimization runs. You will generally only need
one environment in your program, even if you wish to work with multiple optimization models. Once you are done
with an environment, you should call GRBfreeenv to release the associated resources.

For more advanced use cases, you can use the GRBemptyenv routine to create an uninitialized environment and
then, programmatically, set all required options for your specific requirements. For further details see the Environment
section.
Models

You can create one or more optimization models within an environment. A model consists of a set of variables, a
linear, quadratic, or piecewise-linear objective function on those variables, and a set of constraints. Each variable has
an associated lower bound, upper bound, type (continuous, binary, integer, semi-continuous, or semi-integer), and
linear objective coefficient. Each linear constraint has an associated sense (less-than-or-equal, greater-than-or-equal,
or equal), and right-hand side value. Refer to this section for more information on variables and constraints.

An optimization model may be specified all at once, through the GRBloadmodel routine, or built incrementally,
by first calling GRBnewmodel and then calling GRBaddvars to add variables and GRBaddconstr, GRBaddqconstr,
GRBaddsos, or any of the GRBaddgenconstrXxx methods to add constraints. Models are dynamic entities; you can
always add or delete variables or constraints.

Specific variables and constraints are referred to throughout the Gurobi C interface using their indices. Variable
indices are assigned as variables are added to the model, in a contiguous fashion. The same is true for constraints.
In adherence to C language conventions, indices all start at 0.

We often refer to the class of an optimization model. A model with a linear objective function, linear constraints,
and continuous variables is a Linear Program (LP). If the objective is quadratic, the model is a Quadratic Program
(QP). If any of the constraints are quadratic, the model is a Quadratically-Constrained Program (QCP). We will
sometimes refer to a few special cases of QCP: QCPs with convex constraints, QCPs with non-convex constraints,
bilinear programs, and Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-
continuous variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the model
is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, including Mixed Integer Linear
Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed Integer Quadratically-Constrained Programs
(MIQCP), and Mixed Integer Second-Order Cone Programs (MISOCP). The Gurobi Optimizer handles all of these
model classes.
Solving a Model

Once you have built a model, you can call GRBoptimize to compute a solution. By default, GRBoptimize() will use
the concurrent optimizer to solve LP models, the barrier algorithm to solve QP models with convex objectives and
QCP models with convex constraints, and the branch-and-cut algorithm otherwise. The solution is stored as a set of
attributes of the model. The C interface contains an extensive set of routines for querying these attributes.

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBoptimize() will only perform
further optimization if relevant data has changed since the model was last optimized. If you would like to discard
previously computed solution information and restart the optimization from scratch without changing the model, you
can call GRBreset.

After a MIP model has been solved, you can call GRBfixmodel to compute the associated fixed model. This
model is identical to the original, except that the integer variables are fixed to their values in the MIP solution. If
your model contains SOS constraints, some continuous variables that appear in these constraints may be fixed as well.

9

https://www.gurobi.com/documentation/10.0/quickstart_windows/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html

In some applications, it can be useful to compute information on this fixed model (e.g., dual variables, sensitivity
information, etc.), although you should be careful in how you interpret this information.
Multiple Solutions, Objectives, and Scenarios

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to a single model
with a single objective function. Gurobi provides the following features that allow you to relax these assumptions:

• Solution Pool: Allows you to find more solutions.
• Multiple Scenarios: Allows you to find solutions to multiple, related models.
• Multiple Objectives: Allows you to specify multiple objective functions and control the trade-off between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the infeasibility,
attempt to repair the infeasibility, or both. To obtain information that can be useful for diagnosing the cause of an
infeasibility, call GRBcomputeIIS to compute an Irreducible Inconsistent Subsystem (IIS). This routine can be used
for both continuous and MIP models, but you should be aware that the MIP version can be quite expensive. This
routine populates a set of IIS attributes.

To attempt to repair an infeasibility, call GRBfeasrelax to compute a feasibility relaxation for the model. This
relaxation allows you to find a solution that minimizes the magnitude of the constraint violation.
Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some attributes are associated
with the variables of the model, some with the constraints of the model, and some with the model itself. To give
a simple example, solving an optimization model causes the X variable attribute to be populated. Attributes such
as X that are computed by the Gurobi optimizer cannot be modified directly by the user, while others, such as the
variable lower bound array (the LB attribute) can.

The Gurobi C interface contains an extensive set of routines for querying or modifying attribute values. The
exact routine to use for a particular attribute depends on the type of the attribute. As mentioned earlier, attributes
can be either variable attributes, constraint attributes, or model attributes. Variable and constraint attributes are
arrays, and use a set of array attribute routines. Model attributes are scalars, and use a set of scalar routines.
Attribute values can additionally be of type char , int, double, or string (really char *).

Scalar model attributes are accessed through a set of GRBget*attr() routines (e.g., GRBgetintattr). In addition,
those model attributes that can be set directly by the user (e.g., the objective sense) may be modified through the
GRBset*attr() routines (e.g., GRBsetdblattr).

Array attributes are accessed through three sets of routines. The first set, the GRBget*attrarray() routines
(e.g., GRBgetcharattrarray) return a contiguous sub-array of the attribute array, specified using the index of the
first member and the length of the desired sub-array. The second set, the GRBget*attrelement() routines (e.g.,
GRBgetcharattrelement) return a single entry from the attribute array. Finally, the GRBget*attrlist() routines
(e.g., GRBgetdblattrlist) retrieve attribute values for a list of indices.

Array attributes that can be set by the user are modified through the GRBset*attrarray(), GRBset*attrelement(),
and GRBset*attrlist() routines.

The full list of Gurobi attributes can be found in the Attributes section.
Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to variable bounds,
constraint right-hand sides, etc.). The main exceptions are modifications to the constraints themselves, and to the
quadratic and piecewise-linear portions of the objective function.

The constraint matrix can be modified in a few ways. The first is to call GRBchgcoeffs to change individual
matrix coefficients. This routine can be used to modify the value of an existing non-zero, to set an existing non-zero
to zero, or to create a new non-zero. The constraint matrix is also modified when you remove constraints (through
GRBdelconstrs) or variables (through GRBdelvars). The non-zero values associated with the deleted constraints or
variables are removed along with the constraints or variables themselves.

Quadratic objective terms are added to the objective function using the GRBaddqpterms routine. You can add
a list of quadratic terms in one call, or you can add terms incrementally through multiple calls. The GRBdelq
routine allows you to delete all quadratic terms from the model. Note that quadratic models will typically have both
quadratic and linear terms. Linear terms are entered and modified through the Obj attribute, in the same way that
they are handled for models with purely linear objective functions.

10

If your variables have piecewise-linear objectives, you can specify them using the GRBsetpwlobj routine. Call
this routine once for each relevant variable. The Gurobi simplex solver includes algorithmic support for convex
piecewise-linear objective functions, so for continuous models you should see a substantial performance benefit from
using this feature. To clear a previously specified piecewise-linear objective function, simply set the Obj attribute on
the corresponding variable to 0.
Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed in a lazy fashion,
meaning that modifications don’t affect the model immediately. Rather, they are queued and applied later. If your
program simply creates a model and solves it, you will probably never notice this behavior. However, if you ask for
information about the model before your modifications have been applied, the details of the lazy update approach
may be relevant to you.

As we just noted, model modifications (bound changes, right-hand side changes, objective changes, etc.) are
placed in a queue. These queued modifications can be applied to the model in three different ways. The first is by
an explicit call to GRBupdatemodel. The second is by a call to GRBoptimize. The third is by a call to GRBwrite to
write out the model. The first case gives you fine-grained control over when modifications are applied. The second
and third make the assumption that you want all pending modifications to be applied before you optimize your model
or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is that this approach
makes it much easier to perform multiple modifications to a model, since the model remains unchanged between
modifications. The second is that processing model modifications can be expensive, particularly in a Compute Server
environment, where modifications require communication between machines. Thus, it is useful to have visibility into
exactly when these modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then update, then make
more modifications, then update again, etc. Updating after each individual modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value of the requested
data from the point of the last update. If the object you tried to query didn’t exist then, you’ll get an INDEX_OUT_-
OF_RANGE error instead.

The semantics of lazy updates have changed since earlier Gurobi versions. While the vast majority of programs
are unaffected by this change, you can use the UpdateMode parameter to revert to the earlier behavior if you run
into an issue.
Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of the optimization
process. Factors like feasibility and optimality tolerances, choices of algorithms, strategies for exploring the MIP search
tree, etc., can be controlled by modifying Gurobi parameters before beginning the optimization. Parameters are set
using the GRBset*param() routines (e.g., GRBsetintparam). Current values can be retrieved with the GRBget*param()
routines (e.g., GRBgetdblparam). Parameters can be of type int, double, or char * (string). You can also read a set of
parameter settings from a file using GRBreadparams, or write the set of changed parameters using GRBwriteparams.

We also include an automated parameter tuning tool that explores many different sets of parameter changes in
order to find a set that improves performance. You can call GRBtunemodel to invoke the tuning tool on a model.
Refer to the parameter tuning tool section for more information.

One thing we should note is that each model gets its own copy of the environment when it is created. Parameter
changes to the original environment therefore have no effect on existing models. Use GRBgetenv to retrieve the
environment associated with a particular model if you want to change a parameter for that model.
Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will send output to the
screen. A few simple controls are available for modifying the default logging behavior. If you would like to direct
output to a file as well as to the screen, specify the log file name in GRBloadenv when you create your environment.
You can modify the LogFile parameter if you wish to redirect the log to a different file after creating the environment.
The frequency of logging output can be controlled with the DisplayInterval parameter, and logging can be turned off
entirely with the OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging
section.

More detailed progress monitoring can be done through the Gurobi callback function. The GRBsetcallbackfunc
routine allows you to install a function that the Gurobi optimizer will call regularly during the optimization process.
You can call GRBcbget from within the callback to obtain additional information about the state of the optimization.

11

Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. If you call routine GRBterminate from
within a callback, for example, the optimizer will terminate at the earliest convenient point. Routine GRBcbsolution
allows you to inject a feasible solution (or partial solution) during the solution of a MIP model. Routines GRBcbcut
and GRBcblazy allow you to add cutting planes and lazy constraints during a MIP optimization, respectively. Routine
GRBcbstoponemultiobj allows you to interrupt the optimization process of one of the optimization steps in a multi-
objective MIP problem without stopping the hierarchical optimization process.
Batch Optimization

Gurobi Compute Server enables programs to offload optimization computations onto dedicated servers. The Gurobi
Cluster Manager adds a number of additional capabilities on top of this. One important one, batch optimization,
allows you to build an optimization model with your client program, submit it to a Compute Server cluster (through
the Cluster Manager), and later check on the status of the model and retrieve its solution. You can use a Batch
object to make it easier to work with batches. For details on batches, please refer to the Batch Optimization section.
Error Handling

Most of the Gurobi C library routines return an integer error code. A zero return value indicates that the routine
completed successfully, while a non-zero value indicates that an error occurred. The list of possible error return codes
can be found in the Error Codes section.

When an error occurs, additional information on the error can be obtained by calling GRBgeterrormsg.

12

3.1 Environment Creation and Destruction
GRBloadenv

int GRBloadenv (GRBenv **envP,
const char *logfilename)

Create an environment. Optimization models live within an environment, so this is typically the first Gurobi
routine called in an application.

This routine will also populate any parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified
in your gurobi.lic file. This routine will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each
line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Return value:
A non-zero return value indicates that there was a problem creating the environment. Refer to the Error
Code table for a list of possible return values.

Arguments:
envP: The location in which the pointer to the newly created environment should be placed.
logfilename: The name of the log file for this environment. May be NULL (or an empty string), in which
case no log file is created.

GRBemptyenv

int GRBemptyenv (GRBenv **envP)

Create an empty environment. Note that you will need to call GRBstartenv before you can use this environment.
You should use this routine if you want to set parameters before actually starting the environment. This can be

useful if you want to connect to a Compute Server, a Token Server, the Gurobi Instant Cloud, a Cluster Manager or
use a WLS license. See the Environment Section for more details.

Return value:
A non-zero return value indicates that there was a problem creating the environment. Refer to the Error
Code table for a list of possible return values.

Arguments:
envP: The location in which the pointer to the newly created environment should be placed.

GRBstartenv

int GRBstartenv (GRBenv *env)

Start an empty environment. This routine starts an empty environment created by GRBemptyenv. If the
environment has already been started, this routine will do nothing. If the routine fails, the environment will have the
same state as it had before the call to this function.

This routine will also populate any parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified
in your gurobi.lic file. This routine will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each
line should contain a parameter name, followed by the desired value for that parameter). After that, it will apply
all parameter changes specified by the user prior to this call. Note that this might overwrite parameters set in the
license file, or in the gurobi.env file, if present.

After all these changes are performed, the code will actually activate the environment, and make it ready to work
with models.

13

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Return value:
A non-zero return value indicates that there was a problem starting the environment. Refer to the Error
Code table for a list of possible return values.

Arguments:
env: The empty environment to start.

GRBfreeenv
void GRBfreeenv (GRBenv *env)

Free an environment that was previously allocated by GRBloadenv, and release the associated memory. This
routine should be called when an environment is no longer needed. In particular, it should only be called once all
models built using the environment have been freed.

Arguments:
env: The environment to be freed.

GRBgetconcurrentenv
GRBenv * GRBgetconcurrentenv (GRBmodel *model,

int num)

Create/retrieve a concurrent environment for a model.
This routine provides fine-grained control over the concurrent optimizer. By creating your own concurrent

environments and setting appropriate parameters on these environments (e.g., the Method parameter), you can control
exactly which strategies the concurrent optimizer employs. For example, if you create two concurrent environments,
and set Method to primal simplex for one and dual simplex for the other, subsequent concurrent optimizer runs will
use the two simplex algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with num=0. For example,
if you want three concurrent environments, they must be numbered 0, 1, and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent optimization on
that model. Use GRBdiscardconcurrentenvs to revert back to default concurrent optimizer behavior.

Return value:
The concurrent environment. A NULL return value indicates that there was a problem creating the environ-
ment.

Arguments:
model: The model for the concurrent environment.
num: The concurrent environment number.

Example usage:
GRBenv *env0 = GRBgetconcurrentenv(model, 0);
GRBenv *env1 = GRBgetconcurrentenv(model, 1);

GRBgetmultiobjenv
GRBenv* GRBgetmultiobjenv (GRBmodel *model,

int num)

Create/retrieve a multi-objective environment for the objective with the given index. This environment enables
fine-grained control over the multi-objective optimization process. Specifically, by changing parameters on this
environment, you modify the behavior of the optimization that occurs during the corresponding pass of the multi-
objective optimization.

Each multi-objective environment starts with a copy of the current model environment.

14

Please refer to the discussion of Multiple Objectives for information on how to specify multiple objective functions
and control the trade-off between them.

Return value:
The environment associated with a given multiobjective number in the model. A NULL return value indicates
that there was a problem retrieving the environment.

Arguments:
model: The model from where we want to retrieve the multiobjecitve environment.
num: The multiobjective number.

Example usage:
GRBenv *env0 = GRBgetmultiobjenv(model,0);
GRBenv *env1 = GRBgetmultiobjenv(model,1);

GRBsetintparam(env0, "Method", 2);
GRBsetintparam(env1, "Method", 1);

GRBoptimize(model);

GRBdiscardmultiobjenvs(model);

GRBdiscardconcurrentenvs
void GRBdiscardconcurrentenvs (GRBmodel * model)

Discard concurrent environments for a model.
The concurrent environments created by GRBgetconcurrentenv will be used by every subsequent call to the

concurrent optimizer until the concurrent environments are discarded.
Arguments:

model: The model for the concurrent environment.
Example usage:

GRBdiscardconcurrentenvs(model);

GRBdiscardmultiobjenvs
void GRBdiscardmultiobjenvs (GRBmodel *model)

Discard all multi-objective environments associated with the model, thus restoring multi objective optimization
to its default behavior.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple objective functions
and control the trade-off between them.

Arguments:
model: The model in which all multi objective environments will be discarded.

Example usage:
GRBenv *env0 = GRBgetmultiobjenv(model,0);
GRBenv *env1 = GRBgetmultiobjenv(model,1);

GRBsetintparam(env0, "Method", 2);
GRBsetintparam(env1, "Method", 1);

GRBoptimize(model);

GRBdiscardmultiobjenvs(model);

15

3.2 Model Creation and Modification
GRBloadmodel

int GRBloadmodel (GRBenv *env,
GRBmodel **modelP,
const char *Pname,
int numvars,
int numconstrs,
int objsense,
double objcon,
double *obj,
char *sense,
double *rhs,
int *vbeg,
int *vlen,
int *vind,
double *vval,
double *lb,
double *ub,
char *vtype,
const char **varnames,
const char **constrnames)

Create a new optimization model, using the provided arguments to initialize the model data (objective function,
variable bounds, constraint matrix, etc.). The model is then ready for optimization, or for modification (e.g., addition
of variables or constraints, changes to variable types or bounds, etc.).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider using the GR-
BXloadmodel variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while creating the model. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment in which the new model should be created. Note that the new model gets a copy of
this environment, so subsequent modifications to the original environment (e.g., parameter changes) won’t
affect the new model. Use GRBgetenv to modify the environment associated with a model.

modelP: The location in which the pointer to the newly created model should be placed.
Pname: The name of the model.
numvars: The number of variables in the model.
numconstrs: The number of constraints in the model.
objsense: The sense of the objective function. Allowed values are 1 (minimization) or -1 (maximization).
objcon: Constant objective offset.
obj: Objective coefficients for the new variables. This argument can be NULL, in which case the objective
coefficients are set to 0.0.

sense: The senses of the new constraints. Options are ’=’ (equal), ’<’ (less-than-or-equal), or ’>’ (greater-
than-or-equal). You can also use constants GRB_EQUAL, GRB_LESS_EQUAL, or GRB_GREATER_EQUAL.

rhs: Right-hand side values for the new constraints. This argument can be NULL if you are not adding any
constraint.

vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse Column (CSC)
format. Each column in the constraint matrix is represented as a list of index-value pairs, where each
index entry provides the constraint index for a non-zero coefficient, and each value entry provides the
corresponding non-zero value. Each variable in the model has a vbeg and vlen value, indicating the
start position of the non-zeros for that variable in the vind and vval arrays, and the number of non-zero
values for that variable, respectively. Thus, for example, if vbeg[2] = 10 and vlen[2] = 2, that would
indicate that variable 2 has two non-zero values associated with it. Their constraint indices can be found
in vind[10] and vind[11], and the numerical values for those non-zeros can be found in vval[10] and

16

vval[11]. Note that the columns of the matrix must be ordered from first to last, implying that the values
in vbeg must be non-decreasing.

vlen: Number of constraint matrix non-zero values associated with each variable. See the description of the
vbeg argument for more information.

vind: Constraint indices associated with non-zero values. See the description of the vbeg argument for more
information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of the vbeg argument
for more information.

lb: Lower bounds for the new variables. This argument can be NULL, in which case all variables get lower
bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all variables get infinite
upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or
GRB_SEMIINT. This argument can be NULL, in which case all variables are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all variables are given
default names.

constrnames: Names for the new constraints. This argument can be NULL, in which case all constraints are
given default names.

Important notes:
We recommend that you build a model one constraint or one variable at a time, using GRBaddconstr or GR-

Baddvar, rather than using this routine to load the entire constraint matrix at once. It is much simpler, less error
prone, and it introduces no significant overhead.

Example usage:

/* maximize x + y + 2 z
subject to x + 2 y + 3 z <= 4

x + y >= 1
x, y, z binary */

int vars = 3;
int constrs = 2;
int vbeg[] = {0, 2, 4};
int vlen[] = {2, 2, 1};
int vind[] = {0, 1, 0, 1, 0};
double vval[] = {1.0, 1.0, 2.0, 1.0, 3.0};
double obj[] = {1.0, 1.0, 2.0};
char sense[] = {GRB_LESS_EQUAL, GRB_GREATER_EQUAL};
double rhs[] = {4.0, 1.0};
char vtype[] = {GRB_BINARY, GRB_BINARY, GRB_BINARY};

error = GRBloadmodel(env, &model, "example", vars, constrs, -1, 0.0,
obj, sense, rhs, vbeg, vlen, vind, vval,
NULL, NULL, vtype, NULL, NULL);

GRBnewmodel

int GRBnewmodel (GRBenv *env,
GRBmodel **modelP,
const char *Pname,
int numvars,
double *obj,
double *lb,
double *ub,
char *vtype,
const char **varnames)

17

Create a new optimization model. This routine allows you to specify an initial set of variables (with objective
coefficients, bounds, types, and names), but the initial model will have no constraints. Constraints can be added
later with GRBaddconstr or GRBaddconstrs.

Return value:
A non-zero return value indicates that a problem occurred while creating the new model. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment in which the new model should be created. Note that the new model will get a copy of
this environment, so subsequent modifications to the original environment (e.g., parameter changes) won’t
affect the new model. Use GRBgetenv to modify the environment associated with a model.

modelP: The location in which the pointer to the new model should be placed.
Pname: The name of the model.
numvars: The number of variables in the model.
obj: Objective coefficients for the new variables. This argument can be NULL, in which case the objective
coefficients are set to 0.0.

lb: Lower bounds for the new variables. This argument can be NULL, in which case all variables get lower
bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all variables get infinite
upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or
GRB_SEMIINT. This argument can be NULL, in which case all variables are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all variables are given
default names.

Example usage:
double obj[] = {1.0, 1.0};
char *names[] = {"var1", "var2"};
error = GRBnewmodel(env, &model, "New", 2, obj, NULL, NULL, NULL, names);

GRBcopymodel
GRBmodel * GRBcopymodel (GRBmodel *model)

Create a copy of an existing model. Note that due to the lazy update approach in Gurobi, you have to call
GRBupdatemodel before copying it.

Return value:
A copy of the input model. A NULL return value indicates that a problem was encountered.

Arguments:
model: The model to copy.

Example usage:
GRBupdatemodel(orig); /* if you have unstaged changes in orig */
GRBmodel *copy = GRBcopymodel(orig);

GRBaddconstr
int GRBaddconstr (GRBmodel *model,

int numnz,
int *cind,
double *cval,
char sense,
double rhs,
const char *constrname)

Add a new linear constraint to a model. Note that, due to our lazy update approach, the new constraint won’t
actually be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize),
or write the model to disk (using GRBwrite).

Return value:

18

A non-zero return value indicates that a problem occurred while adding the constraint. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new constraint should be added.
numnz: The number of non-zero coefficients in the new constraint.
cind: Variable indices for non-zero values in the new constraint.
cval: Numerical values for non-zero values in the new constraint.
sense: Sense for the new constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL.
rhs: Right-hand side value for the new constraint.
constrname: Name for the new constraint. This argument can be NULL, in which case the constraint is given
a default name.

Example usage:
int ind[] = {1, 3, 4};
double val[] = {1.0, 2.0, 1.0};
/* x1 + 2 x3 + x4 = 1 */
error = GRBaddconstr(model, 3, ind, val, GRB_EQUAL, 1.0, "New");

GRBaddconstrs
int GRBaddconstrs (GRBmodel *model,

int numconstrs,
int numnz,
int *cbeg,
int *cind,
double *cval,
char *sense,
double *rhs,
const char **constrnames)

Add new linear constraints to a model. Note that, due to our lazy update approach, the new constraints won’t
actually be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize),
or write the model to disk (using GRBwrite).

We recommend that you build your model one constraint at a time (using GRBaddconstr), since it introduces no
significant overhead and we find that it produces simpler code. Feel free to use this routine if you disagree, though.

If your constraint matrix may contain more than 2 billion non-zero values, you should consider using the GR-
BXaddconstrs variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while adding the constraints. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new constraints should be added.
numconstrs: The number of new constraints to add.
numnz: The total number of non-zero coefficients in the new constraints.
cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse Row (CSR)
format by this routine. Each constraint in the constraint matrix is represented as a list of index-value
pairs, where each index entry provides the variable index for a non-zero coefficient, and each value entry
provides the corresponding non-zero value. Each new constraint has an associated cbeg value, indicating
the start position of the non-zeros for that constraint in the cind and cval arrays. This routine requires
that the non-zeros for constraint i immediately follow those for constraint i-1 in cind and cval. Thus,
cbeg[i] indicates both the index of the first non-zero in constraint i and the end of the non-zeros for
constraint i-1. To give an example of how this representation is used, consider a case where cbeg[2] = 10
and cbeg[3] = 12. This would indicate that constraint 2 has two non-zero values associated with it. Their
variable indices can be found in cind[10] and cind[11], and the numerical values for those non-zeros can
be found in cval[10] and cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg argument for more
information.

19

cval: Numerical values associated with constraint matrix non-zeros. See the description of the cbeg argument
for more information.

sense: Sense for the new constraints. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL.
rhs: Right-hand side values for the new constraints. This argument can be NULL, in which case the right-hand
side values are set to 0.0.

constrnames: Names for the new constraints. This argument can be NULL, in which case all constraints are
given default names.

GRBaddgenconstrXxx
Each of the functions described below adds a new general constraint to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types: variable bound
constraints, linear constraints, quadratic constraints, integrality constraints, and SOS constraints. These are typically
treated directly by the underlying solver (although not always), and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general (function)
constraints. These are typically not treated directly by the solver. Rather, they are transformed by presolve into
constraints (and variables) chosen from among the fundamental types listed above. In some cases, the resulting
constraint or constraints are mathematically equivalent to the original; in others, they are approximations. If such
constraints appear in your model, but if you prefer to reformulate them yourself using fundamental constraint types
instead, you can certainly do so. However, note that Gurobi can sometimes exploit information contained in the
other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:
• GRBaddgenconstrMax: y = max(x1, x2, ..., c)
• GRBaddgenconstrMin: y = min(x1, x2, ..., c)
• GRBaddgenconstrAbs: y = |x|
• GRBaddgenconstrAnd: y = x1 ∧ x2 ∧ x3...

• GRBaddgenconstrOr: y = x1 ∨ x2 ∨ x3...

• GRBaddgenconstrNorm: y = norm(x1, x2, x3...)
• GRBaddgenconstrIndicator: y = 1→ a′x ≤ b (an indicator constraint)
• GRBaddgenconstrPWL: y = pwl(x) (a piecewise-linear function, specified using breakpoints)
• GRBaddgenconstrPoly: y = p0x

d + p1x
d−1 + ...+ pd−1x+ pd

• GRBaddgenconstrExp: y = ex

• GRBaddgenconstrExpA: y = ax

• GRBaddgenconstrLog: y = loge(x)
• GRBaddgenconstrLogA: y = loga(x)
• GRBaddgenconstrPow: y = xa

• GRBaddgenconstrSin: y = sin(x)
• GRBaddgenconstrCos: y = cos(x)
• GRBaddgenconstrTan: y = tan(x)

Please refer to this section for additional details on general constraints.

GRBaddgenconstrMax
int GRBaddgenconstrMax (GRBmodel *model,

const char *name,
int resvar,
int nvars,
const int *vars,
double constant)

20

Add a new general constraint of type GRB_GENCONSTR_MAX to a model. Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A MAX constraint r = max{x1, . . . , xn, c} states that the resultant variable r should be equal to the maximum
of the operand variables x1, . . . , xn and the constant c.

Return value:
A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

resvar: The index of the resultant variable r whose value will be equal to the max of the other variables.
nvars: The number n of operand variables over which the max will be taken.
vars: An array containing the indices of the operand variables xj over which the max will be taken.
constant: An additional operand that allows you to include a constant c among the arguments of the max
operation.

Example usage:
/* x5 = max(x1, x3, x4, 2.0) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrMax(model, "maxconstr", 5,

3, ind, 2.0);

GRBaddgenconstrMin
int GRBaddgenconstrMin (GRBmodel *model,

const char *name,
int resvar,
int nvars,
const int *vars,
double constant)

Add a new general constraint of type GRB_GENCONSTR_MIN to a model. Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A MIN constraint r = min{x1, . . . , xn, c} states that the resultant variable r should be equal to the minimum of
the operand variables x1, . . . , xn and the constant c.

Return value:
A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

resvar: The index of the resultant variable r whose value will be equal to the min of the other variables.
nvars: The number n of operand variables over which the min will be taken.
vars: An array containing the indices of the operand variables xj over which the min will be taken.
constant: An additional operand that allows you to include a constant c among the arguments of the min
operation.

Example usage:
/* x5 = min(x1, x3, x4, 2.0) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrMin(model, "minconstr", 5,

3, ind, 2.0);

21

GRBaddgenconstrAbs
int GRBaddgenconstrAbs (GRBmodel *model,

const char *name,
int resvar,
int argvar)

Add a new general constraint of type GRB_GENCONSTR_ABS to a model. Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

An ABS constraint r = abs{x} states that the resultant variable r should be equal to the absolute value of the
argument variable x.

Return value:
A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

resvar: The index of the resultant variable r whose value will be to equal the absolute value of the argument
variable.

argvar: The index of the argument variable x for which the absolute value will be taken.
Example usage:

/* x5 = abs(x1) */
error = GRBaddgenconstrAbs(model, "absconstr", 5, 1);

GRBaddgenconstrAnd
int GRBaddgenconstrAnd (GRBmodel *model,

const char *name,
int resvar,
int nvars,
const int *vars)

Add a new general constraint of type GRB_GENCONSTR_AND to a model. Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

An AND constraint r = and{x1, . . . , xn} states that the binary resultant variable r should be 1 if and only if all
of the operand variables x1, . . . , xn are equal to 1. If any of the operand variables is 0, then the resultant should be
0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent of how they
were created.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

resvar: The index of the binary resultant variable r whose value will be equal to the AND concatenation of
the other variables.

nvars: The number n of binary operand variables over which the AND will be taken.
vars: An array containing the indices of the binary operand variables xj over which the AND concatenation
will be taken.

Return value:
A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Example usage:

22

/* x5 = and(x1, x3, x4) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrAnd(model, "andconstr", 5, 3, ind);

GRBaddgenconstrOr
int GRBaddgenconstrOr (GRBmodel *model,

const char *name,
int resvar,
int nvars,
const int *vars)

Add a new general constraint of type GRB_GENCONSTR_OR to a model. Note that, due to our lazy update approach,
the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

An OR constraint r = or{x1, . . . , xn} states that the binary resultant variable r should be 1 if and only if any of
the operand variables x1, . . . , xn is equal to 1. If all operand variables are 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent of how they
were created.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

resvar: The index of the binary resultant variable r whose value will be equal to the OR concatenation of
the other variables.

nvars: The number n of binary operand variables over which the OR will be taken.
vars: An array containing the indices of the binary operand variables xj over which the OR concatenation
will be taken.

Return value:
A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Example usage:
/* x5 = or(x1, x3, x4) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrOr(model, "orconstr", 5, 3, ind);

GRBaddgenconstrNorm
int GRBaddgenconstrNorm (GRBmodel *model,

const char *name,
int resvar,
int nvars,
const int *vars,
double which)

Add a new general constraint of type GRB_GENCONSTR_NORM to a model. Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A NORM constraint r = norm{x1, . . . , xn} states that the resultant variable r should be equal to the vector
norm of the argument vector x1, . . . , xn.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

resvar: The index of the resultant variable r whose value will be equal to the NORM of the other variables.

23

nvars: The number n of operand variables over which the NORM will be taken.
vars: An array containing the indices of the operand variables xj over which the NORM will be taken. Note
that this array may not contain duplicates.

which: Which norm to use. Options are 0, 1, 2, and GRB_INFINITY.
Return value:

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Example usage:
/* x5 = 2-norm(x1, x3, x4) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrNorm(model, "orconstr", 5, 3, ind, 2.0);

GRBaddgenconstrIndicator

int GRBaddgenconstrIndicator (GRBmodel *model,
const char *name,
int binvar,
int binval,
int nvars,
const int *ind,
const double *val,
char sense,
double rhs)

Add a new general constraint of type GRB_GENCONSTR_INDICATOR to a model. Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

An INDICATOR constraint z = f → aTx ≤ b states that if the binary indicator variable z is equal to f , where
f ∈ {0, 1}, then the linear constraint aTx ≤ b should hold. On the other hand, if z = 1− f , the linear constraint may
be violated. The sense of the linear constraint can also be specified to be “=” or “≥”.

Note that the indicator variable z of a constraint will be forced to be binary, independent of how it was created.
Arguments:

model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

binvar: The index of the binary indicator variable z.
binval: The value f for the binary indicator variable that would force the linear constraint to be satisfied
(0 or 1).

nvars: The number n of non-zero coefficients in the linear constraint triggered by the indicator.
ind: Indices for the variables xj with non-zero values in the linear constraint.
val: Numerical values for non-zero values aj in the linear constraint.
sense: Sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL.
rhs: Right-hand side value for the linear constraint.

Return value:
A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Example usage:
/* x7 = 1 -> x1 + 2 x3 + x4 = 1 */
int ind[] = {1, 3, 4};
double val[] = {1.0, 2.0, 1.0};
error = GRBaddgenconstrIndicator(model, NULL, 7, 1,

3, ind, val, GRB_EQUAL, 1.0);

24

GRBaddgenconstrPWL
int GRBaddgenconstrPWL (GRBmodel *model,

const char *name,
int xvar,
int yvar,
int npts,
double *xpts,
double *ypts)

Add a new general constraint of type GRB_GENCONSTR_PWL to a model. Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A piecewise-linear (PWL) constraint states that the relationship y = f(x) must hold between variables x and y,
where f is a piecewise-linear function. The breakpoints for f are provided as arguments. Refer to the description of
piecewise-linear objectives for details of how piecewise-linear functions are defined.

Return value:
A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

xvar: The index of variable x.
yvar: The index of variable y.
npts: The number of points that define the piecewise-linear function.
xpts: The x values for the points that define the piecewise-linear function. Must be in non-decreasing order.
ypts: The y values for the points that define the piecewise-linear function.

Example usage:
double xpts[] = {1, 3, 5};
double ypts[] = {1, 2, 4};
error = GRBaddgenconstr(model, "pwl", xvar, yvar, 3, x, y);

GRBaddgenconstrPoly
int GRBaddgenconstrPoly (GRBmodel *model,

const char *name,
int xvar,
int yvar,
int plen,
double *p,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_POLY to a model. Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A polynomial function constraint states that the relationship y = p0x
d + p1x

d−1 + ... + pd−1x + pd should hold
between variables x and y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Return value:
A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.

25

name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

xvar: The index of variable x.
yvar: The index of variable y.
plen: The length of coefficient array p. If xd is the highest power term, then plen should be d+ 1.
p: The coefficients for the polynomial function (starting with the coefficient for the highest power).
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Example usage:

/* y = 3 x^4 + 7 x + 3 = 3 x^4 + 0 x^3 + 0 x^2 + 7 x + 3 */
int plen = 5;
double p[] = {3, 0, 0, 7, 3};
error = GRBaddgenconstrPoly(model, "poly", xvar, yvar, 5, p, "");

GRBaddgenconstrExp

int GRBaddgenconstrExp (GRBmodel *model,
const char *name,
int xvar,
int yvar,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_EXP to a model. Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A natural exponential function constraint states that the relationship y = exp(x) should hold for variables x and
y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Return value:
A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

xvar: The index of variable x.
yvar: The index of variable y.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Example usage:

/* y = exp(x) */
error = GRBaddgenconstrExp(model, "exp", xvar, yvar, "");

26

GRBaddgenconstrExpA
int GRBaddgenconstrExpA (GRBmodel *model,

const char *name,
int xvar,
int yvar,
double a,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_EXPA to a model. Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

An exponential function constraint states that the relationship y = ax should hold for variables x and y, where
a > 0 is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Return value:
A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

xvar: The index of variable x.
yvar: The index of variable y.
a: The base of the function, a > 0.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Example usage:
/* y = 3^x */
error = GRBaddgenconstrExpA(model, "expa", xvar, yvar, 3.0, "");

GRBaddgenconstrLog
int GRBaddgenconstrLog (GRBmodel *model,

const char *name,
int xvar,
int yvar,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_LOG to a model. Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A natural logarithmic function constraint states that the relationship y = log(x) should hold for variables x and
y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Return value:
A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.

27

name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

xvar: The index of variable x.
yvar: The index of variable y.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Example usage:
/* y = log(x) */
error = GRBaddgenconstrLog(model, "log", xvar, yvar, "FuncPieces=-1 FuncPieceError=0.001");

GRBaddgenconstrLogA
int GRBaddgenconstrLogA (GRBmodel *model,

const char *name,
int xvar,
int yvar,
double a,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_LOGA to a model. Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A logarithmic function constraint states that the relationship y = loga(x) should hold for variables x and y,
where a > 0 is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Return value:
A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

xvar: The index of variable x.
yvar: The index of variable y.
a: The base of the function, a > 0.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Example usage:
/* y = log_10(x) */
error = GRBaddgenconstrLogA(model, "loga", xvar, yvar, 10.0, "");

GRBaddgenconstrLogistic
int GRBaddgenconstrLogistic (GRBmodel *model,

const char *name,
int xvar,
int yvar,
const char *options)

28

Add a new general constraint of type GRB_GENCONSTR_LOGISTIC to a model. Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A logistic function constraint states that the relationship y = 1
1+e−x should hold for variables x and y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Return value:
A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

xvar: The index of variable x.
yvar: The index of variable y.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Example usage:
/* y = 1 / (1 + exp(-x)) */
error = GRBaddgenconstrLogistic(model, "logistic", xvar, yvar, "");

GRBaddgenconstrPow

int GRBaddgenconstrPow (GRBmodel *model,
const char *name,
int xvar,
int yvar,
double a,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_POW to a model. Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A power function constraint states that the relationship y = xa should hold for variables x and y, where a > 0
is the (constant) exponent. The lower bound of variable x must be nonnegative, even if a is an integer.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Return value:
A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

xvar: The index of variable x.
yvar: The index of variable y.
a: The exponent of the function.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign

29

and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Example usage:
/* y = sqrt(x) */
error = GRBaddgenconstrPow(model, "pow", xvar, yvar, 0.5, "");

GRBaddgenconstrSin

int GRBaddgenconstrSin (GRBmodel *model,
const char *name,
int xvar,
int yvar,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_SIN to a model. Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A sine function constraint states that the relationship y = sin(x) should hold for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Return value:
A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

xvar: The index of variable x.
yvar: The index of variable y.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Example usage:
/* y = sin(x) */
error = GRBaddgenconstrSin(model, "sin", xvar, yvar, "");

GRBaddgenconstrCos

int GRBaddgenconstrCos (GRBmodel *model,
const char *name,
int xvar,
int yvar,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_COS to a model. Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A cosine function constraint states that the relationship y = cos(x) should hold for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Return value:

30

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

xvar: The index of variable x.
yvar: The index of variable y.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Example usage:

/* y = cos(x) */
error = GRBaddgenconstrCos(model, "cos", xvar, yvar, "FuncPieces=-2");

GRBaddgenconstrTan

int GRBaddgenconstrTan (GRBmodel *model,
const char *name,
int xvar,
int yvar,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_TAN to a model. Note that, due to our lazy update
approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A tangent function constraint states that the relationship y = tan(x) should hold for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Return value:
A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given
a default name.

xvar: The index of variable x.
yvar: The index of variable y.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Example usage:

/* y = tan(x) */
error = GRBaddgenconstrTan(model, "tan", xvar, yvar, "");

31

GRBaddqconstr

int GRBaddqconstr (GRBmodel *model,
int numlnz,
int *lind,
double *lval,
int numqnz,
int *qrow,
int *qcol,
double *qval,
char sense,
double rhs,
const char *constrname)

Add a new quadratic constraint to a model. Note that, due to our lazy update approach, the new constraint won’t
actually be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize),
or write the model to disk (using GRBwrite).

A quadratic constraint consists of a set of quadratic terms, a set of linear terms, a sense, and a right-hand side
value: xTQx + qTx ≤ b. The quadratic terms are input through the numqnz, qrow, qcol, and qval arguments, and
the linear terms are input through the numlnz, lind, and lval arguments.

Important note: Gurobi can handle both convex and non-convex quadratic constraints. The differences between
them can be both important and subtle. Refer to this discussion for additional information.

Return value:
A non-zero return value indicates that a problem occurred while adding the quadratic constraint. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model to which the new constraint should be added.
numlnz: The number of linear terms in the new quadratic constraint.
lind: Variable indices associated with linear terms.
lval: Numerical values associated with linear terms.
numqlnz: The number of quadratic terms in the new quadratic constraint.
qrow: Row indices associated with quadratic terms. A quadratic term is represented using three values: a
pair of indices (stored in qrow and qcol), and a coefficient (stored in qval). The associated arguments
arrays provide the corresponding values for each quadratic term. To give an example, if you wish to input
quadratic terms 2x2

0 +x0x1 +x2
1, you would call this routine with numqnz=3, qrow[] = {0, 0, 1}, qcol[]

= {0, 1, 1}, and qval[] = {2.0, 1.0, 1.0}.
qcol: Column indices associated with quadratic terms. See the description of the qrow argument for more
information.

qval: Numerical values associated with quadratic terms. See the description of the qrow argument for more
information.

sense: Sense for the new quadratic constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL.

rhs: Right-hand side value for the new quadratic constraint.
constrname: Name for the new quadratic constraint. This argument can be NULL, in which case the constraint
is given a default name.

Example usage:

int lind[] = {1, 2};
double lval[] = {2.0, 1.0};
int qrow[] = {0, 0, 1};
int qcol[] = {0, 1, 1};
double qval[] = {2.0, 1.0, 1.0};
/* 2 x0^2 + x0 x1 + x1^2 + 2 x1 + x2 <= 1 */
error = GRBaddqconstr(model, 2, lind, lval, 3, qrow, qcol, qval,

GRB_LESS_EQUAL, 1.0, "New");

32

GRBaddqpterms

int GRBaddqpterms (GRBmodel *model,
int numqnz,
int *qrow,
int *qcol,
double *qval)

Add new quadratic objective terms into an existing model. Note that new terms are (numerically) added into
existing terms, and that adding a term in row i and column j is equivalent to adding a term in row j and column i.
You can add all quadratic objective terms in a single call, or you can add them incrementally in multiple calls.

Note that, due to our lazy update approach, the new quadratic terms won’t actually be added until you update
the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using
GRBwrite).

To build an objective that contains both linear and quadratic terms, use this routine to add the quadratic terms
and use the Obj attribute to add the linear terms.

If you wish to change a quadratic term, you can either add the difference between the current term and the
desired term using this routine, or you can call GRBdelq to delete all quadratic terms, and then rebuild your new
quadratic objective from scratch.

Return value:
A non-zero return value indicates that a problem occurred while adding the quadratic terms. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model to which the new quadratic objective terms should be added.
numqnz: The number of new quadratic objective terms to add.
qrow: Row indices associated with quadratic terms. A quadratic term is represented using three values: a
pair of indices (stored in qrow and qcol), and a coefficient (stored in qval). The three argument arrays
provide the corresponding values for each quadratic term. To give an example, to represent 2x2

0 +x0x1 +x2
1,

you would have numqnz=3, qrow[] = {0, 0, 1}, qcol[] = {0, 1, 1}, and qval[] = {2.0, 1.0, 1.0}.
qcol: Column indices associated with quadratic terms. See the description of the qrow argument for more
information.

qval: Numerical values associated with quadratic terms. See the description of the qrow argument for more
information.

Important notes:
Note that building quadratic objectives requires some care, particularly if you are migrating an application from

another solver. Some solvers require you to specify the entire Q matrix, while others only accept the lower triangle.
In addition, some solvers include an implicit 0.5 multiplier on Q, while others do not. The Gurobi interface is built
around quadratic terms, rather than a Q matrix. If your quadratic objective contains a term 2 x y, you can enter it
as a single term, 2 x y, or as a pair of terms, x y and y x.

Example usage:
int qrow[] = {0, 0, 1};
int qcol[] = {0, 1, 1};
double qval[] = {2.0, 1.0, 3.0};
/* minimize 2 x^2 + x*y + 3 y^2 */
error = GRBaddqpterms(model, 3, qrow, qcol, qval);

GRBaddrangeconstr

int GRBaddrangeconstr (GRBmodel *model,
int numnz,
int *cind,
double *cval,
double lower,
double upper,
const char *constrname)

33

Add a new range constraint to a model. A range constraint states that the value of the input expression must
be between the specified lower and upper bounds in any solution. Note that, due to our lazy update approach, the
new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while adding the constraint. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new constraint should be added.
numnz: The number of non-zero coefficients in the linear expression.
cind: Variable indices for non-zero values in the linear expression.
cval: Numerical values for non-zero values in the linear expression.
lower: Lower bound on linear expression.
upper: Upper bound on linear expression.
constrname: Name for the new constraint. This argument can be NULL, in which case the constraint is given
a default name.

Important notes:
Note that adding a range constraint to the model adds both a new constraint and a new variable. If you are

keeping a count of the variables in the model, remember to add one whenever you add a range.
Note also that range constraints are stored internally as equality constraints. We use the extra variable that is

added with a range constraint to capture the range information. Thus, the Sense attribute on a range constraint will
always be GRB_EQUAL. In particular introducing a range constraint

L ≤ aTx ≤ U

is equivalent to adding a slack variable s and the following constraints

aTx− s = L
0 ≤ s ≤ U − L.

Example usage:
int ind[] = {1, 3, 4};
double val[] = {1.0, 2.0, 3.0};
/* 1 <= x1 + 2 x3 + 3 x4 <= 2 */
error = GRBaddrangeconstr(model, 3, ind, val, 1.0, 2.0, "NewRange");

GRBaddrangeconstrs
int GRBaddrangeconstrs (GRBmodel *model,

int numconstrs,
int numnz,
int *cbeg,
int *cind,
double *cval,
double *lower,
double *upper,
const char **constrnames)

Add new range constraints to a model. A range constraint states that the value of the input expression must be
between the specified lower and upper bounds in any solution. Note that, due to our lazy update approach, the
new constraints won’t actually be added until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider using the GR-
BXaddrangeconstrs variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while adding the constraints. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

34

Arguments:
model: The model to which the new constraints should be added.
numconstrs: The number of new constraints to add.
numnz: The total number of non-zero coefficients in the new constraints.
cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse Row (CSR)
format by this routine. Each constraint in the constraint matrix is represented as a list of index-value
pairs, where each index entry provides the variable index for a non-zero coefficient, and each value entry
provides the corresponding non-zero value. Each new constraint has an associated cbeg value, indicating
the start position of the non-zeros for that constraint in the cind and cval arrays. This routine requires
that the non-zeros for constraint i immediately follow those for constraint i-1 in cind and cval. Thus,
cbeg[i] indicates both the index of the first non-zero in constraint i and the end of the non-zeros for
constraint i-1. To give an example of how this representation is used, consider a case where cbeg[2] = 10
and cbeg[3] = 12. This would indicate that constraint 2 has two non-zero values associated with it. Their
variable indices can be found in cind[10] and cind[11], and the numerical values for those non-zeros can
be found in cval[10] and cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg argument for more
information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of the cbeg argument
for more information.

lower: Lower bounds for the linear expressions.
upper: Upper bounds for the linear expressions.
constrnames: Names for the new constraints. This argument can be NULL, in which case all constraints are
given default names.

Important notes:
Note that adding a range constraint to the model adds both a new constraint and a new variable. If you are

keeping a count of the variables in the model, remember to add one for each range constraint.
Note also that range constraints are stored internally as equality constraints. We use the extra variable that is

added with a range constraint to capture the range information. Thus, the Sense attribute on a range constraint will
always be GRB_EQUAL.

GRBaddsos
int GRBaddsos (GRBmodel *model,

int numsos,
int nummembers,
int *types,
int *beg,
int *ind,
double *weight)

Add new Special Ordered Set (SOS) constraints to a model. Note that, due to our lazy update approach, the
new SOS constraints won’t actually be added until you update the model (using GRBupdatemodel), optimize the
model (using GRBoptimize), or write the model to disk (using GRBwrite).

Please refer to this section for details on SOS constraints.
Return value:

A non-zero return value indicates that a problem occurred while adding the SOS constraints. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model to which the new SOSs should be added.
numsos: The number of new SOSs to add.
nummembers: The total number of SOS members in the new SOSs.
types: The types of the SOS sets. SOS sets can be of type GRB_SOS_TYPE1 or GRB_SOS_TYPE2.
beg: The members of the added SOS sets are passed into this routine in Compressed Sparse Row (CSR)
format. Each SOS is represented as a list of index-value pairs, where each index entry provides the variable
index for an SOS member, and each value entry provides the weight of that variable in the corresponding

35

SOS set. Each new SOS has an associated beg value, indicating the start position of the SOS member list
in the ind and weight arrays. This routine requires that the members for SOS i immediately follow those
for SOS i-1 in ind and weight. Thus, beg[i] indicates both the index of the first non-zero in constraint
i and the end of the non-zeros for constraint i-1. To give an example of how this representation is used,
consider a case where beg[2] = 10 and beg[3] = 12. This would indicate that SOS number 2 has two
members. Their variable indices can be found in ind[10] and ind[11], and the associated weights can be
found in weight[10] and weight[11].

ind: Variable indices associated with SOS members. See the description of the beg argument for more
information.

weight: Weights associated with SOS members. See the description of the beg argument for more informa-
tion.

Example usage:

int types[] = {GRB_SOS_TYPE1, GRB_SOS_TYPE1};
int beg[] = {0, 2};
int ind[] = {1, 2, 1, 3};
double weight[] = {1, 2, 1, 2};
error = GRBaddsos(model, 2, 4, types, beg, ind, weight);

GRBaddvar

int GRBaddvar (GRBmodel *model,
int numnz,
int *vind,
double *vval,
double obj,
double lb,
double ub,
char vtype,
const char *varname)

Add a new variable to a model. Note that, due to our lazy update approach, the new variable won’t actually
be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write
the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while adding the variable. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new variable should be added.
numnz: The number of non-zero coefficients in the new column.
vind: Constraint indices associated with non-zero values for the new variable.
vval: Numerical values associated with non-zero values for the new variable.
obj: Objective coefficient for the new variable.
lb: Lower bound for the new variable.
ub: Upper bound for the new variable.
vtype: Type for the new variable. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT,
or GRB_SEMIINT.

varname: Name for the new variable. This argument can be NULL, in which case the variable is given a default
name.

Example usage:

int ind[] = {1, 3, 4};
double val[] = {1.0, 1.0, 1.0};
error = GRBaddvar(model, 3, ind, val, 1.0, 0.0, GRB_INFINITY,

GRB_CONTINUOUS, "New");

36

GRBaddvars
int GRBaddvars (GRBmodel *model,

int numvars,
int numnz,
int *vbeg,
int *vind,
double *vval,
double *obj,
double *lb,
double *ub,
char *vtype,
const char **varnames)

Add new variables to a model. Note that, due to our lazy update approach, the new variables won’t actually
be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write
the model to disk (using GRBwrite).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider using the GR-
BXaddvars variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while adding the variables. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new variables should be added.
numvars: The number of new variables to add.
numnz: The total number of non-zero coefficients in the new columns.
vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse Column (CSC)
format. Each column in the constraint matrix is represented as a list of index-value pairs, where each
index entry provides the constraint index for a non-zero coefficient, and each value entry provides the
corresponding non-zero value. Each variable in the model has a vbeg, indicating the start position of
the non-zeros for that variable in the vind and vval arrays. This routine requires columns to be stored
contiguously, so the start position for a variable is the end position for the previous variable. To give an
example, if vbeg[2] = 10 and vbeg[3] = 12, that would indicate that variable 2 has two non-zero values
associated with it. Their constraint indices can be found in vind[10] and vind[11], and the numerical
values for those non-zeros can be found in vval[10] and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg argument for more
information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of the vbeg argument
for more information.

obj: Objective coefficients for the new variables. This argument can be NULL, in which case the objective
coefficients are set to 0.0.

lb: Lower bounds for the new variables. This argument can be NULL, in which case all variables get lower
bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all variables get infinite
upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or
GRB_SEMIINT. This argument can be NULL, in which case all variables are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all variables are given
default names.

GRBchgcoeffs
int GRBchgcoeffs (GRBmodel *model,

int numchgs,
int *cind,
int *vind,
double *val)

37

Change a set of constraint matrix coefficients. This routine can be used to set a non-zero coefficient to zero, to
create a non-zero coefficient where the coefficient is currently zero, or to change an existing non-zero coefficient to a
new non-zero value. If you make multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the changes won’t actually be integrated into the model until you
update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider using the GR-
BXchgcoeffs variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while performing the modification. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model to modify.
numchgs: The number of coefficients to modify.
cind: Constraint indices for the coefficients to modify.
vind: Variable indices for the coefficients to modify.
val: The new values for the coefficients. For example, if cind[0] = 1, vind[0] = 3, and val[0] = 2.0,
then the coefficient in constraint 1 associated with variable 3 would be changed to 2.0.

Example usage:
int cind[] = {0, 1};
int vind[] = {0, 0};
double val[] = {1.0, 1.0};
error = GRBchgcoeffs(model, 2, cind, vind, val);

GRBdelconstrs
int GRBdelconstrs (GRBmodel *model,

int numdel,
int *ind)

Delete a list of constraints from an existing model. Note that, due to our lazy update approach, the con-
straints won’t actually be removed until you update the model (using GRBupdatemodel), optimize the model (using
GRBoptimize), or write the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while deleting the constraints. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.
numdel: The number of constraints to remove.
ind: The indices of the constraints to remove.

Example usage:
int first_four[] = {0, 1, 2, 3};
error = GRBdelconstrs(model, 4, first_four);

GRBdelgenconstrs
int GRBdelgenconstrs (GRBmodel *model,

int numdel,
int *ind)

Delete a list of general constraints from an existing model. Note that, due to our lazy update approach, the
general constraints won’t actually be removed until you update the model (using GRBupdatemodel), optimize the
model (using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:

38

A non-zero return value indicates that a problem occurred while deleting the constraints. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.
numdel: The number of general constraints to remove.
ind: The indices of the general constraints to remove.

Example usage:
int first_four[] = {0, 1, 2, 3};
error = GRBdelgenconstrs(model, 4, first_four);

GRBdelq
int GRBdelq (GRBmodel *model)

Delete all quadratic objective terms from an existing model. Note that, due to our lazy update approach, the
quadratic terms won’t actually be removed until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while deleting the quadratic objective terms.
Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by
calling GRBgeterrormsg.

Arguments:
model: The model to modify.

Example usage:
error = GRBdelq(model);

GRBdelqconstrs
int GRBdelqconstrs (GRBmodel *model,

int numdel,
int *ind)

Delete a list of quadratic constraints from an existing model. Note that, due to our lazy update approach, the
quadratic constraints won’t actually be removed until you update the model (using GRBupdatemodel), optimize the
model (using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while deleting the quadratic constraints. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model to modify.
numdel: The number of quadratic constraints to remove.
ind: The indices of the quadratic constraints remove.

Example usage:
int first_four[] = {0, 1, 2, 3};
error = GRBdelqconstrs(model, 4, first_four);

GRBdelsos
int GRBdelsos (GRBmodel *model,

int numdel,
int *ind)

Delete a list of Special Ordered Set (SOS) constraints from an existing model. Note that, due to our lazy update
approach, the SOS constraints won’t actually be removed until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

39

Return value:
A non-zero return value indicates that a problem occurred while deleting the constraints. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.
numdel: The number of SOSs to remove.
ind: The indices of the SOSs to remove.

Example usage:
int first_four[] = {0, 1, 2, 3};
error = GRBdelsos(model, 4, first_four);

GRBdelvars

int GRBdelvars (GRBmodel *model,
int numdel,
int *ind)

Delete a list of variables from an existing model. Note that, due to our lazy update approach, the variables won’t
actually be removed until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize),
or write the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while deleting the variables. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.
numdel: The number of variables to remove.
ind: The indices of the variables to remove.

Example usage:
int first_two[] = {0, 1};
error = GRBdelvars(model, 2, first_two);

GRBsetobjectiven

int GRBsetobjectiven (GRBmodel *model,
int index,
int priority,
double weight,
double abstol,
double reltol,
const char *name,
double constant,
int lnz,
int *lind,
double *lval)

Set an alternative optimization objective equal to a linear expression.
Please refer to the discussion of Multiple Objectives for information on how to specify multiple objective functions

and control the trade-off between them.
Note that you can also modify an alternative objective using the ObjN variable attribute. If you wish to mix

and match these two approaches, please note that this method replaces the entire existing objective, while the ObjN
attribute can be used to modify individual terms.

Note that, due to our lazy update approach, the new alternative objective won’t actually be added until you
update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

Return value:

40

A non-zero return value indicates that a problem occurred while setting the alternative objective. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model in which the new alternative objective should be set.
index: Index for new objective. If you use an index of 0, this routine will change the primary optimization
objective.

priority: Priority for the alternative objective. This initializes the ObjNPriority attribute for this objective.
weight: Weight for the alternative objective. This initializes the ObjNWeight attribute for this objective.
abstol: Absolute tolerance for the alternative objective. This initializes the ObjNAbsTol attribute for this
objective.

reltol: Relative tolerance for the alternative objective. This initializes the ObjNRelTol attribute for this
objective.

name: Name of the alternative objective. This initializes the ObjNName attribute for this objective.
constant: Constant part of the linear expression for the new alternative objective.
lnz: Number of non-zero coefficients in new alternative objective.
lind: Variable indices for non-zero values in new alternative objective.
lval: Numerical values for non-zero values in new alternative objective.

Example usage:
int ind[] = {0, 1, 2};
double val[] = {1.0, 1.0, 1.0};
/* Objective expression: x0 + x1 + x2 */
error = GRBsetobjectiven(model, 0, 1, 0.0, 0.0, 0.0, "primary",

0.0, 3, ind, val);

GRBsetpwlobj

int GRBsetpwlobj (GRBmodel *model,
int var,
int npoints,
double *x,
double *y)

Set a piecewise-linear objective function for a variable.
The arguments to this method specify a list of points that define a piecewise-linear objective function for a single

variable. Specifically, the x and y arguments give coordinates for the vertices of the function.
For additional details on piecewise-linear objective functions, refer to this discussion.
Note that, due to our lazy update approach, the new piecewise-linear objective won’t actually be added until you

update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while setting the piecewise-linear objective. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model to modify.
var: The variable whose objective function is being changed.
npoints: The number of points that define the piecewise-linear function.
x: The x values for the points that define the piecewise-linear function. Must be in non-decreasing order.
y: The y values for the points that define the piecewise-linear function.

Example usage:
double x[] = {1, 3, 5};
double y[] = {1, 2, 4};
error = GRBsetpwlobj(model, var, 3, x, y);

41

GRBupdatemodel
int GRBupdatemodel (GRBmodel *model)

Process any pending model modifications.
Return value:

A non-zero return value indicates that a problem occurred while updating the model. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to update.

Example usage:
error = GRBupdatemodel(model);

GRBfreemodel
int GRBfreemodel (GRBmodel *model)

Free a model and release the associated memory.
Return value:

A non-zero return value indicates that a problem occurred while freeing the model. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to be freed.

Example usage:
error = GRBfreemodel(model);

GRBXaddconstrs
int GRBXaddconstrs (GRBmodel *model,

int numconstrs,
size_t numnz,
size_t *cbeg,
int *cind,
double *cval,
char *sense,
double *rhs,
const char **constrnames)

The size_t version of GRBaddconstrs. The two arguments that count non-zero values are of type size_t in this
version to support models with more than 2 billion non-zero values.

Add new linear constraints to a model. Note that, due to our lazy update approach, the new constraints won’t
actually be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize),
or write the model to disk (using GRBwrite).

We recommend that you build your model one constraint at a time (using GRBaddconstr), since it introduces no
significant overhead and we find that it produces simpler code. Feel free to use this routine if you disagree, though.

Return value:
A non-zero return value indicates that a problem occurred while adding the constraints. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new constraints should be added.
numconstrs: The number of new constraints to add.
numnz: The total number of non-zero coefficients in the new constraints.
cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse Row (CSR)
format by this routine. Each constraint in the constraint matrix is represented as a list of index-value
pairs, where each index entry provides the variable index for a non-zero coefficient, and each value entry
provides the corresponding non-zero value. Each new constraint has an associated cbeg value, indicating

42

the start position of the non-zeros for that constraint in the cind and cval arrays. This routine requires
that the non-zeros for constraint i immediately follow those for constraint i-1 in cind and cval. Thus,
cbeg[i] indicates both the index of the first non-zero in constraint i and the end of the non-zeros for
constraint i-1. To give an example of how this representation is used, consider a case where cbeg[2] = 10
and cbeg[3] = 12. This would indicate that constraint 2 has two non-zero values associated with it. Their
variable indices can be found in cind[10] and cind[11], and the numerical values for those non-zeros can
be found in cval[10] and cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg argument for more
information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of the cbeg argument
for more information.

sense: Sense for the new constraints. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL.
rhs: Right-hand side values for the new constraints. This argument can be NULL, in which case the right-hand
side values are set to 0.0.

constrnames: Names for the new constraints. This argument can be NULL, in which case all constraints are
given default names.

GRBXaddrangeconstrs
int GRBXaddrangeconstrs (GRBmodel *model,

int numconstrs,
size_t numnz,
size_t *cbeg,
int *cind,
double *cval,
double *lower,
double *upper,
const char **constrnames)

The size_t version of GRBaddrangeconstrs. The argument that counts non-zero values is of type size_t in this
version to support models with more than 2 billion non-zero values.

Add new range constraints to a model. A range constraint states that the value of the input expression must be
between the specified lower and upper bounds in any solution. Note that, due to our lazy update approach, the
new constraints won’t actually be added until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while adding the constraints. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new constraints should be added.
numconstrs: The number of new constraints to add.
numnz: The total number of non-zero coefficients in the new constraints.
cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse Row (CSR)
format by this routine. Each constraint in the constraint matrix is represented as a list of index-value
pairs, where each index entry provides the variable index for a non-zero coefficient, and each value entry
provides the corresponding non-zero value. Each new constraint has an associated cbeg value, indicating
the start position of the non-zeros for that constraint in the cind and cval arrays. This routine requires
that the non-zeros for constraint i immediately follow those for constraint i-1 in cind and cval. Thus,
cbeg[i] indicates both the index of the first non-zero in constraint i and the end of the non-zeros for
constraint i-1. To give an example of how this representation is used, consider a case where cbeg[2] = 10
and cbeg[3] = 12. This would indicate that constraint 2 has two non-zero values associated with it. Their
variable indices can be found in cind[10] and cind[11], and the numerical values for those non-zeros can
be found in cval[10] and cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg argument for more
information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of the cbeg argument
for more information.

43

lower: Lower bounds for the linear expressions.
upper: Upper bounds for the linear expressions.
constrnames: Names for the new constraints. This argument can be NULL, in which case all constraints are
given default names.

Important notes:
Note that adding a range constraint to the model adds both a new constraint and a new variable. If you are

keeping a count of the variables in the model, remember to add one for each range constraint.
Note also that range constraints are stored internally as equality constraints. We use the extra variable that is

added with a range constraint to capture the range information. Thus, the Sense attribute on a range constraint will
always be GRB_EQUAL.

GRBXaddvars
int GRBXaddvars (GRBmodel *model,

int numvars,
size_t numnz,
size_t *vbeg,
int *vind,
double *vval,
double *obj,
double *lb,
double *ub,
char *vtype,
const char **varnames)

The size_t version of GRBaddvars. The two arguments that count non-zero values are of type size_t in this
version to support models with more than 2 billion non-zero values.

Add new variables to a model. Note that, due to our lazy update approach, the new variables won’t actually
be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write
the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while adding the variables. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new variables should be added.
numvars: The number of new variables to add.
numnz: The total number of non-zero coefficients in the new columns.
vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse Column (CSC)
format. Each column in the constraint matrix is represented as a list of index-value pairs, where each
index entry provides the constraint index for a non-zero coefficient, and each value entry provides the
corresponding non-zero value. Each variable in the model has a vbeg, indicating the start position of
the non-zeros for that variable in the vind and vval arrays. This routine requires columns to be stored
contiguously, so the start position for a variable is the end position for the previous variable. To give an
example, if vbeg[2] = 10 and vbeg[3] = 12, that would indicate that variable 2 has two non-zero values
associated with it. Their constraint indices can be found in vind[10] and vind[11], and the numerical
values for those non-zeros can be found in vval[10] and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg argument for more
information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of the vbeg argument
for more information.

obj: Objective coefficients for the new variables. This argument can be NULL, in which case the objective
coefficients are set to 0.0.

lb: Lower bounds for the new variables. This argument can be NULL, in which case all variables get lower
bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all variables get infinite
upper bounds.

44

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or
GRB_SEMIINT. This argument can be NULL, in which case all variables are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all variables are given
default names.

GRBXchgcoeffs

int GRBXchgcoeffs (GRBmodel *model,
size_t numchgs,
int *cind,
int *vind,
double *val)

The size_t version of GRBchgcoeffs. The argument that counts non-zero values is of type size_t in this version
to support models with more than 2 billion non-zero values.

Change a set of constraint matrix coefficients. This routine can be used to set a non-zero coefficient to zero, to
create a non-zero coefficient where the coefficient is currently zero, or to change an existing non-zero coefficient to a
new non-zero value. If you make multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the changes won’t actually be integrated into the model until you
update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

Return value:

A non-zero return value indicates that a problem occurred while performing the modification. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

model: The model to modify.

numchgs: The number of coefficients to modify.

cind: Constraint indices for the coefficients to modify.

vind: Variable indices for the coefficients to modify.

val: The new values for the coefficients. For example, if cind[0] = 1, vind[0] = 3, and val[0] = 2.0,
then the coefficient in constraint 1 associated with variable 3 would be changed to 2.0.

Example usage:

int cind[] = {0, 1};
int vind[] = {0, 0};
double val[] = {1.0, 1.0};
error = GRBXchgcoeffs(model, 2, cind, vind, val);

45

GRBXloadmodel

int GRBXloadmodel (GRBenv *env,
GRBmodel **modelP,
const char *Pname,
int numvars,
int numconstrs,
int objsense,
double objcon,
double *obj,
char *sense,
double *rhs,
size_t *vbeg,
int *vlen,
int *vind,
double *vval,
double *lb,
double *ub,
char *vtype,
const char **varnames,
const char **constrnames)

The size_t version of GRBloadmodel. The argument that counts non-zero values is of type size_t in this
version to support models with more than 2 billion non-zero values.

Create a new optimization model, using the provided arguments to initialize the model data (objective function,
variable bounds, constraint matrix, etc.). The model is then ready for optimization, or for modification (e.g., addition
of variables or constraints, changes to variable types or bounds, etc.).

Return value:
A non-zero return value indicates that a problem occurred while creating the model. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment in which the new model should be created. Note that the new model gets a copy of
this environment, so subsequent modifications to the original environment (e.g., parameter changes) won’t
affect the new model. Use GRBgetenv to modify the environment associated with a model.

modelP: The location in which the pointer to the newly created model should be placed.
Pname: The name of the model.
numvars: The number of variables in the model.
numconstrs: The number of constraints in the model.
objsense: The sense of the objective function. Allowed values are 1 (minimization) or -1 (maximization).
objcon: Constant objective offset.
obj: Objective coefficients for the new variables. This argument can be NULL, in which case the objective
coefficients are set to 0.0.

sense: The senses of the new constraints. Options are ’=’ (equal), ’<’ (less-than-or-equal), or ’>’ (greater-
than-or-equal). You can also use constants GRB_EQUAL, GRB_LESS_EQUAL, or GRB_GREATER_EQUAL.

rhs: Right-hand side values for the new constraints. This argument can be NULL, in which case the right-hand
side values are set to 0.0.

vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse Column (CSC)
format. Each column in the constraint matrix is represented as a list of index-value pairs, where each
index entry provides the constraint index for a non-zero coefficient, and each value entry provides the
corresponding non-zero value. Each variable in the model has a vbeg and vlen value, indicating the
start position of the non-zeros for that variable in the vind and vval arrays, and the number of non-zero
values for that variable, respectively. Thus, for example, if vbeg[2] = 10 and vlen[2] = 2, that would
indicate that variable 2 has two non-zero values associated with it. Their constraint indices can be found
in vind[10] and vind[11], and the numerical values for those non-zeros can be found in vval[10] and
vval[11]. Note that the columns of the matrix must be ordered from first to last, implying that the values
in vbeg must be non-decreasing.

46

vlen: Number of constraint matrix non-zero values associated with each variable. See the description of the
vbeg argument for more information.

vind: Constraint indices associated with non-zero values. See the description of the vbeg argument for more
information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of the vbeg argument
for more information.

lb: Lower bounds for the new variables. This argument can be NULL, in which case all variables get lower
bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all variables get infinite
upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or
GRB_SEMIINT. This argument can be NULL, in which case all variables are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all variables are given
default names.

constrnames: Names for the new constraints. This argument can be NULL, in which case all constraints are
given default names.

Important notes:
We recommend that you build a model one constraint or one variable at a time, using GRBaddconstr or GR-

Baddvar, rather than using this routine to load the entire constraint matrix at once. It is much simpler, less error
prone, and it introduces no significant overhead.

Example usage:
/* maximize x + y + 2 z

subject to x + 2 y + 3 z <= 4
x + y >= 1

x, y, z binary */

int vars = 3;
int constrs = 2;
size_t vbeg[] = {0, 2, 4};
int vlen[] = {2, 2, 1};
int vind[] = {0, 1, 0, 1, 0};
double vval[] = {1.0, 1.0, 2.0, 1.0, 3.0};
double obj[] = {1.0, 1.0, 2.0};
char sense[] = {GRB_LESS_EQUAL, GRB_GREATER_EQUAL};
double rhs[] = {4.0, 1.0};
char vtype[] = {GRB_BINARY, GRB_BINARY, GRB_BINARY};

error = GRBXloadmodel(env, &model, "example", vars, constrs, -1, 0.0,
obj, sense, rhs, vbeg, vlen, vind, vval,
NULL, NULL, vtype, NULL, NULL);

47

3.3 Model Solution
GRBoptimize
int GRBoptimize (GRBmodel *model)

Optimize a model. The algorithm used for the optimization depends on the model type (simplex or barrier for
a continuous model; branch-and-cut for a MIP model). Upon successful completion, this method will populate the
solution related attributes of the model. See the Attributes section for more information on attributes.

Please consult this section for a discussion of some of the practical issues associated with solving a precisely
defined mathematical model using finite-precision floating-point arithmetic.

Note that this routine will process all pending model modifications.
Return value:

A non-zero return value indicates that a problem occurred while optimizing the model. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to optimize. Note that this routine only reports whether the optimization ran into an
error. Query the Status attribute to determine the result of the optimization (see the Attributes section
for more information on querying attributes).

Example usage:
error = GRBoptimize(model);

GRBoptimizeasync
int GRBoptimizeasync (GRBmodel *model)

Optimize a model asynchronously. This routine returns immediately. Your program can perform other compu-
tations while optimization proceeds in the background. To check the state of the asynchronous optimization, query
the Status attribute for the model. A value of IN_PROGRESS indicates that the optimization has not yet completed.
When you are done with your foreground tasks, you must call GRBsync to sync your foreground program with the
asynchronous optimization task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in the background
is severely limited. Specifically, you can only perform attribute queries, and only for a few attributes (listed below).
Any other calls on the running model, or on any other models that were built within the same Gurobi environment,
will fail with error code OPTIMIZATION_IN_PROGRESS.

Note that there are no such restrictions on models built in other environments. Thus, for example, you could
create multiple environments, and then have a single foreground program launch multiple simultaneous asynchronous
optimizations, each in its own environment.

As already noted, you are allowed to query the value of the Status attribute while an asynchronous optimization
is in progress. The other attributes that can be queried are: ObjVal, ObjBound, IterCount, NodeCount, and
BarIterCount. In each case, the returned value reflects progress in the optimization to that point. Any attempt to
query the value of an attribute not on this list will return an OPTIMIZATION_IN_PROGRESS error.

Return value:
A non-zero return value indicates that a problem occurred while optimizing the model. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to optimize. Note that this routine only reports whether launching the asynchronous
job ran into an error. Query the Status attribute to determine the result of the optimization (see the
Attributes section for more information on querying attributes). The return value of GRBsync indicates
whether the background optimization ran into an error.

Example usage:
error = GRBoptimizeasync(model);

/* ... perform other compute-intensive tasks... */

48

error = GRBsync(model);

GRBcomputeIIS

int GRBcomputeIIS (GRBmodel *model)

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and variable bounds
with the following properties:

• It is still infeasible, and

• If a single constraint or bound is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily the smallest
one; there may exist others with fewer constraints or bounds.

IIS results are returned in a number of attributes: IISConstr, IISLB, IISUB, IISSOS, IISQConstr, and IISGen-
Constr. Each indicates whether the corresponding model element is a member of the computed IIS.

The IIS log provides information about the progress of the algorithm, including a guess at the eventual IIS size.
If an IIS computation is interrupted before completion, Gurobi will return the smallest infeasible subsystem found

to that point.
The IISConstrForce, IISLBForce, IISUBForce, IISSOSForce, IISQConstrForce, and IISGenConstrForce attributes

allow you mark model elements to either include or exclude from the computed IIS. Setting the attribute to 1 forces
the corresponding element into the IIS, setting it to 0 forces it out of the IIS, and setting it to -1 allows the algorithm
to decide.

To give an example of when these attributes might be useful, consider the case where an initial model is known
to be feasible, but it becomes infeasible after adding constraints or tightening bounds. If you are only interested
in knowing which of the changes caused the infeasibility, you can force the unmodified bounds and constraints into
the IIS. That allows the IIS algorithm to focus exclusively on the new constraints, which will often be substantially
faster.

Note that setting any of the Force attributes to 0 may make the resulting subsystem feasible, which would
then make it impossible to construct an IIS. Trying anyway will result in a GRB_ERROR_IIS_NOT_INFEASIBLE error.
Similarly, setting this attribute to 1 may result in an IIS that is not irreducible. More precisely, the system would
only be irreducible with respect to the model elements that have force values of -1 or 0.

This routine populates the IISConstr, IISGenConstr, IISQConstr, IISSOS, IISLB, and IISUB attributes. You
can also obtain information about the results of the IIS computation by writing a .ilp format file (see GRBwrite).
This file contains only the IIS from the original model.

Use the IISMethod parameter to adjust the behavior of the IIS algorithm.
Note that this routine can be used to compute IISs for both continuous and MIP models.
Return value:

A non-zero return value indicates that a problem occurred while computing the IIS. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The infeasible model. This routine will return an error if the input model is feasible.

Important note:
This routine only reports whether the computation ran into an error. Query the IISConstr, IISGenConstr,

IISQConstr, IISSOS, IISLB, or IISUB attributes to determine the result of the computation (see the Attributes
section for more information on querying attributes).

Example usage:

error = GRBcomputeIIS(model);

49

GRBfeasrelax

int GRBfeasrelax (GRBmodel *model,
int relaxobjtype,
int minrelax,
double *lbpen,
double *ubpen,
double *rhspen,
double *feasobjP)

Modifies the input model to create a feasibility relaxation. Note that you need to call GRBoptimize on the result
to compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the solution violates the
bounds and linear constraints of the original model. This routine provides a number of options for specifying the
relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the sum of the weighted
magnitudes of the bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the cost per
unit violation in the lower bounds, upper bounds, and linear constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the weighted sum of the
squares of the bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the coefficients on
the squares of the lower bound, upper bound, and linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the weighted count of
bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the cost of violating a lower
bound, upper bound, and linear constraint, respectively.

To give an example, a violation of 2.0 on constraint i would contribute 2*rhspen[i] to the feasibility relaxation
objective for relaxobjtype=0, it would contribute 2*2*rhspen[i] for
relaxobjtype=1, and it would contribute rhspen[i] for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is created. If minrelax=0,
optimizing the returned model gives a solution that minimizes the cost of the violation. If minrelax=1, optimizing
the returned model finds a solution that minimizes the original objective, but only from among those solutions that
minimize the cost of the violation. Note that GRBfeasrelax must solve an optimization problem to find the minimum
possible relaxation for minrelax=1, which can be quite expensive.

In all cases, you can specify a penalty of GRB_INFINITY to indicate that a specific bound or linear constraint may
not be violated.

Note that this is a destructive routine: it modifies the model passed to it. If you don’t want to modify your
original model, use GRBcopymodel to create a copy before calling this routine.

Return value:
A non-zero return value indicates that a problem occurred while computing the feasibility relaxation. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The original (infeasible) model. The model is modified by this routine.
relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
lbpen: The penalty associated with violating a lower bound. Can be NULL, in which case no lower bound
violations are allowed.

ubpen: The penalty associated with violating an upper bound. Can be NULL, in which case no upper bound
violations are allowed.

rhspen: The penalty associated with violating a linear constraint. Can be NULL, in which case no constraint
violations are allowed.

feasobjP: When minrelax=1, this returns the objective value for the minimum cost relaxation.
Example usage:

double penalties[];
error = GRBfeasrelax(model, 0, 0, NULL, NULL, penalties, NULL);
error = GRBoptimize(model);

50

GRBfixmodel
int GRBfixmodel (GRBmodel *model,

GRBmodel **fixedP)

Create the fixed model associated with a MIP model. The MIP model must have a solution loaded (e.g., after a
call to GRBoptimize). In the fixed model, each integer variable is fixed to the value that variable takes in the MIP
solution. In addition, continuous variables may be fixed to satisfy SOS or general constraints. The result is a model
without any integrality constraints, SOS constraints, or general constraints.

Note that, while the fixed problem is always a continuous model, it may contain a non-convex quadratic objective
or non-convex quadratic constraints. As a result, it may still be solved using the MIP algorithm.

Return value:
A non-zero return value indicates that a problem occurred while creating the fixed model. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The MIP model (with a solution loaded).
fixedP: The computed fixed model.

Example usage:
GRBmodel *fixed;
error = GRBfixmodel(model, &fixed);

GRBreset
int GRBreset (GRBmodel *model,

int clearall)

Reset the model to an unsolved state, discarding any previously computed solution information.
Return value:

A non-zero return value indicates that a problem occurred while resetting the model. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to reset.
clearall: A value of 1 discards additional information that affects the solution process but not the actual
model (currently MIP starts, variable hints, branching priorities, lazy flags, and partition information).
Pass 0 to just discard the solution.

Example usage:
error = GRBreset(model, 0);

GRBsync
int GRBsync (GRBmodel *model)

Wait for a previous asynchronous optimization call to complete.
Calling GRBoptimizeasync returns control to the calling routine immediately. The caller can perform other

computations while optimization proceeds, and can check on the progress of the optimization by querying various
model attributes. The GRBsync call forces the calling program to wait until the asynchronous optimization completes.
You must call GRBsync before the corresponding model is freed.

The GRBsync call returns a non-zero error code if the optimization itself ran into any problems. In other words,
error codes returned by this method are those that GRBoptimize itself would have returned, had the original method
not been asynchronous.

Note that you need to call GRBsync even if you know that the asynchronous optimization has already completed.
Return value:

A non-zero return value indicates that a problem occurred while solving the model. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model that is currently being solved.

51

Example usage:
error = GRBoptimizeasync(model);

/* ... perform other compute-intensive tasks... */

error = GRBsync(model);

52

3.4 Model Queries
While most model related queries are handled through the attribute interface, a few fall outside of that interface.
These are described here.

GRBgetcoeff
int GRBgetcoeff (GRBmodel *model,

int constrind,
int varind,
double *valP)

Retrieve a single constraint matrix coefficient.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the coefficient. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the coefficient should be retrieved.
constrind: The constraint index for the desired coefficient.
varind: The variable index for the desired coefficient.
valP: The location in which the requested matrix coefficient should be placed.

Example usage:
double A12;
error = GRBgetcoeff(model, 1, 2, &A12);

GRBgetconstrbyname
int GRBgetconstrbyname (GRBmodel *model,

const char *name,
int *constrnumP)

Retrieves a linear constraint from its name. If multiple linear constraints have the same name, this routine
chooses one arbitrarily.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the constraint. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the linear constraint should be retrieved.
name: The name of the desired linear constraint.
constrnumP: Constraint number for a linear constraint with the indicated name. Returns -1 if no matching
name is found.

GRBgetconstrs
int GRBgetconstrs (GRBmodel *model,

int *numnzP,
int *cbeg,
int *cind,
double *cval,
int start,
int len)

Retrieve the non-zeros for a set of linear constraints from the constraint matrix. Typical usage is to call this
routine twice. In the first call, you specify the requested set of constraints, with NULL values for cbeg, cind, and
cval. The routine returns the number of non-zero values for the specified constraint range in numnzP. That allows
you to make certain that cind and cval are of sufficient size to hold the result of the second call.

53

If your constraint matrix may contain more than 2 billion non-zero values, you should consider using the GR-
BXgetconstrs variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the constraint coefficients. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model from which the linear constraints should be retrieved.
numnzP: The number of non-zero values retrieved.
cbeg: Constraint matrix non-zero values are returned in Compressed Sparse Row (CSR) format. Each
constraint in the constraint matrix is represented as a list of index-value pairs, where each index entry
provides the variable index for a non-zero coefficient, and each value entry provides the corresponding non-
zero value. Each constraint has an associated cbeg value, indicating the start position of the non-zeros for
that constraint in the cind and cval arrays. The non-zeros for constraint i immediately follow those for
constraint i-1 in cind and cval. Thus, cbeg[i] indicates both the index of the first non-zero in constraint
i and the end of the non-zeros for constraint i-1. For example, consider the case where cbeg[2] = 10 and
cbeg[3] = 12. This would indicate that constraint 2 has two non-zero values associated with it. Their
variable indices can be found in cind[10] and cind[11], and the numerical values for those non-zeros can
be found in cval[10] and cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg argument for more
information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of the cbeg argument
for more information.

start: The index of the first linear constraint to retrieve.
len: The number of linear constraints to retrieve.

GRBgetenv
GRBenv * GRBgetenv (GRBmodel *model)

Retrieve the environment associated with a model.
Note that this environment is a model environment, not the original environment on which the model was created.

See Algorithmic parameters for more information.
Return value:

The environment associated with the model. A NULL return value indicates that there was a problem retrieving
the environment.

Arguments:
model: The model from which the environment should be retrieved.

Example usage:
GRBenv *env = GRBgetenv(model);

GRBgetgenconstrMax
int GRBgetgenconstrMax (GRBmodel *model,

int id,
int *resvarP,
int *nvarsP,
int *vars,
double *constantP)

Retrieve the data associated with a general constraint of type MAX. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
NULL value for the vars argument. The routine returns the total number of operand variables in the specified general

54

constraint in nvarsP. That allows you to make certain that the vars array is of sufficient size to hold the result of
the second call.

See also GRBaddgenconstrMax for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the resultant variable of the constraint.
nvarsP: The number of operand variables of the constraint.
vars: An array to store the variable indices associated with the variable operands of the constraint.
constantP: The additional constant operand of the constraint.

Example usage:
int type;
int resvar;
int nvars;
int *vars;
double constant;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_MAX) {

error = GRBgetgenconstrMax(model, 3, &resvar, &nvars, NULL, &constant);
/* ...allocate vars to hold 'nvars' values... */
error = GRBgetgenconstrMax(model, 3, NULL, NULL, vars, NULL);

}

GRBgetgenconstrMin
int GRBgetgenconstrMin (GRBmodel *model,

int id,
int *resvarP,
int *nvarsP,
int *vars,
double *constantP)

Retrieve the data associated with a general constraint of type MIN. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
NULL value for the vars argument. The routine returns the total number of operand variables in the specified general
constraint in nvarsP. That allows you to make certain that the vars array is of sufficient size to hold the result of
the second call.

See also GRBaddgenconstrMin for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the resultant variable of the constraint.
nvarsP: The number of operand variables of the constraint.

55

vars: An array to store the variable indices associated with the variable operands of the constraint.
constantP: The additional constant operand of the constraint.

Example usage:
int type;
int resvar;
int nvars;
int *vars;
double constant;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_MIN) {

error = GRBgetgenconstrMin(model, 3, &resvar, &nvars, NULL, &constant);
/* ...allocate vars to hold 'nvars' values... */
error = GRBgetgenconstrMin(model, 3, NULL, NULL, vars, NULL);

}

GRBgetgenconstrAbs

int GRBgetgenconstrAbs (GRBmodel *model,
int id,
int *resvarP,
int *argvarP)

Retrieve the data associated with a general constraint of type ABS. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

See also GRBaddgenconstrAbs for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the resultant variable of the constraint.
argvarP: The variable index associated with the argument variable of the constraint.

Example usage:
int type;
int resvar;
int argvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_ABS) {

error = GRBgetgenconstrAbs(model, 3, &resvar, &argvar);
}

GRBgetgenconstrAnd

int GRBgetgenconstrAnd (GRBmodel *model,
int id,
int *resvarP,
int *nvarsP,
int *vars)

56

Retrieve the data associated with a general constraint of type AND. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
NULL value for the vars argument. The routine returns the total number of operand variables in the specified general
constraint in nvarsP. That allows you to make certain that the vars array is of sufficient size to hold the result of
the second call.

See also GRBaddgenconstrAnd for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the binary resultant variable of the constraint.
nvarsP: The number of binary operand variables of the constraint.
vars: An array to store the variable indices associated with the binary variable operands of the constraint.

Example usage:
int type;
int resvar;
int nvars;
int *vars;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_AND) {

error = GRBgetgenconstrAnd(model, 3, &resvar, &nvars, NULL);
/* ...allocate vars to hold 'nvars' values... */
error = GRBgetgenconstrAnd(model, 3, NULL, NULL, vars);

}

GRBgetgenconstrOr
int GRBgetgenconstrOr (GRBmodel *model,

int id,
int *resvarP,
int *nvarsP,
int *vars)

Retrieve the data associated with a general constraint of type OR. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
NULL value for the vars argument. The routine returns the total number of operand variables in the specified general
constraint in nvarsP. That allows you to make certain that the vars array is of sufficient size to hold the result of
the second call.

See also GRBaddgenconstrOr for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.

57

resvarP: The variable index associated with the binary resultant variable of the constraint.
nvarsP: The number of binary operand variables of the constraint.
vars: An array to store the variable indices associated with the binary variable operands of the constraint.

Example usage:
int type;
int resvar;
int nvars;
int *vars;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_OR) {

error = GRBgetgenconstrOr(model, 3, &resvar, &nvars, NULL);
/* ...allocate vars to hold 'nvars' values... */
error = GRBgetgenconstrOr(model, 3, NULL, NULL, vars);

}

GRBgetgenconstrNorm
int GRBgetgenconstrNorm (GRBmodel *model,

int id,
int *resvarP,
int *nvarsP,
int *vars,
double *whichP)

Retrieve the data associated with a general constraint of type NORM. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
NULL value for the vars argument. The routine returns the total number of operand variables in the specified general
constraint in nvarsP. That allows you to make certain that the vars array is of sufficient size to hold the result of
the second call.

See also GRBaddgenconstrNorm for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the resultant variable of the constraint.
nvarsP: The number of operand variables of the constraint.
vars: An array to store the variable indices associated with the variable operands of the constraint.
whichP: Which norm is used. Options are 0, 1, 2, and GRB_INFINITY.

Example usage:
int type;
int resvar;
int nvars;
int *vars;
double which;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_NORM) {

error = GRBgetgenconstrNorm(model, 3, &resvar, &nvars, NULL, &which);
/* ...allocate vars to hold 'nvars' values... */

58

error = GRBgetgenconstrNorm(model, 3, NULL, NULL, vars);
}

GRBgetgenconstrIndicator
int GRBgetgenconstrIndicator (GRBmodel *model,

int id,
int *binvarP,
int *binvalP,
int *nvarsP,
int *ind,
double *val,
char *senseP,
double *rhsP)

Retrieve the data associated with a general constraint of type INDICATOR. Calling this method for a general
constraint of a different type leads to an error return code. You can query the GenConstrType attribute to determine
the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with
NULL values for the ind and val arguments. The routine returns the total number of non-zero coefficients in the
linear constraint associated with the specified indicator constraint in nvarsP. That allows you to make certain that
the ind and val arrays are of sufficient size to hold the result of the second call.

See also GRBaddgenconstrIndicator for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
binvarP: The variable index associated with the binary indicator variable.
binvalP: The value that the indicator variable has to take in order to trigger the linear constraint.
nvarsP: The number of non-zero coefficients in the linear constraint triggered by the indicator.
ind: An array to store the variable indices for non-zero values in the linear constraint.
val: An array to store the numerical values for non-zero values in the linear constraint.
senseP: Sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL.
rhsP: Right-hand side value for the linear constraint.

Example usage:
int type;
int binvar;
int binval:
int nvars;
int *ind;
double *val;
char sense;
double rhs;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_INDICATOR) {

error = GRBgetgenconstrIndicator(model, 3, &binvar, &binval, &nvars,
NULL, NULL, &sense, &rhs);

/* ...allocate ind and val to hold 'nvars' values... */
error = GRBgetgenconstrIndicator(model, 3, NULL, NULL, NULL,

ind, val, NULL, NULL);
}

59

GRBgetgenconstrPWL
int GRBgetgenconstrPWL (GRBmodel *model,

int id,
int *xvarP,
int *yvarP,
int *nptsP,
double *xpts,
double *ypts)

Retrieve the data associated with a general constraint of type PWL. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
NULL value for the xpts and ypts arguments. The routine returns the length for the xpts and ypts arrays in nptsP.
That allows you to make certain that the xpts and ypts arrays are of sufficient size to hold the result of the second
call.

See also GRBaddgenconstrPWL for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.
nptsP: The number of points that define the piecewise-linear function.
xpts: The x values for the points that define the piecewise-linear function.
ypts: The y values for the points that define the piecewise-linear function.

Example usage:
int type;
int xvar;
int yvar;
int npts;
double *xpts;
double *ypts;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_PWL) {

error = GRBgetgenconstrPWL(model, 3, &xvar, &yvar, &npts, NULL, NULL);
/* ...allocate xpts and ypts arrays with length npts */
error = GRBgetgenconstrPWL(model, 3, NULL, NULL, NULL, xpts, ypts);

}

GRBgetgenconstrPoly
int GRBgetgenconstrPoly (GRBmodel *model,

int id,
int *xvarP,
int *yvarP,
int *plenP,
double *p)

Retrieve the data associated with a general constraint of type POLY. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

60

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with
a NULL value for the p argument. The routine returns the length of the p array in plenP. That allows you to make
certain that the p array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrPoly for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.
plenP: Pointer to store the array length for p. If xd is the highest power term, then d+ 1 will be returned.
p: The coefficients for polynomial function.

Example usage:
int type;
int xvar;
int yvar;
int plen;
double *p;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_POLY) {
error = GRBgetgenconstrPoly(model, 3, &xvar, &yvar, &plen, NULL);
/* ...allocate p array with length plen */
error = GRBgetgenconstrPoly(model, 3, NULL, NULL, NULL, p);

}

GRBgetgenconstrExp
int GRBgetgenconstrExp (GRBmodel *model,

int id,
int *xvarP,
int *yvarP)

Retrieve the data associated with a general constraint of type EXP. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

See also GRBaddgenconstrExp for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.

Example usage:
int type;
int xvar;
int yvar;

61

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_EXP) {

error = GRBgetgenconstrExp(model, 3, &xvar, &yvar);
}

GRBgetgenconstrExpA
int GRBgetgenconstrExpA (GRBmodel *model,

int id,
int *xvarP,
int *yvarP,
double *aP)

Retrieve the data associated with a general constraint of type EXPA. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

See also GRBaddgenconstrExpA for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.
aP: The base of the function.

Example usage:
int type;
int xvar;
int yvar;
double a;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_EXPA) {
error = GRBgetgenconstrExpA(model, 3, &xvar, &yvar, &a);

}

GRBgetgenconstrLog
int GRBgetgenconstrLog (GRBmodel *model,

int id,
int *xvarP,
int *yvarP)

Retrieve the data associated with a general constraint of type LOG. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

See also GRBaddgenconstrLog for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.

62

Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.

Example usage:
int type;
int xvar;
int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_LOG) {

error = GRBgetgenconstrLog(model, 3, &xvar, &yvar);
}

GRBgetgenconstrLogA
int GRBgetgenconstrLogA (GRBmodel *model,

int id,
int *xvarP,
int *yvarP,
double *aP)

Retrieve the data associated with a general constraint of type LOGA. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

See also GRBaddgenconstrLogA for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.
aP: The base of the function.

Example usage:
int type;
int xvar;
int yvar;
double a;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_LOGA) {
error = GRBgetgenconstrLogA(model, 3, &xvar, &yvar, &a);

}

GRBgetgenconstrLogistic
int GRBgetgenconstrLogistic (GRBmodel *model,

int id,
int *xvarP,
int *yvarP)

Retrieve the data associated with a general constraint of type LOGISTIC. Calling this method for a general
constraint of a different type leads to an error return code. You can query the GenConstrType attribute to determine
the type of the general constraint.

63

See also GRBaddgenconstrLogistic for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.

Example usage:
int type;
int xvar;
int yvar;
double a;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_LOGISTIC) {
error = GRBgetgenconstrLogistic(model, 3, &xvar, &yvar);

}

GRBgetgenconstrPow

int GRBgetgenconstrPow (GRBmodel *model,
int id,
int *xvarP,
int *yvarP,
double *aP)

Retrieve the data associated with a general constraint of type POW. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

See also GRBaddgenconstrPow for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.
aP: The exponent of the function.

Example usage:
int type;
int xvar;
int yvar;
double a;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_POW) {
error = GRBgetgenconstrPow(model, 3, &xvar, &yvar, &a);

}

64

GRBgetgenconstrSin
int GRBgetgenconstrSin (GRBmodel *model,

int id,
int *xvarP,
int *yvarP)

Retrieve the data associated with a general constraint of type SIN. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

See also GRBaddgenconstrSin for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.

Example usage:
int type;
int xvar;
int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_SIN) {
error = GRBgetgenconstrSin(model, 3, &xvar, &yvar);

}

GRBgetgenconstrCos
int GRBgetgenconstrCos (GRBmodel *model,

int id,
int *xvarP,
int *yvarP)

Retrieve the data associated with a general constraint of type COS. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

See also GRBaddgenconstrCos for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.

Example usage:
int type;
int xvar;
int yvar;

65

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_COS) {

error = GRBgetgenconstrCos(model, 3, &xvar, &yvar);
}

GRBgetgenconstrTan

int GRBgetgenconstrTan (GRBmodel *model,
int id,
int *xvarP,
int *yvarP)

Retrieve the data associated with a general constraint of type TAN. Calling this method for a general constraint
of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type
of the general constraint.

See also GRBaddgenconstrTan for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the general constraint data. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model that contains the desired general constraint.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.

Example usage:

int type;
int xvar;
int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_TAN) {
error = GRBgetgenconstrTan(model, 3, &xvar, &yvar);

}

GRBgetjsonsolution

int GRBgetjsonsolution (GRBmodel model,
char** buffP)

After a call to optimize, this method returns the resulting solution and related model attributes as a JSON string.
Please refer to the JSON solution format section for details.

Return value:
A non-zero return value indicates that there was a problem generating the JSON solution string. Refer to
the Error Code table for a list of possible return values.

Arguments:
model: Model from which to query its current JSON solution string.
buffP: The location in which the pointer to the newly created JSON string should be placed.

Important note:
On Windows, the string returned in buffP is allocated in a different heap from the calling program. You must

call GRBfree to free it.

66

GRBgetpwlobj

int GRBgetpwlobj (GRBmodel *model,
int var,
int *npointsP,
double *x,
double *y)

Retrieve the piecewise-linear objective function for a variable. The x and y arguments must be large enough to
hold the result. If either are NULL, then npointsP will contain the number of points in the function on return.

Refer to this discussion for additional information on what the values in x and y mean.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the piecewise-linear objective
function. Refer to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the piecewise-linear objective function is being retrieved.
var: The variable whose objective function is being retrieved.
npointsP: The number of points that define the piecewise-linear function.
x: The x values for the points that define the piecewise-linear function. These will always be in non-decreasing
order.

y: The y values for the points that define the piecewise-linear function.
Example usage:

double *x;
double *y;

error = GRBgetpwlobj(model, var, &npoints, NULL, NULL);
/* ...allocate x and y to hold 'npoints' values... */
error = GRBgetpwlobj(model, var, &npoints, x, y);

GRBgetq

int GRBgetq (GRBmodel *model,
int *numqnzP,
int *qrow,
int *qcol,
double *qval)

Retrieve all quadratic objective terms. The qrow, qcol, and qval arguments must be large enough to hold the
result. You can query the NumQNZs attribute to determine how many terms will be returned.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the quadratic objective terms.
Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by
calling GRBgeterrormsg.

Arguments:
model: The model from which the quadratic objective terms should be retrieved.
numqnzP: The number of quadratic objective terms retrieved.
qrow: Row indices associated with quadratic terms. A quadratic term is represented using three values: a pair
of indices (stored in qrow and qcol), and a coefficient (stored in qval). The three argument arrays provide
the corresponding values for each quadratic term. To give an example, to represent 2x2

0 + x0x1 + x2
1, you

would have *numqnzP=3, qrow[] = {0, 0, 1}, qcol[] = {0, 1, 1}, and qval[] = {2.0, 1.0, 1.0}.
qcol: Column indices associated with quadratic terms. See the description of the qrow argument for more
information.

qval: Numerical values associated with quadratic terms. See the description of the qrow argument for more
information.

Example usage:

67

int qnz;
int *qrow, *qcol;
double *qval;

error = GRBgetdblattr(model, GRB_DBL_ATTR_NUMQNZS, &qnz);
/* ...allocate qrow, qcol, qval to hold 'qnz' values... */
error = GRBgetq(model, &qnz, qrow, qcol, qval);

GRBgetqconstr

int GRBgetqconstr (GRBmodel *model,
int qconstr,
int *numlnzP,
int *lind,
double *lval,
int *numqnzP,
int *qrow,
int *qcol,
double *qval)

Retrieve the linear and quadratic terms associated with a single quadratic constraint. Typical usage is to call
this routine twice. In the first call, you specify the requested quadratic constraint, with NULL values for the array
arguments. The routine returns the total number of linear and quadratic terms in the specified quadratic constraint
in numlnzP and numqnzP, respectively. That allows you to make certain that lind, lval, qrow, qcol, and qval are of
sufficient size to hold the result of the second call.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the quadratic constraint. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model from which the quadratic constraint should be retrieved.
qconstr: The index of the requested quadratic constraint.
numlnzP: The number of linear terms retrieved for the requested quadratic constraint.
lind: Variable indices associated with linear terms.
lval: Numerical coefficients associated with linear terms.
numqnzP: The number of quadratic terms retrieved for the requested quadratic constraint.
qrow: Row indices associated with quadratic terms. A quadratic term is represented using three values: a
pair of indices (stored in qrow and qcol), and a coefficient (stored in qval). The associated arguments
arrays provide the corresponding values for each quadratic term. To give an example, if the requested
quadratic constraint has quadratic terms 2x2

0 + x0x1 + x2
1, this routine would return *numqnzP=3, qrow[]

= {0, 0, 1}, qcol[] = {0, 1, 1}, and qval[] = {2.0, 1.0, 1.0}.
qcol: Column indices associated with quadratic terms. See the description of the qrow argument for more
information.

qval: Numerical values associated with quadratic terms. See the description of the qrow argument for more
information.

GRBgetqconstrbyname

int GRBgetqconstrbyname (GRBmodel *model,
const char *name,
int *constrnumP)

Retrieves a quadratic constraint from its name. If multiple quadratic constraints have the same name, this routine
chooses one arbitrarily.

Return value:

68

A non-zero return value indicates that a problem occurred while retrieving the quadratic constraint. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model from which the quadratic constraint should be retrieved.
name: The name of the desired quadratic constraint.
constrnumP: Constraint number for a quadratic constraint with the indicated name. Returns -1 if no matching
name is found.

GRBgetsos
int GRBgetsos (GRBmodel *model,

int *nummembersP,
int *sostype,
int *beg,
int *ind,
double *weight,
int start,
int len)

Retrieve the members and weights of a set of SOS constraints. Typical usage is to call this routine twice. In the
first call, you specify the requested SOS constraints, with NULL values for ind and weight. The routine returns the
total number of members for the specified SOS constraints in nummembersP. That allows you to make certain that
ind and weight are of sufficient size to hold the result of the second call.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the SOS members. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model from which the SOS constraints should be retrieved.
nummembersP: The total number of SOS members retrieved.
sostype: The types of the SOS constraints. Possible values are GRB_SOS_TYPE1 or GRB_SOS_TYPE2
beg: SOS constraints are returned in Compressed Sparse Row (CSR) format. Each SOS constraint in the
model is represented as a list of index-value pairs, where each index entry provides the variable index
for an SOS member, and each value entry provides the corresponding SOS constraint weight. Each SOS
constraint has an associated beg value, indicating the start position of the members of that constraint in
the ind and weight arrays. The members for SOS constraint i immediately follow those for constraint i-1
in ind and weight. Thus, beg[i] indicates both the index of the first member of SOS constraint i and
the end of the member list for SOS constraint i-1. For example, consider the case where beg[2] = 10 and
beg[3] = 12. This would indicate that SOS constraint 2 has two members. Their variable indices can be
found in ind[10] and ind[11], and their SOS weights can be found in weight[10] and weight[11].

ind: Variable indices associated with SOS members. See the description of the beg argument for more
information.

weight: Weights associated with SOS members. See the description of the beg argument for more informa-
tion.

start: The index of the first SOS constraint to retrieve.
len: The number of SOS constraints to retrieve.

GRBgetvarbyname
int GRBgetvarbyname (GRBmodel *model,

const char *name,
int *varnumP)

Retrieves a variable from its name. If multiple variables have the same name, this routine chooses one arbitrarily.
Return value:

69

A non-zero return value indicates that a problem occurred while retrieving the variable. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the variable should be retrieved.
name: The name of the desired variable.
varnumP: Variable number for a variable with the indicated name. Returns -1 if no matching name is found.

GRBgetvars

int GRBgetvars (GRBmodel *model,
int *numnzP,
int *vbeg,
int *vind,
double *vval,
int start,
int len)

Retrieve the non-zeros for a set of variables from the constraint matrix. Typical usage is to call this routine
twice. In the first call, you specify the requested set of variables, with NULL values for vbeg, vind, and vval. The
routine returns the number of non-zero values for the specified variables in numnzP. That allows you to make certain
that vind and vval are of sufficient size to hold the result of the second call.

If your constraint matrix may contain more than 2 billion non-zero values, you should consider using the GR-
BXgetvars variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the variable coefficients. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model from which the variables should be retrieved.
numnzP: The number of non-zero values retrieved.
vbeg: Constraint matrix non-zero values are returned in Compressed Sparse Column (CSC) format by this
routine. Each column in the constraint matrix is represented as a list of index-value pairs, where each
index entry provides the constraint index for a non-zero coefficient, and each value entry provides the
corresponding non-zero value. Each variable has an associated vbeg value, indicating the start position of
the non-zeros for that constraint in the vind and vval arrays. The non-zeros for variable i immediately
follow those for variable i-1 in vind and vval. Thus, vbeg[i] indicates both the index of the first non-zero
in variable i and the end of the non-zeros for variable i-1. For example, consider the case where vbeg[2]
= 10 and vbeg[3] = 12. This would indicate that variable 2 has two non-zero values associated with
it. Their constraint indices can be found in vind[10] and vind[11], and the numerical values for those
non-zeros can be found in vval[10] and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg argument for more
information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of the vbeg argument
for more information.

start: The index of the first variable to retrieve.
len: The number of variables to retrieve.

GRBsinglescenariomodel

int GRBsinglescenariomodel (GRBmodel *model,
GRBmodel **singlescenarioP)

Capture a single scenario from a multi-scenario model. Use the ScenarioNumber parameter to indicate which
scenario to capture.

Return value:

70

A non-zero return value indicates that a problem occurred while extracting the single-scenario model. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model from which the scenario should be extracted.
singlescenarioP: The location in which the pointer to the requested single-scenario model should be placed.

GRBXgetconstrs
int GRBXgetconstrs (GRBmodel *model,

size_t *numnzP,
size_t *cbeg,
int *cind,
double *cval,
int start,
int len)

The size_t version of GRBgetconstrs. The two arguments that count non-zero values are of type size_t in this
version to support models with more than 2 billion non-zero values.

Retrieve the non-zeros for a set of linear constraints from the constraint matrix. Typical usage is to call this
routine twice. In the first call, you specify the requested set of constraints, with NULL values for cbeg, cind, and
cval. The routine returns the number of non-zero values for the specified constraint range in numnzP. That allows
you to make certain that cind and cval are of sufficient size to hold the result of the second call.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the constraint coefficients. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model from which the constraints should be retrieved.
numnzP: The number of non-zero values retrieved.
cbeg: Constraint matrix non-zero values are returned in Compressed Sparse Row (CSR) format. Each
constraint in the constraint matrix is represented as a list of index-value pairs, where each index entry
provides the variable index for a non-zero coefficient, and each value entry provides the corresponding non-
zero value. Each constraint has an associated cbeg value, indicating the start position of the non-zeros for
that constraint in the cind and cval arrays. The non-zeros for constraint i immediately follow those for
constraint i-1 in cind and cval. Thus, cbeg[i] indicates both the index of the first non-zero in constraint
i and the end of the non-zeros for constraint i-1. For example, consider the case where cbeg[2] = 10 and
cbeg[3] = 12. This would indicate that constraint 2 has two non-zero values associated with it. Their
variable indices can be found in cind[10] and cind[11], and the numerical values for those non-zeros can
be found in cval[10] and cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg argument for more
information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of the cbeg argument
for more information.

start: The index of the first constraint to retrieve.
len: The number of constraints to retrieve.

GRBXgetvars
int GRBXgetvars (GRBmodel *model,

size_t *numnzP,
size_t *vbeg,
int *vind,
double *vval,
int start,
int len)

71

The size_t version of GRBgetvars. The two arguments that count non-zero values are of type size_t in this
version to support models with more than 2 billion non-zero values.

Retrieve the non-zeros for a set of variables from the constraint matrix. Typical usage is to call this routine
twice. In the first call, you specify the requested set of variables, with NULL values for vbeg, vind, and vval. The
routine returns the number of non-zero values for the specified variables in numnzP. That allows you to make certain
that vind and vval are of sufficient size to hold the result of the second call.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the variable coefficients. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model from which the variables should be retrieved.
numnzP: The number of non-zero values retrieved.
vbeg: Constraint matrix non-zero values are returned in Compressed Sparse Column (CSC) format by this
routine. Each column in the constraint matrix is represented as a list of index-value pairs, where each
index entry provides the constraint index for a non-zero coefficient, and each value entry provides the
corresponding non-zero value. Each variable has an associated vbeg value, indicating the start position of
the non-zeros for that constraint in the vind and vval arrays. The non-zeros for variable i immediately
follow those for variable i-1 in vind and vval. Thus, vbeg[i] indicates both the index of the first non-zero
in variable i and the end of the non-zeros for variable i-1. For example, consider the case where vbeg[2]
= 10 and vbeg[3] = 12. This would indicate that variable 2 has two non-zero values associated with
it. Their constraint indices can be found in vind[10] and vind[11], and the numerical values for those
non-zeros can be found in vval[10] and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg argument for more
information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of the vbeg argument
for more information.

start: The index of the first variable to retrieve.
len: The number of variables to retrieve.

72

3.5 Input/Output
GRBreadmodel
int GRBreadmodel (GRBenv *env,

const char *filename,
GRBmodel **modelP)

Read a model from a file.
Return value:

A non-zero return value indicates that a problem occurred while reading the model. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment in which to load the new model. This should come from a previous call to GRBloadenv.
filename: The path to the file to be read. Note that the type of the file is encoded in the file name suffix.
Valid suffixes are .mps, .rew, .lp, .rlp, .dua, .dlp, .ilp, or .opb. The files can be compressed, so
additional suffixes of .zip, .gz, .bz2, or .7z are accepted.

modelP: The location in which the pointer to the model should be placed.
Example usage:

GRBmodel *model;
error = GRBreadmodel(env, "/tmp/model.mps.bz2", &model);

GRBread
int GRBread (GRBmodel *model,

const char *filename)

Import optimization data from a file. This routine is the general entry point for importing data from a file into
a model. It can be used to read start vectors for MIP models, basis files for LP models, or parameter settings. The
type of data read is determined by the file suffix. File formats are described in the File Format section.

Return value:
A non-zero return value indicates that a problem occurred while reading the file. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model that will receive the start vector.
filename: The path to the file to be read. The suffix on the file must be either .mst or .sol for a MIP start
file, .hnt for a MIP hint file, .ord for a priority order file, .bas for a basis file, or .prm for a parameter
file, The suffix may optionally be followed by .zip, .gz, .bz2, or .7z.

Example usage:
error = GRBread(model, "/tmp/model.mst.bz2");

GRBwrite
int GRBwrite (GRBmodel *model,

const char *filename)

This routine is the general entry point for writing optimization data to a file. It can be used to write optimization
models, solutions vectors, basis vectors, start vectors, or parameter settings. The type of data written is determined
by the file suffix. File formats are described in the File Format section.

Note that writing a model to a file will process all pending model modifications. This is also true when writing
other model information such as solutions, bases, etc.

Note also that when you write a Gurobi parameter file (PRM), both integer or double parameters not at their
default value will be saved, but no string parameter will be saved into the file.

Return value:
A non-zero return value indicates that a problem occurred while writing the file. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

73

Arguments:
model: The model containing the data to be written.
filename: The name of the file to be written. The file type is encoded in the file name suffix. Valid suffixes
are .mps, .rew, .lp, or .rlp for writing the model itself, .dua or .dlp for writing the dualized model
(only pure LP), .ilp for writing just the IIS associated with an infeasible model (see GRBcomputeIIS for
further information), .sol for writing the solution selected by the SolutionNumber parameter, .mst for
writing a start vector, .hnt for writing a hint file, .bas for writing an LP basis, .prm for writing modified
parameter settings, .attr for writing model attributes, or .json for writing solution information in JSON
format. If your system has compression utilities installed (e.g., 7z or zip for Windows, and gzip, bzip2,
or unzip for Linux or macOS), then the files can be compressed, so additional suffixes of .gz, .bz2, or .7z
are accepted.

Example usage:
error = GRBwrite(model, "/tmp/model.rlp.gz");

74

3.6 Attribute Management

GRBgetattrinfo

int GRBgetattrinfo (GRBmodel *model,
const char *attrname,
int *datatypeP,
int *attrtypeP,
int *settableP)

Obtain information about an attribute.
Return value:

A non-zero return value indicates that a problem occurred while obtaining information about the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by
calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of an attribute. Available attributes are listed and described in the Attributes section
of this document.

datatypeP: On completion, the integer pointed to by this argument will indicate the data type of the attribute.
Possible types are char (0), int (1), double (2), or string(3). This argument can be NULL.

attrtypeP: On completion, the integer pointed to by this argument will indicate the type of the attribute.
Possible types are model attribute (0), variable attribute (1), linear constraint attribute (2), (3) SOS
constraint attribute, (4) quadratic constraint attribute, or (5) general constraint attribute. This argument
can be NULL.

settableP: On completion, the integer pointed to by this argument will indicate whether the attribute can
be set (1) or not (0). This argument can be NULL.

Example usage:

int datatype, attrtype, settable;
error = GRBgetattrinfo(model, "ModelName", &datatype, &attrtype, &settable);

GRBgetintattr

int GRBgetintattr (GRBmodel *model,
const char *attrname,
int *valueP)

Query the value of an integer-valued model attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of an integer-valued model attribute. Available attributes are listed and described in
the Attributes section of this document.

valueP: The location in which the current value of the requested attribute should be placed.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To query a single element

of an array attribute, use GRBgetintattrelement instead.
Example usage:

error = GRBgetintattr(model, "NumBinVars", &numbin);

75

GRBsetintattr
int GRBsetintattr (GRBmodel *model,

const char *attrname,
int newvalue)

Set the value of an integer-valued model attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of an integer-valued model attribute. Available attributes are listed and described in
the Attributes section of this document.

newvalue: The desired new value of this attribute.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To modify a single

element of an array attribute, use GRBsetintattrelement instead.
Example usage:

error = GRBsetintattr(model, "ModelSense", -1);

GRBgetintattrelement
int GRBgetintattrelement (GRBmodel *model,

const char *attrname,
int element,
int *valueP)

Query a single value from an integer-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed and described in
the Attributes section of this document.

element: The index of the requested array element.
valueP: A pointer to the location where the requested value should be returned.

Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint attributes). To query

a scalar attribute (i.e., a model attribute), use GRBgetintattr instead.
Example usage:

int first_one;
error = GRBgetintattrelement(model, "VBasis", 0, &first_one);

GRBsetintattrelement
int GRBsetintattrelement (GRBmodel *model,

const char *attrname,
int element,
int newvalue)

Set a single value in an integer-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

76

model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed and described in
the Attributes section of this document.

element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.

Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint attributes). To modify

a scalar attribute (i.e., a model attribute), use GRBsetintattr instead.
Example usage:

error = GRBsetintattrelement(model, "VBasis", 0, GRB_BASIC);

GRBgetintattrarray
int GRBgetintattrarray (GRBmodel *model,

const char *attrname,
int start,
int len,
int *values)

Query the values of an integer-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed and described in
the Attributes section of this document.

start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.
values: A pointer to the location where the array attribute should be returned. Note that the result array
must be as long as the requested sub-array.

Example usage:
int cbasis[NUMCONSTRS];
error = GRBgetintattrarray(model, "CBasis", 0, NUMCONSTRS, cbasis);

GRBsetintattrarray
int GRBsetintattrarray (GRBmodel *model,

const char *attrname,
int start,
int len,
int *values)

Set the values of an integer-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed and described in
the Attributes section of this document.

start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute. Note that the values
array must be as long as the sub-array to be changed.

Example usage:

77

int cbasis[] = {GRB_BASIC, GRB_BASIC, GRB_NONBASIC_LOWER, GRB_BASIC};
error = GRBsetintattrarray(model, "CBasis", 0, 4, cbasis);

GRBgetintattrlist

int GRBgetintattrlist (GRBmodel *model,
const char *attrname,
int len,
int *ind,
int *values)

Query the values of an integer-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed and described in
the Attributes section of this document.

len: The number of attribute elements to retrieve.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned. Note that the
result array must be as long as the requested index list.

Example usage:

int desired[] = {0, 2, 4, 6};
int cbasis[4];
error = GRBgetintattrlist(model, "CBasis", 4, desired, cbasis);

GRBsetintattrlist

int GRBsetintattrlist (GRBmodel *model,
const char *attrname,
int len,
int *ind,
int *values)

Set the values of an integer-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed and described in
the Attributes section of this document.

len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.
values: A pointer to the desired new values for the specified elements of the attribute. Note that the values
array must be as long as the list of indices.

Example usage:

int change[] = {0, 1, 3};
int newbas[] = {GRB_BASIC, GRB_NONBASIC_LOWER, GRB_NONBASIC_LOWER};
error = GRBsetintattrlist(model, "VBasis", 3, change, newbas);

78

GRBgetdblattr
int GRBgetdblattr (GRBmodel *model,

const char *attrname,
double *valueP)

Query the value of a double-valued model attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a double-valued model attribute. Available attributes are listed and described in the
Attributes section of this document.

valueP: The location in which the current value of the requested attribute should be placed.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To query a single element

of an array attribute, use GRBgetdblattrelement instead.
Example usage:

error = GRBgetdblattr(model, "ObjCon", &objcon);

GRBsetdblattr
int GRBsetdblattr (GRBmodel *model,

const char *attrname,
double newvalue)

Set the value of a double-valued model attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a double-valued model attribute. Available attributes are listed and described in the
Attributes section of this document.

newvalue: The desired new value of this attribute.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To modify a single

element of an array attribute, use GRBsetdblattrelement instead.
Example usage:

error = GRBsetdblattr(model, "ObjCon", 0.0);

GRBgetdblattrelement
int GRBgetdblattrelement (GRBmodel *model,

const char *attrname,
int element,
double *valueP)

Query a single value from a double-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and described in the
Attributes section of this document.

79

element: The index of the requested array element.
values: A pointer to the location where the requested value should be returned.

Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint attributes). To query

a scalar attribute (i.e., a model attribute), use GRBgetdblattr instead.
Example usage:

double first_one;
error = GRBgetdblattrelement(model, "X", 0, &first_one);

GRBsetdblattrelement
int GRBsetdblattrelement (GRBmodel *model,

const char *attrname,
int element,
double newvalue)

Set a single value in a double-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and described in the
Attributes section of this document.

element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.

Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint attributes). To modify

a scalar attribute (i.e., a model attribute), use GRBsetdblattr instead.
Example usage:

error = GRBsetdblattrelement(model, "Start", 0, 1.0);

GRBgetdblattrarray
int GRBgetdblattrarray (GRBmodel *model,

const char *attrname,
int start,
int len,
double *values)

Query the values of a double-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and described in the
Attributes section of this document.

start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.
values: A pointer to the location where the array attribute should be returned. Note that the result array
must be as long as the requested sub-array.

Example usage:
double lb[NUMVARS];
error = GRBgetdblattrarray(model, "LB", 0, cols, lb);

80

GRBsetdblattrarray
int GRBsetdblattrarray (GRBmodel *model,

const char *attrname,
int start,
int len,
double *values)

Set the values of a double-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and described in the
Attributes section of this document.

start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute. Note that the values
array must be as long as the sub-array to be changed.

Example usage:
double start[] = {1.0, 1.0, 0.0, 1.0};
error = GRBsetdblattrarray(model, "Start", 0, 4, start);

GRBgetdblattrlist
int GRBgetdblattrlist (GRBmodel *model,

const char *attrname,
int len,
int *ind,
double *values)

Query the values of a double-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and described in the
Attributes section of this document.

len: The number of attribute elements to retrieve.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned. Note that the
result array must be as long as the requested index list.

Example usage:
int desired[] = {0, 2, 4, 6};
double x[4];
error = GRBgetdblattrlist(model, "X", 4, desired, cbasis);

GRBsetdblattrlist
int GRBsetdblattrlist (GRBmodel *model,

const char *attrname,
int len,
int *ind,
double *values)

Set the values of a double-valued array attribute.

81

Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a double-valued array attribute. Available attributes are listed and described in the
Attributes section of this document.

len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.
values: A pointer to the desired new values for the specified elements of the attribute. Note that the values
array must be as long as the list of indices.

Example usage:
int change[] = {0, 1, 3};
double start[] = {1.0, 3.0, 2.0};
error = GRBsetdblattrlist(model, "Start", 3, change, start);

GRBgetcharattrelement
int GRBgetcharattrelement (GRBmodel *model,

const char *attrname,
int element,
char *valueP)

Query a single value from a character-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed and described in
the Attributes section of this document.

element: The index of the requested array element.
values: A pointer to the location where the requested value should be returned.

Example usage:
char first_one;
error = GRBgetcharattrelement(model, "VType", 0, &first_one);

GRBsetcharattrelement
int GRBsetcharattrelement (GRBmodel *model,

const char *attrname,
int element,
char newvalue)

Set a single value in a character-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed and described in
the Attributes section of this document.

element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.

Example usage:
error = GRBsetcharattrelement(model, "VType", 0, GRB_BINARY);

82

GRBgetcharattrarray
int GRBgetcharattrarray (GRBmodel *model,

const char *attrname,
int start,
int len,
char *values)

Query the values of a character-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed and described in
the Attributes section of this document.

start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.
values: A pointer to the location where the array attribute should be returned. Note that the result array
must be as long as the requested sub-array.

Example usage:
char vtypes[NUMVARS];
error = GRBgetcharattrarray(model, "VType", 0, NUMVARS, vtypes);

GRBsetcharattrarray
int GRBsetcharattrarray (GRBmodel *model,

const char *attrname,
int start,
int len,
char *values)

Set the values of a character-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed and described in
the Attributes section of this document.

start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute. Note that the values
array must be as long as the sub-array to be changed.

Example usage:
char vtypes[] = {GRB_BINARY, GRB_CONTINUOUS, GRB_INTEGER, GRB_BINARY};
error = GRBsetcharattrarray(model, "VType", 0, 4, vtypes);

GRBgetcharattrlist
int GRBgetcharattrlist (GRBmodel *model,

const char *attrname,
int len,
int *ind,
char *values)

Query the values of a character-valued array attribute.
Return value:

83

A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed and described in
the Attributes section of this document.

len: The number of attribute elements to retrieve.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned. Note that the
result array must be as long as the requested index list.

Example usage:
int desired[] = {0, 2, 4, 6};
char vtypes[4];
error = GRBgetcharattrlist(model, "VType", 4, desired, vtypes);

GRBsetcharattrlist
int GRBsetcharattrlist (GRBmodel *model,

const char *attrname,
int len,
int *ind,
char *values)

Set the values of a character-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed and described in
the Attributes section of this document.

len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.
values: A pointer to the desired new values for the specified elements of the attribute. Note that the values
array must be as long as the list of indices.

Example usage:
int change[] = {0, 1, 3};
char vtypes[] = {GRB_BINARY, GRB_BINARY, GRB_BINARY};
error = GRBsetcharattrlist(model, "Vtype", 3, change, vtypes);

GRBgetstrattr
int GRBgetstrattr (GRBmodel *model,

const char *attrname,
char **valueP)

Query the value of a string-valued model attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a string-valued model attribute. Available attributes are listed and described in the
Attributes section of this document.

valueP: The location in which the current value of the requested attribute should be placed.
Important notes:

84

Note that all interface routines that return string-valued attributes are returning pointers into internal Gurobi
data structures. The user should copy the contents of the pointer to a different data structure before the next call
to a Gurobi library routine. The user should also be careful to never modify the data pointed to by the returned
character pointer.

Note that this method should be used for scalar attributes only (i.e., model attributes). To query a single element
of an array attribute, use GRBgetstrattrelement instead.

Example usage:
char *modelname;
error = GRBgetstrattr(model, "ModelName", &modelname);

GRBsetstrattr
int GRBsetstrattr (GRBmodel *model,

const char *attrname,
const char *newvalue)

Set the value of a string-valued model attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a string-valued model attribute. Available attributes are listed and described in the
Attributes section of this document.

newvalue: The desired new value of this attribute.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To modify a single

element of an array attribute, use GRBsetstrattrelement instead.
Example usage:

error = GRBsetstrattr(model, "ModelName", "Modified name");

GRBgetstrattrelement
int GRBgetstrattrelement (GRBmodel *model,

const char *attrname,
int element,
char **valueP)

Query a single value from a string-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a string-valued array attribute. Available attributes are listed and described in the
Attributes section of this document.

element: The index of the requested array element.
valueP: A pointer to the location where the requested value should be returned.

Important notes:
Note that all interface routines that return string-valued attributes are returning pointers into internal Gurobi

data structures. The user should copy the contents of the pointer to a different data structure before the next call
to a Gurobi library routine. The user should also be careful to never modify the data pointed to by the returned
character pointer.

Note that this method should be used for array attributes only (i.e., variable or constraint attributes). To query
a scalar attribute (i.e., a model attribute), use GRBgetstrattr instead.

Example usage:

85

char **varname;
error = GRBgetstrattrelement(model, "VarName", 1, varname);

GRBsetstrattrelement
int GRBsetstrattrelement (GRBmodel *model,

const char *attrname,
int element,
char *newvalue)

Set a single value in a string-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a string-valued array attribute. Available attributes are listed and described in the
Attributes section of this document.

element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.

Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint attributes). To modify

a scalar attribute (i.e., a model attribute), use GRBsetstrattr instead.
Example usage:

error = GRBsetstrattrelement(model, "ConstrName", 0, "NewConstr");

GRBgetstrattrarray
int GRBgetstrattrarray (GRBmodel *model,

const char *attrname,
int start,
int len,
char **values)

Query the values of a string-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a string-valued array attribute. Available attributes are listed and described in the
Attributes section of this document.

start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.
values: A pointer to the location where the array attribute should be returned. Note that the result array
must be as long as the requested sub-array.

Important notes:
Note that all interface routines that return string-valued attributes are returning pointers into internal Gurobi

data structures. The user should copy the contents of the pointer to a different data structure before the next call
to a Gurobi library routine. The user should also be careful to never modify the data pointed to by the returned
character pointer.

Example usage:
char **varnames[NUMVARS];
error = GRBgetstrattrarray(model, "VarName", 0, NUMVARS, varnames);

86

GRBsetstrattrarray

int GRBsetstrattrarray (GRBmodel *model,
const char *attrname,
int start,
int len,
char **values)

Set the values of a string-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a string-valued array attribute. Available attributes are listed and described in the
Attributes section of this document.

start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute. Note that the values
array must be as long as the sub-array to be changed.

Example usage:

char **varnames[NUMVARS];
error = GRBsetstrattrarray(model, "VarName", 0, NUMVARS, varnames);

GRBgetstrattrlist

int GRBgetstrattrlist (GRBmodel *model,
const char *attrname,
int len,
int *ind,
char **values)

Query the values of a string-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a string-valued array attribute. Available attributes are listed and described in the
Attributes section of this document.

len: The number of attribute elements to retrieve.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned. Note that the
result array must be as long as the requested index list.

Important notes:
Note that all interface routines that return string-valued attributes are returning pointers into internal Gurobi

data structures. The user should copy the contents of the pointer to a different data structure before the next call
to a Gurobi library routine. The user should also be careful to never modify the data pointed to by the returned
character pointer.

Example usage:

int desired[] = {0, 2, 4, 6};
char **varnames[4];
error = GRBgetstrattrlist(model, "VarName", 4, desired, varnames);

87

GRBsetstrattrlist
int GRBsetstrattrlist (GRBmodel *model,

const char *attrname,
int len,
int *ind,
char **values)

Set the values of a string-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a string-valued array attribute. Available attributes are listed and described in the
Attributes section of this document.

len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.
values: A pointer to the desired new values for the specified elements of the attribute. Note that the values
array must be as long as the list of indices.

Example usage:
int chage[] = {0, 1, 3};
char **varnames[] = {"Var0", "Var1", "Var3"};
error = GRBsetstrattrlist(model, "VarName", 3, change, varnames);

GRBgetbatchattrinfo
int GRBgetbatchattrinfo (GRBbatch *batch,

const char *attrname,
int *datatypeP,
int *settableP)

Obtain information about a Batch attribute.
Return value:

A non-zero return value indicates that a problem occurred while obtaining information about a batch at-
tribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:
batch: A batch request handle, typically created by routine GRBgetbatch.
attrname: The name of a batch attribute. Available attributes are listed and described in the Attributes
section of this document.

datatypeP: On completion, the integer pointed to by this argument will indicate the data type of the attribute.
Possible types are char (0), int (1), double (2), or string(3). This argument can be NULL.

settableP: On completion, the integer pointed to by this argument will indicate whether the attribute can
be set (1) or not (0). This argument can be NULL.

Example usage:
int datatype, settable;
error = GRBgetbatchattrinfo(batch, "BatchID", &datatype, &settable);

88

3.7 Parameter Management and Tuning

GRBtunemodel

int GRBtunemodel (GRBmodel *model)

Perform an automated search for parameter settings that improve performance on a model. Upon completion,
this routine stores the best parameter sets it found. The number of stored parameter sets can be determined by
querying the value of the TuneResultCount attribute. The actual settings can be retrieved using GRBgettuneresult.

Please refer to the parameter tuning section for details on the tuning tool.
Return value:

A non-zero return value indicates that a problem occurred while tuning the model. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to be tuned.

Example usage:

error = GRBtunemodel(model);
if (error) goto QUIT;

error = GRBgetintattr(model, "TuneResultCount", &nresults);
if (error) goto QUIT;

GRBgettuneresult

int GRBgettuneresult (GRBmodel *model,
int n)

Use this routine to retrieve the results of a previous GRBtunemodel call. Calling this routine with argument n
causes tuned parameter set n to be copied into the model. Parameter sets are stored in order of decreasing quality,
with parameter set 0 being the best. The number of available sets is stored in attribute TuneResultCount.

Once you have retrieved a tuning result, you can call GRBoptimize to use these parameter settings to optimize
the model, or GRBwrite to write the changed parameters to a .prm file.

Please refer to the parameter tuning section for details on the tuning tool.
Return value:

A non-zero return value indicates that a problem occurred while retrieving a tuning result. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A model that has previously been used as the argument of GRBtunemodel.
n: The index of the tuning result to retrieve. The best result is available as index 0. The number of stored
results is available in attribute TuneResultCount.

Example usage:

error = GRBtunemodel(model);
if (error) goto QUIT;

error = GRBgetintattr(model, "TuneResultCount", &nresults);
if (error) goto QUIT;

if (nresults > 0) {
error = GRBgettuneresult(model, 0);
if (error) goto QUIT;

}

89

GRBgetdblparam
int GRBgetdblparam (GRBenv *env,

const char *paramname,
double *valueP)

Retrieve the value of a double-valued parameter.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the parameter. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being queried.
paramname: The name of the parameter. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

valueP: The location in which the current value of the requested parameter should be placed.
Example usage:

double cutoff;
error = GRBgetdblparam(GRBgetenv(model), "Cutoff", &cutoff);

GRBgetintparam
int GRBgetintparam (GRBenv *env,

const char *paramname,
int *valueP)

Retrieve the value of an integer-valued parameter.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the parameter. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being queried.
paramname: The name of the parameter. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

valueP: The location in which the current value of the requested parameter should be placed.
Example usage:

int limit;
error = GRBgetintparam(GRBgetenv(model), "SolutionLimit", &limit);

GRBgetstrparam
int GRBgetstrparam (GRBenv *env,

const char *paramname,
char *value)

Retrieve the value of a string-valued parameter.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the parameter. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being queried.
paramname: The name of the parameter. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

value: The location in which the current value of the requested parameter should be placed.
Example usage:

char logfilename[GRB_MAX_STRLEN];
error = GRBgetstrparam(GRBgetenv(model), "LogFile", logfilename);

90

GRBsetdblparam
int GRBsetdblparam (GRBenv *env,

const char *paramname,
double newvalue)

Modify the value of a double-valued parameter.
Return value:

A non-zero return value indicates that a problem occurred while modifying the parameter. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being modified.
paramname: The name of the parameter. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

newvalue: The desired new value of the parameter.
Important note:
Note that a model gets its own copy of the environment when it is created. Changes to the original environment

have no effect on the copy. Use GRBgetenv to retrieve the environment associated with a model if you would like a
parameter change to affect that model.

Example usage:
error = GRBsetdblparam(GRBgetenv(model), "Cutoff", 100.0);

GRBsetintparam
int GRBsetintparam (GRBenv *env,

const char *paramname,
int newvalue)

Modify the value of an integer-valued parameter.
Return value:

A non-zero return value indicates that a problem occurred while modifying the parameter. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being modified.
paramname: The name of the parameter. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

newvalue: The desired new value of the parameter.
Important note:
Note that a model gets its own copy of the environment when it is created. Changes to the original environment

have no effect on the copy. Use GRBgetenv to retrieve the environment associated with a model if you would like a
parameter change to affect that model.

Example usage:
error = GRBsetintparam(GRBgetenv(model), "SolutionLimit", 5);

GRBsetstrparam
int GRBsetstrparam (GRBenv *env,

const char *paramname,
const char *newvalue)

Modify the value of a string-valued parameter.
Return value:

A non-zero return value indicates that a problem occurred while modifying the parameter. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being modified.

91

paramname: The name of the parameter. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

newvalue: The desired new value of the parameter.
Important note:
Note that a model gets its own copy of the environment when it is created. Changes to the original environment

have no effect on the copy. Use GRBgetenv to retrieve the environment associated with a model if you would like a
parameter change to affect that model.

Example usage:
error = GRBsetstrparam(GRBgetenv(model), "LogFile", "/tmp/new.log");

GRBgetdblparaminfo
int GRBgetdblparaminfo (GRBenv *env,

const char *paramname,
double *valueP,
double *minP,
double *maxP,
double *defaultP)

Retrieve information about a double-valued parameter. Specifically, retrieve the current value of the parameter,
the minimum and maximum allowed values, and the default value.

Return value:
A non-zero return value indicates that a problem occurred while retrieving parameter information. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
env: The environment whose parameter information is being queried.
paramname: The name of the parameter. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

valueP (optional): The location in which the current value of the specified parameter should be placed.
minP (optional): The location in which the minimum allowed value of the specified parameter should be
placed.

maxP (optional): The location in which the maximum allowed value of the specified parameter should be
placed.

defaultP (optional): The location in which the default value of the specified parameter should be placed.
Example usage:

error = GRBgetdblparaminfo(GRBgetenv(model), "MIPGap", ¤tGap,
&minAllowedGap, NULL, &defaultGap);

GRBgetintparaminfo
int GRBgetintparaminfo (GRBenv *env,

const char *paramname,
int *valueP,
int *minP,
int *maxP,
int *defaultP)

Retrieve information about an int-valued parameter. Specifically, retrieve the current value of the parameter,
the minimum and maximum allowed values, and the default value.

Return value:
A non-zero return value indicates that a problem occurred while retrieving parameter information. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
env: The environment whose parameter information is being queried.

92

paramname: The name of the parameter. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

valueP (optional): The location in which the current value of the specified parameter should be placed.
minP (optional): The location in which the minimum allowed value of the specified parameter should be
placed.

maxP (optional): The location in which the maximum allowed value of the specified parameter should be
placed.

defaultP (optional): The location in which the default value of the specified parameter should be placed.
Example usage:

error = GRBgetintparaminfo(GRBgetenv(model), "SolutionLimit", ¤t,
&minAllowedLimit, NULL, &defaultLimit);

GRBgetstrparaminfo
int GRBgetstrparaminfo (GRBenv *env,

const char *paramname,
char *value,
char *default)

Retrieve information about a string-valued parameter. Specifically, retrieve the current and default values of the
parameter.

Return value:
A non-zero return value indicates that a problem occurred while retrieving parameter information. Refer
to the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
env: The environment whose parameter information is being queried.
paramname: The name of the parameter. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

value (optional): The location in which the current value of the specified parameter should be placed.
default (optional): The location in which the default value of the specified parameter should be placed.

Example usage:
char defaultval[GRB_MAX_STRLEN];
char currentval[GRB_MAX_STRLEN];
error = GRBgetstrparaminfo(GRBgetenv(model), "LogFile", currentval,

defaultval);

GRBreadparams
int GRBreadparams (GRBenv *env,

const char *filename)

Import a set of parameter modifications from a file.
Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their

purposes and their minimum, maximum, and default values.
Return value:

A non-zero return value indicates that a problem occurred while reading the parameter file. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment into which the parameter changes should be imported.
filename: The path to the file to be read. The suffix on a parameter file should be .prm, optionally followed
by .zip, .gz, .bz2, or .7z.

Example usage:
error = GRBreadparams(env, "/tmp/model.prm.bz2");

93

GRBwriteparams
int GRBwriteparams (GRBenv *env,

const char *filename)

Write the set of changed parameter values to a file.
Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their

purposes and their minimum, maximum, and default values.
Return value:

A non-zero return value indicates that a problem occurred while writing the parameter file. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter changes are being written.
filename: The path to the file to be written. The suffix on a parameter file should be .prm, optionally
followed by .gz, .bz2, or .7z.

Example usage:
error = GRBwriteparams(env, "/tmp/model.prm");

94

3.8 Monitoring Progress - Logging and Callbacks
GRBmsg
void GRBmsg (GRBenv *env,

const char *message)

Insert a message into the Gurobi log file.
Arguments:

env: The environment whose log file should receive the message.
message: The message to be appended to the log.

Example usage:
error = GRBmsg(env, "Add this message to the log");

GRBsetcallbackfunc
int GRBsetcallbackfunc (GRBmodel *model,

int (*cb)(GRBmodel *model, void *cbdata, int where, void
*usrdata),

void *usrdata)

Set up a user callback function. Note that a model can only have a single callback method, so this call will
replace an existing callback. To disable a previously set callback, call this function with a cb argument of NULL.

When solving a model using multiple threads, the user callback is only ever called from a single thread, so you
don’t need to worry about the thread-safety of your callback.

Note that changing parameters from within a callback is not supported, doing so may lead to undefined behavior.
Return value:

A non-zero return value indicates that a problem occurred while setting the user callback. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model in which the callback should be installed.
cb: A function pointer to the user callback function. The callback will be called regularly from the Gurobi
optimizer. The where argument to the callback function will indicate where in the optimization process
the callback was invoked. Possible values are described in the Callback Codes section. The user callback
can then call a number of routines to retrieve additional details about the state of the optimization (e.g.,
GRBcbget), or to inject new information (e.g., GRBcbcut, GRBcbsolution). The user callback function
should return 0 if no error was encountered, or it can return one of the Gurobi Error Codes if the user
callback would like the optimization to stop and return an error result.

usrdata: An optional pointer to user data that will be passed back to the user callback function each time
it is invoked (in the usrdata argument).

Example usage:
int mycallback(GRBmodel *model, void *cbdata, int where, void *usrdata);
error = GRBsetcallbackfunc(model, mycallback, NULL);

GRBgetcallbackfunc
int GRBgetcallbackfunc (GRBmodel *model,

int (**cb)(GRBmodel *model, void *cbdata, int where,
void *usrdata))

Retrieve the current user callback function.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the user callback. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:

95

model: The model in which the callback should be installed.
cb: A function pointer to the user callback function.

Example usage:
int (*mycallback)(GRBmodel *model, void *cbdata, int where, void *usrdata);
error = GRBgetcallbackfunc(model, &mycallback);

GRBcbget
int GRBcbget (void *cbdata,

int where,
int what,
void *resultP)

Retrieve additional information about the progress of the optimization. Note that this routine can only be called
from within a user callback function.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the requested data. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
cbdata: The cbdata argument that was passed into the user callback by the Gurobi optimizer. This argument
must be passed unmodified from the user callback to GRBcbget().

where: The where argument that was passed into the user callback by the Gurobi optimizer. This argument
must be passed unmodified from the user callback to GRBcbget().

what: The data requested by the user callback. Valid values are described in the Callback Codes section.
resultP: The location in which the requested data should be placed.

Example usage:
if (where == GRB_CB_MIP) {
double nodecount;
error = GRBcbget(cbdata, where, GRB_CB_MIP_NODECNT, (void *) &nodecount);
if (error) return 0;
printf("MIP node count is %d\n", nodecount);

}

GRBversion
void GRBversion (int *majorP,

int *minorP,
int *technicalP)

Return the Gurobi library version number (major, minor, and technical).
Arguments:

majorP: The location in which the major version number should be placed. May be NULL.
minorP: The location in which the minor version number should be placed. May be NULL.
technicalP: The location in which the technical version number should be placed. May be NULL.

Example usage:
int major, minor, technical;
GRBversion(&major, &minor, &technical);
printf("Gurobi library version %d.%d.%d\n", major, minor, technical);

96

3.9 Modifying Solver Behavior - Callbacks
GRBcbcut

int GRBcbcut (void *cbdata,
int cutlen,
const int *cutind,
const double *cutval,
char cutsense,
double cutrhs)

Add a new cutting plane to the MIP model from within a user callback routine. Note that this routine can only
be called when the where value on the callback routine is GRB_CB_MIPNODE (see the Callback Codes section for more
information).

Cutting planes can be added at any node of the branch-and-cut tree. Note that cuts should be added sparingly,
since they increase the size of the relaxation model that is solved at each node and can significantly degrade node
processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the relaxation solution
at the current node, call GRBcbget with what = GRB_CB_MIPNODE_REL.

You should consider setting parameter PreCrush to value 1 when adding your own cuts. This setting shuts off
a few presolve reductions that can sometimes prevent your cut from being applied to the presolved model (which
would result in your cut being silently ignored).

One very important note: you should only add cuts that are implied by the constraints in your model. If you cut
off an integer solution that is feasible according to the original model constraints, you are likely to obtain an incorrect
solution to your MIP problem.

Return value:
A non-zero return value indicates that a problem occurred while adding the cut. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
cbdata: The cbdata argument that was passed into the user callback by the Gurobi optimizer. This argument
must be passed unmodified from the user callback to GRBcbcut().

cutlen: The number of non-zero coefficients in the new cutting plane.
cutind: Variable indices for non-zero values in the new cutting plane.
cutval: Numerical values for non-zero values in the new cutting plane.
cutsense: Sense for the new cutting plane. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL.
cutrhs: Right-hand side value for the new cutting plane.

Example usage:
if (where == GRB_CB_MIPNODE) {

int cutind[] = {0, 1};
double cutval[] = {1.0, 1.0};
error = GRBcbcut(cbdata, 2, cutind, cutval, GRB_LESS_EQUAL, 1.0);
if (error) return 0;

}

GRBcblazy

int GRBcblazy (void *cbdata,
int lazylen,
const int *lazyind,
const double *lazyval,
char lazysense,
double lazyrhs)

Add a new lazy constraint to the MIP model from within a user callback routine. Note that this routine can only
be called when the where value on the callback routine is either GRB_CB_MIPNODE or GRB_CB_MIPSOL (see the Callback
Codes section for more information).

97

Lazy constraints are typically used when the full set of constraints for a MIP model is too large to represent
explicitly. By only including the constraints that are actually violated by solutions found during the branch-and-cut
search, it is sometimes possible to find a proven optimal solution while only adding a fraction of the full set of
constraints.

You would typically add a lazy constraint by querying the current node solution (by calling GRBcbget from
a GRB_CB_MIPSOL or GRB_CB_MIPNODE callback, using what=GRB_CB_MIPSOL_SOL or what=GRB_CB_MIPNODE_REL), and
then calling GRBcblazy() to add a constraint that cuts off the solution. Gurobi guarantees that you will have the
opportunity to cut off any solutions that would otherwise be considered feasible.

MIP solutions may be generated outside of a MIP node. Thus, generating lazy constraints is optional when the
where value in the callback function equals GRB_CB_MIPNODE. To avoid this, we recommend to always check when the
where value equals GRB_CB_MIPSOL.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints, including those
that have already been added. Node solutions will usually respect previously added lazy constraints, but not always.

Note that you must set the LazyConstraints parameter if you want to use lazy constraints.
Return value:

A non-zero return value indicates that a problem occurred while adding the lazy constraint. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
cbdata: The cbdata argument that was passed into the user callback by the Gurobi optimizer. This argument
must be passed unmodified from the user callback to GRBcblazy().

lazylen: The number of non-zero coefficients in the new lazy constraint.
lazyind: Variable indices for non-zero values in the new lazy constraint.
lazyval: Numerical values for non-zero values in the new lazy constraint.
lazysense: Sense for the new lazy constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL.

lazyrhs: Right-hand side value for the new lazy constraint.
Example usage:

if (where == GRB_CB_MIPSOL) {
int lazyind[] = {0, 1};
double lazyval[] = {1.0, 1.0};
error = GRBcblazy(cbdata, 2, lazyind, lazyval, GRB_LESS_EQUAL, 1.0);
if (error) return 0;

}

GRBcbsolution

int GRBcbsolution (void *cbdata,
const double *solution,
double *objP)

Provide a new feasible solution for a MIP model from within a user callback routine. Note that this routine can
only be called when the where value on the callback routine is GRB_CB_MIP, GRB_CB_MIPNODE, or GRB_CB_MIPSOL (see
the Callback Codes section for more information).

Heuristics solutions are typically built from the current relaxation solution. To retrieve the relaxation solution
at the current node, call GRBcbget with what = GRB_CB_MIPNODE_REL.

When providing a solution, you can specify values for any subset of the variables in the model. To leave a variable
value unspecified, set the variable to GRB_UNDEFINED in the solution vector. The Gurobi MIP solver will attempt to
extend the specified partial solution to a complete solution.

Note that this method is not supported in a Compute Server environment.
Return value:

A non-zero return value indicates that a problem occurred while adding the new solution. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
cbdata: The cbdata argument that was passed into the user callback by the Gurobi optimizer. This argument
must be passed unmodified from the user callback to GRBcbsolution().

98

solution: The solution vector. You must provide one entry for each variable in the model. Note that you
can leave an entry unspecified by setting it to GRB_UNDEFINED. The Gurobi optimizer will attempt to find
appropriate values for the unspecified variables.

objP: Objective value for solution that results from this call. Returns GRB_INFINITY if no solution is found.
Example usage:

if (where == GRB_CB_MIPNODE) {
error = GRBcbsolution(cbdata, solution, &obj);
if (error) return 0;

}

GRBcbproceed
void GRBcbproceed (GRBModel *model)

Generate a request to proceed to the next phase of the computation. This routine can be called from any callback.
Note that the request is only accepted in a few phases of the algorithm, and it won’t be acted upon immediately.

In the current Gurobi version, this callback allows you to proceed from the NoRel heuristic to the standard MIP
search. You can determine the current algorithm phase using MIP_PHASE, MIPNODE_PHASE, or MIPSOL_PHASE queries
from a callback.

Arguments:
model: The model.

Example usage:
if (solution_objective < target_value) {

GRBcbproceed(model);
}

GRBcbstoponemultiobj
int GRBcbstoponemultiobj (GRBmodel *model,

void* cbdata,
int objnum)

Interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem without
stopping the hierarchical optimization process. Note that this routine can only be called for multi-objective MIP
models and when the where value on the callback routine is not equal to GRB_CB_MULTIOBJ (see the Callback Codes
section for more information).

You would typically stop a multi-objective optimization step by querying the last finished number of multi-
objectives steps, and using that number to stop the current step and move on to the next hierarchical objective (if
any) as shown in the following example:

Example usage:
#include <time.h>

typedef struct {
int objcnt;
time_t starttime;

} usrdata_t;

int mycallback(GRBmodel *model,
void *cbdata,
int where,
void *usrdata)

{
int error = 0;
usrdata_t *ud = (usrdata_t*)usrdata;

99

if (where == GRB_CB_MULTIOBJ) {
/* get current objective number */
error = GRBcbget(cbdata, where, MULTIOBJ_OBJCNT, (void*)&ud->objcnt);
if (error) goto QUIT;

/* reset start time to current time */
ud->starttime = time();

} else if (time() - ud->starttime > BIG ||
/* takes too long or good enough */) {

/* stop only this optimization step */
error = GRBcbstoponemultiobj(model, cbdata, ud->objcnt);
if (error) goto QUIT;

}

QUIT:
return error;

}

You should refer to the section on Multiple Objectives for information on how to specify multiple objective
functions and control the trade-off between them.

Return value:
A non-zero return value indicates that a problem occurred while stopping the multi-objective step specified
by objcnt. Refer to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: The model argument that was passed into the user callback by the Gurobi optimizer. This argument
must be passed unmodified from the user callback to GRBcbstoponemultiobj().

cbdata: The cbdata argument that was passed into the user callback by the Gurobi optimizer. This argument
must be passed unmodified from the user callback to GRBcbstoponemultiobj().

objnum: The number of the multi-objective optimization step to interrupt. For processes running locally,
this argument can have the special value -1, meaning to stop the current step.

GRBterminate
void GRBterminate (GRBmodel *model)

Generate a request to terminate the current optimization. This routine can be called at any time during an
optimization (from a callback, from another thread, from an interrupt handler, etc.). Note that, in general, the
request won’t be acted upon immediately.

When the optimization stops, the Status attribute will be equal to GRB_INTERRUPTED.
Arguments:

model: The model to terminate.
Example usage:

if (time_to_quit)
GRBterminate(model);

100

3.10 Batch Requests
GRBabortbatch

int GRBabortbatch (GRBbatch *batch)

This function instructs the Cluster Manager to abort the processing of this batch request, changing its status to
ABORTED. Please refer to the Batch Status Codes section for further details.

Return value:
A non-zero return value indicates that a problem occurred while aborting the batch request. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
batch: The batch that will be aborted.

Example usage:

/* request to abort the batch */
error = GRBabortbatch(batch);
if (error) goto QUIT;

GRBdiscardbatch

int GRBdiscardbatch (GRBbatch *batch)

This function instructs the Cluster Manager to remove all information related to the batch request in question,
including the stored solution if available. Further queries for the associated batch request will fail with error code
GRB_ERROR_DATA_NOT_AVAILABLE. Use this function with care, as the removed information can not be recovered later
on.

Return value:
A non-zero return value indicates that a problem occurred while discarding the batch. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
batch: The batch that will be discarded.

Example usage:

/* discard the batch object in the manager */
error = GRBdiscardbatch(batch);
if (error) goto QUIT;

GRBfreebatch

int GRBfreebatch (GRBbatch *batch)

Free a batch structure and release the associated memory.
Return value:

A non-zero return value indicates that a problem occurred while freeing the batch. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
batch: The batch structure to be freed.

Example usage:

GRBfreebatch(batch);

101

GRBgetbatch

int GRBgetbatch (GRBenv *env,
const char *BatchID,
GRBbatch **batchP)

Given a BatchID, as returned by GRBoptimizebatch, and a Gurobi environment that can connect to the ap-
propriate Cluster Manager (i.e., one where parameters CSManager, UserName, and ServerPassword have been set
appropriately), this function returns a GRBbatch structure. With it, you can query the current status of the asso-
ciated batch request and, once the batch request has been processed, you can query its solution. Please refer to the
Batch Optimization section for details and examples.

Return value:
A non-zero return value indicates that a problem occurred while creating a GRBbatch structure. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
env: The environment in which the new batch structure should be created.
BatchID: ID of the batch you want to access.
batchP: The location in which the pointer to the batch structure should be placed.

Example usage:

/* create batch -object */
error = GRBgetbatch(env , BatchID , &batch);
if (error) goto QUIT;

GRBgetbatchenv

GRBenv * GRBgetbatchenv (GRBbatch *batch)

Retrieve the environment associated with a batch.
Return value:

The environment associated with the batch. A NULL return value indicates that there was a problem retrieving
the environment.

Arguments:
batch: The batch from which the environment should be retrieved.

Example usage:
GRBenv *env = GRBgetbatchenv(batch);

GRBgetbatchintattr

int GRBgetbatchintattr (GRBbatch *batch,
const char *attrname,
int *valueP)

Query the value of an integer-valued batch attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
batch: A batch structure, typically created by routine GRBgetbatch.
attrname: The name of an integer-valued batch attribute. Available attributes are listed and described in
the Attributes section of this document.

valueP: The location in which the current value of the requested attribute should be placed.
Example usage:

102

/* query the last error code */
error = GRBgetbatchintattr(batch , "BatchErrorCode", &errorCode);
if (error || !errorCode) goto QUIT;

Important notes:
Note that all Batch attributes are cached locally, and are only updated when you create a client-side batch

object or when you explicitly update this cache (by calling the appropriate update function - GRBupdatebatch for
C, update for Python, etc.).

GRBgetbatchjsonsolution

int GRBgetbatchjsonsolution (GRBbatch *batch,
char** jsonsolP)

This function retrieves the solution of a completed batch request from a Cluster Manager. The solution is
returned as a JSON solution string. For this call to succeed, the status of the batch request must be COMPLETED.
Please refer to the Batch Status Codes section for further details.

Return value:
A non-zero return value indicates that a problem occurred while querying the batch solution. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
batch: The batch to query.
jsonsolP: The location in which the pointer to the newly created JSON string should be placed.

Important note:
On Windows, the string returned in buffP is allocated in a different heap from the calling program. You must

call GRBfree to free it.
Example usage:

/* print JSON solution into string */
error = GRBgetbatchjsonsolution(batch , &jsonsol);
if (error) goto QUIT;
printf("JSON solution: %s\n", jsonsol);

GRBgetbatchstrattr

int GRBgetbatchstrattr (GRBbatch *batch,
const char *attrname,
char **valueP)

Query the value of a string-valued batch attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
batch: A batch structure, typically created by routine GRBgetbatch.
attrname: The name of a string-valued batch attribute. Available attributes are listed and described in the
Attributes section of this document.

valueP: The location in which the current value of the requested attribute should be placed.
Example usage:

/* query the last error message */
error = GRBgetbatchstrattr(batch , "BatchErrorMessage", &errorMsg);
if (error) goto QUIT;

103

Important notes:
Note that all interface routines that return string-valued attributes are returning pointers into internal Gurobi

data structures. The user should copy the contents of the pointer to a different data structure before the next call
to a Gurobi library routine. The user should also be careful to never modify the data pointed to by the returned
character pointer.

Note that all Batch attributes are cached locally, and are only updated when you create a client-side batch
object or when you explicitly update this cache (by calling the appropriate update function - GRBupdatebatch for
C, update for Python, etc.).

GRBoptimizebatch

int GRBoptimizebatch (GRBmodel *model,
char *BatchID)

Submit a new batch request to the Cluster Manager. Returns the BatchID (a string), which uniquely identifies
the job in the Cluster Manager and can be used to query the status of this request (from this program or from any
other). Once the request has completed, the BatchID can also be used to retrieve the associated solution. To submit a
batch request, you must tag at least one element of the model by setting one of the VTag, CTag or QCTag attributes.
For more details on batch optimization, please refer to the Batch Optimization section.

Note that this routine will process all pending model modifications.
Return value:

A non-zero return value indicates that a problem occurred while submit a batch request. Refer to the Error
Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to optimize in batch mode. Note that this routine only reports whether the batch request
ran into an error.

BatchID: On success, the location in which the BatchID of the newly created batch request should be stored.
The pointer must point to a string of length GRB_MAX_STRLEN+1 or more.

Example usage:

/* submit batch request to the Manager */
error = GRBoptimizebatch(model , BatchID);
if (error) goto QUIT;

GRBretrybatch

int GRBretrybatch (GRBbatch *batch)

This function instructs the Cluster Manager to retry optimization of a failed or aborted batch request, changing
its status to SUBMITTED. Please refer to the Batch Status Codes section for further details.

Return value:
A non-zero return value indicates that a problem occurred while retrying the batch. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
batch: The batch to retry.

Example usage:

/* retry the batch request */
error = GRBretrybatch(batch);
if (error) goto QUIT;

104

GRBupdatebatch
int GRBupdatebatch (GRBbatch *batch)

All Batch attribute values are cached locally, so queries return the value received during the last communication
with the Cluster Manager. This function refreshes the values of all attributes with the values currently available in
the Cluster Manager (which involves network communication).

Return value:
A non-zero return value indicates that a problem occurred while updating the batch request. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
batch: The batch that will be updated.

Example usage:

/* update local attributes */
error = GRBupdatebatch(batch);
if (error) goto QUIT;

GRBwritebatchjsonsolution
int GRBwritebatchjsonsolution (GRBbatch *batch,

const char* filename)

This function returns the stored solution of a completed batch request from a Cluster Manager. The solution
is returned in a gzip-compressed JSON file. The file name you provide must end with a .json.gz extension. The
JSON format is described in the JSON solution format section. Note that for this call to succeed, the status of the
batch request must be COMPLETED. Please refer to the Batch Status Codes section for further details.

Return value:
A non-zero return value indicates that a problem occurred while writing the JSON solution string into the
given filename. Refer to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
batch: The batch request from qhere to query its solution.
filename: The name of the file in which to store the JSON solution. It must be a file name ending with the
.json.gz extension.

Example usage:

/* save solution into a file */
error = GRBwritebatchjsonsolution(batch , "batch -sol.json.gz");
if (error) goto QUIT;

105

3.11 Error Handling
GRBgeterrormsg
char * GRBgeterrormsg (GRBenv *env)

Retrieve the error message associated with the most recent error that occurred in an environment.
Return value:

A string containing the error message.
Arguments:

env: The environment in which the error occurred.
Example usage:

error = GRBgetintattr(model, "DOES_NOT_EXIST", &attr);
if (error)

printf("%s\n", GRBgeterrormsg(env));

106

3.12 Advanced simplex routines
This section describes a set of advanced basis routines. These routines allow you to compute solutions to various
linear systems involving the simplex basis matrix. Note that these should only be used by advanced users. We provide
no technical support for these routines.

Before describing the routines, we should first describe the GRBsvec data structure that is used to input or return
sparse vectors:

typedef struct SVector {
int len;
int *ind;
double *val;
} GRBsvec;

The len field gives the number of non-zero values in the vector. The ind and val fields give the index and value
for each non-zero, respectively. Indices are zero-based. To give an example, the sparse vector [0, 2.0, 0, 1.0]
would be represented as len=2, ind = [1, 3], and val = [2.0, 1.0].

The user is responsible for allocating and freeing the ind and val fields. The length of the result vector for these
routines is not known in advance, so the user must allocate these arrays to hold the longest possible result (whose
length is noted in the documentation for each routine).

GRBFSolve

int GRBFSolve (GRBmodel *model,
GRBsvec *b,
GRBsvec *x)

Computes the solution to the linear system Bx = b, where B is the current simplex basis matrix, b is an input
vector, and x is the result vector.

Return value:
A non-zero return value indicates that a problem occurred while computing the desired vector. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model. Note that the model must have a current optimal basis, as computed by GRBoptimize.
b: The sparse right-hand side vector. It should contain one entry for each non-zero value in the input.
x: The sparse result vector. The user is responsible for allocating the ind and val fields to be large enough
to hold as many as one non-zero entry per constraint in the model.

GRBBSolve

int GRBBSolve (GRBmodel *model,
GRBsvec *b,
GRBsvec *x)

Computes the solution to the linear system BTx = b, where BT is the transpose of the current simplex basis
matrix, b is an input vector, and x is the result vector.

Return value:
A non-zero return value indicates that a problem occurred while computing the desired vector. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model. Note that the model must have a current optimal basis, as computed by GRBoptimize.
b: The sparse right-hand side vector. It should contain one entry for each non-zero value in the input.
x: The sparse result vector. The user is responsible for allocating the ind and val fields to be large enough
to hold as many as one non-zero entry per constraint in the model.

107

GRBBinvColj
int GRBBinvColj (GRBmodel *model,

int j,
GRBsvec *x)

Computes the solution to the linear system Bx = Aj , where B is the current simplex basis matrix and Aj is the
column of the constraint matrix A associated with variable j.

Return value:
A non-zero return value indicates that a problem occurred while computing the desired vector. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model. Note that the model must have a current optimal basis, as computed by GRBoptimize.
j: Indicates the index of the column of A to use as the right-hand side for the linear solve. The index j must
be between 0 and cols-1, where cols is the number of columns in the model.

x: The sparse result vector. The user is responsible for allocating the ind and val fields to be large enough
to hold as many as one non-zero entry per constraint in the model.

GRBBinvRowi
int GRBBinvRowi (GRBmodel *model,

int i,
GRBsvec *x)

Computes a single tableau row. More precisely, this routine returns row i from the matrix B−1A, where B−1 is the
inverse of the basis matrix and A is the constraint matrix. Note that the tableau will contain columns corresponding to
the variables in the model, and also columns corresponding to artificial and slack variables associated with constraints.

Return value:
A non-zero return value indicates that a problem occurred while computing the desired vector. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained by calling
GRBgeterrormsg.

Arguments:
model: The model. Note that the model must have a current optimal basis, as computed by GRBoptimize.
i: The index of the desired tableau row.
x: The result vector. The result will contain one entry for each non-zero value. Note that the result may
contain values for slack variables; the slack on row i will have index cols+i, where cols is the number of
columns in the model. The user is responsible for allocating the ind and val fields to be large enough to
hold the largest possible result. For this routine, the result could have one entry for each variable in the
model, plus one entry for each constraint.

GRBgetBasisHead
int GRBgetBasisHead (GRBmodel *model,

int *bhead)

Returns the indices of the variables that make up the current basis matrix.
Return value:

A non-zero return value indicates that a problem occurred while extracting the basis. Refer to the Error Code
table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model. Note that the model must have a current optimal basis, as computed by GRBoptimize.
bhead: The constraint matrix columns that make up the current basis. The result contains one entry per
constraint in A. If bhead[i]=j, then column i in the basis matrix B is column j from the constraint
matrix A. Note that the basis may contain slack or artificial variables. If bhead[i] is greater than or
equal to cols (the number of columns in A), then the corresponding basis column is the artificial or slack
variable from row bhead[i]-cols.

108

C++ API Overview

This section documents the Gurobi C++ interface. This manual begins with a quick overview of the classes exposed in
the interface and the most important methods on those classes. It then continues with a comprehensive presentation
of all of the available classes and methods.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide or the Example
Tour. These documents provide concrete examples of how to use the classes and methods described here.

Environments

The first step in using the Gurobi C++ interface is to create an environment object. Environments are represented
using the GRBEnv class. An environment acts as the container for all data associated with a set of optimization
runs. You will generally only need one environment object in your program.

For more advanced use cases, you can use an empty environment to create an uninitialized environment and then,
programmatically, set all required options for your specific requirements. For further details see the Environment
section.

Models

You can create one or more optimization models within an environment. Each model is represented as an object of
class GRBModel. A model consists of a set of decision variables (objects of class GRBVar), a linear or quadratic
objective function on those variables (specified using GRBModel::setObjective), and a set of constraints on these
variables (objects of class GRBConstr, GRBQConstr, GRBSOS, or GRBGenConstr). Each variable has an associated
lower bound, upper bound, and type (continuous, binary, etc.). Each linear or quadratic constraint has an associated
sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side value. Refer to this section for more
information on variables, constraints, and objectives.

Linear constraints are specified by building linear expressions (objects of class GRBLinExpr), and then specifying
relationships between these expressions (for example, requiring that one expression be equal to another). Quadratic
constraints are built in a similar fashion, but using quadratic expressions (objects of class GRBQuadExpr) instead.

An optimization model may be specified all at once, by loading the model from a file (using the appropriate GRB-
Model constructor), or built incrementally, by first constructing an empty object of class GRBModel and then subse-
quently calling GRBModel::addVar or GRBModel::addVars to add additional variables, and GRBModel::addConstr,
GRBModel::addQConstr, GRBModel::addSOS, or any of the GRBModel::addGenConstrXxx methods to add con-
straints. Models are dynamic entities; you can always add or remove variables or constraints.

We often refer to the class of an optimization model. A model with a linear objective function, linear constraints,
and continuous variables is a Linear Program (LP). If the objective is quadratic, the model is a Quadratic Program
(QP). If any of the constraints are quadratic, the model is a Quadratically-Constrained Program (QCP). We will
sometimes refer to a few special cases of QCP: QCPs with convex constraints, QCPs with non-convex constraints,
bilinear programs, and Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-
continuous variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the model
is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, including Mixed Integer Linear
Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed Integer Quadratically-Constrained Programs
(MIQCP), and Mixed Integer Second-Order Cone Programs (MISOCP). The Gurobi Optimizer handles all of these
model classes.

Solving a Model

Once you have built a model, you can call GRBModel::optimize to compute a solution. By default, optimize will use
the concurrent optimizer to solve LP models, the barrier algorithm to solve QP models with convex objectives and
QCP models with convex constraints, and the branch-and-cut algorithm otherwise. The solution is stored in a set of
attributes of the model. These attributes can be queried using a set of attribute query methods on the GRBModel,
GRBVar, GRBConstr, GRBQConstr, GRBSOS, and GRBGenConstr classes.

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBModel::optimize will only
perform further optimization if relevant data has changed since the model was last optimized. If you would like to

109

https://www.gurobi.com/documentation/10.0/quickstart_windows/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html

discard previously computed solution information and restart the optimization from scratch without changing the
model, you can call GRBModel::reset.

After a MIP model has been solved, you can call GRBModel::fixedModel to compute the associated fixed model.
This model is identical to the original, except that the integer variables are fixed to their values in the MIP solution.
If your model contains SOS constraints, some continuous variables that appear in these constraints may be fixed as
well. In some applications, it can be useful to compute information on this fixed model (e.g., dual variables, sensitivity
information, etc.), although you should be careful in how you interpret this information.
Multiple Solutions, Objectives, and Scenarios

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to a single model
with a single objective function. Gurobi provides the following features that allow you to relax these assumptions:

• Solution Pool: Allows you to find more solutions.
• Multiple Scenarios: Allows you to find solutions to multiple, related models.
• Multiple Objectives: Allows you to specify multiple objective functions and control the trade-off between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the infeasibility,
attempt to repair the infeasibility, or both. To obtain information that can be useful for diagnosing the cause of an
infeasibility, call GRBModel::computeIIS to compute an Irreducible Inconsistent Subsystem (IIS). This method can
be used for both continuous and MIP models, but you should be aware that the MIP version can be quite expensive.
This method populates a set of IIS attributes.

To attempt to repair an infeasibility, call GRBModel::feasRelax to compute a feasibility relaxation for the model.
This relaxation allows you to find a solution that minimizes the magnitude of the constraint violation.
Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some attributes are associated
with the variables of the model, some with the constraints of the model, and some with the model itself. To give
a simple example, solving an optimization model causes the X variable attribute to be populated. Attributes such
as X that are computed by the Gurobi optimizer cannot be modified directly by the user, while others, such as the
variable lower bound (the LB attribute) can.

Attributes are queried using GRBVar::get, GRBConstr::get, GRBQConstr::get, GRBSOS::get, GRBGenCon-
str::get, or GRBModel::get, and modified using GRBVar::set, GRBConstr::set, GRBQConstr::set, GRBGenCon-
str::set, or GRBModel::set. Attributes are grouped into a set of enums by type (GRB_CharAttr, GRB_Dou-
bleAttr, GRB_IntAttr, GRB_StringAttr). The get() and set() methods are overloaded, so the type of the at-
tribute determines the type of the returned value. Thus, constr.get(GRB.DoubleAttr.RHS) returns a double, while
constr.get(GRB.CharAttr.Sense) returns a char.

If you wish to retrieve attribute values for a set of variables or constraints, it is usually more efficient to use the
array methods on the associated GRBModel object. Method GRBModel::get includes signatures that allow you to
query or modify attribute values for arrays of variables or constraints.

The full list of attributes can be found in the Attributes section.
Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to variable bounds,
constraint right-hand sides, etc.). The main exceptions are modifications to the constraint matrix and the objective
function.

The constraint matrix can be modified in a few ways. The first is to call the chgCoeffs method on a GRBModel
object to change individual matrix coefficients. This method can be used to modify the value of an existing non-zero,
to set an existing non-zero to zero, or to create a new non-zero. The constraint matrix is also modified when you
remove a variable or constraint from the model (through the GRBModel::remove method). The non-zero values
associated with the deleted constraint or variable are removed along with the constraint or variable itself.

The model objective function can also be modified in a few ways. The easiest is to build an expression that
captures the objective function (a GRBLinExpr or GRBQuadExpr object), and then pass that expression to method
GRBModel::setObjective. If you wish to modify the objective, you can simply call setObjective again with a new
GRBLinExpr or GRBQuadExpr object.

For linear objective functions, an alternative to setObjective is to use the Obj variable attribute to modify
individual linear objective coefficients.

110

If your variables have piecewise-linear objectives, you can specify them using the
GRBModel::setPWLObj method. Call this method once for each relevant variable. The Gurobi simplex solver
includes algorithmic support for convex piecewise-linear objective functions, so for continuous models you should see
a substantial performance benefit from using this feature. To clear a previously specified piecewise-linear objective
function, simply set the Obj attribute on the corresponding variable to 0.
Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed in a lazy fashion,
meaning that modifications don’t affect the model immediately. Rather, they are queued and applied later. If your
program simply creates a model and solves it, you will probably never notice this behavior. However, if you ask for
information about the model before your modifications have been applied, the details of the lazy update approach
may be relevant to you.

As we just noted, model modifications (bound changes, right-hand side changes, objective changes, etc.) are
placed in a queue. These queued modifications can be applied to the model in three different ways. The first is by
an explicit call to GRBModel::update. The second is by a call to GRBModel::optimize. The third is by a call to
GRBModel::write to write out the model. The first case gives you fine-grained control over when modifications are
applied. The second and third make the assumption that you want all pending modifications to be applied before
you optimize your model or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is that this approach
makes it much easier to perform multiple modifications to a model, since the model remains unchanged between
modifications. The second is that processing model modifications can be expensive, particularly in a Compute Server
environment, where modifications require communication between machines. Thus, it is useful to have visibility into
exactly when these modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then update, then make
more modifications, then update again, etc. Updating after each individual modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value of the requested
data from the point of the last update. If the object you tried to query didn’t exist then, you’ll get a NOT_IN_MODEL
exception instead.

The semantics of lazy updates have changed since earlier Gurobi versions. While the vast majority of programs
are unaffected by this change, you can use the UpdateMode parameter to revert to the earlier behavior if you run
into an issue.
Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of the optimization
process. Factors like feasibility and optimality tolerances, choices of algorithms, strategies for exploring the MIP
search tree, etc., can be controlled by modifying Gurobi parameters before beginning the optimization. Parameters
can be of type int, double, or string.

The simplest way to set parameters is through the GRBModel::set method on the model object. Similarly,
parameter values can be queried with GRBModel::get.

Parameters can also be set on the Gurobi environment object, using GRBEnv::set. Note that each model gets
its own copy of the environment when it is created, so parameter changes to the original environment have no effect
on existing models.

You can read a set of parameter settings from a file using GRBEnv::readParams, or write the set of changed
parameters using GRBEnv::writeParams.

We also include an automated parameter tuning tool that explores many different sets of parameter changes in
order to find a set that improves performance. You can call GRBModel::tune to invoke the tuning tool on a model.
Refer to the parameter tuning tool section for more information.

The full list of Gurobi parameters can be found in the Parameters section.
Memory Management

Memory management must always be considered in C++ programs. In particular, the Gurobi library and the user
program share the same C++ heap, so the user must be aware of certain aspects of how the Gurobi library uses this
heap. The basic rules for managing memory when using the Gurobi optimizer are as follows:

• As with other dynamically allocated C++ objects, GRBEnv or GRBModel objects should be freed using the
associated destructors. In other words, given a GRBModel object m, you should call delete m when you are no
longer using m.

111

• Objects that are associated with a model (e.g., GRBConstr, GRBQConstr, GRBSOS, GRBGenConstr, and
GRBVar objects) are managed by the model. In particular, deleting a model will delete all of the associated
objects. Similarly, removing an object from a model (using GRBModel::remove) will also delete the object.

• Some Gurobi methods return an array of objects or values. For example, GRBModel::addVars returns an array
of GRBVar objects. It is the user’s responsibility to free the returned array (using delete[]). The reference
manual indicates when a method returns a heap-allocated result.

One consequence of these rules is that you must be careful not to use an object once it has been freed. This is
no doubt quite clear for environments and models, where you call the destructors explicitly, but may be less clear for
constraints and variables, which are implicitly deleted when the associated model is deleted.
Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will send output to the
screen. A few simple controls are available for modifying the default logging behavior. If you would like to direct
output to a file as well as to the screen, specify the log file name in the GRBEnv constructor. You can modify
the LogFile parameter if you wish to redirect the log to a different file after creating the environment object. The
frequency of logging output can be controlled with the DisplayInterval parameter, and logging can be turned off
entirely with the OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging
section.

More detailed progress monitoring can be done through the GRBCallback class. The GRBModel::setCallback
method allows you to receive a periodic callback from the Gurobi optimizer. You do this by sub-classing the
GRBCallback abstract class, and writing your own callback() method on this class. You can call GRBCall-
back::getDoubleInfo, GRBCallback::getIntInfo, GRBCallback::getStringInfo, or GRBCallback::getSolution from within
the callback to obtain additional information about the state of the optimization.
Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. The simplest control callback is GRBCall-
back::abort, which asks the optimizer to terminate at the earliest convenient point. Method GRBCallback::setSolution
allows you to inject a feasible solution (or partial solution) during the solution of a MIP model. Methods GRB-
Callback::addCut and GRBCallback::addLazy allow you to add cutting planes and lazy constraints during a MIP
optimization, respectively. Method GRBCallback::stopOneMultiObj allows you to interrupt the optimization process
of one of the optimization steps in a multi-objective MIP problem without stopping the hierarchical optimization
process.
Batch Optimization

Gurobi Compute Server enables programs to offload optimization computations onto dedicated servers. The Gurobi
Cluster Manager adds a number of additional capabilities on top of this. One important one, batch optimization,
allows you to build an optimization model with your client program, submit it to a Compute Server cluster (through
the Cluster Manager), and later check on the status of the model and retrieve its solution. You can use a Batch
object to make it easier to work with batches. For details on batches, please refer to the Batch Optimization section.
Error Handling

All of the methods in the Gurobi C++ library can throw an exception of type GRBException. When an ex-
ception occurs, additional information on the error can be obtained by retrieving the error code (using method
GRBException::getErrorCode), or by retrieving the exception message (using method GRBException::getMessage).
The list of possible error return codes can be found in the Error Codes section.

112

4.1 GRBEnv
Gurobi environment object. Gurobi models are always associated with an environment. You must create an environ-
ment before can you create and populate a model. You will generally only need a single environment object in your
program.

The methods on environment objects are mainly used to manage Gurobi parameters (e.g., get, getParamInfo,
set).

GRBEnv()
Constructor for GRBEnv object. You have the option of constructing either a local environment, which solves Gurobi
models on the local machine, a client environment for a Gurobi Compute Server, which will solve Gurobi models on
a server machine, or an Instant Cloud environment, which will launch a Gurobi Cloud server and solve models on
that server. Choose the appropriate signature for the type of environment you wish to launch.

GRBEnv GRBEnv ()
Create a Gurobi environment (with logging disabled). This method will also populate any parameter (ComputeServer,

TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current work-
ing directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.
The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value
for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Return value:
An environment object (with no associated log file).

GRBEnv GRBEnv (bool empty)

Create an empty Gurobi environment. Use GRBEnv::start to start the environment.
If the environment is not empty, This method will also populate any parameter (ComputeServer, TokenServer,

ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current working directory for
a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in
PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Arguments:
empty: Indicates whether the environment should be empty. You should use empty=true if you want to
set parameters before actually starting the environment. This can be useful if you want to connect to a
Compute Server, a Token Server, the Gurobi Instant Cloud, a Cluster Manager or use a WLS license. See
the Environment Section for more details.

Return value:
An environment object.

GRBEnv GRBEnv (const string& logFileName)

Create a Gurobi environment (with logging enabled). This method will also populate any parameter (ComputeServer,
TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current work-
ing directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.

113

The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value
for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Arguments:
logFileName: The desired log file name.

Return value:
An environment object.

GRBEnv::get()
Query the value of a parameter.

double get (GRB_DoubleParam param)

Query the value of a double-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

Return value:
The current value of the requested parameter.

int get (GRB_IntParam param)

Query the value of an int-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

Return value:
The current value of the requested parameter.

string get (GRB_StringParam param)

Query the value of a string-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

Return value:
The current value of the requested parameter.

GRBEnv::getErrorMsg()
Query the error message for the most recent exception associated with this environment.

const string getErrorMsg ()
Return value:

The error string.

114

GRBEnv::getParamInfo()
Obtain information about a parameter.

void getParamInfo (GRB_DoubleParam param,
double* valP,
double* minP,
double* maxP,
double* *defP)

Obtain detailed information about a double parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

valP: The current value of the parameter.
minP: The minimum allowed value of the parameter.
maxP: The maximum allowed value of the parameter.
defP: The default value of the parameter.

void getParamInfo (GRB_IntParam param,
int* valP,
int* minP,
int* maxP,
int* defP)

Obtain detailed information about an integer parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

valP: The current value of the parameter.
minP: The minimum allowed value of the parameter.
maxP: The maximum allowed value of the parameter.
defP: The default value of the parameter.

void getParamInfo (GRB_StringParam param,
string* valP,
string* defP)

Obtain detailed information about a string parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

valP: The current value of the parameter.
defP: The default value of the parameter.

GRBEnv::message()
Write a message to the console and the log file.

void message (const string& message)

Arguments:
message: Print a message to the console and to the log file. Note that this call has no effect unless the
OutputFlag parameter is set.

115

GRBEnv::readParams()
Read new parameter settings from a file.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their
purposes and their minimum, maximum, and default values.

void readParams (const string& paramfile)

Arguments:
paramfile: Name of the file containing parameter settings. Parameters should be listed one per line, with
the parameter name first and the desired value second. For example:

Gurobi parameter file
Threads 1
MIPGap 0

Blank lines and lines that begin with the hash symbol are ignored.

GRBEnv::resetParams()
Reset all parameters to their default values.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their
purposes and their minimum, maximum, and default values.

void resetParams ()

GRBEnv::set()
Set the value of a parameter.

Important notes:
Note that a model gets its own copy of the environment when it is created. Changes to the original environment

have no effect on the copy. Use GRBModel::set to change a parameter on an existing model.

void set (GRB_DoubleParam param,
double newvalue)

Set the value of a double-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

newvalue: The desired new value of the parameter.

void set (GRB_IntParam param,
int newvalue)

Set the value of an int-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

newvalue: The desired new value of the parameter.

void set (GRB_StringParam param,
const string& newvalue)

Set the value of a string-valued parameter.

116

Arguments:
param: The parameter being modified. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

newvalue: The desired new value of the parameter.

void set (const string& param,
const string& newvalue)

Set the value of any parameter using strings alone.
Arguments:

param: The name of the parameter being modified. Please consult the parameter section for a complete list
of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default
values.

newvalue: The desired new value of the parameter.

GRBEnv::start()
Start an empty environment. If the environment has already been started, this method will do nothing. If the call
fails, the environment will have the same state as it had before the call to this method.

This method will also populate any parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified
in your gurobi.lic file. This method will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each
line should contain a parameter name, followed by the desired value for that parameter). After that, it will apply
all parameter changes specified by the user prior to this call. Note that this might overwrite parameters set in the
license file, or in the gurobi.env file, if present.

After all these changes are performed, the code will actually activate the environment, and make it ready to work
with models.

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their
purposes and their minimum, maximum, and default values.

void start ()

GRBEnv::writeParams()
Write all non-default parameter settings to a file.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their
purposes and their minimum, maximum, and default values.

void writeParams (const string& paramfile)

Arguments:
paramfile: Name of the file to which non-default parameter settings should be written. The previous
contents are overwritten.

117

4.2 GRBModel
Gurobi model object. Commonly used methods include addVar (adds a new decision variable to the model), addConstr
(adds a new constraint to the model), optimize (optimizes the current model), and get (retrieves the value of an
attribute).

GRBModel()
Constructor for GRBModel. The simplest version creates an empty model. You can then call addVar and addConstr
to populate the model with variables and constraints. The more complex constructors can read a model from a file,
or make a copy of an existing model.

GRBModel GRBModel (const GRBEnv& env)

Model constructor.
Arguments:

env: Environment for new model.
Return value:

New model object. Model initially contains no variables or constraints.

GRBModel GRBModel (const GRBEnv& env,
const string& filename)

Read a model from a file. Note that the type of the file is encoded in the file name suffix. Valid suffixes are .mps,
.rew, .lp, .rlp, .dua, .dlp, .ilp, or .opb. The files can be compressed, so additional suffixes of .zip, .gz, .bz2, or
.7z are accepted.

Arguments:
env: Environment for new model.
modelname: Name of the file containing the model.

Return value:
New model object.

GRBModel GRBModel (const GRBModel& model)

Create a copy of an existing model. Note that due to the lazy update approach in Gurobi, you have to call
update before copying it.

Arguments:
model: Model to copy.

Return value:
New model object. Model is a clone of the input model.

GRBModel::addConstr()
Add a single linear constraint to a model. Multiple signatures are available.

GRBConstr addConstr (const GRBLinExpr& lhsExpr,
char sense,
const GRBLinExpr& rhsExpr,
string name="")

Add a single linear constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new linear constraint.

118

sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsExpr: Right-hand side expression for new linear constraint.
name (optional): Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (const GRBLinExpr& lhsExpr,
char sense,
GRBVar rhsVar,
string name="")

Add a single linear constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsVar: Right-hand side variable for new linear constraint.
name (optional): Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (const GRBLinExpr& lhsExpr,
char sense,
double rhsVal,
string name="")

Add a single linear constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsVal: Right-hand side value for new linear constraint.
name (optional): Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (GRBVar lhsVar,
char sense,
GRBVar rhsVar,
string name="")

Add a single linear constraint to a model.
Arguments:

lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsVar: Right-hand side variable for new linear constraint.
name (optional): Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (GRBVar lhsVar,
char sense,
double rhsVal,
string name="")

Add a single linear constraint to a model.
Arguments:

lhsVar: Left-hand side variable for new linear constraint.

119

sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsVal: Right-hand side value for new linear constraint.
name (optional): Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (GRBTempConstr& tc,
string name="")

Add a single linear constraint to a model.
Arguments:

tc: Temporary constraint object, created using an overloaded comparison operator. See GRBTempConstr
for more information.

name (optional): Name for new constraint.
Return value:

New constraint object.

GRBModel::addConstrs()
Add new linear constraints to a model.

We recommend that you build your model one constraint at a time (using addConstr), since it introduces no
significant overhead and we find that it produces simpler code. Feel free to use these methods if you disagree, though.

GRBConstr* addConstrs (int count)

Add count new linear constraints to a model.
Arguments:

count: Number of constraints to add to the model. The new constraints are all of the form 0 <= 0.
Return value:

Array of new constraint objects. Note that the result is heap-allocated, and must be returned to the heap
by the user.

GRBConstr* addConstrs (const GRBLinExpr* lhsExprs,
const char* senses,
const double* rhsVals,
const string* names,
int count)

Add count new linear constraints to a model.
Arguments:

lhsExprs: Left-hand side expressions for the new linear constraints.
senses: Senses for new linear constraints (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsVals: Right-hand side values for the new linear constraints.
names: Names for new constraints.
count: Number of constraints to add.

Return value:
Array of new constraint objects. Note that the result is heap-allocated, and must be returned to the heap
by the user.

120

GRBModel::addGenConstrXxx()
Each of the functions described below adds a new general constraint to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types: variable bound
constraints, linear constraints, quadratic constraints, integrality constraints, and SOS constraints. These are typically
treated directly by the underlying solver (although not always), and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general (function)
constraints. These are typically not treated directly by the solver. Rather, they are transformed by presolve into
constraints (and variables) chosen from among the fundamental types listed above. In some cases, the resulting
constraint or constraints are mathematically equivalent to the original; in others, they are approximations. If such
constraints appear in your model, but if you prefer to reformulate them yourself using fundamental constraint types
instead, you can certainly do so. However, note that Gurobi can sometimes exploit information contained in the
other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:
• addGenConstrMax: y = max(x1, x2, ..., c)
• addGenConstrMin: y = min(x1, x2, ..., c)
• addGenConstrAbs: y = |x|
• addGenConstrAnd: y = x1 ∧ x2 ∧ x3...

• addGenConstrOr: y = x1 ∨ x2 ∨ x3...

• addGenConstrNorm: y = norm(x1, x2, x3...)
• addGenConstrIndicator: y = 1→ a′x ≤ b (an indicator constraint)
• addGenConstrPWL: y = pwl(x) (a piecewise-linear function, specified using breakpoints)
• addGenConstrPoly: y = p0x

d + p1x
d−1 + ...+ pd−1x+ pd

• addGenConstrExp: y = ex

• addGenConstrExpA: y = ax

• addGenConstrLog: y = loge(x)
• addGenConstrLogA: y = loga(x)
• addGenConstrPow: y = xa

• addGenConstrSin: y = sin(x)
• addGenConstrCos: y = cos(x)
• addGenConstrTan: y = tan(x)

Please refer to this section for additional details on general constraints.

GRBModel::addGenConstrMax()

Add a new general constraint of type GRB_GENCONSTR_MAX to a model.
A MAX constraint r = max{x1, . . . , xn, c} states that the resultant variable r should be equal to the maximum

of the operand variables x1, . . . , xn and the constant c.

GRBGenConstr addGenConstrMax (GRBVar resvar,
const GRBVar* vars,
int len,
double constant=-GRB_INFINITY,
string name="")

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
constant (optional): The additional constant operand of the new constraint.
name (optional): Name for the new general constraint.

Return value:
New general constraint.

121

GRBModel::addGenConstrMin()

Add a new general constraint of type GRB_GENCONSTR_MIN to a model.
A MIN constraint r = min{x1, . . . , xn, c} states that the resultant variable r should be equal to the minimum of

the operand variables x1, . . . , xn and the constant c.

GRBGenConstr addGenConstrMin (GRBVar resvar,
const GRBVar* vars,
int len,
double constant=GRB_INFINITY,
string name="")

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
constant (optional): The additional constant operand of the new constraint.
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrAbs()

Add a new general constraint of type GRB_GENCONSTR_ABS to a model.
An ABS constraint r = abs{x} states that the resultant variable r should be equal to the absolute value of the

argument variable x.

GRBGenConstr addGenConstrAbs (GRBVar resvar,
GRBVar argvar,
string name="")

Arguments:
resvar: The resultant variable of the new constraint.
argvar: The argument variable of the new constraint.
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrAnd()

Add a new general constraint of type GRB_GENCONSTR_AND to a model.
An AND constraint r = and{x1, . . . , xn} states that the binary resultant variable r should be 1 if and only if all

of the operand variables x1, . . . , xn are equal to 1. If any of the operand variables is 0, then the resultant should be
0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent of how they
were created.

GRBGenConstr addGenConstrAnd (GRBVar resvar,
const GRBVar* vars,
int len,
string name="")

Arguments:
resvar: The resultant binary variable of the new constraint.
vars: Array of binary variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
name (optional): Name for the new general constraint.

Return value:
New general constraint.

122

GRBModel::addGenConstrOr()

Add a new general constraint of type GRB_GENCONSTR_OR to a model.
An OR constraint r = or{x1, . . . , xn} states that the binary resultant variable r should be 1 if and only if any of

the operand variables x1, . . . , xn is equal to 1. If all operand variables are 0, then the resultant should be 0 as well.
Note that all variables participating in such a constraint will be forced to be binary, independent of how they

were created.

GRBGenConstr addGenConstrOr (GRBVar resvar,
const GRBVar* vars,
int len,
string name="")

Arguments:
resvar: The resultant binary variable of the new constraint.
vars: Array of binary variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrNorm()

Add a new general constraint of type GRB_GENCONSTR_NORM to a model.
A NORM constraint r = norm{x1, . . . , xn} states that the resultant variable r should be equal to the vector

norm of the argument vector x1, . . . , xn.

GRBGenConstr addGenConstrNorm (GRBVar resvar,
const GRBVar* vars,
int len,
double which,
string name="")

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint. Note that this array may not contain
duplicates.

len: Number of operands in the new constraint (length of vars array).
which: Which norm to use. Options are 0, 1, 2, and GRB_INFINITY.
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrIndicator()

Add a new general constraint of type GRB_GENCONSTR_INDICATOR to a model.
An INDICATOR constraint z = f → aTx ≤ b states that if the binary indicator variable z is equal to f , where

f ∈ {0, 1}, then the linear constraint aTx ≤ b should hold. On the other hand, if z = 1− f , the linear constraint may
be violated. The sense of the linear constraint can also be specified to be = or ≥.

Note that the indicator variable z of a constraint will be forced to be binary, independent of how it was created.
Multiple signatures are available.

GRBGenConstr addGenConstrIndicator (GRBVar binvar,
int binval,
const GRBLinExpr& expr,
char sense,
double rhs,
string name="")

123

Arguments:
binvar: The binary indicator variable.
binval: The value for the binary indicator variable that would force the linear constraint to be satisfied (0
or 1).

expr: Left-hand side expression for the linear constraint triggered by the indicator.
sense: Sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL.
rhs: Right-hand side value for the linear constraint.
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBGenConstr addGenConstrIndicator (GRBVar binvar,
int binval,
const GRBTempConstr& constr,
string name="")

Arguments:
binvar: The binary indicator variable.
binval: The value for the binary indicator variable that would force the linear constraint to be satisfied (0
or 1).

constr: Temporary constraint object defining the linear constraint that is triggered by the indicator. The
temporary constraint object is created using an overloaded comparison operator. See GRBTempConstr
for more information.

name (optional): Name for the new general constraint.
Return value:

New general constraint.

GRBModel::addGenConstrPWL()

Add a new general constraint of type GRB_GENCONSTR_PWL to a model.
A piecewise-linear (PWL) constraint states that the relationship y = f(x) must hold between variables x and y,

where f is a piecewise-linear function. The breakpoints for f are provided as arguments. Refer to the description of
piecewise-linear objectives for details of how piecewise-linear functions are defined.

GRBGenConstr addGenConstrPWL (GRBVar xvar,
GRBVar yvar,
int npts,
const double* xpts,
const double* ypts,
std::string name="")

Arguments:
xvar: The x variable.
yvar: The y variable.
npts: The number of points that define the piecewise-linear function.
xpts: The x values for the points that define the piecewise-linear function. Must be in non-decreasing order.
ypts: The y values for the points that define the piecewise-linear function.
name (optional): Name for the new general constraint.

Return value:
New general constraint.

124

GRBModel::addGenConstrPoly()

Add a new general constraint of type GRB_GENCONSTR_POLY to a model.
A polynomial function constraint states that the relationship y = p0x

d + p1x
d−1 + ... + pd−1x + pd should hold

between variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrPoly (GRBVar xvar,
GRBVar yvar,
int plen,
const double* p,
std::string name="",
std::string options="")

Arguments:
xvar: The x variable.
yvar: The y variable.
plen: The length of coefficient array p. If xd is the highest power term, then plen should be d+ 1.
p: The coefficients for the polynomial function (starting with the coefficient for the highest power).
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the attribute name
with an equal sign and the desired value (with no spaces). Assignments for different attributes should be
separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addGenConstrExp()

Add a new general constraint of type GRB_GENCONSTR_EXP to a model.
A natural exponential function constraint states that the relationship y = exp(x) should hold for variables x and

y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrExp (GRBVar xvar,
GRBVar yvar,
std::string name="",
std::string options="")

Arguments:
xvar: The x variable.
yvar: The y variable.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the attribute name
with an equal sign and the desired value (with no spaces). Assignments for different attributes should be
separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

125

GRBModel::addGenConstrExpA()

Add a new general constraint of type GRB_GENCONSTR_EXPA to a model.
An exponential function constraint states that the relationship y = ax should hold for variables x and y, where

a > 0 is the (constant) base.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrExpA (GRBVar xvar,
GRBVar yvar,
double a,
std::string name="",
std::string options="")

Arguments:
xvar: The x variable.
yvar: The y variable.
a: The base of the function, a > 0.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the attribute name
with an equal sign and the desired value (with no spaces). Assignments for different attributes should be
separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addGenConstrLog()

Add a new general constraint of type GRB_GENCONSTR_LOG to a model.
A natural logarithmic function constraint states that the relationship y = log(x) should hold for variables x and

y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrLog (GRBVar xvar,
GRBVar yvar,
std::string name="",
std::string options="")

Arguments:
xvar: The x variable.
yvar: The y variable.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the attribute name
with an equal sign and the desired value (with no spaces). Assignments for different attributes should be
separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

126

GRBModel::addGenConstrLogA()

Add a new general constraint of type GRB_GENCONSTR_LOGA to a model.
A logarithmic function constraint states that the relationship y = loga(x) should hold for variables x and y,

where a > 0 is the (constant) base.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrLogA (GRBVar xvar,
GRBVar yvar,
double a,
std::string name="",
std::string options="")

Arguments:
xvar: The x variable.
yvar: The y variable.
a: The base of the function, a > 0.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the attribute name
with an equal sign and the desired value (with no spaces). Assignments for different attributes should be
separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addGenConstrLogistic()

Add a new general constraint of type GRB_GENCONSTR_LOGISTIC to a model.
A logistic function constraint states that the relationship y = 1

1+e−x should hold for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrLogistic (GRBVar xvar,
GRBVar yvar,
std::string name="",
std::string options="")

Arguments:
xvar: The x variable.
yvar: The y variable.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the attribute name
with an equal sign and the desired value (with no spaces). Assignments for different attributes should be
separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

127

GRBModel::addGenConstrPow()

Add a new general constraint of type GRB_GENCONSTR_POW to a model.
A power function constraint states that the relationship y = xa should hold for variables x and y, where a is the

(constant) exponent. The lower bound of variable x must be nonnegative, even if a is an integer.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrPow (GRBVar xvar,
GRBVar yvar,
double a,
std::string name="",
std::string options="")

Arguments:
xvar: The x variable.
yvar: The y variable.
a: The exponent of the function, a > 0.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the attribute name
with an equal sign and the desired value (with no spaces). Assignments for different attributes should be
separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addGenConstrSin()

Add a new general constraint of type GRB_GENCONSTR_SIN to a model.
A sine function constraint states that the relationship y = sin(x) should hold for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrSin (GRBVar xvar,
GRBVar yvar,
std::string name="",
std::string options="")

Arguments:
xvar: The x variable.
yvar: The y variable.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the attribute name
with an equal sign and the desired value (with no spaces). Assignments for different attributes should be
separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

128

GRBModel::addGenConstrCos()

Add a new general constraint of type GRB_GENCONSTR_COS to a model.
A cosine function constraint states that the relationship y = cos(x) should hold for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrCos (GRBVar xvar,
GRBVar yvar,
std::string name="",
std::string options="")

Arguments:
xvar: The x variable.
yvar: The y variable.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the attribute name
with an equal sign and the desired value (with no spaces). Assignments for different attributes should be
separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addGenConstrTan()

Add a new general constraint of type GRB_GENCONSTR_TAN to a model.
A tangent function constraint states that the relationship y = tan(x) should hold for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrTan (GRBVar xvar,
GRBVar yvar,
std::string name="",
std::string options="")

Arguments:
xvar: The x variable.
yvar: The y variable.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the attribute name
with an equal sign and the desired value (with no spaces). Assignments for different attributes should be
separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addQConstr()
Add a quadratic constraint to a model. Multiple signatures are available.

Important note: Gurobi can handle both convex and non-convex quadratic constraints. The differences between
them can be both important and subtle. Refer to this discussion for additional information.

129

GRBQConstr addQConstr (const GRBQuadExpr& lhsExpr,
char sense,
const GRBQuadExpr& rhsExpr,
string name="")

Add a quadratic constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsExpr: Right-hand side expression for new quadratic constraint.
name (optional): Name for new constraint.

Return value:
New quadratic constraint object.

GRBQConstr addQConstr (const GRBQuadExpr& lhsExpr,
char sense,
GRBVar rhsVar,
string name="")

Add a quadratic constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsVar: Right-hand side variable for new quadratic constraint.
name (optional): Name for new constraint.

Return value:
New quadratic constraint object.

GRBQConstr addQConstr (GRBTempConstr& tc,
string name="")

Add a quadratic constraint to a model.
Arguments:

tc: Temporary constraint object, created using an overloaded comparison operator. See GRBTempConstr
for more information.

name (optional): Name for new constraint.
Return value:

New quadratic constraint object.

GRBModel::addRange()
Add a single range constraint to a model. A range constraint states that the value of the input expression must be
between the specified lower and upper bounds in any solution.

Note that range constraints are stored internally as equality constraints. We add an extra variable to the model
to capture the range information. Thus, the Sense attribute on a range constraint will always be GRB_EQUAL. In
particular introducing a range constraint

L ≤ aTx ≤ U

is equivalent to adding a slack variable s and the following constraints

aTx− s = L
0 ≤ s ≤ U − L.

GRBConstr addRange (const GRBLinExpr& expr,
double lower,
double upper,
string name="")

130

Arguments:
expr: Linear expression for new range constraint.
lower: Lower bound for linear expression.
upper: Upper bound for linear expression.
name (optional): Name for new constraint.

Return value:
New constraint object.

GRBModel::addRanges()
Add new range constraints to a model. A range constraint states that the value of the input expression must be
between the specified lower and upper bounds in any solution.

GRBConstr* addRanges (const GRBLinExpr* exprs,
const double* lower,
const double* upper,
const string* names,
int count)

Arguments:
exprs: Linear expressions for the new range constraints.
lower: Lower bounds for linear expressions.
upper: Upper bounds for linear expressions.
name: Names for new range constraints.
count: Number of range constraints to add.

Return value:
Array of new constraint objects. Note that the result is heap-allocated, and must be returned to the heap
by the user.

GRBModel::addSOS()
Add an SOS constraint to the model. Please refer to this section for details on SOS constraints.

GRBSOS addSOS (const GRBVar* vars,
const double* weights,
int len,
int type)

Arguments:
vars: Array of variables that participate in the SOS constraint.
weights: Weights for the variables in the SOS constraint.
len: Number of members in the new SOS set (length of vars and weights arrays).
type: SOS type (can be GRB_SOS_TYPE1 or GRB_SOS_TYPE2).

Return value:
New SOS constraint.

GRBModel::addVar()
Add a single decision variable to a model.

GRBVar addVar (double lb,
double ub,
double obj,
char type,
string name="")

131

Add a variable; non-zero entries will be added later.
Arguments:

lb: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or GRB_-
SEMIINT).

name (optional): Name for new variable.
Return value:

New variable object.

GRBVar addVar (double lb,
double ub,
double obj,
char type,
int numnz,
const GRBConstr* constrs,
const double* coeffs,
string name="")

Add a variable, and the associated non-zero coefficients.
Arguments:

lb: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or GRB_-
SEMIINT).

numnz: Number of constraints in which this new variable participates.
constrs: Array of constraints in which the variable participates.
coeffs: Array of coefficients for each constraint in which the variable participates.
name (optional): Name for new variable.

Return value:
New variable object.

GRBVar addVar (double lb,
double ub,
double obj,
char type,
const GRBColumn& col,
string name="")

Add a variable, and the associated non-zero coefficients.
Arguments:

lb: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or GRB_-
SEMIINT).

col: GRBColumn object for specifying a set of constraints to which new variable belongs.
name (optional): Name for new variable.

Return value:
New variable object.

132

GRBModel::addVars()
Add new decision variables to a model.

GRBVar* addVars (int count,
char type=GRB_CONTINUOUS)

Add count new decision variables to a model. All associated attributes take their default values, except the
variable type, which is specified as an argument.

Arguments:
count: Number of variables to add.
type (optional): Variable type for new variables (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT,
or GRB_SEMIINT).

Return value:
Array of new variable objects. Note that the result is heap-allocated, and must be returned to the heap by
the user.

GRBVar* addVars (const double* lb,
const double* ub,
const double* obj,
const char* type,
const string* names,
int count)

Add count new decision variables to a model. This signature allows you to use arrays to hold the various variable
attributes (lower bound, upper bound, etc.).

Arguments:
lb: Lower bounds for new variables. Can be NULL, in which case the variables get lower bounds of 0.0.
ub: Upper bounds for new variables. Can be NULL, in which case the variables get infinite upper bounds.
obj: Objective coefficients for new variables. Can be NULL, in which case the variables get objective coefficients
of 0.0.

type: Variable types for new variables (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or GRB_-
SEMIINT). Can be NULL, in which case the variables are assumed to be continuous.

names: Names for new variables. Can be NULL, in which case all variables are given default names.
count: The number of variables to add.

Return value:
Array of new variable objects. Note that the result is heap-allocated, and must be returned to the heap by
the user.

GRBVar* addVars (const double* lb,
const double* ub,
const double* obj,
const char* type,
const string* names,
const GRBColumn* cols,
int count)

Add new decision variables to a model. This signature allows you to specify the set of constraints to which each
new variable belongs using an array of GRBColumn objects.

Arguments:
lb: Lower bounds for new variables. Can be NULL, in which case the variables get lower bounds of 0.0.
ub: Upper bounds for new variables. Can be NULL, in which case the variables get infinite upper bounds.
obj: Objective coefficients for new variables. Can be NULL, in which case the variables get objective coefficients
of 0.0.

type: Variable types for new variables (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or GRB_-
SEMIINT). Can be NULL, in which case the variables are assumed to be continuous.

names: Names for new variables. Can be NULL, in which case all variables are given default names.

133

cols: GRBColumn objects for specifying a set of constraints to which each new column belongs.
count: The number of variables to add.

Return value:
Array of new variable objects. Note that the result is heap-allocated, and must be returned to the heap by
the user.

GRBModel::chgCoeff()
Change one coefficient in the model. The desired change is captured using a GRBVar object, a GRBConstr object, and
a desired coefficient for the specified variable in the specified constraint. If you make multiple changes to the same
coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you update the model
(using GRBModel::update), optimize the model (using GRBModel::optimize), or write the model to disk (using
GRBModel::write).

void chgCoeff (GRBConstr constr,
GRBVar var,
double newvalue)

Arguments:
constr: Constraint for coefficient to be changed.
var: Variable for coefficient to be changed.
newvalue: Desired new value for coefficient.

GRBModel::chgCoeffs()
Change a list of coefficients in the model. Each desired change is captured using a GRBVar object, a GRBConstr object,
and a desired coefficient for the specified variable in the specified constraint. The entries in the input arrays each
correspond to a single desired coefficient change. If you make multiple changes to the same coefficient, the last one
will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you update the model
(using GRBModel::update), optimize the model (using GRBModel::optimize), or write the model to disk (using
GRBModel::write).

void chgCoeffs (const GRBConstr* constrs,
const GRBVar* vars,
const double* vals,
int len)

Arguments:
constrs: Constraints for coefficients to be changed.
vars: Variables for coefficients to be changed.
vals: Desired new values for coefficients.
len: Number of coefficients to change (length of vars, constrs, and vals arrays).

GRBModel::computeIIS()
Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and variable bounds with
the following properties:

• It is still infeasible, and

• If a single constraint or bound is removed, the subsystem becomes feasible.

134

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily the smallest
one; there may exist others with fewer constraints or bounds.

IIS results are returned in a number of attributes: IISConstr, IISLB, IISUB, IISSOS, IISQConstr, and IISGen-
Constr. Each indicates whether the corresponding model element is a member of the computed IIS.

The IIS log provides information about the progress of the algorithm, including a guess at the eventual IIS size.
If an IIS computation is interrupted before completion, Gurobi will return the smallest infeasible subsystem found

to that point.
The IISConstrForce, IISLBForce, IISUBForce, IISSOSForce, IISQConstrForce, and IISGenConstrForce attributes

allow you mark model elements to either include or exclude from the computed IIS. Setting the attribute to 1 forces
the corresponding element into the IIS, setting it to 0 forces it out of the IIS, and setting it to -1 allows the algorithm
to decide.

To give an example of when these attributes might be useful, consider the case where an initial model is known
to be feasible, but it becomes infeasible after adding constraints or tightening bounds. If you are only interested
in knowing which of the changes caused the infeasibility, you can force the unmodified bounds and constraints into
the IIS. That allows the IIS algorithm to focus exclusively on the new constraints, which will often be substantially
faster.

Note that setting any of the Force attributes to 0 may make the resulting subsystem feasible, which would
then make it impossible to construct an IIS. Trying anyway will result in a GRB_ERROR_IIS_NOT_INFEASIBLE error.
Similarly, setting this attribute to 1 may result in an IIS that is not irreducible. More precisely, the system would
only be irreducible with respect to the model elements that have force values of -1 or 0.

This method populates the IISConstr, IISQConstr, and IISGenConstr constraint attributes, the IISSOS, SOS
attribute, and the IISLB and IISUB variable attributes. You can also obtain information about the results of the IIS
computation by writing a .ilp format file (see GRBModel::write). This file contains only the IIS from the original
model.

Use the IISMethod parameter to adjust the behavior of the IIS algorithm.
Note that this method can be used to compute IISs for both continuous and MIP models.

void computeIIS ()

GRBModel::discardConcurrentEnvs()
Discard concurrent environments for a model.

The concurrent environments created by getConcurrentEnv will be used by every subsequent call to the concurrent
optimizer until the concurrent environments are discarded.

void discardConcurrentEnvs ()

GRBModel::discardMultiobjEnvs()
Discard all multi-objective environments associated with the model, thus restoring multi objective optimization to
its default behavior.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple objective functions
and control the trade-off between them.

Use getMultiobjEnv to create a multi-objective environment.

void discardMultiobjEnvs ()

135

GRBModel::feasRelax()
Modifies the GRBModel object to create a feasibility relaxation. Note that you need to call optimize on the result to
compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the solution violates the
bounds and linear constraints of the original model. This method provides a number of options for specifying the
relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the sum of the weighted
magnitudes of the bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the cost per
unit violation in the lower bounds, upper bounds, and linear constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the weighted sum of the
squares of the bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the coefficients on
the squares of the lower bound, upper bound, and linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the weighted count of
bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the cost of violating a lower
bound, upper bound, and linear constraint, respectively.

To give an example, if a constraint with rhspen value p is violated by 2.0, it would contribute 2*p to the feasibility
relaxation objective for relaxobjtype=0, it would contribute 2*2*p for relaxobjtype=1, and it would contribute p
for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is created. If minrelax=false,
optimizing the returned model gives a solution that minimizes the cost of the violation. If minrelax=true, optimizing
the returned model finds a solution that minimizes the original objective, but only from among those solutions that
minimize the cost of the violation. Note that feasRelax must solve an optimization problem to find the minimum
possible relaxation when minrelax=true, which can be quite expensive.

There are two signatures for this method. The more complex one takes a list of variables and constraints, as well
as penalties associated with relaxing the corresponding lower bounds, upper bounds, and constraints. If a variable
or constraint is not included in one of these lists, the associated bounds or constraints may not be violated. The
simpler signature takes a pair of boolean arguments, vrelax and crelax, that indicate whether variable bounds
and/or constraints can be violated. If vrelax/crelax is true, then every bound/constraint is allowed to be violated,
respectively, and the associated cost is 1.0.

Note that this is a destructive method: it modifies the model on which it is invoked. If you don’t want to modify
your original model, use the GRBModel constructor to create a copy before invoking this method.

double feasRelax (int relaxobjtype,
bool minrelax,
int vlen,
const GRBVar* vars,
const double* lbpen,
const double* ubpen,
int clen,
const GRBConstr* constrs,
const double* rhspen)

Create a feasibility relaxation model.
Arguments:

relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vlen: The length of the list of variables whose bounds are allowed to be violated.
vars: Variables whose bounds are allowed to be violated.
lbpen: Penalty for violating a variable lower bound. One entry for each variable in argument vars.
ubpen: Penalty for violating a variable upper bound. One entry for each variable in argument vars.
clen: The length of the list of linear constraints that are allowed to be violated.
constrs: Linear constraints that are allowed to be violated.
rhspen: Penalty for violating a linear constraint. One entry for each constraint in argument constrs.

Return value:
Zero if minrelax is false. If minrelax is true, the return value is the objective value for the relaxation
performed. If the value is less than 0, it indicates that the method failed to create the feasibility relaxation.

136

double feasRelax (int relaxobjtype,
bool minrelax,
bool vrelax,
bool crelax)

Simplified method for creating a feasibility relaxation model.
Arguments:

relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vrelax: Indicates whether variable bounds can be relaxed (with a cost of 1.0 for any violations.
crelax: Indicates whether linear constraints can be relaxed (with a cost of 1.0 for any violations.

Return value:
Zero if minrelax is false. If minrelax is true, the return value is the objective value for the relaxation
performed. If the value is less than 0, it indicates that the method failed to create the feasibility relaxation.

GRBModel::fixedModel()
Create the fixed model associated with a MIP model. The MIP model must have a solution loaded (e.g., after a call
to the optimize method). In the fixed model, each integer variable is fixed to the value that variable takes in the MIP
solution. In addition, continuous variables may be fixed to satisfy SOS or general constraints. The result is a model
without any integrality constraints, SOS constraints, or general constraints.

Note that, while the fixed problem is always a continuous model, it may contain a non-convex quadratic objective
or non-convex quadratic constraints. As a result, it may still be solved using the MIP algorithm.

GRBModel fixedModel ()
Return value:

Fixed model associated with calling object.

GRBModel::get()
Query the value(s) of a parameter or attribute. Use this method for parameters, for scalar model attributes, or for
arrays of constraint or variable attributes.

double get (GRB_DoubleParam param)

Query the value of a double-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

int get (GRB_IntParam param)

Query the value of an int-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

string get (GRB_StringParam param)

Query the value of a string-valued parameter.

137

Arguments:
param: The parameter being queried.

Return value:
The current value of the requested parameter.

char* get (GRB_CharAttr attr,
const GRBVar* vars,
int count)

Query a char-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.

Return value:
The current values of the requested attribute for each input variable. Note that the result is heap-allocated,
and must be returned to the heap by the user.

char* get (GRB_CharAttr attr,
const GRBConstr* constrs,
int count)

Query a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input constraint. Note that the result is heap-allocated,
and must be returned to the heap by the user.

char* get (GRB_CharAttr attr,
const GRBQConstr* qconstrs,
int count)

Query a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of quadratic constraints whose attribute values are being queried.
count: The number of quadratic constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input quadratic constraint. Note that the result is
heap-allocated, and must be returned to the heap by the user.

double get (GRB_DoubleAttr attr)

Query the value of a double-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double* get (GRB_DoubleAttr attr,
const GRBVar* vars,
int count)

138

Query a double-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.

Return value:
The current values of the requested attribute for each input variable. Note that the result is heap-allocated,
and must be returned to the heap by the user.

double* get (GRB_DoubleAttr attr,
const GRBConstr* constrs,
int count)

Query a double-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input constraint. Note that the result is heap-allocated,
and must be returned to the heap by the user.

double* get (GRB_DoubleAttr attr,
const GRBQConstr* qconstrs,
int count)

Query a double-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of quadratic constraints whose attribute values are being queried.
count: The number of quadratic constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input quadratic constraint. Note that the result is
heap-allocated, and must be returned to the heap by the user.

int get (GRB_IntAttr attr)

Query the value of an int-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int* get (GRB_IntAttr attr,
const GRBVar* vars,
int count)

Query an int-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.

Return value:
The current values of the requested attribute for each input variable. Note that the result is heap-allocated,
and must be returned to the heap by the user.

139

int* get (GRB_IntAttr attr,
const GRBConstr* constrs,
int count)

Query an int-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input constraint. Note that the result is heap-allocated,
and must be returned to the heap by the user.

string get (GRB_StringAttr attr)

Query the value of a string-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

string* get (GRB_StringAttr attr,
const GRBVar* vars,
int count)

Query a string-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.

Return value:
The current values of the requested attribute for each input variable. Note that the result is heap-allocated,
and must be returned to the heap by the user.

string* get (GRB_StringAttr attr,
const GRBConstr* constrs,
int count)

Query a string-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input constraint. Note that the result is heap-allocated,
and must be returned to the heap by the user.

string* get (GRB_StringAttr attr,
const GRBQConstr* qconstrs,
int count)

Query a string-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of quadratic constraints whose attribute values are being queried.
count: The number of quadratic constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input quadratic constraint. Note that the result is
heap-allocated, and must be returned to the heap by the user.

140

GRBModel::getCoeff()
Query the coefficient of variable var in linear constraint constr (note that the result can be zero).

double getCoeff (GRBConstr constr,
GRBVar var)

Arguments:
constr: The requested constraint.
var: The requested variable.

Return value:
The current value of the requested coefficient.

GRBModel::getCol()
Retrieve the list of constraints in which a variable participates, and the associated coefficients. The result is returned
as a GRBColumn object.

GRBColumn getCol (GRBVar var)

Arguments:
var: The variable of interest.

Return value:
A GRBColumn object that captures the set of constraints in which the variable participates.

GRBModel::getConcurrentEnv()
Create/retrieve a concurrent environment for a model.

This method provides fine-grained control over the concurrent optimizer. By creating your own concurrent
environments and setting appropriate parameters on these environments (e.g., the Method parameter), you can control
exactly which strategies the concurrent optimizer employs. For example, if you create two concurrent environments,
and set Method to primal simplex for one and dual simplex for the other, subsequent concurrent optimizer runs will
use the two simplex algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with num=0. For example,
if you want three concurrent environments, they must be numbered 0, 1, and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent optimization on
that model. Use discardConcurrentEnvs to revert back to default concurrent optimizer behavior.

GRBEnv getConcurrentEnv (int num)

Arguments:
num: The concurrent environment number.

Return value:
The concurrent environment for the model.

GRBModel::getConstrByName()
Retrieve a linear constraint from its name. If multiple linear constraints have the same name, this method chooses
one arbitrarily.

GRBConstr getConstrByName (const string& name)

141

Arguments:
name: The name of the desired linear constraint.

Return value:
The requested linear constraint.

GRBModel::getConstrs()
Retrieve an array of all linear constraints in the model.

GRBConstr* getConstrs ()
Return value:

An array of all linear constraints in the model. Note that this array is heap-allocated, and must be returned
to the heap by the user.

GRBModel::getGenConstrXxx()
The following methods allow you to retrieve general constraints from your model.

GRBModel::getGenConstrMax

Retrieve the data associated with a general constraint of type MAX. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
NULL value for the vars argument. The routine returns the total number of operand variables in the specified general
constraint in lenP. That allows you to make certain that the vars array is of sufficient size to hold the result of the
second call.

See also addGenConstrMax for a description of the semantics of this general constraint type.

void getGenConstrMax (GRBGenConstr genc,
GRBVar* resvarP,
GRBVar* vars,
int* lenP,
double* constantP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.
constantP: Pointer to store the additional constant operand of the constraint.

GRBModel::getGenConstrMin

Retrieve the data associated with a general constraint of type MIN. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
NULL value for the vars argument. The routine returns the total number of operand variables in the specified general
constraint in lenP. That allows you to make certain that the vars array is of sufficient size to hold the result of the
second call.

See also addGenConstrMin for a description of the semantics of this general constraint type.

142

void getGenConstrMin (GRBGenConstr genc,
GRBVar* resvarP,
GRBVar* vars,
int* lenP,
double* constantP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.
constantP: Pointer to store the additional constant operand of the constraint.

GRBModel::getGenConstrAbs

Retrieve the data associated with a general constraint of type ABS. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrAbs for a description of the semantics of this general constraint type.

void getGenConstrAbs (GRBGenConstr genc,
GRBVar* resvarP,
GRBVar* argvarP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
argvarP: Pointer to store the argument variable of the constraint.

GRBModel::getGenConstrAnd

Retrieve the data associated with a general constraint of type AND. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
NULL value for the vars argument. The routine returns the total number of operand variables in the specified general
constraint in lenP. That allows you to make certain that the vars array is of sufficient size to hold the result of the
second call.

See also addGenConstrAnd for a description of the semantics of this general constraint type.

void getGenConstrAnd (GRBGenConstr genc,
GRBVar* resvarP,
GRBVar* vars,
int* lenP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.

143

GRBModel::getGenConstrOr

Retrieve the data associated with a general constraint of type OR. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
NULL value for the vars argument. The routine returns the total number of operand variables in the specified general
constraint in lenP. That allows you to make certain that the vars array is of sufficient size to hold the result of the
second call.

See also addGenConstrOr for a description of the semantics of this general constraint type.

void getGenConstrOr (GRBGenConstr genc,
GRBVar* resvarP,
GRBVar* vars,
int* lenP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.

GRBModel::getGenConstrNorm

Retrieve the data associated with a general constraint of type NORM. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
NULL value for the vars argument. The routine returns the total number of operand variables in the specified general
constraint in lenP. That allows you to make certain that the vars array is of sufficient size to hold the result of the
second call.

See also addGenConstrNorm for a description of the semantics of this general constraint type.

void getGenConstrNorm (GRBGenConstr genc,
GRBVar* resvarP,
GRBVar* vars,
int* lenP,
double* whichP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.
whichP: Pointer to store the norm type (possible values are 0, 1, 2, or GRB_INFINITY).

GRBModel::getGenConstrIndicator

Retrieve the data associated with a general constraint of type INDICATOR. Calling this method for a general
constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the
type of the general constraint.

See also addGenConstrIndicator for a description of the semantics of this general constraint type.

144

void getGenConstrIndicator (GRBGenConstr genc,
GRBVar* binvarP,
int* binvalP,
GRBLinExpr* exprP,
char* senseP,
double* rhsP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
binvarP: Pointer to store the binary indicator variable of the constraint.
binvalP: Pointer to store the value that the indicator variable has to take in order to trigger the linear
constraint.

exprP: Pointer to a GRBLinExpr object to store the left-hand side expression of the linear constraint that is
triggered by the indicator.

senseP: Pointer to store the sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or
GRB_GREATER_EQUAL.

rhsP: Pointer to store the right-hand side value for the linear constraint.

GRBModel::getGenConstrPWL

Retrieve the data associated with a general constraint of type PWL. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
NULL value for the xpts and ypts arguments. The routine returns the length for the xpts and ypts arrays in nptsP.
That allows you to make certain that the xpts and ypts arrays are of sufficient size to hold the result of the second
call.

See also addGenConstrPWL for a description of the semantics of this general constraint type.

void getGenConstrPWL (GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP,
int* nptsP,
double* xpts,
double* ypts)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.
nptsP: Pointer to store the number of points that define the piecewise-linear function.
xpts: The x values for the points that define the piecewise-linear function.
ypts: The y values for the points that define the piecewise-linear function.

GRBModel::getGenConstrPoly

Retrieve the data associated with a general constraint of type POLY. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with
a NULL value for the p argument. The routine returns the length of the p array in plenP. That allows you to make
certain that the p array is of sufficient size to hold the result of the second call.

See also addGenConstrPoly for a description of the semantics of this general constraint type.

145

void getGenConstrPoly (GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP,
int* plenP,
double* p)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.
plenP: Pointer to store the array length for p. If xd is the highest power term, then d+ 1 will be returned.
p: The coefficients for polynomial function.

GRBModel::getGenConstrExp

Retrieve the data associated with a general constraint of type EXP. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrExp for a description of the semantics of this general constraint type.

void getGenConstrExp (GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.

GRBModel::getGenConstrExpA

Retrieve the data associated with a general constraint of type EXPA. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrExpA for a description of the semantics of this general constraint type.

void getGenConstrExpA (GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP,
double* aP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.
aP: Pointer to store the base of the function.

GRBModel::getGenConstrLog

Retrieve the data associated with a general constraint of type LOG. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrLog for a description of the semantics of this general constraint type.

146

void getGenConstrLog (GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.

GRBModel::getGenConstrLogA

Retrieve the data associated with a general constraint of type LOGA. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrLogA for a description of the semantics of this general constraint type.

void getGenConstrLogA (GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP,
double* aP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.
aP: Pointer to store the base of the function.

GRBModel::getGenConstrLogistic

Retrieve the data associated with a general constraint of type LOGISTIC. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrLogistic for a description of the semantics of this general constraint type.

void getGenConstrLogistic (GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.

GRBModel::getGenConstrPow

Retrieve the data associated with a general constraint of type POW. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrPow for a description of the semantics of this general constraint type.

void getGenConstrPow (GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP,
double* aP)

147

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.
aP: Pointer to store the exponent of the function.

GRBModel::getGenConstrSin

Retrieve the data associated with a general constraint of type SIN. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrSin for a description of the semantics of this general constraint type.

void getGenConstrSin (GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.

GRBModel::getGenConstrCos

Retrieve the data associated with a general constraint of type COS. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrCos for a description of the semantics of this general constraint type.

void getGenConstrCos (GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.

GRBModel::getGenConstrTan

Retrieve the data associated with a general constraint of type TAN. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrTan for a description of the semantics of this general constraint type.

void getGenConstrTan (GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.

148

GRBModel::getGenConstrs()
Retrieve an array of all general constraints in the model.

GRBGenConstr* getGenConstrs ()
Return value:

An array of all general constraints in the model. Note that this array is heap-allocated, and must be returned
to the heap by the user.

GRBModel::getJSONSolution()
After a call to optimize, this method returns the resulting solution and related model attributes as a JSON string.
Please refer to the JSON solution format section for details.

getJSONSolution GRBModel ()
Return value:

A JSON string.

GRBModel::getMultiobjEnv()
Create/retrieve a multi-objective environment for the objective with the given index. This environment enables
fine-grained control over the multi-objective optimization process. Specifically, by changing parameters on this
environment, you modify the behavior of the optimization that occurs during the corresponding pass of the multi-
objective optimization.

Each multi-objective environment starts with a copy of the current model environment.
Please refer to the discussion of Multiple Objectives for information on how to specify multiple objective functions

and control the trade-off between them.
Use discardMultiobjEnvs to discard multi-objective environments and return to standard behavior.

GRBEnv getMultiobjEnv (int index)

Arguments:
index: The objective index.

Return value:
The multi-objective environment for the model.

GRBModel::getObjective()
Retrieve the optimization objective(s).

GRBQuadExpr getObjective ()
Retrieve the optimization objective.
Note that the constant and linear portions of the objective can also be retrieved using the ObjCon and Obj

attributes.
Return value:

The model objective.

GRBLinExpr getObjective (int index)

149

Retrieve an alternative optimization objective. Alternative objectives will always be linear. You can also use this
routine to retrieve the primary objective (using index = 0), but you will get an exception if the primary objective
contains quadratic terms.

Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.
Note that alternative objectives can also be retrieved using the ObjNCon and ObjN attributes.
Arguments:

index: The index for the requested alternative objective.
Return value:

The requested alternate objective.

GRBModel::getPWLObj()
Retrieve the piecewise-linear objective function for a variable. The return value gives the number of points that define
the function, and the x and y arguments give the coordinates of the points, respectively. The x and y arguments
must be large enough to hold the result. Call this method with NULL values for x and y if you just want the number
of points.

Refer to this discussion for additional information on what the values in x and y mean.

int getPWLObj (GRBVar var,
double[] x,
double[] y)

Arguments:
var: The variable whose objective function is being retrieved.
x: The x values for the points that define the piecewise-linear function. These will always be in non-decreasing
order.

y: The y values for the points that define the piecewise-linear function.
Return value:

The number of points that define the piecewise-linear objective function.

GRBModel::getQCRow()
Retrieve the left-hand side expression from a quadratic constraint. The result is returned as a GRBQuadExpr object.

GRBQuadExpr getQCRow (GRBQConstr qconstr)

Arguments:
qconstr: The quadratic constraint of interest.

Return value:
A GRBQuadExpr object that captures the left-hand side of the quadratic constraint.

GRBModel::getQConstrs()
Retrieve an array of all quadratic constraints in the model.

GRBQConstr* getQConstrs ()
Return value:

An array of all quadratic constraints in the model. Note that this array is heap-allocated, and must be
returned to the heap by the user.

150

GRBModel::getRow()
Retrieve a list of variables that participate in a constraint, and the associated coefficients. The result is returned as
a GRBLinExpr object.

GRBLinExpr getRow (GRBConstr constr)

Arguments:
constr: The constraint of interest. A GRBConstr object, typically obtained from addConstr or getConstrs.

Return value:
A GRBLinExpr object that captures the set of variables that participate in the constraint.

GRBModel::getSOS()
Retrieve the list of variables that participate in an SOS constraint, and the associated coefficients. The return value
is the length of this list. If you would like to allocate space for the result before retrieving the result, call the method
first with NULL array arguments to determine the appropriate array lengths.

int getSOS (GRBSOS sos,
GRBVar* vars,
double* weights,
int* typeP)

Arguments:
sos: The SOS set of interest.
vars: A list of variables that participate in sos.
weights: The SOS weights for each participating variable.
typeP: The type of the SOS set (either GRB_SOS_TYPE1 or GRB_SOS_TYPE2).

Return value:
The length of the result arrays.

GRBModel::getSOSs()
Retrieve an array of all SOS constraints in the model.

GRBSOS* getSOSs ()
Return value:

An array of all SOS constraints in the model. Note that this array is heap-allocated, and must be returned
to the heap by the user.

GRBModel::getTuneResult()
Use this method to retrieve the results of a previous tune call. Calling this method with argument n causes tuned
parameter set n to be copied into the model. Parameter sets are stored in order of decreasing quality, with parameter
set 0 being the best. The number of available sets is stored in attribute TuneResultCount.

Once you have retrieved a tuning result, you can call optimize to use these parameter settings to optimize the
model, or write to write the changed parameters to a .prm file.

Please refer to the parameter tuning section for details on the tuning tool.

void getTuneResult (int n)

n: The index of the tuning result to retrieve. The best result is available as index 0. The number of stored
results is available in attribute TuneResultCount.

151

GRBModel::getVarByName()
Retrieve a variable from its name. If multiple variables have the same name, this method chooses one arbitrarily.

GRBVar getVarByName (const string& name)

Arguments:
name: The name of the desired variable.

Return value:
The requested variable.

GRBModel::getVars()
Retrieve an array of all variables in the model.

GRBVar* getVars ()
Return value:

An array of all variables in the model. Note that this array is heap-allocated, and must be returned to the
heap by the user.

GRBModel::optimize()
Optimize the model. The algorithm used for the optimization depends on the model type (simplex or barrier for
a continuous model; branch-and-cut for a MIP model). Upon successful completion, this method will populate the
solution related attributes of the model. See the Attributes section for more information on attributes.

Please consult this section for a discussion of some of the practical issues associated with solving a precisely
defined mathematical model using finite-precision floating-point arithmetic.

Note that this method will process all pending model modifications.

void optimize ()

GRBModel::optimizeasync()
Optimize a model asynchronously. This routine returns immediately. Your program can perform other computations
while optimization proceeds in the background. To check the state of the asynchronous optimization, query the
Status attribute for the model. A value of IN_PROGRESS indicates that the optimization has not yet completed. When
you are done with your foreground tasks, you must call sync to sync your foreground program with the asynchronous
optimization task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in the background
is severely limited. Specifically, you can only perform attribute queries, and only for a few attributes (listed below).
Any other calls on the running model, or on any other models that were built within the same Gurobi environment,
will fail with error code OPTIMIZATION_IN_PROGRESS.

Note that there are no such restrictions on models built in other environments. Thus, for example, you could
create multiple environments, and then have a single foreground program launch multiple simultaneous asynchronous
optimizations, each in its own environment.

As already noted, you are allowed to query the value of the Status attribute while an asynchronous optimization
is in progress. The other attributes that can be queried are: ObjVal, ObjBound, IterCount, NodeCount, and
BarIterCount. In each case, the returned value reflects progress in the optimization to that point. Any attempt to
query the value of an attribute not on this list will return an OPTIMIZATION_IN_PROGRESS error.

void optimizeasync ()

152

GRBModel::optimizeBatch()
Submit a new batch request to the Cluster Manager. Returns the BatchID (a string), which uniquely identifies the
job in the Cluster Manager and can be used to query the status of this request (from this program or from any other).
Once the request has completed, the BatchID can also be used to retrieve the associated solution. To submit a batch
request, you must tag at least one element of the model by setting one of the VTag, CTag or QCTag attributes. For
more details on batch optimization, please refer to the Batch Optimization section.

Note that this routine will process all pending model modifications.

string optimizeBatch ()
Example usage:

GRBModel::presolve()
Perform presolve on a model.

GRBModel presolve ()
Return value:

Presolved version of original model.

GRBModel::read()
This method is the general entry point for importing data from a file into a model. It can be used to read basis files
for continuous models, start vectors for MIP models, or parameter settings. The type of data read is determined by
the file suffix. File formats are described in the File Format section.

Note that this is not the method to use if you want to read a new model from a file. For that, use the GRBModel
constructor. One variant of the constructor takes the name of the file that contains the new model as its argument.

void read (const string& filename)

Arguments:
filename: Name of the file to read. The suffix on the file must be either .bas (for an LP basis), .mst or
.sol (for a MIP start), .hnt (for MIP hints), .ord (for a priority order), or .prm (for a parameter file).
The suffix may optionally be followed by .zip, .gz, .bz2, or .7z.

GRBModel::remove()
Remove a variable, constraint, or SOS from a model.

void remove (GRBConstr constr)

Remove a linear constraint from the model. Note that, due to our lazy update approach, the change won’t actually
take effect until you update the model (using GRBModel::update), optimize the model (using GRBModel::optimize),
or write the model to disk (using GRBModel::write).

Arguments:
constr: The linear constraint to remove.

void remove (GRBGenConstr genconstr)

153

Remove a general constraint from the model. Note that, due to our lazy update approach, the change won’t actu-
ally take effect until you update the model (using GRBModel::update), optimize the model (using GRBModel::optimize),
or write the model to disk (using GRBModel::write).

Arguments:
genconstr: The general constraint to remove.

void remove (GRBQConstr qconstr)

Remove a quadratic constraint from the model. Note that, due to our lazy update approach, the change
won’t actually take effect until you update the model (using GRBModel::update), optimize the model (using GRB-
Model::optimize), or write the model to disk (using GRBModel::write).

Arguments:
qconstr: The quadratic constraint to remove.

void remove (GRBSOS sos)

Remove an SOS constraint from the model. Note that, due to our lazy update approach, the change won’t actually
take effect until you update the model (using GRBModel::update), optimize the model (using GRBModel::optimize),
or write the model to disk (using GRBModel::write).

Arguments:
sos: The SOS constraint to remove.

void remove (GRBVar var)

Remove a variable from the model. Note that, due to our lazy update approach, the change won’t actually take
effect until you update the model (using GRBModel::update), optimize the model (using GRBModel::optimize), or
write the model to disk (using GRBModel::write).

Arguments:
var: The variable to remove.

GRBModel::reset()

void reset (int clearall=0)

Reset the model to an unsolved state, discarding any previously computed solution information. Note that,
due to our lazy update approach, the change won’t actually take effect until you update the model (using GRB-
Model::update), optimize the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

clearall (optional): A value of 1 discards additional information that affects the solution process but
not the actual model (currently MIP starts, variable hints, branching priorities, lazy flags, and partition
information). The default value of 0 just discards the solution.

Arguments:

GRBModel::setCallback()
Set the callback object for a model. The callback() method on this object will be called periodically from the
Gurobi solver. You will have the opportunity to obtain more detailed information about the state of the optimization
from this callback. See the documentation for GRBCallback for additional information.

Note that a model can only have a single callback method, so this call will replace an existing callback. To disable
a previously set callback, call this method with a NULL argument.

void setCallback (GRBCallback* cb)

154

GRBModel::set()
Set the value(s) of a parameter or attribute. Use this method for parameters, for scalar model attributes, and for
arrays of constraint or variable attributes.

void set (GRB_DoubleParam param,
double newvalue)

Set the value of a double-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e., through GR-

BEnv::set) is that the former modifies the parameter for a single model, while the latter modifies the parameter for
every model that is subsequently built using that environment (and leaves the parameter unchanged for models that
were previously built using that environment).

Arguments:
param: The parameter being modified.
newvalue: The desired new value for the parameter.

void set (GRB_IntParam param,
int newvalue)

Set the value of an int-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e., through GR-

BEnv::set) is that the former modifies the parameter for a single model, while the latter modifies the parameter for
every model that is subsequently built using that environment (and leaves the parameter unchanged for models that
were previously built using that environment).

Arguments:
param: The parameter being modified.
newvalue: The desired new value for the parameter.

void set (GRB_StringParam param,
string newvalue)

Set the value of a string-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e., through GR-

BEnv::set) is that the former modifies the parameter for a single model, while the latter modifies the parameter for
every model that is subsequently built using that environment (and leaves the parameter unchanged for models that
were previously built using that environment).

Arguments:
param: The parameter being modified.
newvalue: The desired new value for the parameter.

void set (GRB_CharAttr attr,
const GRBVar* vars,
char* newvalues,
int count)

Set a char-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

void set (GRB_CharAttr attr,
const GRBConstr* constrs,
char* newvalues,
int count)

155

Set a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

void set (GRB_CharAttr attr,
const GRBQConstr* qconstrs,
char* newvalues,
int count)

Set a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
constrs: An array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
count: The number of quadratic constraint attributes to set.

void set (GRB_DoubleAttr attr,
double newvalue)

Set the value of a double-valued model attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void set (GRB_DoubleAttr attr,
const GRBVar* vars,
double* newvalues,
int count)

Set a double-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

void set (GRB_DoubleAttr attr,
const GRBConstr* constrs,
double* newvalues,
int count)

Set a double-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

void set (GRB_DoubleAttr attr,
const GRBQConstr* qconstrs,
double* newvalues,
int count)

Set a double-valued quadratic constraint attribute for an array of quadratic constraints.

156

Arguments:
attr: The attribute being modified.
constrs: An array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
count: The number of quadratic constraint attributes to set.

void set (GRB_IntAttr attr,
int newvalue)

Set the value of an int-valued model attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void set (GRB_IntAttr attr,
const GRBVar* vars,
int* newvalues,
int count)

Set an int-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

void set (GRB_IntAttr attr,
const GRBConstr* constrs,
int* newvalues,
int count)

Set an int-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

void set (GRB_StringAttr attr,
string newvalue)

Set the value of a string-valued model attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void set (GRB_StringAttr attr,
const GRBVar* vars,
string* newvalues,
int count)

Set a string-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

157

void set (GRB_StringAttr attr,
const GRBConstr* constrs,
string* newvalues,
int count)

Set a string-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

void set (GRB_StringAttr attr,
const GRBQConstr* qconstrs,
string* newvalues,
int count)

Set a string-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
constrs: An array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
count: The number of quadratic constraint attributes to set.

GRBModel::setObjective()
Set the model objective equal to a linear or quadratic expression (for multi-objective optimization, see setObjectiveN).

Note that you can also modify the linear portion of a model objective using the Obj variable attribute. If you
wish to mix and match these two approaches, please note that this method replaces the entire existing objective,
while the Obj attribute can be used to modify individual linear terms.

void setObjective (GRBLinExpr linexpr,
int sense=0)

Arguments:
linexpr: New linear model objective.
sense (optional): Optimization sense (GRB_MINIMIZE for minimization, GRB_MAXIMIZE for maximization).
Omit this argument to use the ModelSense attribute value to determine the sense.

void setObjective (GRBQuadExpr quadexpr,
int sense=0)

Arguments:
quadexpr: New quadratic model objective.
sense (optional): Optimization sense (GRB_MINIMIZE for minimization, GRB_MAXIMIZE for maximization).
Omit this argument to use the ModelSense attribute value.

GRBModel::setObjectiveN()

void setObjectiveN (GRBLinExpr expr,
int index,
int priority=0,
double weight=1,
double abstol=0,
double reltol=0,
string name="")

158

Set an alternative optimization objective equal to a linear expression.
Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.
Note that you can also modify an alternative objective using the ObjN variable attribute. If you wish to mix

and match these two approaches, please note that this method replaces the entire existing objective, while the ObjN
attribute can be used to modify individual terms.

Arguments:
expr: New alternative objective.
index: Index for new objective. If you use an index of 0, this routine will change the primary optimization
objective.

priority: Priority for the alternative objective. This initializes the ObjNPriority attribute for this objective.
weight: Weight for the alternative objective. This initializes the ObjNWeight attribute for this objective.
abstol: Absolute tolerance for the alternative objective. This initializes the ObjNAbsTol attribute for this
objective.

reltol: Relative tolerance for the alternative objective. This initializes the ObjNRelTol attribute for this
objective.

name: Name of the alternative objective. This initializes the ObjNName attribute for this objective.

GRBModel::setPWLObj()
Set a piecewise-linear objective function for a variable.

The arguments to this method specify a list of points that define a piecewise-linear objective function for a single
variable. Specifically, the x and y arguments give coordinates for the vertices of the function.

For additional details on piecewise-linear objective functions, refer to this discussion.

void setPWLObj (GRBvar var,
int npoints,
double[] x,
double[] y)

Set the piecewise-linear objective function for a variable.
Arguments:

var: The variable whose objective function is being set.
npoints: Number of points that define the piecewise-linear function.
x: The x values for the points that define the piecewise-linear function. Must be in non-decreasing order.
y: The y values for the points that define the piecewise-linear function.

GRBModel::singleScenarioModel()
Capture a single scenario from a multi-scenario model. Use the ScenarioNumber parameter to indicate which scenario
to capture.

The model on which this method is invoked must be a multi-scenario model, and the result will be a single-scenario
model.

GRBModel singleScenarioModel ()
Return value:

Model for a single scenario.

GRBModel::sync()
Wait for a previous asynchronous optimization call to complete.

Calling optimizeasync returns control to the calling routine immediately. The caller can perform other compu-
tations while optimization proceeds, and can check on the progress of the optimization by querying various model
attributes. The sync call forces the calling program to wait until the asynchronous optimization call completes. You
must call sync before the corresponding model object is deleted.

159

The sync call throws an exception if the optimization itself ran into any problems. In other words, excep-
tions thrown by this method are those that optimize itself would have thrown, had the original method not been
asynchronous.

Note that you need to call sync even if you know that the asynchronous optimization has already completed.

void sync ()

GRBModel::terminate()
Generate a request to terminate the current optimization. This method can be called at any time during an opti-
mization (from a callback, from another thread, from an interrupt handler, etc.). Note that, in general, the request
won’t be acted upon immediately.

When the optimization stops, the Status attribute will be equal to GRB_INTERRUPTED.

void terminate ()

GRBModel::tune()
Perform an automated search for parameter settings that improve performance. Upon completion, this method stores
the best parameter sets it found. The number of stored parameter sets can be determined by querying the value of
the TuneResultCount attribute. The actual settings can be retrieved using getTuneResult.

Please refer to the parameter tuning section for details on the tuning tool.

void tune ()

GRBModel::update()
Process any pending model modifications.

void update ()

GRBModel::write()
This method is the general entry point for writing optimization data to a file. It can be used to write optimization
models, solutions vectors, basis vectors, start vectors, or parameter settings. The type of data written is determined
by the file suffix. File formats are described in the File Format section.

Note that writing a model to a file will process all pending model modifications. This is also true when writing
other model information such as solutions, bases, etc.

Note also that when you write a Gurobi parameter file (PRM), both integer or double parameters not at their
default value will be saved, but no string parameter will be saved into the file.

void write (const string& filename)

Arguments:
filename: The name of the file to be written. The file type is encoded in the file name suffix. Valid suffixes
are .mps, .rew, .lp, or .rlp for writing the model itself, .dua or .dlp for writing the dualized model (only
pure LP), .ilp for writing just the IIS associated with an infeasible model (see GRBModel::computeIIS
for further information), .sol for writing the solution selected by the SolutionNumber parameter, .mst for
writing a start vector, .hnt for writing a hint file, .bas for writing an LP basis, .prm for writing modified
parameter settings, .attr for writing model attributes, or .json for writing solution information in JSON
format. If your system has compression utilities installed (e.g., 7z or zip for Windows, and gzip, bzip2,
or unzip for Linux or macOS), then the files can be compressed, so additional suffixes of .gz, .bz2, or .7z
are accepted.

160

4.3 GRBVar
Gurobi variable object. Variables are always associated with a particular model. You create a variable object by
adding a variable to a model (using GRBModel::addVar), rather than by using a GRBVar constructor.

The methods on variable objects are used to get and set variable attributes. For example, solution information
can be queried by calling get(GRB_DoubleAttr_X). Note that you can also query attributes for a set of variables at
once. This is done using the attribute query method on the GRBModel object (GRBModel::get).

GRBVar::get()
Query the value of a variable attribute.

char get (GRB_CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double get (GRB_DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int get (GRB_IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

string get (GRB_StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBVar::index()

int index ()
This method returns the current index, or order, of the variable in the underlying constraint matrix.
Return value:

-2: removed, -1: not in model, otherwise: index of the variable in the model
Note that the index of a variable may change after subsequent model modifications.

161

GRBVar::sameAs()

bool sameAs (GRBVar var2)

Check whether two variable objects refer to the same variable.
Arguments:

var2: The other variable.
Return value:

Boolean result indicates whether the two variable objects refer to the same model variable.

GRBVar::set()
Set the value of a variable attribute.

void set (GRB_CharAttr attr,
char newvalue)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_DoubleAttr attr,
double newvalue)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_IntAttr attr,
int newvalue)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_StringAttr attr,
const string& newvalue)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

162

4.4 GRBConstr
Gurobi constraint object. Constraints are always associated with a particular model. You create a constraint object
by adding a constraint to a model (using GRBModel::addConstr), rather than by using a GRBConstr constructor.

The methods on constraint objects are used to get and set constraint attributes. For example, constraint right-
hand sides can be queried by calling get(GRB_DoubleAttr_RHS). Note that you can also query attributes for a set of
constraints at once. This is done using the attribute query method on the GRBModel object (GRBModel::get).

GRBConstr::get()
Query the value of a constraint attribute.

char get (GRB_CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double get (GRB_DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int get (GRB_IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

string get (GRB_StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBConstr::index()

int index ()
This method returns the current index, or order, of the constraint in the underlying constraint matrix.
Note that the index of a constraint may change after subsequent model modifications.
Return value:

-2: removed, -1: not in model, otherwise: index of the constraint in the model

163

GRBConstr::sameAs()

bool sameAs (GRBConstr constr2)

Check whether two constraint objects refer to the same constraint.
Arguments:

constr2: The other constraint.
Return value:

Boolean result indicates whether the two constraint objects refer to the same model constraint.

GRBConstr::set()
Set the value of a constraint attribute.

void set (GRB_CharAttr attr,
char newvalue)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_DoubleAttr attr,
double newvalue)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_IntAttr attr,
int newvalue)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_StringAttr attr,
const string& newvalue)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

164

4.5 GRBQConstr
Gurobi quadratic constraint object. Quadratic constraints are always associated with a particular model. You create
a quadratic constraint object by adding a constraint to a model (using GRBModel::addQConstr), rather than by
using a GRBQConstr constructor.

The methods on quadratic constraint objects are used to get and set quadratic constraint attributes. For exam-
ple, quadratic constraint right-hand sides can be queried by calling
get(GRB_DoubleAttr_QCRHS). Note, however, that it is generally more efficient to query attributes for a set of con-
straints at once. This is done using the attribute query method on the GRBModel object (GRBModel::get).

GRBQConstr::get()
Query the value of a quadratic constraint attribute.

char get (GRB_CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double get (GRB_DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int get (GRB_IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

string get (GRB_StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

165

GRBQConstr::set()
Set the value of a quadratic constraint attribute.

void set (GRB_CharAttr attr,
char newvalue)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_DoubleAttr attr,
double newvalue)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_IntAttr attr,
int newvalue)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_StringAttr attr,
const string& newvalue)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

166

4.6 GRBSOS
Gurobi SOS constraint object. SOS constraints are always associated with a particular model. You create an
SOS object by adding an SOS constraint to a model (using GRBModel::addSOS), rather than by using a GRBSOS
constructor. Similarly, SOS constraints are removed using the GRBModel::remove method.

An SOS constraint can be of type 1 or 2 (GRB_SOS_TYPE1 or GRB_SOS_TYPE2). A type 1 SOS constraint is a set of
variables for which at most one variable in the set may take a value other than zero. A type 2 SOS constraint is an
ordered set of variables where at most two variables in the set may take non-zero values. If two take non-zero values,
they must be contiguous in the ordered set.

SOS constraint objects have one attribute, IISSOS, which can be queried with the GRBSOS::get method.

GRBSOS::get()
Query the value of an SOS attribute.

int get (GRB_IntAttr attr)

Arguments:
attr: The attribute being queried.

Return value:
The current value of the requested attribute.

GRBSOS::set()
Set the value of an SOS attribute.

void set (GRB_IntAttr attr,
int newvalue)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

167

4.7 GRBGenConstr
Gurobi general constraint object. General constraints are always associated with a particular model. You create
a general constraint object by adding a constraint to a model (using one of the GRBModel::addGenConstrXxx
methods), rather than by using a GRBGenConstr constructor.

The methods on general constraint objects are used to get and set general constraint attributes. For example,
general constraint types can be queried by calling
get(GRB_IntAttr_GenConstrType). Note, however, that it is generally more efficient to query attributes for a set of
constraints at once. This is done using the attribute query method on the GRBModel object (GRBModel::get).

GRBGenConstr::get()
Query the value of a general constraint attribute.

double get (GRB_DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int get (GRB_IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

string get (GRB_StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBGenConstr::set()
Set the value of a general constraint attribute.

void set (GRB_DoubleAttr attr,
double newvalue)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_IntAttr attr,
int newvalue)

168

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_StringAttr attr,
const string& newvalue)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

169

4.8 GRBExpr
Abstract base class for the GRBLinExpr and GRBQuadExpr classes. Expressions are used to build objectives and
constraints. They are temporary objects that typically have short lifespans.

GRBExpr::getValue()
Compute the value of an expression for the current solution.

double getValue ()
Return value:

Value of the expression for the current solution.

170

4.9 GRBLinExpr
Gurobi linear expression object. A linear expression consists of a constant term, plus a list of coefficient-variable
pairs that capture the linear terms. Linear expressions are used to build constraints. They are temporary objects
that typically have short lifespans.

The GRBLinExpr class is a sub-class of the abstract base class GRBExpr.
You generally build linear expressions using overloaded operators. For example, if x is a GRBVar object,

then x + 1 is a GRBLinExpr object. Expressions can be built from constants (e.g., expr = 0), variables (e.g.,
expr = 1 * x + 2 * y), or from other expressions (e.g., expr2 = 2 * expr1 + x, or expr3 = expr1 + 2 * expr2).
You can also modify existing expressions (e.g., expr += x, or expr2 -= expr1).

Another option for building expressions is to use the addTerms method, which adds an array of new terms at
once. Terms can also be removed from an expression, using remove.

Note that the cost of building expressions depends heavily on the approach you use. While you can generally
ignore this issue when building small expressions, you should be aware of a few efficiency issues when building large
expressions:

• You should avoid using expr = expr + x in a loop. It will lead to runtimes that are quadratic in the number
of terms in the expression.

• Using expr += x (or expr -= x) is much more efficient than expr = expr + x. Building a large expression
by looping over += statements is reasonably efficient, but it isn’t the most efficient approach.

• The most efficient way to build a large expression is to make a single call to addTerms.
To add a linear constraint to your model, you generally build one or two linear expression objects (expr1 and

expr2) and then use an overloaded comparison operator to build an argument for GRBModel::addConstr. To give a
few examples:

model.addConstr(expr1 <= expr2)
model.addConstr(expr1 == 1)
model.addConstr(2 ∗ x+ 3 ∗ y <= 4)

Once you add a constraint to your model, subsequent changes to the expression object you used to build the constraint
will not change the constraint (you would use GRBModel::chgCoeff for that).

Individual terms in a linear expression can be queried using the getVar, getCoeff, and getConstant methods. You
can query the number of terms in the expression using the size method.

Note that a linear expression may contain multiple terms that involve the same variable. These duplicate terms
are merged when creating a constraint from an expression, but they may be visible when inspecting individual terms
in the expression (e.g., when using getVar).

GRBLinExpr()
Linear expression constructor. Create a constant expression or an expression with one term.

GRBLinExpr GRBLinExpr (double constant=0.0)

Create a constant linear expression.
Arguments:

constant (optional): Constant value for expression.
Return value:

A constant expression object.

GRBLinExpr GRBLinExpr (GRBVar var,
double coeff=1.0)

Create an expression with one term.
Arguments:

var: Variable for expression term.
coeff (optional): Coefficient for expression term.

Return value:
An expression object containing one linear term.

171

GRBLinExpr::addTerms()
Add new terms into a linear expression.

void addTerms (const double* coeffs,
const GRBVar* vars,
int count)

Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.
count: Number of terms to add to the expression.

GRBLinExpr::clear()
Set a linear expression to 0.

You should use the overloaded expr = 0 instead. The clear method is mainly included for consistency with our
interfaces to non-overloaded languages.

void clear ()

GRBLinExpr::getConstant()
Retrieve the constant term from a linear expression.

double getConstant ()
Return value:

Constant from expression.

GRBLinExpr::getCoeff()
Retrieve the coefficient from a single term of the expression.

double getCoeff (int i)

Arguments:
i: Index for coefficient of interest.

Return value:
Coefficient for the term at index i in the expression.

GRBLinExpr::getValue()
Compute the value of a linear expression for the current solution.

double getValue ()
Return value:

Value of the expression for the current solution.

172

GRBLinExpr::getVar()
Retrieve the variable object from a single term of the expression.

GRBVar getVar (int i)

Arguments:
i: Index for term of interest.

Return value:
Variable for the term at index i in the expression.

GRBLinExpr::operator=
Set an expression equal to another expression.

GRBLinExpr operator= (const GRBLinExpr& rhs)

Arguments:
rhs: Source expression.

Return value:
New expression object.

GRBLinExpr::operator+
Add one expression into another, producing a result expression.

GRBLinExpr operator+ (const GRBLinExpr& rhs)

Arguments:
rhs: Expression to add.

Return value:
Expression object which is equal the sum of the invoking expression and the argument expression.

GRBLinExpr::operator-
Subtract one expression from another, producing a result expression.

GRBLinExpr operator- (const GRBLinExpr& rhs)

Arguments:
rhs: Expression to subtract.

Return value:
Expression object which is equal the invoking expression minus the argument expression.

GRBLinExpr::operator+=
Add an expression into the invoking expression.

void operator+= (const GRBLinExpr& expr)

Arguments:
expr: Expression to add.

173

GRBLinExpr::operator-=
Subtract an expression from the invoking expression.

void operator-= (const GRBLinExpr& expr)

Arguments:
expr: Expression to subtract.

GRBLinExpr::operator*=
Multiply the invoking expression by a constant.

void operator*= (double multiplier)

Arguments:
multiplier: Constant multiplier.

GRBLinExpr::remove()
Remove a term from a linear expression.

void remove (int i)

Remove the term stored at index i of the expression.
Arguments:

i: The index of the term to be removed.

boolean remove (GRBVar var)

Remove all terms associated with variable var from the expression.
Arguments:

var: The variable whose term should be removed.
Return value:

Returns true if the variable appeared in the linear expression (and was removed).

GRBLinExpr::size()
Retrieve the number of terms in the linear expression (not including the constant).

unsigned int size ()
Return value:

Number of terms in the expression.

174

4.10 GRBQuadExpr
Gurobi quadratic expression object. A quadratic expression consists of a linear expression, plus a list of coefficient-
variable-variable triples that capture the quadratic terms. Quadratic expressions are used to build quadratic objective
functions and quadratic constraints. They are temporary objects that typically have short lifespans.

The GRBQuadExpr class is a sub-class of the abstract base class GRBExpr.
You generally build quadratic expressions using overloaded operators. For example, if x is a GRBVar object,

then x * x is a GRBQuadExpr object. Expressions can be built from constants (e.g., expr = 0), variables (e.g.,
expr = 1 * x *x + 2 * x * y), or from other expressions (e.g., expr2 = 2 * expr1 + x * x, or expr3 = expr1 + 2 * expr2).
You can also modify existing expressions (e.g., expr += x * x, or expr2 -= expr1).

The other option for building expressions is to start with an empty expression (using the GRBQuadExpr con-
structor), and then add terms. Terms can be added individually (using addTerm) or in groups (using addTerms).
Terms can also be removed from an expression (using remove).

Note that the cost of building expressions depends heavily on the approach you use. While you can generally
ignore this issue when building small expressions, you should be aware of a few efficiency issues when building large
expressions:

• You should avoid using expr = expr + x*x in a loop. It will lead to runtimes that are quadratic in the number
of terms in the expression.

• Using expr += x*x (or expr -= x*x) is much more efficient than expr = expr + x*x. Building a large ex-
pression by looping over += statements is reasonably efficient, but it isn’t the most efficient approach.

• The most efficient way to build a large expression is to make a single call addTerms.
To add a quadratic constraint to your model, you generally build one or two quadratic expression objects (qexpr1

and qexpr2) and then use an overloaded comparison operator to build an argument for GRBModel::addQConstr. To
give a few examples:

model.addQConstr(qexpr1 <= qexpr2)
model.addQConstr(qexpr1 == 1)
model.addQConstr(2 ∗ x ∗ x+ 3 ∗ y ∗ y <= 4)

Once you add a constraint to your model, subsequent changes to the expression object you used to build the constraint
will have no effect on that constraint.

Individual terms in a quadratic expression can be queried using the getVar1, getVar2, and getCoeff methods.
You can query the number of quadratic terms in the expression using the size method. To query the constant and
linear terms associated with a quadratic expression, first obtain the linear portion of the quadratic expression using
getLinExpr, and then use the getConstant, getCoeff, or getVar on the resulting GRBLinExpr object.

Note that a quadratic expression may contain multiple terms that involve the same variable pair. These duplicate
terms are merged when creating the model objective from an expression, but they may be visible when inspecting
individual terms in the expression (e.g., when using getVar1 and getVar2).

GRBQuadExpr()
Quadratic expression constructor. Create a constant expression or an expression with one term.

GRBQuadExpr GRBQuadExpr (double constant=0.0)

Create a constant quadratic expression.
Arguments:

constant (optional): Constant value for expression.
Return value:

A constant expression object.

GRBQuadExpr GRBQuadExpr (GRBVar var,
double coeff=1.0)

Create an expression with one term.

175

Arguments:
var: Variable for expression term.
coeff (optional): Coefficient for expression term.

Return value:
An expression object containing one quadratic term.

GRBQuadExpr GRBQuadExpr (GRBLinExpr linexpr)

Initialize a quadratic expression from an existing linear expression.
Arguments:

orig: Existing linear expression to copy.
Return value:

Quadratic expression object whose initial value is taken from the input linear expression.

GRBQuadExpr::addTerm()
Add a single new term into a quadratic expression.

void addTerm (double coeff,
GRBVar var)

Add a new linear term into a quadratic expression.
Arguments:

coeff: Coefficient for new linear term.
var: Variable for new linear term.

void addTerm (double coeff,
GRBVar var1,
GRBVar var2)

Add a new quadratic term into a quadratic expression.
Arguments:

coeff: Coefficient for new quadratic term.
var1: Variable for new quadratic term.
var2: Variable for new quadratic term.

GRBQuadExpr::addTerms()
Add new terms into a quadratic expression.

void addTerms (const double* coeffs,
const GRBVar* vars,
int count)

Add new linear terms into a quadratic expression.
Arguments:

coeffs: Coefficients for new linear terms.
vars: Variables for new linear terms.
count: Number of linear terms to add to the quadratic expression.

void addTerms (const double* coeffs,
const GRBVar* vars1,
const GRBVar* vars2,
int count)

176

Add new quadratic terms into a quadratic expression.
Arguments:

coeffs: Coefficients for new quadratic terms.
vars1: First variables for new quadratic terms.
vars2: Second variables for new quadratic terms.
count: Number of quadratic terms to add to the quadratic expression.

GRBQuadExpr::clear()
Set a quadratic expression to 0.

You should use the overloaded expr = 0 instead. The clear method is mainly included for consistency with our
interfaces to non-overloaded languages.

void clear ()

GRBQuadExpr::getCoeff()
Retrieve the coefficient from a single quadratic term of the quadratic expression.

double getCoeff (int i)

Arguments:
i: Index for coefficient of interest.

Return value:
Coefficient for the quadratic term at index i in the quadratic expression.

GRBQuadExpr::getLinExpr()
A quadratic expression is represented as a linear expression, plus a list of quadratic terms. This method retrieves the
linear expression associated with the quadratic expression.

GRBLinExpr getLinExpr ()
Return value:

Linear expression associated with the quadratic expression.

GRBQuadExpr::getValue()
Compute the value of a quadratic expression for the current solution.

double getValue ()
Return value:

Value of the expression for the current solution.

GRBQuadExpr::getVar1()
Retrieve the first variable object associated with a single quadratic term from the expression.

GRBVar getVar1 (int i)

Arguments:
i: Index for term of interest.

Return value:
First variable for the quadratic term at index i in the quadratic expression.

177

GRBQuadExpr::getVar2()
Retrieve the second variable object associated with a single quadratic term from the expression.

GRBVar getVar2 (int i)

Arguments:
i: Index for term of interest.

Return value:
Second variable for the quadratic term at index i in the quadratic expression.

GRBQuadExpr::operator=
Set a quadratic expression equal to another quadratic expression.

GRBQuadExpr operator= (const GRBQuadExpr& rhs)

Arguments:
rhs: Source quadratic expression.

Return value:
New quadratic expression object.

GRBQuadExpr::operator+
Add one expression into another, producing a result expression.

GRBQuadExpr operator+ (const GRBQuadExpr& rhs)

Arguments:
rhs: Expression to add.

Return value:
Expression object which is equal the sum of the invoking expression and the argument expression.

GRBQuadExpr::operator-
Subtract one expression from another, producing a result expression.

GRBQuadExpr operator- (const GRBQuadExpr& rhs)

Arguments:
rhs: Expression to subtract.

Return value:
Expression object which is equal the invoking expression minus the argument expression.

GRBQuadExpr::operator+=
Add an expression into the invoking expression.

void operator+= (const GRBQuadExpr& expr)

Arguments:
expr: Expression to add.

178

GRBQuadExpr::operator-=
Subtract an expression from the invoking expression.

void operator-= (const GRBQuadExpr& expr)

Arguments:
expr: Expression to subtract.

GRBQuadExpr::operator*=
Multiply the invoking expression by a constant.

void operator*= (double multiplier)

Arguments:
multiplier: Constant multiplier.

GRBQuadExpr::remove()
Remove a quadratic term from a quadratic expression.

void remove (int i)

Remove the quadratic term stored at index i of the expression.
Arguments:

i: The index of the term to be removed.

boolean remove (GRBVar var)

Remove all quadratic terms associated with variable var from the quadratic expression.
Arguments:

var: The variable whose term should be removed.
Return value:

Returns true if the variable appeared in the quadratic expression (and was removed).

GRBQuadExpr::size()
Retrieve the number of quadratic terms in the quadratic expression.

unsigned int size ()
Return value:

Number of quadratic terms in the expression.

179

4.11 GRBTempConstr
Gurobi temporary constraint object. Objects of this class are created as intermediate results when building constraints
using overloaded operators. There are no member functions on this class. Instead, GRBTempConstr objects are created
by a set of non-member functions: ==, <=, and >=. You will generally never store objects of this class in your own
variables.

Consider the following examples:

model.addConstr(x + y <= 1);
model.addQConstr(x*x + y*y <= 1);

The overloaded <= operator creates an object of type GRBTempContr, which is then immediately passed to method
GRBModel::addConstr or GRBModel::addQConstr.

180

4.12 GRBColumn
Gurobi column object. A column consists of a list of coefficient, constraint pairs. Columns are used to represent the
set of constraints in which a variable participates, and the associated coefficients. They are temporary objects that
typically have short lifespans.

You generally build columns by starting with an empty column (using the GRBColumn constructor), and then
adding terms. Terms can be added individually, using addTerm, or in groups, using addTerms. Terms can also be
removed from a column, using remove.

Individual terms in a column can be queried using the getConstr, and getCoeff methods. You can query the
number of terms in the column using the size method.

GRBColumn()
Column constructor. Create an empty column.

GRBColumn GRBColumn ()
Return value:

An empty column object.

GRBColumn::addTerm()
Add a single term into a column.

void addTerm (double coeff,
GRBConstr constr)

Arguments:
coeff: Coefficient for new term.
constr: Constraint for new term.

GRBColumn::addTerms()
Add new terms into a column.

void addTerms (const double* coeffs,
const GRBConstr* constrs,
int count)

Add a list of terms into a column.
Arguments:

coeffs: Coefficients for new terms.
constrs: Constraints for new terms.
count: Number of terms to add to the column.

GRBColumn::clear()
Remove all terms from a column.

void clear ()

181

GRBColumn::getCoeff()
Retrieve the coefficient from a single term in the column.

double getCoeff (int i)

Return value:
Coefficient for the term at index i in the column.

GRBColumn::getConstr()
Retrieve the constraint object from a single term in the column.

GRBConstr getConstr (int i)

Return value:
Constraint for the term at index i in the column.

GRBColumn::remove()
Remove a single term from a column.

void remove (int i)

Remove the term stored at index i of the column.
Arguments:

i: The index of the term to be removed.

boolean remove (GRBConstr constr)

Remove the term associated with constraint constr from the column.
Arguments:

constr: The constraint whose term should be removed.
Return value:

Returns true if the constraint appeared in the column (and was removed).

GRBColumn::size()
Retrieve the number of terms in the column.

unsigned int size ()
Return value:

Number of terms in the column.

182

4.13 GRBCallback
Gurobi callback class. This is an abstract class. To implement a callback, you should create a subclass of this class
and implement a callback() method. If you pass an object of this subclass to method GRBModel::setCallback
before calling GRBModel::optimize or GRBModel::computeIIS, the callback() method of the class will be called
periodically. Depending on where the callback is called from, you can obtain various information about the progress
of the optimization.

Note that this class contains one protected int member variable: where. You can query this variable from your
callback() method to determine where the callback was called from.

Gurobi callbacks can be used both to monitor the progress of the optimization and to modify the behavior
of the Gurobi optimizer. A simple user callback function might call the GRBCallback::getIntInfo or GRBCall-
back::getDoubleInfo methods to produce a custom display, or perhaps to terminate optimization early (using GRB-
Callback::abort) or to proceed to the next phase of the computation (using GRBCallback::proceed). More sophisti-
cated MIP callbacks might use GRBCallback::getNodeRel or GRBCallback::getSolution to retrieve values from the
solution to the current node, and then use GRBCallback::addCut or GRBCallback::addLazy to add a constraint to
cut off that solution, or GRBCallback::setSolution to import a heuristic solution built from that solution. For multi-
objective problems, you might use GRBCallback::stopOneMultiObj to interrupt the optimization process of one of
the optimization steps in a multi-objective MIP problem without stopping the hierarchical optimization process.

When solving a model using multiple threads, the user callback is only ever called from a single thread, so you
don’t need to worry about the thread-safety of your callback.

Note that changing parameters from within a callback is not supported, doing so may lead to undefined behavior.
You can look at the callback_c++.cpp example for details of how to use Gurobi callbacks.

GRBCallback()
Callback constructor.

GRBCallback GRBCallback ()
Return value:

A callback object.

GRBCallback::abort()
Abort optimization. When the optimization stops, the Status attribute will be equal to
GRB_INTERRUPTED.

void abort ()

GRBCallback::addCut()
Add a cutting plane to the MIP model from within a callback function. Note that this method can only be invoked
when the where member variable is equal to GRB_CB_MIPNODE (see the Callback Codes section for more information).

Cutting planes can be added at any node of the branch-and-cut tree. However, they should be added sparingly,
since they increase the size of the relaxation model that is solved at each node and can significantly degrade node
processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the relaxation solution
at the current node, you should first call getNodeRel.

You should consider setting parameter PreCrush to value 1 when adding your own cuts. This setting shuts off
a few presolve reductions that can sometimes prevent your cut from being applied to the presolved model (which
would result in your cut being silently ignored).

Note that cutting planes added through this method must truly be cutting planes -- they can cut off continuous
solutions, but they may not cut off integer solutions that respect the original constraints of the model. Ignoring this
restriction will lead to incorrect solutions.

183

void addCut (const GRBLinExpr& lhsExpr,
char sense,
double rhsVal)

Arguments:
lhsExpr: Left-hand side expression for new cutting plane.
sense: Sense for new cutting plane (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsVal: Right-hand side value for new cutting plane.

void addCut (GRBTempConstr& tc)

Arguments:
tc: Temporary constraint object, created using an overloaded comparison operator. See GRBTempConstr
for more information.

GRBCallback::addLazy()
Add a lazy constraint to the MIP model from within a callback function. Note that this method can only be invoked
when the where member variable is equal to GRB_CB_MIPNODE or GRB_CB_MIPSOL (see the Callback Codes section for
more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large to represent
explicitly. By only including the constraints that are actually violated by solutions found during the branch-and-cut
search, it is sometimes possible to find a proven optimal solution while only adding a fraction of the full set of
constraints.

You would typically add a lazy constraint by first querying the current node solution (by calling getSolution from
a GRB_CB_MIPSOL callback, or getNodeRel from a GRB_CB_MIPNODE callback), and then calling addLazy() to add a
constraint that cuts off the solution. Gurobi guarantees that you will have the opportunity to cut off any solutions
that would otherwise be considered feasible.

MIP solutions may be generated outside of a MIP node. Thus, generating lazy constraints is optional when the
where value in the callback function equals GRB_CB_MIPNODE. To avoid this, we recommend to always check when the
where value equals GRB_CB_MIPSOL.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints, including those
that have already been added. Node solutions will usually respect previously added lazy constraints, but not always.

Note that you must set the LazyConstraints parameter if you want to use lazy constraints.

void addLazy (const GRBLinExpr& lhsExpr,
char sense,
double rhsVal)

Arguments:
lhsExpr: Left-hand side expression for new lazy constraint.
sense: Sense for new lazy constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsVal: Right-hand side value for new lazy constraint.

void addLazy (GRBTempConstr& tc)

Arguments:
tc: Temporary constraint object, created using an overloaded comparison operator. See GRBTempConstr
for more information.

184

GRBCallback::getDoubleInfo()
Request double-valued callback information. The available information depends on the value of the where member.
For information on possible values of where, and the double-valued information that can be queried for different
values of where, please refer to the Callback section.

double getDoubleInfo (int what)

Arguments:
what: Information requested (refer the list of Gurobi Callback Codes for possible values).

Return value:
Value of requested callback information.

GRBCallback::getIntInfo()
Request int-valued callback information. The available information depends on the value of the where member. For
information on possible values of where, and the int-valued information that can be queried for different values of
where, please refer to the Callback section.

int getIntInfo (int what)

Arguments:
what: Information requested (refer to the list of Gurobi Callback Codes for possible values).

Return value:
Value of requested callback information.

GRBCallback::getNodeRel()
Retrieve values from the node relaxation solution at the current node. Only available when the where member
variable is equal to GRB_CB_MIPNODE, and GRB_CB_MIPNODE_STATUS is equal to GRB_OPTIMAL.

double getNodeRel (GRBVar v)

Arguments:
v: The variable whose value is desired.

Return value:
The value of the specified variable in the node relaxation for the current node.

double* getNodeRel (const GRBVar* xvars,
int len)

Arguments:
xvars: The list of variables whose values are desired.
len: The number of variables in the list.

Return value:
The values of the specified variables in the node relaxation for the current node. Note that the result is
heap-allocated, and must be returned to the heap by the user.

185

GRBCallback::getSolution()
Retrieve values from the current solution vector. Only available when the where member variable is equal to GRB_-
CB_MIPSOL or GRB_CB_MULTIOBJ.

double getSolution (GRBVar v)

Arguments:
v: The variable whose value is desired.

Return value:
The value of the specified variable in the current solution vector.

double* getSolution (const GRBVar* xvars,
int len)

Arguments:
xvars: The list of variables whose values are desired.
len: The number of variables in the list.

Return value:
The values of the specified variables in the current solution. Note that the result is heap-allocated, and must
be returned to the heap by the user.

GRBCallback::getStringInfo()
Request string-valued callback information. The available information depends on the value of the where member.
For information on possible values of where, and the string-valued information that can be queried for different values
of where, please refer to the Callback section.

string getStringInfo (int what)

Arguments:
what: Information requested (refer to the list of Gurobi Callback Codes for possible values).

Return value:
Value of requested callback information.

GRBCallback::proceed()
Generate a request to proceed to the next phase of the computation. Note that the request is only accepted in a few
phases of the algorithm, and it won’t be acted upon immediately.

In the current Gurobi version, this callback allows you to proceed from the NoRel heuristic to the standard MIP
search. You can determine the current algorithm phase using MIP_PHASE, MIPNODE_PHASE, or MIPSOL_PHASE queries
from a callback.

void proceed ()

186

GRBCallback::setSolution()
Import solution values for a heuristic solution. Only available when the wheremember variable is equal to GRB_CB_MIP,
GRB_CB_MIPNODE, or GRB_CB_MIPSOL (see the Callback Codes section for more information).

When you specify a heuristic solution from a callback, variables initially take undefined values. You should use
this method to specify variable values. You can make multiple calls to setSolution from one callback invocation
to specify values for multiple sets of variables. After the callback, if values have been specified for any variables,
the Gurobi optimizer will try to compute a feasible solution from the specified values, possibly filling in values for
variables whose values were left undefined. You can also optionally call useSolution within your callback function to
try to immediately compute a feasible solution from the specified values.

Note that this method is not supported in a Compute Server environment.

void setSolution (GRBVar v,
double val)

Arguments:
v: The variable whose values is being set.
val: The value of the variable in the new solution.

void setSolution (const GRBVar* xvars,
const double* sol,
int len)

Arguments:
xvars: The variables whose values are being set.
sol: The values of the variables in the new solution.
len: The number of variables.

GRBCallback::stopOneMultiObj()
Interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem without stopping
the hierarchical optimization process. Only available for multi-objective MIP models and when the where member
variable is not equal to GRB_CB_MULTIOBJ (see the Callback Codes section for more information).

You would typically stop a multi-objective optimization step by querying the last finished number of multi-
objectives steps, and using that number to stop the current step and move on to the next hierarchical objective (if
any) as shown in the following example:

Example usage:
#include <ctime>

class mycallback: public GDBCallback
{
public:

int objcnt = 0;
time_t starttime = time();

protected:
void callback () {

if (where == GRB_CB_MULTIOBJ) {
/* get current objective number */
objcnt = getIntInfo(GRB_CB_MULTIOBJ_OBJCNT);

/* reset start time to current time */
starttime = time();

} else if (time() - startime > BIG ||
/* takes too long or good enough */) {

/* stop only this optimization step */

187

stopOneMultiObj(objcnt);
}

}
}

You should refer to the section on Multiple Objectives for information on how to specify multiple objective
functions and control the trade-off between them.

void stopOneMultiObj (int objcnt)

Arguments:
objnum: The number of the multi-objective optimization step to interrupt. For processes running locally,
this argument can have the special value -1, meaning to stop the current step.

GRBCallback::useSolution()
Once you have imported solution values using setSolution, you can optionally call useSolution in a GRB_CB_MIPNODE
callback to immediately use these values to try to compute a heuristic solution. Alternatively, you can call useSolution
in a GRB_CB_MIP or GRB_CB_MIPSOL callback, which will store the solution until it can be processed internally.

double useSolution ()
Return value:

The objective value for the solution obtained from your solution values (or GRB_INFINITY if no improved
solution is found).

188

4.14 GRBException
Gurobi exception object. Exceptions can be thrown by nearly every method in the Gurobi C++ API.

GRBException()
Exception constructor.

GRBException GRBException (int errcode=0)

Create a Gurobi exception.
Arguments:

errcode (optional): Error code for exception.
Return value:

An exception object.

GRBException GRBException (string errmsg,
int errcode=0)

Create a Gurobi exception.
Arguments:

errmsg: Error message for exception.
errcode (optional): Error code for exception.

Return value:
An exception object.

GRBException::getErrorCode()
Retrieve the error code associated with a Gurobi exception.

int getErrorCode ()
Return value:

The error code associated with the exception.

GRBException::getMessage()
Retrieve the error message associated with a Gurobi exception.

const string getMessage ()
Return value:

The error message associated with the exception.

189

4.15 GRBBatch
Gurobi batch object. Batch optimization is a feature available with the Gurobi Cluster Manager. It allows a client
program to build an optimization model, submit it to a Compute Server cluster (through a Cluster Manager), and
later check on the status of the model and retrieve its solution. For more information, please refer to the Batch
Optimization section.

Commonly used methods on batch objects include update (refresh attributes from the Cluster Manager), abort
(abort execution of a batch request), retry (retry optimization for an interrupted or failed batch), discard (remove
the batch request and all related information from the Cluster Manager), and getJSONSolution (query solution
information for the batch request).

These methods are built on top of calls to the Cluster Manager REST API. They are meant to simplify such
calls, but note that you always have the option of calling the REST API directly.

Batch objects have four attributes:
• BatchID: Unique ID for the batch request.
• BatchStatus: Last batch status.
• BatchErrorCode: Last error code.
• BatchErrorMessage: Last error message.

You can access their values by using get. Note that all Batch attributes are locally cached, and are only updated
when you create a client-side batch object or when you explicitly update this cache, which can done by calling update.

GRBBatch()
Constructor for GRBBatch.

Given a BatchID, as returned by optimizeBatch, and a Gurobi environment that can connect to the appropriate
Cluster Manager (i.e., one where parameters CSManager, UserName, and ServerPassword have been set appropri-
ately), this function returns a GRBBatch object. With it, you can query the current status of the associated
batch request and, once the batch request has been processed, you can query its solution. Please refer to the Batch
Optimization section for details and examples.

GRBBatch GRBBatch (GRBEnv& env,
string& batchID)

Arguments:
env: The environment in which the new batch object should be created.
batchID: ID of the batch request for which you want to access status and other information.

Return value:
New batch object.

Example usage:
GRBBatch batch = GRBBatch(env, batchID);

GRBBatch::abort()
This method instructs the Cluster Manager to abort the processing of this batch request, changing its status to
ABORTED. Please refer to the Batch Status Codes section for further details. void abort ()

Example usage:

// Abort this batch if it is taking too long
time_t curtime = time(NULL);
if (curtime - starttime > maxwaittime) {

batch ->abort ();
break;

}

190

GRBBatch::discard()
This method instructs the Cluster Manager to remove all information related to the batch request in question,
including the stored solution if available. Further queries for the associated batch request will fail with error code
GRB_ERROR_DATA_NOT_AVAILABLE. Use this function with care, as the removed information can not be recovered later
on. void discard ()

Example usage:
void
batchdiscard(string batchID)

GRBBatch::getJSONSolution()
This method retrieves the solution of a completed batch request from a Cluster Manager. The solution is returned
as a JSON solution string. For this call to succeed, the status of the batch request must be COMPLETED. Please refer
to the Batch Status Codes section for further details. string getJSONSolution () Return value:

The requested solution in JSON format.
Example usage:

// Pretty printing the general solution information
cout << "JSON solution:" << batch ->getJSONSolution () << endl;

GRBBatch::get()
Query the value of an attribute.

int get (GRB_IntAttr attr)

Query the value of an int-valued batch attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

string get (GRB_StringAttr attr)

Query the value of a string-valued batch attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBBatch::retry()
This method instructs the Cluster Manager to retry optimization of a failed or aborted batch request, changing its
status to SUBMITTED. Please refer to the Batch Status Codes section for further details. void retry ()

Example usage:
// If the batch failed , we try again
if (BatchStatus == GRB_BATCH_FAILED)

batch ->retry ();

191

GRBBatch::update()
All Batch attribute values are cached locally, so queries return the value received during the last communication with
the Cluster Manager. This method refreshes the values of all attributes with the values currently available in the
Cluster Manager (which involves network communication). void update ()

Example usage:

// Update the resident attribute cache of the Batch object with the
// latest values from the cluster manager.
batch ->update ();
BatchStatus = batch ->get(GRB_IntAttr_BatchStatus);

GRBBatch::writeJSONSolution()
This method returns the stored solution of a completed batch request from a Cluster Manager. The solution
is returned in a gzip-compressed JSON file. The file name you provide must end with a .json.gz extension.
The JSON format is described in the JSON solution format section. Note that for this call to succeed, the sta-
tus of the batch request must be COMPLETED. Please refer to the Batch Status Codes section for further details.
void writeJSONSolution (string& filename)

Arguments:
filename: Name of file where the solution should be stored (in JSON format).

Example usage:

// Write the full JSON solution string to a file
batch ->writeJSONSolution("batch -sol.json.gz");

192

4.16 Non-Member Functions
Several Gurobi C++ interface functions aren’t member functions on a particular object.

operator==
Create an equality constraint

GRBTempConstr operator== (GRBQuadExpr lhsExpr,
GRBQuadExpr rhsExpr)

Arguments:
lhsExpr: Left-hand side of equality constraint.
rhsExpr: Right-hand side of equality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to GRBModel::addConstr.

operator<=
Create an inequality constraint

GRBTempConstr operator<= (GRBQuadExpr lhsExpr,
GRBQuadExpr rhsExpr)

Arguments:
lhsExpr: Left-hand side of inequality constraint.
rhsExpr: Right-hand side of inequality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to GRBModel::addConstr
or GRBModel::addQConstr.

operator>=
Create an inequality constraint

GRBTempConstr operator>= (GRBQuadExpr lhsExpr,
GRBQuadExpr rhsExpr)

Arguments:
lhsExpr: Left-hand side of inequality constraint.
rhsExpr: Right-hand side of inequality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to GRBModel::addConstr
or GRBModel::addQConstr.

operator+
Overloaded operator on expression objects.

GRBLinExpr operator+ (const GRBLinExpr& expr1,
const GRBLinExpr& expr2)

Add a pair of expressions.
Arguments:

expr1: First expression to be added.

193

expr2: Second expression to be added.
Return value:

Sum expression.

GRBLinExpr operator+ (const GRBLinExpr& expr)

Allow plus sign to be used before an expression.
Arguments:

expr: Expression.
Return value:

Result expression.

GRBLinExpr operator+ (GRBVar x,
GRBVar y)

Add a pair of variables.
Arguments:

x: First variable to be added.
y: Second variable to be added.

Return value:
Sum expression.

GRBQuadExpr operator+ (const GRBQuadExpr& expr1,
const GRBQuadExpr& expr2)

Add a pair of expressions.
Arguments:

expr1: First expression to be added.
expr2: Second expression to be added.

Return value:
Sum expression.

GRBQuadExpr operator+ (const GRBQuadExpr& expr)

Allow plus sign to be used before an expression.
Arguments:

expr: Expression.
Return value:

Result expression.

operator-
Overloaded operator on expression objects.

GRBLinExpr operator- (const GRBLinExpr& expr1,
const GRBLinExpr& expr2)

Subtract one expression from another.
Arguments:

expr1: Start expression.
expr2: Expression to be subtracted.

Return value:
Difference expression.

194

GRBLinExpr operator- (const GRBLinExpr& expr)

Negate an expression.
Arguments:

expr: Expression.
Return value:

Negation of expression.

GRBQuadExpr operator- (const GRBQuadExpr& expr1,
const GRBQuadExpr& expr2)

Subtract one expression from another.
Arguments:

expr1: Start expression.
expr2: Expression to be subtracted.

Return value:
Difference expression.

GRBQuadExpr operator- (const GRBQuadExpr& expr)

Negate an expression.
Arguments:

expr: Expression.
Return value:

Negation of expression.

operator*
Overloaded operator on expression objects.

GRBLinExpr operator* (GRBVar x,
double a)

Multiply a variable and a constant.
Arguments:

x: Variable.
a: Constant multiplier.

Return value:
Expression that represents the result of multiplying the variable by a constant.

GRBLinExpr operator* (double a,
GRBVar x)

Multiply a variable and a constant.
Arguments:

a: Constant multiplier.
x: Variable.

Return value:
Expression that represents the result of multiplying the variable by a constant.

GRBLinExpr operator* (const GRBLinExpr& expr,
double a)

Multiply an expression and a constant.
Arguments:

195

expr: Expression.
a: Constant multiplier.

Return value:
Expression that represents the result of multiplying the expression by a constant.

GRBLinExpr operator* (double a,
const GRBLinExpr& expr)

Multiply an expression and a constant.
Arguments:

a: Constant multiplier.
expr: Expression.

Return value:
Expression that represents the result of multiplying the expression by a constant.

GRBQuadExpr operator* (const GRBQuadExpr& expr,
double a)

Multiply an expression and a constant.
Arguments:

expr: Expression.
a: Constant multiplier.

Return value:
Expression that represents the result of multiplying the expression by a constant.

GRBQuadExpr operator* (double a,
const GRBQuadExpr& expr)

Multiply an expression and a constant.
Arguments:

a: Constant multiplier.
expr: Expression.

Return value:
Expression that represents the result of multiplying the expression by a constant.

GRBQuadExpr operator* (GRBVar x,
GRBVar y)

Multiply a pair of variables.
Arguments:

x: First variable.
y: Second variable.

Return value:
Expression that represents the result of multiplying the argument variables.

GRBQuadExpr operator* (GRBVar var,
const GRBLinExpr& expr)

Multiply an expression and a variable.
Arguments:

var: Variable.
expr: Expression.

Return value:
Expression that represents the result of multiplying the expression by a variable.

196

GRBQuadExpr operator* (const GRBLinExpr& expr,
GRBVar var)

Multiply an expression and a variable.
Arguments:

var: Variable.
expr: Expression.

Return value:
Expression that represents the result of multiplying the expression by a variable.

GRBQuadExpr operator* (const GRBLinExpr& expr1,
const GRBLinExpr& expr2)

Multiply a pair of expressions.
Arguments:

expr1: First expression.
expr2: Second expression.

Return value:
Expression that represents the result of multiplying the argument expressions.

operator/
Overloaded operator to divide a variable or expression by a constant.

GRBLinExpr operator/ (GRBVar x,
double a)

Arguments:
x: Variable.
a: Constant divisor.

Return value:
Expression that represents the result of dividing the variable by a constant.

GRBLinExpr operator/ (const GRBLinExpr& expr,
double a)

Arguments:
expr: Expression.
a: Constant divisor.

Return value:
Expression that represents the result of dividing the expression by a constant.

GRBLinExpr operator/ (const GRBQuadExpr& expr,
double a)

Arguments:
expr: Expression.
a: Constant divisor.

Return value:
Expression that represents the result of dividing the expression by a constant.

197

4.17 Attribute Enums
These enums are used to get or set Gurobi attributes. The complete list of attributes can be found in the Attributes
section.

GRB_CharAttr
This enum is used to get or set char-valued attributes (through GRBModel::get or GRBModel::set). Please refer to
the Attributes section to see a list of all char attributes and their functions.

GRB_DoubleAttr
This enum is used to get or set double-valued attributes (through GRBModel::get or GRBModel::set). Please refer
to the Attributes section to see a list of all double attributes and their functions.

GRB_IntAttr
This enum is used to get or set int-valued attributes (through GRBModel::get or GRBModel::set). Please refer to
the Attributes section to see a list of all int attributes and their functions.

GRB_StringAttr
This enum is used to get or set string-valued attributes (through GRBModel::get or GRBModel::set). Please refer to
the Attributes section to see a list of all string attributes and their functions.

198

4.18 Parameter Enums
These enums are used to get or set Gurobi parameters. The complete of parameters can be found in the Parameters
section.

GRB_DoubleParam
This enum is used to get or set double-valued parameters (through GRBModel::get, GRBModel::set. GRBEnv::get,
or GRBEnv::set). Please refer to the Parameters section to see a list of all double parameters and their functions.

GRB_IntParam
This enum is used to get or set int-valued parameters (through GRBModel::get, GRBModel::set. GRBEnv::get, or
GRBEnv::set). Please refer to the Parameters section to see a list of all int parameters and their functions.

GRB_StringParam
This enum is used to get or set string-valued parameters (through GRBModel::get, GRBModel::set, GRBEnv::get,
or GRBEnv::set). Please refer to the Parameters section to see a list of all int parameters and their functions.

199

Java API Overview

This section documents the Gurobi Java interface. This manual begins with a quick overview of the classes exposed in
the interface and the most important methods on those classes. It then continues with a comprehensive presentation
of all of the available classes and methods.

If you prefer Javadoc format, documentation for the Gurobi Java interface is also available in file gurobi-javadoc.jar.
Javadoc format is particularly helpful when used from an integrated development environment like Eclipse®. Please
consult the documentation for your IDE for information on how to import Javadoc files.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide or the Example
Tour. These documents provide concrete examples of how to use the classes and methods described here.
Environments

The first step in using the Gurobi Java interface is to create an environment object. Environments are represented
using the GRBEnv class. An environment acts as the container for all data associated with a set of optimization
runs. You will generally only need one environment object in your program.

For more advanced usecases, you can use an empty environment to create an uninitialized environment and then,
programmatically, set all required options for your specific requirements. For further details see the Environment
section.
Models

You can create one or more optimization models within an environment. Each model is represented as an object of class
GRBModel. A model consists of a set of decision variables (objects of class GRBVar), a linear or quadratic objective
function on these variables (specified using GRBModel.setObjective), and a set of constraints on these variables
(objects of class GRBConstr, GRBQConstr, GRBSOS, or GRBGenConstr). Each variable has an associated lower
bound, upper bound, and type (continuous, binary, etc.). Each linear or quadratic constraint has an associated sense
(less-than-or-equal, greater-than-or-equal, or equal), and right-hand side value. Refer to this section in the Reference
Manual for more information on variables, constraints, and objectives.

Linear constraints are specified by building linear expressions (objects of class GRBLinExpr), and then specifying
relationships between these expressions (for example, requiring that one expression be equal to another). Quadratic
constraints are built in a similar fashion, but using quadratic expressions (objects of class GRBQuadExpr) instead.

An optimization model may be specified all at once, by loading the model from a file (using the appropriate GRB-
Model constructor), or built incrementally, by first constructing an empty object of class GRBModel and then sub-
sequently calling GRBModel.addVar or GRBModel.addVars to add additional variables, and GRBModel.addConstr,
GRBModel.addQConstr, GRBModel.addSOS, or any of the GRBModel.addGenConstrXxx methods to add additional
constraints. Models are dynamic entities; you can always add or remove variables or constraints.

We often refer to the class of an optimization model. A model with a linear objective function, linear constraints,
and continuous variables is a Linear Program (LP). If the objective is quadratic, the model is a Quadratic Program
(QP). If any of the constraints are quadratic, the model is a Quadratically-Constrained Program (QCP). We will
sometimes refer to a few special cases of QCP: QCPs with convex constraints, QCPs with non-convex constraints,
bilinear programs, and Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-
continuous variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the model
is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, including Mixed Integer Linear
Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed Integer Quadratically-Constrained Programs
(MIQCP), and Mixed Integer Second-Order Cone Programs (MISOCP). The Gurobi Optimizer handles all of these
model classes.
Solving a Model

Once you have built a model, you can call GRBModel.optimize to compute a solution. By default, optimize will use
the concurrent optimizer to solve LP models, the barrier algorithm to solve QP models with convex objectives and
QCP models with convex constraints, and the branch-and-cut algorithm otherwise. The solution is stored in a set of
attributes of the model. These attributes can be queried using a set of attribute query methods on the GRBModel,
GRBVar, GRBConstr, GRBQConstr, GRBSOS, and GRBGenConstr, and classes.

200

https://www.gurobi.com/documentation/10.0/quickstart_windows/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBModel.optimize will only
perform further optimization if relevant data has changed since the model was last optimized. If you would like to
discard previously computed solution information and restart the optimization from scratch without changing the
model, you can call GRBModel.reset.

After a MIP model has been solved, you can call GRBModel.fixedModel to compute the associated fixed model.
This model is identical to the original, except that the integer variables are fixed to their values in the MIP solution.
If your model contains SOS constraints, some continuous variables that appear in these constraints may be fixed as
well. In some applications, it can be useful to compute information on this fixed model (e.g., dual variables, sensitivity
information, etc.), although you should be careful in how you interpret this information.
Multiple Solutions, Objectives, and Scenarios

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to a single model
with a single objective function. Gurobi provides the following features that allow you to relax these assumptions:

• Solution Pool: Allows you to find more solutions.
• Multiple Scenarios: Allows you to find solutions to multiple, related models.
• Multiple Objectives: Allows you to specify multiple objective functions and control the trade-off between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the infeasibility,
attempt to repair the infeasibility, or both. To obtain information that can be useful for diagnosing the cause of an
infeasibility, call GRBModel.computeIIS to compute an Irreducible Inconsistent Subsystem (IIS). This method can
be used for both continuous and MIP models, but you should be aware that the MIP version can be quite expensive.
This method populates a set of IIS attributes.

To attempt to repair an infeasibility, call GRBModel.feasRelax to compute a feasibility relaxation for the model.
This relaxation allows you to find a solution that minimizes the magnitude of the constraint violation.
Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some attributes are associated
with the variables of the model, some with the constraints of the model, and some with the model itself. To give
a simple example, solving an optimization model causes the X variable attribute to be populated. Attributes such
as X that are computed by the Gurobi optimizer cannot be modified directly by the user, while others, such as the
variable lower bound (the LB attribute) can.

Attributes are queried using GRBVar.get, GRBConstr.get, GRBQConstr.get, GRBSOS.get, GRBGenConstr.get,
or GRBModel.get, and modified using GRBVar.set, GRBConstr.set, GRBQConstr.set, GRBGenConstr.set, or GRB-
Model.set. Attributes are grouped into a set of enums by type (GRB.CharAttr, GRB.DoubleAttr, GRB.IntAttr,
GRB.StringAttr). The get() and set() methods are overloaded, so the type of the attribute determines the type of
the returned value. Thus, constr.get(GRB.DoubleAttr.RHS) returns a double, while constr.get(GRB.CharAttr.Sense)
returns a char.

If you wish to retrieve attribute values for a set of variables or constraints, it is usually more efficient to use the
array methods on the associated GRBModel object. Method GRBModel.get includes signatures that allow you to
query or modify attribute values for one-, two-, and three-dimensional arrays of variables or constraints.

The full list of attributes can be found in the Attributes section.
Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to variable bounds,
constraint right-hand sides, etc.). The main exceptions are modifications to the constraint matrix and to the objective
function.

The constraint matrix can be modified in a few ways. The first is to call the chgCoeff method on a GRBModel
object to change individual matrix coefficients. This method can be used to modify the value of an existing non-
zero, to set an existing non-zero to zero, or to create a new non-zero. The constraint matrix is also modified when
you remove a variable or constraint from the model (through the GRBModel.remove method). The non-zero values
associated with the deleted constraint or variable are removed along with the constraint or variable itself.

The model objective function can also be modified in a few ways. The easiest is to build an expression that
captures the objective function (a GRBLinExpr or GRBQuadExpr object), and then pass that expression to method
GRBModel.setObjective. If you wish to modify the objective, you can simply call setObjective again with a new
GRBLinExpr or GRBQuadExpr object.

201

For linear objective functions, an alternative to setObjective is to use the Obj variable attribute to modify
individual linear objective coefficients.

If your variables have piecewise-linear objectives, you can specify them using the
GRBModel.setPWLObj method. Call this method once for each relevant variable. The Gurobi simplex solver
includes algorithmic support for convex piecewise-linear objective functions, so for continuous models you should see
a substantial performance benefit from using this feature. To clear a previously specified piecewise-linear objective
function, simply set the Obj attribute on the corresponding variable to 0.
Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed in a lazy fashion,
meaning that modifications don’t affect the model immediately. Rather, they are queued and applied later. If your
program simply creates a model and solves it, you will probably never notice this behavior. However, if you ask for
information about the model before your modifications have been applied, the details of the lazy update approach
may be relevant to you.

As we just noted, model modifications (bound changes, right-hand side changes, objective changes, etc.) are
placed in a queue. These queued modifications can be applied to the model in three different ways. The first is
by an explicit call to GRBModel.update. The second is by a call to GRBModel.optimize. The third is by a call to
GRBModel.write to write out the model. The first case gives you fine-grained control over when modifications are
applied. The second and third make the assumption that you want all pending modifications to be applied before
you optimize your model or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is that this approach
makes it much easier to perform multiple modifications to a model, since the model remains unchanged between
modifications. The second is that processing model modifications can be expensive, particularly in a Compute Server
environment, where modifications require communication between machines. Thus, it is useful to have visibility into
exactly when these modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then update, then make
more modifications, then update again, etc. Updating after each individual modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value of the requested
data from the point of the last update. If the object you tried to query didn’t exist then, you’ll get a NOT_IN_MODEL
exception instead.

The semantics of lazy updates have changed since earlier Gurobi versions. While the vast majority of programs
are unaffected by this change, you can use the UpdateMode parameter to revert to the earlier behavior if you run
into an issue.
Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of the optimization
process. Factors like feasibility and optimality tolerances, choices of algorithms, strategies for exploring the MIP
search tree, etc., can be controlled by modifying Gurobi parameters before beginning the optimization. Parameters
can be of type int, double, or string.

The simplest way to set parameters is through the GRBModel.set method on the model object. Similarly,
parameter values can be queried with GRBModel.get.

Parameters can also be set on the Gurobi environment object, using GRBEnv.set. Note that each model gets its
own copy of the environment when it is created, so parameter changes to the original environment have no effect on
existing models.

You can read a set of parameter settings from a file using GRBEnv.readParams, or write the set of changed
parameters using GRBEnv.writeParams.

We also include an automated parameter tuning tool that explores many different sets of parameter changes in
order to find a set that improves performance. You can call GRBModel.tune to invoke the tuning tool on a model.
Refer to the parameter tuning tool section for more information.

The full list of Gurobi parameters can be found in the Parameters section.
Memory Management

Users typically do not need to concern themselves with memory management in Java, since it is handled automatically
by the garbage collector. The Gurobi Java interface utilizes the same garbage collection mechanism as other Java
programs, but there are a few specifics of our memory management that users should be aware of.

In general, Gurobi objects live in the same Java heap as other Java objects. When they are no longer referenced,
they become candidates for garbage collection, and are returned to the pool of free space at the next invocation of

202

the garbage collector. Two important exceptions are the GRBEnv and GRBModel objects. A GRBModel object has a
small amount of memory associated with it in the Java heap, but the majority of the space associated with a model
lives in the heap of the Gurobi native code library (the Gurobi DLL in Windows, or the Gurobi shared library in
Linux or Mac). The Java heap manager is unaware of the memory associated with the model in the native code
library, so it does not consider this memory usage when deciding whether to invoke the garbage collector. When the
garbage collector eventually collects the Java GRBModel object, the memory associated with the model in the Gurobi
native code library will be freed, but this collection may come later than you might want. Similar considerations
apply to the GRBEnv object.

If you are writing a Java program that makes use of multiple Gurobi models or environments, we recommend that
you call GRBModel.dispose when you are done using the associated GRBModel object, and GRBEnv.dispose when
you are done using the associated GRBEnv object and after you have called GRBModel.dispose on all of the models
created using that GRBEnv object.

Native Code

As noted earlier, the Gurobi Java interface is a thin layer that sits on top of our native code library (the Gurobi
DLL on Windows, and the Gurobi shared library on Linux or Mac). Thus, an application that uses the Gurobi Java
library will load the Gurobi native code library at runtime. In order for this happen, you need to make sure that two
things are true. First, you need to make sure that the native code library is available in the search path of the target
machine (PATH on Windows, LD_LIBRARY_PATH on Linux, or DYLD_LIBRARY_PATH on Mac). These paths are set up as
part of the installation of the Gurobi Optimizer, but may not be configured appropriately on a machine where the
full Gurobi Optimizer has not been installed. Second, you need to be sure that the Java JVM and the Gurobi native
library use the same object format. In particular, you need to use a 64-bit Java JVM to use the 64-bit Gurobi native
library.

Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will send output to the
screen. A few simple controls are available for modifying the default logging behavior. If you would like to direct
output to a file as well as to the screen, specify the log file name in the GRBEnv constructor. You can modify
the LogFile parameter if you wish to redirect the log to a different file after creating the environment object. The
frequency of logging output can be controlled with the DisplayInterval parameter, and logging can be turned off
entirely with the OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging
section.

More detailed progress monitoring can be done through the GRBCallback class. The GRBModel.setCallback
method allows you to receive a periodic callback from the Gurobi optimizer. You do this by sub-classing the GRBCall-
back abstract class, and writing your own Callback()method on this class. You can call GRBCallback.getDoubleInfo,
GRBCallback.getIntInfo, GRBCallback.getStringInfo, or GRBCallback.getSolution from within the callback to ob-
tain additional information about the state of the optimization.

In addition, you can add a logging callback function to an environment object (GRBEnv.setLogCallback) or a
model object (GRBModelEnv.setLogCallback). With that you catch output posted by an environment object or a
model object.

Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. The simplest control callback is GRBCall-
back.abort, which asks the optimizer to terminate at the earliest convenient point. Method GRBCallback.setSolution
allows you to inject a feasible solution (or partial solution) during the solution of a MIP model. Methods GR-
BCallback.addCut and GRBCallback.addLazy allow you to add cutting planes and lazy constraints during a MIP
optimization, respectively. Method GRBCallback.stopOneMultiObj allows you to interrupt the optimization process
of one of the optimization steps in a multi-objective MIP problem without stopping the hierarchical optimization
process.

Batch Optimization

Gurobi Compute Server enables programs to offload optimization computations onto dedicated servers. The Gurobi
Cluster Manager adds a number of additional capabilities on top of this. One important one, batch optimization,
allows you to build an optimization model with your client program, submit it to a Compute Server cluster (through
the Cluster Manager), and later check on the status of the model and retrieve its solution. You can use a Batch
object to make it easier to work with batches. For details on batches, please refer to the Batch Optimization section.

203

Error Handling

All of the methods in the Gurobi Java library can throw an exception of type GRBException. When an exception
occurs, additional information on the error can be obtained by retrieving the error code (using method GRBEx-
ception.getErrorCode), or by retrieving the exception message (using method GRBException.getMessage from the
parent class). The list of possible error return codes can be found in the Error Codes section.

204

5.1 GRBEnv
Gurobi environment object. Gurobi models are always associated with an environment. You must create an environ-
ment before can you create and populate a model. You will generally only need a single environment object in your
program.

The methods on environment objects are mainly used to manage Gurobi parameters (e.g., get, getParamInfo,
set).

While the Java garbage collector will eventually collect an unused GRBEnv object, an environment will hold onto
resources (Gurobi licenses, file descriptors, etc.) until that collection occurs. If your program creates multiple GRBEnv
objects, we recommend that you call GRBEnv.dispose when you are done using one.

GRBEnv()
Constructor for GRBEnv object. You have the option of constructing either a local environment, which solves Gurobi
models on the local machine, or a client environment for a Gurobi Compute Server, which will solve Gurobi models
on a server machine. For the latter, choose the signature that allows you to specify the names of the Gurobi Compute
Servers and the priority of the associated job.

GRBEnv GRBEnv ()
Create a Gurobi environment (with logging disabled). This method will also populate any parameter (ComputeServer,

TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current work-
ing directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.
The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value
for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Return value:
An environment object (with no associated log file).

GRBEnv GRBEnv (boolean empty)

Create an empty Gurobi environment. Use start to start the environment.
If the environment is not empty, This method will also populate any parameter (ComputeServer, TokenServer,

ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current working directory for
a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in
PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Arguments:
empty: Indicates whether the environment should be empty. You should use empty=true if you want to
set parameters before actually starting the environment. This can be useful if you want to connect to a
Compute Server, a Token Server, the Gurobi Instant Cloud, a Cluster Manager or use a WLS license. See
the Environment Section for more details.

Return value:
An environment object.

GRBEnv GRBEnv (String logFileName)

205

Create a Gurobi environment (with logging enabled). This method will also populate any parameter (ComputeServer,
TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current work-
ing directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.
The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value
for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Arguments:
logFileName: The desired log file name.

Return value:
An environment object.

GRBEnv.dispose()
Release the resources associated with a GRBEnv object. While the Java garbage collector will eventually reclaim these
resources, we recommend that you call the dispose method when you are done using an environment if your program
creates more than one.

The dispose method on a GRBEnv should be called only after you have called dispose on all of the models that
were created within that environment. You should not attempt to use a GRBEnv object after calling dispose.

void dispose ()

GRBEnv.get()
Query the value of a parameter.

double get (GRB.DoubleParam param)

Query the value of a double-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

Return value:
The current value of the requested parameter.

int get (GRB.IntParam param)

Query the value of an int-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

Return value:
The current value of the requested parameter.

String get (GRB.StringParam param)

Query the value of a string-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

Return value:
The current value of the requested parameter.

206

GRBEnv.getErrorMsg()
Query the error message for the most recent exception associated with this environment.

String getErrorMsg ()
Return value:

The error string.

GRBEnv.getParamInfo()
Obtain information about a parameter.

void getParamInfo (GRB.DoubleParam param,
double[] info)

Obtain detailed information about a double parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

info: The returned information. The result will contain four entries: the current value of the parameter,
the minimum allowed value, the maximum allowed value, and the default value.

void getParamInfo (GRB.IntParam param,
int[] info)

Obtain detailed information about an integer parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

info: The returned information. The result will contain four entries: the current value of the parameter,
the minimum allowed value, the maximum allowed value, and the default value.

void getParamInfo (GRB.StringParam param,
String[] info)

Obtain detailed information about a string parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

info: The returned information. The result will contain two entries: the current value of the parameter and
the default value.

GRBEnv.message()
Write a message to the console and the log file.

void message (String message)

Arguments:
message: Print a message to the console and to the log file. Note that this call has no effect unless the
OutputFlag parameter is set.

207

GRBEnv.readParams()
Read new parameter settings from a file.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their
purposes and their minimum, maximum, and default values.

void readParams (String paramFile)

Arguments:
paramFile: Name of the file containing parameter settings. Parameters should be listed one per line, with
the parameter name first and the desired value second. For example:

Gurobi parameter file
Threads 1
MIPGap 0

Blank lines and lines that begin with the hash symbol are ignored.

GRBEnv.release()
Release the license associated with this environment. You will no longer be able to call optimize on models created
with this environment after the license has been released.

void release ()

GRBEnv.resetParams()
Reset all parameters to their default values.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their
purposes and their minimum, maximum, and default values.

void resetParams ()

GRBEnv.set()
Set the value of a parameter.

Important notes:
Note that a model gets its own copy of the environment when it is created. Changes to the original environment

have no effect on the copy. Use GRBModel.set to change a parameter on an existing model.

void set (GRB.DoubleParam param,
double newval)

Set the value of a double-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

newval: The desired new value of the parameter.

void set (GRB.IntParam param,
int newval)

Set the value of an int-valued parameter.
Arguments:

208

param: The parameter being modified. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

newval: The desired new value of the parameter.

void set (GRB.StringParam param,
String newval)

Set the value of a string-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

newval: The desired new value of the parameter.

void set (String param,
String newval)

Set the value of any parameter using strings alone.
Arguments:

param: The name of the parameter being modified. Please consult the parameter section for a complete list
of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default
values.

newval: The desired new value of the parameter.

GRBEnv.setLogCallback()
Sets a logging callback function to query all output posted by the environment object. Can be set after an empty
environment was created.

void setLogCallback (java.util.function.Consumer<String> logCallback)

Arguments:
logCallback: The logging callback function.

GRBEnv.start()
Start an empty environment. If the environment has already been started, this method will do nothing. If the call
fails, the environment will have the same state as it had before the call to this method.

This method will also populate any parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified
in your gurobi.lic file. This method will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each
line should contain a parameter name, followed by the desired value for that parameter). After that, it will apply
all parameter changes specified by the user prior to this call. Note that this might overwrite parameters set in the
license file, or in the gurobi.env file, if present.

After all these changes are performed, the code will actually activate the environment, and make it ready to work
with models.

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their
purposes and their minimum, maximum, and default values.

void start ()

209

GRBEnv.writeParams()
Write all non-default parameter settings to a file.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their
purposes and their minimum, maximum, and default values.

void writeParams (String paramFile)

Arguments:
paramFile: Name of the file to which non-default parameter settings should be written. The previous
contents are overwritten.

210

5.2 GRBModel
Gurobi model object. Commonly used methods include addVar (adds a new decision variable to the model), addConstr
(adds a new constraint to the model), optimize (optimizes the current model), and get (retrieves the value of an
attribute).

While the Java garbage collector will eventually collect an unused GRBModel object, the vast majority of the
memory associated with a model is stored outside of the Java heap. As a result, the garbage collector can’t see this
memory usage, and thus it can’t take this quantity into account when deciding whether collection is necessary. We
recommend that you call GRBModel.dispose when you are done using a model.

GRBModel()
Constructor for GRBModel. The simplest version creates an empty model. You can then call addVar and addConstr
to populate the model with variables and constraints. The more complex constructors can read a model from a file,
or make a copy of an existing model.

GRBModel GRBModel (GRBEnv env)

Model constructor.
Arguments:

env: Environment for new model.
Return value:

New model object. Model initially contains no variables or constraints.

GRBModel GRBModel (GRBEnv env,
String filename)

Read a model from a file. Note that the type of the file is encoded in the file name suffix. Valid suffixes are .mps,
.rew, .lp, .rlp, .dua, .dlp, .ilp, or .opb. The files can be compressed, so additional suffixes of .zip, .gz, .bz2, or
.7z are accepted.

Arguments:
env: Environment for new model.
filename: Name of the file containing the model.

Return value:
New model object.

GRBModel GRBModel (GRBModel model)

Create a copy of an existing model. Note that due to the lazy update approach in Gurobi, you have to call
update before copying it.

Arguments:
model: Model to copy.

Return value:
New model object. Model is a clone of the input model.

GRBModel.addConstr()
Add a single linear constraint to a model. Multiple signatures are available.

GRBConstr addConstr (GRBLinExpr lhsExpr,
char sense,
GRBLinExpr rhsExpr,
String name)

211

Add a single linear constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side expression for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (GRBLinExpr lhsExpr,
char sense,
GRBVar rhsVar,
String name)

Add a single linear constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsVar: Right-hand side variable for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (GRBLinExpr lhsExpr,
char sense,
double rhs,
String name)

Add a single linear constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhs: Right-hand side value for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (GRBVar lhsVar,
char sense,
GRBLinExpr rhsExpr,
String name)

Add a single linear constraint to a model.
Arguments:

lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side expression for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (GRBVar lhsVar,
char sense,
GRBVar rhsVar,
String name)

212

Add a single linear constraint to a model.
Arguments:

lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsVar: Right-hand side variable for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (GRBVar lhsVar,
char sense,
double rhs,
String name)

Add a single linear constraint to a model.
Arguments:

lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhs: Right-hand side value for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (double lhs,
char sense,
GRBVar rhsVar,
String name)

Add a single linear constraint to a model.
Arguments:

lhs: Left-hand side value for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsVar: Right-hand side variable for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (double lhs,
char sense,
GRBLinExpr rhsExpr,
String name)

Add a single linear constraint to a model.
Arguments:

lhs: Left-hand side value for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side expression for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

213

GRBModel.addConstrs()
Add new linear constraints to a model.

We recommend that you build your model one constraint at a time (using addConstr), since it introduces no
significant overhead and we find that it produces simpler code. Feel free to use these methods if you disagree, though.

GRBConstr[] addConstrs (int count)

Add count new linear constraints to a model. The new constraints are all of the form 0 <= 0.
Arguments:

count: Number of constraints to add.
Return value:

Array of new constraint objects.

GRBConstr[] addConstrs (GRBLinExpr[] lhsExprs,
char[] senses,
double[] rhss,
String[] names)

Add new linear constraints to a model. The number of added constraints is determined by the length of the
input arrays (which must be consistent across all arguments).

Arguments:
lhsExprs: Left-hand side expressions for the new linear constraints.
senses: Senses for new linear constraints (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhss: Right-hand side values for the new linear constraints.
names: Names for new constraints.

Return value:
Array of new constraint objects.

GRBConstr[] addConstrs (GRBLinExpr[] lhsExprs,
char[] senses,
double[] rhss,
String[] names,
int start,
int len)

Add new linear constraints to a model. This signature allows you to use arrays to hold the various constraint
attributes (left-hand side, sense, etc.), without forcing you to add one constraint for each entry in the array. The
start and len arguments allow you to specify which constraints to add.

Arguments:
lhsExprs: Left-hand side expressions for the new linear constraints.
senses: Senses for new linear constraints (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhss: Right-hand side values for the new linear constraints.
names: Names for new constraints.
start: The first constraint in the list to add.
len: The number of constraints to add.

Return value:
Array of new constraint objects.

GRBModel.addGenConstrXxx()
Each of the functions described below adds a new general constraint to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types: variable bound
constraints, linear constraints, quadratic constraints, integrality constraints, and SOS constraints. These are typically
treated directly by the underlying solver (although not always), and are fundamental to the overall algorithm.

214

Gurobi accepts a number of additional constraint types, which we collectively refer to as general (function)
constraints. These are typically not treated directly by the solver. Rather, they are transformed by presolve into
constraints (and variables) chosen from among the fundamental types listed above. In some cases, the resulting
constraint or constraints are mathematically equivalent to the original; in others, they are approximations. If such
constraints appear in your model, but if you prefer to reformulate them yourself using fundamental constraint types
instead, you can certainly do so. However, note that Gurobi can sometimes exploit information contained in the
other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

• addGenConstrMax: y = max(x1, x2, ..., c)

• addGenConstrMin: y = min(x1, x2, ..., c)

• addGenConstrAbs: y = |x|

• addGenConstrAnd: y = x1 ∧ x2 ∧ x3...

• addGenConstrOr: y = x1 ∨ x2 ∨ x3...

• addGenConstrNorm: y = norm(x1, x2, x3...)

• addGenConstrIndicator: y = 1→ a′x ≤ b (an indicator constraint)

• addGenConstrPWL: y = pwl(x) (a piecewise-linear function, specified using breakpoints)

• addGenConstrPoly: y = p0x
d + p1x

d−1 + ...+ pd−1x+ pd

• addGenConstrExp: y = ex

• addGenConstrExpA: y = ax

• addGenConstrLog: y = loge(x)

• addGenConstrLogA: y = loga(x)

• addGenConstrPow: y = xa

• addGenConstrSin: y = sin(x)

• addGenConstrCos: y = cos(x)

• addGenConstrTan: y = tan(x)

For additional details please refer to the General Constraints section in the Reference Manual.

GRBModel.addGenConstrMax()

Add a new general constraint of type GRB.GENCONSTR_MAX to a model.
A MAX constraint r = max{x1, . . . , xn, c} states that the resultant variable r should be equal to the maximum

of the operand variables x1, . . . , xn and the constant c.

GRBGenConstr addGenConstrMax (GRBVar resvar,
GRBVar[] vars,
double constant,
String name)

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
constant: The additional constant operand of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

215

GRBModel.addGenConstrMin()

Add a new general constraint of type GRB.GENCONSTR_MIN to a model.
A MIN constraint r = min{x1, . . . , xn, c} states that the resultant variable r should be equal to the minimum of

the operand variables x1, . . . , xn and the constant c.

GRBGenConstr addGenConstrMin (GRBVar resvar,
GRBVar[] vars,
double constant,
String name)

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
constant: The additional constant operand of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.addGenConstrAbs()

Add a new general constraint of type GRB.GENCONSTR_ABS to a model.
An ABS constraint r = abs{x} states that the resultant variable r should be equal to the absolute value of the

argument variable x.

GRBGenConstr addGenConstrAbs (GRBVar resvar,
GRBVar argvar,
String name)

Arguments:
resvar: The resultant variable of the new constraint.
argvar: The argument variable of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.addGenConstrAnd()

Add a new general constraint of type GRB.GENCONSTR_AND to a model.
An AND constraint r = and{x1, . . . , xn} states that the binary resultant variable r should be 1 if and only if all

of the operand variables x1, . . . , xn are equal to 1. If any of the operand variables is 0, then the resultant should be
0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent of how they
were created.

GRBGenConstr addGenConstrAnd (GRBVar resvar,
GRBVar[] vars,
String name)

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

216

GRBModel.addGenConstrOr()

Add a new general constraint of type GRB.GENCONSTR_OR to a model.
An OR constraint r = or{x1, . . . , xn} states that the binary resultant variable r should be 1 if and only if any of

the operand variables x1, . . . , xn is equal to 1. If all operand variables are 0, then the resultant should be 0 as well.
Note that all variables participating in such a constraint will be forced to be binary, independent of how they

were created.

GRBGenConstr addGenConstrOr (GRBVar resvar,
GRBVar[] vars,
String name)

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.addGenConstrNorm()

Add a new general constraint of type GRB.GENCONSTR_NORM to a model.
A NORM constraint r = norm{x1, . . . , xn} states that the resultant variable r should be equal to the vector

norm of the argument vector x1, . . . , xn.

GRBGenConstr addGenConstrNorm (GRBVar resvar,
GRBVar[] vars,
double which,
String name)

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint. Note that this array may not contain
duplicates.

which: Which norm to use. Options are 0, 1, 2, and GRB.INFINITY.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.addGenConstrIndicator()

Add a new general constraint of type GRB.GENCONSTR_INDICATOR to a model.
An INDICATOR constraint z = f → aTx ≤ b states that if the binary indicator variable z is equal to f , where

f ∈ {0, 1}, then the linear constraint aTx ≤ b should hold. On the other hand, if z = 1− f , the linear constraint may
be violated. The sense of the linear constraint can also be specified to be = or ≥.

Note that the indicator variable z of a constraint will be forced to be binary, independent of how it was created.

GRBGenConstr addGenConstrIndicator (GRBVar binvar,
int binval,
GRBLinExpr expr,
char sense,
double rhs,
String name)

Arguments:
binvar: The binary indicator variable.
binval: The value for the binary indicator variable that would force the linear constraint to be satisfied (0
or 1).

217

expr: Left-hand side expression for the linear constraint triggered by the indicator.
sense: Sense for the linear constraint. Options are GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL.
rhs: Right-hand side value for the linear constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.addGenConstrPWL()

Add a new general constraint of type GRB.GENCONSTR_PWL to a model.
A piecewise-linear (PWL) constraint states that the relationship y = f(x) must hold between variables x and y,

where f is a piecewise-linear function. The breakpoints for f are provided as arguments. Refer to the description of
piecewise-linear objectives for details of how piecewise-linear functions are defined.

GRBGenConstr addGenConstrPWL (GRBVar xvar,
GRBVar yvar,
double[] xpts,
double[] ypts,
String name)

Arguments:
xvar: The x variable.
yvar: The y variable.
xpts: The x values for the points that define the piecewise-linear function. Must be in non-decreasing order.
ypts: The y values for the points that define the piecewise-linear function.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.addGenConstrPoly()

Add a new general constraint of type GRB.GENCONSTR_POLY to a model.
A polynomial function constraint states that the relationship y = p0x

d + p1x
d−1 + ... + pd−1x + pd should hold

between variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrPoly (GRBVar xvar,
GRBVar yvar,
double[] p,
String name,
String options)

Arguments:
xvar: The x variable.
yvar: The y variable.
p: The coefficients for the polynomial function (starting with the coefficient for the highest power).
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

218

GRBModel.addGenConstrExp()

Add a new general constraint of type GRB.GENCONSTR_EXP to a model.
A natural exponential function constraint states that the relationship y = exp(x) should hold for variables x and

y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrExp (GRBVar xvar,
GRBVar yvar,
String name,
String options)

Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel.addGenConstrExpA()

Add a new general constraint of type GRB.GENCONSTR_EXPA to a model.
An exponential function constraint states that the relationship y = ax should hold for variables x and y, where

a > 0 is the (constant) base.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrExpA (GRBVar xvar,
GRBVar yvar,
double a,
String name,
String options)

Arguments:
xvar: The x variable.
yvar: The y variable.
a: The base of the function, a > 0.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

219

GRBModel.addGenConstrLog()

Add a new general constraint of type GRB.GENCONSTR_LOG to a model.
A natural logarithmic function constraint states that the relationship y = log(x) should hold for variables x and

y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrLog (GRBVar xvar,
GRBVar yvar,
String name,
String options)

Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel.addGenConstrLogA()

Add a new general constraint of type GRB.GENCONSTR_LOGA to a model.
A logarithmic function constraint states that the relationship y = loga(x) should hold for variables x and y,

where a > 0 is the (constant) base.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrLogA (GRBVar xvar,
GRBVar yvar,
double a,
String name,
String options)

Arguments:
xvar: The x variable.
yvar: The y variable.
a: The base of the function, a > 0.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

220

GRBModel.addGenConstrLogistic()

Add a new general constraint of type GRB.GENCONSTR_LOGISTIC to a model.
A logistic function constraint states that the relationship y = 1

1+e−x should hold for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrLogistic (GRBVar xvar,
GRBVar yvar,
String name,
String options)

Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel.addGenConstrPow()

Add a new general constraint of type GRB.GENCONSTR_POW to a model.
A power function constraint states that the relationship y = xa should hold for variables x and y, where a is the

(constant) exponent. The lower bound of variable x must be nonnegative, even if a is an integer.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrPow (GRBVar xvar,
GRBVar yvar,
double a,
String name,
String options)

Arguments:
xvar: The x variable.
yvar: The y variable.
a: The exponent of the function, a > 0.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

221

GRBModel.addGenConstrSin()

Add a new general constraint of type GRB.GENCONSTR_SIN to a model.
A sine function constraint states that the relationship y = sin(x) should hold for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrSin (GRBVar xvar,
GRBVar yvar,
String name,
String options)

Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel.addGenConstrCos()

Add a new general constraint of type GRB.GENCONSTR_COS to a model.
A cosine function constraint states that the relationship y = cos(x) should hold for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr addGenConstrCos (GRBVar xvar,
GRBVar yvar,
String name,
String options)

Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel.addGenConstrTan()

Add a new general constraint of type GRB.GENCONSTR_TAN to a model.
A tangent function constraint states that the relationship y = tan(x) should hold for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

222

GRBGenConstr addGenConstrTan (GRBVar xvar,
GRBVar yvar,
String name,
String options)

Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel.addQConstr()
Add a quadratic constraint to a model. Multiple signatures are available.

Important note: Gurobi can handle both convex and non-convex quadratic constraints. The differences between
them can be both important and subtle. Refer to this discussion for additional information.

GRBQConstr addQConstr (GRBQuadExpr lhsExpr,
char sense,
GRBQuadExpr rhsExpr,
String name)

Add a quadratic constraint to a model.
Arguments:

lhsExpr: Left-hand side quadratic expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side quadratic expression for new quadratic constraint.
name: Name for new constraint.

Return value:
New quadratic constraint object.

GRBQConstr addQConstr (GRBQuadExpr lhsExpr,
char sense,
GRBVar rhsVar,
String name)

Add a quadratic constraint to a model.
Arguments:

lhsExpr: Left-hand side quadratic expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsVar: Right-hand side variable for new quadratic constraint.
name: Name for new constraint.

Return value:
New quadratic constraint object.

GRBQConstr addQConstr (GRBQuadExpr lhsExpr,
char sense,
GRBLinExpr rhsExpr,
String name)

Add a quadratic constraint to a model.
Arguments:

223

lhsExpr: Left-hand side quadratic expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side linear expression for new quadratic constraint.
name: Name for new constraint.

Return value:
New quadratic constraint object.

GRBQConstr addQConstr (GRBQuadExpr lhsExpr,
char sense,
double rhs,
String name)

Add a quadratic constraint to a model.
Arguments:

lhsExpr: Left-hand side quadratic expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhs: Right-hand side value for new quadratic constraint.
name: Name for new constraint.

Return value:
New quadratic constraint object.

GRBQConstr addQConstr (GRBLinExpr lhsExpr,
char sense,
GRBQuadExpr rhsExpr,
String name)

Add a quadratic constraint to a model.
Arguments:

lhsExpr: Left-hand side linear expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side quadratic expression for new quadratic constraint.
name: Name for new constraint.

Return value:
New quadratic constraint object.

GRBQConstr addQConstr (GRBVar lhsVar,
char sense,
GRBQuadExpr rhsExpr,
String name)

Add a quadratic constraint to a model.
Arguments:

lhsVar: Left-hand side variable for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side quadratic expression for new quadratic constraint.
name: Name for new constraint.

Return value:
New quadratic constraint object.

GRBQConstr addQConstr (double lhs,
char sense,
GRBQuadExpr rhsExpr,
String name)

Add a quadratic constraint to a model.
Arguments:

224

lhs: Left-hand side value for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side quadratic expression for new quadratic constraint.
name: Name for new constraint.

Return value:
New quadratic constraint object.

GRBModel.addRange()
Add a single range constraint to a model. A range constraint states that the value of the input expression must be
between the specified lower and upper bounds in any solution.

Note that range constraints are stored internally as equality constraints. We add an extra variable to the model
to capture the range information. Thus, the Sense attribute on a range constraint will always be GRB.EQUAL. In
particular introducing a range constraint

L ≤ aTx ≤ U

is equivalent to adding a slack variable s and the following constraints

aTx− s = L
0 ≤ s ≤ U − L.

GRBConstr addRange (GRBLinExpr expr,
double lower,
double upper,
String name)

Arguments:
expr: Linear expression for new range constraint.
lower: Lower bound for linear expression.
upper: Upper bound for linear expression.
name: Name for new constraint.

Return value:
New constraint object.

GRBModel.addRanges()
Add new range constraints to a model. A range constraint states that the value of the input expression must be
between the specified lower and upper bounds in any solution.

GRBConstr[] addRanges (GRBLinExpr[] exprs,
double[] lower,
double[] upper,
String[] names)

Arguments:
exprs: Linear expressions for the new range constraints.
lower: Lower bounds for linear expressions.
upper: Upper bounds for linear expressions.
names: Names for new range constraints.

Return value:
Array of new constraint objects.

225

GRBModel.addSOS()
Add an SOS constraint to the model. Please refer to the SOS Constraints section in the Reference Manual for
additional details.

GRBSOS addSOS (GRBVar[] vars,
double[] weights,
int type)

Arguments:
vars: Array of variables that participate in the SOS constraint.
weights: Weights for the variables in the SOS constraint.
type: SOS type (can be GRB.SOS_TYPE1 or GRB.SOS_TYPE2).

Return value:
New SOS constraint.

GRBModel.addVar()
Add a single decision variable to a model.

GRBVar addVar (double lb,
double ub,
double obj,
char type,
String name)

Add a variable to a model; non-zero entries will be added later.
Arguments:

lb: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).

name: Name for new variable.
Return value:

New variable object.

GRBVar addVar (double lb,
double ub,
double obj,
char type,
GRBConstr[] constrs,
double[] coeffs,
String name)

Add a variable to a model, and the associated non-zero coefficients.
Arguments:

lb: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).

constrs: Array of constraints in which the variable participates.
coeffs: Array of coefficients for each constraint in which the variable participates. The lengths of the
constrs and coeffs arrays must be identical.

name: Name for new variable.

226

Return value:
New variable object.

GRBVar addVar (double lb,
double ub,
double obj,
char type,
GRBColumn col,
String name)

Add a variable to a model. This signature allows you to specify the set of constraints to which the new variable
belongs using a GRBColumn object.

Arguments:
lb: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).

col: GRBColumn object for specifying a set of constraints to which new variable belongs.
name: Name for new variable.

Return value:
New variable object.

GRBModel.addVars()
Add new decision variables to a model.

GRBVar[] addVars (int count,
char type)

Add count new decision variables to a model. All associated attributes take their default values, except the
variable type, which is specified as an argument.

Arguments:
count: Number of variables to add.
type: Variable type for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).

Return value:
Array of new variable objects.

GRBVar[] addVars (double[] lb,
double[] ub,
double[] obj,
char[] type,
String[] names)

Add new decision variables to a model. The number of added variables is determined by the length of the input
arrays (which must be consistent across all arguments).

Arguments:
lb: Lower bounds for new variables. Can be null, in which case the variables get lower bounds of 0.0.
ub: Upper bounds for new variables. Can be null, in which case the variables get infinite upper bounds.
obj: Objective coefficients for new variables. Can be null, in which case the variables get objective coefficients
of 0.0.

type: Variable types for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed to be continuous.

names: Names for new variables. Can be null, in which case all variables are given default names.
Return value:

227

Array of new variable objects.

GRBVar[] addVars (double[] lb,
double[] ub,
double[] obj,
char[] type,
String[] names,
int start,
int len)

Add new decision variables to a model. This signature allows you to use arrays to hold the various variable
attributes (lower bound, upper bound, etc.), without forcing you to add a variable for each entry in the array. The
start and len arguments allow you to specify which variables to add.

Arguments:
lb: Lower bounds for new variables. Can be null, in which case the variables get lower bounds of 0.0.
ub: Upper bounds for new variables. Can be null, in which case the variables get infinite upper bounds.
obj: Objective coefficients for new variables. Can be null, in which case the variables get objective coefficients
of 0.0.

type: Variable types for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed to be continuous.

names: Names for new variables. Can be null, in which case all variables are given default names.
start: The first variable in the list to add.
len: The number of variables to add.

Return value:
Array of new variable objects.

GRBVar[] addVars (double[] lb,
double[] ub,
double[] obj,
char[] type,
String[] names,
GRBColumn[] cols)

Add new decision variables to a model. This signature allows you to specify the list of constraints to which each
new variable belongs using an array of GRBColumn objects.

Arguments:
lb: Lower bounds for new variables. Can be null, in which case the variables get lower bounds of 0.0.
ub: Upper bounds for new variables. Can be null, in which case the variables get infinite upper bounds.
obj: Objective coefficients for new variables. Can be null, in which case the variables get objective coefficients
of 0.0.

type: Variable types for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed to be continuous.

names: Names for new variables. Can be null, in which case all variables are given default names.
cols: GRBColumn objects for specifying a set of constraints to which each new column belongs.

Return value:
Array of new variable objects.

GRBModel.chgCoeff()
Change one coefficient in the model. The desired change is captured using a GRBVar object, a GRBConstr object,
and a desired coefficient for the specified variable in the specified constraint. If you make multiple changes to the
same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you update the model
(using GRBModel.update), optimize the model (using GRBModel.optimize), or write the model to disk (using GRB-
Model.write).

228

void chgCoeff (GRBConstr constr,
GRBVar var,
double newval)

Arguments:
constr: Constraint for coefficient to be changed.
var: Variable for coefficient to be changed.
newval: Desired new value for coefficient.

GRBModel.chgCoeffs()
Change a list of coefficients in the model. Each desired change is captured using a GRBVar object, a GRBConstr object,
and a desired coefficient for the specified variable in the specified constraint. The entries in the input arrays each
correspond to a single desired coefficient change. The lengths of the input arrays must all be the same. If you make
multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you update the model
(using GRBModel.update), optimize the model (using GRBModel.optimize), or write the model to disk (using GRB-
Model.write).

void chgCoeffs (GRBConstr[] constrs,
GRBVar[] vars,
double[] newvals)

Arguments:
constrs: Constraints for coefficients to be changed.
vars: Variables for coefficients to be changed.
newvals: Desired new values for coefficients.

GRBModel.computeIIS()
Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and variable bounds with
the following properties:

• It is still infeasible, and
• If a single constraint or bound is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily the smallest
one; there may exist others with fewer constraints or bounds.

IIS results are returned in a number of attributes: IISConstr, IISLB, IISUB, IISSOS, IISQConstr, and IISGen-
Constr. Each indicates whether the corresponding model element is a member of the computed IIS.

The IIS log provides information about the progress of the algorithm, including a guess at the eventual IIS size.
If an IIS computation is interrupted before completion, Gurobi will return the smallest infeasible subsystem found

to that point.
The IISConstrForce, IISLBForce, IISUBForce, IISSOSForce, IISQConstrForce, and IISGenConstrForce attributes

allow you mark model elements to either include or exclude from the computed IIS. Setting the attribute to 1 forces
the corresponding element into the IIS, setting it to 0 forces it out of the IIS, and setting it to -1 allows the algorithm
to decide.

To give an example of when these attributes might be useful, consider the case where an initial model is known
to be feasible, but it becomes infeasible after adding constraints or tightening bounds. If you are only interested
in knowing which of the changes caused the infeasibility, you can force the unmodified bounds and constraints into
the IIS. That allows the IIS algorithm to focus exclusively on the new constraints, which will often be substantially
faster.

Note that setting any of the Force attributes to 0 may make the resulting subsystem feasible, which would
then make it impossible to construct an IIS. Trying anyway will result in a GRB_ERROR_IIS_NOT_INFEASIBLE error.
Similarly, setting this attribute to 1 may result in an IIS that is not irreducible. More precisely, the system would
only be irreducible with respect to the model elements that have force values of -1 or 0.

This method populates the IISConstr, IISQConstr, and IISGenConstr constraint attributes, the IISSOS, SOS
attribute, and the IISLB and IISUB variable attributes. You can also obtain information about the results of the IIS

229

computation by writing a .ilp format file (see GRBModel.write). This file contains only the IIS from the original
model.

Use the IISMethod parameter to adjust the behavior of the IIS algorithm.
Note that this method can be used to compute IISs for both continuous and MIP models.

void computeIIS ()

GRBModel.discardConcurrentEnvs()
Discard concurrent environments for a model.

The concurrent environments created by getConcurrentEnv will be used by every subsequent call to the concurrent
optimizer until the concurrent environments are discarded.

Use getMultiobjEnv to create a multi-objective environment.

void discardConcurrentEnvs ()

GRBModel.discardMultiobjEnvs()
Discard all multi-objective environments associated with the model, thus restoring multi objective optimization to
its default behavior.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple objective functions
and control the trade-off between them.

Use getMultiobjEnv to create a multi-objective environments.

void discardMultiobjEnvs ()

GRBModel.dispose()
Release the resources associated with a GRBModel object. While the Java garbage collector will eventually reclaim
these resources, we recommend that you call the dispose method when you are done using a model.

You should not attempt to use a GRBModel object after calling dispose on it.

void dispose ()

GRBModel.feasRelax()
Modifies the GRBModel object to create a feasibility relaxation. Note that you need to call optimize on the result to
compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the solution violates the
bounds and linear constraints of the original model. This method provides a number of options for specifying the
relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the sum of the weighted
magnitudes of the bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the cost per
unit violation in the lower bounds, upper bounds, and linear constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the weighted sum of the
squares of the bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the coefficients on
the squares of the lower bound, upper bound, and linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the weighted count of
bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the cost of violating a lower
bound, upper bound, and linear constraint, respectively.

230

To give an example, if a constraint with rhspen value p is violated by 2.0, it would contribute 2*p to the feasibility
relaxation objective for relaxobjtype=0, it would contribute 2*2*p for relaxobjtype=1, and it would contribute p
for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is created. If minrelax=false,
optimizing the returned model gives a solution that minimizes the cost of the violation. If minrelax=true, optimizing
the returned model finds a solution that minimizes the original objective, but only from among those solutions that
minimize the cost of the violation. Note that feasRelax must solve an optimization problem to find the minimum
possible relaxation when minrelax=true, which can be quite expensive.

There are two signatures for this method. The more complex one takes a list of variables and constraints, as well
as penalties associated with relaxing the corresponding lower bounds, upper bounds, and constraints. If a variable
or constraint is not included in one of these lists, the associated bounds or constraints may not be violated. The
simpler signature takes a pair of boolean arguments, vrelax and crelax, that indicate whether variable bounds
and/or constraints can be violated. If vrelax/crelax is true, then every bound/constraint is allowed to be violated,
respectively, and the associated cost is 1.0.

Note that this is a destructive method: it modifies the model on which it is invoked. If you don’t want to modify
your original model, use the GRBModel constructor to create a copy before invoking this method.

double feasRelax (int relaxobjtype,
boolean minrelax,
GRBVar[] vars,
double[] lbpen,
double[] ubpen,
GRBConstr[] constrs,
double[] rhspen)

Create a feasibility relaxation model.
Arguments:

relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vars: Variables whose bounds are allowed to be violated.
lbpen: Penalty for violating a variable lower bound. One entry for each variable in argument vars.
ubpen: Penalty for violating a variable upper bound. One entry for each variable in argument vars.
constrs: Linear constraints that are allowed to be violated.
rhspen: Penalty for violating a linear constraint. One entry for each constraint in argument constrs.

Arguments:
Return value:

Zero if minrelax is false. If minrelax is true, the return value is the objective value for the relaxation
performed. If the value is less than 0, it indicates that the method failed to create the feasibility relaxation.

double feasRelax (int relaxobjtype,
boolean minrelax,
boolean vrelax,
boolean crelax)

Simplified method for creating a feasibility relaxation model.
Arguments:

relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vrelax: Indicates whether variable bounds can be relaxed (with a cost of 1.0 for any violations.
crelax: Indicates whether linear constraints can be relaxed (with a cost of 1.0 for any violations.

Return value:
Zero if minrelax is false. If minrelax is true, the return value is the objective value for the relaxation
performed. If the value is less than 0, it indicates that the method failed to create the feasibility relaxation.

231

GRBModel.fixedModel()
Create the fixed model associated with a MIP model. The MIP model must have a solution loaded (e.g., after a call
to the optimize method). In the fixed model, each integer variable is fixed to the value that variable takes in the MIP
solution. In addition, continuous variables may be fixed to satisfy SOS or general constraints. The result is a model
without any integrality constraints, SOS constraints, or general constraints.

Note that, while the fixed problem is always a continuous model, it may contain a non-convex quadratic objective
or non-convex quadratic constraints. As a result, it may still be solved using the MIP algorithm.

GRBModel fixedModel ()
Return value:

Fixed model associated with calling object.

GRBModel.get()
Query the value(s) of a parameter or attribute. Use this method for parameters, for scalar model attributes, and for
arrays of constraint or variable attributes.

double get (GRB.DoubleParam param)

Query the value of a double-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

int get (GRB.IntParam param)

Query the value of an int-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

String get (GRB.StringParam param)

Query the value of a string-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

char[] get (GRB.CharAttr attr,
GRBVar[] vars)

Query a char-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

232

char[] get (GRB.CharAttr attr,
GRBVar[] vars,
int start,
int len)

Query a char-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

char[][] get (GRB.CharAttr attr,
GRBVar[][] vars)

Query a char-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

char[][][] get (GRB.CharAttr attr,
GRBVar[][][] vars)

Query a char-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

char[] get (GRB.CharAttr attr,
GRBConstr[] constrs)

Query a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

char[] get (GRB.CharAttr attr,
GRBConstr[] constrs,
int start,
int len)

Query a char-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

233

char[][] get (GRB.CharAttr attr,
GRBConstr[][] constrs)

Query a char-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

char[][][] get (GRB.CharAttr attr,
GRBConstr[][][] constrs)

Query a char-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

char[] get (GRB.CharAttr attr,
GRBQConstr[] qconstrs)

Query a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: The quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

char[] get (GRB.CharAttr attr,
GRBQConstr[] qconstrs,
int start,
int len)

Query a char-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are being queried.
start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

Return value:
The current values of the requested attribute for each input quadratic constraint.

char[][] get (GRB.CharAttr attr,
GRBQConstr[][] qconstrs)

Query a char-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

char[][][] get (GRB.CharAttr attr,
GRBQConstr[][][] qconstrs)

234

Query a char-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

double get (GRB.DoubleAttr attr)

Query the value of a double-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double[] get (GRB.DoubleAttr attr,
GRBVar[] vars)

Query a double-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

double[] get (GRB.DoubleAttr attr,
GRBVar[] vars,
int start,
int len)

Query a double-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

double[][] get (GRB.DoubleAttr attr,
GRBVar[][] vars)

Query a double-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

double[][][] get (GRB.DoubleAttr attr,
GRBVar[][][] vars)

Query a double-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.

235

vars: A three-dimensional array of variables whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input variable.

double[] get (GRB.DoubleAttr attr,
GRBConstr[] constrs)

Query a double-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

double[] get (GRB.DoubleAttr attr,
GRBConstr[] constrs,
int start,
int len)

Query a double-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

double[][] get (GRB.DoubleAttr attr,
GRBConstr[][] constrs)

Query a double-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

double[][][] get (GRB.DoubleAttr attr,
GRBConstr[][][] constrs)

Query a double-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

double[] get (GRB.DoubleAttr attr,
GRBQConstr[] qconstrs)

Query a double-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: The quadratic constraints whose attribute values are being queried.

Return value:

236

The current values of the requested attribute for each input quadratic constraint.

double[] get (GRB.DoubleAttr attr,
GRBQConstr[] qconstrs,
int start,
int len)

Query a double-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are being queried.
start: The first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

Return value:
The current values of the requested attribute for each input quadratic constraint.

double[][] get (GRB.DoubleAttr attr,
GRBQConstr[][] qconstrs)

Query a double-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

double[][][] get (GRB.DoubleAttr attr,
GRBQConstr[][][] qconstrs)

Query a double-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

int get (GRB.IntAttr attr)

Query the value of an int-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int[] get (GRB.IntAttr attr,
GRBVar[] vars)

Query an int-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

237

int[] get (GRB.IntAttr attr,
GRBVar[] vars,
int start,
int len)

Query an int-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

int[][] get (GRB.IntAttr attr,
GRBVar[][] vars)

Query an int-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

int[][][] get (GRB.IntAttr attr,
GRBVar[][][] vars)

Query an int-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

int[] get (GRB.IntAttr attr,
GRBConstr[] constrs)

Query an int-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

int[] get (GRB.IntAttr attr,
GRBConstr[] constrs,
int start,
int len)

Query an int-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

238

int[][] get (GRB.IntAttr attr,
GRBConstr[][] constrs)

Query an int-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

int[][][] get (GRB.IntAttr attr,
GRBConstr[][][] constrs)

Query an int-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

int[] get (GRB.IntAttr attr,
GRBQConstr[] qconstrs)

Query an int-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: The quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

int[] get (GRB.IntAttr attr,
GRBQConstr[] qconstrs,
int start,
int len)

Query an int-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are being queried.
start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

Return value:
The current values of the requested attribute for each input quadratic constraint.

int[][] get (GRB.IntAttr attr,
GRBQConstr[][] qconstrs)

Query an int-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

int[][][] get (GRB.IntAttr attr,
GRBQConstr[][][] qconstrs)

239

Query an int-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

int[] get (GRB.IntAttr attr,
GRBGenConstr[] genconstrs)

Query an int-valued general constraint attribute for an array of general constraints.
Arguments:

attr: The attribute being queried.
genconstrs: The general constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input general constraint.

int[] get (GRB.IntAttr attr,
GRBGenConstr[] genconstrs,
int start,
int len)

Query an int-valued general constraint attribute for a sub-array of general constraints.
Arguments:

attr: The attribute being queried.
genconstrs: A one-dimensional array of general constraints whose attribute values are being queried.
start: The index of the first general constraint of interest in the list.
len: The number of general constraints.

Return value:
The current values of the requested attribute for each input general constraint.

int[][] get (GRB.IntAttr attr,
GRBGenConstr[][] genconstrs)

Query an int-valued general constraint attribute for a two-dimensional array of general constraints.
Arguments:

attr: The attribute being queried.
genconstrs: A two-dimensional array of general constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input general constraint.

int[][][] get (GRB.IntAttr attr,
GRBGenConstr[][][] genconstrs)

Query an int-valued general constraint attribute for a three-dimensional array of general constraints.
Arguments:

attr: The attribute being queried.
genconstrs: A three-dimensional array of general constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input general constraint.

String get (GRB.StringAttr attr)

Query the value of a string-valued model attribute.
Arguments:

240

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

String[] get (GRB.StringAttr attr,
GRBVar[] vars)

Query a String-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

String[] get (GRB.StringAttr attr,
GRBVar[] vars,
int start,
int len)

Query a String-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

String[][] get (GRB.StringAttr attr,
GRBVar[][] vars)

Query a String-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

String[][][] get (GRB.StringAttr attr,
GRBVar[][][] vars)

Query a String-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

String[] get (GRB.StringAttr attr,
GRBConstr[] constrs)

Query a String-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:

241

The current values of the requested attribute for each input constraint.

String[] get (GRB.StringAttr attr,
GRBConstr[] constrs,
int start,
int len)

Query a String-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

String[][] get (GRB.StringAttr attr,
GRBConstr[][] constrs)

Query a String-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

String[][][] get (GRB.StringAttr attr,
GRBConstr[][][] constrs)

Query a String-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

String[] get (GRB.StringAttr attr,
GRBQConstr[] qconstrs)

Query a String-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: The quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

String[] get (GRB.StringAttr attr,
GRBQConstr[] qconstrs,
int start,
int len)

Query a String-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are being queried.
start: The index of the first quadratic constraint of interest in the list.

242

len: The number of quadratic constraints.
Return value:

The current values of the requested attribute for each input quadratic constraint.

String[][] get (GRB.StringAttr attr,
GRBQConstr[][] qconstrs)

Query a String-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

String[][][] get (GRB.StringAttr attr,
GRBQConstr[][][] qconstrs)

Query a String-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

String[] get (GRB.StringAttr attr,
GRBGenConstr[] genconstrs)

Query a String-valued general constraint attribute for an array of general constraints.
Arguments:

attr: The attribute being queried.
genconstrs: The general constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input general constraint.

String[] get (GRB.StringAttr attr,
GRBGenConstr[] genconstrs,
int start,
int len)

Query a String-valued general constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
genconstrs: A one-dimensional array of general constraints whose attribute values are being queried.
start: The index of the first general constraint of interest in the list.
len: The number of general constraints.

Return value:
The current values of the requested attribute for each input general constraint.

String[][] get (GRB.StringAttr attr,
GRBGenConstr[][] genconstrs)

Query a String-valued constraint attribute for a two-dimensional array of general constraints.
Arguments:

attr: The attribute being queried.
genconstrs: A two-dimensional array of general constraints whose attribute values are being queried.

Return value:

243

The current values of the requested attribute for each input general constraint.

String[][][] get (GRB.StringAttr attr,
GRBGenConstr[][][] genconstrs)

Query a String-valued constraint attribute for a three-dimensional array of general constraints.
Arguments:

attr: The attribute being queried.
genconstrs: A three-dimensional array of general constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input general constraint.

GRBModel.getCoeff()
Query the coefficient of variable var in linear constraint constr (note that the result can be zero).

double getCoeff (GRBConstr constr,
GRBVar var)

Arguments:
constr: The requested constraint.
var: The requested variable.

Return value:
The current value of the requested coefficient.

GRBModel.getCol()
Retrieve the list of constraints in which a variable participates, and the associated coefficients. The result is returned
as a GRBColumn object.

GRBColumn getCol (GRBVar var)

Arguments:
var: The variable of interest.

Return value:
A GRBColumn object that captures the set of constraints in which the variable participates.

GRBModel.getConcurrentEnv()
Create/retrieve a concurrent environment for a model.

This method provides fine-grained control over the concurrent optimizer. By creating your own concurrent
environments and setting appropriate parameters on these environments (e.g., the Method parameter), you can control
exactly which strategies the concurrent optimizer employs. For example, if you create two concurrent environments,
and set Method to primal simplex for one and dual simplex for the other, subsequent concurrent optimizer runs will
use the two simplex algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with num=0. For example,
if you want three concurrent environments, they must be numbered 0, 1, and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent optimization on
that model. Use discardConcurrentEnvs to revert back to default concurrent optimizer behavior.

GRBEnv getConcurrentEnv (int num)

Arguments:
num: The concurrent environment number.

Return value:
The concurrent environment for the model.

244

GRBModel.getConstrByName()
Retrieve a linear constraint from its name. If multiple linear constraints have the same name, this method chooses
one arbitrarily. Returns null if no constraint has that name.

GRBConstr getConstrByName (String name)

Arguments:
name: The name of the desired linear constraint.

Return value:
The requested linear constraint.

GRBModel.getConstrs()
Retrieve an array of all linear constraints in the model.

GRBConstr[] getConstrs ()
Return value:

All linear constraints in the model.

GRBModel.getGenConstrXxx()
The following methods allow you to retrieve general constraints from your model.

GRBModel.getGenConstrMax

Retrieve the data associated with a general constraint of type MAX. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
null value for the vars argument. The routine returns the total number of operand variables in the specified general
constraint in len. That allows you to make certain that the vars array is of sufficient size to hold the result of the
second call.

See also addGenConstrMax for a description of the semantics of this general constraint type.

void getGenConstrMax (GRBGenConstr genc,
GRBVar[] resvar,
GRBVar[] vars,
int[] len,
double[] constant)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
resvar: Store the resultant variable of the constraint at resvar[0].
vars: Array to store the operand variables of the constraint.
len: Store the number of operand variables of the constraint at len[0].
constant: Store the additional constant operand of the constraint at constant[0].

245

GRBModel.getGenConstrMin

Retrieve the data associated with a general constraint of type MIN. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
null value for the vars argument. The routine returns the total number of operand variables in the specified general
constraint in len. That allows you to make certain that the vars array is of sufficient size to hold the result of the
second call.

See also addGenConstrMin for a description of the semantics of this general constraint type.

void getGenConstrMin (GRBGenConstr genc,
GRBVar[] resvar,
GRBVar[] vars,
int[] len,
double[] constant)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
resvar: Store the resultant variable of the constraint at resvar[0].
vars: Array to store the operand variables of the constraint.
len: Store the number of operand variables of the constraint at len[0].
constant: Store the additional constant operand of the constraint at constant[0].

GRBModel.getGenConstrAbs

Retrieve the data associated with a general constraint of type ABS. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrAbs for a description of the semantics of this general constraint type.

void getGenConstrAbs (GRBGenConstr genc,
GRBVar[] resvar,
GRBVar[] argvar)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
resvar: Store the resultant variable of the constraint at resvar[0].
argvar: Store the argument variable of the constraint at resvar[0].

GRBModel.getGenConstrAnd

Retrieve the data associated with a general constraint of type AND. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
null value for the vars argument. The routine returns the total number of operand variables in the specified general
constraint in len. That allows you to make certain that the vars array is of sufficient size to hold the result of the
second call.

See also addGenConstrAnd for a description of the semantics of this general constraint type.

void getGenConstrAnd (GRBGenConstr genc,
GRBVar[] resvar,
GRBVar[] vars,
int[] len)

246

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
resvar: Store the resultant variable of the constraint at resvar[0].
vars: Array to store the operand variables of the constraint.
len: Store the number of operand variables of the constraint at len[0].

GRBModel.getGenConstrOr

Retrieve the data associated with a general constraint of type OR. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
null value for the vars argument. The routine returns the total number of operand variables in the specified general
constraint in len. That allows you to make certain that the vars array is of sufficient size to hold the result of the
second call.

See also addGenConstrOr for a description of the semantics of this general constraint type.

void getGenConstrOr (GRBGenConstr genc,
GRBVar[] resvar,
GRBVar[] vars,
int[] len)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
resvar: Store the resultant variable of the constraint at resvar[0].
vars: Array to store the operand variables of the constraint.
len: Store the number of operand variables of the constraint at len[0].

GRBModel.getGenConstrNorm

Retrieve the data associated with a general constraint of type NORM. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
null value for the vars argument. The routine returns the total number of operand variables in the specified general
constraint in len. That allows you to make certain that the vars array is of sufficient size to hold the result of the
second call.

See also addGenConstrNorm for a description of the semantics of this general constraint type.

void getGenConstrNorm (GRBGenConstr genc,
GRBVar[] resvar,
GRBVar[] vars,
int[] len,
double[] which)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
resvar: Store the resultant variable of the constraint at resvar[0].
vars: Array to store the operand variables of the constraint.
len: Store the number of operand variables of the constraint at len[0].
whichP: Store the norm type (possible values are 0, 1, 2, or GRB.INFINITY).

247

GRBModel.getGenConstrIndicator

Retrieve the data associated with a general constraint of type INDICATOR. Calling this method for a general
constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the
type of the general constraint.

See also addGenConstrIndicator for a description of the semantics of this general constraint type.

void getGenConstrIndicator (GRBGenConstr genc,
GRBVar[] binvar,
int[] binval,
GRBLinExpr[] expr,
char[] sense,
double[] rhs)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
binvar: Store the binary indicator variable of the constraint at binvar[0].
binval: Store the value that the indicator variable has to take in order to trigger the linear constraint at
binval[0].

expr: Create a GRBLinExpr object to store the left-hand side expression of the linear constraint that is
triggered by the indicator at expr[0].

sense: Store the sense for the linear constraint at sense[0]. Options are GRB.LESS_EQUAL, GRB.EQUAL, or
GRB.GREATER_EQUAL.

rhs: Store the right-hand side value for the linear constraint at rhs[0].

GRBModel.getGenConstrPWL

Retrieve the data associated with a general constraint of type PWL. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
null value for the xpts and ypts arguments. The routine returns the length for the xpts and ypts arrays in npts.
That allows you to make certain that the xpts and ypts arrays are of sufficient size to hold the result of the second
call.

See also addGenConstrPWL for a description of the semantics of this general constraint type.

void getGenConstrPWL (GRBGenConstr genc,
GRBVar[] xvar,
GRBVar[] yvar,
int[] npts,
double[] xpts,
double[] ypts)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.
npts: Store the number of points that define the piecewise-linear function.
xpts: The x values for the points that define the piecewise-linear function.
ypts: The y values for the points that define the piecewise-linear function.

248

GRBModel.getGenConstrPoly

Retrieve the data associated with a general constraint of type POLY. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with
a null value for the p argument. The routine returns the length of the p array in plen. That allows you to make
certain that the p array is of sufficient size to hold the result of the second call.

See also addGenConstrPoly for a description of the semantics of this general constraint type.

void getGenConstrPoly (GRBGenConstr genc,
GRBVar[] xvar,
GRBVar[] yvar,
int[] plen,
double[] p)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.
plen: Store the array length for p. If xd is the highest power term, then d+ 1 will be returned.
p: The coefficients for polynomial function.

GRBModel.getGenConstrExp

Retrieve the data associated with a general constraint of type EXP. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrExp for a description of the semantics of this general constraint type.

void getGenConstrExp (GRBGenConstr genc,
GRBVar[] xvar,
GRBVar[] yvar)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.

GRBModel.getGenConstrExpA

Retrieve the data associated with a general constraint of type EXPA. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrExpA for a description of the semantics of this general constraint type.

void getGenConstrExpA (GRBGenConstr genc,
GRBVar[] xvar,
GRBVar[] yvar,
double[] a)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.
a: Store the base of the function.

249

GRBModel.getGenConstrLog

Retrieve the data associated with a general constraint of type LOG. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrLog for a description of the semantics of this general constraint type.

void getGenConstrLog (GRBGenConstr genc,
GRBVar[] xvar,
GRBVar[] yvar)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.

GRBModel.getGenConstrLogA

Retrieve the data associated with a general constraint of type LOGA. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrLogA for a description of the semantics of this general constraint type.

void getGenConstrLogA (GRBGenConstr genc,
GRBVar[] xvar,
GRBVar[] yvar,
double[] a)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.
a: Store the base of the function.

GRBModel.getGenConstrLogistic

Retrieve the data associated with a general constraint of type LOGISTIC. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrLogistic for a description of the semantics of this general constraint type.

void getGenConstrLogistic (GRBGenConstr genc,
GRBVar[] xvar,
GRBVar[] yvar)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.

250

GRBModel.getGenConstrPow

Retrieve the data associated with a general constraint of type POW. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrPow for a description of the semantics of this general constraint type.

void getGenConstrPow (GRBGenConstr genc,
GRBVar[] xvar,
GRBVar[] yvar,
double[] a)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.
a: Store the exponent of the function.

GRBModel.getGenConstrSin

Retrieve the data associated with a general constraint of type SIN. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrSin for a description of the semantics of this general constraint type.

void getGenConstrSin (GRBGenConstr genc,
GRBVar[] xvar,
GRBVar[] yvar)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.

GRBModel.getGenConstrCos

Retrieve the data associated with a general constraint of type COS. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrCos for a description of the semantics of this general constraint type.

void getGenConstrCos (GRBGenConstr genc,
GRBVar[] xvar,
GRBVar[] yvar)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.

251

GRBModel.getGenConstrTan

Retrieve the data associated with a general constraint of type TAN. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrTan for a description of the semantics of this general constraint type.

void getGenConstrTan (GRBGenConstr genc,
GRBVar[] xvar,
GRBVar[] yvar)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.

GRBModel.getGenConstrs()
Retrieve an array of all general constraints in the model.

GRBGenConstr[] getGenConstrs ()
Return value:

All general constraints in the model.

GRBModel.getJSONSolution()
After a call to optimize, this method returns the resulting solution and related model attributes as a JSON string.
Please refer to the JSON solution format section for details.

String getJSONSolution ()
Return value:

A JSON string.

GRBModel.getMultiobjEnv()
Create/retrieve a multi-objective environment for the objective with the given index. This environment enables
fine-grained control over the multi-objective optimization process. Specifically, by changing parameters on this
environment, you modify the behavior of the optimization that occurs during the corresponding pass of the multi-
objective optimization.

Each multi-objective environment starts with a copy of the current model environment.
Please refer to the discussion of Multiple Objectives for information on how to specify multiple objective functions

and control the trade-off between them.
Use discardMultiobjEnvs to discard multi-objective environments and return to standard behavior.

GRBEnv getMultiobjEnv (int index)

Arguments:
index: The objective index.

Return value:
The multi-objective environment for the model.

252

GRBModel.getObjective()
Retrieve the model objective(s).

GRBExpr getObjective ()
Retrieve the optimization objective.
Note that the constant and linear portions of the objective can also be retrieved using the ObjCon and Obj

attributes.
Return value:

The model objective.

GRBLinExpr getObjective (int index)

Retrieve an alternative optimization objective. Alternative objectives will always be linear. You can also use this
routine to retrieve the primary objective (using index = 0), but you will get an exception if the primary objective
contains quadratic terms.

Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.
Note that alternative objectives can also be retrieved using the ObjNCon and ObjN attributes.
Arguments:

index: The index for the requested alternative objective.
Return value:

The requested alternative objective.

GRBModel.getPWLObj()
Retrieve the piecewise-linear objective function for a variable. The return value gives the number of points that define
the function, and the x and y arguments give the coordinates of the points, respectively. The x and y arguments
must be large enough to hold the result. Call this method with null values for x and y if you just want the number
of points.

Refer to this discussion for additional information on what the values in x and y mean.

int getPWLObj (GRBVar var,
double[] x,
double[] y)

Arguments:
var: The variable whose objective function is being retrieved.
x: The x values for the points that define the piecewise-linear function. These will always be in non-decreasing
order.

y: The y values for the points that define the piecewise-linear function.
Return value:

The number of points that define the piecewise-linear objective function.

GRBModel.getQCRow()
Retrieve the left-hand side expression from a quadratic constraint. The result is returned as a GRBQuadExpr object.

GRBQuadExpr getQCRow (GRBQConstr qc)

Arguments:
qc: The quadratic constraint of interest.

Return value:
A GRBQuadExpr object that captures the left-hand side of the quadratic constraint.

253

GRBModel.getQConstrs()
Retrieve an array of all quadratic constraints in the model.

GRBQConstr[] getQConstrs ()
Return value:

All quadratic constraints in the model.

GRBModel.getRow()
Retrieve a list of variables that participate in a constraint, and the associated coefficients. The result is returned as
a GRBLinExpr object.

GRBLinExpr getRow (GRBConstr constr)

Arguments:
constr: The constraint of interest. A GRBConstr object, typically obtained from addConstr or getConstrs.

Return value:
A GRBLinExpr object that captures the set of variables that participate in the constraint.

GRBModel.getSOS()
Retrieve the list of variables that participate in an SOS constraint, and the associated coefficients. The return value
is the length of this list. Note that the argument arrays must be long enough to accommodate the result. Call the
method with null array arguments to determine the appropriate array lengths.

int getSOS (GRBSOS sos,
GRBVar[] vars,
double[] weights,
int[] type)

Arguments:
sos: The SOS set of interest.
vars: A list of variables that participate in sos. Can be null.
weights: The SOS weights for each participating variable. Can be null.
type: The type of the SOS set (either GRB.SOS_TYPE1 or GRB.SOS_TYPE2) is returned in type[0].

Return value:
The number of entries placed in the output arrays. Note that you should consult the return value to determine
the length of the result; the arrays sizes won’t necessarily match the result size.

GRBModel.getSOSs()
Retrieve an array of all SOS constraints in the model.

GRBSOS[] getSOSs ()
Return value:

All SOS constraints in the model.

254

GRBModel.getTuneResult()
Use this method to retrieve the results of a previous tune call. Calling this method with argument n causes tuned
parameter set n to be copied into the model. Parameter sets are stored in order of decreasing quality, with parameter
set 0 being the best. The number of available sets is stored in attribute TuneResultCount.

Once you have retrieved a tuning result, you can call optimize to use these parameter settings to optimize the
model, or write to write the changed parameters to a .prm file.

Please refer to the Parameter Tuning section in the Reference Manual for details on the tuning tool.

void getTuneResult (int i)

i: The index of the tuning result to retrieve. The best result is available as index 0. The number of stored
results is available in attribute TuneResultCount.

GRBModel.getVarByName()
Retrieve a variable from its name. If multiple variables have the same name, this method chooses one arbitrarily.
Returns null if no variable has that name.

GRBVar getVarByName (String name)

Arguments:
name: The name of the desired variable.

Return value:
The requested variable.

GRBModel.getVars()
Retrieve an array of all variables in the model.

GRBVar[] getVars ()
Return value:

All variables in the model.

GRBModel.optimize()
Optimize the model. The algorithm used for the optimization depends on the model type (simplex or barrier for
a continuous model; branch-and-cut for a MIP model). Upon successful completion, this method will populate the
solution related attributes of the model. See the Attributes section in the Reference Manual for more information on
attributes.

Please consult this section in the Reference Manual for a discussion of some of the practical issues associated
with solving a precisely defined mathematical model using finite-precision floating-point arithmetic.

Note that this method will process all pending model modifications.

void optimize ()

255

GRBModel.optimizeasync()
Optimize a model asynchronously. This routine returns immediately. Your program can perform other computations
while optimization proceeds in the background. To check the state of the asynchronous optimization, query the
Status attribute for the model. A value of IN_PROGRESS indicates that the optimization has not yet completed. When
you are done with your foreground tasks, you must call sync to sync your foreground program with the asynchronous
optimization task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in the background
is severely limited. Specifically, you can only perform attribute queries, and only for a few attributes (listed below).
Any other calls on the running model, or on any other models that were built within the same Gurobi environment,
will fail with error code OPTIMIZATION_IN_PROGRESS.

Note that there are no such restrictions on models built in other environments. Thus, for example, you could
create multiple environments, and then have a single foreground program launch multiple simultaneous asynchronous
optimizations, each in its own environment.

As already noted, you are allowed to query the value of the Status attribute while an asynchronous optimization
is in progress. The other attributes that can be queried are: ObjVal, ObjBound, IterCount, NodeCount, and
BarIterCount. In each case, the returned value reflects progress in the optimization to that point. Any attempt to
query the value of an attribute not on this list will return an OPTIMIZATION_IN_PROGRESS error.

void optimizeasync ()

GRBModel.optimizeBatch()
Submit a new batch request to the Cluster Manager. Returns the BatchID (a string), which uniquely identifies the
job in the Cluster Manager and can be used to query the status of this request (from this program or from any other).
Once the request has completed, the BatchID can also be used to retrieve the associated solution. To submit a batch
request, you must tag at least one element of the model by setting one of the VTag, CTag or QCTag attributes. For
more details on batch optimization, please refer to the Batch Optimization section.

Note that this routine will process all pending model modifications.

String optimizeBatch ()
Return value:

A unique string identifier for the batch request.

GRBModel.presolve()
Perform presolve on a model.

GRBModel presolve ()
Return value:

Presolved version of original model.

GRBModel.read()
This method is the general entry point for importing data from a file into a model. It can be used to read basis files
for continuous models, start vectors for MIP models, or parameter settings. The type of data read is determined by
the file suffix. File formats are described in the File Formats section of the Reference Manual.

Note that this is not the method to use if you want to read a new model from a file. For that, use the GRBModel
constructor. One variant of the constructor takes the name of the file that contains the new model as its argument.

void read (String filename)

256

Arguments:
filename: Name of the file to read. The suffix on the file must be either .bas (for an LP basis), .mst or
.sol (for a MIP start), .hnt (for MIP hints), .ord (for a priority order), or .prm (for a parameter file).
The suffix may optionally be followed by .zip, .gz, .bz2, or .7z.

GRBModel.remove()
Remove a variable, constraint, or SOS from a model.

void remove (GRBConstr constr)

Remove a linear constraint from the model. Note that, due to our lazy update approach, the change won’t actually
take effect until you update the model (using GRBModel.update), optimize the model (using GRBModel.optimize),
or write the model to disk (using GRBModel.write).

Arguments:
constr: The linear constraint to remove.

void remove (GRBGenConstr genconstr)

Remove a general constraint from the model. Note that, due to our lazy update approach, the change won’t actu-
ally take effect until you update the model (using GRBModel.update), optimize the model (using GRBModel.optimize),
or write the model to disk (using GRBModel.write).

Arguments:
genconstr: The general constraint to remove.

void remove (GRBQConstr qconstr)

Remove a quadratic constraint from the model. Note that, due to our lazy update approach, the change
won’t actually take effect until you update the model (using GRBModel.update), optimize the model (using GRB-
Model.optimize), or write the model to disk (using GRBModel.write).

Arguments:
qconstr: The quadratic constraint to remove.

void remove (GRBSOS sos)

Remove an SOS constraint from the model. Note that, due to our lazy update approach, the change won’t actually
take effect until you update the model (using GRBModel.update), optimize the model (using GRBModel.optimize),
or write the model to disk (using GRBModel.write).

Arguments:
sos: The SOS constraint to remove.

void remove (GRBVar var)

Remove a variable from the model. Note that, due to our lazy update approach, the change won’t actually take
effect until you update the model (using GRBModel.update), optimize the model (using GRBModel.optimize), or
write the model to disk (using GRBModel.write).

Arguments:
var: The variable to remove.

257

GRBModel.reset()
Reset the model to an unsolved state, discarding any previously computed solution information.

void reset ()

void reset (int clearall)

Arguments:
clearall: A value of 1 discards additional information that affects the solution process but not the actual
model (currently MIP starts, variable hints, branching priorities, lazy flags, and partition information).
Pass 0 to just discard the solution.

GRBModel.setCallback()
Set the callback object for a model. The callback() method on this object will be called periodically from the
Gurobi solver. You will have the opportunity to obtain more detailed information about the state of the optimization
from this callback. See the documentation for GRBCallback for additional information.

Note that a model can only have a single callback method, so this call will replace an existing callback.

void setCallback (GRBCallback cb)

Arguments:
cb: New callback object. To disable a previously set callback, call this method with a null argument.

GRBModel.set()
Set the value(s) of a parameter or attribute. Use this method for parameters, for scalar model attributes, or for
arrays of constraint or variable attributes.

void set (GRB.DoubleParam param,
double newval)

Set the value of a double-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e., through GR-

BEnv.set) is that the former modifies the parameter for a single model, while the latter modifies the parameter for
every model that is subsequently built using that environment (and leaves the parameter unchanged for models that
were previously built using that environment).

Arguments:
param: The parameter being modified.
newval: The desired new value for the parameter.

void set (GRB.IntParam param,
int newval)

Set the value of an int-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e., through GR-

BEnv.set) is that the former modifies the parameter for a single model, while the latter modifies the parameter for
every model that is subsequently built using that environment (and leaves the parameter unchanged for models that
were previously built using that environment).

Arguments:
param: The parameter being modified.
newval: The desired new value for the parameter.

258

void set (GRB.StringParam param,
String newval)

Set the value of a string-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e., through GR-

BEnv.set) is that the former modifies the parameter for a single model, while the latter modifies the parameter for
every model that is subsequently built using that environment (and leaves the parameter unchanged for models that
were previously built using that environment).

Arguments:
param: The parameter being modified.
newval: The desired new value for the parameter.

void set (String param,
String newval)

Set the value of any parameter using strings alone.
The difference between setting a parameter on a model and setting it on an environment (i.e., through GR-

BEnv.set) is that the former modifies the parameter for a single model, while the latter modifies the parameter for
every model that is subsequently built using that environment (and leaves the parameter unchanged for models that
were previously built using that environment).

Arguments:
param: The name of the parameter being modified.
newval: The desired new value for the parameter.

void set (GRB.CharAttr attr,
GRBVar[] vars,
char[] newvals)

Set a char-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.CharAttr attr,
GRBVar[] vars,
char[] newvals,
int start,
int len)

Set a char-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

void set (GRB.CharAttr attr,
GRBVar[][] vars,
char[][] newvals)

Set a char-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

259

void set (GRB.CharAttr attr,
GRBVar[][][] vars,
char[][][] newvals)

Set a char-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.CharAttr attr,
GRBConstr[] constrs,
char[] newvals)

Set a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.CharAttr attr,
GRBConstr[] constrs,
char[] newvals,
int start,
int len)

Set a char-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

void set (GRB.CharAttr attr,
GRBConstr[][] constrs,
char[][] newvals)

Set a char-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.CharAttr attr,
GRBConstr[][][] constrs,
char[][][] newvals)

Set a char-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.CharAttr attr,
GRBQConstr[] qconstrs,
char[] newvals)

260

Set a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: The quadratic constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.CharAttr attr,
GRBQConstr[] qconstrs,
char[] newvals,
int start,
int len)

Set a char-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input quadratic constraint.
start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

void set (GRB.CharAttr attr,
GRBQConstr[][] qconstrs,
char[][] newvals)

Set a char-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.CharAttr attr,
GRBQConstr[][][] qconstrs,
char[][][] newvals)

Set a char-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.DoubleAttr attr,
double newval)

Set the value of a double-valued model attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value for the attribute.

void set (GRB.DoubleAttr attr,
GRBVar[] vars,
double[] newvals)

Set a double-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: The variables whose attribute values are being modified.

261

newvals: The desired new values for the attribute for each input variable.

void set (GRB.DoubleAttr attr,
GRBVar[] vars,
double[] newvals,
int start,
int len)

Set a double-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

void set (GRB.DoubleAttr attr,
GRBVar[][] vars,
double[][] newvals)

Set a double-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.DoubleAttr attr,
GRBVar[][][] vars,
double[][][] newvals)

Set a double-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.DoubleAttr attr,
GRBConstr[] constrs,
double[] newvals)

Set a double-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.DoubleAttr attr,
GRBConstr[] constrs,
double[] newvals,
int start,
int len)

Set a double-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.

262

newvals: The desired new values for the attribute for each input constraint.
start: The first constraint of interest in the list.
len: The number of constraints.

void set (GRB.DoubleAttr attr,
GRBConstr[][] constrs,
double[][] newvals)

Set a double-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.DoubleAttr attr,
GRBConstr[][][] constrs,
double[][][] newvals)

Set a double-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.DoubleAttr attr,
GRBQConstr[] qconstrs,
double[] newvals)

Set a double-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: The quadratic constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.DoubleAttr attr,
GRBQConstr[] qconstrs,
double[] newvals,
int start,
int len)

Set a double-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input quadratic constraint.
start: The first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

void set (GRB.DoubleAttr attr,
GRBQConstr[][] qconstrs,
double[][] newvals)

Set a double-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are being modified.

263

newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.DoubleAttr attr,
GRBQConstr[][][] qconstrs,
double[][][] newvals)

Set a double-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.IntAttr attr,
int newval)

Set the value of an int-valued model attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value for the attribute.

void set (GRB.IntAttr attr,
GRBVar[] vars,
int[] newvals)

Set an int-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.IntAttr attr,
GRBVar[] vars,
int[] newvals,
int start,
int len)

Set an int-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

void set (GRB.IntAttr attr,
GRBVar[][] vars,
int[][] newvals)

Set an int-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.IntAttr attr,
GRBVar[][][] vars,
int[][][] newvals)

264

Set an int-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.IntAttr attr,
GRBConstr[] constrs,
int[] newvals)

Set an int-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.IntAttr attr,
GRBConstr[] constrs,
int[] newvals,
int start,
int len)

Set an int-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

void set (GRB.IntAttr attr,
GRBConstr[][] constrs,
int[][] newvals)

Set an int-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.IntAttr attr,
GRBConstr[][][] constrs,
int[][][] newvals)

Set an int-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.StringAttr attr,
String newval)

Set the value of a String-valued model attribute.
Arguments:

attr: The attribute being modified.

265

newval: The desired new value for the attribute.

void set (GRB.StringAttr attr,
GRBVar[] vars,
String[] newvals)

Set a String-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.StringAttr attr,
GRBVar[] vars,
String[] newvals,
int start,
int len)

Set a String-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

void set (GRB.StringAttr attr,
GRBVar[][] vars,
String[][] newvals)

Set a String-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.StringAttr attr,
GRBVar[][][] vars,
String[][][] newvals)

Set a String-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.StringAttr attr,
GRBConstr[] constrs,
String[] newvals)

Set a String-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

266

void set (GRB.StringAttr attr,
GRBConstr[] constrs,
String[] newvals,
int start,
int len)

Set a String-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

void set (GRB.StringAttr attr,
GRBConstr[][] constrs,
String[][] newvals)

Set a String-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.StringAttr attr,
GRBConstr[][][] constrs,
String[][][] newvals)

Set a String-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.StringAttr attr,
GRBQConstr[] qconstrs,
String[] newvals)

Set a String-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: The quadratic constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.StringAttr attr,
GRBQConstr[] qconstrs,
String[] newvals,
int start,
int len)

Set a String-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input quadratic constraint.
start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

267

void set (GRB.StringAttr attr,
GRBQConstr[][] qconstrs,
String[][] newvals)

Set a String-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.StringAttr attr,
GRBQConstr[][][] qconstrs,
String[][][] newvals)

Set a String-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.StringAttr attr,
GRBGenConstr[] genconstrs,
String[] newvals)

Set a String-valued general constraint attribute for an array of general constraints.
Arguments:

attr: The attribute being modified.
genconstrs: The general constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input general constraint.

void set (GRB.StringAttr attr,
GRBGenConstr[] genconstrs,
String[] newvals,
int start,
int len)

Set a String-valued general constraint attribute for a sub-array of general constraints.
Arguments:

attr: The attribute being modified.
genconstrs: A one-dimensional array of general constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input general constraint.
start: The index of the first general constraint of interest in the list.
len: The number of general constraints.

void set (GRB.StringAttr attr,
GRBGenConstr[][] genconstrs,
String[][] newvals)

Set a String-valued general constraint attribute for a two-dimensional array of general constraints.
Arguments:

attr: The attribute being modified.
genconstrs: A two-dimensional array of general constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input general constraint.

void set (GRB.StringAttr attr,
GRBGenConstr[][][] genconstrs,
String[][][] newvals)

268

Set a String-valued general constraint attribute for a three-dimensional array of general constraints.
Arguments:

attr: The attribute being modified.
genconstrs: A three-dimensional array of general constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input general constraint.

GRBModel.setLogCallback()
Sets a logging callback function to query all output posted by the model object. Can be set after a model was created.

void setLogCallback (java.util.function.Consumer<String> logCallback)

Arguments:
logCallback: The logging callback function.

GRBModel.setObjective()
Set the model objective equal to a linear or quadratic expression (for multi-objective optimization, see setObjectiveN).

Note that you can also modify the linear portion of a model objective using the Obj variable attribute. If you
wish to mix and match these two approaches, please note that this method replaces the entire existing objective,
while the Obj attribute can be used to modify individual linear terms.

void setObjective (GRBExpr expr,
int sense)

Set the model objective, and the objective sense (GRB.MINIMIZE for minimization, GRB.MAXIMIZE for maximiza-
tion).

Arguments:
expr: New model objective.
sense: New optimization sense (GRB.MINIMIZE for minimization, GRB.MAXIMIZE for maximization).

void setObjective (GRBExpr expr)

Set the model objective. The sense of the objective is determined by the value of the ModelSense attribute.
Arguments:

expr: New model objective.

GRBModel.setObjectiveN()

void setObjectiveN (GRBLinExpr expr,
int index,
int priority,
double weight,
double abstol,
double reltol,
String name)

Set an alternative optimization objective equal to a linear expression.
Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.
Note that you can also modify an alternative objective using the ObjN variable attribute. If you wish to mix

and match these two approaches, please note that this method replaces the entire existing objective, while the ObjN
attribute can be used to modify individual terms.

269

Arguments:
expr: New alternative objective.
index: Index for new objective. If you use an index of 0, this routine will change the primary optimization
objective.

priority: Priority for the alternative objective. This initializes the ObjNPriority attribute for this objective.
weight: Weight for the alternative objective. This initializes the ObjNWeight attribute for this objective.
abstol: Absolute tolerance for the alternative objective. This initializes the ObjNAbsTol attribute for this
objective.

reltol: Relative tolerance for the alternative objective. This initializes the ObjNRelTol attribute for this
objective.

name: Name of the alternative objective. This initializes the ObjNName attribute for this objective.

GRBModel.setPWLObj()
Set a piecewise-linear objective function for a variable.

The arguments to this method specify a list of points that define a piecewise-linear objective function for a single
variable. Specifically, the x and y arguments give coordinates for the vertices of the function.

For additional details on piecewise-linear objective functions, refer to this discussion.

void setPWLObj (GRBVar var,
double[] x,
double[] y)

Set the piecewise-linear objective function for a variable.
Arguments:

var: The variable whose objective function is being set.
x: The x values for the points that define the piecewise-linear function. Must be in non-decreasing order.
y: The y values for the points that define the piecewise-linear function.

GRBModel.singleScenarioModel()
Capture a single scenario from a multi-scenario model. Use the ScenarioNumber parameter to indicate which scenario
to capture.

The model on which this method is invoked must be a multi-scenario model, and the result will be a single-scenario
model.

GRBModel singleScenarioModel ()
Return value:

Model for a single scenario.

GRBModel.sync()
Wait for a previous asynchronous optimization call to complete.

Calling optimizeasync returns control to the calling routine immediately. The caller can perform other compu-
tations while optimization proceeds, and can check on the progress of the optimization by querying various model
attributes. The sync call forces the calling program to wait until the asynchronous optimization call completes. You
must call sync before the corresponding model object is deleted.

The sync call throws an exception if the optimization itself ran into any problems. In other words, excep-
tions thrown by this method are those that optimize itself would have thrown, had the original method not been
asynchronous.

Note that you need to call sync even if you know that the asynchronous optimization has already completed.

void sync ()

270

GRBModel.terminate()
Generate a request to terminate the current optimization. This method can be called at any time during an opti-
mization (from a callback, from another thread, from an interrupt handler, etc.). Note that, in general, the request
won’t be acted upon immediately.

When the optimization stops, the Status attribute will be equal to GRB_INTERRUPTED.

void terminate ()

GRBModel.tune()
Perform an automated search for parameter settings that improve performance. Upon completion, this method stores
the best parameter sets it found. The number of stored parameter sets can be determined by querying the value of
the TuneResultCount attribute. The actual settings can be retrieved using getTuneResult.

Please refer to the Parameter Tuning section in the Reference Manual for details on the tuning tool.

void tune ()

GRBModel.update()
Process any pending model modifications.

void update ()

GRBModel.write()
This method is the general entry point for writing optimization data to a file. It can be used to write optimization
models, solutions vectors, basis vectors, start vectors, or parameter settings. The type of data written is determined
by the file suffix. File formats are described in the File Format section.

Note that writing a model to a file will process all pending model modifications. This is also true when writing
other model information such as solutions, bases, etc.

Note also that when you write a Gurobi parameter file (PRM), both integer or double parameters not at their
default value will be saved, but no string parameter will be saved into the file.

void write (String filename)

Arguments:
filename: The name of the file to be written. The file type is encoded in the file name suffix. Valid suffixes
are .mps, .rew, .lp, or .rlp for writing the model itself, .dua or .dlp for writing the dualized model (only
pure LP), .ilp for writing just the IIS associated with an infeasible model (see GRBModel.computeIIS
for further information), .sol for writing the solution selected by the SolutionNumber parameter, .mst for
writing a start vector, .hnt for writing a hint file, .bas for writing an LP basis, .prm for writing modified
parameter settings, .attr for writing model attributes, or .json for writing solution information in JSON
format. If your system has compression utilities installed (e.g., 7z or zip for Windows, and gzip, bzip2,
or unzip for Linux or macOS), then the files can be compressed, so additional suffixes of .gz, .bz2, or .7z
are accepted.

271

5.3 GRBVar
Gurobi variable object. Variables are always associated with a particular model. You create a variable object by
adding a variable to a model (using GRBModel.addVar), rather than by using a GRBVar constructor.

The methods on variable objects are used to get and set variable attributes. For example, solution information
can be queried by calling get(GRB.DoubleAttr.X). Note, however, that it is generally more efficient to query attributes
for a set of variables at once. This is done using the attribute query method on the GRBModel object (GRBModel.get).

GRBVar.get()
Query the value of a variable attribute.

char get (GRB.CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

String get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBVar.index()

int index ()
This method returns the current index, or order, of the variable in the underlying constraint matrix.
Return value:

-2: removed, -1: not in model, otherwise: index of the variable in the model
Note that the index of a variable may change after subsequent model modifications.

272

GRBVar.sameAs()

boolean sameAs (GRBVar otherVar)

Check whether two variable objects refer to the same variable.
Arguments:

otherVar: The other variable.
Return value:

Boolean result indicates whether the two variable objects refer to the same model variable.

GRBVar.set()
Set the value of a variable attribute.

void set (GRB.CharAttr attr,
char newval)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.DoubleAttr attr,
double newval)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.IntAttr attr,
int newval)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.StringAttr attr,
String newval)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

273

5.4 GRBConstr
Gurobi constraint object. Constraints are always associated with a particular model. You create a constraint object
by adding a constraint to a model (using GRBModel.addConstr), rather than by using a GRBConstr constructor.

The methods on constraint objects are used to get and set constraint attributes. For example, constraint right-
hand sides can be queried by calling get(GRB.DoubleAttr.RHS). Note, however, that it is generally more efficient to
query attributes for a set of constraints at once. This is done using the attribute query method on the GRBModel
object (GRBModel.get).

GRBConstr.get()
Query the value of a constraint attribute.

char get (GRB.CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

String get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBConstr.index()

int index ()
This method returns the current index, or order, of the constraint in the underlying constraint matrix.
Note that the index of a constraint may change after subsequent model modifications.
Return value:

-2: removed, -1: not in model, otherwise: index of the constraint in the model

274

GRBConstr.sameAs()

boolean sameAs (GRBConstr otherConstr)

Check whether two constraint objects refer to the same constraint.
Arguments:

otherConstr: The other constraint.
Return value:

Boolean result indicates whether the two constraint objects refer to the same model constraint.

GRBConstr.set()
Set the value of a constraint attribute.

void set (GRB.CharAttr attr,
char newval)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.DoubleAttr attr,
double newval)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.IntAttr attr,
int newval)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.StringAttr attr,
String newval)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

275

5.5 GRBQConstr
Gurobi quadratic constraint object. Quadratic constraints are always associated with a particular model. You create
a quadratic constraint object by adding a quadratic constraint to a model (using GRBModel.addQConstr), rather
than by using a GRBQConstr constructor.

The methods on quadratic constraint objects are used to get and set constraint attributes. For example, quadratic
constraint right-hand sides can be queried by calling get(GRB.DoubleAttr.QCRHS). Note, however, that it is generally
more efficient to query attributes for a set of constraints at once. This is done using the attribute query method on
the GRBModel object (GRBModel.get).

GRBQConstr.get()
Query the value of a quadratic constraint attribute.

char get (GRB.CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

String get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

276

GRBQConstr.set()
Set the value of a quadratic constraint attribute.

void set (GRB.CharAttr attr,
char newval)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.DoubleAttr attr,
double newval)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.IntAttr attr,
int newval)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.StringAttr attr,
String newval)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

277

5.6 GRBSOS
Gurobi SOS constraint object. SOS constraints are always associated with a particular model. You create an SOS
object by adding an SOS constraint to a model (using GRBModel.addSOS), rather than by using a GRBSOS constructor.
Similarly, SOS constraints are removed using the GRBModel.remove method.

An SOS constraint can be of type 1 or 2 (GRB.SOS_TYPE1 or GRB.SOS_TYPE2). A type 1 SOS constraint is a set
of variables where at most one variable in the set may take a value other than zero. A type 2 SOS constraint is an
ordered set of variables where at most two variables in the set may take non-zero values. If two take non-zero values,
they must be contiguous in the ordered set.

SOS constraint objects have one attribute, IISSOS, which can be queried with the GRBSOS.get method.

GRBSOS.get()
Query the value of an SOS attribute.

int get (GRB.IntAttr attr)

Arguments:
attr: The attribute being queried.

Return value:
The current value of the requested attribute.

GRBSOS.set()
Set the value of an SOS attribute.

void set (GRB.IntAttr attr,
int newval)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

278

5.7 GRBGenConstr
Gurobi general constraint object. General constraints are always associated with a particular model. You create a
general constraint object by adding a general constraint to a model (using one of the GRBModel.addGenConstrXxx()
methods), rather than by using a GRBGenConstr constructor.

The methods on general constraint objects are used to get and set constraint attributes. For example, general
constraint types can be queried by calling get(GRB.IntAttr.GenConstrType). Note, however, that it is generally more
efficient to query attributes for a set of constraints at once. This is done using the attribute query method on the
GRBModel object (GRBModel.get).

GRBGenConstr.get()
Query the value of a general constraint attribute.

double get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

String get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBGenConstr.set()
Set the value of a general constraint attribute.

void set (GRB.DoubleAttr attr,
double newval)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.IntAttr attr,
int newval)

279

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.StringAttr attr,
String newval)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

280

5.8 GRBExpr
Abstract base class for the GRBLinExpr and GRBQuadExpr classes. Expressions are used to build objectives and
constraints. They are temporary objects that typically have short lifespans.

GRBExpr.getValue()
Compute the value of an expression for the current solution.

double getValue ()
Return value:

Value of the expression for the current solution.

281

5.9 GRBLinExpr
Gurobi linear expression object. A linear expression consists of a constant term, plus a list of coefficient-variable
pairs that capture the linear terms. Linear expressions are used to build constraints. They are temporary objects
that typically have short lifespans.

The GRBLinExpr class is a sub-class of the abstract base class GRBExpr.
You generally build linear expressions by starting with an empty expression (using the GRBLinExpr constructor),

and then adding terms. Terms can be added individually, using addTerm, or in groups, using addTerms, or multAdd.
Terms can also be removed from an expression, using remove.

To add a linear constraint to your model, you generally build one or two linear expression objects (expr1 and
expr2) and then pass them to GRBModel.addConstr. To give a few examples:

model.addConstr(expr1, GRB.LESS_EQUAL, expr2)
model.addConstr(expr1, GRB.EQUAL, 1)

Once you add a constraint to your model, subsequent changes to the expression object you used to build the constraint
will not change the constraint (you would use GRBModel.chgCoeff for that).

Individual terms in a linear expression can be queried using the getVar, getCoeff, and getConstant methods. You
can query the number of terms in the expression using the size method.

Note that a linear expression may contain multiple terms that involve the same variable. These duplicate terms
are merged when creating a constraint from an expression, but they may be visible when inspecting individual terms
in the expression (e.g., when using getVar).

GRBLinExpr()
Linear expression constructor. Create an empty linear expression, or copy an existing expression.

GRBLinExpr GRBLinExpr ()
Create an empty linear expression.
Return value:

An empty expression object.

GRBLinExpr GRBLinExpr (GRBLinExpr le)

Copy an existing linear expression.
Arguments:

le: Existing expression to copy.
Return value:

A copy of the input expression object.

GRBLinExpr.add()
Add one linear expression into another. Upon completion, the invoking linear expression will be equal to the sum of
itself and the argument expression.

void add (GRBLinExpr le)

Arguments:
le: Linear expression to add.

282

GRBLinExpr.addConstant()
Add a constant into a linear expression.

void addConstant (double c)

Arguments:
c: Constant to add to expression.

GRBLinExpr.addTerm()
Add a single term into a linear expression.

void addTerm (double coeff,
GRBVar var)

Arguments:
coeff: Coefficient for new term.
var: Variable for new term.

GRBLinExpr.addTerms()
Add new terms into a linear expression.

void addTerms (double[] coeffs,
GRBVar[] vars)

Add a list of terms into a linear expression. Note that the lengths of the two argument arrays must be equal.
Arguments:

coeffs: Coefficients for new terms.
vars: Variables for new terms.

void addTerms (double[] coeffs,
GRBVar[] vars,
int start,
int len)

Add new terms into a linear expression. This signature allows you to use arrays to hold the coefficients and
variables that describe the terms in an array without being forced to add a term for each entry in the array. The
start and len arguments allow you to specify which terms to add.

Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.
start: The first term in the list to add.
len: The number of terms to add.

GRBLinExpr.clear()
Set a linear expression to 0.

void clear ()

283

GRBLinExpr.getConstant()
Retrieve the constant term from a linear expression.

double getConstant ()
Return value:

Constant from expression.

GRBLinExpr.getCoeff()
Retrieve the coefficient from a single term of the expression.

double getCoeff (int i)

Arguments:
i: Index for coefficient of interest.

Return value:
Coefficient for the term at index i in the expression.

GRBLinExpr.getValue()
Compute the value of a linear expression for the current solution.

double getValue ()
Return value:

Value of the expression for the current solution.

GRBLinExpr.getVar()
Retrieve the variable object from a single term of the expression.

GRBVar getVar (int i)

Arguments:
i: Index for term of interest.

Return value:
Variable for the term at index i in the expression.

GRBLinExpr.multAdd()
Add a constant multiple of one linear expression into another. Upon completion, the invoking linear expression is
equal the sum of itself and the constant times the argument expression.

void multAdd (double m,
GRBLinExpr le)

Arguments:
m: Constant multiplier for added expression.
le: Linear expression to add.

284

GRBLinExpr.remove()
Remove a term from a linear expression.

void remove (int i)

Remove the term stored at index i of the expression.
Arguments:

i: The index of the term to be removed.

boolean remove (GRBVar var)

Remove all terms associated with variable var from the expression.
Arguments:

var: The variable whose term should be removed.
Return value:

Returns true if the variable appeared in the linear expression (and was removed).

GRBLinExpr.size()
Retrieve the number of terms in the linear expression (not including the constant).

int size ()
Return value:

Number of terms in the expression.

285

5.10 GRBQuadExpr
Gurobi quadratic expression object. A quadratic expression consists of a linear expression, plus a list of coefficient-
variable-variable triples that capture the quadratic terms. Quadratic expressions are used to build quadratic objective
functions and quadratic constraints. They are temporary objects that typically have short lifespans.

The GRBQuadExpr class is a sub-class of the abstract base class GRBExpr.
You generally build quadratic expressions by starting with an empty expression (using the GRBQuadExpr con-

structor), and then adding terms. Terms can be added individually, using addTerm, or in groups, using addTerms,
or multAdd. Quadratic terms can be removed from a quadratic expression using remove.

To add a quadratic constraint to your model, you generally build one or two quadratic expression objects (qexpr1
and qexpr2) and then use an overloaded comparison operator to build an argument for GRBModel.addQConstr. To
give a few examples:

model.addQConstr(qexpr1, GRB.LESS_EQUAL, qexpr2)
model.addQConstr(qexpr1, GRB.EQUAL, 1)

Once you add a constraint to your model, subsequent changes to the expression object you used to build the constraint
will have no effect on that constraint.

Individual quadratic terms in a quadratic expression can be queried using the getVar1, getVar2, and getCoeff
methods. You can query the number of quadratic terms in the expression using the size method. To query the constant
and linear terms associated with a quadratic expression, first obtain the linear portion of the quadratic expression
using getLinExpr, and then use the getConstant, getCoeff, and getVar methods on the resulting GRBLinExpr object.

Note that a quadratic expression may contain multiple terms that involve the same variable pair. These duplicate
terms are merged when creating the model objective from an expression, but they may be visible when inspecting
individual quadratic terms in the expression (e.g., when using getVar1 and getVar2).

GRBQuadExpr()
Quadratic expression constructor. Create an empty quadratic expression, or copy an existing expression.

GRBQuadExpr GRBQuadExpr ()
Create an empty quadratic expression.
Return value:

An empty expression object.

GRBQuadExpr GRBQuadExpr (GRBLinExpr le)

Initialize a quadratic expression from an existing linear expression.
Arguments:

le: Existing linear expression to copy.
Return value:

Quadratic expression object whose initial value is taken from the input linear expression.

GRBQuadExpr GRBQuadExpr (GRBQuadExpr qe)

Copy an existing quadratic expression.
Arguments:

qe: Existing expression to copy.
Return value:

A copy of the input expression object.

286

GRBQuadExpr.add()
Add an expression into a quadratic expression. Upon completion, the invoking quadratic expression will be equal to
the sum of itself and the argument expression.

void add (GRBLinExpr le)

Add a linear expression.
Arguments:

le: Linear expression to add.

void add (GRBQuadExpr qe)

Add a quadratic expression.
Arguments:

qe: Quadratic expression to add.

GRBQuadExpr.addConstant()
Add a constant into a quadratic expression.

void addConstant (double c)

Arguments:
c: Constant to add to expression.

GRBQuadExpr.addTerm()
Add a single term into a quadratic expression.

void addTerm (double coeff,
GRBVar var)

Add a single linear term (coeff*var) into a quadratic expression.
Arguments:

coeff: Coefficient for new term.
var: Variable for new term.

void addTerm (double coeff,
GRBVar var1,
GRBVar var2)

Add a single quadratic term (coeff*var1*var2) into a quadratic expression.
Arguments:

coeff: Coefficient for new quadratic term.
var1: First variable for new quadratic term.
var2: Second variable for new quadratic term.

287

GRBQuadExpr.addTerms()
Add new terms into a quadratic expression.

void addTerms (double[] coeffs,
GRBVar[] vars)

Add a list of linear terms into a quadratic expression. Note that the lengths of the two argument arrays must be
equal.

Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.

void addTerms (double[] coeffs,
GRBVar[] vars,
int start,
int len)

Add new linear terms into a quadratic expression. This signature allows you to use arrays to hold the coefficients
and variables that describe the linear terms in an array without being forced to add a term for each entry in the
array. The start and len arguments allow you to specify which terms to add.

Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.
start: The first term in the list to add.
len: The number of terms to add.

void addTerms (double[] coeffs,
GRBVar[] vars1,
GRBVar[] vars2)

Add a list of quadratic terms into a quadratic expression. Note that the lengths of the three argument arrays
must be equal.

Arguments:
coeffs: Coefficients for new quadratic terms.
vars1: First variables for new quadratic terms.
vars2: Second variables for new quadratic terms.

void addTerms (double[] coeffs,
GRBVar[] vars1,
GRBVar[] vars2,
int start,
int len)

Add new quadratic terms into a quadratic expression. This signature allows you to use arrays to hold the
coefficients and variables that describe the terms in an array without being forced to add a term for each entry in
the array. The start and len arguments allow you to specify which terms to add.

Arguments:
coeffs: Coefficients for new quadratic terms.
vars1: First variables for new quadratic terms.
vars2: Second variables for new quadratic terms.
start: The first term in the list to add.
len: The number of terms to add.

288

GRBQuadExpr.clear()
Set a quadratic expression to 0.

void clear ()

GRBQuadExpr.getCoeff()
Retrieve the coefficient from a single quadratic term of the quadratic expression.

double getCoeff (int i)

Arguments:
i: Index for coefficient of interest.

Return value:
Coefficient for the quadratic term at index i in the expression.

GRBQuadExpr.getLinExpr()
A quadratic expression is represented as a linear expression, plus a list of quadratic terms. This method retrieves the
linear expression associated with the quadratic expression.

GRBLinExpr getLinExpr ()
Return value:

Linear expression associated with the quadratic expression.

GRBQuadExpr.getValue()
Compute the value of a quadratic expression for the current solution.

double getValue ()
Return value:

Value of the expression for the current solution.

GRBQuadExpr.getVar1()
Retrieve the first variable object associated with a single quadratic term from the expression.

GRBVar getVar1 (int i)

Arguments:
i: Index for term of interest.

Return value:
First variable for the quadratic term at index i in the quadratic expression.

289

GRBQuadExpr.getVar2()
Retrieve the second variable object associated with a single quadratic term from the expression.

GRBVar getVar2 (int i)

Arguments:
i: Index for term of interest.

Return value:
Second variable for the quadratic term at index i in the quadratic expression.

GRBQuadExpr.multAdd()
Add a constant multiple of one quadratic expression into another. Upon completion, the invoking quadratic expression
is equal the sum of itself and the constant times the argument expression.

void multAdd (double m,
GRBLinExpr le)

Add a linear expression into a quadratic expression.
Arguments:

m: Constant multiplier for added expression.
le: Linear expression to add.

void multAdd (double m,
GRBQuadExpr qe)

Add a quadratic expression into a quadratic expression.
Arguments:

m: Constant multiplier for added expression.
qe: Quadratic expression to add.

GRBQuadExpr.remove()
Remove a term from a quadratic expression.

void remove (int i)

Remove the quadratic term stored at index i of the expression.
Arguments:

i: The index of the quadratic term to be removed.

boolean remove (GRBVar var)

Remove all quadratic terms associated with variable var from the expression.
Arguments:

var: The variable whose quadratic term should be removed.
Return value:

Returns true if the variable appeared in the quadratic expression (and was removed).

290

GRBQuadExpr.size()
Retrieve the number of quadratic terms in the quadratic expression. Use GRBQuadExpr.getLinExpr to retrieve
constant or linear terms from the quadratic expression.

int size ()
Return value:

Number of quadratic terms in the expression.

291

5.11 GRBColumn
Gurobi column object. A column consists of a list of coefficient, constraint pairs. Columns are used to represent the
set of constraints in which a variable participates, and the associated coefficients. They are temporary objects that
typically have short lifespans.

You generally build columns by starting with an empty column (using the GRBColumn constructor), and then
adding terms. Terms can be added individually, using addTerm, or in groups, using addTerms. Terms can also be
removed from a column, using remove.

Individual terms in a column can be queried using the getConstr, and getCoeff methods. You can query the
number of terms in the column using the size method.

GRBColumn()
Column constructor. Create an empty column, or copy an existing column.

GRBColumn GRBColumn ()
Create an empty column.
Return value:

An empty column object.

GRBColumn GRBColumn (GRBColumn col)

Copy an existing column.
Arguments:

col: Existing column object.
Return value:

A copy of the input column object.

GRBColumn.addTerm()
Add a single term into a column.

void addTerm (double coeff,
GRBConstr constr)

Arguments:
coeff: Coefficient for new term.
constr: Constraint for new term.

GRBColumn.addTerms()
Add new terms into a column.

void addTerms (double[] coeffs,
GRBConstr[] constrs)

Add a list of terms into a column. Note that the lengths of the two argument arrays must be equal.
Arguments:

coeffs: Coefficients for added constraints.
constrs: Constraints to add to column.

292

void addTerms (double[] coeffs,
GRBConstr[] constrs,
int start,
int len)

Add new terms into a column. This signature allows you to use arrays to hold the coefficients and constraints
that describe the terms in an array without being forced to add an term for each member in the array. The start
and len arguments allow you to specify which terms to add.

Arguments:
coeffs: Coefficients for added constraints.
constrs: Constraints to add to column.
start: The first term in the list to add.
len: The number of terms to add.

GRBColumn.clear()
Remove all terms from a column.

void clear ()

GRBColumn.getCoeff()
Retrieve the coefficient from a single term in the column.

double getCoeff (int i)

Arguments:
i: Index for coefficient of interest.

Return value:
Coefficient for the term at index i in the column.

GRBColumn.getConstr()
Retrieve the constraint object from a single term in the column.

GRBConstr getConstr (int i)

Arguments:
i: Index for term of interest.

Return value:
Constraint for the term at index i in the column.

GRBColumn.remove()
Remove a single term from a column.

void remove (int i)

Remove the term stored at index i of the column.
Arguments:

i: The index of the term to be removed.

293

boolean remove (GRBConstr constr)

Remove the term associated with constraint constr from the column.
Arguments:

constr: The constraint whose term should be removed.
Return value:

Returns true if the constraint appeared in the column (and was removed).

GRBColumn.size()
Retrieve the number of terms in the column.

int size ()
Return value:

Number of terms in the column.

294

5.12 GRBCallback
Gurobi callback class. This is an abstract class. To implement a callback, you should create a subclass of this class
and implement a callback() method. If you pass an object of this subclass to method GRBModel.setCallback before
calling GRBModel.optimize or GRBModel.computeIIS, the callback()method of the class will be called periodically.
Depending on where the callback is called from, you will be able to obtain various information about the progress of
the optimization.

Note that this class contains one protected int member variable: where. You can query this variable from your
callback() method to determine where the callback was called from.

Gurobi callbacks can be used both to monitor the progress of the optimization and to modify the behavior
of the Gurobi optimizer. A simple user callback function might call the GRBCallback.getIntInfo or GRBCall-
back.getDoubleInfo methods to produce a custom display, or perhaps to terminate optimization early (using GRB-
Callback.abort) or to proceed to the next phase of the computation (using GRBCallback.proceed). More sophisticated
MIP callbacks might use GRBCallback.getNodeRel or GRBCallback.getSolution to retrieve values from the solution
to the current node, and then use GRBCallback.addCut or GRBCallback.addLazy to add a constraint to cut off that
solution, or GRBCallback.setSolution to import a heuristic solution built from that solution. For multi-objective prob-
lems, you might use GRBCallback.stopOneMultiObj to interrupt the optimization process of one of the optimization
steps in a multi-objective MIP problem without stopping the hierarchical optimization process.

When solving a model using multiple threads, the user callback is only ever called from a single thread, so you
don’t need to worry about the thread-safety of your callback.

Note that changing parameters from within a callback is not supported, doing so may lead to undefined behavior.
You can look at the Callback.java example for details of how to use Gurobi callbacks.

GRBCallback()
Callback constructor.

GRBCallback GRBCallback ()
Return value:

A callback object.

GRBCallback.abort()
Abort optimization. When the optimization stops, the Status attribute will be equal to
GRB.Status.INTERRUPTED.

void abort ()

GRBCallback.addCut()
Add a cutting plane to the MIP model from within a callback function. Note that this method can only be invoked
when the where member variable is equal to GRB.CB_MIPNODE (see the Callback Codes section in the Reference Manual
for more information).

Cutting planes can be added at any node of the branch-and-cut tree. However, they should be added sparingly,
since they increase the size of the relaxation model that is solved at each node and can significantly degrade node
processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the relaxation solution
at the current node, you should first call getNodeRel.

You should consider setting parameter PreCrush to value 1 when adding your own cuts. This setting shuts off
a few presolve reductions that can sometimes prevent your cut from being applied to the presolved model (which
would result in your cut being silently ignored).

295

Note that cutting planes added through this method must truly be cutting planes -- they can cut off continuous
solutions, but they may not cut off integer solutions that respect the original constraints of the model. Ignoring this
restriction will lead to incorrect solutions.

void addCut (GRBLinExpr lhsExpr,
char sense,
double rhs)

Arguments:
lhsExpr: Left-hand side expression for new cutting plane.
sense: Sense for new cutting plane (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhs: Right-hand side value for new cutting plane.

GRBCallback.addLazy()
Add a lazy constraint to the MIP model from within a callback function. Note that this method can only be invoked
when the where member variable is equal to GRB.CB_MIPNODE or GRB.CB_MIPSOL (see the Callback Codes section in
the Reference Manual for more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large to represent
explicitly. By only including the constraints that are actually violated by solutions found during the branch-and-cut
search, it is sometimes possible to find a proven optimal solution while only adding a fraction of the full set of
constraints.

You would typically add a lazy constraint by first querying the current node solution (by calling getSolution from
a GRB.CB_MIPSOL callback, or getNodeRel from a GRB.CB_MIPNODE callback), and then calling addLazy() to add a
constraint that cuts off the solution. Gurobi guarantees that you will have the opportunity to cut off any solutions
that would otherwise be considered feasible.

MIP solutions may be generated outside of a MIP node. Thus, generating lazy constraints is optional when the
where value in the callback function equals GRB.CB_MIPNODE. To avoid this, we recommend to always check when the
where value equals GRB.CB_MIPSOL.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints, including those
that have already been added. Node solutions will usually respect previously added lazy constraints, but not always.

Note that you must set the LazyConstraints parameter if you want to use lazy constraints.

void addLazy (GRBLinExpr lhsExpr,
char sense,
double rhs)

Arguments:
lhsExpr: Left-hand side expression for new lazy constraint.
sense: Sense for new lazy constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhs: Right-hand side value for new lazy constraint.

GRBCallback.getDoubleInfo()
Request double-valued callback information. The available information depends on the value of the where member.
For information on possible values of where, and the double-valued information that can be queried for different
values of where, please refer to the Callback Codes section of the Reference Manual.

double getDoubleInfo (int what)

Arguments:
what: Information requested. Please refer to the list of Callback Codes in the Reference Manual for possible
values.

Return value:
Value of requested callback information.

296

GRBCallback.getIntInfo()
Request int-valued callback information. The available information depends on the value of the where member. For
information on possible values of where, and the int-valued information that can be queried for different values of
where, please refer to the Callback Codes section in the Reference Manual.

int getIntInfo (int what)

Arguments:
what: Information requested. Please refer to the list of Callback Codes in the Reference Manual for possible
values.

Return value:
Value of requested callback information.

GRBCallback.getNodeRel()
Retrieve node relaxation solution values at the current node. Only available when the where member variable is equal
to GRB.CB_MIPNODE, and GRB.CB_MIPNODE_STATUS is equal to
GRB.Status.OPTIMAL.

double getNodeRel (GRBVar v)

Arguments:
v: The variable whose value is desired.

Return value:
The value of the specified variable in the node relaxation for the current node.

double[] getNodeRel (GRBVar[] xvars)

Arguments:
xvars: The list of variables whose values are desired.

Return value:
The values of the specified variables in the node relaxation for the current node.

double[][] getNodeRel (GRBVar[][] xvars)

Arguments:
xvars: The array of variables whose values are desired.

Return value:
The values of the specified variables in the node relaxation for the current node.

GRBCallback.getSolution()
Retrieve values from the current solution vector. Only available when the where member variable is equal to
GRB.CB_MIPSOL or GRB.CB_MULTIOBJ.

double getSolution (GRBVar v)

Arguments:
v: The variable whose value is desired.

297

Return value:
The value of the specified variable in the current solution vector.

double[] getSolution (GRBVar[] xvars)

Arguments:
xvars: The list of variables whose values are desired.

Return value:
The values of the specified variables in the current solution.

double[][] getSolution (GRBVar[][] xvars)

Arguments:
xvars: The array of variables whose values are desired.

Return value:
The values of the specified variables in the current solution.

GRBCallback.getStringInfo()
Request string-valued callback information. The available information depends on the value of the where member.
For information on possible values of where, and the string-valued information that can be queried for different values
of where, please refer to the Callback Codes section of the Reference Manual.

String getStringInfo (int what)

Arguments:
what: Information requested. Please refer to the list of Callback Codes in the Reference Manual for possible
values.

Return value:
Value of requested callback information.

GRBCallback.proceed()
Generate a request to proceed to the next phase of the computation. Note that the request is only accepted in a few
phases of the algorithm, and it won’t be acted upon immediately.

In the current Gurobi version, this callback allows you to proceed from the NoRel heuristic to the standard MIP
search. You can determine the current algorithm phase using MIP_PHASE, MIPNODE_PHASE, or MIPSOL_PHASE queries
from a callback.

void proceed ()

GRBCallback.setSolution()
Import solution values for a heuristic solution. Only available when the wheremember variable is equal to GRB.CB_MIP,
GRB.CB_MIPNODE, or GRB.CB_MIPSOL (see the Callback Codes section for more information).

When you specify a heuristic solution from a callback, variables initially take undefined values. You should use
this method to specify variable values. You can make multiple calls to setSolution from one callback invocation
to specify values for multiple sets of variables. After the callback, if values have been specified for any variables,
the Gurobi optimizer will try to compute a feasible solution from the specified values, possibly filling in values for
variables whose values were left undefined. You can also optionally call useSolution within your callback function to
try to immediately compute a feasible solution from the specified values.

298

Note that this method is not supported in a Compute Server environment.

void setSolution (GRBVar v,
double val)

Arguments:
v: The variable whose values is being set.
val: The value of the variable in the new solution.

void setSolution (GRBVar[] xvars,
double[] sol)

Arguments:
xvars: The variables whose values are being set.
sol: The desired values of the specified variables in the new solution.

GRBCallback.stopOneMultiObj()
Interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem without stopping
the hierarchical optimization process. Only available for multi-objective MIP models and when the where member
variable is not equal to GRB.CB_MULTIOBJ (see the Callback Codes section for more information).

You would typically stop a multi-objective optimization step by querying the last finished number of multi-
objectives steps, and using that number to stop the current step and move on to the next hierarchical objective (if
any) as shown in the following example:

Example usage:
import gurobi.*;

public class Callback extends GRBCallback {
private int objcnt;
private long starttime;

protected void callback() {
try {

if (where == GRB.CB_MULTIOBJ) {
/* get current objective number */
objcnt = getIntInfo(GRB.CB_MULTIOBJ_OBJCNT);

/* reset start time to current time */
starttime = System.currentTimeMillis();

} else if (System.currentTimeMillis() - starttime > BIG ||
/* takes too long or good enough */) {

/* stop only this optimization step */
stopOneMultiObj(objcnt);

}
}

}
}

You should refer to the section on Multiple Objectives for information on how to specify multiple objective
functions and control the trade-off between them.

void stopOneMultiObj (int objcnt)

Arguments:
objnum: The number of the multi-objective optimization step to interrupt. For processes running locally,
this argument can have the special value -1, meaning to stop the current step.

299

GRBCallback.useSolution()
Once you have imported solution values using setSolution, you can optionally call useSolution in a GRB.CB_MIPNODE
callback to immediately use these values to try to compute a heuristic solution. Alternatively, you can call useSolution
in a GRB.CB_MIP or GRB.CB_MIPSOL callback, which will store the solution until it can be processed internally.

double useSolution ()
Return value:

The objective value for the solution obtained from your solution values (or GRB.INFINITY if no improved
solution is found).

300

5.13 GRBException
Gurobi exception object. This is a sub-class of the Java Exception class. A number of useful methods, including
getMessage() and printStackTrace(), are inherited from the parent class. For a list of parent class methods in
Java 1.6, visit this site.

GRBException()
Exception constructor.

GRBException GRBException (int errcode)

Create a Gurobi exception.
Arguments:

errcode: Error code for exception.
Return value:

An exception object.

GRBException GRBException (String errmsg)

Create a Gurobi exception.
Arguments:

errmsg: Error message for exception.
Return value:

An exception object.

GRBException GRBException (String errmsg,
int errcode)

Create a Gurobi exception.
Arguments:

errmsg: Error message for exception.
errcode: Error code for exception.

Return value:
An exception object.

GRBException.getErrorCode()
Retrieve the error code associated with a Gurobi exception.

int getErrorCode ()
Return value:

The error code associated with the exception.

301

https://docs.oracle.com/javase/6/docs/api/java/lang/Exception.html

5.14 GRBBatch
Gurobi batch object. Batch optimization is a feature available with the Gurobi Cluster Manager. It allows a client
program to build an optimization model, submit it to a Compute Server cluster (through a Cluster Manager), and
later check on the status of the model and retrieve its solution. For more information, please refer to the Batch
Optimization section.

Commonly used methods on the batch object include update (refresh attributes from the Cluster Manager),
abort (abort execution of a batch request), retry (retry optimization for an interrupted or failed batch request),
discard (remove the batch request and all related information from the Cluster Manager), and getJSONSolution
(query solution information for the batch request).

These methods are built on top of calls to the Cluster Manager REST API. They are meant to simplify such
calls, but note that you always have the option of calling the REST API directly.

Batch objects have four attributes:
: BatchID: Unique ID for the batch request.
: BatchStatus: Current optimization status for the batch request. Status values are described in the Batch Status

Code section.
: BatchErrorCode: Last error code.
: BatchErrorMessage: Last error message.
You can access their values by using get. Note that all Batch attributes are locally cached, and are only updated
when you create a client-side batch object or when you explicitly update this cache, which can done by calling update.

While the Java garbage collector will eventually collect an unused GRBBatch object, the vast majority of the
memory associated with a model is stored outside of the Java heap. As a result, the garbage collector can’t see this
memory usage, and thus it can’t take this quantity into account when deciding whether collection is necessary. We
recommend that you call GRBBatch.dispose when you are done with the batch.

GRBBatch()
Given a BatchID, as returned by optimizeBatch, and a Gurobi environment that can connect to the appropriate Clus-
ter Manager (i.e., one where parameters CSManager, UserName, and ServerPassword have been set appropriately),
this function returns a GRBBatch object. With it, you can query the current status of the associated batch request
and, once the batch request has been processed, you can query its solution. Please refer to the Batch Optimization
section for details and examples.

GRBBatch GRBBatch (GRBEnv env,
String batchID)

Arguments:
env: The environment in which the new batch object should be created.
batchID: ID of the batch request for which you want to access status and other information.

Return value:
New batch object.

Example usage:

// Create Batch -object
GRBBatch batch = new GRBBatch(env , batchid);

GRBBatch.abort()

void abort ()
This method instructs the Cluster Manager to abort the processing of this batch request, changing its status to

ABORTED. Please refer to the Batch Status Codes section for further details.
Example usage:

302

// Request to abort the batch
batch.abort ();

GRBBatch.discard()

void discard ()
This method instructs the Cluster Manager to remove all information related to the batch request in question,

including the stored solution if available. Further queries for the associated batch request will fail with error code
GRB_ERROR_DATA_NOT_AVAILABLE. Use this function with care, as the removed information can not be recovered later
on.

Example usage:

// Request to erase input and output data related to this batch
batch.discard ();

GRBBatch.dispose()

void dispose ()
Free all resources associated with this Batch object. After this method is called, this Batch object must no longer

be used.
Example usage:

// Dispose resources
batch.dispose ();

GRBBatch.getJSONSolution()

String getJSONSolution () Return value:
The requested solution in JSON format.

This function retrieves the solution of a completed batch request from a Cluster Manager. The solution is
returned as a JSON solution string. For this call to succeed, the status of the batch request must be COMPLETED.
Please refer to the Batch Status Codes section for further details.

Example usage:

// print JSON solution into string
System.out.println("JSON solution:" + batch.getJSONSolution ());

GRBBatch.get()
Query the value of an attribute.

int get (GRB.IntAttr attr)

Query the value of an int-valued batch attribute.
Arguments:

303

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

String get (GRB.StringAttr attr)

Query the value of a string-valued batch attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBBatch.retry()

void retry ()
This method instructs the Cluster Manager to retry optimization of a failed or aborted batch request, changing

its status to SUBMITTED. Please refer to the Batch Status Codes section for further details.
Example usage:

// Retry the batch job
batch.retry ();

GRBBatch.update()

void update ()
All Batch attribute values are cached locally, so queries return the value received during the last communication

with the Cluster Manager. This method refreshes the values of all attributes with the values currently available in
the Cluster Manager (which involves network communication).

Example usage:

// Update local attributes
batch.update ();

GRBBatch.writeJSONSolution()

void writeJSONSolution (String filename)

This method returns the stored solution of a completed batch request from a Cluster Manager. The solution is
returned in a gzip-compressed JSON file. The file name you provide must end with a .json.gz extension. The JSON
format is described in the JSON solution format section. Note that for this call to succeed, the status of the batch
request must be COMPLETED. Please refer to the Batch Status Codes section for further details.

Arguments:
filename: Name of file where the solution should be stored (in JSON format).

Example usage:

// save solution into a file
batch.writeJSONSolution("batch -sol.json.gz");

304

5.15 GRB
Class for Java enums and constants. The enums are used to get or set Gurobi attributes or parameters.

Constants
The following list contains the set of constants needed by the Gurobi Java interface. You would refer to them using
a GRB. prefix (e.g., GRB.Status.OPTIMAL).

// Model -status -codes

public static final int LOADED = 1;
public static final int OPTIMAL = 2;
public static final int INFEASIBLE = 3;
public static final int INF_OR_UNBD = 4;
public static final int UNBOUNDED = 5;
public static final int CUTOFF = 6;
public static final int ITERATION_LIMIT = 7;
public static final int NODE_LIMIT = 8;
public static final int TIME_LIMIT = 9;
public static final int SOLUTION_LIMIT = 10;
public static final int INTERRUPTED = 11;
public static final int NUMERIC = 12;
public static final int SUBOPTIMAL = 13;
public static final int INPROGRESS = 14;
public static final int USER_OBJ_LIMIT = 15;
public static final int WORK_LIMIT = 16;
public static final int MEM_LIMIT = 17;

public class Status {
public static final int LOADED = 1;
public static final int OPTIMAL = 2;
public static final int INFEASIBLE = 3;
public static final int INF_OR_UNBD = 4;
public static final int UNBOUNDED = 5;
public static final int CUTOFF = 6;
public static final int ITERATION_LIMIT = 7;
public static final int NODE_LIMIT = 8;
public static final int TIME_LIMIT = 9;
public static final int SOLUTION_LIMIT = 10;
public static final int INTERRUPTED = 11;
public static final int NUMERIC = 12;
public static final int SUBOPTIMAL = 13;
public static final int INPROGRESS = 14;
public static final int USER_OBJ_LIMIT = 15;
public static final int WORK_LIMIT = 16;
public static final int MEM_LIMIT = 17;

}

// BatchStatus codes

public static final int CREATED = 1;
public static final int SUBMITTED = 2;
public static final int ABORTED = 3;
public static final int FAILED = 4;
public static final int COMPLETED = 5;

305

public class BatchStatus {
public static final int CREATED = 1;
public static final int SUBMITTED = 2;
public static final int ABORTED = 3;
public static final int FAILED = 4;
public static final int COMPLETED = 5;

}
// Version numbers

public static final int VERSION_MAJOR = 10;
public static final int VERSION_MINOR = 0;
public static final int VERSION_TECHNICAL = 0;

// Basis status info

public static final int BASIC = 0;
public static final int NONBASIC_LOWER = -1;
public static final int NONBASIC_UPPER = -2;
public static final int SUPERBASIC = -3;

// Constraint senses

public static final char LESS_EQUAL = '<';
public static final char GREATER_EQUAL = '>';
public static final char EQUAL = '=';

// Variable types

public static final char CONTINUOUS = 'C';
public static final char BINARY = 'B';
public static final char INTEGER = 'I';
public static final char SEMICONT = 'S';
public static final char SEMIINT = 'N';

// Objective sense

public static final int MINIMIZE = 1;
public static final int MAXIMIZE = -1;

// SOS types

public static final int SOS_TYPE1 = 1;
public static final int SOS_TYPE2 = 2;

// General constraint types

public static final int GENCONSTR_MAX = 0;
public static final int GENCONSTR_MIN = 1;
public static final int GENCONSTR_ABS = 2;
public static final int GENCONSTR_AND = 3;
public static final int GENCONSTR_OR = 4;
public static final int GENCONSTR_NORM = 5;
public static final int GENCONSTR_INDICATOR = 6;
public static final int GENCONSTR_PWL = 7;
public static final int GENCONSTR_POLY = 8;

306

public static final int GENCONSTR_EXP = 9;
public static final int GENCONSTR_EXPA = 10;
public static final int GENCONSTR_LOG = 11;
public static final int GENCONSTR_LOGA = 12;
public static final int GENCONSTR_POW = 13;
public static final int GENCONSTR_SIN = 14;
public static final int GENCONSTR_COS = 15;
public static final int GENCONSTR_TAN = 16;
public static final int GENCONSTR_LOGISTIC = 17;

// Numeric constants

public static final double INFINITY = 1e100;
public static final double UNDEFINED = 1e101;

// Other constants

public static final int DEFAULT_CS_PORT = 61000;

// Callback constants

public static final int CB_POLLING = 0;
public static final int CB_PRESOLVE = 1;
public static final int CB_SIMPLEX = 2;
public static final int CB_MIP = 3;
public static final int CB_MIPSOL = 4;
public static final int CB_MIPNODE = 5;
public static final int CB_MESSAGE = 6;
public static final int CB_BARRIER = 7;
public static final int CB_MULTIOBJ = 8;
public static final int CB_IIS = 9;
public static final int CB_PRE_COLDEL = 1000;
public static final int CB_PRE_ROWDEL = 1001;
public static final int CB_PRE_SENCHG = 1002;
public static final int CB_PRE_BNDCHG = 1003;
public static final int CB_PRE_COECHG = 1004;
public static final int CB_SPX_ITRCNT = 2000;
public static final int CB_SPX_OBJVAL = 2001;
public static final int CB_SPX_PRIMINF = 2002;
public static final int CB_SPX_DUALINF = 2003;
public static final int CB_SPX_ISPERT = 2004;
public static final int CB_MIP_OBJBST = 3000;
public static final int CB_MIP_OBJBND = 3001;
public static final int CB_MIP_NODCNT = 3002;
public static final int CB_MIP_SOLCNT = 3003;
public static final int CB_MIP_CUTCNT = 3004;
public static final int CB_MIP_NODLFT = 3005;
public static final int CB_MIP_ITRCNT = 3006;
public static final int CB_MIP_OPENSCENARIOS = 3007;
public static final int CB_MIP_PHASE = 3008;
public static final int CB_MIPSOL_SOL = 4001;
public static final int CB_MIPSOL_OBJ = 4002;
public static final int CB_MIPSOL_OBJBST = 4003;
public static final int CB_MIPSOL_OBJBND = 4004;
public static final int CB_MIPSOL_NODCNT = 4005;
public static final int CB_MIPSOL_SOLCNT = 4006;

307

public static final int CB_MIPSOL_OPENSCENARIOS = 4007;
public static final int CB_MIPSOL_PHASE = 4008;
public static final int CB_MIPNODE_STATUS = 5001;
public static final int CB_MIPNODE_REL = 5002;
public static final int CB_MIPNODE_OBJBST = 5003;
public static final int CB_MIPNODE_OBJBND = 5004;
public static final int CB_MIPNODE_NODCNT = 5005;
public static final int CB_MIPNODE_SOLCNT = 5006;
public static final int CB_MIPNODE_BRVAR = 5007;
public static final int CB_MIPNODE_OPENSCENARIOS = 5008;
public static final int CB_MIPNODE_PHASE = 5009;
public static final int CB_MSG_STRING = 6001;
public static final int CB_RUNTIME = 6002;
public static final int CB_WORK = 6003;
public static final int CB_BARRIER_ITRCNT = 7001;
public static final int CB_BARRIER_PRIMOBJ = 7002;
public static final int CB_BARRIER_DUALOBJ = 7003;
public static final int CB_BARRIER_PRIMINF = 7004;
public static final int CB_BARRIER_DUALINF = 7005;
public static final int CB_BARRIER_COMPL = 7006;
public static final int CB_MULTIOBJ_OBJCNT = 8001;
public static final int CB_MULTIOBJ_SOLCNT = 8002;
public static final int CB_MULTIOBJ_SOL = 8003;
public static final int CB_IIS_CONSTRMIN = 9001;
public static final int CB_IIS_CONSTRMAX = 9002;
public static final int CB_IIS_CONSTRGUESS = 9003;
public static final int CB_IIS_BOUNDMIN = 9004;
public static final int CB_IIS_BOUNDMAX = 9005;
public static final int CB_IIS_BOUNDGUESS = 9006;

public class Callback {
public static final int POLLING = 0;
public static final int PRESOLVE = 1;
public static final int SIMPLEX = 2;
public static final int MIP = 3;
public static final int MIPSOL = 4;
public static final int MIPNODE = 5;
public static final int MESSAGE = 6;
public static final int BARRIER = 7;
public static final int MULTIOBJ = 8;
public static final int IIS = 9;
public static final int PRE_COLDEL = 1000;
public static final int PRE_ROWDEL = 1001;
public static final int PRE_SENCHG = 1002;
public static final int PRE_BNDCHG = 1003;
public static final int PRE_COECHG = 1004;
public static final int SPX_ITRCNT = 2000;
public static final int SPX_OBJVAL = 2001;
public static final int SPX_PRIMINF = 2002;
public static final int SPX_DUALINF = 2003;
public static final int SPX_ISPERT = 2004;
public static final int MIP_OBJBST = 3000;
public static final int MIP_OBJBND = 3001;
public static final int MIP_NODCNT = 3002;
public static final int MIP_SOLCNT = 3003;
public static final int MIP_CUTCNT = 3004;

308

public static final int MIP_NODLFT = 3005;
public static final int MIP_ITRCNT = 3006;
public static final int MIP_OPENSCENARIOS = 3007;
public static final int MIP_PHASE = 3008;
public static final int MIPSOL_SOL = 4001;
public static final int MIPSOL_OBJ = 4002;
public static final int MIPSOL_OBJBST = 4003;
public static final int MIPSOL_OBJBND = 4004;
public static final int MIPSOL_NODCNT = 4005;
public static final int MIPSOL_SOLCNT = 4006;
public static final int MIPSOL_OPENSCENARIOS = 4007;
public static final int MIPSOL_PHASE = 4008;
public static final int MIPNODE_STATUS = 5001;
public static final int MIPNODE_REL = 5002;
public static final int MIPNODE_OBJBST = 5003;
public static final int MIPNODE_OBJBND = 5004;
public static final int MIPNODE_NODCNT = 5005;
public static final int MIPNODE_SOLCNT = 5006;
public static final int MIPNODE_BRVAR = 5007;
public static final int MIPNODE_OPENSCENARIOS = 5008;
public static final int MIPNODE_PHASE = 5009;
public static final int MSG_STRING = 6001;
public static final int RUNTIME = 6002;
public static final int WORK = 6003;
public static final int BARRIER_ITRCNT = 7001;
public static final int BARRIER_PRIMOBJ = 7002;
public static final int BARRIER_DUALOBJ = 7003;
public static final int BARRIER_PRIMINF = 7004;
public static final int BARRIER_DUALINF = 7005;
public static final int BARRIER_COMPL = 7006;
public static final int MULTIOBJ_OBJCNT = 8001;
public static final int MULTIOBJ_SOLCNT = 8002;
public static final int MULTIOBJ_SOL = 8003;
public static final int IIS_CONSTRMIN = 9001;
public static final int IIS_CONSTRMAX = 9002;
public static final int IIS_CONSTRGUESS = 9003;
public static final int IIS_BOUNDMIN = 9004;
public static final int IIS_BOUNDMAX = 9005;
public static final int IIS_BOUNDGUESS = 9006;

}

// Errors

public static final int ERROR_OUT_OF_MEMORY = 10001;
public static final int ERROR_NULL_ARGUMENT = 10002;
public static final int ERROR_INVALID_ARGUMENT = 10003;
public static final int ERROR_UNKNOWN_ATTRIBUTE = 10004;
public static final int ERROR_DATA_NOT_AVAILABLE = 10005;
public static final int ERROR_INDEX_OUT_OF_RANGE = 10006;
public static final int ERROR_UNKNOWN_PARAMETER = 10007;
public static final int ERROR_VALUE_OUT_OF_RANGE = 10008;
public static final int ERROR_NO_LICENSE = 10009;
public static final int ERROR_SIZE_LIMIT_EXCEEDED = 10010;
public static final int ERROR_CALLBACK = 10011;
public static final int ERROR_FILE_READ = 10012;
public static final int ERROR_FILE_WRITE = 10013;

309

public static final int ERROR_NUMERIC = 10014;
public static final int ERROR_IIS_NOT_INFEASIBLE = 10015;
public static final int ERROR_NOT_FOR_MIP = 10016;
public static final int ERROR_OPTIMIZATION_IN_PROGRESS = 10017;
public static final int ERROR_DUPLICATES = 10018;
public static final int ERROR_NODEFILE = 10019;
public static final int ERROR_Q_NOT_PSD = 10020;
public static final int ERROR_QCP_EQUALITY_CONSTRAINT = 10021;
public static final int ERROR_NETWORK = 10022;
public static final int ERROR_JOB_REJECTED = 10023;
public static final int ERROR_NOT_SUPPORTED = 10024;
public static final int ERROR_EXCEED_2B_NONZEROS = 10025;
public static final int ERROR_INVALID_PIECEWISE_OBJ = 10026;
public static final int ERROR_UPDATEMODE_CHANGE = 10027;
public static final int ERROR_CLOUD = 10028;
public static final int ERROR_MODEL_MODIFICATION = 10029;
public static final int ERROR_CSWORKER = 10030;
public static final int ERROR_TUNE_MODEL_TYPES = 10031;
public static final int ERROR_SECURITY = 10032;
public static final int ERROR_NOT_IN_MODEL = 20001;
public static final int ERROR_FAILED_TO_CREATE_MODEL = 20002;
public static final int ERROR_INTERNAL = 20003;

public class Error {
public static final int OUT_OF_MEMORY = 10001;
public static final int NULL_ARGUMENT = 10002;
public static final int INVALID_ARGUMENT = 10003;
public static final int UNKNOWN_ATTRIBUTE = 10004;
public static final int DATA_NOT_AVAILABLE = 10005;
public static final int INDEX_OUT_OF_RANGE = 10006;
public static final int UNKNOWN_PARAMETER = 10007;
public static final int VALUE_OUT_OF_RANGE = 10008;
public static final int NO_LICENSE = 10009;
public static final int SIZE_LIMIT_EXCEEDED = 10010;
public static final int CALLBACK = 10011;
public static final int FILE_READ = 10012;
public static final int FILE_WRITE = 10013;
public static final int NUMERIC = 10014;
public static final int IIS_NOT_INFEASIBLE = 10015;
public static final int NOT_FOR_MIP = 10016;
public static final int OPTIMIZATION_IN_PROGRESS = 10017;
public static final int DUPLICATES = 10018;
public static final int NODEFILE = 10019;
public static final int ERROR_Q_NOT_PSD = 10020;
public static final int QCP_EQUALITY_CONSTRAINT = 10021;
public static final int NETWORK = 10022;
public static final int JOB_REJECTED = 10023;

GRB.CharAttr

This enum is used to get or set char-valued attributes (through GRBModel.get or GRBModel.set). Please refer to
the Attributes section of the Reference Manual to see a list of all char attributes and their functions.

310

GRB.DoubleAttr
This enum is used to get or set double-valued attributes (through GRBModel.get or GRBModel.set). Please refer to
the Attributes section of the Reference Manual to see a list of all double attributes and their functions.

GRB.DoubleParam
This enum is used to get or set double-valued parameters (through GRBModel.get, GRBModel.set, GRBEnv.get, or
GRBEnv.set). Please refer to the Parameters section of the Reference Manual to see a list of all double parameters
and their functions.

GRB.IntAttr
This enum is used to get or set int-valued attributes (through GRBModel.get or GRBModel.set). Please refer to the
Attributes section of the Reference Manual to see a list of all int attributes and their functions.

GRB.IntParam
This enum is used to get or set int-valued parameters (through GRBModel.get, GRBModel.set, GRBEnv.get, GR-
BEnv.set). Please refer to the Parameters section of the Reference Manual to see a list of all int parameters and their
functions.

GRB.StringAttr
This enum is used to get or set string-valued attributes (through GRBModel.get or GRBModel.set). Please refer to
the Attributes section of the Reference Manual to see a list of all string attributes and their functions.

GRB.StringParam
This enum is used to get or set string-valued parameters (through GRBModel.get, GRBModel.set, GRBEnv.get, or
GRBEnv.set). Please refer to the Parameters section of the Reference Manual to see a list of all string parameters
and their functions.

311

.NET API Overview

This section documents the Gurobi .NET interface. This manual begins with a quick overview of the classes exposed in
the interface and the most important methods on those classes. It then continues with a comprehensive presentation
of all of the available classes and methods.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide or the Example
Tour. These documents provide concrete examples of how to use the classes and methods described here.

Environments

The first step in using the Gurobi .NET interface is to create an environment object. Environments are represented
using the GRBEnv class. An environment acts as the container for all data associated with a set of optimization
runs. You will generally only need one environment object in your program.

For more advanced use cases, you can use an empty environment to create an uninitialized environment and then,
programmatically, set all required options for your specific requirements. For further details see the Environment
section.

Models

You can create one or more optimization models within an environment. Each model is represented as an object of
class GRBModel. A model consists of a set of decision variables (objects of class GRBVar), a linear or quadratic
objective function on those variables (specified using GRBModel.SetObjective), and a set of constraints on these
variables (objects of class GRBConstr, GRBQConstr, GRBSOS, or GRBGenConstr). Each variable has an associated
lower bound, upper bound, and type (continuous, binary, etc.). Each linear or quadratic constraint has an associated
sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side value. Refer to this section for more
information on variables, constraints, and objectives.

Linear constraints are specified by building linear expressions (objects of class GRBLinExpr), and then specifying
relationships between these expressions (for example, requiring that one expression be equal to another). Quadratic
constraints are built in a similar fashion, but using quadratic expressions (objects of class GRBQuadExpr) instead.

An optimization model may be specified all at once, by loading the model from a file (using the appropriate GRB-
Model constructor), or built incrementally, by first constructing an empty object of class GRBModel and then subse-
quently calling GRBModel.AddVar or GRBModel.AddVars to add additional variables, and GRBModel.AddConstr,
GRBModel.AddQConstr, GRBModel.AddSOS, or any of the GRBModel.AddGenConstrXxx methods to add addi-
tional constraints. Models are dynamic entities; you can always add or remove variables or constraints.

We often refer to the class of an optimization model. A model with a linear objective function, linear constraints,
and continuous variables is a Linear Program (LP). If the objective is quadratic, the model is a Quadratic Program
(QP). If any of the constraints are quadratic, the model is a Quadratically-Constrained Program (QCP). We will
sometimes refer to a few special cases of QCP: QCPs with convex constraints, QCPs with non-convex constraints,
bilinear programs, and Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-
continuous variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the model
is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, including Mixed Integer Linear
Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed Integer Quadratically-Constrained Programs
(MIQCP), and Mixed Integer Second-Order Cone Programs (MISOCP). The Gurobi Optimizer handles all of these
model classes.

Solving a Model

Once you have built a model, you can call GRBModel.Optimize to compute a solution. By default, Optimize will use
the concurrent optimizer to solve LP models, the barrier algorithm to solve QP models with convex objectives and
QCP models with convex constraints, and the branch-and-cut algorithm otherwise. The solution is stored in a set of
attributes of the model. These attributes can be queried using a set of attribute query methods on the GRBModel,
GRBVar, GRBConstr, GRBQConstr, GRBSOS, and GRBGenConstr classes.

The Gurobi algorithms keep careful track of the state of the model, so calls to
GRBModel.Optimize will only perform further optimization if relevant data has changed since the model was last

312

https://www.gurobi.com/documentation/10.0/quickstart_windows/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html

optimized. If you would like to discard previously computed solution information and restart the optimization from
scratch without changing the model, you can call GRBModel.Reset.

After a MIP model has been solved, you can call GRBModel.FixedModel to compute the associated fixed model.
This model is identical to the original, except that the integer variables are fixed to their values in the MIP solution.
If your model contains SOS constraints, some continuous variables that appear in these constraints may be fixed as
well. In some applications, it can be useful to compute information on this fixed model (e.g., dual variables, sensitivity
information, etc.), although you should be careful in how you interpret this information.
Multiple Solutions, Objectives, and Scenarios

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to a single model
with a single objective function. Gurobi provides the following features that allow you to relax these assumptions:

• Solution Pool: Allows you to find more solutions.
• Multiple Scenarios: Allows you to find solutions to multiple, related models.
• Multiple Objectives: Allows you to specify multiple objective functions and control the trade-off between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the infeasibility,
attempt to repair the infeasibility, or both. To obtain information that can be useful for diagnosing the cause of an
infeasibility, call GRBModel.ComputeIIS to compute an Irreducible Inconsistent Subsystem (IIS). This method can
be used for both continuous and MIP models, but you should be aware that the MIP version can be quite expensive.
This method populates a set of IIS attributes.

To attempt to repair an infeasibility, call GRBModel.FeasRelax to compute a feasibility relaxation for the model.
This relaxation allows you to find a solution that minimizes the magnitude of the constraint violation.
Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some attributes are associated
with the variables of the model, some with the constraints of the model, and some with the model itself. To give
a simple example, solving an optimization model causes the X variable attribute to be populated. Attributes such
as X that are computed by the Gurobi optimizer cannot be modified directly by the user, while others, such as the
variable lower bound (the LB attribute) can.

Attributes can be accessed in two ways in the .NET interface. The easiest is through .NET properties. To query
or modify the LB attribute on variable v, you would use v.LB or v.LB = 0, respectively. Attributes can also be queried
using GRBVar.Get, GRBConstr.Get, GRBQConstr.Get, GRBSOS.Get, GRBGenConstr.Get, or GRBModel.Get, and
modified using GRBVar.Set, GRBConstr.Set, GRBQConstr.Set, GRBGenConstr.Set, or GRBModel.Set. Attributes
are grouped into a set of enums by type (GRB.CharAttr, GRB.DoubleAttr, GRB.IntAttr,
GRB.StringAttr). The Get() and Set() methods are overloaded, so the type of the attribute determines the type of
the returned value. Thus, constr.Get(GRB.DoubleAttr.RHS) returns a double, while constr.Get(GRB.CharAttr.Sense)
returns a char.

If you wish to retrieve attribute values for a set of variables or constraints, it is usually more efficient to use the
array methods on the associated GRBModel object. Method GRBModel.Get includes signatures that allow you to
query or modify attribute values for one-, two-, and three-dimensional arrays of variables or constraints.

The full list of attributes can be found in the Attributes section.
Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to variable bounds,
constraint right-hand sides, etc.). The main exceptions are modifications to the constraint matrix and to the objective
function.

The constraint matrix can be modified in a few ways. The first is to call the ChgCoeff method on a GRBModel
object to change individual matrix coefficients. This method can be used to modify the value of an existing non-zero,
to set an existing non-zero to zero, or to create a new non-zero. The constraint matrix is also modified when you
remove a variable or constraint from the model (through the GRBModel.Remove method). The non-zero values
associated with the deleted constraint or variable are removed along with the constraint or variable itself.

The model objective function can also be modified in a few ways. The easiest is to build an expression that
captures the objective function (a GRBLinExpr or GRBQuadExpr object), and then pass that expression to method
GRBModel.SetObjective. If you wish to modify the objective, you can simply call setObjective again with a new
GRBLinExpr or GRBQuadExpr object.

313

For linear objective functions, an alternative to SetObjective is to use the Obj variable attribute to modify
individual linear objective coefficients.

If your variables have piecewise-linear objectives, you can specify them using the
GRBModel.SetPWLObj method. Call this method once for each relevant variable. The Gurobi simplex solver
includes algorithmic support for convex piecewise-linear objective functions, so for continuous models you should see
a substantial performance benefit from using this feature. To clear a previously specified piecewise-linear objective
function, simply set the Obj attribute on the corresponding variable to 0.
Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed in a lazy fashion,
meaning that modifications don’t affect the model immediately. Rather, they are queued and applied later. If your
program simply creates a model and solves it, you will probably never notice this behavior. However, if you ask for
information about the model before your modifications have been applied, the details of the lazy update approach
may be relevant to you.

As we just noted, model modifications (bound changes, right-hand side changes, objective changes, etc.) are
placed in a queue. These queued modifications can be applied to the model in three different ways. The first is by
an explicit call to GRBModel.Update. The second is by a call to GRBModel.Optimize. The third is by a call to
GRBModel.Write to write out the model. The first case gives you fine-grained control over when modifications are
applied. The second and third make the assumption that you want all pending modifications to be applied before
you optimize your model or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is that this approach
makes it much easier to perform multiple modifications to a model, since the model remains unchanged between
modifications. The second is that processing model modifications can be expensive, particularly in a Compute Server
environment, where modifications require communication between machines. Thus, it is useful to have visibility into
exactly when these modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then update, then make
more modifications, then update again, etc. Updating after each individual modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value of the requested
data from the point of the last update. If the object you tried to query didn’t exist then, you’ll get a NOT_IN_MODEL
exception instead.

The semantics of lazy updates have changed since earlier Gurobi versions. While the vast majority of programs
are unaffected by this change, you can use the UpdateMode parameter to revert to the earlier behavior if you run
into an issue.
Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of the optimization
process. Factors like feasibility and optimality tolerances, choices of algorithms, strategies for exploring the MIP
search tree, etc., can be controlled by modifying Gurobi parameters before beginning the optimization. Parameters
can be of type int, double, or string.

The simplest way to set parameters is through the Model.Parameters class and its associated .NET properties.
To set the MIPGap parameter to 0.0 for model m, for example, you would do m.Parameters.MIPGap = 0.

Parameters can also be set on the Gurobi environment object, using GRBEnv.Set. Note that each model gets
its own copy of the environment when it is created, so parameter changes to the original environment have no effect
on existing models.

You can read a set of parameter settings from a file using GRBEnv.ReadParams, or write the set of changed
parameters using GRBEnv.WriteParams.

We also include an automated parameter tuning tool that explores many different sets of parameter changes in
order to find a set that improves performance. You can call GRBModel.Tune to invoke the tuning tool on a model.
Refer to the parameter tuning tool section for more information.

The full list of Gurobi parameters can be found in the Parameters section.
Memory Management

Users typically do not need to concern themselves with memory management in .NET, since it is handled automatically
by the garbage collector. The Gurobi .NET interface utilizes the same garbage collection mechanism as other .NET
programs, but there are a few specifics of our memory management that users should be aware of.

In general, Gurobi objects live in the same .NET heap as other .NET objects. When they are no longer referenced,
they become candidates for garbage collection, and are returned to the pool of free space at the next invocation of

314

the garbage collector. Two important exceptions are the GRBEnv and GRBModel objects. A GRBModel object has a
small amount of memory associated with it in the .NET heap, but the majority of the space associated with a model
lives in the heap of the Gurobi native code DLL. The .NET heap manager is unaware of the memory associated with
the model in the native code library, so it does not consider this memory usage when deciding whether to invoke the
garbage collector. When the garbage collector eventually collects the .NET GRBModel object, the memory associated
with the model in the Gurobi native code library will be freed, but this collection may come later than you might
want. Similar considerations apply to the GRBEnv object.

If you are writing a .NET program that makes use of multiple Gurobi models or environments, we recommend
that you call GRBModel.Dispose when you are done using the associated GRBModel object, and GRBEnv.Dispose
when you are done using the associated GRBEnv object and after you have called GRBModel.Dispose on all of the
models created using that GRBEnv object.
Native Code

As noted earlier, the Gurobi .NET interface is a thin layer that sits on top of our native code DLL. Thus, an
application that uses the Gurobi .NET library will load the Gurobi DLL at runtime. In order for this happen, you
need to make sure that two things are true. First, you need to make sure that the native code library is available in
the PATH environment library. This environment variable is set up as part of the installation of the Gurobi Optimizer,
but it may not be configured appropriately on a machine where the full Gurobi Optimizer has not been installed.
Second, you need to be sure that the selected .NET Platform Target (as selected in Visual Studio) is compatible with
the Gurobi DLL that is available through your PATH. In particular, you need to use the 64-bit Gurobi native library
when you’ve selected the x64 Platform Target. If you use the default Any CPU target, then your .NET application
will look for the 64-bit Gurobi DLL on a 64-bit machine.
Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will send output to the
screen. A few simple controls are available for modifying the default logging behavior. If you would like to direct
output to a file as well as to the screen, specify the log file name in the GRBEnv constructor. You can modify
the LogFile parameter if you wish to redirect the log to a different file after creating the environment object. The
frequency of logging output can be controlled with the DisplayInterval parameter, and logging can be turned off
entirely with the OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging
section.

More detailed progress monitoring can be done through the GRBCallback class. The GRBModel.SetCallback
method allows you to receive a periodic callback from the Gurobi optimizer. You do this by sub-classing the
GRBCallback abstract class, and writing your own Callback() method on this class. You can call GRBCall-
back.GetDoubleInfo, GRBCallback.GetIntInfo, GRBCallback.GetStringInfo, or GRBCallback.GetSolution from within
the callback to obtain additional information about the state of the optimization.
Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. The simplest control callback is GRBCall-
back.Abort, which asks the optimizer to terminate at the earliest convenient point. Method GRBCallback.SetSolution
allows you to inject a feasible solution (or partial solution) during the solution of a MIP model. Methods GRB-
Callback.AddCut and GRBCallback.AddLazy allow you to add cutting planes and lazy constraints during a MIP
optimization, respectively. Method GRBCallback.StopOneMultiObj allows you to interrupt the optimization process
of one of the optimization steps in a multi-objective MIP problem without stopping the hierarchical optimization
process.
Batch Optimization

Gurobi Compute Server enables programs to offload optimization computations onto dedicated servers. The Gurobi
Cluster Manager adds a number of additional capabilities on top of this. One important one, batch optimization,
allows you to build an optimization model with your client program, submit it to a Compute Server cluster (through
the Cluster Manager), and later check on the status of the model and retrieve its solution. You can use a Batch
object to make it easier to work with batches. For details on batches, please refer to the Batch Optimization section.
Error Handling

All of the methods in the Gurobi .NET library can throw an exception of type GRBException. When an exception
occurs, additional information on the error can be obtained by retrieving the error code (using property GRBEx-
ception.ErrorCode), or by retrieving the exception message (using property GRBException.Message from the parent
class). The list of possible error return codes can be found in the Error Codes section.

315

6.1 GRBEnv
Gurobi environment object. Gurobi models are always associated with an environment. You must create an environ-
ment before can you create and populate a model. You will generally only need a single environment object in your
program.

Objects of this class have unmanaged resources associated with them. The class implements the IDisposable
interface.

The methods on environment objects are mainly used to manage Gurobi parameters (e.g., Get, GetParamInfo,
Set).

While the .NET garbage collector will eventually collect an unused GRBEnv object, an environment will hold
onto resources (Gurobi licenses, file descriptors, etc.) until that collection occurs. If your program creates multiple
GRBEnv objects, we recommend that you call GRBEnv.Dispose when you are done using one (or use the .NET using
statement).

GRBEnv()
Constructor for GRBEnv object. You have the option of constructing either a local environment, which solves Gurobi
models on the local machine, a client environment for a Gurobi Compute Server, which will solve Gurobi models on
a server machine, or an Instant Cloud environment, which will launch a Gurobi Cloud server and solve models on
that server. Choose the appropriate signature for the type of environment you wish to launch.
GRBEnv GRBEnv ()

Create a Gurobi environment (with logging disabled). This method will also populate any parameter (ComputeServer,
TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current work-
ing directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.
The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value
for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Return value:
An environment object (with no associated log file).

GRBEnv GRBEnv (string logFileName)

Create a Gurobi environment (with logging enabled). This method will also populate any parameter (ComputeServer,
TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current work-
ing directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.
The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value
for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Arguments:
logFileName: The desired log file name.

Return value:
An environment object.

GRBEnv GRBEnv (bool empty)

Create an empty Gurobi environment. Use Start to start the environment.
If the environment is not empty, This method will also populate any parameter (ComputeServer, TokenServer,

ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current working directory for
a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in
PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.

316

The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Arguments:
empty: Indicates whether the environment should be empty. You should use empty=True if you want to
set parameters before actually starting the environment. This can be useful if you want to connect to a
Compute Server, a Token Server, the Gurobi Instant Cloud, a Cluster Manager or use a WLS license. See
the Environment Section for more details.

Return value:
An environment object.

GRBEnv.Dispose()
Release the resources associated with a GRBEnv object. While the .NET garbage collector will eventually reclaim
these resources, we recommend that you call the Dispose method when you are done using an environment if your
program creates more than one.

The Dispose method on a GRBEnv should be called only after you have called Dispose on all of the models that
were created within that environment. You should not attempt to use a GRBEnv object after calling Dispose.
void Dispose ()

GRBEnv.ErrorMsg

string ErrorMsg
(Property) The error message for the most recent exception associated with this environment.

GRBEnv.Get()
Query the value of a parameter.
double Get (GRB.DoubleParam param)

Query the value of a double-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

Return value:
The current value of the requested parameter.

int Get (GRB.IntParam param)

Query the value of an int-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

Return value:
The current value of the requested parameter.

string Get (GRB.StringParam param)

Query the value of a string-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

Return value:
The current value of the requested parameter.

317

GRBEnv.GetParamInfo()
Obtain information about a parameter.

void GetParamInfo (GRB.DoubleParam param,
double[] info)

Obtain detailed information about a double parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

info: The returned information. The result will contain four entries: the current value of the parameter,
the minimum allowed value, the maximum allowed value, and the default value.

void GetParamInfo (GRB.IntParam param,
int[] info)

Obtain detailed information about an integer parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

info: The returned information. The result will contain four entries: the current value of the parameter,
the minimum allowed value, the maximum allowed value, and the default value.

void GetParamInfo (GRB.StringParam param,
string[] info)

Obtain detailed information about a string parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

info: The returned information. The result will contain two entries: the current value of the parameter and
the default value.

GRBEnv.Message()
Write a message to the console and the log file.
void Message (string message)

Arguments:
message: Print a message to the console and to the log file. Note that this call has no effect unless the
OutputFlag parameter is set.

GRBEnv.ReadParams()
Read new parameter settings from a file.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their
purposes and their minimum, maximum, and default values.
void ReadParams (string paramfile)

Arguments:
paramfile: Name of the file containing parameter settings. Parameters should be listed one per line, with
the parameter name first and the desired value second. For example:

Gurobi parameter file
Threads 1
MIPGap 0

Blank lines and lines that begin with the hash symbol are ignored.

318

GRBEnv.Release()
Release the license associated with this environment. You will no longer be able to call Optimize on models created
with this environment after the license has been released.
void Release ()

GRBEnv.ResetParams()
Reset all parameters to their default values.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their
purposes and their minimum, maximum, and default values.
void ResetParams ()

GRBEnv.Set()
Set the value of a parameter.

Important notes:
Note that a model gets its own copy of the environment when it is created. Changes to the original environment

have no effect on the copy. Use GRBModel.Set to change a parameter on an existing model.

void Set (GRB.DoubleParam param,
double newvalue)

Set the value of a double-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

newvalue: The desired new value of the parameter.

void Set (GRB.IntParam param,
int newvalue)

Set the value of an int-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

newvalue: The desired new value of the parameter.

void Set (GRB.StringParam param,
string newvalue)

Set the value of a string-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete list of Gurobi
parameters, including descriptions of their purposes and their minimum, maximum, and default values.

newvalue: The desired new value of the parameter.

void Set (string param,
string newvalue)

Set the value of any parameter using strings alone.
Arguments:

param: The name of the parameter being modified. Please consult the parameter section for a complete list
of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default
values.

newvalue: The desired new value of the parameter.

319

GRBEnv.Start()
Start an empty environment. If the environment has already been started, this method will do nothing. If the call
fails, the environment will have the same state as it had before the call to this method.

This method will also populate any parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified
in your gurobi.lic file. This method will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each
line should contain a parameter name, followed by the desired value for that parameter). After that, it will apply
all parameter changes specified by the user prior to this call. Note that this might overwrite parameters set in the
license file, or in the gurobi.env file, if present.

After all these changes are performed, the code will actually activate the environment, and make it ready to work
with models.

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their
purposes and their minimum, maximum, and default values.
void Start ()

GRBEnv.WriteParams()
Write all non-default parameter settings to a file.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their
purposes and their minimum, maximum, and default values.
void WriteParams (string paramfile)

Arguments:
paramfile: Name of the file to which non-default parameter settings should be written. The previous
contents are overwritten.

320

6.2 GRBModel
Gurobi model object. Commonly used methods include AddVar (adds a new decision variable to the model), Add-
Constr (adds a new constraint to the model), Optimize (optimizes the current model), and Get (retrieves the value
of an attribute).

Objects of this class have unmanaged resources associated with them. The class implements the IDisposable
interface.

While the .NET garbage collector will eventually collect an unused GRBModel object, the vast majority of the
memory associated with a model is stored outside of the .NET heap. As a result, the garbage collector can’t see this
memory usage, and thus it can’t take this quantity into account when deciding whether collection is necessary. We
recommend that you call GRBModel.Dispose when you are done using a model (or use the .NET using statement).

GRBModel()
Constructor for GRBModel. The simplest version creates an empty model. You can then call AddVar and AddConstr
to populate the model with variables and constraints. The more complex constructors can read a model from a file,
or make a copy of an existing model.
GRBModel GRBModel (GRBEnv env)

Model constructor.
Arguments:

env: Environment for new model.
Return value:

New model object. Model initially contains no variables or constraints.

GRBModel GRBModel (GRBEnv env,
string filename)

Read a model from a file. Note that the type of the file is encoded in the file name suffix. Valid suffixes are .mps,
.rew, .lp, .rlp, .dua, .dlp, .ilp, or .opb. The files can be compressed, so additional suffixes of .zip, .gz, .bz2, or
.7z are accepted.

Arguments:
env: Environment for new model.
modelname: Name of the file containing the model.

Return value:
New model object.

GRBModel GRBModel (GRBModel model)

Create a copy of an existing model. Note that due to the lazy update approach in Gurobi, you have to call
Update before copying it.

Arguments:
model: Model to copy.

Return value:
New model object. Model is a clone of the input model.

GRBModel.AddConstr()
Add a single linear constraint to a model. Multiple signatures are available.

GRBConstr AddConstr (GRBLinExpr lhsExpr,
char sense,
GRBLinExpr rhsExpr,
string name)

Add a single linear constraint to a model.

321

Arguments:
lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side expression for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

GRBConstr AddConstr (GRBTempConstr tempConstr,
string name)

Add a single linear constraint to a model.
Arguments:

tempConstr: Temporary constraint object, created by an overloaded comparison operator. See GRBTemp-
Constr for more information.

name: Name for new constraint.
Return value:

New constraint object.

GRBModel.AddConstrs()
Add new linear constraints to a model.

We recommend that you build your model one constraint at a time (using AddConstr), since it introduces no
significant overhead and we find that it produces simpler code. Feel free to use these methods if you disagree, though.
GRBConstr[] AddConstrs (int count)

Add count new linear constraints to a model. The new constraints are all of the form 0 <= 0.
Arguments:

count: Number of constraints to add.
Return value:

Array of new constraint objects.

GRBConstr[] AddConstrs (GRBLinExpr[] lhsExprs,
char[] senses,
double[] rhsVals,
string[] names)

Add new linear constraints to a model. The number of added constraints is determined by the length of the
input arrays (which must be consistent across all arguments).

Arguments:
lhsExprs: Left-hand side expressions for the new linear constraints.
senses: Senses for new linear constraints (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsVals: Right-hand side values for the new linear constraints.
names: Names for new constraints.

Return value:
Array of new constraint objects.

GRBConstr[] AddConstrs (GRBLinExpr[] lhsExprs,
char[] senses,
GRBLinExpr[] rhsExprs,
int start,
int len,
string[] names)

322

Add new linear constraints to a model. This signature allows you to use arrays to hold the various constraint
attributes (left-hand side, sense, etc.), without forcing you to add one constraint for each entry in the array. The
start and len arguments allow you to specify which constraints to add.

Arguments:
lhsExprs: Left-hand side expressions for the new linear constraints.
senses: Senses for new linear constraints (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhs: Right-hand side expressions for the new linear constraints.
start: The first constraint in the list to add.
len: The number of variables to add.
names: Names for new constraints.

Return value:
Array of new constraint objects.

GRBModel.AddGenConstrXxx()
Each of the functions described below adds a new general constraint to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types: variable bound
constraints, linear constraints, quadratic constraints, integrality constraints, and SOS constraints. These are typically
treated directly by the underlying solver (although not always), and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general (function)
constraints. These are typically not treated directly by the solver. Rather, they are transformed by presolve into
constraints (and variables) chosen from among the fundamental types listed above. In some cases, the resulting
constraint or constraints are mathematically equivalent to the original; in others, they are approximations. If such
constraints appear in your model, but if you prefer to reformulate them yourself using fundamental constraint types
instead, you can certainly do so. However, note that Gurobi can sometimes exploit information contained in the
other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

• AddGenConstrMax: y = max(x1, x2, ..., c)

• AddGenConstrMin: y = min(x1, x2, ..., c)

• AddGenConstrAbs: y = |x|

• AddGenConstrAnd: y = x1 ∧ x2 ∧ x3...

• AddGenConstrOr: y = x1 ∨ x2 ∨ x3...

• AddGenConstrNorm: y = norm(x1, x2, x3...)

• AddGenConstrIndicator: y = 1→ a′x ≤ b (an indicator constraint)

• AddGenConstrPWL: y = pwl(x) (a piecewise-linear function, specified using breakpoints)

• AddGenConstrPoly: y = p0x
d + p1x

d−1 + ...+ pd−1x+ pd

• AddGenConstrExp: y = ex

• AddGenConstrExpA: y = ax

• AddGenConstrLog: y = loge(x)

• AddGenConstrLogA: y = loga(x)

• AddGenConstrPow: y = xa

• AddGenConstrSin: y = sin(x)

• AddGenConstrCos: y = cos(x)

• AddGenConstrTan: y = tan(x)

Please refer to this section for additional details on general constraints.

323

GRBModel.AddGenConstrMax()

Add a new general constraint of type GRB.GENCONSTR_MAX to a model.
A MAX constraint r = max{x1, . . . , xn, c} states that the resultant variable r should be equal to the maximum

of the operand variables x1, . . . , xn and the constant c.

GRBGenConstr AddGenConstrMax (GRBVar resvar,
GRBVar[] vars,
double constant,
string name)

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
constant: The additional constant operand of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.AddGenConstrMin()

Add a new general constraint of type GRB.GENCONSTR_MIN to a model.
A MIN constraint r = min{x1, . . . , xn, c} states that the resultant variable r should be equal to the minimum of

the operand variables x1, . . . , xn and the constant c.

GRBGenConstr AddGenConstrMin (GRBVar resvar,
GRBVar[] vars,
double constant,
string name)

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
constant: The additional constant operand of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.AddGenConstrAbs()

Add a new general constraint of type GRB.GENCONSTR_ABS to a model.
An ABS constraint r = abs{x} states that the resultant variable r should be equal to the absolute value of the

argument variable x.

GRBGenConstr AddGenConstrAbs (GRBVar resvar,
GRBVar argvar,
string name)

Arguments:
resvar: The resultant variable of the new constraint.
argvar: The argument variable of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

324

GRBModel.AddGenConstrAnd()

Add a new general constraint of type GRB.GENCONSTR_AND to a model.
An AND constraint r = and{x1, . . . , xn} states that the binary resultant variable r should be 1 if and only if all

of the operand variables x1, . . . , xn are equal to 1. If any of the operand variables is 0, then the resultant should be
0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent of how they
were created.

GRBGenConstr AddGenConstrAnd (GRBVar resvar,
GRBVar[] vars,
string name)

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.AddGenConstrOr()

Add a new general constraint of type GRB.GENCONSTR_OR to a model.
An OR constraint r = or{x1, . . . , xn} states that the binary resultant variable r should be 1 if and only if any of

the operand variables x1, . . . , xn is equal to 1. If all operand variables are 0, then the resultant should be 0 as well.
Note that all variables participating in such a constraint will be forced to be binary, independent of how they

were created.

GRBGenConstr AddGenConstrOr (GRBVar resvar,
GRBVar[] vars,
string name)

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.AddGenConstrNorm()

Add a new general constraint of type GRB.GENCONSTR_NORM to a model.
A NORM constraint r = norm{x1, . . . , xn} states that the resultant variable r should be equal to the vector

norm of the argument vector x1, . . . , xn.

GRBGenConstr AddGenConstrNorm (GRBVar resvar,
GRBVar[] vars,
double which,
string name)

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint. Note that this array may not contain
duplicates.

which: Which norm to use. Options are 0, 1, 2, and GRB.INFINITY.
name: Name for the new general constraint.

Return value:
New general constraint.

325

GRBModel.AddGenConstrIndicator()

Add a new general constraint of type GRB.GENCONSTR_INDICATOR to a model.
An INDICATOR constraint z = f → aTx ≤ b states that if the binary indicator variable z is equal to f , where

f ∈ {0, 1}, then the linear constraint aTx ≤ b should hold. On the other hand, if z = 1− f , the linear constraint may
be violated. The sense of the linear constraint can also be specified to be = or ≥.

Note that the indicator variable z of a constraint will be forced to be binary, independent of how it was created.
Multiple signatures are available.

GRBGenConstr AddGenConstrIndicator (GRBVar binvar,
int binval,
GRBLinExpr expr,
char sense,
double rhs,
string name)

Arguments:
binvar: The binary indicator variable.
binval: The value for the binary indicator variable that would force the linear constraint to be satisfied (0
or 1).

expr: Left-hand side expression for the linear constraint triggered by the indicator.
sense: Sense for the linear constraint. Options are GRB.LESS_EQUAL, GRB.EQUAL, or
GRB.GREATER_EQUAL.

rhs: Right-hand side value for the linear constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBGenConstr AddGenConstrIndicator (GRBVar binvar,
int binval,
GRBTempConstr constr,
string name)

Arguments:
binvar: The binary indicator variable.
binval: The value for the binary indicator variable that would force the linear constraint to be satisfied (0
or 1).

constr: Temporary constraint object defining the linear constraint that is triggered by the indicator. The
temporary constraint object is created using an overloaded comparison operator. See GRBTempConstr
for more information.

name: Name for the new general constraint.
Return value:

New general constraint.

GRBModel.AddGenConstrPWL()

Add a new general constraint of type GRB.GENCONSTR_PWL to a model.
A piecewise-linear (PWL) constraint states that the relationship y = f(x) must hold between variables x and y,

where f is a piecewise-linear function. The breakpoints for f are provided as arguments. Refer to the description of
piecewise-linear objectives for details of how piecewise-linear functions are defined.

GRBGenConstr AddGenConstrPWL (GRBVar xvar,
GRBVar yvar,
double[] xpts,
double[] ypts,
string name)

326

Arguments:
xvar: The x variable.
yvar: The y variable.
xpts: The x values for the points that define the piecewise-linear function. Must be in non-decreasing order.
ypts: The y values for the points that define the piecewise-linear function.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.AddGenConstrPoly()

A polynomial function constraint states that the relationship y = p0x
d+p1x

d−1 + ...+pd−1x+pd should hold between
variables x and y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr AddGenConstrPoly (GRBVar xvar,
GRBVar yvar,
double[] p,
string name,
string options)

Arguments:
xvar: The x variable.
yvar: The y variable.
p: The coefficients for the polynomial function (starting with the coefficient for the highest power).
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel.AddGenConstrExp()

Add a new general constraint of type GRB.GENCONSTR_EXP to a model.
A natural exponential function constraint states that the relationship y = exp(x) should hold for variables x and

y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr AddGenConstrExp (GRBVar xvar,
GRBVar yvar,
string name,
string options)

Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

327

Return value:
New general constraint.

GRBModel.AddGenConstrExpA()

Add a new general constraint of type GRB.GENCONSTR_EXPA to a model.
An exponential function constraint states that the relationship y = ax should hold for variables x and y, where

a > 0 is the (constant) base.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr AddGenConstrExpA (GRBVar xvar,
GRBVar yvar,
double a,
string name,
string options)

Arguments:
xvar: The x variable.
yvar: The y variable.
a: The base of the function, a > 0.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel.AddGenConstrLog()

Add a new general constraint of type GRB.GENCONSTR_LOG to a model.
A natural logarithmic function constraint states that the relationship y = log(x) should hold for variables x and

y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr AddGenConstrLog (GRBVar xvar,
GRBVar yvar,
string name,
string options)

Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

328

GRBModel.AddGenConstrLogA()

Add a new general constraint of type GRB.GENCONSTR_LOGA to a model.
A logarithmic function constraint states that the relationship y = loga(x) should hold for variables x and y,

where a > 0 is the (constant) base.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr AddGenConstrLogA (GRBVar xvar,
GRBVar yvar,
double a,
string name,
string options)

Arguments:
xvar: The x variable.
yvar: The y variable.
a: The base of the function, a > 0.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel.AddGenConstrLogistic()

Add a new general constraint of type GRB.GENCONSTR_LOGISTIC to a model.
A logistic function constraint states that the relationship y = 1

1+e−x should hold for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr AddGenConstrLogistic (GRBVar xvar,
GRBVar yvar,
string name,
string options)

Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

329

GRBModel.AddGenConstrPow()

Add a new general constraint of type GRB.GENCONSTR_POW to a model.
A power function constraint states that the relationship y = xa should hold for variables x and y, where a is the

(constant) exponent. The lower bound of variable x must be nonnegative, even if a is an integer.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr AddGenConstrPow (GRBVar xvar,
GRBVar yvar,
double a,
string name,
string options)

Arguments:
xvar: The x variable.
yvar: The y variable.
a: The power of the function, a > 0.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel.AddGenConstrSin()

Add a new general constraint of type GRB.GENCONSTR_SIN to a model.
A sine function constraint states that the relationship y = sin(x) should hold for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr AddGenConstrSin (GRBVar xvar,
GRBVar yvar,
string name,
string options)

Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

330

GRBModel.AddGenConstrCos()

Add a new general constraint of type GRB.GENCONSTR_COS to a model.
A cosine function constraint states that the relationship y = cos(x) should hold for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr AddGenConstrCos (GRBVar xvar,
GRBVar yvar,
string name,
string options)

Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel.AddGenConstrTan()

Add a new general constraint of type GRB.GENCONSTR_TAN to a model.
A tangent function constraint states that the relationship y = tan(x) should hold for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr AddGenConstrTan (GRBVar xvar,
GRBVar yvar,
string name,
string options)

Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear approximation of
this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign
and the desired value (with no spaces). Assignments for different attributes should be separated by spaces
(e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel.AddQConstr()
Add a quadratic constraint to a model. Multiple signatures are available.

Important note: Gurobi can handle both convex and non-convex quadratic constraints. The differences between
them can be both important and subtle. Refer to this discussion for additional information.

331

GRBQConstr AddQConstr (GRBQuadExpr lhsExpr,
char sense,
GRBQuadExpr rhsExpr,
string name)

Add a quadratic constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side expression for new quadratic constraint.
name: Name for new constraint.

Return value:
New quadratic constraint object.

GRBQConstr AddQConstr (GRBTempConstr tempConstr,
string name)

Add a quadratic constraint to a model.
Arguments:

tempConstr: Temporary constraint object, created by an overloaded comparison operator. See GRBTemp-
Constr for more information.

name: Name for new constraint.
Return value:

New quadratic constraint object.

GRBModel.AddRange()
Add a single range constraint to a model. A range constraint states that the value of the input expression must be
between the specified lower and upper bounds in any solution.

Note that range constraints are stored internally as equality constraints. We add an extra variable to the model
to capture the range information. Thus, the Sense attribute on a range constraint will always be GRB.EQUAL. In
particular introducing a range constraint

L ≤ aTx ≤ U

is equivalent to adding a slack variable s and the following constraints

aTx− s = L
0 ≤ s ≤ U − L.

GRBConstr AddRange (GRBLinExpr expr,
double lower,
double upper,
string name)

Arguments:
expr: Linear expression for new range constraint.
lower: Lower bound for linear expression.
upper: Upper bound for linear expression.
name: Name for new constraint.

Return value:
New constraint object.

332

GRBModel.AddRanges()
Add new range constraints to a model. A range constraint states that the value of the input expression must be
between the specified lower and upper bounds in any solution.

GRBConstr[] AddRanges (GRBLinExpr[] exprs,
double[] lower,
double[] upper,
string[] names)

Arguments:
exprs: Linear expressions for the new range constraints.
lower: Lower bounds for linear expressions.
upper: Upper bounds for linear expressions.
name: Names for new range constraints.
count: Number of range constraints to add.

Return value:
Array of new constraint objects.

GRBModel.AddSOS()
Add an SOS constraint to the model. Please refer to this section for details on SOS constraints.

GRBSOS AddSOS (GRBVar[] vars,
double[] weights,
int type)

Arguments:
vars: Array of variables that participate in the SOS constraint.
weights: Weights for the variables in the SOS constraint.
type: SOS type (can be GRB.SOS_TYPE1 or GRB.SOS_TYPE2).

Return value:
New SOS constraint.

GRBModel.AddVar()
Add a single decision variable to a model.

GRBVar AddVar (double lb,
double ub,
double obj,
char type,
string name)

Add a variable to a model; non-zero entries will be added later.
Arguments:

lb: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).

name: Name for new variable.
Return value:

New variable object.

333

GRBVar AddVar (double lb,
double ub,
double obj,
char type,
GRBConstr[] constrs,
double[] coeffs,
string name)

Add a variable to a model, and the associated non-zero coefficients.
Arguments:

lb: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).

constrs: Array of constraints in which the variable participates.
coeffs: Array of coefficients for each constraint in which the variable participates. The lengths of the
constrs and coeffs arrays must be identical.

name: Name for new variable.
Return value:

New variable object.

GRBVar AddVar (double lb,
double ub,
double obj,
char type,
GRBColumn col,
string name)

Add a variable to a model. This signature allows you to specify the set of constraints to which the new variable
belongs using a GRBColumn object.

Arguments:
lb: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).

col: GRBColumn object for specifying a set of constraints to which new variable belongs.
name: Name for new variable.

Return value:
New variable object.

GRBModel.AddVars()
Add new decision variables to a model.

GRBVar[] AddVars (int count,
char type)

Add count new decision variables to a model. All associated attributes take their default values, except the
variable type, which is specified as an argument.

Arguments:
count: Number of variables to add.
type: Variable type for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).

Return value:
Array of new variable objects.

334

GRBVar[] AddVars (double[] lb,
double[] ub,
double[] obj,
char[] type,
string[] names)

Add new decision variables to a model. The number of added variables is determined by the length of the input
arrays (which must be consistent across all arguments).

Arguments:
lb: Lower bounds for new variables. Can be null, in which case the variables get lower bounds of 0.0.
ub: Upper bounds for new variables. Can be null, in which case the variables get infinite upper bounds.
obj: Objective coefficients for new variables. Can be null, in which case the variables get objective coefficients
of 0.0.

type: Variable types for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed to be continuous.

names: Names for new variables. Can be null, in which case all variables are given default names.
Return value:

Array of new variable objects.

GRBVar[] AddVars (double[] lb,
double[] ub,
double[] obj,
char[] type,
string[] names,
int start,
int len)

Add new decision variables to a model. This signature allows you to use arrays to hold the various variable
attributes (lower bound, upper bound, etc.), without forcing you to add a variable for each entry in the array. The
start and len arguments allow you to specify which variables to add.

Arguments:
lb: Lower bounds for new variables. Can be null, in which case the variables get lower bounds of 0.0.
ub: Upper bounds for new variables. Can be null, in which case the variables get infinite upper bounds.
obj: Objective coefficients for new variables. Can be null, in which case the variables get objective coefficients
of 0.0.

type: Variable types for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed to be continuous.

names: Names for new variables. Can be null, in which case all variables are given default names.
start: The first variable in the list to add.
len: The number of variables to add.

Return value:
Array of new variable objects.

GRBVar[] AddVars (double[] lb,
double[] ub,
double[] obj,
char[] type,
string[] names,
GRBColumn[] col)

Add new decision variables to a model. This signature allows you to specify the list of constraints to which each
new variable belongs using an array of GRBColumn objects.

Arguments:
lb: Lower bounds for new variables. Can be null, in which case the variables get lower bounds of 0.0.
ub: Upper bounds for new variables. Can be null, in which case the variables get infinite upper bounds.
obj: Objective coefficients for new variables. Can be null, in which case the variables get objective coefficients
of 0.0.

335

type: Variable types for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed to be continuous.

names: Names for new variables. Can be null, in which case all variables are given default names.
cols: GRBColumn objects for specifying a set of constraints to which each new column belongs.

Return value:
Array of new variable objects.

GRBModel.ChgCoeff()
Change one coefficient in the model. The desired change is captured using a GRBVar object, a GRBConstr object,
and a desired coefficient for the specified variable in the specified constraint. If you make multiple changes to the
same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you update the model
(using GRBModel.Update), optimize the model (using GRBModel.Optimize), or write the model to disk (using
GRBModel.Write).

void ChgCoeff (GRBConstr constr,
GRBVar var,
double newvalue)

Arguments:
constr: Constraint for coefficient to be changed.
var: Variable for coefficient to be changed.
newvalue: Desired new value for coefficient.

GRBModel.ChgCoeffs()
Change a list of coefficients in the model. Each desired change is captured using a GRBVar object, a GRBConstr object,
and a desired coefficient for the specified variable in the specified constraint. The entries in the input arrays each
correspond to a single desired coefficient change. The lengths of the input arrays must all be the same. If you make
multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you update the model
(using GRBModel.Update), optimize the model (using GRBModel.Optimize), or write the model to disk (using
GRBModel.Write).

void ChgCoeffs (GRBConstr[] constrs,
GRBVar[] vars,
double[] vals)

Arguments:
constrs: Constraints for coefficients to be changed.
vars: Variables for coefficients to be changed.
vals: Desired new values for coefficients.

GRBModel.ComputeIIS()
Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and variable bounds with
the following properties:

• It is still infeasible, and
• If a single constraint or bound is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily the smallest
one; there may exist others with fewer constraints or bounds.

IIS results are returned in a number of attributes: IISConstr, IISLB, IISUB, IISSOS, IISQConstr, and IISGen-
Constr. Each indicates whether the corresponding model element is a member of the computed IIS.

336

The IIS log provides information about the progress of the algorithm, including a guess at the eventual IIS size.
If an IIS computation is interrupted before completion, Gurobi will return the smallest infeasible subsystem found

to that point.
The IISConstrForce, IISLBForce, IISUBForce, IISSOSForce, IISQConstrForce, and IISGenConstrForce attributes

allow you mark model elements to either include or exclude from the computed IIS. Setting the attribute to 1 forces
the corresponding element into the IIS, setting it to 0 forces it out of the IIS, and setting it to -1 allows the algorithm
to decide.

To give an example of when these attributes might be useful, consider the case where an initial model is known
to be feasible, but it becomes infeasible after adding constraints or tightening bounds. If you are only interested
in knowing which of the changes caused the infeasibility, you can force the unmodified bounds and constraints into
the IIS. That allows the IIS algorithm to focus exclusively on the new constraints, which will often be substantially
faster.

Note that setting any of the Force attributes to 0 may make the resulting subsystem feasible, which would
then make it impossible to construct an IIS. Trying anyway will result in a GRB_ERROR_IIS_NOT_INFEASIBLE error.
Similarly, setting this attribute to 1 may result in an IIS that is not irreducible. More precisely, the system would
only be irreducible with respect to the model elements that have force values of -1 or 0.

This method populates the IISConstr, IISQConstr, and IISGenConstr constraint attributes, the IISSOS, SOS
attribute, and the IISLB and IISUB variable attributes. You can also obtain information about the results of the IIS
computation by writing a .ilp format file (see GRBModel.Write). This file contains only the IIS from the original
model.

Use the IISMethod parameter to adjust the behavior of the IIS algorithm.
Note that this method can be used to compute IISs for both continuous and MIP models.

void ComputeIIS ()

GRBModel.DiscardConcurrentEnvs()
Discard concurrent environments for a model.

The concurrent environments created by GetConcurrentEnv will be used by every subsequent call to the concur-
rent optimizer until the concurrent environments are discarded.
void DiscardConcurrentEnvs ()

GRBModel.DiscardMultiobjEnvs()
Discard all multi-objective environments associated with the model, thus restoring multi objective optimization to
its default behavior.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple objective functions
and control the trade-off between them.

Use GetMultiobjEnv to create a multi-objective environment.
void DiscardMultiobjEnvs ()

GRBModel.Dispose()
Release the resources associated with a GRBModel object. While the .NET garbage collector will eventually reclaim
these resources, we recommend that you call the Dispose method when you are done using a model.

You should not attempt to use a GRBModel object after calling Dispose on it.
void Dispose ()

GRBModel.FeasRelax()
Modifies the GRBModel object to create a feasibility relaxation. Note that you need to call Optimize on the result to
compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the solution violates the
bounds and linear constraints of the original model. This method provides a number of options for specifying the
relaxation.

337

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the sum of the weighted
magnitudes of the bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the cost per
unit violation in the lower bounds, upper bounds, and linear constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the weighted sum of the
squares of the bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the coefficients on
the squares of the lower bound, upper bound, and linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the weighted count of
bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the cost of violating a lower
bound, upper bound, and linear constraint, respectively.

To give an example, if a constraint with rhspen value p is violated by 2.0, it would contribute 2*p to the feasibility
relaxation objective for relaxobjtype=0, it would contribute 2*2*p for relaxobjtype=1, it would contribute p for
relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is created. If minrelax=false,
optimizing the returned model gives a solution that minimizes the cost of the violation. If minrelax=true, optimizing
the returned model finds a solution that minimizes the original objective, but only from among those solutions that
minimize the cost of the violation. Note that FeasRelax must solve an optimization problem to find the minimum
possible relaxation when minrelax=true, which can be quite expensive.

There are two signatures for this method. The more complex one takes a list of variables and constraints, as well
as penalties associated with relaxing the corresponding lower bounds, upper bounds, and constraints. If a variable
or constraint is not included in one of these lists, the associated bounds or constraints may not be violated. The
simpler signature takes a pair of boolean arguments, vrelax and crelax, that indicate whether variable bounds
and/or constraints can be violated. If vrelax/crelax is true, then every bound/constraint is allowed to be violated,
respectively, and the associated cost is 1.0.

Note that this is a destructive method: it modifies the model on which it is invoked. If you don’t want to modify
your original model, use the GRBModel constructor to create a copy before invoking this method.

double FeasRelax (int relaxobjtype,
boolean minrelax,
GRBVar[] vars,
double[] lbpen,
double[] ubpen,
GRBConstr[] constrs,
double[] rhspen)

Create a feasibility relaxation model.
Arguments:

relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vars: Variables whose bounds are allowed to be violated.
lbpen: Penalty for violating a variable lower bound. One entry for each variable in argument vars.
ubpen: Penalty for violating a variable upper bound. One entry for each variable in argument vars.
constrs: Linear constraints that are allowed to be violated.
rhspen: Penalty for violating a linear constraint. One entry for each constraint in argument constrs.

Arguments:
Return value:

Zero if minrelax is false. If minrelax is true, the return value is the objective value for the relaxation
performed. If the value is less than 0, it indicates that the method failed to create the feasibility relaxation.

double FeasRelax (int relaxobjtype,
boolean minrelax,
boolean vrelax,
boolean crelax)

Simplified method for creating a feasibility relaxation model.
Arguments:

relaxobjtype: The cost function used when finding the minimum cost relaxation.

338

minrelax: The type of feasibility relaxation to perform.
vrelax: Indicates whether variable bounds can be relaxed (with a cost of 1.0 for any violations.
crelax: Indicates whether linear constraints can be relaxed (with a cost of 1.0 for any violations.

Return value:
Zero if minrelax is false. If minrelax is true, the return value is the objective value for the relaxation
performed. If the value is less than 0, it indicates that the method failed to create the feasibility relaxation.

GRBModel.FixedModel()
Create the fixed model associated with a MIP model. The MIP model must have a solution loaded (e.g., after a call
to the Optimize method). In the fixed model, each integer variable is fixed to the value that variable takes in the
MIP solution. In addition, continuous variables may be fixed to satisfy SOS or general constraints. The result is a
model without any integrality constraints, SOS constraints, or general constraints.

Note that, while the fixed problem is always a continuous model, it may contain a non-convex quadratic objective
or non-convex quadratic constraints. As a result, it may still be solved using the MIP algorithm.
GRBModel FixedModel ()

Return value:
Fixed model associated with calling object.

GRBModel.Get()
Query the value(s) of a parameter or attribute. Use this method for parameters, for scalar model attributes, and for
arrays of constraint or variable attributes.
double Get (GRB.DoubleParam param)

Query the value of a double-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.
int Get (GRB.IntParam param)

Query the value of an int-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.
string Get (GRB.StringParam param)

Query the value of a string-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

char[] Get (GRB.CharAttr attr,
GRBVar[] vars)

Query a char-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

339

char[] Get (GRB.CharAttr attr,
GRBVar[] vars,
int start,
int len)

Query a char-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

char[,] Get (GRB.CharAttr attr,
GRBVar[,] vars)

Query a char-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

char[„] Get (GRB.CharAttr attr,
GRBVar[„] vars)

Query a char-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

char[] Get (GRB.CharAttr attr,
GRBConstr[] constrs)

Query a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

char[] Get (GRB.CharAttr attr,
GRBConstr[] constrs,
int start,
int len)

Query a char-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

340

char[,] Get (GRB.CharAttr attr,
GRBConstr[,] constrs)

Query a char-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

char[„] Get (GRB.CharAttr attr,
GRBConstr[„] constrs)

Query a char-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

char[] Get (GRB.CharAttr attr,
GRBQConstr[] qconstrs)

Query a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: The quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

char[] Get (GRB.CharAttr attr,
GRBQConstr[] qconstrs,
int start,
int len)

Query a char-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are being queried.
start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

Return value:
The current values of the requested attribute for each input quadratic constraint.

char[,] Get (GRB.CharAttr attr,
GRBQConstr[,] qconstrs)

Query a char-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

char[„] Get (GRB.CharAttr attr,
GRBQConstr[„] qconstrs)

341

Query a char-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

double Get (GRB.DoubleAttr attr)

Query the value of a double-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double[] Get (GRB.DoubleAttr attr,
GRBVar[] vars)

Query a double-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

double[] Get (GRB.DoubleAttr attr,
GRBVar[] vars,
int start,
int len)

Query a double-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

double[,] Get (GRB.DoubleAttr attr,
GRBVar[,] vars)

Query a double-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

double[„] Get (GRB.DoubleAttr attr,
GRBVar[„] vars)

Query a double-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:

342

The current values of the requested attribute for each input variable.

double[] Get (GRB.DoubleAttr attr,
GRBConstr[] constrs)

Query a double-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

double[] Get (GRB.DoubleAttr attr,
GRBConstr[] constrs,
int start,
int len)

Query a double-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

double[,] Get (GRB.DoubleAttr attr,
GRBConstr[,] constrs)

Query a double-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

double[„] Get (GRB.DoubleAttr attr,
GRBConstr[„] constrs)

Query a double-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

double[] Get (GRB.DoubleAttr attr,
GRBQConstr[] qconstrs)

Query a double-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: The quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

343

double[] Get (GRB.DoubleAttr attr,
GRBQConstr[] qconstrs,
int start,
int len)

Query a double-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are being queried.
start: The first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

Return value:
The current values of the requested attribute for each input quadratic constraint.

double[,] Get (GRB.DoubleAttr attr,
GRBQConstr[,] qconstrs)

Query a double-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

double[„] Get (GRB.DoubleAttr attr,
GRBQConstr[„] qconstrs)

Query a double-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

int Get (GRB.IntAttr attr)

Query the value of an int-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int[] Get (GRB.IntAttr attr,
GRBVar[] vars)

Query an int-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

int[] Get (GRB.IntAttr attr,
GRBVar[] vars,
int start,
int len)

Query an int-valued variable attribute for a sub-array of variables.

344

Arguments:
attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

int[,] Get (GRB.IntAttr attr,
GRBVar[,] vars)

Query an int-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

int[„] Get (GRB.IntAttr attr,
GRBVar[„] vars)

Query an int-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

int[] Get (GRB.IntAttr attr,
GRBConstr[] constrs)

Query an int-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

int[] Get (GRB.IntAttr attr,
GRBConstr[] constrs,
int start,
int len)

Query an int-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

int[,] Get (GRB.IntAttr attr,
GRBConstr[,] constrs)

Query an int-valued constraint attribute for a two-dimensional array of constraints.

345

Arguments:
attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

int[„] Get (GRB.IntAttr attr,
GRBConstr[„] constrs)

Query an int-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

string Get (GRB.StringAttr attr)

Query the value of a string-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

string[] Get (GRB.StringAttr attr,
GRBVar[] vars)

Query a string-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

string[] Get (GRB.StringAttr attr,
GRBVar[] vars,
int start,
int len)

Query a string-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

string[,] Get (GRB.StringAttr attr,
GRBVar[,] vars)

Query a string-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

346

string[„] Get (GRB.StringAttr attr,
GRBVar[„] vars)

Query a string-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

string[] Get (GRB.StringAttr attr,
GRBConstr[] constrs)

Query a string-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

string[] Get (GRB.StringAttr attr,
GRBConstr[] constrs,
int start,
int len)

Query a string-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

string[,] Get (GRB.StringAttr attr,
GRBConstr[,] constrs)

Query a string-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

string[„] Get (GRB.StringAttr attr,
GRBConstr[„] constrs)

Query a string-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

string[] Get (GRB.StringAttr attr,
GRBQConstr[] qconstrs)

347

Query a string-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: The quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

string[] Get (GRB.StringAttr attr,
GRBQConstr[] qconstrs,
int start,
int len)

Query a string-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are being queried.
start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

Return value:
The current values of the requested attribute for each input quadratic constraint.

string[,] Get (GRB.StringAttr attr,
GRBQConstr[,] qconstrs)

Query a string-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

string[„] Get (GRB.StringAttr attr,
GRBQConstr[„] qconstrs)

Query a string-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

GRBModel.GetCoeff()
Query the coefficient of variable var in linear constraint constr (note that the result can be zero).

double GetCoeff (GRBConstr constr,
GRBVar var)

Arguments:
constr: The requested constraint.
var: The requested variable.

Return value:
The current value of the requested coefficient.

348

GRBModel.GetCol()
Retrieve the list of constraints in which a variable participates, and the associated coefficients. The result is returned
as a GRBColumn object.
GRBColumn GetCol (GRBVar var)

Arguments:
var: The variable of interest.

Return value:
A GRBColumn object that captures the set of constraints in which the variable participates.

GRBModel.GetConcurrentEnv()
Create/retrieve a concurrent environment for a model.

This method provides fine-grained control over the concurrent optimizer. By creating your own concurrent
environments and setting appropriate parameters on these environments (e.g., the Method parameter), you can control
exactly which strategies the concurrent optimizer employs. For example, if you create two concurrent environments,
and set Method to primal simplex for one and dual simplex for the other, subsequent concurrent optimizer runs will
use the two simplex algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with num=0. For example,
if you want three concurrent environments, they must be numbered 0, 1, and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent optimization on
that model. Use DiscardConcurrentEnvs to revert back to default concurrent optimizer behavior.
GRBEnv GetConcurrentEnv (int num)

Arguments:
num: The concurrent environment number.

Return value:
The concurrent environment for the model.

GRBModel.GetConstrByName()
Retrieve a linear constraint from its name. If multiple linear constraints have the same name, this method chooses
one arbitrarily.
GRBConstr GetConstrByName (string name)

Arguments:
name: The name of the desired linear constraint.

Return value:
The requested linear constraint.

GRBModel.GetConstrs()
Retrieve an array of all linear constraints in the model.
GRBConstr[] GetConstrs ()

Return value:
All linear constraints in the model.

GRBModel.GetGenConstrXxx()
The following methods allow you to retrieve general constraints from your model.

349

GRBModel.GetGenConstrMax

Retrieve the data associated with a general constraint of type MAX. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also AddGenConstrMax for a description of the semantics of this general constraint type.

void GetGenConstrMax (GRBGenConstr genc,
out GRBVar resvar,
out GRBVar[] vars,
out double constant)

Arguments:
genc: The general constraint object.
resvar: Stores the resultant variable of the constraint.
vars: Stores the array of operand variables of the constraint.
constant: Stores the additional constant operand of the constraint.

GRBModel.GetGenConstrMin

Retrieve the data associated with a general constraint of type MIN. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also AddGenConstrMin for a description of the semantics of this general constraint type.

void GetGenConstrMin (GRBGenConstr genc,
out GRBVar resvar,
out GRBVar[] vars,
out double constant)

Arguments:
genc: The general constraint object.
resvar: Stores the resultant variable of the constraint.
vars: Stores the array of operand variables of the constraint.
constant: Stores the additional constant operand of the constraint.

GRBModel.GetGenConstrAbs

Retrieve the data associated with a general constraint of type ABS. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also AddGenConstrAbs for a description of the semantics of this general constraint type.

void GetGenConstrAbs (GRBGenConstr genc,
out GRBVar resvar,
out GRBVar argvar)

Arguments:
genc: The general constraint object.
resvar: Stores the resultant variable of the constraint.
argvar: Stores the argument variable of the constraint.

350

GRBModel.GetGenConstrAnd

Retrieve the data associated with a general constraint of type AND. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also AddGenConstrAnd for a description of the semantics of this general constraint type.

void GetGenConstrAnd (GRBGenConstr genc,
out GRBVar resvar,
out GRBVar[] vars)

Arguments:
genc: The general constraint object.
resvar: Stores the resultant variable of the constraint.
vars: Stores the array of operand variables of the constraint.

GRBModel.GetGenConstrOr

Retrieve the data associated with a general constraint of type OR. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also AddGenConstrOr for a description of the semantics of this general constraint type.

void GetGenConstrOr (GRBGenConstr genc,
out GRBVar resvar,
out GRBVar[] vars)

Arguments:
genc: The general constraint object.
resvar: Stores the resultant variable of the constraint.
vars: Stores the array of operand variables of the constraint.

GRBModel.GetGenConstrNorm

Retrieve the data associated with a general constraint of type NORM. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also AddGenConstrNorm for a description of the semantics of this general constraint type.

void GetGenConstrNorm (GRBGenConstr genc,
out GRBVar resvar,
out GRBVar[] vars,
out double which)

Arguments:
genc: The general constraint object.
resvar: Stores the resultant variable of the constraint.
vars: Stores the array of operand variables of the constraint.
whichP: Stores the norm type (possible values are 0, 1, 2, or GRB.INFINITY).

351

GRBModel.GetGenConstrIndicator

Retrieve the data associated with a general constraint of type INDICATOR. Calling this method for a general
constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the
type of the general constraint.

See also AddGenConstrIndicator for a description of the semantics of this general constraint type.

void GetGenConstrIndicator (GRBGenConstr genc,
out GRBVar binvar,
out int binval,
out GRBLinExpr expr,
out char sense,
out double rhs)

Arguments:
genc: The general constraint object.
binvar: Stores the binary indicator variable of the constraint.
binval: Stores the value that the indicator variable has to take in order to trigger the linear constraint.
expr: Stores the left-hand side expression of the linear constraint that is triggered by the indicator.
sense: Stores the sense for the linear constraint. Options are GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL.

rhs: Stores the right-hand side value for the linear constraint.

GRBModel.GetGenConstrPWL

Retrieve the data associated with a general constraint of type PWL. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a
null value for the xpts and ypts arguments. The routine returns the length for the xpts and ypts arrays in npts.
That allows you to make certain that the xpts and ypts arrays are of sufficient size to hold the result of the second
call.

See also AddGenConstrPWL for a description of the semantics of this general constraint type.

void GetGenConstrPWL (GRBGenConstr genc,
out GRBVar xvar,
out GRBVar yvar,
out int npts,
double[] xpts,
double[] ypts)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.
npts: Store the number of points that define the piecewise-linear function.
xpts: The x values for the points that define the piecewise-linear function.
ypts: The y values for the points that define the piecewise-linear function.

GRBModel.GetGenConstrPoly

Retrieve the data associated with a general constraint of type POLY. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with
a null value for the p argument. The routine returns the length of the p array in plen. That allows you to make
certain that the p array is of sufficient size to hold the result of the second call.

352

See also AddGenConstrPoly for a description of the semantics of this general constraint type.

void GetGenConstrPoly (GRBGenConstr genc,
out GRBVar xvar,
out GRBVar yvar,
out int plen,
double[] p)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.
plen: Store the array length for p. If xd is the highest power term, then d+ 1 will be returned.
p: The coefficients for polynomial function.

GRBModel.GetGenConstrExp

Retrieve the data associated with a general constraint of type EXP. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also AddGenConstrExp for a description of the semantics of this general constraint type.

void GetGenConstrExp (GRBGenConstr genc,
out GRBVar xvar,
out GRBVar yvar)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.

GRBModel.GetGenConstrExpA

Retrieve the data associated with a general constraint of type EXPA. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also AddGenConstrExpA for a description of the semantics of this general constraint type.

void GetGenConstrExpA (GRBGenConstr genc,
out GRBVar xvar,
out GRBVar yvar,
out double a)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.
a: Store the base of the function.

353

GRBModel.GetGenConstrLog

Retrieve the data associated with a general constraint of type LOG. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also AddGenConstrLog for a description of the semantics of this general constraint type.

void GetGenConstrLog (GRBGenConstr genc,
out GRBVar xvar,
out GRBVar yvar)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.

GRBModel.GetGenConstrLogA

Retrieve the data associated with a general constraint of type LOGA. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also AddGenConstrLogA for a description of the semantics of this general constraint type.

void GetGenConstrLogA (GRBGenConstr genc,
out GRBVar xvar,
out GRBVar yvar,
out double a)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.
a: Store the base of the function.

GRBModel.GetGenConstrLogistic

Retrieve the data associated with a general constraint of type LOGISTIC. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also AddGenConstrLogistic for a description of the semantics of this general constraint type.

void GetGenConstrLogistic (GRBGenConstr genc,
out GRBVar xvar,
out GRBVar yvar)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.

354

GRBModel.GetGenConstrPow

Retrieve the data associated with a general constraint of type POW. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also AddGenConstrPow for a description of the semantics of this general constraint type.

void GetGenConstrPow (GRBGenConstr genc,
out GRBVar xvar,
out GRBVar yvar,
out double a)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.
a: Store the power of the function.

GRBModel.GetGenConstrSin

Retrieve the data associated with a general constraint of type SIN. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also AddGenConstrSin for a description of the semantics of this general constraint type.

void GetGenConstrSin (GRBGenConstr genc,
out GRBVar xvar,
out GRBVar yvar)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.

GRBModel.GetGenConstrCos

Retrieve the data associated with a general constraint of type COS. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also AddGenConstrCos for a description of the semantics of this general constraint type.

void GetGenConstrCos (GRBGenConstr genc,
out GRBVar xvar,
out GRBVar yvar)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.

355

GRBModel.GetGenConstrTan

Retrieve the data associated with a general constraint of type TAN. Calling this method for a general constraint of
a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also AddGenConstrTan for a description of the semantics of this general constraint type.

void GetGenConstrTan (GRBGenConstr genc,
out GRBVar xvar,
out GRBVar yvar)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.

GRBModel.GetGenConstrs()
Retrieve an array of all general constraints in the model.
GRBGenConstr[] GetGenConstrs ()

Return value:
All general constraints in the model.

GRBModel.GetJSONSolution()
After a call to Optimize, this method returns the resulting solution and related model attributes as a JSON string.
Please refer to the JSON solution format section for details.
string GetJSONSolution ()

Return value:
A JSON string.

GRBModel.GetMultiobjEnv()
Create/retrieve a multi-objective environment for the objective with the given index. This environment enables
fine-grained control over the multi-objective optimization process. Specifically, by changing parameters on this
environment, you modify the behavior of the optimization that occurs during the corresponding pass of the multi-
objective optimization.

Each multi-objective environment starts with a copy of the current model environment.
Please refer to the discussion of Multiple Objectives for information on how to specify multiple objective functions

and control the trade-off between them.
Use DiscardMultiobjEnvs to discard multi-objective environments and return to standard behavior.

GRBEnv GetMultiobjEnv (int index)

Arguments:
index: The objective index.

Return value:
The multi-objective environment for the model.

GRBModel.GetObjective()
Retrieve the model objective(s).
GRBExpr GetObjective ()

Retrieve the optimization objective.

356

Note that the constant and linear portions of the objective can also be retrieved using the ObjCon and Obj
attributes.

Return value:
The model objective.

GRBLinExpr GetObjective (int index)

Retrieve an alternative optimization objective. Alternative objectives will always be linear. You can also use this
routine to retrieve the primary objective (using index = 0), but you will get an exception if the primary objective
contains quadratic terms.

Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.
Note that alternative objectives can also be retrieved using the ObjNCon and ObjN attributes.
Arguments:

index: The index for the requested alternative objective.
Return value:

The requested alternative objective.

GRBModel.GetPWLObj()
Retrieve the piecewise-linear objective function for a variable. The return value gives the number of points that define
the function, and the x and y arguments give the coordinates of the points, respectively. The x and y arguments
must be large enough to hold the result. Call this method with null values for x and y if you just want the number
of points.

Refer to this discussion for additional information on what the values in x and y mean.

int GetPWLObj (GRBVar var,
double[] x,
double[] y)

Arguments:
var: The variable whose objective function is being retrieved.
x: The x values for the points that define the piecewise-linear function. These will always be in non-decreasing
order.

y: The y values for the points that define the piecewise-linear function.
Return value:

The number of points that define the piecewise-linear objective function.

GRBModel.GetQConstr()
Retrieve the left-hand side expression from a quadratic constraint. The result is returned as a GRBQuadExpr object.
GRBQuadExpr GetQConstr (GRBQConstr qconstr)

Arguments:
qconstr: The quadratic constraint of interest.

Return value:
A GRBQuadExpr object that captures the left-hand side of the quadratic constraint.

GRBModel.GetQConstrs()
Retrieve an array of all quadratic constraints in the model.
GRBQConstr[] GetQConstrs ()

Return value:
All quadratic constraints in the model.

357

GRBModel.GetQCRow()
Retrieve the left-hand side expression for a quadratic constraint. The result is returned as a GRBQuadExpr object.
GRBQuadExpr GetQCRow (GRBQConstr qc)

Arguments:
qc: The quadratic constraint of interest.

Return value:
A GRBQuadExpr object that captures the left-hand side of the quadratic constraint.

GRBModel.GetRow()
Retrieve a list of variables that participate in a constraint, and the associated coefficients. The result is returned as
a GRBLinExpr object.
GRBLinExpr GetRow (GRBConstr constr)

Arguments:
constr: The constraint of interest. A GRBConstr object, typically obtained from AddConstr or GetConstrs.

Return value:
A GRBLinExpr object that captures the set of variables that participate in the constraint.

GRBModel.GetSOS()
Retrieve the list of variables that participate in an SOS constraint, and the associated coefficients. The return value
is the length of this list. Note that the argument arrays must be long enough to accommodate the result. Call the
method with null array arguments to determine the appropriate array lengths.

int GetSOS (GRBSOS sos,
GRBVar[] vars,
double[] weights,
int[] type)

Arguments:
sos: The SOS set of interest.
vars: A list of variables that participate in sos. Can be null.
weights: The SOS weights for each participating variable. Can be null.
type: The type of the SOS set (either GRB.SOS_TYPE1 or GRB.SOS_TYPE2) is returned in type[0].

Return value:
The number of entries placed in the output arrays. Note that you should consult the return value to determine
the length of the result; the arrays sizes won’t necessarily match the result size.

GRBModel.GetSOSs()
Retrieve an array of all SOS constraints in the model.
GRBSOS[] GetSOSs ()

Return value:
All SOS constraints in the model.

GRBModel.GetTuneResult()
Use this method to retrieve the results of a previous Tune call. Calling this method with argument n causes tuned
parameter set n to be copied into the model. Parameter sets are stored in order of decreasing quality, with parameter
set 0 being the best. The number of available sets is stored in attribute TuneResultCount.

Once you have retrieved a tuning result, you can call optimize to use these parameter settings to optimize the
model, or write to write the changed parameters to a .prm file.

358

Please refer to the parameter tuning section for details on the tuning tool.
void GetTuneResult (int n)

n: The index of the tuning result to retrieve. The best result is available as index 0. The number of stored
results is available in attribute TuneResultCount.

GRBModel.GetVarByName()
Retrieve a variable from its name. If multiple variable have the same name, this method chooses one arbitrarily.
GRBVar GetVarByName (string name)

Arguments:
name: The name of the desired variable.

Return value:
The requested variable.

GRBModel.GetVars()
Retrieve an array of all variables in the model.
GRBVar[] GetVars ()

Return value:
All variables in the model.

GRBModel.Optimize()
Optimize the model. The algorithm used for the optimization depends on the model type (simplex or barrier for
a continuous model; branch-and-cut for a MIP model). Upon successful completion, this method will populate the
solution related attributes of the model. See the Attributes section for more information on attributes.

Please consult this section for a discussion of some of the practical issues associated with solving a precisely
defined mathematical model using finite-precision floating-point arithmetic.

Note that this method will process all pending model modifications.
void Optimize ()

GRBModel.OptimizeAsync()
Optimize a model asynchronously. This routine returns immediately. Your program can perform other computations
while optimization proceeds in the background. To check the state of the asynchronous optimization, query the
Status attribute for the model. A value of IN_PROGRESS indicates that the optimization has not yet completed. When
you are done with your foreground tasks, you must call Sync to sync your foreground program with the asynchronous
optimization task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in the background
is severely limited. Specifically, you can only perform attribute queries, and only for a few attributes (listed below).
Any other calls on the running model, or on any other models that were built within the same Gurobi environment,
will fail with error code OPTIMIZATION_IN_PROGRESS.

Note that there are no such restrictions on models built in other environments. Thus, for example, you could
create multiple environments, and then have a single foreground program launch multiple simultaneous asynchronous
optimizations, each in its own environment.

As already noted, you are allowed to query the value of the Status attribute while an asynchronous optimization
is in progress. The other attributes that can be queried are: ObjVal, ObjBound, IterCount, NodeCount, and
BarIterCount. In each case, the returned value reflects progress in the optimization to that point. Any attempt to
query the value of an attribute not on this list will return an OPTIMIZATION_IN_PROGRESS error.
void OptimizeAsync ()

359

GRBModel.OptimizeBatch()
Submit a new batch request to the Cluster Manager. Returns the BatchID (a string), which uniquely identifies the
job in the Cluster Manager and can be used to query the status of this request (from this program or from any other).
Once the request has completed, the BatchID can also be used to retrieve the associated solution. To submit a batch
request, you must tag at least one element of the model by setting one of the VTag, CTag or QCTag attributes. For
more details on batch optimization, please refer to the Batch Optimization section.

Note that this routine will process all pending model modifications.
string OptimizeBatch ()

Example usage:

// Submit batch request
batchID = model.OptimizeBatch ();

GRBModel.Presolve()
Perform presolve on a model.
GRBModel Presolve ()

Return value:
Presolved version of original model.

GRBModel.Read()
This method is the general entry point for importing data from a file into a model. It can be used to read basis files
for continuous models, start vectors for MIP models, or parameter settings. The type of data read is determined by
the file suffix. File formats are described in the File Format section.

Note that this is not the method to use if you want to read a new model from a file. For that, use the GRBModel
constructor. One variant of the constructor takes the name of the file that contains the new model as its argument.
void Read (string filename)

Arguments:
filename: Name of the file to read. The suffix on the file must be either .bas (for an LP basis), .mst or
.sol (for a MIP start), .hnt (for MIP hints), .ord (for a priority order), or .prm (for a parameter file).
The suffix may optionally be followed by .zip, .gz, .bz2, or .7z.

GRBModel.Remove()
Remove a variable, constraint, or SOS from a model.
void Remove (GRBConstr constr)

Remove a constraint from the model. Note that, due to our lazy update approach, the change won’t actually
take effect until you update the model (using GRBModel.Update), optimize the model (using GRBModel.Optimize),
or write the model to disk (using GRBModel.Write).

Arguments:
constr: The constraint to remove.

void Remove (GRBGenConstr genconstr)

Remove a general constraint from the model. Note that, due to our lazy update approach, the change won’t actu-
ally take effect until you update the model (using GRBModel.Update), optimize the model (using GRBModel.Optimize),
or write the model to disk (using GRBModel.Write).

Arguments:
genconstr: The general constraint to remove.

void Remove (GRBQConstr qconstr)

360

Remove a quadratic constraint from the model. Note that, due to our lazy update approach, the change
won’t actually take effect until you update the model (using GRBModel.Update), optimize the model (using GRB-
Model.Optimize), or write the model to disk (using GRBModel.Write).

Arguments:
qconstr: The constraint to remove.

void Remove (GRBSOS sos)

Remove an SOS constraint from the model. Note that, due to our lazy update approach, the change won’t actually
take effect until you update the model (using GRBModel.Update), optimize the model (using GRBModel.Optimize),
or write the model to disk (using GRBModel.Write).

Arguments:
sos: The SOS constraint to remove.

void Remove (GRBVar var)

Remove a variable from the model. Note that, due to our lazy update approach, the change won’t actually take
effect until you update the model (using GRBModel.Update), optimize the model (using GRBModel.Optimize), or
write the model to disk (using GRBModel.Write).

Arguments:
var: The variable to remove.

GRBModel.Reset()
Reset the model to an unsolved state, discarding any previously computed solution information.
void Reset ()
void Reset (int clearall)

Arguments:
clearall: A value of 1 discards additional information that affects the solution process but not the actual
model (currently MIP starts, variable hints, branching priorities, lazy flags, and partition information).
Pass 0 to just discard the solution.

GRBModel.SetCallback()
Set the callback object for a model. The Callback() method on this object will be called periodically from the
Gurobi solver. You will have the opportunity to obtain more detailed information about the state of the optimization
from this callback. See the documentation for GRBCallback for additional information.

Note that a model can only have a single callback method, so this call will replace an existing callback. To disable
a previously set callback, call this method with a null argument.
void SetCallback (GRBCallback cb)

GRBModel.Set()
Set the value(s) of a parameter or attribute. Use this method for parameters, for scalar model attributes, or for
arrays of constraint or variable attributes.

void Set (GRB.DoubleParam param,
double newvalue)

Set the value of a double-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e., through GR-

BEnv.Set) is that the former modifies the parameter for a single model, while the latter modifies the parameter for
every model that is subsequently built using that environment (and leaves the parameter unchanged for models that
were previously built using that environment).

Arguments:

361

param: The parameter being modified.
newvalue: The desired new value for the parameter.

void Set (GRB.IntParam param,
int newvalue)

Set the value of an int-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e., through GR-

BEnv.Set) is that the former modifies the parameter for a single model, while the latter modifies the parameter for
every model that is subsequently built using that environment (and leaves the parameter unchanged for models that
were previously built using that environment).

Arguments:
param: The parameter being modified.
newvalue: The desired new value for the parameter.

void Set (GRB.StringParam param,
string newvalue)

Set the value of a string-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e., through GR-

BEnv.Set) is that the former modifies the parameter for a single model, while the latter modifies the parameter for
every model that is subsequently built using that environment (and leaves the parameter unchanged for models that
were previously built using that environment).

Arguments:
param: The parameter being modified.
newvalue: The desired new value for the parameter.

void Set (GRB.CharAttr attr,
GRBVar[] vars,
char[] newvalues)

Set a char-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.CharAttr attr,
GRBVar[] vars,
char[] newvalues,
int start,
int len)

Set a char-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

void Set (GRB.CharAttr attr,
GRBVar[,] vars,
char[,] newvalues)

Set a char-valued variable attribute for a two-dimensional array of variables.

362

Arguments:
attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.CharAttr attr,
GRBVar[„] vars,
char[„] newvalues)

Set a char-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.CharAttr attr,
GRBConstr[] constrs,
char[] newvalues)

Set a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.CharAttr attr,
GRBConstr[] constrs,
char[] newvalues,
int start,
int len)

Set a char-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

void Set (GRB.CharAttr attr,
GRBConstr[,] constrs,
char[,] newvalues)

Set a char-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.CharAttr attr,
GRBConstr[„] constrs,
char[„] newvalues)

Set a char-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.

363

constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.CharAttr attr,
GRBQConstr[] qconstrs,
char[] newvalues)

Set a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: The quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.CharAttr attr,
GRBQConstr[] qconstrs,
char[] newvalues,
int start,
int len)

Set a char-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

void Set (GRB.CharAttr attr,
GRBQConstr[,] qconstrs,
char[,] newvalues)

Set a char-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.CharAttr attr,
GRBQConstr[„] qconstrs,
char[„] newvalues)

Set a char-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.DoubleAttr attr,
double newvalue)

Set the value of a double-valued model attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value for the attribute.

364

void Set (GRB.DoubleAttr attr,
GRBVar[] vars,
double[] newvalues)

Set a double-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.DoubleAttr attr,
GRBVar[] vars,
double[] newvalues,
int start,
int len)

Set a double-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

void Set (GRB.DoubleAttr attr,
GRBVar[,] vars,
double[,] newvalues)

Set a double-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.DoubleAttr attr,
GRBVar[„] vars,
double[„] newvalues)

Set a double-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.DoubleAttr attr,
GRBConstr[] constrs,
double[] newvalues)

Set a double-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.DoubleAttr attr,
GRBConstr[] constrs,
double[] newvalues,
int start,
int len)

365

Set a double-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
start: The first constraint of interest in the list.
len: The number of constraints.

void Set (GRB.DoubleAttr attr,
GRBConstr[,] constrs,
double[,] newvalues)

Set a double-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.DoubleAttr attr,
GRBConstr[„] constrs,
double[„] newvalues)

Set a double-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.DoubleAttr attr,
GRBQConstr[] qconstrs,
double[] newvalues)

Set a double-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: The quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.DoubleAttr attr,
GRBQConstr[] qconstrs,
double[] newvalues,
int start,
int len)

Set a double-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
start: The first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

void Set (GRB.DoubleAttr attr,
GRBQConstr[,] qconstrs,
double[,] newvalues)

366

Set a double-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.DoubleAttr attr,
GRBQConstr[„] qconstrs,
double[„] newvalues)

Set a double-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.IntAttr attr,
int newvalue)

Set the value of an int-valued model attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void Set (GRB.IntAttr attr,
GRBVar[] vars,
int[] newvalues)

Set an int-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.IntAttr attr,
GRBVar[] vars,
int[] newvalues,
int start,
int len)

Set an int-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

void Set (GRB.IntAttr attr,
GRBVar[,] vars,
int[,] newvalues)

Set an int-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.

367

newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.IntAttr attr,
GRBVar[„] vars,
int[„] newvalues)

Set an int-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.IntAttr attr,
GRBConstr[] constrs,
int[] newvalues)

Set an int-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.IntAttr attr,
GRBConstr[] constrs,
int[] newvalues,
int start,
int len)

Set an int-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

void Set (GRB.IntAttr attr,
GRBConstr[,] constrs,
int[,] newvalues)

Set an int-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.IntAttr attr,
GRBConstr[„] constrs,
int[„] newvalues)

Set an int-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

368

void Set (GRB.StringAttr attr,
string newvalue)

Set the value of a string-valued model attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void Set (GRB.StringAttr attr,
GRBVar[] vars,
string[] newvalues)

Set a string-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.StringAttr attr,
GRBVar[] vars,
string[] newvalues,
int start,
int len)

Set a string-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

void Set (GRB.StringAttr attr,
GRBVar[,] vars,
string[,] newvalues)

Set a string-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.StringAttr attr,
GRBVar[„] vars,
string[„] newvalues)

Set a string-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.StringAttr attr,
GRBConstr[] constrs,
string[] newvalues)

Set a string-valued constraint attribute for an array of constraints.
Arguments:

369

attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.StringAttr attr,
GRBConstr[] constrs,
string[] newvalues,
int start,
int len)

Set a string-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

void Set (GRB.StringAttr attr,
GRBConstr[,] constrs,
string[,] newvalues)

Set a string-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.StringAttr attr,
GRBConstr[„] constrs,
string[„] newvalues)

Set a string-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.StringAttr attr,
GRBQConstr[] qconstrs,
string[] newvalues)

Set a string-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: The quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.StringAttr attr,
GRBQConstr[] qconstrs,
string[] newvalues,
int start,
int len)

Set a string-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

370

attr: The attribute being modified.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

void Set (GRB.StringAttr attr,
GRBQConstr[,] qconstrs,
string[,] newvalues)

Set a string-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.StringAttr attr,
GRBQConstr[„] qconstrs,
string[„] newvalues)

Set a string-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

GRBModel.SetObjective()
Set the model objective equal to a linear or quadratic expression (for multi-objective optimization, see SetObjectiveN).

Note that you can also modify the linear portion of a model objective using the Obj variable attribute. If you
wish to mix and match these two approaches, please note that this method replaces the entire existing objective,
while the Obj attribute can be used to modify individual linear terms.

void SetObjective (GRBExpr expr,
int sense)

Set the model objective, and the objective sense (GRB.MINIMIZE for minimization, GRB.MAXIMIZE for maximiza-
tion).

Arguments:
expr: New model objective.
sense: New optimization sense (GRB.MINIMIZE for minimization, GRB.MAXIMIZE for maximization).

void SetObjective (GRBExpr expr)

Set the model objective. The sense of the objective is determined by the value of the ModelSense attribute.
Arguments:

expr: New model objective.

GRBModel.SetObjectiveN()

void SetObjectiveN (GRBLinExpr expr,
int index,
int priority,
double weight,
double abstol,
double reltol,
string name)

371

Set an alternative optimization objective equal to a linear expression.
Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.
Note that you can also modify an alternative objective using the ObjN variable attribute. If you wish to mix

and match these two approaches, please note that this method replaces the entire existing objective, while the ObjN
attribute can be used to modify individual terms.

Arguments:
expr: New alternative objective.
index: Index for new objective. If you use an index of 0, this routine will change the primary optimization
objective.

priority: Priority for the alternative objective. This initializes the ObjNPriority attribute for this objective.
weight: Weight for the alternative objective. This initializes the ObjNWeight attribute for this objective.
abstol: Absolute tolerance for the alternative objective. This initializes the ObjNAbsTol attribute for this
objective.

reltol: Relative tolerance for the alternative objective. This initializes the ObjNRelTol attribute for this
objective.

name: Name of the alternative objective. This initializes the ObjNName attribute for this objective.

GRBModel.SetPWLObj()
Set a piecewise-linear objective function for a variable.

The arguments to this method specify a list of points that define a piecewise-linear objective function for a single
variable. Specifically, the x and y arguments give coordinates for the vertices of the function.

For additional details on piecewise-linear objective functions, refer to this discussion.

void SetPWLObj (GRBvar var,
double[] x,
double[] y)

Set the piecewise-linear objective function for a variable.
Arguments:

var: The variable whose objective function is being set.
x: The x values for the points that define the piecewise-linear function. Must be in non-decreasing order.
y: The y values for the points that define the piecewise-linear function.

GRBModel.SingleScenarioModel()
Capture a single scenario from a multi-scenario model. Use the ScenarioNumber parameter to indicate which scenario
to capture.

The model on which this method is invoked must be a multi-scenario model, and the result will be a single-scenario
model.
GRBModel SingleScenarioModel ()

Return value:
Model for a single scenario.

GRBModel.Sync()
Wait for a previous asynchronous optimization call to complete.

Calling OptimizeAsync returns control to the calling routine immediately. The caller can perform other compu-
tations while optimization proceeds, and can check on the progress of the optimization by querying various model
attributes. The sync call forces the calling program to wait until the asynchronous optimization call completes. You
must call sync before the corresponding model object is deleted.

The sync call throws an exception if the optimization itself ran into any problems. In other words, excep-
tions thrown by this method are those that optimize itself would have thrown, had the original method not been
asynchronous.

Note that you need to call sync even if you know that the asynchronous optimization has already completed.
void Sync ()

372

GRBModel.Terminate()
Generate a request to terminate the current optimization. This method can be called at any time during an opti-
mization (from a callback, from another thread, from an interrupt handler, etc.). Note that, in general, the request
won’t be acted upon immediately.

When the optimization stops, the Status attribute will be equal to GRB_INTERRUPTED.
void Terminate ()

GRBModel.Tune()
Perform an automated search for parameter settings that improve performance. Upon completion, this method stores
the best parameter sets it found. The number of stored parameter sets can be determined by querying the value of
the TuneResultCount attribute. The actual settings can be retrieved using GetTuneResult

Please refer to the parameter tuning section for details on the tuning tool.
void Tune ()

GRBModel.Update()
Process any pending model modifications.
void Update ()

GRBModel.Write()
This method is the general entry point for writing optimization data to a file. It can be used to write optimization
models, solutions vectors, basis vectors, start vectors, or parameter settings. The type of data written is determined
by the file suffix. File formats are described in the File Format section.

Note that writing a model to a file will process all pending model modifications. This is also true when writing
other model information such as solutions, bases, etc.

Note also that when you write a Gurobi parameter file (PRM), both integer or double parameters not at their
default value will be saved, but no string parameter will be saved into the file.
void Write (string filename)

Arguments:
filename: The name of the file to be written. The file type is encoded in the file name suffix. Valid suffixes
are .mps, .rew, .lp, or .rlp for writing the model itself, .dua or .dlp for writing the dualized model (only
pure LP), .ilp for writing just the IIS associated with an infeasible model (see GRBModel.ComputeIIS
for further information), .sol for writing the solution selected by the SolutionNumber parameter, .mst for
writing a start vector, .hnt for writing a hint file, .bas for writing an LP basis, .prm for writing modified
parameter settings, .attr for writing model attributes, or .json for writing solution information in JSON
format. If your system has compression utilities installed (e.g., 7z or zip for Windows, and gzip, bzip2,
or unzip for Linux or macOS), then the files can be compressed, so additional suffixes of .gz, .bz2, or .7z
are accepted.

373

6.3 GRBVar
Gurobi variable object. Variables are always associated with a particular model. You create a variable object by
adding a variable to a model (using GRBModel.AddVar), rather than by using a GRBVar constructor.

The methods on variable objects are used to get and set variable attributes. For example, solution information can
be queried by calling Get(GRB.DoubleAttr.X). Note, however, that it is generally more efficient to query attributes for
a set of variables at once. This is done using the attribute query method on the GRBModel object (GRBModel.Get).

GRBVar.Get()
Query the value of a variable attribute.
char Get (GRB.CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
double Get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
int Get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
string Get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBVar.Index
int Index

This property returns the current index, or order, of the variable in the underlying constraint matrix.
Return value:

-2: removed, -1: not in model, otherwise: index of the variable in the model
Note that the index of a variable may change after subsequent model modifications.

GRBVar.SameAs()
bool SameAs (GRBVar var2)

Check whether two variable objects refer to the same variable.
Arguments:

var2: The other variable.

374

Return value:
Boolean result indicates whether the two variable objects refer to the same model variable.

GRBVar.Set()
Set the value of a variable attribute.

void Set (GRB.CharAttr attr,
char newvalue)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.DoubleAttr attr,
double newvalue)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.IntAttr attr,
int newvalue)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.StringAttr attr,
string newvalue)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

375

6.4 GRBConstr
Gurobi constraint object. Constraints are always associated with a particular model. You create a constraint object
by adding a constraint to a model (using GRBModel.AddConstr), rather than by using a GRBConstr constructor.

The methods on constraint objects are used to get and set constraint attributes. For example, constraint right-
hand sides can be queried by calling Get(GRB.DoubleAttr.RHS). Note, however, that it is generally more efficient to
query attributes for a set of constraints at once. This is done using the attribute query method on the GRBModel
object (GRBModel.Get).

GRBConstr.Get()
Query the value of a constraint attribute.
char Get (GRB.CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
double Get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
int Get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
string Get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBConstr.Index
int Index

This property returns the current index, or order, of the constraint in the underlying constraint matrix.
Note that the index of a constraint may change after subsequent model modifications.
Return value:

-2: removed, -1: not in model, otherwise: index of the constraint in the model

GRBConstr.SameAs()
bool SameAs (GRBConstr constr2)

Check whether two constraint objects refer to the same constraint.
Arguments:

376

constr2: The other constraint.
Return value:

Boolean result indicates whether the two constraint objects refer to the same model constraint.

GRBConstr.Set()
Set the value of a constraint attribute.

void Set (GRB.CharAttr attr,
char newvalue)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.DoubleAttr attr,
double newvalue)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.IntAttr attr,
int newvalue)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.StringAttr attr,
string newvalue)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

377

6.5 GRBQConstr
Gurobi quadratic constraint object. Quadratic constraints are always associated with a particular model. You create
a quadratic constraint object by adding a quadratic constraint to a model (using GRBModel.AddQConstr), rather
than by using a GRBQConstr constructor.

The methods on quadratic constraint objects are used to get and set quadratic constraint attributes. For exam-
ple, quadratic constraint right-hand sides can be queried by calling
Get(GRB.DoubleAttr.QCRHS). Note, however, that it is generally more efficient to query attributes for a set of con-
straints at once. This is done using the attribute query method on the GRBModel object (GRBModel.Get).

GRBQConstr.Get()
Query the value of a quadratic constraint attribute.
char Get (GRB.CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
double Get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
int Get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
string Get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBQConstr.Set()
Set the value of a quadratic constraint attribute.

void Set (GRB.CharAttr attr,
char newvalue)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

378

void Set (GRB.DoubleAttr attr,
double newvalue)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.IntAttr attr,
int newvalue)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.StringAttr attr,
string newvalue)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

379

6.6 GRBSOS
Gurobi SOS constraint object. SOS constraints are always associated with a particular model. You create an
SOS object by adding an SOS constraint to a model (using GRBModel.AddSOS), rather than by using a GRBSOS
constructor. Similarly, SOS constraints are removed using the GRBModel.Remove method.

An SOS constraint can be of type 1 or 2 (GRB.SOS_TYPE1 or GRB.SOS_TYPE2). A type 1 SOS constraint is a set
of variables where at most one variable in the set may take a value other than zero. A type 2 SOS constraint is an
ordered set of variables where at most two variables in the set may take non-zero values. If two take non-zero values,
they must be contiguous in the ordered set.

SOS constraint objects have one attribute, IISSOS, which can be queried with the GRBSOS.Get method.

GRBSOS.Get()
Query the value of an SOS attribute.
int Get (GRB.IntAttr attr)

Arguments:
attr: The attribute being queried.

Return value:
The current value of the requested attribute.

GRBSOS.Set()
Set the value of an SOS attribute.

void Set (GRB.IntAttr attr,
int newvalue)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

380

6.7 GRBGenConstr
Gurobi general constraint object. General constraints are always associated with a particular model. You create a
general constraint object by adding a general constraint to a model (using one of the GRBModel.AddGenConstrXxx
methods), rather than by using a GRBGenConstr constructor.

General constraint objects have a number of attributes, which can be queried with the GRBGenConstr.Get
method. The full list can be found in the Attributes section of this document.

GRBGenConstr.Get()
Query the value of a general constraint attribute.
double Get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
int Get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
string Get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBGenConstr.Set()
Set the value of a general constraint attribute.

void Set (GRB.DoubleAttr attr,
string newvalue)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.IntAttr attr,
string newvalue)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.StringAttr attr,
string newvalue)

381

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

382

6.8 GRBExpr
Abstract base class for the GRBLinExpr and GRBQuadExpr classes. Expressions are used to build objectives and
constraints. They are temporary objects that typically have short lifespans.

GRBExpr.Value
(Property) The value of an expression for the current solution.
double Value

383

6.9 GRBLinExpr
Gurobi linear expression object. A linear expression consists of a constant term, plus a list of coefficient-variable
pairs that capture the linear terms. Linear expressions are used to build constraints. They are temporary objects
that typically have short lifespans.

The GRBLinExpr class is a sub-class of the abstract base class GRBExpr.
In .NET languages that support operator overloading, you generally build linear expressions using overloaded op-

erators. For example, if x is a GRBVar object, then x + 1 is a GRBLinExpr object. Expressions can be built from con-
stants (e.g., expr = 0), variables (e.g., expr = 1 * x + 2 * y, or from other expressions (e.g., expr2 = 2 * expr1 + x,
or expr3 = expr1 + 2 * expr2). You can also modify existing expressions (e.g., expr += x, or expr2 -= expr1).

The other option for building expressions is to start with an empty expression (using the GRBLinExpr con-
structor), and then add terms. Terms can be added individually (using AddTerm) or in groups (using AddTerms or
MultAdd). Terms can also be removed from an expression, using Remove.

Given all these options for building expressions, you may wonder which is fastest. For small expressions, you
won’t need to worry about performance differences between them. If you are building lots of very large expressions
(100s of terms), the most efficient approach will be a single call to AddTerms. Using AddTerm. to add individual
terms is slightly less efficient, and using overloaded arithemetic operators is the least efficient option.

To add a linear constraint to your model, you generally build one or two linear expression objects (expr1 and
expr2) and then use an overloaded comparison operator to build an argument for GRBModel.AddConstr. To give a
few examples:

model.AddConstr(expr1 <= expr2)
model.AddConstr(expr1 == 1)
model.AddConstr(2 ∗ x+ 3 ∗ y <= 4)

Once you add a constraint to your model, subsequent changes to the expression object you used to build the constraint
will not change the constraint (you would use GRBModel.ChgCoeff for that).

Individual terms in a linear expression can be queried using the GetVar and GetCoeff methods. The constant
can be queried using the Constant property. You can query the number of terms in the expression using the Size
property.

Note that a linear expression may contain multiple terms that involve the same variable. These duplicate terms
are merged when creating a constraint from an expression, but they may be visible when inspecting individual terms
in the expression (e.g., when using GetVar).

GRBLinExpr()

Linear expression constructor. Create an empty linear expression, or copy an existing expression.
GRBLinExpr GRBLinExpr ()

Create an empty linear expression.
Return value:

An empty expression object.
GRBLinExpr GRBLinExpr (double a)

Create a constant linear expression.
Return value:

A linear expression object.
GRBLinExpr GRBLinExpr (GRBLinExpr orig)

Copy an existing linear expression.
Arguments:

orig: Existing expression to copy.
Return value:

A copy of the input expression object.

384

GRBLinExpr.Add()
Add one linear expression into another. Upon completion, the invoking linear expression will be equal to the sum of
itself and the argument expression.
void Add (GRBLinExpr le)

Arguments:
le: Linear expression to add.

GRBLinExpr.AddConstant()
Add a constant into a linear expression.
void AddConstant (double c)

Arguments:
c: Constant to add to expression.

GRBLinExpr.AddTerm()
Add a single term into a linear expression.

void AddTerm (double coeff,
GRBVar var)

Arguments:
coeff: Coefficient for new term.
var: Variable for new term.

GRBLinExpr.AddTerms()
Add new terms into a linear expression.

void AddTerms (double[] coeffs,
GRBVar[] vars)

Add a list of terms into a linear expression. Note that the lengths of the two argument arrays must be equal.
Arguments:

coeffs: Coefficients for new terms.
vars: Variables for new terms.

void AddTerms (double[] coeffs,
GRBVar[] vars,
int start,
int len)

Add new terms into a linear expression. This signature allows you to use arrays to hold the coefficients and
variables that describe the terms in an array without being forced to add a term for each entry in the array. The
start and len arguments allow you to specify which terms to add.

Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.
start: The first term in the list to add.
len: The number of terms to add.

385

GRBLinExpr.Clear()
Set a linear expression to 0.

You should use the overloaded expr = 0 instead. The clear method is mainly included for consistency with our
interfaces to non-overloaded languages.
void Clear ()

GRBLinExpr.Constant
(Property) The constant term from the linear expression.
double Constant

GRBLinExpr.GetCoeff()
Retrieve the coefficient from a single term of the expression.
double GetCoeff (int i)

Return value:
Coefficient for the term at index i in the expression.

GRBLinExpr.GetVar()
Retrieve the variable object from a single term of the expression.
GRBVar GetVar (int i)

Return value:
Variable for the term at index i in the expression.

GRBLinExpr.MultAdd()
Add a constant multiple of one linear expression into another. Upon completion, the invoking linear expression is
equal the sum of itself and the constant times the argument expression.

void MultAdd (double m,
GRBLinExpr le)

Arguments:
m: Constant multiplier for added expression.
le: Linear expression to add.

GRBLinExpr.Remove()
Remove a term from a linear expression.
void Remove (int i)

Remove the term stored at index i of the expression.
Arguments:

i: The index of the term to be removed.
boolean Remove (GRBVar var)

Remove all terms associated with variable var from the expression.
Arguments:

var: The variable whose term should be removed.
Return value:

Returns true if the variable appeared in the linear expression (and was removed).

386

GRBLinExpr.Size
(Property) The number of terms in the linear expression (not including the constant).
int Size

GRBLinExpr.Value
(Property) The value of an expression for the current solution.
double Value

387

6.10 GRBQuadExpr
Gurobi quadratic expression object. A quadratic expression consists of a linear expression, plus a list of coefficient-
variable-variable triples that capture the quadratic terms. Quadratic expressions are used to build quadratic objective
functions and quadratic constraints. They are temporary objects that typically have short lifespans.

The GRBQuadExpr class is a sub-class of the abstract base class GRBExpr.
In .NET languages that support operator overloading, you generally build quadratic expressions using overloaded

operators. For example, if x is a GRBVar object, then x * x is a GRBQuadExpr object. Expressions can be
built from constants (e.g., expr = 0), variables (e.g., expr = 1 * x * x + 2 * x * y), or from other expressions
(e.g., expr2 = 2 * expr1 + x, or expr3 = expr1 + 2 * expr2). You can also modify existing expressions (e.g.,
expr += x * x, or expr2 -= expr1).

The other option for building expressions is to start with an empty expression (using the GRBQuadExpr con-
structor), and then add terms. Terms can be added individually (using AddTerm) or in groups (using AddTerms or
MultAdd). Terms can also be removed from an expression (using Remove).

Note that the cost of building expressions depends heavily on the approach you use. While you can generally
ignore this issue when building small expressions, you should be aware of a few efficiency issues when building large
expressions:

• You should avoid using expr = expr + x*x or expr += x*x in a loop. It will lead to runtimes that are
quadratic in the number of terms in the expression.

• Using AddTerm in a loop is reasonably efficient, but it isn’t the most efficient approach.
• The most efficient way to build a large expression is to make a single call to AddTerms.
To add a quadratic constraint to your model, you generally build one or two quadratic expression objects (qexpr1

and qexpr2) and then use an overloaded comparison operator to build an argument for GRBModel.AddQConstr. To
give a few examples:

model.AddQConstr(qexpr1 <= qexpr2)
model.AddQConstr(qexpr1 == 1)
model.AddQConstr(2 ∗ x ∗ x+ 3 ∗ y ∗ y <= 4)

Once you add a constraint to your model, subsequent changes to the expression object you used to build the constraint
will have no effect on that constraint.

Individual quadratic terms in a quadratic expression can be queried using the GetVar1 GetVar2, and GetCoeff
methods. You can query the number of quadratic terms in the expression using the Size property. To query the
constant and linear terms associated with a quadratic expression, first obtain the linear portion of the quadratic
expression using LinExpr, and then use the Constant, GetCoeff, or GetVar on the resulting GRBLinExpr object.

Note that a quadratic expression may contain multiple terms that involve the same variable pair. These duplicate
terms are merged when creating the model objective from an expression, but they may be visible when inspecting
individual quadratic terms in the expression (e.g., when using GetVar1 and GetVar2).

GRBQuadExpr()
Quadratic expression constructor. Create an empty quadratic expression, or copy an existing expression.
GRBQuadExpr GRBQuadExpr ()

Create an empty quadratic expression.
Return value:

An empty expression object.
GRBQuadExpr GRBQuadExpr (double a)

Create a constant quadratic expression.
Return value:

A quadratic expression object.
GRBQuadExpr GRBQuadExpr (GRBLinExpr orig)

Initialize a quadratic expression from an existing linear expression.
Arguments:

orig: Existing linear expression to copy.

388

Return value:
Quadratic expression object whose initial value is taken from the input linear expression.

GRBQuadExpr GRBQuadExpr (GRBQuadExpr orig)

Copy an existing quadratic expression.
Arguments:

orig: Existing expression to copy.
Return value:

A copy of the input expression object.

GRBQuadExpr.Add()
Add an expression into a quadratic expression. Upon completion, the invoking quadratic expression will be equal to
the sum of itself and the argument expression.
void Add (GRBLinExpr le)

Add a linear expression.
Arguments:

le: Linear expression to add.
void Add (GRBQuadExpr qe)

Add a quadratic expression.
Arguments:

qe: Quadratic expression to add.

GRBQuadExpr.AddConstant()
Add a constant into a quadratic expression.
void AddConstant (double c)

Arguments:
c: Constant to add to expression.

GRBQuadExpr.AddTerm()
Add a single term into a quadratic expression.

void AddTerm (double coeff,
GRBVar var)

Add a single linear term (coeff*var) into a quadratic expression.
Arguments:

coeff: Coefficient for new term.
var: Variable for new term.

void AddTerm (double coeff,
GRBVar var1,
GRBVar var2)

Add a single quadratic term (coeff*var1*var2) into a quadratic expression.
Arguments:

coeff: Coefficient for new quadratic term.
var1: First variable for new quadratic term.
var2: Second variable for new quadratic term.

389

GRBQuadExpr.AddTerms()
Add new terms into a quadratic expression.

void AddTerms (double[] coeffs,
GRBVar[] vars)

Add a list of linear terms into a quadratic expression. Note that the lengths of the two argument arrays must be
equal.

Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.

void AddTerms (double[] coeffs,
GRBVar[] vars,
int start,
int len)

Add new linear terms into a quadratic expression. This signature allows you to use arrays to hold the coefficients
and variables that describe the linear terms in an array without being forced to add a term for each entry in the
array. The start and len arguments allow you to specify which terms to add.

Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.
start: The first term in the list to add.
len: The number of terms to add.

void AddTerms (double[] coeffs,
GRBVar[] vars1,
GRBVar[] vars2)

Add a list of quadratic terms into a quadratic expression. Note that the lengths of the three argument arrays
must be equal.

Arguments:
coeffs: Coefficients for new quadratic terms.
vars1: First variables for new quadratic terms.
vars2: Second variables for new quadratic terms.

void AddTerms (double[] coeffs,
GRBVar[] vars1,
GRBVar[] vars2,
int start,
int len)

Add new quadratic terms into a quadratic expression. This signature allows you to use arrays to hold the
coefficients and variables that describe the terms in an array without being forced to add a term for each entry in
the array. The start and len arguments allow you to specify which terms to add.

Arguments:
coeffs: Coefficients for new quadratic terms.
vars1: First variables for new quadratic terms.
vars2: Second variables for new quadratic terms.
start: The first term in the list to add.
len: The number of terms to add.

390

GRBQuadExpr.Clear()
Set a quadratic expression to 0.

You should use the overloaded expr = 0 instead. The clear method is mainly included for consistency with our
interfaces to non-overloaded languages.
void Clear ()

GRBQuadExpr.GetCoeff()
Retrieve the coefficient from a single quadratic term of the quadratic expression.
double GetCoeff (int i)

Return value:
Coefficient for the quadratic term at index i in the expression.

GRBQuadExpr.GetVar1()
Retrieve the first variable object associated with a single quadratic term from the expression.
GRBVar GetVar1 (int i)

Return value:
First variable for the quadratic term at index i in the quadratic expression.

GRBQuadExpr.GetVar2()
Retrieve the second variable object associated with a single quadratic term from the expression.
GRBVar GetVar2 (int i)

Return value:
Second variable for the quadratic term at index i in the quadratic expression.

GRBQuadExpr.LinExpr()
(Property) A quadratic expression is represented as a linear expression, plus a list of quadratic terms. This method
retrieves the linear expression associated with the quadratic expression.
GRBLinExpr getLinExpr

GRBQuadExpr.MultAdd()
Add a constant multiple of one quadratic expression into another. Upon completion, the invoking quadratic expression
is equal the sum of itself and the constant times the argument expression.

void MultAdd (double m,
GRBLinExpr le)

Add a linear expression into a quadratic expression.
Arguments:

m: Constant multiplier for added expression.
le: Linear expression to add.

void MultAdd (double m,
GRBQuadExpr qe)

Add a quadratic expression into a quadratic expression.
Arguments:

391

m: Constant multiplier for added expression.
qe: Quadratic expression to add.

GRBQuadExpr.Remove()
Remove a quadratic term from a quadratic expression.
void Remove (int i)

Remove the quadratic term stored at index i of the expression.
Arguments:

i: The index of the quadratic term to be removed.
boolean Remove (GRBVar var)

Remove all quadratic terms associated with variable var from the expression.
Arguments:

var: The variable whose quadratic term should be removed.
Return value:

Returns true if the variable appeared in the quadratic expression (and was removed).

GRBQuadExpr.Size
(Property) The number of quadratic terms in the quadratic expression. Use GRBQuadExpr.LinExpr to retrieve
constant or linear terms from the quadratic expression.
int size

GRBQuadExpr.Value
(Property) The value of an expression for the current solution.
double Value

392

6.11 GRBTempConstr
Gurobi temporary constraint object. Objects of this class are created as intermediate results when building constraints
using overloaded operators. There are no public methods on this class. Instead, GRBTempConstr objects are created
by operators ==, <=, or >=. You will generally never store objects of this class in your own variables.

Consider the following examples:

model.AddConstr(x + y <= 1);
model.AddQConstr(x*x + y*y <= 1);

The overloaded <= operator creates an object of type GRBTempConstr, which is then immediately passed to GRB-
Model.AddConstr or GRBModel.AddQConstr.

393

6.12 GRBColumn
Gurobi column object. A column consists of a list of coefficient, constraint pairs. Columns are used to represent the
set of constraints in which a variable participates, and the associated coefficients. They are temporary objects that
typically have short lifespans.

You generally build columns by starting with an empty column (using the GRBColumn constructor), and then
adding terms. Terms can be added individually, using AddTerm, or in groups, using AddTerms. Terms can also be
removed from a column, using Remove.

Individual terms in a column can be queried using the GetConstr, and GetCoeff methods. You can query the
number of terms in the column using the Size property.

GRBColumn()
Column constructor. Create an empty column, or copy an existing column.
GRBColumn GRBColumn ()

Create an empty column.
Return value:

An empty column object.
GRBColumn GRBColumn (GRBColumn orig)

Copy an existing column.
Return value:

A copy of the input column object.

GRBColumn.AddTerm()
Add a single term into a column.

void AddTerm (double coeff,
GRBConstr constr)

Arguments:
coeff: Coefficient for new term.
constr: Constraint for new term.

GRBColumn.AddTerms()
Add new terms into a column.

void AddTerms (double[] coeffs,
GRBConstr[] constrs)

Add a list of terms into a column. Note that the lengths of the two argument arrays must be equal.
Arguments:

coeffs: Coefficients for added constraints.
constrs: Constraints to add to column.

void AddTerms (double[] coeffs,
GRBConstr[] constrs,
int start,
int len)

Add new terms into a column. This signature allows you to use arrays to hold the coefficients and constraints
that describe the terms in an array without being forced to add an term for each member in the array. The start
and len arguments allow you to specify which terms to add.

Arguments:

394

coeffs: Coefficients for added constraints.
constrs: Constraints to add to column.
start: The first term in the list to add.
len: The number of terms to add.

GRBColumn.Clear()
Remove all terms from a column.
void Clear ()

GRBColumn.GetCoeff()
Retrieve the coefficient from a single term in the column.
double GetCoeff (int i)

Return value:
Coefficient for the term at index i in the column.

GRBColumn.GetConstr()
Retrieve the constraint object from a single term in the column.
GRBConstr GetConstr (int i)

Return value:
Constraint for the term at index i in the column.

GRBColumn.Remove()
Remove a single term from a column.
GRBConstr Remove (int i)

Remove the term stored at index i of the column.
Arguments:

i: The index of the term to be removed.
Return value:

The constraint whose term was removed from the column. Returns null if the specified index is out of range.
boolean Remove (GRBConstr constr)

Remove the term associated with constraint constr from the column.
Arguments:

constr: The constraint whose term should be removed.
Return value:

Returns true if the constraint appeared in the column (and was removed).

GRBColumn.Size
(Property) The number of terms in the column.
int Size

395

6.13 Overloaded Operators
The Gurobi .NET interface overloads several arithmetic and comparison operators. Overloaded arithmetic operators
(+, -, *, /) are used to create linear and quadratic expressions. Overloaded comparison operators (<=, >=, and ==)
are used to build linear and quadratic constraints.

Note that the results of overloaded comparison operators are generally never stored in user variables. They are
immediately passed to GRBModel.AddConstr or GRBModel.AddQConstr.

operator <=
Create an inequality constraint.

GRBTempConstr operator <= (GRBQuadExpr lhsExpr,
GRBQuadExpr rhsExpr)

Arguments:
lhsExpr: Left-hand side of inequality constraint.
rhsExpr: Right-hand side of inequality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to method GRBModel.AddConstr.

operator >=
Create an inequality constraint.

GRBTempConstr operator >= (GRBQuadExpr lhsExpr,
GRBQuadExpr rhsExpr)

Arguments:
lhsExpr: Left-hand side of inequality constraint.
rhsExpr: Right-hand side of inequality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to method GRBModel.AddConstr.

operator ==
Create an equality constraint.

GRBTempConstr operator == (GRBLinExpr lhsExpr,
GRBLinExpr rhsExpr)

Arguments:
lhsExpr: Left-hand side of equality constraint.
rhsExpr: Right-hand side of equality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to method GRBModel.AddConstr.

operator +
Create a new expression by adding a pair of Gurobi objects.

GRBLinExpr operator + (GRBLinExpr expr1,
GRBLinExpr expr2)

Arguments:

396

expr1: First linear expression argument.
expr2: Second linear expression argument.

Return value:
A linear expression that is equal to the sum of the two argument expressions.

GRBLinExpr operator + (GRBLinExpr expr,
GRBVar var)

Arguments:
expr: Linear expression argument.
var: Variable argument.

Return value:
A linear expression that is equal to the sum of the argument linear expression and the argument variable.

GRBLinExpr operator + (GRBVar var,
GRBLinExpr expr)

Arguments:
var: Variable argument.
expr: Linear expression argument.

Return value:
A linear expression that is equal to the sum of the argument linear expression and the argument variable.

GRBLinExpr operator + (GRBVar var1,
GRBVar var2)

Arguments:
var1: First variable argument.
var2: Second variable argument.

Return value:
A linear expression that is equal to the sum of the two argument variables.

GRBLinExpr operator + (double a,
GRBVar var)

Arguments:
a: Constant.
var: Variable.

Return value:
A linear expression that is equal to the sum of the constant and the variable argument.

GRBLinExpr operator + (GRBVar var,
double a)

Arguments:
var: Variable.
a: Constant.

Return value:
A linear expression that is equal to the sum of the constant and the variable argument.

GRBQuadExpr operator + (GRBQuadExpr expr1,
GRBQuadExpr expr2)

Arguments:
expr1: First quadratic expression argument.
expr2: Second quadratic expression argument.

397

Return value:
A quadratic expression that is equal to the sum of the two argument quadratic expressions.

GRBQuadExpr operator + (GRBQuadExpr expr,
GRBVar var)

Arguments:
expr: Quadratic expression argument.
var: Variable argument.

Return value:
A quadratic expression that is equal to the sum of the argument quadratic expression and the argument
variable.

GRBQuadExpr operator + (GRBVar var,
GRBQuadExpr expr)

Arguments:
var: Variable argument.
expr: Quadratic expression argument.

Return value:
A quadratic expression that is equal to the sum of the argument quadratic expression and the argument
variable.

operator -
Create a new expression by subtracting one Gurobi object from another.

GRBLinExpr operator - (GRBLinExpr expr1,
GRBLinExpr expr2)

Arguments:
expr1: First linear expression argument.
expr2: Second linear expression argument.

Return value:
A linear expression that is equal to the first expression minus the second.

GRBQuadExpr operator - (GRBQuadExpr expr1,
GRBQuadExpr expr2)

Arguments:
expr1: First quadratic expression argument.
expr2: Second quadratic expression argument.

Return value:
A quadratic expression that is equal to the first expression minus the second.

operator *
Create a new expression by multiplying a pair of Gurobi objects.

GRBLinExpr operator * (double multiplier,
GRBLinExpr expr)

Arguments:
multiplier: Multiplier for expression argument.
expr: Expression argument.

Return value:

398

A linear expression that is equal to the input expression times the input multiplier.

GRBLinExpr operator * (GRBLinExpr expr,
double multiplier)

Arguments:
expr: Linear expression argument.
multiplier: Multiplier for expression argument.

Return value:
A linear expression that is equal to the input expression times the input multiplier.

GRBLinExpr operator * (double multiplier,
GRBVar var)

Arguments:
multiplier: Multiplier for variable argument.
var: Variable argument.

Return value:
A linear expression that is equal to the input variable times the input multiplier.

GRBLinExpr operator * (GRBVar var,
double multiplier)

Arguments:
var: Variable argument.
multiplier: Multiplier for variable argument.

Return value:
A linear expression that is equal to the input variable times the input multiplier.

GRBQuadExpr operator * (double multiplier,
GRBQuadExpr expr)

Arguments:
multiplier: Multiplier for expression argument.
expr: Quadratic expression argument.

Return value:
A quadratic expression that is equal to the input expression times the input multiplier.

GRBQuadExpr operator * (GRBQuadExpr expr,
double multiplier)

Arguments:
expr: Quadratic expression argument.
multiplier: Multiplier for expression argument.

Return value:
A quadratic expression that is equal to the input expression times the input multiplier.

GRBQuadExpr operator * (GRBVar var1,
GRBVar var2)

Arguments:
var1: First variable argument.
var2: Second variable argument.

Return value:
A quadratic expression that is equal to the product of the two input variables.

399

GRBQuadExpr operator * (GRBVar var,
GRBLinExpr expr)

Arguments:
var: Input variable.
expr: Input linear expression.

Return value:
A quadratic expression that is equal to the input linear expression times the input variable.

GRBQuadExpr operator * (GRBLinExpr expr,
GRBVar var)

Arguments:
expr: Input linear expression.
var: Input variable.

Return value:
A quadratic expression that is equal to the input linear expression times the input variable.

GRBQuadExpr operator * (GRBLinExpr expr1,
GRBLinExpr expr2)

Arguments:
expr1: First linear expression argument.
expr2: Second linear expression argument.

Return value:
A quadratic expression that is equal to the product of the two input linear expressions.

operator /
Create a new expression by dividing a Gurobi variable by a constant.

GRBLinExpr operator / (GRBVar var,
double divisor)

Arguments:
var: Variable argument.
divisor: Divisor for variable argument.

Return value:
A linear expression that is equal to the input variable divided by the input divisor.

implicit cast
Create an expression from an implicit cast (e.g., expr = 0.0 or expr = x).
GRBLinExpr GRBLinExpr (double value)

Arguments:
value: Desired value for linear expression.

Return value:
A linear expression that is equal to specified constant.

GRBQuadExpr GRBQuadExpr (double value)

Arguments:
value: Desired value for quadratic expression.

Return value:
A quadratic expression that is equal to specified constant.

GRBLinExpr GRBLinExpr (GRBVar var)

400

Arguments:
value: Desired value for linear expression.

Return value:
A linear expression that is equal to specified variable.

GRBQuadExpr GRBQuadExpr (GRBVar var)

Arguments:
value: Desired value for quadratic expression.

Return value:
A quadratic expression that is equal to specified variable.

GRBQuadExpr GRBQuadExpr (GRBLinExpr expr)

Arguments:
expr: Desired value for quadratic expression.

Return value:
A quadratic expression that is equal to specified linear expression.

401

6.14 GRBCallback
Gurobi callback class. This is an abstract class. To implement a callback, you should create a subclass of this class
and implement a callback() method. If you pass an object of this subclass to method GRBModel.SetCallback
before calling GRBModel.Optimize or GRBModel.ComputeIIS, the callback() method of the class will be called
periodically. Depending on where the callback is called from, you will be able to obtain various information about
the progress of the optimization.

Note that this class contains one protected int member variable: where. You can query this variable from your
callback() method to determine where the callback was called from.

Gurobi callbacks can be used both to monitor the progress of the optimization and to modify the behavior
of the Gurobi optimizer. A simple user callback function might call the GRBCallback.GetIntInfo or GRBCall-
back.GetDoubleInfo methods to produce a custom display, or perhaps to terminate optimization early (using GRB-
Callback.Abort) or to proceed to the next phase of the computation (using GRBCallback.Proceed). More sophisti-
cated MIP callbacks might use GRBCallback.GetNodeRel or GRBCallback.GetSolution to retrieve values from the
solution to the current node, and then use GRBCallback.AddCut or GRBCallback.AddLazy to add a constraint to
cut off that solution, or GRBCallback.SetSolution to import a heuristic solution built from that solution. For multi-
objective problems, you might use GRBCallback.StopOneMultiObj to interrupt the optimization process of one of
the optimization steps in a multi-objective MIP problem without stopping the hierarchical optimization process.

When solving a model using multiple threads, the user callback is only ever called from a single thread, so you
don’t need to worry about the thread-safety of your callback.

Note that changing parameters from within a callback is not supported, doing so may lead to undefined behavior.
You can look at the callback_cs.cs example for details of how to use Gurobi callbacks.

GRBCallback()
Callback constructor.
GRBCallback GRBCallback ()

Return value:
A callback object.

GRBCallback.Abort()
Abort optimization. When the optimization stops, the Status attribute will be equal to
GRB.Status.INTERRUPTED.
void Abort ()

GRBCallback.AddCut()
Add a cutting plane to the MIP model from within a callback function. Note that this method can only be in-
voked when the where member variable is equal to GRB.Callback.MIPNODE (see the Callback Codes section for more
information).

Cutting planes can be added at any node of the branch-and-cut tree. However, they should be added sparingly,
since they increase the size of the relaxation model that is solved at each node and can significantly degrade node
processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the relaxation solution
at the current node, you should first call GetNodeRel.

You should consider setting parameter PreCrush to value 1 when adding your own cuts. This setting shuts off
a few presolve reductions that can sometimes prevent your cut from being applied to the presolved model (which
would result in your cut being silently ignored).

Note that cutting planes added through this method must truly be cutting planes — they can cut off continuous
solutions, but they may not cut off integer solutions that respect the original constraints of the model. Ignoring this
restriction will lead to incorrect solutions.

402

void AddCut (GRBLinExpr lhsExpr,
char sense,
double rhsVal)

Arguments:
lhsExpr: Left-hand side expression for new cutting plane.
sense: Sense for new cutting plane (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsVal: Right-hand side value for new cutting plane.

void AddConstr (GRBTempConstr tempConstr)

Arguments:
tempConstr: Temporary constraint object, created by an overloaded comparison operator.

GRBCallback.AddLazy()
Add a lazy constraint to the MIP model from within a callback function. Note that this method can only be invoked
when the where member variable is GRB.Callback.MIPNODE or GRB.Callback.MIPSOL (see the Callback Codes section
for more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large to represent
explicitly. By only including the constraints that are actually violated by solutions found during the branch-and-cut
search, it is sometimes possible to find a proven optimal solution while only adding a fraction of the full set of
constraints.

You would typically add a lazy constraint by first querying the current node solution (by calling GetSolution
from a GRB.Callback.MIPSOL callback, or GetNodeRel from a GRB.Callback.MIPNODE callback), and then calling
AddLazy() to add a constraint that cuts off the solution. Gurobi guarantees that you will have the opportunity to
cut off any solutions that would otherwise be considered feasible.

MIP solutions may be generated outside of a MIP node. Thus, generating lazy constraints is optional when the
where value in the callback function equals GRB.Callback.MIPNODE. To avoid this, we recommend to always check
when the where value equals GRB.Callback.MIPSOL.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints, including those
that have already been added. Node solutions will usually respect previously added lazy constraints, but not always.

Note that you must set the LazyConstraints parameter if you want to use lazy constraints.

void AddLazy (GRBLinExpr lhsExpr,
char sense,
double rhsVal)

Arguments:
lhsExpr: Left-hand side expression for new lazy constraint.
sense: Sense for new lazy constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsVal: Right-hand side value for new lazy constraint.

void AddConstr (GRBTempConstr tempConstr)

Arguments:
tempConstr: Temporary constraint object, created by an overloaded comparison operator.

GRBCallback.GetDoubleInfo()
Request double-valued callback information. The available information depends on the value of the where member.
For information on possible values of where, and the double-valued information that can be queried for different
values of where, please refer to the Callback section.
double GetDoubleInfo (int what)

Arguments:
what: Information requested (refer the list of Gurobi Callback Codes for possible values).

Return value:
Value of requested callback information.

403

GRBCallback.GetIntInfo()
Request int-valued callback information. The available information depends on the value of the where member. For
information on possible values of where, and the int-valued information that can be queried for different values of
where, please refer to the Callback section.
int GetIntInfo (int what)

Arguments:
what: Information requested (refer the list of Gurobi Callback Codes for possible values).

Return value:
Value of requested callback information.

GRBCallback.GetNodeRel()
Retrieve values from the node relaxation solution at the current node. Only available when the where member
variable is equal to GRB.Callback.MIPNODE, and GRB.Callback.MIPNODE_STATUS is equal to GRB.Status.OPTIMAL.
double GetNodeRel (GRBVar v)

Arguments:
v: The variable whose value is desired.

Return value:
The value of the specified variable in the node relaxation for the current node.

double[] GetNodeRel (GRBVar[] xvars)

Arguments:
xvars: The list of variables whose values are desired.

Return value:
The values of the specified variables in the node relaxation for the current node.

double[][] GetNodeRel (GRBVar[][] xvars)

Arguments:
xvars: The array of variables whose values are desired.

Return value:
The values of the specified variables in the node relaxation for the current node.

GRBCallback.GetSolution()
Retrieve values from the current solution vector. Only available when the where member variable is equal to
GRB.Callback.MIPSOL or GRB.Callback.MULTIOBJ.
double GetSolution (GRBVar v)

Arguments:
v: The variable whose value is desired.

Return value:
The value of the specified variable in the current solution vector.

double[] GetSolution (GRBVar[] xvars)

Arguments:
xvars: The list of variables whose values are desired.

Return value:
The values of the specified variables in the current solution.

double[][] GetSolution (GRBVar[][] xvars)

Arguments:
xvars: The array of variables whose values are desired.

Return value:

404

The values of the specified variables in the current solution.

GRBCallback.GetStringInfo()
Request string-valued callback information. The available information depends on the value of the where member.
For information on possible values of where, and the string-valued information that can be queried for different values
of where, please refer to the Callback section.
string GetStringInfo (int what)

Arguments:
what: Information requested (refer the list of Gurobi Callback Codes for possible values).

Return value:
Value of requested callback information.

GRBCallback.Proceed()
Generate a request to proceed to the next phase of the computation. Note that the request is only accepted in a few
phases of the algorithm, and it won’t be acted upon immediately.

In the current Gurobi version, this callback allows you to proceed from the NoRel heuristic to the standard MIP
search. You can determine the current algorithm phase using MIP_PHASE, MIPNODE_PHASE, or MIPSOL_PHASE queries
from a callback.
void Proceed ()

GRBCallback.SetSolution()
Import solution values for a heuristic solution. Only available when the wheremember variable is equal to GRB.Callback.MIP,
GRB.Callback.MIPNODE, or GRB.Callback.MIPSOL (see the Callback Codes section for more information).

When you specify a heuristic solution from a callback, variables initially take undefined values. You should use
this method to specify variable values. You can make multiple calls to SetSolution from one callback invocation
to specify values for multiple sets of variables. After the callback, if values have been specified for any variables,
the Gurobi optimizer will try to compute a feasible solution from the specified values, possibly filling in values for
variables whose values were left undefined. You can also optionally call UseSolution within your callback function to
try to immediately compute a feasible solution from the specified values.

Note that this method is not supported in a Compute Server environment.

void SetSolution (GRBVar v,
double val)

Arguments:
v: The variable whose values is being set.
val: The value of the variable in the new solution.

void SetSolution (GRBVar[] xvars,
double[] sol)

Arguments:
xvars: The variables whose values are being set.
sol: The desired values of the specified variables in the new solution.

GRBCallback.StopOneMultiObj()
Interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem without stopping
the hierarchical optimization process. Only available for multi-objective MIP models and when the where member
variable is not equal to GRB.Callback.MULTIOBJ (see the Callback Codes section for more information).

405

You would typically stop a multi-objective optimization step by querying the last finished number of multi-
objectives steps, and using that number to stop the current step and move on to the next hierarchical objective (if
any) as shown in the following example:

Example usage:
using Gurobi;

class callback : GRBCallback
{

private int objcnt;
private long starttime;

protected override void Callback() {
try {

if (where == GRB.Callback.MULTIOBJ) {
/* get current objective number */
objcnt = GetIntInfo(GRB.Callback.MULTIOBJ_OBJCNT);

/* reset start time to current time */
starttime = DateTime.Now.Ticks;

} else if (DateTime.Now.Ticks - starttime > BIG ||
/* takes too long or good enough */) {

/* stop only this optimization step */
StopOneMultiObj(objcnt);

}
}

}
}

You should refer to the section on Multiple Objectives for information on how to specify multiple objective
functions and control the trade-off between them.
void StopOneMultiObj (int objcnt)

Arguments:
objnum: The number of the multi-objective optimization step to interrupt. For processes running locally,
this argument can have the special value -1, meaning to stop the current step.

GRBCallback.UseSolution()
Once you have imported solution values using SetSolution, you can optionally call UseSolution in a GRB.Callback.MIPNODE
callback to immediately use these values to try to compute a heuristic solution. Alternatively, you can call UseSolution
in a GRB.Callback.MIP or GRB.Callback.MIPSOL callback, which will store the solution until it can be processed in-
ternally.
double UseSolution ()

Return value:
The objective value for the solution obtained from your solution values (or GRB.INFINITY if no improved
solution is found).

406

6.15 GRBException
Gurobi exception object. This is a sub-class of the .NET Exception class. A number of useful properties, including
Message() and StackTrace(), are inherited from the parent class. For a list of parent class methods, visit this site.

GRBException()
Exception constructor.
GRBException GRBException (int errcode)

Create a Gurobi exception.
Arguments:

errcode: Error code for exception.
Return value:

An exception object.
GRBException GRBException (string errmsg)

Create a Gurobi exception.
Arguments:

errmsg: Error message for exception.
Return value:

An exception object.

GRBException GRBException (string errmsg,
int errcode)

Create a Gurobi exception.
Arguments:

errmsg: Error message for exception.
errcode: Error code for exception.

Return value:
An exception object.

GRBException.ErrorCode
(Property) The error code associated with a Gurobi exception.
int ErrorCode

407

https://msdn.microsoft.com/en-us/library/system.exception(VS.71).aspx

6.16 GRBBatch
Gurobi batch object. Batch optimization is a feature available with the Gurobi Cluster Manager. It allows a client
program to build an optimization model, submit it to a Compute Server cluster (through a Cluster Manager), and
later check on the status of the model and retrieve its solution. For more information, please refer to the Batch
Optimization section.

Commonly used methods on batch objects include Update (refresh attributes from the Cluster Manager), Abort
(abort execution of a batch request), Retry (retry optimization for an interrupted or failed batch), Discard (remove
the batch request and all related information from the Cluster Manager), and GetJSONSolution (query solution
information for the batch request).

These methods are built on top of calls to the Cluster Manager REST API. They are meant to simplify such
calls, but note that you always have the option of calling the REST API directly.

Batch objects have four attributes:
• BatchID: Unique ID for the batch request.
• BatchStatus: Last batch status.
• BatchErrorCode: Last error code.
• BatchErrorMessage: Last error message.

You can access their values , batch.BatchStatus or batch.BatchID, or by using Get. Note that all Batch attributes
are locally cached, and are only updated when you create a client-side batch object or when you explicitly update
this cache, which can done by calling Update.

GRBBatch()
Constructor for GRBBatch.

Given a BatchID, as returned by optimizeBatch, and a Gurobi environment that can connect to the appropriate
Cluster Manager (i.e., one where parameters CSManager, UserName, and ServerPassword have been set appropri-
ately), this function returns a GRBBatch object. With it, you can query the current status of the associated
batch request and, once the batch request has been processed, you can query its solution. Please refer to the Batch
Optimization section for details and examples.

GRBBatch GRBBatch (GRBEnv& env,
string& batchID)

Arguments:
env: The environment in which the new batch object should be created.
batchID: ID of the batch request for which you want to access status and other information.

Return value:
New batch object.

Example usage:
GRBBatch batch = GRBBatch(env, batchID);

GRBBatch.Abort()
This method instructs the Cluster Manager to abort the processing of this batch request, changing its status to
ABORTED. Please refer to the Batch Status Codes section for further details. void Abort ()

Example usage:

// Abort this batch if it is taking too long
TimeSpan interval = DateTime.Now - start;
if (interval.TotalSeconds > maxwaittime) {

batch.Abort ();
break;

}

408

GRBBatch.Discard()
This method instructs the Cluster Manager to remove all information related to the batch request in question,
including the stored solution if available. Further queries for the associated batch request will fail with error code
GRB_ERROR_DATA_NOT_AVAILABLE. Use this function with care, as the removed information can not be recovered later
on. void Discard ()

Example usage:

// Remove batch request from manager
batch.Discard ();

GRBBatch.GetJSONSolution()
This method retrieves the solution of a completed batch request from a Cluster Manager. The solution is returned
as a JSON solution string. For this call to succeed, the status of the batch request must be COMPLETED. Please refer
to the Batch Status Codes section for further details. string GetJSONSolution ()

Return value:
The requested solution in JSON format.

Example usage:

// Get JSON solution as string
Console.WriteLine("JSON solution:" + batch.GetJSONSolution ());

GRBBatch.Get()
Query the value of an attribute.
int Get (GRB_IntAttr attr)

Query the value of an int-valued batch attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
string Get (GRB_StringAttr attr)

Query the value of a string-valued batch attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBBatch.Retry()
This method instructs the Cluster Manager to retry optimization of a failed or aborted batch request, changing its
status to SUBMITTED. Please refer to the Batch Status Codes section for further details. void Retry ()

Example usage:

// If the batch failed , we retry it
if (batch.BatchStatus == GRB.BatchStatus.FAILED) {

batch.Retry ();
System.Threading.Thread.Sleep (2000);
batch.Update ();

}

409

GRBBatch.Update()
All Batch attribute values are cached locally, so queries return the value received during the last communication with
the Cluster Manager. This method refreshes the values of all attributes with the values currently available in the
Cluster Manager (which involves network communication). void Update ()

Example usage:

// Update the resident attribute cache of the Batch object
// with the latest values from the cluster manager.
batch.Update ();

GRBBatch.WriteJSONSolution()
This method returns the stored solution of a completed batch request from a Cluster Manager. The solution
is returned in a gzip-compressed JSON file. The file name you provide must end with a .json.gz extension.
The JSON format is described in the JSON solution format section. Note that for this call to succeed, the sta-
tus of the batch request must be COMPLETED. Please refer to the Batch Status Codes section for further details.
WriteJSONSolution void (string& filename)

Arguments:
filename: Name of file where the solution should be stored (in JSON format).

Example usage:

// Write the full JSON solution string to a file
batch.WriteJSONSolution("batch -sol.json.gz");

410

6.17 GRB
Class for .NET enums and constants. The enums are used to get or set Gurobi attributes or parameters.

Constants
The following list contains the set of constants needed by the Gurobi .NET interface. You would refer to them using
a GRB. prefix (e.g., GRB.Status.OPTIMAL).

// Model status codes (after call to optimize ())

/// <summary >
/// Optimization status codes
/// </summary >
public class Status
{

/// <summary >
/// Model is loaded , but no solution information is available.
/// </summary >
public const int LOADED = 1;

/// <summary >
/// Model was solved to optimality (subject to tolerances) and an optimal
/// solution is available.
/// </summary >
public const int OPTIMAL = 2;

/// <summary >
/// Model was proven to be infeasible.
/// </summary >
public const int INFEASIBLE = 3;

/// <summary >
/// Model was proven to be either infeasible or unbounded.
/// </summary >
public const int INF_OR_UNBD = 4;

/// <summary >
/// Model was proven to be unbounded.
/// </summary >
public const int UNBOUNDED = 5;

/// <summary >
/// Optimal objective was proven to be worse than the value specified
/// in the Cutoff parameter.
/// </summary >
public const int CUTOFF = 6;

/// <summary >
/// Optimization terminated because the total number of simplex
/// iterations performed exceeded the limit specified in the IterationLimit
/// parameter.
/// </summary >
public const int ITERATION_LIMIT = 7;

/// <summary >

411

/// Optimization terminated because the total number of branch -and -cut
/// nodes explored exceeded the limit specified in the NodeLimit
/// parameter.
/// </summary >
public const int NODE_LIMIT = 8;

/// <summary >
/// Optimization terminated because the total elapsed time
/// exceeded the limit specified in the TimeLimit parameter.
/// </summary >
public const int TIME_LIMIT = 9;

/// <summary >
/// Optimization terminated because the number of solutions found
/// reached the value specified in the SolutionLimit parameter.
/// </summary >
public const int SOLUTION_LIMIT = 10;

/// <summary >
/// Optimization was terminated by the user.
/// </summary >
public const int INTERRUPTED = 11;

/// <summary >
/// Optimization was terminated due to unrecoverable numerical
/// difficulties.
/// </summary >
public const int NUMERIC = 12;

/// <summary >
/// Optimization terminated with a sub -optimal solution.
/// </summary >
public const int SUBOPTIMAL = 13;

/// <summary >
/// Optimization is still in progress.
/// </summary >
public const int INPROGRESS = 14;

/// <summary >
/// User specified objective limit (a bound on either the best objective
/// or the best bound), and that limit has been reached.
/// </summary >
public const int USER_OBJ_LIMIT = 15;

/// <summary >
/// Optimization terminated because the total elapsed work
/// exceeded the limit specified in the WorkLimit parameter.
/// </summary >
public const int WORK_LIMIT = 16;

/// <summary >
/// Optimization terminated because the total amount of allocated
/// memory exceeded the limit specified in the SoftMemLimit parameter.
/// </summary >
public const int MEM_LIMIT = 17;

412

}

/// <summary >
/// Batch status codes
/// </summary >
public class BatchStatus
{

/// <summary >
/// Batch object was created , but is not ready to be scheduled.
/// See the Batch Optimization section of the manual for more details.
/// </summary >
public const int CREATED = 1;

/// <summary >
/// The Batch object has been completely specified , and now is waiting
/// for a job to finish processing the request.
/// See the Batch Optimization section of the manual for more details.
/// </summary >
public const int SUBMITTED = 2;

/// <summary >
/// Batch processing was aborted by the user.
/// See the Batch Optimization section of the manual for more details.
/// </summary >
public const int ABORTED = 3;

/// <summary >
/// Batch processing failed.
/// See the Batch Optimization section of the manual for more details.
/// </summary >
public const int FAILED = 4;

/// <summary >
/// A Batch Job successfully processed the Batch request.
/// See the Batch Optimization section of the manual for more details.
/// </summary >
public const int COMPLETED = 5;

}

// Version numbers

/// <summary >
/// Major number
/// </summary >
public const int VERSION_MAJOR = 10;

/// <summary >
/// Minor number
/// </summary >
public const int VERSION_MINOR = 0;

/// <summary >
/// Technical number
/// </summary >
public const int VERSION_TECHNICAL = 0;

413

// Basis status info

/// <summary >
/// Variable is basic.
/// </summary >
public const int BASIC = 0;

/// <summary >
/// Variable is non -basic at lower bound.
/// </summary >
public const int NONBASIC_LOWER = -1;

/// <summary >
/// Variable is non -basic at upper bound.
/// </summary >
public const int NONBASIC_UPPER = -2;

/// <summary >
/// Variable is superbasic.
/// </summary >
public const int SUPERBASIC = -3;

// Constraint senses

/// <summary >
/// Less or equal constraint sense.
/// </summary >
public const char LESS_EQUAL = '<';
/// <summary >
/// Greater or equal constraint sense.
/// </summary >
public const char GREATER_EQUAL = '>';
/// <summary >
/// Equal constraint sense.
/// </summary >
public const char EQUAL = '=';

// Variable types

/// <summary >
/// Continuous variable.
/// </summary >
public const char CONTINUOUS = 'C';
/// <summary >
/// Binary variable.
/// </summary >
public const char BINARY = 'B';
/// <summary >
/// Integer variable.
/// </summary >
public const char INTEGER = 'I';
/// <summary >
/// Semi -continuous variable.
/// </summary >
public const char SEMICONT = 'S';

414

/// <summary >
/// Semi -integer variable.
/// </summary >
public const char SEMIINT = 'N';

// Objective sense

/// <summary >
/// Minimization objective.
/// </summary >
public const int MINIMIZE = 1;
/// <summary >
/// Maximization objective.
/// </summary >
public const int MAXIMIZE = -1;

// SOS types

/// <summary >
/// SOS of type 1.
/// </summary >
public const int SOS_TYPE1 = 1;
/// <summary >
/// SOS of type 2.
/// </summary >
public const int SOS_TYPE2 = 2;

// General constraint types

/// <summary >
/// General constraint maximum.
/// </summary >
public const int GENCONSTR_MAX = 0;
/// <summary >
/// General constraint minimum.
/// </summary >
public const int GENCONSTR_MIN = 1;
/// <summary >
/// General constraint absolute value.
/// </summary >
public const int GENCONSTR_ABS = 2;
/// <summary >
/// General constraint logical AND.
/// </summary >
public const int GENCONSTR_AND = 3;
/// <summary >
/// General constraint logical OR.
/// </summary >
public const int GENCONSTR_OR = 4;
/// <summary >
/// General constraint norm.
/// </summary >
public const int GENCONSTR_NORM = 5;
/// <summary >
/// General constraint indicator.
/// </summary >

415

public const int GENCONSTR_INDICATOR = 6;
/// <summary >
/// General constraint piecewise -linear.
/// </summary >
public const int GENCONSTR_PWL = 7;
/// <summary >
/// General constraint polynomial function.
/// </summary >
public const int GENCONSTR_POLY = 8;
/// <summary >
/// General constraint natural exponential function.
/// </summary >
public const int GENCONSTR_EXP = 9;
/// <summary >
/// General constraint exponential function.
/// </summary >
public const int GENCONSTR_EXPA = 10;
/// <summary >
/// General constraint natural logarithmic function.
/// </summary >
public const int GENCONSTR_LOG = 11;
/// <summary >
/// General constraint logarithmic function.
/// </summary >
public const int GENCONSTR_LOGA = 12;
/// <summary >
/// General constraint power function.
/// </summary >
public const int GENCONSTR_POW = 13;
/// <summary >
/// General constraint sine function.
/// </summary >
public const int GENCONSTR_SIN = 14;
/// <summary >
/// General constraint cosine function.
/// </summary >
public const int GENCONSTR_COS = 15;
/// <summary >
/// General constraint tangent function.
/// </summary >
public const int GENCONSTR_TAN = 16;
/// <summary >
/// General constraint logistic function.
/// </summary >
public const int GENCONSTR_LOGISTIC = 17;

// Numeric constants

/// <summary >
/// Infinity value.
/// </summary >
public const double INFINITY = 1e100;
/// <summary >
/// Undefined value.
/// </summary >
public const double UNDEFINED = 1e101;

416

/// <summary >
/// Maximum integer value.
/// </summary >
public const int MAXINT = 2000000000;

// Other constants

/// <summary >
/// Default compute server port.
/// </summary >
public const int DEFAULT_CS_PORT = 61000;

// Limits

/// <summary >
/// Maximum string length.
/// </summary >
public const int MAX_STRLEN = 512;
/// <summary >
/// Maximum name length.
/// </summary >
public const int MAX_NAMELEN = 255;
/// <summary >
/// Maximum tag length.
/// </summary >
public const int MAX_TAGLEN = 10240;
/// <summary >
/// Maximum concurrent threads.
/// </summary >
public const int MAX_CONCURRENT = 64;

// Callback constants

/// <summary >
/// Gurobi callback codes.
/// </summary >
public class Callback
{

/// <summary >
/// Periodic polling callback.
/// </summary >
public const int POLLING = 0;

/// <summary >
/// Currently performing presolve.
/// </summary >
public const int PRESOLVE = 1;

/// <summary >
/// Currently in simplex.
/// </summary >
public const int SIMPLEX = 2;

/// <summary >
/// Currently in MIP.
/// </summary >

417

public const int MIP = 3;

/// <summary >
/// Found a new MIP incumbent.
/// </summary >
public const int MIPSOL = 4;

/// <summary >
/// Currently exploring a MIP node.
/// </summary >
public const int MIPNODE = 5;

/// <summary >
/// Currently in barrier.
/// </summary >
public const int BARRIER = 7;

/// <summary >
/// Printing a log message.
/// </summary >
public const int MESSAGE = 6;

/// <summary >
/// Currently in multi -objective optimization.
/// </summary >
public const int MULTIOBJ = 8;

/// <summary >
/// Currently computing an IIS.
/// </summary >
public const int IIS = 9;

/// <summary >
/// Returns the number of columns removed by presolve to this point.
/// </summary >
public const int PRE_COLDEL = 1000;
/// <summary >
/// Returns the number of rows removed by presolve to this point.
/// </summary >
public const int PRE_ROWDEL = 1001;
/// <summary >
/// Returns the number of constraint senses changed by presolve to this
/// point.
/// </summary >
public const int PRE_SENCHG = 1002;
/// <summary >
/// Returns the number of bounds changed by presolve to this point.
/// </summary >
public const int PRE_BNDCHG = 1003;
/// <summary >
/// Returns the number of coefficients changed by presolve to this point.
/// </summary >
public const int PRE_COECHG = 1004;
/// <summary >
/// Returns the current simplex iteration count.
/// </summary >

418

public const int SPX_ITRCNT = 2000;
/// <summary >
/// Returns the current simplex objective value.
/// </summary >
public const int SPX_OBJVAL = 2001;
/// <summary >
/// Returns the current simplex primal infeasibility.
/// </summary >
public const int SPX_PRIMINF = 2002;
/// <summary >
/// Returns the current simplex dual infeasibility.
/// </summary >
public const int SPX_DUALINF = 2003;
/// <summary >
/// Returns 1 if the model has been perturbed.
/// </summary >
public const int SPX_ISPERT = 2004;
/// <summary >
/// Returns the current best objective value.
/// </summary >
public const int MIP_OBJBST = 3000;
/// <summary >
/// Returns the current best objective bound.
/// </summary >
public const int MIP_OBJBND = 3001;
/// <summary >
/// Returns the current explored node count.
/// </summary >
public const int MIP_NODCNT = 3002;
/// <summary >
/// Returns the current solution count.
/// </summary >
public const int MIP_SOLCNT = 3003;
/// <summary >
/// Returns the current cutting plane count.
/// </summary >
public const int MIP_CUTCNT = 3004;
/// <summary >
/// Returns the current unexplored node count.
/// </summary >
public const int MIP_NODLFT = 3005;
/// <summary >
/// Returns the current simplex iteration count.
/// </summary >
public const int MIP_ITRCNT = 3006;
/// <summary >
/// For a multi -scenario model , returns the number of scenarios that are still open.
/// </summary >
public const int MIP_OPENSCENARIOS = 3007;
/// <summary >
/// Returns the current phase of the MIP algorithm.
/// </summary >
public const int MIP_PHASE = 3008;

/// <summary >
/// Returns the new solution.

419

/// </summary >
public const int MIPSOL_SOL = 4001;
/// <summary >
/// Returns the objective value for the new solution.
/// </summary >
public const int MIPSOL_OBJ = 4002;
/// <summary >
/// Returns the current best objective value.
/// </summary >
public const int MIPSOL_OBJBST = 4003;
/// <summary >
/// Returns the current best objective bound.
/// </summary >
public const int MIPSOL_OBJBND = 4004;
/// <summary >
/// Returns the current explored node count.
/// </summary >
public const int MIPSOL_NODCNT = 4005;
/// <summary >
/// Returns the current solution count.
/// </summary >
public const int MIPSOL_SOLCNT = 4006;
/// <summary >
/// For a multi -scenario model , returns the number of scenarios that are still open.
/// </summary >
public const int MIPSOL_OPENSCENARIOS = 4007;
/// <summary >
/// Returns the current phase of the MIP algorithm.
/// </summary >
public const int MIPSOL_PHASE = 4008;

/// <summary >
/// Returns the status of the current node relaxation.
/// </summary >
public const int MIPNODE_STATUS = 5001;
/// <summary >
/// Returns the current node relaxation solution or ray.
/// </summary >
public const int MIPNODE_REL = 5002;
/// <summary >
/// Returns the current best objective value.
/// </summary >
public const int MIPNODE_OBJBST = 5003;
/// <summary >
/// Returns the current best objective bound.
/// </summary >
public const int MIPNODE_OBJBND = 5004;
/// <summary >
/// Returns the current explored node count.
/// </summary >
public const int MIPNODE_NODCNT = 5005;
/// <summary >
/// Returns the current solution count.
/// </summary >
public const int MIPNODE_SOLCNT = 5006;
/// <summary >

420

/// Returns the branching variable for the current node.
/// </summary >
public const int MIPNODE_BRVAR = 5007;
/// <summary >
/// For a multi -scenario model , returns the number of scenarios that are still open.
/// </summary >
public const int MIPNODE_OPENSCENARIOS = 5008;
/// <summary >
/// Returns the current phase of the MIP algorithm.
/// </summary >
public const int MIPNODE_PHASE = 5009;

/// <summary >
/// Returns the current barrier iteration count.
/// </summary >
public const int BARRIER_ITRCNT = 7001;
/// <summary >
/// Returns the current barrier primal objective value.
/// </summary >
public const int BARRIER_PRIMOBJ = 7002;
/// <summary >
/// Returns the current barrier dual objective value.
/// </summary >
public const int BARRIER_DUALOBJ = 7003;
/// <summary >
/// Returns the current barrier primal infeasibility.
/// </summary >
public const int BARRIER_PRIMINF = 7004;
/// <summary >
/// Returns the current barrier dual infeasibility.
/// </summary >
public const int BARRIER_DUALINF = 7005;
/// <summary >
/// Returns the current barrier complementarity violation.
/// </summary >
public const int BARRIER_COMPL = 7006;
/// <summary >
/// Returns the message that is being printed.
/// </summary >
public const int MSG_STRING = 6001;
/// <summary >
/// Returns the elapsed solver runtime (in seconds).
/// </summary >
public const int RUNTIME = 6002;
/// <summary >
/// Returns the elapsed solver work (in work units).
/// </summary >
public const int WORK = 6003;
/// <summary >
/// Returns the number of objectives that have already been optimized.
/// </summary >
public const int MULTIOBJ_OBJCNT = 8001;
/// <summary >
/// Returns the current solution count.
/// </summary >
public const int MULTIOBJ_SOLCNT = 8002;

421

/// <summary >
/// Returns the new solution.
/// </summary >
public const int MULTIOBJ_SOL = 8003;
/// <summary >
/// Returns the minimum number of constraints in the IIS.
/// </summary >
public const int IIS_CONSTRMIN = 9001;
/// <summary >
/// Returns the maximum number of constraints in the IIS.
/// </summary >
public const int IIS_CONSTRMAX = 9002;
/// <summary >
/// Returns the estimated number of constraints in the IIS.
/// </summary >
public const int IIS_CONSTRGUESS = 9003;
/// <summary >
/// Returns the minimum number of bounds in the IIS.
/// </summary >
public const int IIS_BOUNDMIN = 9004;
/// <summary >
/// Returns the maximum number of bounds in the IIS.
/// </summary >
public const int IIS_BOUNDMAX = 9005;
/// <summary >
/// Returns the estimated number of bounds in the IIS.
/// </summary >
public const int IIS_BOUNDGUESS = 9006;

}

// Errors

/// <summary >
/// Gurobi error codes.
/// </summary >
public class Error
{

/// <summary >
/// Available memory was exhausted.
/// </summary >
public const int OUT_OF_MEMORY = 10001;

/// <summary >
/// NULL input value provided for a required argument.
/// </summary >
public const int NULL_ARGUMENT = 10002;

/// <summary >
/// Invalid input value.
/// </summary >
public const int INVALID_ARGUMENT = 10003;

/// <summary >
/// Tried to query or set an unknown attribute.
/// </summary >
public const int UNKNOWN_ATTRIBUTE = 10004;

422

/// <summary >
/// Tried to query or set an attribute that could not be accessed.
/// </summary >
public const int DATA_NOT_AVAILABLE = 10005;

/// <summary >
/// Index for attribute query was out of range.
/// </summary >
public const int INDEX_OUT_OF_RANGE = 10006;

/// <summary >
/// Tried to query or set an unknown parameter.

GRB.CharAttr
This enum is used to get or set char-valued attributes (through GRBModel.Get or GRBModel.Set). Please refer to
the Attributes section to see a list of all char attributes and their functions.

GRB.DoubleAttr
This enum is used to get or set double-valued attributes (through GRBModel.Get or GRBModel.Set). Please refer
to the Attributes section to see a list of all double attributes and their functions.

GRB.DoubleParam
This enum is used to get or set double-valued parameters (through GRBModel.Get, GRBModel.Set, GRBEnv.Get,
or GRBEnv.Set). Please refer to the Parameters section to see a list of all double parameters and their functions.

GRB.IntAttr
This enum is used to get or set int-valued attributes (through GRBModel.Get or GRBModel.Set). Please refer to
the Attributes section to see a list of all int attributes and their functions.

GRB.IntParam
This enum is used to get or set int-valued parameters (through GRBModel.Get, GRBModel.Set, GRBEnv.Get, or
GRBEnv.Set). Please refer to the Parameters section to see a list of all int parameters and their functions.

GRB.StringAttr
This enum is used to get or set string-valued attributes (through GRBModel.Get or GRBModel.Set). Please refer to
the Attributes section to see a list of all string attributes and their functions.

GRB.StringParam
This enum is used to get or set string-valued parameters (through GRBModel.Get, GRBModel.Set, GRBEnv.Get,
or GRBEnv.Set). Please refer to the Parameters section to see a list of all string parameters and their functions.

423

Python API Overview

This section documents the Gurobi Python interface. It begins with an overview of the global functions, which can
be called without referencing any Python objects. It then discusses the different types of objects that are available
in the interface, and the most important methods on those objects. Finally, it gives a comprehensive presentation of
all of the available classes and methods.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide or the Example
Tour. These documents provide concrete examples of how to use the classes and methods described here.

Important note for AIX users: due to limited Python support on AIX, our AIX port does not include the
Python interface.
Global Functions

The Gurobi shell contains a set of Global Functions that can be called without referring to any Gurobi objects.
The most important of these functions is probably the read function, which allows you to read a model from a file.
Other useful global functions are system, which allows you to issue shell commands from within the Gurobi shell,
models, which gives you a list of the currently loaded models, and disposeDefaultEnv, which disposes of the default
environment. Other global functions allow you to read, modify, or write Gurobi parameters (readParams, setParam,
and writeParams).
Models

Most actions in the Gurobi Python interface are performed by calling methods on Gurobi objects. The most commonly
used object is the Model. A model consists of a set of decision variables (objects of class Var or MVar), a linear
or quadratic objective function on these variables (specified using Model.setObjective), and a set of constraints on
these variables (objects of class Constr, MConstr, QConstr, MQConstr, SOS, or GenConstr). Each variable has an
associated lower bound, upper bound, and type (continuous, binary, etc.). Each linear or quadratic constraint has an
associated sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side value. Refer to this section
for more information on variables, constraints, and objectives.

An optimization model may be specified all at once, by loading the model from a file (using the previously
mentioned read function), or it may be built incrementally, by first constructing an empty object of class Model
and then subsequently calling Model.addVar, Model.addVars, or Model.addMVar to add additional variables, and
Model.addConstr, Model.addConstrs, Model.addLConstr, Model.addQConstr, Model.addSOS, or any of the Model.addGenConstrXxx
methods to add additional constraints.

Linear constraints are specified by building linear expressions (objects of class LinExpr or MLinExpr), and then
specifying relationships between these expressions (for example, requiring that one expression be equal to another).
Quadratic constraints are built in a similar fashion, but using quadratic expressions (objects of class QuadExpr or
MQuadExpr) instead. General constraints are built using a set of dedicated methods, or a set of general constraint
helper functions plus overloaded operators.

Models are dynamic entities; you can always add or remove variables or constraints.
We often refer to the class of an optimization model. A model with a linear objective function, linear constraints,

and continuous variables is a Linear Program (LP). If the objective is quadratic, the model is a Quadratic Program
(QP). If any of the constraints are quadratic, the model is a Quadratically-Constrained Program (QCP). We will
sometimes refer to a few special cases of QCP: QCPs with convex constraints, QCPs with non-convex constraints,
bilinear programs, and Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-
continuous variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the model
is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, including Mixed Integer Linear
Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed Integer Quadratically-Constrained Programs
(MIQCP), and Mixed Integer Second-Order Cone Programs (MISOCP). The Gurobi Optimizer handles all of these
model classes.
Environments

Environments play a much smaller role in the Gurobi Python interface than they do in our other language APIs,
mainly because the Python interface has a default environment. Unless you explicitly pass your own environment to

424

https://www.gurobi.com/documentation/10.0/quickstart_windows/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html

routines that require an environment, the default environment will be used.
The main situation where you may want to create your own environment is when you want precise control over

when the resources associated with an environment (specifically, a licensing token or a Compute Server) are released.
If you use your own environment to create models (using read or the Model constructor), then the resources associated
with the environment will be released as soon your program no longer references your environment or any models
created with that environment.

Note that you can manually remove the reference to the default environment, thus making it available for garbage
collection, by calling disposeDefaultEnv. After calling this, and after all models built within the default environment
are garbage collected, the default environment will be garbage collected as well. A new default environment will be
created automatically if you call a routine that needs one.

For more advanced use cases, you can use an empty environment to create an uninitialized environment and then,
programmatically, set all required options for your specific requirements. For further details see the Environment
section.

Solving a Model

Once you have built a model, you can call Model.optimize to compute a solution. By default, optimize will use
the concurrent optimizer to solve LP models, the barrier algorithm to solve QP models with convex objectives and
QCP models with convex constraints, and the branch-and-cut algorithm otherwise. The solution is stored in a set of
attributes of the model, which can be subsequently queried (we will return to this topic shortly).

The Gurobi algorithms keep careful track of the state of the model, so calls to Model.optimize will only perform
further optimization if relevant data has changed since the model was last optimized. If you would like to discard
previously computed solution information and restart the optimization from scratch without changing the model, you
can call Model.reset.

After a MIP model has been solved, you can call Model.fixed to compute the associated fixed model. This model
is identical to the original, except that the integer variables are fixed to their values in the MIP solution. If your
model contains SOS constraints, some continuous variables that appear in these constraints may be fixed as well.
In some applications, it can be useful to compute information on this fixed model (e.g., dual variables, sensitivity
information, etc.), although you should be careful in how you interpret this information.

Multiple Solutions, Objectives, and Scenarios

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to a single model
with a single objective function. Gurobi provides the following features that allow you to relax these assumptions:

• Solution Pool: Allows you to find more solutions.

• Multiple Scenarios: Allows you to find solutions to multiple, related models.

• Multiple Objectives: Allows you to specify multiple objective functions and control the trade-off between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the infeasibility,
attempt to repair the infeasibility, or both. To obtain information that can be useful for diagnosing the cause of
an infeasibility, call Model.computeIIS to compute an Irreducible Inconsistent Subsystem (IIS). This method can be
used for both continuous and MIP models, but you should be aware that the MIP version can be quite expensive.
This method populates a set of IIS attributes.

To attempt to repair an infeasibility, call Model.feasRelaxS or Model.feasRelax to compute a feasibility relaxation
for the model. This relaxation allows you to find a solution that minimizes the magnitude of the constraint violation.

Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some attributes are associated
with the variables of the model, some with the constraints of the model, and some with the model itself. To give
a simple example, solving an optimization model causes the x variable attribute to be populated. Attributes such
as x that are computed by the Gurobi optimizer cannot be modified directly by the user, while others, such as the
variable lower bound (the lb attribute) can.

Attributes can be accessed in two ways in the Python interface. The first is to use the getAttr() and setAttr()
methods, which are available on variables (Var.getAttr/ Var.setAttr), matrix variables (MVar.getAttr/ MVar.setAttr),
linear constraints (Constr.getAttr/ Constr.setAttr), matrix constraints (MConstr.getAttr/ MConstr.setAttr), quadratic
constraints (QConstr.getAttr/

425

QConstr.setAttr), matrix constraints (MQConstr.getAttr/ MQConstr.setAttr), SOSs (SOS.getAttr), general con-
straints (GenConstr.getAttr/
GenConstr.setAttr), and models (Model.getAttr/ Model.setAttr). These are called with the attribute name as the
first argument (e.g., var.getAttr("x") or constr.setAttr("rhs", 0.0)). The full list of available attributes can
be found in the Attributes section of this manual.

Attributes can also be accessed more directly: you can follow an object name by a period, followed by the name of
an attribute of that object. Note that upper/lower case is ignored when referring to attributes. Thus, b = constr.rhs
is equivalent to b = constr.getAttr("rhs"), and constr.rhs = 0.0 is equivalent to constr.setAttr("rhs", 0.0).

Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to variable bounds,
constraint right-hand sides, etc.). The main exceptions are modifications to the constraint matrix and to the objective
function.

The constraint matrix can be modified in a few ways. The first is to call the Model.chgCoeff method. This
method can be used to modify the value of an existing non-zero, to set an existing non-zero to zero, or to create
a new non-zero. The constraint matrix is also modified when you remove a variable or constraint from the model
(through the Model.remove method). The non-zero values associated with the deleted constraint or variable are
removed along with the constraint or variable itself.

The model objective function can also be modified in a few ways. The easiest is to build an expression that
captures the objective function (a LinExpr, MLinExpr, QuadExpr, or MQuadExpr object), and then pass that
expression to method Model.setObjective. If you wish to modify the objective, you can simply call setObjective
again with a new LinExpr or QuadExpr object.

For linear objective functions, an alternative to setObjective is to use the Obj variable attribute to modify
individual linear objective coefficients.

If your variables have piecewise-linear objectives, you can specify them using the
Model.setPWLObj method. Call this method once for each relevant variable. The Gurobi simplex solver includes
algorithmic support for convex piecewise-linear objective functions, so for continuous models you should see a substan-
tial performance benefit from using this feature. To clear a previously specified piecewise-linear objective function,
simply set the Obj attribute on the corresponding variable to 0.

Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed in a lazy fashion,
meaning that modifications don’t affect the model immediately. Rather, they are queued and applied later. If your
program simply creates a model and solves it, you will probably never notice this behavior. However, if you ask for
information about the model before your modifications have been applied, the details of the lazy update approach
may be relevant to you.

As we just noted, model modifications (bound changes, right-hand side changes, objective changes, etc.) are
placed in a queue. These queued modifications can be applied to the model in three different ways. The first is by
an explicit call to Model.update. The second is by a call to Model.optimize. The third is by a call to Model.write to
write out the model. The first case gives you fine-grained control over when modifications are applied. The second
and third make the assumption that you want all pending modifications to be applied before you optimize your model
or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is that this approach
makes it much easier to perform multiple modifications to a model, since the model remains unchanged between
modifications. The second is that processing model modifications can be expensive, particularly in a Compute Server
environment, where modifications require communication between machines. Thus, it is useful to have visibility into
exactly when these modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then update, then make
more modifications, then update again, etc. Updating after each individual modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value of the requested
data from the point of the last update. If the object you tried to query didn’t exist then, you’ll get a NOT_IN_MODEL
exception instead.

The semantics of lazy updates have changed since earlier Gurobi versions. While the vast majority of programs
are unaffected by this change, you can use the UpdateMode parameter to revert to the earlier behavior if you run
into an issue.

426

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of the optimization
process. Factors like feasibility and optimality tolerances, choices of algorithms, strategies for exploring the MIP
search tree, etc., can be controlled by modifying Gurobi parameters before beginning the optimization. Parameters
are set using method Model.setParam. Current values may also be retrieved with Model.getParamInfo. You can also
access parameters more directly through the Model.Params class. To set the MIPGap parameter to 0.0 for model m,
for example, you can do either m.setParam('MIPGap', 0) or m.Params.MIPGap = 0.

You can read a set of parameter settings from a file using Model.read, or write the set of changed parameters
using Model.write.

We also include an automated parameter tuning tool that explores many different sets of parameter changes in
order to find a set that improves performance. You can call Model.tune to invoke the tuning tool on a model. Refer
to the parameter tuning tool section for more information.

One thing we should note is that changing a parameter for one model has no effect on the parameter value for
other models. Use the global setParam method to set a parameter for all loaded models.

The full list of Gurobi parameters can be found in the Parameters section.
Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will send output to the
screen. A few simple controls are available for modifying the default logging behavior. You can set the LogFile
parameter if you wish to also direct the Gurobi log to a file. The frequency of logging output can be controlled with
the DisplayInterval parameter, and logging can be turned off entirely with the OutputFlag parameter.

Log output is also sent to a Python logger named gurobipy, at level INFO. You can use the Python logging
module to connect to this log.

More detailed progress monitoring can be done through a callback function. If you pass a function taking two
arguments, model and where, to Model.optimize, your function will be called periodically from within the optimization.
Your callback can then call Model.cbGet to retrieve additional information on the state of the optimization. You can
refer to the Callback class for additional information.
Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. The simplest control callback is
Model.terminate, which asks the optimizer to terminate at the earliest convenient point. Method Model.cbSetSolution
allows you to inject a feasible solution (or partial solution) during the solution of a MIP model. Methods Model.cbCut
and Model.cbLazy allow you to add cutting planes and lazy constraints during a MIP optimization, respectively.
Method Model.cbStopOneMultiObj allows you to interrupt the optimization process of one of the optimization steps
in a multi-objective MIP problem without stopping the hierarchical optimization process.
Batch Optimization

Gurobi Compute Server enables programs to offload optimization computations onto dedicated servers. The Gurobi
Cluster Manager adds a number of additional capabilities on top of this. One important one, batch optimization,
allows you to build an optimization model with your client program, submit it to a Compute Server cluster (through
the Cluster Manager), and later check on the status of the model and retrieve its solution. You can use a Batch
object to make it easier to work with batches. For details on batches, please refer to the Batch Optimization section.
Error Handling

All of the methods in the Gurobi Python library can throw an exception of type GurobiError. When an exception
occurs, additional information on the error can be obtained by retrieving the errno or message members of the
GurobiError object. A list of possible values for the errno field can be found in the Error Code section.

427

7.1 Global Functions
Gurobi global functions. These functions can be accessed from the main Gurobi shell prompt. In contrast to all other
methods in the Gurobi Python interface, these functions do not require a Gurobi object to invoke them.

models()

models ()

Print a list of loaded models.
Note that this function will only list models stored in global variables. Models stored in Python data structures

(lists, dictionaries, etc.), or inside user classes aren’t listed.
Example usage:

a = Model("a")
b = Model("b")
models()

disposeDefaultEnv()

disposeDefaultEnv ()

Dispose of the default environment.
Calling this function releases the default environment created by the Gurobi Python module. This function is

particularly useful in a long-running Python session (e.g., within a Jupyter notebook), where the Gurobi environment
would otherwise continue to exist for the full duration of the session.

Note that models built with the default environment must be garbage collected before the default environment
can be freed. You can force a model m to be garbage collected with the statement del m. If no references to the
default environment remain, disposeDefaultEnv prints the message

Freeing default Gurobi environment

to confirm it was able to dispose of the default environment.
Example usage:

disposeDefaultEnv()

multidict()

multidict (data)

This function splits a single dictionary into multiple dictionaries. The input dictionary should map each key to
a list of n values. The function returns a list of the shared keys as its first result, followed by the n individual Gurobi
tuple dictionaries (stored as tupledict objects).

Arguments:
data: A Python dictionary. Each key should map to a list of values.

Return value:
A list, where the first member contains the shared key values, and the following members contain the
dictionaries that result from splitting the value lists from the input dictionary.

Example usage:
keys, dict1, dict2 = multidict({

'key1': [1, 2],
'key2': [1, 3],
'key3': [1, 4] })

428

paramHelp()
paramHelp (paramname)

Obtain help about a Gurobi parameter.
Arguments:

paramname: String containing the name of parameter that you would like help with. The name can include
’*’ and ’?’ wildcards. If more than one parameter matches, the matching names are listed. Note that case
is ignored.

Example usage:
paramHelp("Cuts")
paramHelp("Heu*")
paramHelp("*cuts")

quicksum()
quicksum (data)

A version of the Python sum function that is much more efficient for building large Gurobi expressions (LinExpr
or QuadExpr objects). The function takes a list of terms as its argument.

Note that while quicksum is much faster than sum, it isn’t the fastest approach for building a large expression.
Use addTerms or the LinExpr() constructor if you want the quickest possible expression construction.

Arguments:
data: List of terms to add. The terms can be constants, Var objects, LinExpr objects, or QuadExpr objects.

Return value:
An expression that represents the sum of the terms in the input list.

Example usage:
expr = quicksum([2*x, 3*y+1, 4*z*z])
expr = quicksum(model.getVars())

read()
read (filename, env=defaultEnv)

Read a model from a file.
Arguments:

filename: Name of file containing model. Note that the type of the file is encoded in the file name suffix.
Valid suffixes are .mps, .rew, .lp, .rlp, .dua, .dlp, .ilp, or .opb. The files can be compressed, so
additional suffixes of .gz, .bz2, .zip, or .7z are accepted. The file name may contain * or ? wildcards.
No file is read when no wildcard match is found. If more than one match is found, this routine will attempt
to read the first matching file.

env: Environment in which to create the model. Creating your environment (using the Env constructor)
gives you more control over Gurobi licensing, but it can make your program more complex. Use the default
environment unless you know that you need to control your own environments.

Return value:
Model object containing the model that was read from the input file.

Example usage:
m = read("afiro.mps")
m.optimize()

readParams()
readParams (filename)

429

Read a set of parameter settings from a file. The file name must end in .prm, and the file must be in PRM
format.

Arguments:
filename: Name of file containing parameter settings.

Example usage:
readParams("params.prm")

resetParams()
resetParams ()

Reset the values of all parameters to their default values. Note that existing models that are stored inside Python
data structures (lists, dictionaries, etc.), or inside user classes aren’t affected.

Example usage:
resetParams()

setParam()
setParam (paramname, newvalue)

Set the value of a parameter to a new value. Note that existing models that are stored inside Python data
structures (lists, dictionaries, etc.), or inside user classes aren’t affected.

Arguments:
paramname: String containing the name of parameter that you would like to modify. The name can include
’*’ and ’?’ wildcards. If more than one parameter matches, the matching names are listed and none are
modified. Note that case is ignored.

newvalue: Desired new value for parameter. Can be ’default’, which indicates that the parameter should be
reset to its default value.

Example usage:
setParam("Cuts", 2)
setParam("Heu*", 0.5)
setParam("*Interval", 10)

system()
system (command)

Issue a system command.
Arguments:

command: A string containing the desired system command.
Example usage:

system("ls")
system("rm junk")

writeParams()
writeParams (filename)

Write all modified parameters to a file. The file is written in PRM format.
Example usage:

setParam("Heu*", 0.5)
writeParams("params.prm") # file will contain changed parameter
system("cat params.prm")

430

7.2 Model
Gurobi model object. Commonly used methods on the model object in the Gurobi shell include optimize (optimizes
the model), printStats (prints statistics about the model), printAttr (prints the values of an attribute), and write
(writes information about the model to a file). Commonly used methods when building a model include addVar (adds
a new variable), addVars (adds multiple new variables), addMVar (adds an a NumPy ndarray of Gurobi variables),
addConstr (adds a new constraint), and addConstrs (adds multiple new constraints).

Model()
Model (name="", env=defaultEnv)

Model constructor.
Arguments:

name: Name of new model. Note that name will be stored as an ASCII string. Thus, a name like ’A→B’ will
produce an error, because ’→’ can not be represented as an ASCII character. Note also that names that
contain spaces are strongly discouraged, because they can’t be written to LP format files.

env: Environment in which to create the model. Creating your environment (using the Env constructor)
gives you more control over Gurobi licensing, but it can make your program more complex. Use the default
environment unless you know that you need to control your own environments.

Return value:
New model object. Model initially contains no variables or constraints.

Example usage:
m = Model("NewModel")
x0 = m.addVar()

env = Env("my.log")
m2 = Model("NewModel2", env)

Model.addConstr()
addConstr (constr, name="")

Add a constraint to a model.
This method accepts a TempConstr as its first argument, and the constraint name as its optional second argument.

You use operator overloading to create the argument (see this section for details). This one method allows you to
add linear constraints, matrix constraints, quadratic constraints, and general constraints.

Arguments:
constr: TempConstr argument.
name: Name for new constraint. Note that name will be stored as an ASCII string. Thus, a name like ’A→B’
will produce an error, because ’→’ can not be represented as an ASCII character. Note also that names
that contain spaces are strongly discouraged, because they can’t be written to LP format files.

Return value:
New constraint object. This can be a Constr, an MConstr, or a QConstr, or a MQConstr, depending on the
type of the argument.

Example usage:
model.addConstr(x + y <= 2.0, "c1")
model.addConstr(x*x + y*y <= 4.0, "qc0")
model.addConstr(x + y + z == [1, 2], "rgc0")
model.addConstr(A @ t >= b)
model.addConstr(z == and_(x, y, w), "gc0")
model.addConstr(z == min_(x, y), "gc1")
model.addConstr((w == 1) >> (x + y <= 1), "ic0")

Warning: A constraint can only have a single comparison operator. While 1 <= x + y <= 2 may look like a valid
constraint, addConstr won’t accept it.

431

Model.addConstrs()

addConstrs (generator, name="")

Add multiple constraints to a model using a Python generator expression. Returns a Gurobi tupledict that
contains the newly created constraints, indexed by the values generated by the generator expression.

The first argument to addConstrs is a Python generator expression, a special feature of the Python language
that allows you to iterate over a Python expression. In this case, the Python expression will be a Gurobi constraint
and the generator expression provides values to plug into that constraint. A new Gurobi constraint is added to the
model for each iteration of the generator expression.

To give an example, if x is a Gurobi variable, then

m.addConstr(x <= 1, name='c0')

would add a single linear constraint involving this variable. In contrast, if x is a list of Gurobi variables, then

m.addConstrs((x[i] <= 1 for i in range(4)), name='c')

would add four constraints to the model. The entire first argument is a generator expression, where the indexing
is controlled by the statement for i in range(4), The first constraint that results from this expression would be
named c[0], and would involve variable x[0]. The second would be named c[1], and would involve variable x[1].

Generator expressions can be much more complex than this. They can involve multiple variables and conditional
tests. For example, you could do:

m.addConstrs((x[i,j] == 0 for i in range(4)
for j in range(4)
if i != j), name='c')

One restriction that addConstrs places on the generator expression is that each variable must always take a scalar
value (int, float, string, ...). Thus, for i in [1, 2.0, 'a', 'bc'] is fine, but for i in [(1, 2), [1, 2, 3]]
isn’t.

This method can be used to add linear constraints, quadratic constraints, or general constraints to the model.
Refer to the TempConstr documentation for more information on all of the different constraint types that can be
added.

Note that if you supply a name argument, the generator expression must be enclosed in parenthesis. This
requirement comes from the Python language interpreter.

Arguments:
generator: A generator expression, where each iteration produces a constraint.
name: Name pattern for new constraints. The given name will be subscripted by the index of the generator
expression, so if the index is an integer, c would become c[0], c[1], etc. Note that the generated names
will be stored as ASCII strings, so you should avoid using names that contain non-ASCII characters. In
addition, names that contain spaces are strongly discouraged, because they can’t be written to LP format
files.

Return value:
A dictionary of Constr objects, indexed by the values specified by the generator expression.

Example usage:
model.addConstrs(x.sum(i, '*') <= capacity[i] for i in range(5))
model.addConstrs(x[i] + x[j] <= 1 for i in range(5) for j in range(5))
model.addConstrs(x[i]*x[i] + y[i]*y[i] <= 1 for i in range(5))
model.addConstrs(x.sum(i, '*') == [0, 2] for i in [1, 2, 4])
model.addConstrs(z[i] == max_(x[i], y[i]) for i in range(5))
model.addConstrs((x[i] == 1) >> (y[i] + z[i] <= 5) for i in range(5))

Warning: A constraint can only have a single comparison operator. While 1 <= x + y <= 2 may look like a valid
constraint, addConstr won’t accept it.

432

Model.addGenConstrXxx()
Each of the functions described below adds a new general constraint to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types: variable bound
constraints, linear constraints, quadratic constraints, integrality constraints, and SOS constraints. These are typically
treated directly by the underlying solver (although not always), and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general (function)
constraints. These are typically not treated directly by the solver. Rather, they are transformed by presolve into
constraints (and variables) chosen from among the fundamental types listed above. In some cases, the resulting
constraint or constraints are mathematically equivalent to the original; in others, they are approximations. If such
constraints appear in your model, but if you prefer to reformulate them yourself using fundamental constraint types
instead, you can certainly do so. However, note that Gurobi can sometimes exploit information contained in the
other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:
• addGenConstrMax: y = max(x1, x2, ..., c)
• addGenConstrMin: y = min(x1, x2, ..., c)
• addGenConstrAbs: y = |x|
• addGenConstrAnd: y = x1 ∧ x2 ∧ x3...

• addGenConstrOr: y = x1 ∨ x2 ∨ x3...

• addGenConstrNorm: y = norm(x1, x2, x3...)
• addGenConstrIndicator: y = 1→ a′x ≤ b (an indicator constraint)
• addGenConstrPWL: y = pwl(x) (a piecewise-linear function, specified using breakpoints)
• addGenConstrPoly: y = p0x

d + p1x
d−1 + ...+ pd−1x+ pd

• addGenConstrExp: y = ex

• addGenConstrExpA: y = ax

• addGenConstrLog: y = loge(x)
• addGenConstrLogA: y = loga(x)
• addGenConstrPow: y = xa

• addGenConstrSin: y = sin(x)
• addGenConstrCos: y = cos(x)
• addGenConstrTan: y = tan(x)
You can also add several types of general constraints through addConstr or addConstrs, using overloaded oper-

ators and a few general constraint helper functions. The descriptions below will make note of these equivalent, more
concise alternatives.

Please refer to this section for additional details on general constraints.

Model.addGenConstrMax()
addGenConstrMax (resvar, vars, constant=None, name="")

Add a new general constraint of type GRB.GENCONSTR_MAX to a model.
A MAX constraint r = max{x1, . . . , xn, c} states that the resultant variable r should be equal to the maximum

of the operand variables x1, . . . , xn and the constant c.
You can also add a MAX constraint using the max_ function.
Arguments:

resvar (Var): The variable whose value will be equal to the maximum of the other variables.
vars (list of Var, or tupledict of Var values): The variables over which the MAX will be taken.
constant (float, optional): The constant to include among the arguments of the MAX operation.
name (string, optional): Name for the new general constraint. Note that name will be stored as an ASCII
string. Thus, a name like ’A→B’ will produce an error, because ’→’ can not be represented as an ASCII

433

character. Note also that names that contain spaces are strongly discouraged, because they can’t be written
to LP format files.

Example usage:
x5 = max(x1, x3, x4, 2.0)
model.addGenConstrMax(x5, [x1, x3, x4], 2.0, "maxconstr")

overloaded forms
model.addConstr(x5 == max_([x1, x3, x4], constant=2.0), name="maxconstr")
model.addConstr(x5 == max_(x1, x3, x4, constant=2.0), name="maxconstr")

Model.addGenConstrMin()
addGenConstrMin (resvar, vars, constant=None, name="")

Add a new general constraint of type GRB.GENCONSTR_MIN to a model.
A MIN constraint r = min{x1, . . . , xn, c} states that the resultant variable r should be equal to the minimum of

the operand variables x1, . . . , xn and the constant c.
You can also add a MIN constraint using the min_ function.
Arguments:

resvar (Var): The variable whose value will be equal to the minimum of the other variables.
vars (list of Var, or tupledict of Var values): The variables over which the MIN will be taken.
constant (float, optional): The constant to include among the arguments of the MIN operation.
name (string, optional): Name for the new general constraint. Note that name will be stored as an ASCII
string. Thus, a name like ’A→B’ will produce an error, because ’→’ can not be represented as an ASCII
character. Note also that names that contain spaces are strongly discouraged, because they can’t be written
to LP format files.

Example usage:
x5 = min(x1, x3, x4, 2.0)
model.addGenConstrMin(x5, [x1, x3, x4], 2.0, "minconstr")

overloaded forms
model.addConstr(x5 == min_([x1, x3, x4], constant=2.0), name="minconstr")
model.addConstr(x5 == min_(x1, x3, x4, constant=2.0), name="minconstr")

Model.addGenConstrAbs()
addGenConstrAbs (resvar, argvar, name="")

Add a new general constraint of type GRB.GENCONSTR_ABS to a model.
An ABS constraint r = abs{x} states that the resultant variable r should be equal to the absolute value of the

argument variable x.
You can also add an ABS constraint using the abs_ function.
Arguments:

resvar (Var): The variable whose value will be to equal the absolute value of the argument variable.
argvar (Var): The variable for which the absolute value will be taken.
name (string, optional): Name for the new general constraint. Note that name will be stored as an ASCII
string. Thus, a name like ’A→B’ will produce an error, because ’→’ can not be represented as an ASCII
character. Note also that names that contain spaces are strongly discouraged, because they can’t be written
to LP format files.

Example usage:
x5 = abs(x1)
model.addGenConstrAbs(x5, x1, "absconstr")

overloaded form
model.addConstr(x5 == abs_(x1), name="absconstr")

434

Model.addGenConstrAnd()
addGenConstrAnd (resvar, vars, name="")

Add a new general constraint of type GRB.GENCONSTR_AND to a model.
An AND constraint r = and{x1, . . . , xn} states that the binary resultant variable r should be 1 if and only if all

of the operand variables x1, . . . , xn are equal to 1. If any of the operand variables is 0, then the resultant should be
0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent of how they
were created.

You can also add an AND constraint using the and_ function.
Arguments:

resvar (Var): The variable whose value will be equal to the AND concatenation of the other variables.
vars (list of Var): The variables over which the AND concatenation will be taken.
name (string, optional): Name for the new general constraint. Note that name will be stored as an ASCII
string. Thus, a name like ’A→B’ will produce an error, because ’→’ can not be represented as an ASCII
character. Note also that names that contain spaces are strongly discouraged, because they can’t be written
to LP format files.

Example usage:
x5 = and(x1, x3, x4)
model.addGenConstrAnd(x5, [x1, x3, x4], "andconstr")

overloaded forms
model.addConstr(x5 == and_([x1, x3, x4]), "andconstr")
model.addConstr(x5 == and_(x1, x3, x4), "andconstr")

Model.addGenConstrOr()
addGenConstrOr (resvar, vars, name="")

Add a new general constraint of type GRB.GENCONSTR_OR to a model.
An OR constraint r = or{x1, . . . , xn} states that the binary resultant variable r should be 1 if and only if any of

the operand variables x1, . . . , xn is equal to 1. If all operand variables are 0, then the resultant should be 0 as well.
Note that all variables participating in such a constraint will be forced to be binary, independent of how they

were created.
You can also add an OR constraint using the or_ function.
Arguments:

resvar (Var): The variable whose value will be equal to the OR concatenation of the other variables.
vars (list of Var): The variables over which the OR concatenation will be taken.
name (string, optional): Name for the new general constraint. Note that name will be stored as an ASCII
string. Thus, a name like ’A→B’ will produce an error, because ’→’ can not be represented as an ASCII
character. Note also that names that contain spaces are strongly discouraged, because they can’t be written
to LP format files.

Example usage:
x5 = or(x1, x3, x4)
model.addGenConstrOr(x5, [x1, x3, x4], "orconstr")

overloaded forms
model.addConstr(x5 == or_([x1, x3, x4]), "orconstr")
model.addConstr(x5 == or_(x1, x3, x4), "orconstr")

Model.addGenConstrNorm()
addGenConstrNorm (resvar, vars, which, name="")

Add a new general constraint of type GRB.GENCONSTR_NORM to a model.

435

A NORM constraint r = norm{x1, . . . , xn} states that the resultant variable r should be equal to the vector
norm of the argument vector x1, . . . , xn.

Arguments:
resvar (Var): The variable whose value will be equal to the vector norm of the other variables.
vars (list of Var, or tupledict of Var values, or 1-dim MVar): The variables over which the vector
norm will be taken. Note that this may not contain duplicates.

which (float): Which norm to use. Options are 0, 1, 2, and any value greater than or equal to GRB.INFINITY.
name (string, optional): Name for the new general constraint. Note that name will be stored as an ASCII
string. Thus, a name like ’A→B’ will produce an error, because ’→’ can not be represented as an ASCII
character. Note also that names that contain spaces are strongly discouraged, because they can’t be written
to LP format files.

Example usage:
x5 = 2-norm(x1, x3, x4)
model.addGenConstrNorm(x5, [x1, x3, x4], 2.0, "normconstr")

Model.addGenConstrIndicator()
addGenConstrIndicator (binvar, binval, lhs, sense=None, rhs=None, name="")

Add a new general constraint of type GRB.GENCONSTR_INDICATOR to a model.
An INDICATOR constraint z = f → aTx ≤ b states that if the binary indicator variable z is equal to f , where

f ∈ {0, 1}, then the linear constraint aTx ≤ b should hold. On the other hand, if z = 1− f , the linear constraint may
be violated. The sense of the linear constraint can also be specified to be = or ≥.

Note that the indicator variable z of a constraint will be forced to be binary, independent of how it was created.
You can also add an INDICATOR constraint using a special overloaded syntax. See the examples below for

details.
Arguments:

binvar (Var): The binary indicator variable.
binval (Boolean): The value for the binary indicator variable that would force the linear constraint to be
satisfied.

lhs (float, Var, LinExpr, or TempConstr): Left-hand side expression for the linear constraint triggered
by the indicator. Can be a constant, a Var, or a LinExpr. Alternatively, a temporary constraint object
can be used to define the linear constraint that is triggered by the indicator. The temporary constraint
object is created using an overloaded comparison operator. See TempConstr for more information. In this
case, the “sense” and “rhs” parameters must stay at their default values None.

sense (char): Sense for the linear constraint. Options are GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL.

rhs (float): Right-hand side value for the linear constraint.
name (string, optional): Name for the new general constraint. Note that name will be stored as an ASCII
string. Thus, a name like ’A→B’ will produce an error, because ’→’ can not be represented as an ASCII
character. Note also that names that contain spaces are strongly discouraged, because they can’t be written
to LP format files.

Example usage:
x7 = 1 -> x1 + 2 x3 + x4 = 1
model.addGenConstrIndicator(x7, True, x1 + 2*x2 + x4, GRB.EQUAL, 1.0)

alternative form
model.addGenConstrIndicator(x7, True, x1 + 2*x2 + x4 == 1.0)

overloaded form
model.addConstr((x7 == 1) >> (x1 + 2*x2 + x4 == 1.0))

Model.addGenConstrPWL()
addGenConstrPWL (xvar, yvar, xpts, ypts, name="")

436

Add a new general constraint of type GRB.GENCONSTR_PWL to a model.
A piecewise-linear (PWL) constraint states that the relationship y = f(x) must hold between variables x and y,

where f is a piecewise-linear function. The breakpoints for f are provided as arguments. Refer to the description of
piecewise-linear objectives for details of how piecewise-linear functions are defined.

Arguments:
xvar (Var): The x variable.
yvar (Var): The y variable.
xpts (list of float): The x values for the points that define the piecewise-linear function. Must be in
non-decreasing order.

ypts (list of float): The y values for the points that define the piecewise-linear function.
name (string, optional): Name for the new general constraint.

Return value:
New general constraint.

Example usage:
gc = model.addGenConstrPWL(x, y, [0, 1, 2], [1.5, 0, 3], "myPWLConstr")

Model.addGenConstrPoly()
addGenConstrPoly (xvar, yvar, p, name="", options="")

Add a new general constraint of type GRB.GENCONSTR_POLY to a model.
A polynomial function constraint states that the relationship y = p0x

d + p1x
d−1 + ... + pd−1x + pd should hold

between variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Arguments:
xvar (Var): The x variable.
yvar (Var): The y variable.
p: The coefficients for the polynomial function (starting with the coefficient for the highest power).
name (string, optional): Name for the new general constraint.
options (string, optional): A string that can be used to set the attributes that control the piecewise-
linear approximation of this function constraint. To assign a value to an attribute, follow the attribute
name with an equal sign and the desired value (with no spaces). Assignments for different attributes should
be separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

Example usage:
y = 2 x^3 + 1.5 x^2 + 1
gc = model.addGenConstrPoly(x, y, [2, 1.5, 0, 1])

Model.addGenConstrExp()
addGenConstrExp (xvar, yvar, name="", options="")

Add a new general constraint of type GRB.GENCONSTR_EXP to a model.
A natural exponential function constraint states that the relationship y = exp(x) should hold for variables x and

y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Arguments:
xvar (Var): The x variable.
yvar (Var): The y variable.

437

name (string, optional): Name for the new general constraint.
options (string, optional): A string that can be used to set the attributes that control the piecewise-
linear approximation of this function constraint. To assign a value to an attribute, follow the attribute
name with an equal sign and the desired value (with no spaces). Assignments for different attributes should
be separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

Example usage:
y = exp(x)
gc = model.addGenConstrExp(x, y)

Model.addGenConstrExpA()
addGenConstrExpA (xvar, yvar, a, name="", options="")

Add a new general constraint of type GRB.GENCONSTR_EXPA to a model.
An exponential function constraint states that the relationship y = ax should hold for variables x and y, where

a > 0 is the (constant) base.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Arguments:
xvar (Var): The x variable.
yvar (Var): The y variable.
a (float): The base of the function, a > 0.
name (string, optional): Name for the new general constraint.
options (string, optional): A string that can be used to set the attributes that control the piecewise-
linear approximation of this function constraint. To assign a value to an attribute, follow the attribute
name with an equal sign and the desired value (with no spaces). Assignments for different attributes should
be separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

Example usage:
y = 3^x
gc = model.addGenConstrExpA(x, y, 3.0, "expa")

Model.addGenConstrLog()
addGenConstrLog (xvar, yvar, name="", options="")

Add a new general constraint of type GRB.GENCONSTR_LOG to a model.
A natural logarithmic function constraint states that the relationship y = log(x) should hold for variables x and

y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Arguments:
xvar (Var): The x variable.
yvar (Var): The y variable.
name (string, optional): Name for the new general constraint.
options (string, optional): A string that can be used to set the attributes that control the piecewise-
linear approximation of this function constraint. To assign a value to an attribute, follow the attribute
name with an equal sign and the desired value (with no spaces). Assignments for different attributes should
be separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:

438

New general constraint.
Example usage:

y = ln(x)
gc = model.addGenConstrLog(x, y)

Model.addGenConstrLogA()

addGenConstrLogA (xvar, yvar, a, name="", options="")

Add a new general constraint of type GRB.GENCONSTR_LOGA to a model.
A logarithmic function constraint states that the relationship y = loga(x) should hold for variables x and y,

where a > 0 is the (constant) base.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Arguments:
xvar (Var): The x variable.
yvar (Var): The y variable.
a (float): The base of the function, a > 0.
name (string, optional): Name for the new general constraint.
options (string, optional): A string that can be used to set the attributes that control the piecewise-
linear approximation of this function constraint. To assign a value to an attribute, follow the attribute
name with an equal sign and the desired value (with no spaces). Assignments for different attributes should
be separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

Example usage:
y = log10(x)
gc = model.addGenConstrLogA(x, y, 10.0, "log10", "FuncPieces=-1 FuncPieceError=1e-5")

Model.addGenConstrLogistic()

addGenConstrLogistic (xvar, yvar, name="", options="")

Add a new general constraint of type GRB.GENCONSTR_LOGISTIC to a model.
A logistic function constraint states that the relationship y = 1

1+e−x should hold for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Arguments:
xvar (Var): The x variable.
yvar (Var): The y variable.
name (string, optional): Name for the new general constraint.
options (string, optional): A string that can be used to set the attributes that control the piecewise-
linear approximation of this function constraint. To assign a value to an attribute, follow the attribute
name with an equal sign and the desired value (with no spaces). Assignments for different attributes should
be separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

Example usage:
y = 1 / (1 + exp(-x))
gc = model.addGenConstrLogistic(x, y)

439

Model.addGenConstrPow()

addGenConstrPow (xvar, yvar, a, name="", options="")

Add a new general constraint of type GRB.GENCONSTR_POW to a model.
A power function constraint states that the relationship y = xa should hold for variables x and y, where a is the

(constant) exponent. The lower bound of variable x must be nonnegative, even if a is an integer.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Arguments:
xvar (Var): The x variable.
yvar (Var): The y variable.
a (float): The exponent of the function, a > 0.
name (string, optional): Name for the new general constraint.
options (string, optional): A string that can be used to set the attributes that control the piecewise-
linear approximation of this function constraint. To assign a value to an attribute, follow the attribute
name with an equal sign and the desired value (with no spaces). Assignments for different attributes should
be separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

Example usage:
y = x^3.5
gc = model.addGenConstrPow(x, y, 3.5, "gf", "FuncPieces=1000")

Model.addGenConstrSin()

addGenConstrSin (xvar, yvar, name="", options="")

Add a new general constraint of type GRB.GENCONSTR_SIN to a model.
A sine function constraint states that the relationship y = sin(x) should hold for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Arguments:
xvar (Var): The x variable.
yvar (Var): The y variable.
name (string, optional): Name for the new general constraint.
options (string, optional): A string that can be used to set the attributes that control the piecewise-
linear approximation of this function constraint. To assign a value to an attribute, follow the attribute
name with an equal sign and the desired value (with no spaces). Assignments for different attributes should
be separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

Example usage:
y = sin(x)
gc = model.addGenConstrSin(x, y)

Model.addGenConstrCos()

addGenConstrCos (xvar, yvar, name="", options="")

Add a new general constraint of type GRB.GENCONSTR_COS to a model.
A cosine function constraint states that the relationship y = cos(x) should hold for variables x and y.

440

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Arguments:
xvar (Var): The x variable.
yvar (Var): The y variable.
name (string, optional): Name for the new general constraint.
options (string, optional): A string that can be used to set the attributes that control the piecewise-
linear approximation of this function constraint. To assign a value to an attribute, follow the attribute
name with an equal sign and the desired value (with no spaces). Assignments for different attributes should
be separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

Example usage:
y = cos(x)
gc = model.addGenConstrCos(x, y)

Model.addGenConstrTan()

addGenConstrTan (xvar, yvar, name="", options="")

Add a new general constraint of type GRB.GENCONSTR_TAN to a model.
A tangent function constraint states that the relationship y = tan(x) should hold for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the approximation

are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Arguments:
xvar (Var): The x variable.
yvar (Var): The y variable.
name (string, optional): Name for the new general constraint.
options (string, optional): A string that can be used to set the attributes that control the piecewise-
linear approximation of this function constraint. To assign a value to an attribute, follow the attribute
name with an equal sign and the desired value (with no spaces). Assignments for different attributes should
be separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

Example usage:
y = tan(x)
gc = model.addGenConstrTan(x, y)

Model.addLConstr()

addLConstr (lhs, sense=None, rhs=None, name="")

Add a linear constraint to a model. This method is faster than addConstr() (as much as 50% faster for very
sparse constraints), but can only be used to add linear constraints.

Note that this method also accepts a TempConstr as its first argument (with the name as its second argument).
This allows you to use operator overloading to create constraints. See TempConstr for more information.

Arguments:
lhs: Left-hand side for the new constraint. Can be a constant, a Var, a LinExpr, or a TempConstr (while
the TempConstr can only be of linear form).

sense: Sense for the new constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhs: Right-hand side for the new constraint. Can be a constant, a Var, or a LinExpr.

441

name: Name for new constraint. Note that name will be stored as an ASCII string. Thus, a name like ’A→B’
will produce an error, because ’→’ can not be represented as an ASCII character. Note also that names
that contain spaces are strongly discouraged, because they can’t be written to LP format files.

Return value:
New constraint object.

Example usage:
model.addLConstr(x + 2*y, GRB.EQUAL, 3*z, "c0")
model.addLConstr(x + y <= 2.0, "c1")
model.addLConstr(LinExpr([1.0,1.0], [x,y]), GRB.LESS_EQUAL, 1)

Model.addMConstr()
addMConstr (A, x, sense, b, name="")

Add a set of linear constraints to the model using matrix semantics. The added constraints are Ax = b (except
that the constraint sense is determined by the sense argument). The A argument must be a NumPy dense ndarray
or a SciPy sparse matrix.

Note that you will typically use overloaded operators to build and add constraints using matrix semantics. The
overloaded @ operator can be used to build a linear matrix expression, which can then be used with an overloaded
comparison operator to build a TempConstr object. This can then be passed to addConstr.

Arguments:
A: The constraint matrix - a NumPy 2-D dense ndarray or a SciPy sparse matrix.
x: Decision variables. Argument can be an MVar object, a list of Var objects, or None (None uses all variables
in the model). The length of the argument must match the size of the second dimension of A.

sense: Constraint senses, provided as a NumPy 1-D ndarray or as a single character. Valid values are <,
>, or =. The length of the array must be equal the size of the first dimension of A. A character will be
promoted to an ndarray of the appropriate length.

b: Right-hand side vector, stored as a NumPy 1-D ndarray. The length of the array must be equal the size
of the first dimension of A.

name: Single string defining the name for new constraints. The given name will be subscripted by the index
of the constraint in the matrix.

Return value:
MConstr object.

Example usage:
A = np.full((5, 10), 1)
x = model.addMVar(10)
b = np.full(5, 1)

model.addMConstr(A, x, '=', b)

Model.addMQConstr()
addMQConstr (Q, c, sense, rhs, xQ_L=None, xQ_R=None, xc=None, name="")

Add a quadratic constraint to the model using matrix semantics. The added constraint is x′QL
QxQR + c′xc = rhs

(except that the constraint sense is determined by the sense argument). The Q argument must be a NumPy ndarray
or a SciPy sparse matrix.

Note that you will typically use overloaded operators to build and add constraints using matrix semantics. The
overloaded @ operator can be used to build a linear matrix expression or quadratic matrix expression. An overloaded
comparison operator can then be used to build a TempConstr object, which is then passed to addConstr.

Arguments:
Q: The quadratic constraint matrix - a NumPy 2-D ndarray or a SciPy sparse matrix.
c: The linear constraint vector - a NumPy 1-D ndarray. This can be None if there are no linear terms.
sense: Constraint sense. Valid values are <, >, or =.
rhs: Right-hand-side value.

442

xQ_L: Decision variables for quadratic terms; left multiplier for Q. Argument can be an MVar object, a list
of Var objects, or None (None uses all variables in the model). The length of the argument must match the
size of the first dimension of Q.

xQ_R: Decision variables for quadratic terms; right multiplier for Q. The length of the argument must match
the size of the second dimension of Q.

xc: Decision variables for linear terms. Argument can be an MVar object, a list of Var objects, or None (None
uses all variables in the model). The length of the argument must match the length of c.

name: Name for new constraint.
Return value:

The QConstr object.
Example usage:

Q = np.full((2, 3), 1)
xL = model.addMVar(2)
xR = model.addMVar(3)
model.addMQConstr(Q, None, '<', 1.0, xL, xR)

Model.addMVar()

addMVar (shape, lb=0.0, ub=float(’inf’), obj=0.0, vtype=GRB.CONTINUOUS, name="")

Add an MVar object to a model. An MVar acts like a NumPy ndarray of Gurobi decision variables. An MVar can
have an arbitrary number of dimensions, defined by the shape argument.

You can use arithmetic operations with MVar objects to create linear matrix expressions or quadratic matrix
expressions, which can then be used to build linear or quadratic objectives or constraints.

The returned MVar object supports standard NumPy indexing and slicing. An MVar of size 1 can be passed in
all places where gurobipy accepts a Var object.

Arguments:
shape: An int, or tuple of int. The shape of the array.
lb (optional): Lower bound(s) for new variables.
ub (optional): Upper bound(s) for new variables.
obj (optional): Objective coefficient(s) for new variables.
vtype (optional): Variable type(s) for new variables.
name (optional): Names for new variables. The given name will be subscripted by the index of the generator
expression, so if the index is an integer, c would become c[0], c[1], etc. Note that the generated names
will be stored as ASCII strings, so you should avoid using names that contain non-ASCII characters. In
addition, names that contain spaces are strongly discouraged, because they can’t be written to LP format
files.

The values of the lb, ub, obj, and vtype arguments can either be scalars, lists, or ndarrays. Their shapes should
match the shape of the new MVar object, or they should be broadcastable to the given shape.

The name argument can either be a single string, used as a common base name that will be suffixed for each
variable by its indices, or an ndarray of strings matching the shape of the new MVar object.

Return value:
New MVar object.

Example usage:
Add a 4-by-2 matrix binary variable
x = model.addMVar((4,2), vtype=GRB.BINARY)
Add a vector of three variables with non-default lower bounds
y = model.addMVar((3,), lb=[-1, -2, -1])

Model.addQConstr()

addQConstr (lhs, sense=None, rhs=None, name="")

Add a quadratic constraint to a model.

443

Important note: Gurobi can handle both convex and non-convex quadratic constraints. The differences between
them can be both important and subtle. Refer to this discussion for additional information.

Arguments:
lhs: Left-hand side for new quadratic constraint. Can be a constant, a Var, a LinExpr, or a QuadExpr.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhs: Right-hand side for new quadratic constraint. Can be a constant, a Var, a LinExpr, or a QuadExpr.
name: Name for new constraint. Note that name will be stored as an ASCII string. Thus, a name like ’A→B’
will produce an error, because ’→’ can not be represented as an ASCII character. Note also that names
that contain spaces are strongly discouraged, because they can’t be written to LP format files.

Return value:
New quadratic constraint object.

Example usage:
model.addQConstr(x*x + y*y, GRB.LESS_EQUAL, z*z, "c0")
model.addQConstr(x*x + y*y <= 2.0, "c1")

Model.addRange()
addRange (expr, lower, upper, name="")

Add a range constraint to a model. A range constraint states that the value of the input expression must be
between the specified lower and upper bounds in any solution.

Note that range constraints are stored internally as equality constraints. We add an extra variable to the model
to capture the range information. Thus, the Sense attribute on a range constraint will always be GRB.EQUAL. In
particular introducing a range constraint

L ≤ aTx ≤ U

is equivalent to adding a slack variable s and the following constraints

aTx− s = L
0 ≤ s ≤ U − L.

Arguments:
expr: Linear expression for new range constraint. Can be a Var or a LinExpr.
lower: Lower bound for linear expression.
upper: Upper bound for linear expression.
name: Name for new constraint. Note that name will be stored as an ASCII string. Thus, a name like ’A→B’
will produce an error, because ’→’ can not be represented as an ASCII character. Note also that names
that contain spaces are strongly discouraged, because they can’t be written to LP format files.

Return value:
New constraint object.

Example usage:
1 <= x + y <= 2
model.addRange(x + y, 1.0, 2.0, "range0")

overloaded forms
model.addConstr(x + y == [1.0, 2.0], name="range0")

Model.addSOS()
addSOS (type, vars, wts=None)

Add an SOS constraint to the model. Please refer to this section for details on SOS constraints.
Arguments:

type: SOS type (can be GRB.SOS_TYPE1 or GRB.SOS_TYPE2).
vars: List of variables that participate in the SOS constraint.
weights (optional): Weights for the variables in the SOS constraint. Default weights are 1, 2, ...

444

Return value:
New SOS object.

Example usage:
model.addSOS(GRB.SOS_TYPE1, [x, y, z], [1, 2, 4])

Model.addVar()

addVar (lb=0.0, ub=float(’inf’), obj=0.0, vtype=GRB.CONTINUOUS, name="", column=None)

Add a decision variable to a model.
Arguments:

lb (optional): Lower bound for new variable.
ub (optional): Upper bound for new variable.
obj (optional): Objective coefficient for new variable.
vtype (optional): Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER, GRB.SEMICONT,
or GRB.SEMIINT).

name (optional): Name for new variable. Note that name will be stored as an ASCII string. Thus, a name
like ’A→B’ will produce an error, because ’→’ can not be represented as an ASCII character. Note also
that names that contain spaces are strongly discouraged, because they can’t be written to LP format files.

column (optional): Column object that indicates the set of constraints in which the new variable partici-
pates, and the associated coefficients.

Return value:
New variable object.

Example usage:
x = model.addVar() # all default arguments
y = model.addVar(vtype=GRB.INTEGER, obj=1.0, name="y") # arguments by name
z = model.addVar(0.0, 1.0, 1.0, GRB.BINARY, "z") # arguments by position

Model.addVars()

addVars (*indices, lb=0.0, ub=float(’inf’), obj=0.0, vtype=GRB.CONTINUOUS, name="")

Add multiple decision variables to a model.
Returns a Gurobi tupledict object that contains the newly created variables. The keys for the tupledict are

derived from the indices argument(s). The arguments for this method can take several different forms, which will
be described now.

The first arguments provide the indices that will be used as keys to access the variables in the returned tupledict.
In its simplest version, you would specify one or more integer values, and this method would create the equivalent of
a multi-dimensional array of variables. For example, x = model.addVars(2, 3) would create six variables, accessed
as x[0,0], x[0,1], x[0,2], x[1,0], x[1,1], and x[1,2].

In a more complex version, you can specify arbitrary lists of immutable objects, and this method will create vari-
ables for each member of the cross product of these lists. For example,
x = model.addVars([3, 7], ['a', 'b', 'c']) would create six variables, accessed as x[3,'a'], x[7,'c'], etc.

You can also provide your own list of tuples as indices. For example,
x = model.addVars([(3,'a'), (3,'b'), (7,'b'), (7,'c')]) would be accessed in the same way as the previ-
ous example (x[3,'a'], x[7,'c'], etc.), except that not all combinations will be present. This is typically how
sparse indexing is handled.

Note that while the indices can be provided as multiple lists of objects, or as a list of tuples, the member values for a
specific index must always be scalars (int, float, string, ...). For example, x = model.addVars([(1, 3), 7], ['a'])
is not allowed, since the first argument for the first member would be (1, 3). Similarly, x = model.addVars([((1, 3),'a'), (7,'a')])
is also not allowed.

The named arguments (lb, obj, etc.) can take several forms. If you provide a scalar value (or use the default),
then every variable will use that value. Thus, for example, lb=1.0 will give every created variable a lower bound of
1.0. Note that a scalar value for the name argument has a special meaning, which will be discussed separately.

445

You can also provide a Python dict as the argument. In that case, the value for each variable will be pulled
from the dict, using the indices argument to build the keys. For example, if the variables created by this method are
indexed as x[i,j], then the dict provided for the argument should have an entry for each possible (i,j) value.

Finally, if your indices argument is a single list, you can provide a Python list of the same length for the
named arguments. For each variable, it will pull the value from the corresponding position in the list.

As noted earlier, the name argument is special. If you provide a scalar argument for the name, that argument
will be transformed to have a subscript that corresponds to the index of the associated variable. For example, if you
do x = model.addVars(2,3,name="x"), the variables will get names x[0,0], x[0,1], etc.

Arguments:
indices: Indices for accessing the new variables.
lb (optional): Lower bound(s) for new variables.
ub (optional): Upper bound(s) for new variables.
obj (optional): Objective coefficient(s) for new variables.
vtype (optional): Variable type(s) for new variables.
name (optional): Names for new variables. The given name will be subscripted by the index of the generator
expression, so if the index is an integer, c would become c[0], c[1], etc. Note that the generated names
will be stored as ASCII strings, so you should avoid using names that contain non-ASCII characters. In
addition, names that contain spaces are strongly discouraged, because they can’t be written to LP format
files.

Return value:
New tupledict object that contains the new variables as values, using the provided indices as keys.

Example usage:
3-D array of binary variables
x = model.addVars(3, 4, 5, vtype=GRB.BINARY)

variables index by tuplelist
l = tuplelist([(1, 2), (1, 3), (2, 3)])
y = model.addVars(l, ub=[1, 2, 3])

variables with predetermined names
z = model.addVars(3, name=["a","b","c"])

Model.cbCut()
cbCut (lhs, sense, rhs)

Add a new cutting plane to a MIP model from within a callback function. Note that this method can only be
invoked when the where value on the callback function is equal to GRB.Callback.MIPNODE (see the Callback Codes
section for more information).

Cutting planes can be added at any node of the branch-and-cut tree. However, they should be added sparingly,
since they increase the size of the relaxation model that is solved at each node and can significantly degrade node
processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the relaxation solution
at the current node, you should first call cbGetNodeRel.

You should consider setting parameter PreCrush to value 1 when adding your own cuts. This setting shuts off
a few presolve reductions that can sometimes prevent your cut from being applied to the presolved model (which
would result in your cut being silently ignored).

One very important note: you should only add cuts that are implied by the constraints in your model. If you cut
off an integer solution that is feasible according to the original model constraints, you are likely to obtain an incorrect
solution to your MIP problem.

Note that this method also accepts a TempConstr as its first argument. This allows you to use operator over-
loading to create constraints. See TempConstr for more information.

Arguments:
lhs: Left-hand side for new cut. Can be a constant, a Var, or a LinExpr.
sense: Sense for new cut (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhs: Right-hand side for new cut. Can be a constant, a Var, or a LinExpr.

446

Example usage:
def mycallback(model, where):

if where == GRB.Callback.MIPNODE:
status = model.cbGet(GRB.Callback.MIPNODE_STATUS)
if status == GRB.OPTIMAL:
rel = model.cbGetNodeRel([model._vars[0], model._vars[1]])
if rel[0] + rel[1] > 1.1:
model.cbCut(model._vars[0] + model._vars[1] <= 1)

model._vars = model.getVars()
model.optimize(mycallback)

Model.cbGet()
cbGet (what)

Query the optimizer from within the user callback.
Arguments:

what: Integer code that indicates what type of information is being requested by the callback. The set of
valid codes depends on the where value that is passed into the user callback function. Please refer to the
Callback Codes section for a list of possible where and what values.

Example usage:
def mycallback(model, where):

if where == GRB.Callback.SIMPLEX:
print(model.cbGet(GRB.Callback.SPX_OBJVAL))

model.optimize(mycallback)

Model.cbGetNodeRel()
cbGetNodeRel (vars)

Retrieve values from the node relaxation solution at the current node. Note that this method can only be invoked
when the where value on the callback function is equal to GRB.Callback.MIPNODE, and GRB.Callback.MIPNODE_STATUS
is equal to GRB.OPTIMAL (see the Callback Codes section for more information).

Arguments:
vars: The variables whose relaxation values are desired. Can be a variable, a matrix variable, a list of
variables or matrix variables, or a dict of variables.

Return value:
Values for the specified variables in the node relaxation for the current node. The format will depend on the
input argument (a scalar, an ndarray, a list of values or ndarrays, or a dict).

Example usage:
def mycallback(model, where):

if where == GRB.Callback.MIPNODE:
status = model.cbGet(GRB.Callback.MIPNODE_STATUS)
if status == GRB.OPTIMAL:
print(model.cbGetNodeRel(model._vars))

model._vars = model.getVars()
model.optimize(mycallback)

Model.cbGetSolution()
cbGetSolution (vars)

447

Retrieve values from the new MIP solution. Note that this method can only be invoked when the where value on
the callback function is equal to GRB.Callback.MIPSOL or GRB.Callback.MULTIOBJ (see the Callback Codes section
for more information).

Arguments:
vars: The variables whose solution values are desired. Can be a variable, a matrix variable, a list of variables
or matrix variables, or a dict of variables.

Return value:
Values for the specified variables in the solution. The format will depend on the input argument (a scalar,
an ndarray, a list of values or ndarrays, or a dict).

Example usage:
def mycallback(model, where):

if where == GRB.Callback.MIPSOL:
print(model.cbGetSolution(model._vars))

model._vars = model.getVars()
model.optimize(mycallback)

Model.cbLazy()

cbLazy (lhs, sense, rhs)

Add a new lazy constraint to a MIP model from within a callback function. Note that this method can only be
invoked when the where value on the callback function is GRB.Callback.MIPNODE or GRB.Callback.MIPSOL (see the
Callback Codes section for more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large to represent
explicitly. By only including the constraints that are actually violated by solutions found during the branch-and-cut
search, it is sometimes possible to find a proven optimal solution while only adding a fraction of the full set of
constraints.

You would typically add a lazy constraint by first querying the current node solution (by calling cbGetSolution
from a GRB.Callback.MIPSOL callback, or cbGetNodeRel from a GRB.Callback.MIPNODE callback), and then calling
cbLazy() to add a constraint that cuts off the solution. Gurobi guarantees that you will have the opportunity to cut
off any solutions that would otherwise be considered feasible.

MIP solutions may be generated outside of a MIP node. Thus, generating lazy constraints is optional when the
where value in the callback function equals GRB.Callback.MIPNODE. To avoid this, we recommend to always check
when the where value equals GRB.Callback.MIPSOL.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints, including those
that have already been added. Node solutions will usually respect previously added lazy constraints, but not always.

Note that you must set the LazyConstraints parameter if you want to use lazy constraints.
Note that this method also accepts a TempConstr as its first argument. This allows you to use operator over-

loading to create constraints. See TempConstr for more information.
Arguments:

lhs: Left-hand side for new lazy constraint. Can be a constant, a Var, or a LinExpr.
sense: Sense for new lazy constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhs: Right-hand side for new lazy constraint. Can be a constant, a Var, or a LinExpr.

Example usage:
def mycallback(model, where):

if where == GRB.Callback.MIPSOL:
sol = model.cbGetSolution([model._vars[0], model._vars[1]])
if sol[0] + sol[1] > 1.1:
model.cbLazy(model._vars[0] + model._vars[1] <= 1)

model._vars = model.getVars()
model.optimize(mycallback)

448

Model.cbProceed()
cbProceed ()

Generate a request to proceed to the next phase of the computation. This routine can be called from any callback.
Note that the request is only accepted in a few phases of the algorithm, and it won’t be acted upon immediately.

In the current Gurobi version, this callback allows you to proceed from the NoRel heuristic to the standard MIP
search. You can determine the current algorithm phase using MIP_PHASE, MIPNODE_PHASE, or MIPSOL_PHASE queries
from a callback.

Example usage:
def mycallback(model, where):

if where == GRB.Callback.MIPSOL:
phase = model.cbGet(GRB.Callback.MIPSOL_PHASE)
obj = model.cbGet(GRB.Callback.MIPSOL_OBJ)
if phase == GRB.PHASE_MIP_NOREL and obj < target_obj:
model.cbProceed()

model.optimize(mycallback)

Model.cbSetSolution()
cbSetSolution (vars, solution)

Import solution values for a heuristic solution. Only available when the where value on the callback function is
equal to GRB.Callback.MIP, GRB.Callback.MIPNODE, or GRB.Callback.MIPSOL (see the Callback Codes section for
more information).

When you specify a heuristic solution from a callback, variables initially take undefined values. You should use
this method to specify variable values. You can make multiple calls to cbSetSolution from one callback invocation
to specify values for multiple sets of variables. After the callback, if values have been specified for any variables,
the Gurobi optimizer will try to compute a feasible solution from the specified values, possibly filling in values for
variables whose values were left undefined. You can also optionally call cbUseSolution within your callback function
to try to immediately compute a feasible solution from the specified values.

Note that this method is not supported in a Compute Server environment.
Arguments:

vars: The variables whose values are being set. This can be a list of variables or a single variable.
solution: The desired values of the specified variables in the new solution.

Example usage:
def mycallback(model, where):

if where == GRB.Callback.MIPNODE:
model.cbSetSolution(vars, newsolution)

model.optimize(mycallback)

Model.cbStopOneMultiObj()
cbStopOneMultiObj (objcnt)

Interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem without
stopping the hierarchical optimization process. Only available for multi-objective MIP models and when the where
member variable is not equal to GRB.Callback.MULTIOBJ (see the Callback Codes section for more information).

You would typically stop a multi-objective optimization step by querying the last finished number of multi-
objectives steps, and using that number to stop the current step and move on to the next hierarchical objective (if
any) as shown in the following example:

Example usage:
import time

449

def mycallback(model, where):
if where == GRB.Callback.MULTIOBJ:

get current objective number
model._objcnt = model.cbGet(GRB.Callback.MULTIOBJ_OBJCNT)

reset start time to current time
model._starttime = time.time()

See if we want to stop current multiobjective step
else if time.time() - model._starttime > 1000: # or solution is good enough

stop only this optimization step
model.cbStopOneMultiObj(model._objcnt)

model._objcnt = 0
model._starttime = time.time()
model.optimize(mycallback)

You should refer to the section on Multiple Objectives for information on how to specify multiple objective
functions and control the trade-off between them.

Arguments:
objnum: The number of the multi-objective optimization step to interrupt. For processes running locally,
this argument can have the special value -1, meaning to stop the current step.

Model.cbUseSolution()
cbUseSolution ()

Once you have imported solution values using cbSetSolution, you can optionally call cbUseSolution in a GRB.Callback.MIPNODE
callback to immediately use these values to try to compute a heuristic solution. Alternatively, you can call cbUseSolution
in a GRB.Callback.MIP or GRB.Callback.MIPSOL callback, which will store the solution until it can be processed in-
ternally.

Return value:
The objective value for the solution obtained from your solution values (or GRB.INFINITY if no improved
solution is found).

Example usage:
def mycallback(model, where):

if where == GRB.Callback.MIPNODE:
model.cbSetSolution(vars, newsolution)
objval = model.cbUseSolution()

model.optimize(mycallback)

Model.chgCoeff()
chgCoeff (constr, var, newvalue)

Change one coefficient in the model. The desired change is captured using a Var object, a Constr object, and
a desired coefficient for the specified variable in the specified constraint. If you make multiple changes to the same
coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you update the model
(using Model.update), optimize the model (using Model.optimize), or write the model to disk (using Model.write).

Arguments:
constr: Constraint for coefficient to be changed.
var: Variable for coefficient to be changed.
newvalue: Desired new value for coefficient.

Example usage:

450

model.chgCoeff(c0, x, 2.0)

Model.computeIIS()

computeIIS (void)

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and variable bounds
with the following properties:

• It is still infeasible, and

• If a single constraint or bound is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily the smallest
one; there may exist others with fewer constraints or bounds.

IIS results are returned in a number of attributes: IISConstr, IISLB, IISUB, IISSOS, IISQConstr, and IISGen-
Constr. Each indicates whether the corresponding model element is a member of the computed IIS.

The IIS log provides information about the progress of the algorithm, including a guess at the eventual IIS size.
If an IIS computation is interrupted before completion, Gurobi will return the smallest infeasible subsystem found

to that point.
The IISConstrForce, IISLBForce, IISUBForce, IISSOSForce, IISQConstrForce, and IISGenConstrForce attributes

allow you mark model elements to either include or exclude from the computed IIS. Setting the attribute to 1 forces
the corresponding element into the IIS, setting it to 0 forces it out of the IIS, and setting it to -1 allows the algorithm
to decide.

To give an example of when these attributes might be useful, consider the case where an initial model is known
to be feasible, but it becomes infeasible after adding constraints or tightening bounds. If you are only interested
in knowing which of the changes caused the infeasibility, you can force the unmodified bounds and constraints into
the IIS. That allows the IIS algorithm to focus exclusively on the new constraints, which will often be substantially
faster.

Note that setting any of the Force attributes to 0 may make the resulting subsystem feasible, which would
then make it impossible to construct an IIS. Trying anyway will result in a GRB_ERROR_IIS_NOT_INFEASIBLE error.
Similarly, setting this attribute to 1 may result in an IIS that is not irreducible. More precisely, the system would
only be irreducible with respect to the model elements that have force values of -1 or 0.

This method populates the IISConstr, IISQConstr, and IISGenConstr constraint attributes, the IISSOS, SOS
attribute, and the IISLB and IISUB variable attributes. You can also obtain information about the results of the
IIS computation by writing an .ilp format file (see Model.write). This file contains only the IIS from the original
model.

Use the IISMethod parameter to adjust the behavior of the IIS algorithm.
Note that this method can be used to compute IISs for both continuous and MIP models.
Example usage:

model.computeIIS()
model.write("model.ilp")

Model.copy()

copy ()

Copy a model. Note that due to the lazy update approach in Gurobi, you have to call update before copying it.
Return value:

Copy of model.
Example usage:

model.update() # If you have unstaged changes in the model
copy = model.copy()

451

Model.discardConcurrentEnvs()
discardConcurrentEnvs ()

Discard concurrent environments for a model.
The concurrent environments created by getConcurrentEnv will be used by every subsequent call to the concurrent

optimizer until the concurrent environments are discarded.
Example usage:

env0 = model.getConcurrentEnv(0)
env1 = model.getConcurrentEnv(1)

env0.setParam('Method', 0)
env1.setParam('Method', 1)

model.optimize()

model.discardConcurrentEnvs()

Model.discardMultiobjEnvs()
discardMultiobjEnvs ()

Discard all multi-objective environments associated with the model, thus restoring multi objective optimization
to its default behavior.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple objective functions
and control the trade-off between them.

Use getMultiobjEnv to create a multi-objective environment.
Example usage:

env0 = model.getMultiobjEnv(0)
env1 = model.getMultiobjEnv(1)

env0.setParam('Method', 2)
env1.setParam('Method', 1)

model.optimize()

model.discardMultiobjEnvs()

Model.dispose()
dispose ()

Free all resources associated with this Model object. After this method is called, this Model object must no
longer be used.

Example usage:
env = Env()
model = read("misc07.mps", env)
model.optimize()
model.dispose()
env.dispose()

Model.feasRelaxS()
feasRelaxS (relaxobjtype, minrelax, vrelax, crelax)

452

Modifies the Model object to create a feasibility relaxation. Note that you need to call optimize on the result to
compute the actual relaxed solution. Note also that this is a simplified version of this method - use feasRelax for
more control over the relaxation performed.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the solution violates the
bounds and linear constraints of the original model. This method provides a number of options for specifying the
relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the sum of the magnitudes
of the bound and constraint violations.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the sum of the squares
of the bound and constraint violations.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the total number of bound
and constraint violations.

To give an example, if a constraint is violated by 2.0, it would contribute 2.0 to the feasibility relaxation
objective for relaxobjtype=0, it would contribute 2.0*2.0 for relaxobjtype=1, and it would contribute 1.0 for
relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is created. If minrelax=False,
optimizing the returned model gives a solution that minimizes the cost of the violation. If minrelax=True, optimizing
the returned model finds a solution that minimizes the original objective, but only from among those solutions that
minimize the cost of the violation. Note that feasRelaxS must solve an optimization problem to find the minimum
possible relaxation when minrelax=True, which can be quite expensive.

Note that this is a destructive method: it modifies the model on which it is invoked. If you don’t want to modify
your original model, use copy to create a copy before invoking this method.

Arguments:
relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vrelax: Indicates whether variable bounds can be relaxed.
crelax: Indicates whether constraints can be relaxed.

Return value:
Zero if minrelax is False. If minrelax is True, the return value is the objective value for the relaxation
performed. If the value is less than 0, it indicates that the method failed to create the feasibility relaxation.

Example usage:
if model.status == GRB.INFEASIBLE:

model.feasRelaxS(1, False, False, True)
model.optimize()

Model.feasRelax()

feasRelax (relaxobjtype, minrelax, vars, lbpen, ubpen, constrs, rhspen)

Modifies the Model object to create a feasibility relaxation. Note that you need to call optimize on the result to
compute the actual relaxed solution. Note also that this is a more complex version of this method - use feasRelaxS
for a simplified version.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the solution violates the
bounds and linear constraints of the original model. This method provides a number of options for specifying the
relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the sum of the weighted
magnitudes of the bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the cost per
unit violation in the lower bounds, upper bounds, and linear constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the weighted sum of the
squares of the bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the coefficients on
the squares of the lower bound, upper bound, and linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the weighted count of
bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the cost of violating a lower
bound, upper bound, and linear constraint, respectively.

453

To give an example, if a constraint with rhspen value p is violated by 2.0, it would contribute 2*p to the feasibility
relaxation objective for relaxobjtype=0, it would contribute 2*2*p for relaxobjtype=1, and it would contribute p
for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is created. If minrelax=False,
optimizing the returned model gives a solution that minimizes the cost of the violation. If minrelax=True, optimizing
the returned model finds a solution that minimizes the original objective, but only from among those solutions that
minimize the cost of the violation. Note that feasRelax must solve an optimization problem to find the minimum
possible relaxation when minrelax=True, which can be quite expensive.

Note that this is a destructive method: it modifies the model on which it is invoked. If you don’t want to modify
your original model, use copy to create a copy before invoking this method.

Arguments:
relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vars: Variables whose bounds are allowed to be violated.
lbpen: Penalty for violating a variable lower bound. One entry for each variable in argument vars.
ubpen: Penalty for violating a variable upper bound. One entry for each variable in argument vars.
constrs: Linear constraints that are allowed to be violated.
rhspen: Penalty for violating a linear constraint. One entry for each constraint in argument constrs.

Return value:
Zero if minrelax is False. If minrelax is True, the return value is the objective value for the relaxation
performed. If the value is less than 0, it indicates that the method failed to create the feasibility relaxation.

Example usage:
if model.status == GRB.INFEASIBLE:

vars = model.getVars()
ubpen = [1.0]*model.numVars
model.feasRelax(1, False, vars, None, ubpen, None, None)
model.optimize()

Model.fixed()
fixed ()

Create the fixed model associated with a MIP model. The MIP model must have a solution loaded (e.g., after
a call to the optimize method). In the fixed model, each integer variable is fixed to the value that variable takes in
the MIP solution. In addition, continuous variables may be fixed to satisfy SOS or general constraints. The result is
a model without any integrality constraints, SOS constraints, or general constraints.

Note that, while the fixed problem is always a continuous model, it may contain a non-convex quadratic objective
or non-convex quadratic constraints. As a result, it may still be solved using the MIP algorithm.

Return value:
Fixed model associated with calling object.

Example usage:
fixed = model.fixed()

Model.getA()
getA ()

Query the linear constraint matrix of the model. You’ll need to have scipy installed for this function to work.
Arguments:
Return value:

The matrix as a scipy.sparse matrix in CSR format.
Example usage:

A = model.getA()
sense = numpy.array(model.getAttr("Sense",model.getConstrs()))
extract sub matrices of (in)equality constraints
Aeq = A[sense == '=', :]

454

Ale = A[sense == '<', :]
Age = A[sense == '>', :]

Model.getAttr()
getAttr (attrname, objs=None)

Query the value of an attribute. When called with a single argument, it returns the value of a model attribute.
When called with two arguments, it returns the value of an attribute for either a list or a dictionary containing either
variables or constraints. If called with a list, the result is a list. If called with a dictionary, the result is a dictionary
that uses the same keys, but is populated with the requested attribute values. The full list of available attributes can
be found in the Attributes section.

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried. Raises a GurobiError if
there is a problem with the Model object.

Arguments:
attrname: Name of the attribute.
objs (optional): List or dictionary containing either constraints or variables

Example usage:
print(model.numintvars)
print(model.getAttr("numIntVars"))
print(model.getAttr(GRB.Attr.NumIntVars))
print(model.getAttr("X", model.getVars()))
print(model.getAttr("Pi", model.getConstrs()))

Model.getCoeff()
getCoeff (constr, var)

Query the coefficient of variable var in linear constraint constr (note that the result can be zero).
Arguments:

constr: The requested constraint.
var: The requested variable.

Return value:
The current value of the requested coefficient.

Example usage:
print(model.getCoeff(constr, var))

Model.getCol()
getCol (var)

Retrieve the list of constraints in which a variable participates, and the associated coefficients. The result is
returned as a Column object.

Arguments:
var: The variable of interest.

Return value:
A Column object that captures the set of constraints in which the variable participates.

Example usage:
print(model.getCol(model.getVars()[0]))

Model.getConcurrentEnv()
getConcurrentEnv (num)

Create/retrieve a concurrent environment for a model.

455

This method provides fine-grained control over the concurrent optimizer. By creating your own concurrent
environments and setting appropriate parameters on these environments (e.g., the Method parameter), you can control
exactly which strategies the concurrent optimizer employs. For example, if you create two concurrent environments,
and set Method to primal simplex for one and dual simplex for the other, subsequent concurrent optimizer runs will
use the two simplex algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with num=0. For example,
if you want three concurrent environments, they must be numbered 0, 1, and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent optimization on
that model. Use discardConcurrentEnvs to revert back to default concurrent optimizer behavior.

Arguments:
num (int): The concurrent environment number.

Return value:
The concurrent environment for the model.

Example usage:
env0 = model.getConcurrentEnv(0)
env1 = model.getConcurrentEnv(1)

env0.setParam('Method', 0)
env1.setParam('Method', 1)

model.optimize()

model.discardConcurrentEnvs()

Model.getConstrByName()
getConstrByName (name)

Retrieve a linear constraint from its name. If multiple linear constraints have the same name, this method chooses
one arbitrarily.

Arguments:
name: Name of desired constraint.

Return value:
Constraint with the specified name.

Example usage:
c0 = model.getConstrByName("c0")

Model.getConstrs()
getConstrs ()

Retrieve a list of all linear constraints in the model.
Return value:

All linear constraints in the model.
Example usage:

constrs = model.getConstrs()
c0 = constrs[0]

Model.getGenConstrMax()
getGenConstrMax (genconstr)

Retrieve the data associated with a general constraint of type MAX. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

456

See also addGenConstrMax for a description of the semantics of this general constraint type.
Arguments:

genconstr: The general constraint object of interest.
Return value:

A tuple (resvar, vars, constant) that contains the data associated with the general constraint:
resvar (Var): Resultant variable of the MAX constraint.
vars (list of Var): Operand variables of the MAX constraint.
constant (float): Additional constant operand of the MAX constraint.

Example usage:
x5 = max(x1, x3, x4, 2.0)
maxconstr = model.addGenConstrMax(x5, [x1, x3, x4], 2.0, "maxconstr")
model.update()
(resvar, vars, constant) = model.getGenConstrMax(maxconstr)

Model.getGenConstrMin()
getGenConstrMin (genconstr)

Retrieve the data associated with a general constraint of type MIN. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrMin for a description of the semantics of this general constraint type.
Arguments:

genconstr: The general constraint object of interest.
Return value:

A tuple (resvar, vars, constant) that contains the data associated with the general constraint:
resvar (Var): Resultant variable of the MIN constraint.
vars (list of Var): Operand variables of the MIN constraint.
constant (float): Additional constant operand of the MIN constraint.

Example usage:
x5 = min(x1, x3, x4, 2.0)
minconstr = model.addGenConstrMin(x5, [x1, x3, x4], 2.0, "minconstr")
model.update()
(resvar, vars, constant) = model.getGenConstrMin(minconstr)

Model.getGenConstrAbs()
getGenConstrAbs (genconstr)

Retrieve the data associated with a general constraint of type ABS. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrAbs for a description of the semantics of this general constraint type.
Arguments:

genconstr: The general constraint object of interest.
Return value:

A tuple (resvar, argvar) that contains the data associated with the general constraint:
resvar (Var): Resultant variable of ABS constraint.
argvar (Var): Argument variable of ABS constraint.

Example usage:
x5 = abs(x1)
absconstr = model.addGenConstrAbs(x5, x1, "absconstr")
model.update()
(resvar, argvar) = model.getGenConstrAbs(absconstr)

457

Model.getGenConstrAnd()
getGenConstrAnd (genconstr)

Retrieve the data associated with a general constraint of type AND. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrAnd for a description of the semantics of this general constraint type.
Arguments:

genconstr: The general constraint object of interest.
Return value:

A tuple (resvar, vars) that contains the data associated with the general constraint:
resvar (Var): Resultant variable of AND constraint.
vars (list of Var): Operand variables of AND constraint.

Example usage:
x5 = and(x1, x3, x4)
andconstr = model.addGenConstrAnd(x5, [x1, x3, x4], "andconstr")
model.update()
(resvar, vars) = model.getGenConstrAnd(andconstr)

Model.getGenConstrOr()
getGenConstrOr (genconstr)

Retrieve the data associated with a general constraint of type OR. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrOr for a description of the semantics of this general constraint type.
Arguments:

genconstr: The general constraint object of interest.
Return value:

A tuple (resvar, vars) that contains the data associated with the general constraint:
resvar (Var): Resultant variable of OR constraint.
vars (list of Var): Operand variables of OR constraint.

Example usage:
x5 = or(x1, x3, x4)
orconstr = model.addGenConstrOr(x5, [x1, x3, x4], "orconstr")
model.update()
(resvar, vars) = model.getGenConstrOr(orconstr)

Model.getGenConstrNorm()
getGenConstrNorm (genconstr)

Retrieve the data associated with a general constraint of type NORM. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrNorm for a description of the semantics of this general constraint type.
Arguments:

genconstr: The general constraint object of interest.
Return value:

A tuple (resvar, vars, which) that contains the data associated with the general constraint:
resvar (Var): Resultant variable of NORM constraint.
vars (list of Var): Operand variables of NORM constraint.
which (float): Which norm (possible values are 0, 1, 2, or GRB.INFINITY).

Example usage:

458

x5 = norm2(x1, x3, x4)
normconstr = model.addGenConstrNorm(x5, [x1, x3, x4], 2.0, "normconstr")
model.update()
(resvar, vars, which) = model.getGenConstrNorm(normconstr)

Model.getGenConstrIndicator()
getGenConstrIndicator (genconstr)

Retrieve the data associated with a general constraint of type INDICATOR. Calling this method for a general
constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the
type of the general constraint.

See also addGenConstrIndicator for a description of the semantics of this general constraint type.
Arguments:

genconstr: The general constraint object of interest.
Return value:

A tuple (binvar, binval, expr, sense, rhs) that contains the data associated with the general constraint:
binvar (Var): Antecedent variable of indicator constraint.
binval (Boolean): Value of antecedent variable that activates the linear constraint.
expr (LinExpr): LinExpr object containing the left-hand side of the constraint triggered by the indicator.
sense (char): Sense of linear constraint triggered by the indicator (e.g., GRB.LESS_EQUAL).
rhs (float): Right-hand side of linear constraint triggered by the indicator.

Example usage:
x7 = 1 -> x1 + 2 x3 + x4 = 1
indconstr = model.addGenConstrIndicator(x7, True, x1 + 2*x2 + x4, GRB.EQUAL, 1.0)
model.update()
(binvar, binval, expr, sense, rhs) = model.getGenConstr(indconstr)

Model.getGenConstrPWL()
getGenConstrPWL (genconstr)

Retrieve the data associated with a general constraint of type PWL. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrPWL for a description of the semantics of this general constraint type.
Arguments:

genc: The general constraint object.
Return value:

A tuple (xvar, yvar, xpts, ypts) that contains the data associated with the general constraint:
xvar (Var): The x variable.
yvar (Var): The y variable.
xpts (list of float): The x values for the points that define the piecewise-linear function.
ypts (list of float): The y values for the points that define the piecewise-linear function.

Example usage:
pwlconstr = model.addGenConstrPWL(x, y, [0, 1, 2], [1.5, 0, 3], "myPWLConstr")
model.update()
(xvar, yvar, xpts, ypts) = model.getGenConstrPWL(pwlconstr)

Model.getGenConstrPoly()
getGenConstrPoly (genconstr)

459

Retrieve the data associated with a general constraint of type POLY. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrPoly for a description of the semantics of this general constraint type.
Arguments:

genc: The general constraint object.
Return value:

A tuple (xvar, yvar, p) that contains the data associated with the general constraint:
xvar (Var): The x variable.
yvar (Var): The y variable.
p (list of float): The coefficients for polynomial function.

Example usage:
y = 2 x^3 + 1.5 x^2 + 1
polyconstr = model.addGenConstrPoly(x, y, [2, 1.5, 0, 1])
model.update()
(xvar, yvar, p) = model.getGenConstrPoly(polyconstr)

Model.getGenConstrExp()
getGenConstrExp (genconstr)

Retrieve the data associated with a general constraint of type EXP. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrExp for a description of the semantics of this general constraint type.
Arguments:

genc: The general constraint object.
Return value:

A tuple (xvar, yvar) that contains the data associated with the general constraint:
xvar (Var): The x variable.
yvar (Var): The y variable.

Example usage:
y = exp(x)
expconstr = model.addGenConstrExp(x, y)
model.update()
(xvar, yvar) = model.getGenConstrExp(expconstr)

Model.getGenConstrExpA()
getGenConstrExpA (genconstr)

Retrieve the data associated with a general constraint of type EXPA. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrExpA for a description of the semantics of this general constraint type.
Arguments:

genc: The general constraint object.
Return value:

A tuple (xvar, yvar, a) that contains the data associated with the general constraint:
xvar (Var): The x variable.
yvar (Var): The y variable.
a (float): The base of the function.

Example usage:
y = 3^x
expaconstr = model.addGenConstrExpA(x, y, 3.0, "expa")
model.update()

460

(xvar, yvar, a) = model.getGenConstrExpA(expaconstr)

Model.getGenConstrLog()
getGenConstrLog (genconstr)

Retrieve the data associated with a general constraint of type LOG. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrLog for a description of the semantics of this general constraint type.
Arguments:

genc: The general constraint object.
Return value:

A tuple (xvar, yvar) that contains the data associated with the general constraint:
xvar (Var): The x variable.
yvar (Var): The y variable.

Example usage:
y = ln(x)
lnconstr = model.addGenConstrLog(x, y)
model.update()
(xvar, yvar) = model.getGenConstrLog(lnconstr)

Model.getGenConstrLogA()
getGenConstrLogA (genconstr)

Retrieve the data associated with a general constraint of type LOGA. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrLogA for a description of the semantics of this general constraint type.
Arguments:

genc: The general constraint object.
Return value:

A tuple (xvar, yvar, a) that contains the data associated with the general constraint:
xvar (Var): The x variable.
yvar (Var): The y variable.
a (float): The base of the function.

Example usage:
y = log10(x)
log10constr = model.addGenConstrLogA(x, y, 10.0, "log10")
model.update()
(xvar, yvar, a) = model.getGenConstrLogA(log10constr)

Model.getGenConstrLogistic()
getGenConstrLogistic (genconstr)

Retrieve the data associated with a general constraint of type LOGISTIC. Calling this method for a general
constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the
type of the general constraint.

See also addGenConstrLogistic for a description of the semantics of this general constraint type.
Arguments:

genc: The general constraint object.
Return value:

A tuple (xvar, yvar) that contains the data associated with the general constraint:

461

xvar (Var): The x variable.
yvar (Var): The y variable.

Example usage:
y = 1 / (1 + exp(-x))
expconstr = model.addGenConstrLogistic(x, y)
model.update()
(xvar, yvar) = model.getGenConstrLogistic(expconstr)

Model.getGenConstrPow()

getGenConstrPow (genconstr)

Retrieve the data associated with a general constraint of type POW. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrPow for a description of the semantics of this general constraint type.
Arguments:

genc: The general constraint object.
Return value:

A tuple (xvar, yvar, a) that contains the data associated with the general constraint:
xvar (Var): The x variable.
yvar (Var): The y variable.
a (float): The exponent of the function.

Example usage:
y = x^3.5
powconstr = model.addGenConstrPow(x, y, 3.5, "gf")
model.update()
(xvar, yvar, a) = model.getGenConstrPow(powconstr)

Model.getGenConstrSin()

getGenConstrSin (genconstr)

Retrieve the data associated with a general constraint of type SIN. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrSin for a description of the semantics of this general constraint type.
Arguments:

genc: The general constraint object.
Return value:

A tuple (xvar, yvar) that contains the data associated with the general constraint:
xvar (Var): The x variable.
yvar (Var): The y variable.

Example usage:
y = sin(x)
sinconstr = model.addGenConstrSin(x, y)
model.update()
(xvar, yvar) = model.getGenConstrSin(sinconstr)

Model.getGenConstrCos()

getGenConstrCos (genconstr)

462

Retrieve the data associated with a general constraint of type COS. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrCos for a description of the semantics of this general constraint type.
Arguments:

genc: The general constraint object.
Return value:

A tuple (xvar, yvar) that contains the data associated with the general constraint:
xvar (Var): The x variable.
yvar (Var): The y variable.

Example usage:
y = cos(x)
cosconstr = model.addGenConstrCos(x, y)
model.update()
(xvar, yvar) = model.getGenConstrCos(cosconstr)

Model.getGenConstrTan()
getGenConstrTan (genconstr)

Retrieve the data associated with a general constraint of type TAN. Calling this method for a general constraint
of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the
general constraint.

See also addGenConstrTan for a description of the semantics of this general constraint type.
Arguments:

genc: The general constraint object.
Return value:

A tuple (xvar, yvar) that contains the data associated with the general constraint:
xvar (Var): The x variable.
yvar (Var): The y variable.

Example usage:
y = tan(x)
tanconstr = model.addGenConstrTan(x, y)
model.update()
(xvar, yvar) = model.getGenConstrTan(tanconstr)

Model.getGenConstrs()
getGenConstrs ()

Retrieve a list of all general constraints in the model.
Return value:

All general constraints in the model.
Example usage:

gencons = model.getGenConstrs()
for gc in gencons:

print(model.getGenConstr(gc))

Model.getJSONSolution()
getJSONSolution ()

After a call to optimize, this method returns the resulting solution and related model attributes as a JSON string.
Please refer to the JSON solution format section for details.

Return value:

463

A JSON string.
Example usage:

model = read('p0033.mps')
model.optimize()
print(model.getJSONSolution())

Model.getMultiobjEnv()
getMultiobjEnv (index)

Create/retrieve a multi-objective environment for the objective with the given index. This environment enables
fine-grained control over the multi-objective optimization process. Specifically, by changing parameters on this
environment, you modify the behavior of the optimization that occurs during the corresponding pass of the multi-
objective optimization.

Each multi-objective environment starts with a copy of the current model environment.
Please refer to the discussion of Multiple Objectives for information on how to specify multiple objective functions

and control the trade-off between them.
Use discardMultiobjEnvs to discard multi-objective environments and return to standard behavior.
Arguments:

index (int): The objective index.
Return value:

The multi-objective environment for the model.
Example usage:

env0 = model.getMultiobjEnv(0)
env1 = model.getMultiobjEnv(1)

env0.setParam('TimeLimit', 100)
env1.setParam('TimeLimit', 10)

model.optimize()

model.discardMultiobjEnvs()

Model.getObjective()
getObjective (index=None)

Retrieve the model objective(s).
Call this with no argument to retrieve the primary objective, or with an integer argument to retrieve the corre-

sponding alternative objective.
Arguments:

index (int, optional): The index for the requested alternative objective.
Return value:

The model objective. A LinExpr object for a linear objective, or a QuadExpr object for a quadratic objective.
Note that alternative objectives are always linear.

Example usage:
obj = model.getObjective()
print(obj.getValue())

Model.getParamInfo()
getParamInfo (paramname)

Retrieve information about a Gurobi parameter, including the type, the current value, the minimum and maxi-
mum allowed values, and the default value.

464

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their
purposes and their minimum, maximum, and default values.

Arguments:
paramname: String containing the name of the parameter of interest. The name can include ’*’ and ’?’
wildcards. If more than one parameter matches, the matching names are listed and the method returns
None.

Return value:
Returns a 6-entry tuple that contains: the parameter name, the parameter type, the current value, the
minimum value, the maximum value, and the default value.

Example usage:
print(model.getParamInfo('Heuristics'))

Model.getPWLObj()
getPWLObj (var)

Retrieve the piecewise-linear objective function for a variable. The function returns a list of tuples, where each
provides the x and y coordinates for the points that define the piecewise-linear objective function.

Refer to this discussion for additional information on what the values in x and y mean.
Arguments:

var: A Var object that gives the variable whose objective function is being retrieved.
Return value:

The points that define the piecewise-linear objective function.
Example usage:

> print(model.getPWLObj(var))
[(1, 1), (2, 2), (3, 4)]

Model.getQConstrs()
getQConstrs ()

Retrieve a list of all quadratic constraints in the model.
Return value:

All quadratic constraints in the model.
Example usage:

qconstrs = model.getQConstrs()
qc0 = qconstrs[0]

Model.getQCRow()
getQCRow (qconstr)

Retrieve the left-hand side expression from a quadratic constraint. The result is returned as a QuadExpr object.
Arguments:

qconstr: The constraint of interest. A QConstr object, typically obtained from addQConstr or getQConstrs.
Return value:

A QuadExpr object that captures the left-hand side of the quadratic constraint.
Example usage:

print(model.getQCRow(model.getQConstrs()[0]))

Model.getRow()
getRow (constr)

465

Retrieve the list of variables that participate in a constraint, and the associated coefficients. The result is returned
as a LinExpr object.

Arguments:
constr: The constraint of interest. A Constr object, typically obtained from addConstr or getConstrs.

Return value:
A LinExpr object that captures the set of variables that participate in the constraint.

Example usage:
constrs = model.getConstrs()
print(model.getRow(constrs[0]))

Model.getSOS()
getSOS (sos)

Retrieve information about an SOS constraint. The result is a tuple that contains the SOS type (1 or 2), the list
of participating Var objects, and the list of associated SOS weights.

Arguments:
sos: The SOS constraint of interest. An SOS object, typically obtained from addSOS or getSOSs.

Return value:
A tuple that contains the SOS type (1 or 2), a list of participating Var objects, and a list of associated SOS
weights.

Example usage:
(sostype, vars, weights) = model.getSOS(model.getSOSs()[0])

Model.getSOSs()
getSOSs ()

Retrieve a list of all SOS constraints in the model.
Return value:

All SOS constraints in the model.
Example usage:

sos = model.getSOSs()
for s in sos:

print(model.getSOS(s))

Model.getTuneResult()
getTuneResult ()

Use this routine to retrieve the results of a previous tune call. Calling this method with argument n causes tuned
parameter set n to be copied into the model. Parameter sets are stored in order of decreasing quality, with parameter
set 0 being the best. The number of available sets is stored in attribute TuneResultCount.

Once you have retrieved a tuning result, you can call optimize to use these parameter settings to optimize the
model, or write to write the changed parameters to a .prm file.

Please refer to the parameter tuning section for details on the tuning tool.
Arguments:

n: The index of the tuning result to retrieve. The best result is available as index 0. The number of stored
results is available in attribute TuneResultCount.

Example usage:
model.tune()
for i in range(model.tuneResultCount):

model.getTuneResult(i)
model.write('tune'+str(i)+'.prm')

466

Model.getVarByName()

getVarByName (name)

Retrieve a variable from its name. If multiple variables have the same name, this method chooses one arbitrarily.
Arguments:

name: Name of desired variable.
Return value:

Variable with the specified name.
Example usage:

x0 = model.getVarByName("x0")

Model.getVars()

getVars ()

Retrieve a list of all variables in the model.
Return value:

All variables in the model.
Example usage:

vars = model.getVars()
x0 = vars[0]

Model.message()

message (msg)

Append a string to the Gurobi log file.
Arguments:

msg: String to append to Gurobi log file.
Example usage:

model.message('New message')

Model.optimize()

optimize (callback=None)

Optimize the model. The algorithm used for the optimization depends on the model type (simplex or barrier for
a continuous model; branch-and-cut for a MIP model). Upon successful completion, this method will populate the
solution related attributes of the model. See the Attributes section for more information on attributes.

Please consult this section for a discussion of some of the practical issues associated with solving a precisely
defined mathematical model using finite-precision floating-point arithmetic.

Note that this method will process all pending model modifications.
Arguments:

callback: Callback function. The callback function should take two arguments, model and where. During
the optimization, the function will be called periodically, with model set to the model being optimized,
and where indicating where in the optimization the callback is called from. See the Callback class for
additional information.

Example usage:
model.optimize()

467

Model.optimizeBatch()
optimizeBatch ()

Submit a new batch request to the Cluster Manager. Returns the BatchID (a string), which uniquely identifies
the job in the Cluster Manager and can be used to query the status of this request (from this program or from any
other). Once the request has completed, the BatchID can also be used to retrieve the associated solution. To submit a
batch request, you must tag at least one element of the model by setting one of the VTag, CTag or QCTag attributes.
For more details on batch optimization, please refer to the Batch Optimization section.

Note that this routine will process all pending model modifications.
Example usage:

Submit batch request
batchID = model.optimizeBatch ()

Return value:
A unique string identifier for the batch request.

Model.presolve()
presolve ()

Perform presolve on a model.
Return value:

Presolved version of original model.
Example usage:

p = model.presolve()
p.printStats()

Model.printAttr()
printAttr (attrs, filter=’*’)

Print the value of one or more attributes. If attrs is a constraint or variable attribute, print all non-zero values
of the attribute, along with the associated constraint or variable names. If attrs is a list of attributes, print attribute
values for all listed attributes. The method takes an optional filter argument, which allows you to select which
specific attribute values to print (by filtering on the constraint or variable name).

See the Attributes section for a list of all available attributes.
Arguments:

attrs: Name of attribute or attributes to print. The value can be a single attribute or a list of attributes.
If a list is given, all listed attributes must be of the same type (model, variable, or constraint).

filter (optional): Filter for values to print -- name of constr/var must match filter to be printed.
Example usage:

model.printAttr('x') # all non-zero solution values
model.printAttr('lb', 'x*') # bounds for vars whose names begin with 'x'
model.printAttr(['lb', 'ub']) # lower and upper bounds

Model.printQuality()
printQuality ()

Print statistics about the quality of the computed solution (constraint violations, integrality violations, etc.).
For continuous models, the output will include the maximum unscaled and scaled violation, as well as the

variable or constraint name associated with the worst unscaled violation. For MIP models, the output will include
the maximum unscaled violation and the associated variable or constraint name.

Example usage:

468

model.optimize()
model.printQuality()

Model.printStats()
printStats ()

Print statistics about the model (number of constraints and variables, number of non-zeros in constraint matrix,
smallest and largest coefficients, etc.).

Example usage:
model.printStats()

Model.read()
read (filename)

This method is the general entry point for importing data from a file into a model. It can be used to read basis
files for continuous models, start vectors for MIP models, or parameter settings. The type of data read is determined
by the file suffix. File formats are described in the File Format section.

Note that this is not the method to use if you want to read a new model from a file. For that, use the read
command.

Arguments:
filename: Name of the file to read. The suffix on the file must be either .bas (for an LP basis), .mst or .sol
(for a MIP start), .hnt (for MIP hints), .ord (for a priority order), or .prm (for a parameter file). The
suffix may optionally be followed by .zip, .gz, .bz2, or .7z. The file name may contain * or ? wildcards.
No file is read when no wildcard match is found. If more than one match is found, this method will attempt
to read the first matching file.

Example usage:
model.read('input.bas')
model.read('input.mst')

Model.relax()
relax ()

Create the relaxation of a MIP model. Transforms integer variables into continuous variables, and removes SOS
and general constraints.

Return value:
Relaxed version of model.

Example usage:
r = model.relax()

Model.remove()
remove (items)

Remove variables, linear constraints, quadratic constraints, SOS constraints, or general constraints from a model.
Arguments:

items: The items to remove from the model. Argument can be a single Var, MVar, Constr, MConstr,
QConstr, MQConstr, SOS, or GenConstr, or a list, tuple, or dict containing these objects. If the
argument is a dict, the values will be removed, not the keys.

Example usage:
model.remove(model.getVars()[0])
model.remove(model.getVars()[0:10])

469

model.remove(model.getConstrs()[0])
model.remove(model.getConstrs()[1:3])
model.remove(model.getQConstrs()[0])
model.remove(model.getSOSs()[0])
model.remove(model.getGenConstrs()[0])

Model.reset()

reset (clearall=0)

Reset the model to an unsolved state, discarding any previously computed solution information.
Arguments:

clearall (int, optional): A value of 1 discards additional information that affects the solution process
but not the actual model (currently MIP starts, variable hints, branching priorities, lazy flags, and partition
information). The default value just discards the solution.

Example usage:
model.reset(0)

Model.resetParams()

resetParams ()

Reset all parameters to their default values.
Example usage:

model.resetParams()

Model.setAttr()

setAttr (attrname, objects, newvalues)

Change the value of an attribute.
Call this method with two arguments (i.e., setAttr(attrname, newvalue)) to set a model attribute.
Call it with three arguments (i.e., setAttr(attrname, objects, newvalues)) to set attribute values for a list or

dict of model objects (Var objects, Constr objects, etc.). To set the same value for all objects in the second argument,
you can pass a scalar value in the third argument. If the second argument is a list, the third argument should be a
list of the same length. If the second argument is a dict, the third argument should be dict with a value for every
key from the second.

The full list of available attributes can be found in the Attributes section.
Raises an AttributeError if the specified attribute doesn’t exist or can’t be set. Raises a GurobiError if there

is a problem with the Model object.
Note that, due to our lazy update approach, the change won’t actually take effect until you update the model

(using Model.update), optimize the model (using Model.optimize), or write the model to disk (using Model.write).
Arguments:

attrname: Name of attribute to set.
objs: List of model objects (Var or Constr or ...)
newvalue: Desired new value(s) for attribute.

Example usage:
model.setAttr("objCon", 0)
model.setAttr(GRB.Attr.ObjCon, 0)
model.setAttr("LB", model.getVars(), [0]*model.numVars)
model.setAttr("RHS", model.getConstrs(), [1.0]*model.numConstrs)
model.setAttr("vType", model.getVars(), GRB.CONTINUOUS)
model.objcon = 0

470

Model.setMObjective()
setMObjective (Q, c, constant, xQ_L=None, xQ_R=None, xc=None, sense=None)

Set the model objective equal to a quadratic (or linear) expression using matrix semantics.
Note that you will typically use overloaded operators to set the objective using matrix objects. The overloaded

@ operator can be used to build a linear matrix expression or a quadratic matrix expression, which is then passed to
setObjective.

Arguments:
Q: The quadratic objective matrix - a NumPy 2-D dense ndarray or a SciPy sparse matrix. This can be None
if there are no quadratic terms.

c: The linear constraint vector - a NumPy 1-D ndarray. This can be None if there are no linear terms.
constant: Objective constant.
xQ_L (optional): Decision variables for quadratic objective terms; left multiplier for Q. Argument can be
an MVar object, a list of Var objects, or None (None uses all variables in the model). The length of the
argument must match the size of the first dimension of Q.

xQ_R (optional): Decision variables for quadratic objective terms; right multiplier for Q. The length of the
argument must match the size of the second dimension of Q.

xc (optional): Decision variables for linear objective terms. Argument can be an MVar object, a list of
Var objects, or None (None uses all variables in the model). The length of the argument must match the
length of c.

sense (optional): Optimization sense (GRB.MINIMIZE for minimization, GRB.MAXIMIZE for maximization).
Omit this argument to use the ModelSense attribute value to determine the sense.

Example usage:
c = np.full(10, 1.0)
xc = model.addMVar(10)

model.setMObjective(None, c, 0.0, None, None, xc, GRB.MAXIMIZE)

Q = np.full((2, 3), 1.0)
xL = model.addMVar(2)
xR = model.addMVar(3)

model.setMObjective(Q, None, 0.0, xL, xR, None, GRB.MINIMIZE)

Model.setObjective()
setObjective (expr, sense=None)

Set the model objective equal to a linear or quadratic expression (for multi-objective optimization, see setObjec-
tiveN).

Note that you can also modify a linear model objective using the Obj variable attribute. If you wish to mix and
match these two approaches, please note that this method will replace the existing objective.

Arguments:
expr: New objective expression. Argument can be a linear or quadratic expression (an objective of type
LinExpr or QuadExpr).

sense (optional): Optimization sense (GRB.MINIMIZE for minimization, GRB.MAXIMIZE for maximization).
Omit this argument to use the ModelSense attribute value to determine the sense.

Example usage:
model.setObjective(x + y, GRB.MAXIMIZE)
model.setObjective(x*x + y*y)

Model.setObjectiveN()
setObjectiveN (expr, index, priority=0, weight=1, abstol=1e-6, reltol=0, name="")

471

Set an alternative optimization objective equal to a linear expression.
Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.
Note that you can also modify an alternative objective using the ObjN variable attribute. If you wish to mix

and match these two approaches, please note that this method replaces the entire existing objective, while the ObjN
attribute can be used to modify individual terms.

Arguments:
expr (LinExpr): New alternative objective.
index (int): Index for new objective. If you use an index of 0, this routine will change the primary
optimization objective.

priority (int, optional): Priority for the alternative objective. This initializes the ObjNPriority at-
tribute for this objective.

weight (float, optional): Weight for the alternative objective. This initializes the ObjNWeight attribute
for this objective.

abstol (float, optional): Absolute tolerance for the alternative objective. This initializes the ObjNAb-
sTol attribute for this objective.

reltol (float, optional): Relative tolerance for the alternative objective. This initializes the ObjNRelTol
attribute for this objective.

name (string, optional): Name of the alternative objective. This initializes the ObjNName attribute for
this objective. Note that name will be stored as an ASCII string. Thus, a name like ’A→B’ will produce
an error, because ’→’ can not be represented as an ASCII character. Note also that names that contain
spaces are strongly discouraged, because they can’t be written to LP format files.

Example usage:
Primary objective: x + 2 y
model.setObjectiveN(x + 2*y, 0, 2)
Alternative, lower priority objectives: 3 y + z and x + z
model.setObjectiveN(3*y + z, 1, 1)
model.setObjectiveN(x + z, 2, 0)

Model.setPWLObj()

setPWLObj (var, x, y)

Set a piecewise-linear objective function for a variable.
The arguments to this method specify a list of points that define a piecewise-linear objective function for a single

variable. Specifically, the x and y arguments give coordinates for the vertices of the function.
For additional details on piecewise-linear objective functions, refer to this discussion.
Arguments:

var: A Var object that gives the variable whose objective function is being set.
x: The x values for the points that define the piecewise-linear function. Must be in non-decreasing order.
y: The y values for the points that define the piecewise-linear function.

Example usage:
model.setPWLObj(var, [1, 3, 5], [1, 2, 4])

Model.setParam()

setParam (paramname, newvalue)

Set the value of a parameter to a new value. Note that this method only affects the parameter setting for this
model. Use global function setParam to change the parameter for all models.

You can also set parameters using the Model.Params class. For example, to set parameter MIPGap to value 0 for
model m, you can do either m.setParam('MIPGap', 0) or m.Params.MIPGap=0.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their
purposes and their minimum, maximum, and default values.

Arguments:

472

paramname: String containing the name of parameter that you would like to modify. The name can include
’*’ and ’?’ wildcards. If more than one parameter matches, the matching names are listed and none are
modified. Note that case is ignored.

newvalue: Desired new value for parameter. Can be ’default’, which indicates that the parameter should be
reset to its default value.

Example usage:
model.setParam("heu*", 0.5)
model.setParam(GRB.Param.heuristics, 0.5)
model.setParam("heu*", "default")

Model.singleScenarioModel()

singleScenarioModel ()

Capture a single scenario from a multi-scenario model. Use the ScenarioNumber parameter to indicate which
scenario to capture.

The model on which this method is invoked must be a multi-scenario model, and the result will be a single-scenario
model.

Return value:
Model for a single scenario.

Example usage:
model.params.ScenarioNumber = 0
s = model.singleScenarioModel()

Model.terminate()

terminate ()

Generate a request to terminate the current optimization. This method can be called at any time during an
optimization (from a callback, from another thread, from an interrupt handler, etc.). Note that, in general, the
request won’t be acted upon immediately.

When the optimization stops, the Status attribute will be equal to GRB_INTERRUPTED.
Example usage:

model.terminate()

Model.tune()

tune ()

Perform an automated search for parameter settings that improve performance. Upon completion, this method
stores the best parameter sets it found. The number of stored parameter sets can be determined by querying the
value of the TuneResultCount attribute. The actual settings can be retrieved using getTuneResult.

Please refer to the parameter tuning section for details on the tuning tool.
Example usage:

model.tune()

Model.update()

update ()

Process any pending model modifications.
Example usage:

model.update()

473

Model.write()
write (filename)

This method is the general entry point for writing optimization data to a file. It can be used to write optimization
models, solutions vectors, basis vectors, start vectors, or parameter settings. The type of data written is determined
by the file suffix. File formats are described in the File Format section.

Note that writing a model to a file will process all pending model modifications. This is also true when writing
other model information such as solutions, bases, etc.

Note also that when you write a Gurobi parameter file (PRM), both integer or double parameters not at their
default value will be saved, but no string parameter will be saved into the file.

Arguments:
filename: The name of the file to be written. The file type is encoded in the file name suffix. Valid suffixes
are .mps, .rew, .lp, or .rlp for writing the model itself, .dua or .dlp for writing the dualized model
(only pure LP), .ilp for writing just the IIS associated with an infeasible model (see Model.computeIIS
for further information), .sol for writing the solution selected by the SolutionNumber parameter, .mst for
writing a start vector, .hnt for writing a hint file, .bas for writing an LP basis, .prm for writing modified
parameter settings, .attr for writing model attributes, or .json for writing solution information in JSON
format. If your system has compression utilities installed (e.g., 7z or zip for Windows, and gzip, bzip2,
or unzip for Linux or macOS), then the files can be compressed, so additional suffixes of .gz, .bz2, or .7z
are accepted.

Example usage:
model.write("out.mst")
model.write("out.sol")

474

7.3 Var
Gurobi variable object. Variables are always associated with a particular model. You create a variable object by
adding a variable to a model (using Model.addVar), rather than by using a Var constructor.

Variable objects have a number of attributes. The full list can be found in the Attributes section of this document.
Some variable attributes can only be queried, while others can also be set. Recall that the Gurobi optimizer employs a
lazy update approach, so changes to attributes don’t take effect until the next call to Model.update, Model.optimize,
or Model.write on the associated model.

We should point out a few things about variable attributes. Consider the lb attribute. Its value can be queried
using var.lb. The Gurobi library ignores letter case in attribute names, so it can also be queried as var.LB. It can be
set using a standard assignment statement (e.g., var.lb = 0). However, as mentioned earlier, attribute modification
is done in a lazy fashion, so you won’t see the effect of the change immediately. And some attributes can not be set
(e.g., the x attribute), so attempts to assign new values to them will raise an exception.

You can also use Var.getAttr/ Var.setAttr to access attributes. The attribute name can be passed to these
routines as a string, or you can use the constants defined in the GRB.Attr class (e.g., GRB.Attr.LB).

To build expressions using variable objects, you generally use operator overloading. You can build either linear
or quadratic expressions:

expr1 = x + 2 * y + 3 * z + 4.0
expr2 = x ** 2 + 2 * x * y + 3 * z + 4.0

The first expression is linear, while the second is quadratic. An expression is typically then passed to setObjective
(to set the optimization objective) or addConstr (to add a constraint).

Var.getAttr()
getAttr (attrname)

Query the value of a variable attribute. The full list of available attributes can be found in the Attributes section.
Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried. Raises a GurobiError if

there is a problem with the Var object (e.g., it was removed from the model).
Arguments:

attrname: The attribute being queried.
Return value:

The current value of the requested attribute.
Example usage:

print(var.getAttr(GRB.Attr.X))
print(var.getAttr("x"))

Var.sameAs()
sameAs (var2)

Check whether two variable objects refer to the same variable.
Arguments:

var2: The other variable.
Return value:

Boolean result indicates whether the two variable objects refer to the same model variable.
Example usage:

print(model.getVars()[0].sameAs(model.getVars()[1]))

Var.index
index

475

This property returns the current index, or order, of the variable in the underlying constraint matrix.
Return value:

-2: removed, -1: not in model, otherwise: index of the variable in the model
Note that the index of a variable may change after subsequent model modifications.
Example usage:

v = model.getVars()[0]
print(v.index) # Index will be 0

Var.setAttr()
setAttr (attrname, newvalue)

Set the value of a variable attribute. Note that, due to our lazy update approach, the change won’t actually
take effect until you update the model (using Model.update), optimize the model (using Model.optimize), or write
the model to disk (using Model.write).

The full list of available attributes can be found in the Attributes section.
Raises an AttributeError if the specified attribute doesn’t exist or can’t be set. Raises a GurobiError if there

is a problem with the Var object (e.g., it was removed from the model).
Arguments:

attrname: The attribute being modified.
newvalue: The desired new value of the attribute.

Example usage:
var.setAttr(GRB.Attr.UB, 0.0)
var.setAttr("ub", 0.0)

476

7.4 MVar
Gurobi matrix variable object. An MVar is a NumPy ndarray of Gurobi variables. Variables are always associated
with a particular model. You typically create these objects using Model.addMVar.

Many concepts, properties and methods of the MVar class lean on equivalents in NumPy’s ndarray class. For
explanations of concepts like shape, dimensions, or broadcasting, we refer you to the NumPy documentation.

You generally use MVar objects to build matrix expressions, typically using overloaded operators. You can build
linear matrix expressions or quadratic matrix expressions:

expr1 = A @ x
expr2 = A @ x + B @ y + z
expr3 = x @ A @ x + y @ B @ y

The first two expressions are linear, while the third is quadratic.
In the examples above (and in general), A and B can be NumPy ndarray objects or any of the sparse matrix

classes defined in SciPy.sparse. Dimensions of the operands must compatible, in the usual sense of Python’s matrix
multiplication operator. For example, in the expression A@x, both A and x must have at least one dimension, and
their inner-most dimensions must agree. For a complete description of shape compatibility rules, we refer you to
Python’s documentation

An expression is typically then passed to setObjective (to set the optimization objective) or addConstr (to add
a constraint).

Variable objects have a number of attributes. The full list can be found in the Attributes section of this document.
Some variable attributes can only be queried, while others can also be set. Recall that the Gurobi optimizer employs a
lazy update approach, so changes to attributes don’t take effect until the next call to Model.update, Model.optimize,
or Model.write on the associated model.

We should point out a few things about variable attributes. Consider the lb attribute. Its value can be queried
using mvar.lb. The Gurobi library ignores letter case in attribute names, so it can also be queried as var.LB.
Attribute values are returned as a NumPy ndarray that has the same shape as mvar, where each element contains
the attribute value for the corresponding element of the MVar object. An attribute can be set, using a standard
assignment statement (e.g., var.lb = l), with l being either an ndarray with the appropriate shape, or a scalar
which is then applied to all of the associated variables. However, as mentioned earlier, attribute modification is done
in a lazy fashion, so you won’t see the effect of the change immediately. And some attributes can not be set (e.g.,
the x attribute), so attempts to assign new values to them will raise an exception.

You can also use MVar.getAttr/ MVar.setAttr to access attributes. The attribute name can be passed to these
routines as a string, or you can use the constants defined in the GRB.Attr class (e.g., GRB.Attr.LB).

MVar.copy()
copy ()

Create a copy of this MVar.
Return value:

The new object.
Example usage:

orig = model.addMVar(3)
copy = orig.copy()

MVar.diagonal()
diagonal (offset=0, axis1=0, axis2=1)

Create an MVar corresponding to the variables on the specified diagonal of this MVar.
Arguments:

offset (optional): Offset of the diagonal w.r.t. the main diagonal. Values >0 mean above it, and values
<0 below it

477

axis1 (optional): Axis to be used as the first axis of the 2-D sub-MVar from which the diagonal should
be taken. Defaults to 0. You need to consider this argument only for MVar objects with more than 2
dimensions.

axis2 (optional): Axis to be used as the second axis of the 2-D sub-MVar from which the diagonal should
be taken. Defaults to 1. You need to consider this argument only for MVar objects with more than 2
dimensions.

Return value:
An MVar representing the requested diagonal of this MVar.

Example usage:
x = model.addMVar((8, 8))
diag_main = x.diagonal() # The main diagonal of x
diag_sup = x.diagonal(1) # The first superdiagonal of x
diag_sup = x.diagonal(-2) # The second subdiagonal of x
adiag_main = x[:, ::-1].diagonal() # The main anti-diagonal of x

MVar.fromlist()
fromlist (varlist)

Convert a list of variables into an MVar object. The shape is inferred from the contents of the list - a list of Var
objects produces a 1-D MVar object, a list of lists of Var objects produces a 2-D MVar, etc.

Arguments:
varlist: A list of Var objects to populate the returned MVar.

Return value:
MVar object corresponding to the input variables.

Example usage:
x0 = model.addVar()
x1 = model.addVar()
x2 = model.addVar()
x3 = model.addVar()
x_1d = MVar.fromlist([x0, x1, x2, x3]) # 1-D MVar
x_2d = MVar.fromlist([[x0, x1], [x2, x3]]) # 2-D MVar

MVar.fromvar()
fromvar (var)

Convert a Var object into a 0-dimensional MVar object.
Arguments:

var: The variable object to populate the returned MVar.
Return value:

MVar object corresponding to the input variable.
Example usage:

x = model.addVar()
x_as_mvar = MVar.fromvar(x)

MVar.getAttr()
getAttr (attrname)

Query the value of an attribute for a matrix variable. The full list of available attributes can be found in the
Attributes section.

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried. Raises a GurobiError if
there is a problem with the MVar object (e.g., it was removed from the model).

The result is returned in a NumPy ndarray with the same shape as the MVar object.

478

Arguments:
attrname: The attribute being queried.

Return value:
Current values for the requested attribute.

Example usage:
print(var.getAttr(GRB.Attr.X))
print(var.getAttr("x"))

MVar.item()

item ()

For an MVar that contains a single element, returns a copy of that element as a Var object. Calling this method
on an MVar with more than one element will raise a ValueError.

Return value:
A Var object

Example usage:
x = model.addMVar((2, 2))
x_sub = x[0, 1] # A 0-D MVar encapsulating one Var object
x_var = x[0, 1].item() # The resident Var object itself

MVar.ndim

ndim

The number of dimensions in this matrix variable.
Return value:

An int
Example usage:

x1 = model.addMVar((3,))
print(x1.ndim) # "1"
x2 = model.addMVar((1, 3))
print(x2.ndim) # "2"

MVar.reshape()

reshape (shape, order=’C’)

Return a copy of this MVar with the same variables, but with a new shape.
Arguments:

shape: An int, or a tuple of int. The new shape should be compatible with this MVar’s shape. The special
value of -1 can be passed in at one position, which then infers the length of that dimension from the overall
number of Var objects in the MVar and the provided lengths of the other dimensions.

order (optional): A string ’C’ or ’F’. Read the elements of this MVar using C-like (’C’) or Fortran-like
(’F’) order, and write the elements into the reshaped array in this order.

Return value:
An MVar of requested shape

Example usage:
x = model.addMVar((2, 2))
x_vec = x.reshape(-1, order='C') # 1-D result, rows of x stacked
x_vec = x.reshape(-1, order='F') # 1-D result, columns of x stacked

479

MVar.setAttr()
setAttr (attrname, newvalue)

Set the value of a matrix variable attribute.
Note that, due to our lazy update approach, the change won’t actually take effect until you update the model

(using Model.update), optimize the model (using Model.optimize), or write the model to disk (using Model.write).
The full list of available attributes can be found in the Attributes section.
Raises an AttributeError if the specified attribute doesn’t exist or can’t be set. Raises a GurobiError if there

is a problem with the MVar object (e.g., it was removed from the model).
Arguments:

attrname: The attribute being modified.
newvalue: The desired new value of the attribute. The shape must be the same as the MVar object. Alter-
natively, you can pass a scalar argument, which will automatically be promoted to have the right shape.

Example usage:
var.setAttr("ub", np.full((5,), 0)
var.setAttr(GRB.Attr.UB, 0.0)
var.setAttr("ub", 0.0)

MVar.shape
shape

The shape of this MVar.
Return value:

A tuple of int
Example usage:

x1 = model.addMVar((3,))
print(x1.shape) # "(3,)"
x2 = model.addMVar((1, 3))
print(x2.shape) # "(1, 3)"

MVar.size
size

The total number of elements in this matrix variable.
Return value:

An int
Example usage:

x1 = model.addMVar((3,))
print(x1.size) # "3"
x2 = model.addMVar((2, 3))
print(x2.size) # "6"

MVar.sum()
sum (axis=None)

Sum the elements of the MVar; returns an MLinExpr object.
Arguments:

axis: An int, or None. Sum along the specified axis. If set to None, summation takes place along all axes of
this MVar.

Return value:
An MLinExpr representing the sum.

480

Example usage:
x = model.addMVar((2, 2))
sum_row = x.sum(axis=0) # Sum along the rows of X
sum_col = x.sum(axis=1) # Sum along the columns of X
sum_all = x.sum() # Sum all variables in this MVar

MVar.T
T

Synonymous property for transpose.
Example usage:

x = model.addMVar((4, 1)) # Resembles a "column vector"
x_t = x.T # Same variables, but as a "row vector"
y = model.addMVar((3, 2))
y_t = x.T # Has shape (2, 3)

MVar.tolist()
tolist ()

Return the variables associated with this matrix variable as a list of individual Var objects.
Return value:

List of Var objects.
Example usage:

mvar = model.addMVar(5)
varlist = mvar.tolist()
Do something with the Var correponding to mvar[3]
print(varlist[3])

MVar.transpose()
transpose ()

Transpose this MVar; create a new MVar object by reversing the order of the original MVar’s axes. For 1-D
MVar objects, this routine simply returns a copy of the original MVar.

Return value:
An MVar object representing the transpose.

Example usage:
x = model.addMVar((4, 1)) # Resembles a "column vector"
x_t = x.transpose() # Same variables, but as a "row vector"
y = model.addMVar((3, 2))
y_t = x.transpose() # Has shape (2, 3)

481

7.5 Constr
Gurobi constraint object. Constraints are always associated with a particular model. You create a constraint object
by adding a constraint to a model (using Model.addConstr), rather than by using a Constr constructor.

Constraint objects have a number of attributes. The full list can be found in the Attributes section of this
document. Some constraint attributes can only be queried, while others can also be set. Recall that the Gurobi opti-
mizer employs a lazy update approach, so changes to attributes don’t take effect until the next call to Model.update,
Model.optimize, or Model.write on the associated model.

We should point out a few things about constraint attributes. Consider the rhs attribute. Its value can be queried
using constr.rhs. The Gurobi library ignores letter case in attribute names, so it can also be queried as constr.rhs.
It can be set using a standard assignment statement (e.g., constr.rhs = 0). However, as mentioned earlier, attribute
modification is done in a lazy fashion, so you won’t see the effect of the change immediately. And some attributes
can not be set (e.g., the Pi attribute), so attempts to assign new values to them will raise an exception.

You can also use Constr.getAttr/ Constr.setAttr to access attributes. The attribute name can be passed to these
routines as a string, or you can use the constants defined in the GRB.Attr class (e.g., GRB.Attr.RHS).

Constr.getAttr()
getAttr (attrname)

Query the value of a constraint attribute. The full list of available attributes can be found in the Attributes
section.

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried. Raises a GurobiError if
there is a problem with the Constr object (e.g., it was removed from the model).

Arguments:
attrname: The attribute being queried.

Return value:
The current value of the requested attribute.

Example usage:
print(constr.getAttr(GRB.Attr.Slack))
print(constr.getAttr("slack"))

Constr.index
index

This property returns the current index, or order, of the constraint in the underlying constraint matrix.
Note that the index of a constraint may change after subsequent model modifications.
Return value:

-2: removed, -1: not in model, otherwise: index of the constraint in the model
Example usage:

c = model.getConstrs()[0]
print(c.index) # Index will be 0

Constr.sameAs()
sameAs (constr2)

Check whether two constraint objects refer to the same constraint.
Arguments:

constr2: The other constraint.
Return value:

Boolean result indicates whether the two constraint objects refer to the same model constraint.
Example usage:

print(model.getConstrs()[0].sameAs(model.getConstrs()[1]))

482

Constr.setAttr()
setAttr (attrname, newvalue)

Set the value of a constraint attribute. Note that, due to our lazy update approach, the change won’t actually
take effect until you update the model (using Model.update), optimize the model (using Model.optimize), or write
the model to disk (using Model.write).

The full list of available attributes can be found in the Attributes section.
Raises an AttributeError if the specified attribute doesn’t exist or can’t be set. Raises a GurobiError if there

is a problem with the Constr object (e.g., it was removed from the model).
Arguments:

attrname: The attribute being modified.
newvalue: The desired new value of the attribute.

Example usage:
constr.setAttr(GRB.Attr.RHS, 0.0)
constr.setAttr("rhs", 0.0)

483

7.6 MConstr
Gurobi matrix constraint object. An MConstr object is an array-like data structure that represents multiple linear
constraints (in contrast to a Constr object, which represents a single constraint). It behaves similar to NumPy’s
ndarrays, e.g., it has a shape and can be indexed and sliced. Matrix constraints are always associated with a
particular model. You typically create these objects with Model.addConstr, using overloaded comparison operators
on matrix variables and linear matrix expressions, or with the method Model.addMConstr.

Constraint objects have a number of attributes. The full list can be found in the Attributes section of this
document. Some constraint attributes can only be queried, while others can also be set. Recall that the Gurobi opti-
mizer employs a lazy update approach, so changes to attributes don’t take effect until the next call to Model.update,
Model.optimize, or Model.write on the associated model.

We should point out a few things about constraint attributes. Consider the rhs attribute. The values for a matrix
constraint mc can be queried using mc.rhs. The Gurobi library ignores letter case in attribute names, so it can also be
queried as mc.RHS. Attribute values are returned as a NumPy ndarray that has the same shape as mc. An attribute
can be set, using a standard assignment statement (e.g., constr.rhs = b), with b being either an ndarray with the
appropriate shape, or a scalar which is then applied to all of the associated constraints. However, as mentioned earlier,
attribute modification is done in a lazy fashion, so you won’t see the effect of the change immediately. And some
attributes can not be set (e.g., the Pi attribute), so attempts to assign new values to them will raise an exception.

You can also use MConstr.getAttr/ MConstr.setAttr to access attributes. The attribute name can be passed to
these routines as a string, or you can use the constants defined in the GRB.Attr class (e.g., GRB.Attr.RHS).

MConstr.tolist()
tolist ()

Return the constraints associated with this matrix constraint as a list of individual Constr objects.
Return value:

List of Constr objects.
Example usage:

mc = model.addConstr(A @ x <= b)
constrlist = mc.tolist()
Do something with the Constr correponding to mc[3]
print(constrlist[3])

MConstr.getAttr()
getAttr (attrname)

Query the value of an attribute for a matrix constraint. The full list of available attributes can be found in the
Attributes section.

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried. Raises a GurobiError if
there is a problem with the MConstr object (e.g., it was removed from the model).

The result is returned as a NumPy ndarray with the same shape as the MConstr object.
Arguments:

attrname: The attribute being queried.
Return value:

ndarray of current values for the requested attribute.
Example usage:

mc = model.addConstr(A @ x <= b)
rhs = mc.getAttr("RHS")

MConstr.setAttr()
setAttr (attrname, newvalue)

484

Set the value of a matrix constraint attribute.
Note that, due to our lazy update approach, the change won’t actually take effect until you update the model

(using Model.update), optimize the model (using Model.optimize), or write the model to disk (using Model.write).
The full list of available attributes can be found in the Attributes section.
Raises an AttributeError if the specified attribute doesn’t exist or can’t be set. Raises a GurobiError if there

is a problem with the MConstr object (e.g., it was removed from the model).
Arguments:

attrname: The attribute being modified.
newvalue: ndarray of desired new values for the attribute. The shape must be the same as the MConstr
object. Alternatively, you can pass a scalar argument, which will automatically be promoted to have the
right shape.

Example usage:
mc = model.addConstr(A @ x <= b)
mc.setAttr("RHS", np.arange(A.shape[0]))
mc.setAttr(GRB.Attr.RHS, 0.0) # broadcast

485

7.7 MConstr
Gurobi matrix quadratic constraint object. An MQConstr object is an array-like data structure that represents multiple
quadratic constraints (in contrast to a QConstr object, which represents a single quadratic constraint). It behaves
similar to NumPy’s ndarrays, e.g., it has a shape and can be indexed and sliced. Matrix quadratic constraints are
always associated with a particular model. You typically create these objects with Model.addConstr, using overloaded
comparison operators on matrix variables, matrix linear expressionsand matrix quadratic expressions.

Quadratic constraint objects have a number of attributes. The full list can be found in the Attributes section
of this document. Some constraint attributes can only be queried, while others can also be set. Recall that the
Gurobi optimizer employs a lazy update approach, so changes to attributes don’t take effect until the next call to
Model.update, Model.optimize, or Model.write on the associated model.

We should point out a few things about quadratic constraint attributes. Consider the QCRHS attribute. The
values for a matrix quadratic constraint mqc can be queried using mc.QCRHS. The Gurobi library ignores letter case
in attribute names, so it can also be queried as mc.qcrhs. Attribute values are returned as a NumPy ndarray that
has the same shape as qmc. An attribute can be set, using a standard assignment statement (e.g., mqc.qcrhs = b),
with b being either an ndarray with the appropriate shape, or a scalar which is then applied to all of the associated
quadratic constraints. However, as mentioned earlier, attribute modification is done in a lazy fashion, so you won’t
see the effect of the change immediately. And some attributes can not be set (e.g., the QCPi attribute), so attempts
to assign new values to them will raise an exception.

You can also use MQConstr.getAttr/ MQConstr.setAttr to access attributes. The attribute name can be passed
to these routines as a string, or you can use the constants defined in the GRB.Attr class (e.g., GRB.Attr.QCRHS).

MQConstr.tolist()

tolist ()

Return the quadratic constraints associated with this matrix quadratic constraint as a list of individual QConstr
objects.

Return value:
List of QConstr objects.

Example usage:
mqc = model.addConstr(x * y <= b)
qconstrlist = mqc.tolist()
Do something with the QConstr correponding to mqc[3]
print(qconstrlist[3])

MQConstr.getAttr()

getAttr (attrname)

Query the value of an attribute for a matrix quadratic constraint. The full list of available attributes can be
found in the Attributes section.

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried. Raises a GurobiError if
there is a problem with the MQConstr object (e.g., it was removed from the model).

The result is returned as a NumPy ndarray with the same shape as the MQConstr object.
Arguments:

attrname: The attribute being queried.
Return value:

ndarray of current values for the requested attribute.
Example usage:

mqc = model.addConstr(x**2 + y <= 1)
qcrhs = mc.getAttr("QCRHS")

486

MQConstr.setAttr()
setAttr (attrname, newvalue)

Set the value of a matrix quadratic constraint attribute.
Note that, due to our lazy update approach, the change won’t actually take effect until you update the model

(using Model.update), optimize the model (using Model.optimize), or write the model to disk (using Model.write).
The full list of available attributes can be found in the Attributes section.
Raises an AttributeError if the specified attribute doesn’t exist or can’t be set. Raises a GurobiError if there

is a problem with the MConstr object (e.g., it was removed from the model).
Arguments:

attrname: The attribute being modified.
newvalue: ndarray of desired new values for the attribute. The shape must be the same as the MQConstr
object. Alternatively, you can pass a scalar argument, which will automatically be promoted to have the
right shape.

Example usage:
mqc = model.addConstr(x * y - x - y <= 0)
mqc.setAttr("QCRHS", np.arange(x.size))
mqc.setAttr(GRB.Attr.RHS, 1.0) # broadcast scalar

487

7.8 QConstr
Gurobi quadratic constraint object. Quadratic constraints are always associated with a particular model. You create
a quadratic constraint object by adding a quadratic constraint to a model (using Model.addQConstr), rather than
by using a QConstr constructor.

Quadratic constraint objects have a number of attributes. The full list can be found in the Attributes section
of this document. Some constraint attributes can only be queried, while others can also be set. Recall that the
Gurobi optimizer employs a lazy update approach, so changes to attributes don’t take effect until the next call to
Model.update, Model.optimize, Model.write on the associated model.

We should point out a few things about quadratic constraint attributes. Consider the qcrhs attribute. Its
value can be queried using qconstr.qcrhs. The Gurobi library ignores letter case in attribute names, so it can
also be queried as qconstr.QCRHS. It can be set using a standard assignment statement (e.g., qconstr.qcrhs = 0).
However, as mentioned earlier, attribute modification is done in a lazy fashion, so you won’t see the effect of the
change immediately. And some attributes can not be set (e.g., the qcpi attribute), so attempts to assign new values
to them will raise an exception.

You can also use QConstr.getAttr/ QConstr.setAttr to access attributes. The attribute name can be passed to
these routines as a string, or you can use the constants defined in the GRB.Attr class (e.g., GRB.Attr.QCRHS).

QConstr.getAttr()
getAttr (attrname)

Query the value of a quadratic constraint attribute. The full list of available attributes can be found in the
Attributes section.

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried. Raises a GurobiError if
there is a problem with the QConstr object (e.g., it was removed from the model).

Arguments:
attrname: The attribute being queried.

Return value:
The current value of the requested attribute.

Example usage:
print(qconstr.getAttr(GRB.Attr.QCSense))
print(qconstr.getAttr("qcsense"))

QConstr.setAttr()
setAttr (attrname, newvalue)

Set the value of a quadratic constraint attribute. Note that, due to our lazy update approach, the change won’t
actually take effect until you update the model (using Model.update), optimize the model (using Model.optimize),
or write the model to disk (using Model.write).

The full list of available attributes can be found in the Attributes section.
Raises an AttributeError if the specified attribute doesn’t exist or can’t be set. Raises a GurobiError if there

is a problem with the QConstr object (e.g., it was removed from the model).
Arguments:

attrname: The attribute being modified.
newvalue: The desired new value of the attribute.

Example usage:
constr.setAttr(GRB.Attr.QCRHS, 0.0)
constr.setAttr("qcrhs", 0.0)

488

7.9 SOS
Gurobi SOS constraint object. SOS constraints are always associated with a particular model. You create an SOS
object by adding an SOS constraint to a model (using Model.addSOS), rather than by using an SOS constructor.
Similarly, SOS constraints are removed using the Model.remove method.

An SOS constraint can be of type 1 or 2 (GRB.SOS_TYPE1 or GRB.SOS_TYPE2). A type 1 SOS constraint is a set
of variables where at most one variable in the set may take a value other than zero. A type 2 SOS constraint is an
ordered set of variables where at most two variables in the set may take non-zero values. If two take non-zero values,
they must be contiguous in the ordered set.

SOS constraint objects have one attribute, IISSOS, which can be queried with the SOS.getAttr method.

SOS.getAttr()
getAttr (attrname)

Query the value of an SOS attribute. The full list of available attributes can be found in the Attributes section.
Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried. Raises a GurobiError if

there is a problem with the SOS object (e.g., it was removed from the model).
Arguments:

attrname: The attribute being queried.
Return value:

The current value of the requested attribute.
Example usage:

print(sos.getAttr(GRB.Attr.IISSOS))

SOS.setAttr()
setAttr (attrname, newvalue)

Set the value of an SOS attribute. Note that, due to our lazy update approach, the change won’t actually take
effect until you update the model (using Model.update), optimize the model (using Model.optimize), or write the
model to disk (using Model.write).

The full list of available attributes can be found in the Attributes section.
Raises an AttributeError if the specified attribute doesn’t exist or can’t be set. Raises a GurobiError if there

is a problem with the SOS object (e.g., it was removed from the model).
Arguments:

attrname: The attribute being modified.
newvalue: The desired new value of the attribute.

Example usage:
sos.setAttr(GRB.Attr.IISSOSForce, 1)
var.setAttr("IISSOSForce", 0.0)

489

7.10 GenConstr
Gurobi general constraint object. General constraints are always associated with a particular model. You add a gen-
eral constraint to a model either by using one of the Model.addGenConstrXxx method, or by using Model.addConstr
or Model.addConstrs plus a general constraint helper function).

General constraint objects have a number of attributes, which can be queried with the GenConstr.getAttr method.
The full list can be found in the Attributes section of this document.

GenConstr.getAttr()
getAttr (attrname)

Query the value of a general constraint attribute. The full list of available attributes can be found in the
Attributes section.

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried. Raises a GurobiError if
there is a problem with the GenConstr object (e.g., it was removed from the model).

Arguments:
attrname: The attribute being queried.

Return value:
The current value of the requested attribute.

Example usage:
print(genconstr.getAttr(GRB.Attr.GenConstrType))
print(genconstr.getAttr("GenConstrType"))

GenConstr.setAttr()
setAttr (attrname, newvalue)

Set the value of a general constraint attribute. Note that, due to our lazy update approach, the change won’t
actually take effect until you update the model (using Model.update), optimize the model (using Model.optimize),
or write the model to disk (using Model.write).

The full list of available attributes can be found in the Attributes section.
Raises an AttributeError if the specified attribute doesn’t exist or can’t be set. Raises a GurobiError if there

is a problem with the GenConstr object (e.g., it was removed from the model).
Arguments:

attrname: The attribute being modified.
newvalue: The desired new value of the attribute.

7.11 LinExpr
Gurobi linear expression object. A linear expression consists of a constant term, plus a list of coefficient-variable
pairs that capture the linear terms. Linear expressions are used to build linear objective and constraints. They are
temporary objects that typically have short lifespans.

You generally build linear expressions using overloaded operators. For example, if x is a Var object, then x + 1 is
a LinExpr object. Expressions can be built from constants (e.g., expr = 0), variables (e.g., expr = 1 * x + 2 * y),
or from other expressions (e.g., expr2 = 2 * expr1 + x, or expr3 = expr1 + 2 * expr2). You can also modify
existing expressions (e.g., expr += x, or expr2 -= expr1).

The full list of overloaded operators on LinExpr objects is as follows: +, +=, -, -=, *, *=, /, and ** (only for
exponent 2). In Python parlance, we’ve defined the following LinExpr functions: __add__, __radd__, __iadd__,
__sub__, __rsub__, __isub__, __neg__, __mul__, __rmul__, __imul__, __div__, and __pow__.

We’ve also overloaded the comparison operators (==, <=, and >=), to make it easier to build constraints from
linear expressions.

You can also use add or addTerms to modify expressions. The LinExpr() constructor can also be used to build
expressions. Another option is quicksum; it is a more efficient version of the Python sum function. Terms can be
removed from an expression using remove.

490

Given all these options for building expressions, you may wonder which is fastest. For small expressions, you
won’t need to worry about performance differences between them. If you are building lots of very large expressions
(100s of terms), you will find that the LinExpr() constructor is generally going to be fastest, followed by the addTerms
method, and then the quicksum function.

To add a linear constraint to your model, you generally build one or two linear expression objects (expr1 and
expr2) and then use an overloaded comparison operator to build an argument for Model.addConstr. To give a few
examples:

model.addConstr(expr1 <= expr2)
model.addConstr(expr1 == 1)
model.addConstr(2 ∗ x+ 3 ∗ y <= 4)

Once you add a constraint to your model, subsequent changes to the expression object you used to build the constraint
will not change the constraint (you would use Model.chgCoeff for that).

Individual terms in a linear expression can be queried using the getVar, getCoeff, and getConstant methods. You
can query the number of terms in the expression using the size method.

Note that a linear expression may contain multiple terms that involve the same variable. These duplicate terms
are merged when creating a constraint from an expression, but they may be visible when inspecting individual terms
in the expression (e.g., when using getVar).

LinExpr()
LinExpr (arg1=0.0, arg2=None)

Linear expression constructor. For linear expressions of moderate size (only a few terms) and for the ease of
usage, you should generally use overloaded operators instead of the explicit constructor to build linear expression
objects.

This constructor takes multiple forms. You can initialize a linear expression using a constant (LinExpr(2.0)), a
variable (LinExpr(x)), an expression (LinExpr(2*x)), a pair of lists containing coefficients and variables, respectively
(LinExpr([1.0, 2.0], [x, y])), or a list of coefficient-variable tuples (LinExpr([(1.0, x), (2.0, y), (1.0, z)])).

Return value:
A linear expression object.

Example usage:
expr = LinExpr(2.0)
expr = LinExpr(2*x)
expr = LinExpr([1.0, 2.0], [x, y])
expr = LinExpr([(1.0, x), (2.0, y), (1.0, z)])

LinExpr.add()
add (expr, mult=1.0)

Add one linear expression into another. Upon completion, the invoking linear expression will be equal to the
sum of itself and the argument expression.

Arguments:
expr: Linear expression to add.
mult (optional): Multiplier for argument expression.

Example usage:
e1 = x + y
e1.add(z, 3.0)

LinExpr.addConstant()
addConstant (c)

Add a constant into a linear expression.

491

Arguments:
c: Constant to add to expression.

Example usage:
expr = x + 2 * y
expr.addConstant(0.1)

LinExpr.addTerms()

addTerms (coeffs, vars)

Add new terms into a linear expression.
Arguments:

coeffs: Coefficients for new terms; either a list of coefficients or a single coefficient. The two arguments
must have the same size.

vars: Variables for new terms; either a list of variables or a single variable. The two arguments must have
the same size.

Example usage:
expr.addTerms(1.0, x)
expr.addTerms([2.0, 3.0], [y, z])

LinExpr.clear()

clear ()

Set a linear expression to 0.
Example usage:

expr.clear()

LinExpr.copy()

copy ()

Copy a linear expression
Return value:

Copy of input expression.
Example usage:

e0 = 2 * x + 3
e1 = e0.copy()

LinExpr.getConstant()

getConstant ()

Retrieve the constant term from a linear expression.
Return value:

Constant from expression.
Example usage:

e = 2 * x + 3
print(e.getConstant())

492

LinExpr.getCoeff()
getCoeff (i)

Retrieve the coefficient from a single term of the expression.
Return value:

Coefficient for the term at index i in the expression.
Example usage:

e = x + 2 * y + 3
print(e.getCoeff(1))

LinExpr.getValue()
getValue ()

Compute the value of an expression using the current solution.
Return value:

The value of the expression.
Example usage:

obj = model.getObjective()
print(obj.getValue())

LinExpr.getVar()
getVar (i)

Retrieve the variable object from a single term of the expression.
Return value:

Variable for the term at index i in the expression.
Example usage:

e = x + 2 * y + 3
print(e.getVar(1))

LinExpr.remove()
remove (item)

Remove a term from a linear expression.
Arguments:

item: If item is an integer, then the term stored at index item of the expression is removed. If item is a
Var, then all terms that involve item are removed.

Example usage:
e = x + 2 * y + 3
e.remove(x)

LinExpr.size()
size ()

Retrieve the number of terms in the linear expression (not including the constant).
Return value:

Number of terms in the expression.
Example usage:

e = x + 2 * y + 3
print(e.size())

493

LinExpr.__eq__()
__eq__ ()

Overloads the == operator, creating a TempConstr object that captures an equality constraint. The result is
typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(x + y == 1)

LinExpr.__le__()
__le__ ()

Overloads the <= operator, creating a TempConstr object that captures an inequality constraint. The result is
typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(x + y <= 1)

LinExpr.__ge__()
__ge__ (arg)

Overloads the >= operator, creating a TempConstr object that captures an inequality constraint. The result is
typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(x + y >= 1)

494

7.12 QuadExpr
Gurobi quadratic expression object. A quadratic expression consists of a linear expression plus a list of coefficient-
variable-variable triples that capture the quadratic terms. Quadratic expressions are used to build quadratic objective
functions and quadratic constraints. They are temporary objects that typically have short lifespans.

You generally build quadratic expressions using overloaded operators. For example, if x is a Var object, then x * x
is a QuadExpr object. Expressions can be built from constants (e.g., expr = 0), variables (e.g., expr = 1 * x *x + 2 * x * y),
or from other expressions (e.g., expr2 = 2 * expr1 + x * x, or expr3 = expr1 + 2 * expr2). You can also modify
existing expressions (e.g., expr += x * x, or expr2 -= expr1).

The full list of overloaded operators on QuadExpr objects is as follows: +, +=, -, -=, *, *=, and /. In Python par-
lance, we’ve defined the following QuadExpr functions: __add__, __radd__, __iadd__, __sub__, __rsub__, __isub__,
__neg__, __mul__, __rmul__, __imul__, and __div__.

We’ve also overloaded the comparison operators (==, <=, and >=), to make it easier to build constraints from
quadratic expressions.

You can use quicksum to build quadratic expressions; it is a more efficient version of the Python sum function.
You can also use add or addTerms to modify expressions. Terms can be removed from an expression using remove.

Given all these options for building expressions, you may wonder which is fastest. For small expressions, you
won’t need to worry about performance differences between them. If you are building lots of very large expressions
(100s of terms), you will find that a single call to addTerms is fastest. Next would be a call to quicksum, followed by
a series of calls to expr.add(x*x).

To add a quadratic constraint to your model, you generally build one or two quadratic expression objects (qexpr1
and qexpr2) and then use an overloaded comparison operator to build an argument for Model.addConstr. To give a
few examples:

model.addConstr(qexpr1 <= qexpr2)
model.addConstr(qexpr1 == 1)
model.addConstr(2 ∗ x ∗ x+ 3 ∗ y ∗ y <= 4)

Once you add a constraint to your model, subsequent changes to the expression object you used to build the constraint
will have no effect on that constraint.

Individual quadratic terms in a quadratic expression can be queried using the getVar1, getVar2, and getCoeff
methods. You can query the number of quadratic terms in the expression using the size method. To query the
constant and linear terms associated with a quadratic expression, use getLinExpr to obtain the linear portion of the
quadratic expression, and then use the getVar, getCoeff, and getConstant methods on this LinExpr object. Note that
a quadratic expression may contain multiple terms that involve the same variable pair. These duplicate terms are
merged when creating a constraint from an expression, but they may be visible when inspecting individual terms in
the expression (e.g., when using getVar1 and getVar2).

QuadExpr()

QuadExpr (expr = None)

Quadratic expression constructor. Note that you should generally use overloaded operators instead of the explicit
constructor to build quadratic expression objects.

Arguments:
expr (optional): Initial value of quadratic expression. Can be a LinExpr or a QuadExpr. If no argument is
specified, the initial expression value is 0.

Return value:
A quadratic expression object.

Example usage:

expr = QuadExpr()
expr = QuadExpr(2*x)
expr = QuadExpr(x*x + y+y)

495

QuadExpr.add()
add (expr, mult=1.0)

Add an expression into a quadratic expression. Argument can be either a linear or a quadratic expression. Upon
completion, the invoking quadratic expression will be equal to the sum of itself and the argument expression.

Arguments:
expr: Linear or quadratic expression to add.
mult (optional): Multiplier for argument expression.

Example usage:
expr = x * x + 2 * y * y
expr.add(z * z, 3.0)

QuadExpr.addConstant()
addConstant (c)

Add a constant into a quadratic expression.
Arguments:

c: Constant to add to expression.
Example usage:

expr = x * x + 2 * y * y + z
expr.addConstant(0.1)

QuadExpr.addTerms()
addTerms (coeffs, vars, vars2=None)

Add new linear or quadratic terms into a quadratic expression.
Arguments:

coeffs: Coefficients for new terms; either a list of coefficients or a single coefficient. The arguments must
have the same size.

vars: Variables for new terms; either a list of variables or a single variable. The arguments must have the
same size.

vars2 (optional): Variables for new quadratic terms; either a list of variables or a single variable. Only
present when you are adding quadratic terms. The arguments must have the same size.

Example usage:
expr.addTerms(1.0, x)
expr.addTerms([2.0, 3.0], [y, z])
expr.addTerms([2.0, 3.0], [x, y], [y, z])

QuadExpr.clear()
clear ()

Set a quadratic expression to 0.
Example usage:

expr.clear()

QuadExpr.copy()
copy ()

Copy a quadratic expression
Return value:

496

Copy of input expression.
Example usage:

e0 = x * x + 2 * y * y + z
e1 = e0.copy()

QuadExpr.getCoeff()

getCoeff (i)

Retrieve the coefficient from a single term of the expression.
Return value:

Coefficient for the quadratic term at index i in the expression.
Example usage:

expr = x * x + 2 * y * y + z
print(expr.getCoeff(1))

QuadExpr.getLinExpr()

getLinExpr ()

A quadratic expression is represented as a linear expression, plus a list of quadratic terms. This method retrieves
the linear expression associated with the quadratic expression.

Return value:
Linear expression from quadratic expression.

Example usage:
expr = x * x + 2 * y * y + z
le = expr.getLinExpr()

QuadExpr.getValue()

getValue ()

Compute the value of an expression using the current solution.
Return value:

The value of the expression.
Example usage:

obj = model.getObjective()
print(obj.getValue())

QuadExpr.getVar1()

getVar1 (i)

Retrieve the first variable for a single quadratic term of the quadratic expression.
Return value:

First variable associated with the quadratic term at index i in the quadratic expression.
Example usage:

expr = x * x + 2 * y * y + z
print(expr.getVar1(1))

497

QuadExpr.getVar2()
getVar2 (i)

Retrieve the second variable for a single quadratic term of the quadratic expression.
Return value:

Second variable associated with the quadratic term at index i in the quadratic expression.
Example usage:

expr = x * x + 2 * y * y + z
print(expr.getVar2(1))

QuadExpr.remove()
remove (item)

Remove a term from a quadratic expression.
Arguments:

item: If item is an integer, then the quadratic term stored at index item of the expression is removed. If
item is a Var, then all quadratic terms that involve item are removed.

Example usage:
expr = x * x + 2 * y * y + z
expr.remove(x)

QuadExpr.size()
size ()

Retrieve the number of quadratic terms in the expression.
Return value:

Number of quadratic terms in the expression.
Example usage:

expr = x * x + 2 * y * y + z
print(expr.size())

QuadExpr.__eq__()
__eq__ ()

Overloads the == operator, creating a TempConstr object that captures an equality constraint. The result is
typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(x*x + y*y == 1)

QuadExpr.__le__()
__le__ ()

Overloads the <= operator, creating a TempConstr object that captures an inequality constraint. The result is
typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(x*x + y*y <= 1)

498

QuadExpr.__ge__()
__ge__ (arg)

Overloads the >= operator, creating a TempConstr object that captures an inequality constraint. The result is
typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(x*x + y*y >= 1)

499

7.13 GenExpr
Gurobi general expression object. Objects of this class are created by a set of general constraint helper functions func-
tions. They are temporary objects, meant to be used in conjunction with overloaded operators to build TempConstr
objects, which are then passed to addConstr or addConstrs to build general constraints.

To be more specific, the following creates a GenExpr object...

max_(x, y)

The following creates a TempConstr object...

z == max_(x, y)

The following adds a general constraint to a model...

model.addConstr(z == max_(x, y))

Please refer to the TempConstr documentation for more information on building general constraints.

500

7.14 MLinExpr
Gurobi linear matrix expression object. A linear matrix expression results from an arithmetic operation with an
MVar object. A common example is a matrix-vector product, where the matrix is a NumPy ndarray or a SciPy
sparse matrix and the vector is a Gurobi MVar object. Linear matrix expressions are used to build linear objectives
and constraints. They are temporary objects that typically have short lifespans.

You generally build linear matrix expressions using overloaded operators, typically by multiplying a 2-D matrix
(dense or sparse) by a 1-D MVar object using the Python matrix multiply (@) operator (e.g., expr = A @ x). You
can also promote an MVar object to an MLinExpr using arithmetic expressions (e.g., expr = x + 1). Most arithmetic
operations are supported on MLinExpr objects, including addition and subtraction (e.g., expr = A @ x - B @ y),
multiplication by a constant (e.g. expr = 2 * A @ x), and point-wise multiplication with an ndarray or a sparse
matrix. An MLinExpr object containing empty expressions can be created using the zeros method.

An MLinExpr object has a shape representing its dimensions, a size that counts the total number of elements,
and an ndim that gives the number of dimensions. These properties lean on their counterparts in NumPy’s ndarray
class.

When working with MLinExpr objects, you need to make sure that the operands’ shapes are compatible. For
matrix multiplication, we follow the rules of Python’s matrix multiplication operator: both operands need to have
at least one dimension, and their inner dimensions must agree. For more information we refer you to Python’s
documentation. Other binary operations such as addition and multiplication are straightforward to understand if
both operands have the same shape: the operation is applied point wise on the matching indices. For operands that
have different shapes, the arithmetic follows NumPy’s broadcasting rules. We refer you to the NumPy documentation
for more information.

The full list of overloaded operators on MLinExpr objects is as follows: +, +=, -, -=, *, *=, and @. In Python par-
lance, we’ve defined the following MLinExpr functions: __add__, __radd__, __iadd__, __sub__, __rsub__, __isub__,
__neg__, __mul__, __rmul__, __imul__, __matmul__, and __rmatmul__.

We’ve also overloaded the comparison operators (==, <=, and >=), to make it easier to build constraints from
linear matrix expressions.

MLinExpr.clear()
clear ()

Reset this expression to all zeros.
Example usage:

expr = 2 * model.addMVar(3) + 1
expr.clear() # All three entries are reset to constant 0.0

MLinExpr.copy()
copy ()

Create a copy of a linear matrix expression.
Return value:

Copy of expression object.
Example usage:

orig = 2 * model.addMVar(3) + 1.0
copy = orig.copy()
copy += 2.0 # Leaves 'orig' untouched

MLinExpr.getValue()
getValue ()

Compute the value of a linear matrix expression using the current solution.
Return value:

501

Value of expression as an ndarray.
Example usage:

expr = A @ x + b
model.addConstr(expr == 0)
model.optimize()
val = expr.getValue()

MLinExpr.item()
item ()

For an MLinExpr that contains a single element, returns a copy of that element as a LinExpr object. Calling
this method on an MLinExpr with more than one element will raise a ValueError.

Return value:
An LinExpr object

Example usage:
mle = 2 * model.addMVar((2, 2)) + 1
mle_sub = mle[0, 1] # A 0-D MLinExpr encapsulating one LinExpr object
mle_le = mle[0, 1].item() # A copy of the resident LinExpr object

MLinExpr.ndim
ndim

The number of dimensions in this expression.
Return value:

An int
Example usage:

expr1 = 2 * model.addMVar((3,)) + 1
print(expr1.ndim) # "1"
expr2 = 2 * model.addMVar((1, 3)) + 1
print(expr2.ndim) # "2"

MLinExpr.shape
shape

The shape of this expression.
Return value:

A tuple of int
Example usage:

expr1 = 2 * model.addMVar((3,)) + 1
print(expr1.shape) # "(3,)"
expr2 = 2 * model.addMVar((1, 3)) + 1
print(expr2.shape) # "(1, 3)"

MLinExpr.size
size

The total number of elements in this expression.
Return value:

An int
Example usage:

expr1 = 2 * model.addMVar((3,)) + 1

502

print(expr1.size) # "3"
expr2 = 2 * model.addMVar((2, 3)) + 1
print(expr2.size) # "6"

MLinExpr.sum()
sum (axis=None)

Sum the elements of this MLinExpr; returns an MLinExpr object.
Arguments:

axis: An int, or None. Sum along the specified axis. If set to None, summation takes place along all axes of
this MLinExpr.

Return value:
An MLinExpr representing the sum.

Example usage:
expr = 2 * model.addMVar((2, 2)) - 1
sum_row = expr.sum(axis=0) # Sum along the rows
sum_col = expr.sum(axis=1) # Sum along the columns
sum_all = expr.sum() # Sum all elements, result is 0-D

MLinExpr.zeros()
zeros (shape)

Construct an all-zero MLinExpr object of the given shape.
Arguments:

shape: An int, or tuple of int. The requested shape.
Return value:

An MLinExpr, initialized to zero.
Example usage:

mle = gp.MLinExpr.zeros(3)
x = model.addMVar(3)
mle += 2 * x

MLinExpr.__eq__()
__eq__ ()

Overloads the == operator, creating a TempConstr object that captures an array of equality constraints. The
result is typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(A @ x == 1)

MLinExpr.__ge__()
__ge__ (arg)

Overloads the >= operator, creating a TempConstr object that captures an array of inequality constraints. The
result is typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(A @ x >= 1)

503

MLinExpr.__getitem__()
__getitem__ ()

Index or slice this MLinExpr.
Return value:

An MLinExpr object.
Example usage:

mle = 2 * m.addMVar((2,2))
col0 = mle[:, 0] # The first column of mle, 1-D result
elmt = mle[1, 0] # The element at position (1, 0), 0-D result

You can index and slice MLinExpr objects like you would index NumPy’s ndarray, and indexing behaviour is
straighforward to understand if you only read from the returned object. When you write to the returned object, be
aware that some kinds of indexing return NumPy views on the indexed expression (e.g., slices), while others result
in copies being returned (e.g., fancy indexing). Here is an example:

Example usage:
mle = 2 * m.addMVar(4)
leading_part_1 = mle[:2]
leading_part_2 = mle[[0,1]]
leading_part_1 += 99 # This modifies mle, too
leading_part_2 += 1 # This doesn't modify mle

If you are unsure about any of these concepts and want to avoid any risk of accidentally writing back to the
indexed object, you should always combine indexing with the copy method.

Example usage:
expr = 2 * model.addMVar((2,2)) + 1
first_col = expr[:, 0].copy()
first_col =+ 1 # Leaves expr untouched

MLinExpr.__le__()
__le__ ()

Overloads the <= operator, creating a TempConstr object that captures an array of inequality constraints. The
result is typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(A @ x <= 1)

MLinExpr.__setitem__()
__setitem__ ()

Assign into this MLinExpr.
Example usage:

mle = 2 * model.addMVar((2,2))
v = model.addVar()
w = model.addVar()
mle[:] = v + 1 # Overwrite mle with four independent copies of 'v+1'
mle[1, 1] = w # Overwrite the entry at position (1, 1) of mle with 'w'

Note that assignment into an existing MLinExpr always entails multiple data copies and is less efficient than
building matrix expressions through operations with MVar objects.

504

7.15 MQuadExpr
Gurobi quadratic matrix expression object. Quadratic matrix expressions are used to build quadratic objective
functions and quadratic constraints. They are temporary objects that typically have short lifespans.

You generally build quadratic matrix expressions using overloaded operators. For example, if x is an MVar
object and A is a 2-D matrix (dense or sparse), then x @ A @ x and x @ x are both MQuadExpr objects. Arithmetic
operations supported on MQuadExpr objects are addition, subtraction (e.g., expr = x @ A @ x - y @ B @ y), and
multiplication by a constant (e.g. expr = 2 * x @ A @ y).

An MQuadExpr object has a shape representing its dimensions, a size that counts the total number of elements,
and an ndim that gives the number of dimensions. These properties lean on their counterparts in NumPy’s ndarray
class.

When working with MQuadExpr objects, you need to make sure that the operands’ shapes are compatible. The
first step in building an MQuadExpr is often to build an MLinExpr (e.g., |expr = x @ A @ x|), so we refer you to the
discussion of MLinExpr shape rules first. Rules for other operations on MQuadExpr objects are generally similar to
those for MLinExpr objects, and both classes follow NumPy rules, so we refer you to the NumPy documentation for
details.

The full list of overloaded operators on MQuadExpr objects is as follows: +, +=, -, -=, *, and *=. In Python par-
lance, we’ve defined the following QuadExpr functions: __add__, __radd__, __iadd__, __sub__, __rsub__, __isub__,
__neg__, __mul__, __rmul__, and __imul__.

We’ve also overloaded the comparison operators (==, <=, and >=), to make it easier to build constraints from
quadratic expressions.

MQuadExpr.clear()
clear ()

Reset this expression to all zeros.
Example usage:

expr = 2 * model.addMVar(3)**2 + 1
expr.clear() # All three entries are reset to constant 0.0

MQuadExpr.copy()
copy ()

Create a copy of a quadratic matrix expression.
Return value:

Copy of expression object.
Example usage:

orig = x @ Q @ x + p @ x
copy = orig.copy()
copy += 2.0 # Leaves 'orig' untouched

MQuadExpr.getValue()
getValue ()

Compute the value of a quadratic matrix expression using the current solution.
Return value:

Value of expression as an ndarary.
Example usage:

qexpr = x @ A @ x
model.addConstr(qexpr == 0)
model.optimize()
val = qexpr.getValue()

505

MQuadExpr.item()

item ()

For an MQuadExpr that contains a single element, returns a copy of that element as a QuadExpr object. Calling
this method on an MQuadExpr with more than one element will raise a ValueError.

Return value:
A QuadExpr object

Example usage:
mqe = 2 * model.addMVar((2, 2))** + 1
mqe_sub = mqe[0, 1] # A 0-D MQuadExpr encapsulating one QuadExpr object
mqe_qe = mqe[0, 1].item() # A copy of the resident QuadExpr object

MQuadExpr.ndim

ndim

The number of dimensions in this expression.
Return value:

An int
Example usage:

expr1 = 2 * model.addMVar((3,))**2 + 1
print(expr1.ndim) # "1"
expr2 = 2 * model.addMVar((1, 3))**2 + 1
print(expr2.ndim) # "2"

MQuadExpr.shape

shape

The shape of this expression.
Return value:

A tuple of int
Example usage:

expr1 = 2 * model.addMVar((3,))**2 + 1
print(expr1.shape) # "(3,)"
expr2 = 2 * model.addMVar((1, 3))**2 + 1
print(expr2.shape) # "(1, 3)"

MQuadExpr.size

size

The total number of elements in this expression.
Return value:

An int
Example usage:

expr1 = 2 * model.addMVar((3,))**2 + 1
print(expr1.size) # "3"
expr2 = 2 * model.addMVar((2, 3))**2 + 1
print(expr2.size) # "6"

506

MQuadExpr.sum()

sum (axis=None)

Sum the elements of this MQuadExpr; returns an MQuadExpr object.
Arguments:

axis: An int, or None. Sum along the specified axis. If set to None, summation takes place along all axes of
this MQuadExpr.

Return value:
An MQuadExpr representing the sum.

Example usage:
expr = 2 * model.addMVar((2, 2))**2 - 1
sum_row = expr.sum(axis=0) # Sum along the rows
sum_col = expr.sum(axis=1) # Sum along the columns
sum_all = expr.sum() # Sum all elements, result is 0-D

MQuadExpr.zeros()

zeros (shape)

Construct an all-zero MQuadExpr object of given shape.
Arguments:

shape: An int, or tuple of int. The requested shape.
Return value:

An MQuadExpr, initialized to zero.
Example usage:

mle = gp.MQuadExpr.zeros(3)
x = model.addMVar(3)
mle += 2 * x**2

MQuadExpr.__eq__()

__eq__ ()

Overloads the == operator, creating a TempConstr object that captures an equality constraint. The result is
typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(x @ Q @ y == 1)

MQuadExpr.__ge__()

__ge__ (arg)

Overloads the >= operator, creating a TempConstr object that captures an inequality constraint. The result is
typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(x @ Q @ y >= 1)

507

MQuadExpr.__getitem__()
__getitem__ ()

Index or slice this MQuadExpr.
Return value:

An MQuadExpr object.
Example usage:

mqe = 2 * m.addMVar((2,2))**2
col0 = mqe[:, 0] # The first column of mqe, 1-D result
elmt = mqe[1, 0] # The element at position (1, 0), 0-D result

You can index and slice MQuadExpr objects like you would index NumPy’s ndarray, and indexing behaviour
is straighforward to understand if you only read from the returned object. When you write to the returned object,
be aware some kinds of indexing return NumPy views on the indexed expression (e.g., slices), while others result in
copies being returned (e.g., fancy indexing). Here is an example:

Example usage:
mqe = 2 * m.addMVar(4)**2
leading_part_1 = mqe[:2]
leading_part_2 = mqe[[0,1]]
leading_part_1 += 99 # This modifies mqe, too
leading_part_2 += 1 # This doesn't modify mqe

If you are unsure about any of these concepts and want to avoid any risk of accidentally writing back to the
indexed object, you should always combine indexing with the copy method.

Example usage:
expr = 2 * model.addMVar((2,2))**2 + 1
first_col = expr[:, 0].copy()
first_col =+ 1 # Leaves expr untouched

MQuadExpr.__le__()
__le__ ()

Overloads the <= operator, creating a TempConstr object that captures an inequality constraint. The result is
typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(x @ Q @ y <= 1)

MQuadExpr.__setitem__()
__setitem__ ()

Assign into this MQuadExpr.
Example usage:

mqe = 2 * model.addMVar((2,2))**2
v = model.addVar()
w = model.addVar()
mqe[:] = v + 1 # Overwrite mqe with four independent copies of 'v+1'
mqe[1, 1] = w*w # Overwrite the entry at position (1, 1) of mqe with 'w**2'

Note that assignment into an existing MQuadExpr always entails multiple data copies and is less efficient than
building matrix expressions through operations with MVar objects.

508

7.16 TempConstr
Gurobi temporary constraint object. Objects of this class are created as intermediate results when building constraints
using overloaded operators. There are no member functions on this class. Instead, TempConstr objects are created
by a set of functions on Var, MVar, LinExpr, QuadExpr, MLinExpr, MQuadExpr, and GenExpr objects (e.g., ==,
<=, and >=). You will generally never store objects of this class in your own variables.

The TempConstr object allows you to create several different types of constraints:

• Linear Constraint: an expression of the form Expr1 sense Expr2, where Expr1 and Expr2 are LinExpr
objects, Var objects, or constants, and sense is one of ==, <= or >=. For example, x + y <= 1 + z is a linear
constraint, as is x + y == 5. Note that Expr1 and Expr2 can’t both be constants.

• Ranged Linear Constraint: an expression of the form LinExpr == [Const1, Const2], where Const1 and
Const2 are constants and LinExpr is a LinExpr object. For example, x + y == [1, 2] is a ranged linear
constraint.

• Quadratic Constraint: an expression of the form Expr1 sense Expr2, where Expr1 and Expr2 are Quad-
Expr objects, LinExpr objects, Var objects, or constants, and sense is one of ==, <= or >=. For example,
x*x + y*y <= 3 is a quadratic constraint, as is x*x + y*y <= z*z. Note that one of Expr1 or Expr2 must be
a QuadExpr (otherwise, the constraint would be linear).

• Linear Matrix Constraint: an expression of the form Expr1 sense Expr2, where one or both of Expr1 and
Expr2 are MLinExpr objects and sense is one of ==, <= or >=. For example, A @ x <= 1 is a linear matrix
constraint, as is A @ x == B @ y.

• Quadratic Matrix Constraint: an expression of the form Expr1 sense Expr2, where one or both of Expr1
and Expr2 are MQuadExpr objects and sense is one of ==, <= or >=. For example, x @ Q @ y <= 3 is a
quadratic constraint, as is x @ Q @ x <= y @ A @ y.

• Absolute Value Constraint: an expression of the form x == abs_(y), where x and y must be Var objects.
• Logical Constraint: an expression of the form x == op_(y), where x is a binary Var object, and y is a binary

Var, a list of binary Var, or a tupledict of binary Var, and op_ is either and_ or or_ (or the Python-specific
variants, all_ and any_).

• Min or Max Constraint: an expression of the form x == op_(y), where x is a Var object, and y is a Var,
a list of Var and constants, or a tupledict of Var, and op_ is one of min_ or max_.

• Indicator Constraint: an expression of the form (x == b) >> (Expr1 sense Expr2), where x is a binary
Var object, b is either 0 or 1; Expr1 and Expr2 are LinExpr objects, Var objects, or constants, and sense is
one of ==, <= or >=. Parenthesizing both expressions is required. For example, (x == 1) >> (y + w <= 5)
is an indicator constraint, indicating that whenever the binary variable x takes the value 1 then the linear
constraint y + w <= 5 must hold.

Consider the following examples:

model.addConstr(x + y == 1);
model.addConstr(x + y == [1, 2]);
model.addConstr(x*x + y*y <= 1);
model.addConstr(A @ x <= 1);
model.addConstr(x @ A @ x <= 1);
model.addConstr(x == abs_(y));
model.addConstr(x == or_(y, z));
model.addConstr(x == max_(y, z));
model.addConstr((x == 1) >> (y + z <= 5));

In each case, the overloaded comparison operator creates an object of type TempConstr, which is then immediately
passed to method Model.addConstr.

509

7.17 Column
Gurobi column object. A column consists of a list of coefficient, constraint pairs. Columns are used to represent the
set of constraints in which a variable participates, and the associated coefficients. They are temporary objects that
typically have short lifespans.

You generally build columns using the Column constructor. Terms can be added to an existing column using
addTerms. Terms can also be removed from a column using remove.

Individual terms in a column can be queried using the getConstr, and getCoeff methods. You can query the
number of terms in the column using the size method.

Column()
Column (coeffs=None, constrs=None)

Column constructor.
Arguments:

coeffs (optional): Lists the coefficients associated with the members of constrs.
constrs (optional): Constraint or constraints that participate in expression. If constrs is a list, then
coeffs must contain a list of the same length. If constrs is a single constraint, then coeffs must be a
scalar.

Return value:
An expression object.

Example usage:
constrs = model.getConstrs()

c = Column()
c.addTerms(3.0, constrs[0])
model.addVar(vtype=GRB.BINARY, obj=1.0, column=c)

model.addVar(vtype=GRB.INTEGER, column=Column(3.0, constrs[0]))

model.addVar(obj=3.0, column=Column([1.0, 2.0], constrs[1:3]))

Column.addTerms()
addTerms (coeffs, constrs)

Add new terms into a column.
Arguments:

coeffs: Coefficients for added constraints; either a list of coefficients or a single coefficient. The two
arguments must have the same size.

constrs: Constraints to add to column; either a list of constraints or a single constraint. The two arguments
must have the same size.

Example usage:
col.addTerms(1.0, x)
col.addTerms([2.0, 3.0], [y, z])

Column.clear()
clear ()

Remove all terms from a column.
Example usage:

col.clear()

510

Column.copy()
copy ()

Copy a column.
Return value:

Copy of input column.
Example usage:

col0 = Column(1.0, c0)
col1 = col0.copy()

Column.getCoeff()
getCoeff (i)

Retrieve the coefficient from a single term in the column.
Return value:

Coefficient for the term at index i in the column.
Example usage:

col = Column([1.0, 2.0], [c0, c1])
print(col.getCoeff(1))

Column.getConstr()
getConstr (i)

Retrieve the constraint object from a single term in the column.
Return value:

Constraint for the term at index i in the column.
Example usage:

col = Column([1.0, 2.0], [c0, c1])
print(col.getConstr(1))

Column.remove()
remove (item)

Remove a term from a column.
Arguments:

item: If item is an integer, then the term stored at index item of the column is removed. If item is a
Constr, then all terms that involve item are removed.

Example usage:
col = Column([1.0, 2.0], [c0, c1])
col.remove(c0)

Column.size()
size ()

Retrieve the number of terms in the column.
Return value:

Number of terms in the column.
Example usage:

print(Column([1.0, 2.0], [c0, c1]).size())

511

7.18 Callbacks
Gurobi callback class. A callback is a user function that is called periodically by the Gurobi optimizer in order to
allow the user to query or modify the state of the optimization. More precisely, if you pass a function that takes two
arguments (model and where) as the argument to Model.optimize or Model.computeIIS, your function will be called
during the optimization. Your callback function can then call Model.cbGet to query the optimizer for details on the
state of the optimization.

Gurobi callbacks can be used both to monitor the progress of the optimization and to modify the behavior of the
Gurobi optimizer. A simple user callback function might call Model.cbGet to produce a custom display, or perhaps
to terminate optimization early (using Model.terminate) or to proceed to the next phase of the computation (using
Model.cbProceed). More sophisticated MIP callbacks might use Model.cbGetNodeRel or Model.cbGetSolution to
retrieve values from the solution to the current node, and then use Model.cbCut or Model.cbLazy to add a constraint
to cut off that solution, or Model.cbSetSolution to import a heuristic solution built from that solution. For multi-
objective problems, you might use Model.cbStopOneMultiObj to interrupt the optimization process of one of the
optimization steps in a multi-objective MIP problem without stopping the hierarchical optimization process.

The Gurobi callback class provides a set of constants that are used within the user callback function. The first set
of constants in this class list the options for the where argument to the user callback function. The where argument
indicates from where in the optimization process the user callback is being called. Options are listed in the Callback
Codes section of this document.

The other set of constants in this class list the options for the what argument to Model.cbGet. The what argument
is used by the user callback to indicate what piece of status information it would like to retrieve. The full list of
options can be found in the Callback Codes section. As with the where argument, you refer to a what constant through
GRB.Callback. For example, the simplex objective value would be requested using GRB.Callback.SPX_OBJVAL.

If you would like to pass data to your callback function, you can do so through the Model object. For example, if
your program includes the statement model._value = 1 before the optimization begins, then your callback function
can query the value of model._value. Note that the name of the user data field must begin with an underscore.

When solving a model using multiple threads, the user callback is only ever called from a single thread, so you
don’t need to worry about the thread-safety of your callback.

Note that changing parameters from within a callback is not supported, doing so may lead to undefined behavior.
You can look at callback.py in the examples directory for details of how to use Gurobi callbacks.

512

7.19 GurobiError
Gurobi exception object. Upon catching an exception e, you can examine e.errno (an integer) or e.message (a
string). A list of possible values for errno can be found in the Error Code section. message provides additional
information on the source of the error.

513

7.20 Env
Gurobi environment object. Note that environments play a much smaller role in the Python interface than they do in
other Gurobi language APIs, mainly because the Python interface has a default environment. Unless you explicitly
pass your own environment to routines that require an environment, the default environment will be used.

The primary situations where you will want to use your own environment are:

• When you are using a Gurobi Compute Server and want to choose the server from within your program.

• When you need control over garbage collection of your environment. The Gurobi Python interface maintains
a reference to the default environment, so by default it will never be garbage collected. By creating your own
environment, you can control exactly when your program releases any licensing tokens or Compute Servers it
is using.

• When you are using concurrent environments in one of the concurrent optimizers.

It is good practice to use the with keyword when dealing with environment (and model) objects. That way
the resources tied to these objects are properly released even if an exception is raised at some point. The following
example illustrates two typical use patterns.

Example usage:
import gurobipy as gp
with gp.Env("gurobi.log") as env, gp.Model(env=env) as model:

Populate model object here...
model.optimize()

with gp.Env(empty=True) as env:
env.setParam("ComputeServer", "myserver1:32123")
env.setParam("ServerPassword", "pass")
env.start()
with gp.Model(env=env) as model:

Populate model object here...
model.optimize()

Note that you can manually remove the reference to the default environment by calling disposeDefaultEnv. After
calling this, and after all models built within the default environment are garbage collected, the default environment
will be garbage collected as well. A new default environment will be created automatically if you call a routine that
needs one.

Env()
Env (logfilename=””, empty=False, params=None)

Env constructor. You will generally want to use the default environment in Gurobi Python programs. The
exception is when you want explicit control over environment garbage collection. By creating your own environment
object and always passing it to methods that take an environment as input (read or the Model constructor), you
will avoid creating the default environment. Once every model created using an Env object is garbage collected, and
once the Env object itself is no longer referenced, the garbage collector will reclaim the environment and release all
associated resources.

If the environment is not empty, This method will also populate any parameter (ComputeServer, TokenServer,
ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current working directory for
a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in
PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Arguments:
logfilename: Name of the log file for this environment. Pass an empty string if you don’t want a log file.

514

empty: Indicates whether the environment should be empty. You should use empty=True if you want to
set parameters before actually starting the environment. This can be useful if you want to connect to a
Compute Server, a Token Server, the Gurobi Instant Cloud, a Cluster Manager or use a WLS license. See
the Environment Section for more details.

params: A dict containing Gurobi parameter/value pairs that should be set already upon environment
creation. Any server related parameters can be set through this dict, too.

Return value:
New environment object.

Example usage:
env = Env("gurobi.log")
model = read("misc07.mps", env)
model.optimize()

Example usage:
p = {"ComputeServer": "localhost:33322",

"ServerPassword": "pass",
"TimeLimit": 120.0}

with Env(params=p) as env, read('misc07.mps', env=env) as model:
model.optimize()

Env.resetParams()
resetParams ()

Reset the values of all parameters to their default values.
Example usage:

env.resetParams()

Env.setParam()
setParam (paramname, newvalue)

Set the value of a parameter to a new value.
Arguments:

paramname: String containing the name of parameter that you would like to modify. The name can include
’*’ and ’?’ wildcards. If more than one parameter matches, the matching names are listed and none are
modified. Note that case is ignored.

newvalue: Desired new value for parameter. Can be ’default’, which indicates that the parameter should be
reset to its default value.

Example usage:
env.setParam("Cuts", 2)
env.setParam("Heu*", 0.5)
env.setParam("*Interval", 10)

Env.start()
start ()

Start an empty environment. If the environment has already been started, this method will do nothing. If the
call fails, the environment will have the same state as it had before the call to this method.

This method will also populate any parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified
in your gurobi.lic file. This method will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each
line should contain a parameter name, followed by the desired value for that parameter). After that, it will apply

515

all parameter changes specified by the user prior to this call. Note that this might overwrite parameters set in the
license file, or in the gurobi.env file, if present.

After all these changes are performed, the code will actually activate the environment, and make it ready to work
with models.

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with
multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments.
The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this
case, you will need a separate environment for each of your threads.

Example usage:
env = Env(empty=True)
env.setParam('ComputeServer', 'server.mydomain.com:61000')
env.setParam('ServerPassword', 'mypassword')
env.start()

Env.writeParams()
writeParams (filename)

Write all modified parameters to a file. The file is written in PRM format.
Example usage:

env.setParam("Heu*", 0.5)
env.writeParams("params.prm") # file will contain changed parameter
system("cat params.prm")

Env.dispose()
dispose (force=False)

Free all resources associated with this Env object.
Dispose of all models created in this environment before disposing of this Env object. An error will be raised if

this is not the case. Use the ’force’ parameter to override this behavior, and to proceed with the disposal nevertheless.
When doing so, any resource (memory, etc.), consumed by still existing models cannot be reclaimed.

After this method is called, this Env object must no longer be used.
Example usage:

env = Env()
model = read("misc07.mps", env)
model.optimize()
model.dispose()
env.dispose()

516

7.21 Batch
Gurobi batch object. Batch optimization is a feature available with the Gurobi Cluster Manager. It allows a client
program to build an optimization model, submit it to a Compute Server cluster (through a Cluster Manager), and
later check on the status of the model and retrieve its solution. For more information, please refer to the Batch
Optimization section.

Commonly used methods on batch objects include update (refresh attributes from the Cluster Manager), abort
(abort execution of a batch request), retry (retry optimization for an interrupted or failed batch), discard (remove
the batch request and all related information from the Cluster Manager), and getJSONSolution (query solution
information for the batch request).

These methods are built on top of calls to the Cluster Manager REST API. They are meant to simplify such
calls, but note that you always have the option of calling the REST API directly.

Batch objects have four attributes:
• BatchID: Unique ID for the batch request.
• BatchStatus: Last batch status.
• BatchErrorCode: Last error code.
• BatchErrorMessage: Last error message.

You can access their values as you would for other attributes: batch.BatchStatus, batch.BatchID, etc. Note that
all Batch attributes are locally cached, and are only updated when you create a client-side batch object or when you
explicitly update this cache, which can done by calling update.

Batch()
Batch (batchID, env)

Given a BatchID, as returned by optimizeBatch, and a Gurobi environment that can connect to the appropriate
Cluster Manager (i.e., one where parameters CSManager, UserName, and ServerPassword have been set appropri-
ately), this function returns a Batch object. With it, you can query the current status of the associated batch request
and, once the batch request has been processed, you can query its solution. Please refer to the Batch Optimization
section for details and examples.

Arguments:
batchID: ID of the batch request for which you want to access status and other information.
env: The environment in which the new batch object should be created.

Return value:
New batch object.

Example usage:
batch = gp.Batch(batchID, env)

Automatically disposed with context manager
with gp.Batch(batchID, env) as batch:

pass

Batch.abort()
abort ()

This method instructs the Cluster Manager to abort the processing of this batch request, changing its status to
ABORTED. Please refer to the Batch Status Codes section for further details.

Example usage:

starttime = time.time()
while batch.BatchStatus == GRB.BATCH_SUBMITTED:

Abort this batch if it is taking too long

517

curtime = time.time()
if curtime - starttime > maxwaittime:

batch.abort ()
break

Batch.discard()
discard ()

This method instructs the Cluster Manager to remove all information related to the batch request in question,
including the stored solution if available. Further queries for the associated batch request will fail with error code
GRB_ERROR_DATA_NOT_AVAILABLE. Use this function with care, as the removed information can not be recovered later
on.

Example usage:
Remove batch request from manager
batch.discard ()

Batch.dispose()
dispose ()

Free all resources associated with this Batch object. After this method is called, this Batch object must no longer
be used.

Example usage:
batch.dispose()

Batch.getJSONSolution()
getJSONSolution ()

This method retrieves the solution of a completed batch request from a Cluster Manager. The solution is returned
as a JSON solution string. For this call to succeed, the status of the batch request must be COMPLETED. Please refer
to the Batch Status Codes section for further details.

Example usage:
print("JSON solution:")
Get JSON solution as string , create dict from it
sol = json.loads(batch.getJSONSolution ())

Batch.retry()
retry ()

This method instructs the Cluster Manager to retry optimization of a failed or aborted batch request, changing
its status to SUBMITTED. Please refer to the Batch Status Codes section for further details.

Example usage:
starttime = time.time()
while batch.BatchStatus == GRB.BATCH_SUBMITTED:

Abort this batch if it is taking too long
curtime = time.time()
if curtime - starttime > maxwaittime:

batch.abort ()
break

518

Wait for two seconds
time.sleep (2)

Update the resident attribute cache of the Batch object with the
latest values from the cluster manager.
batch.update ()

If the batch failed , we retry it
if batch.BatchStatus == GRB.BATCH_FAILED:

batch.retry ()

Batch.update()
update ()

All Batch attribute values are cached locally, so queries return the value received during the last communication
with the Cluster Manager. This method refreshes the values of all attributes with the values currently available in
the Cluster Manager (which involves network communication).

Example usage:
Update the resident attribute cache of the Batch object with the
latest values from the cluster manager.
batch.update ()

Batch.writeJSONSolution()
writeJSONSolution (filename)

This method returns the stored solution of a completed batch request from a Cluster Manager. The solution is
returned in a gzip-compressed JSON file. The file name you provide must end with a .json.gz extension. The JSON
format is described in the JSON solution format section. Note that for this call to succeed, the status of the batch
request must be COMPLETED. Please refer to the Batch Status Codes section for further details.

Arguments:
filename: Name of file where the solution should be stored (in JSON format).

Example usage:
Write the full JSON solution string to a file
batch.writeJSONSolution('batch -sol.json.gz')

519

7.22 GRB
Class for Python constants. Classes GRB.Attr and GRB.Param are used to get or set Gurobi attributes and param-
eters, respectively.

Constants
The following list contains a set of constants that are used by the Gurobi Python interface. You would refer to them
using a GRB. prefix (e.g., GRB.OPTIMAL).

Status codes

LOADED = 1
OPTIMAL = 2
INFEASIBLE = 3
INF_OR_UNBD = 4
UNBOUNDED = 5
CUTOFF = 6
ITERATION_LIMIT = 7
NODE_LIMIT = 8
TIME_LIMIT = 9
SOLUTION_LIMIT = 10
INTERRUPTED = 11
NUMERIC = 12
SUBOPTIMAL = 13
INPROGRESS = 14
USER_OBJ_LIMIT = 15
WORK_LIMIT = 16
MEM_LIMIT = 17

Batch status codes

BATCH_CREATED = 1
BATCH_SUBMITTED = 2
BATCH_ABORTED = 3
BATCH_FAILED = 4
BATCH_COMPLETED = 5

Version number

VERSION_MAJOR = 10
VERSION_MINOR = 0
VERSION_TECHNICAL = 0

Basis status

BASIC = 0
NONBASIC_LOWER = -1
NONBASIC_UPPER = -2
SUPERBASIC = -3

Constraint senses

LESS_EQUAL = '<'
GREATER_EQUAL = '>'
EQUAL = '='

520

Variable types

CONTINUOUS = 'C'
BINARY = 'B'
INTEGER = 'I'
SEMICONT = 'S'
SEMIINT = 'N'

Objective sense

MINIMIZE = 1
MAXIMIZE = -1

SOS types

SOS_TYPE1 = 1
SOS_TYPE2 = 2

General constraint types

GENCONSTR_MAX = 0
GENCONSTR_MIN = 1
GENCONSTR_ABS = 2
GENCONSTR_AND = 3
GENCONSTR_OR = 4
GENCONSTR_NORM = 5
GENCONSTR_INDICATOR = 6
GENCONSTR_PWL = 7
GENCONSTR_POLY = 8
GENCONSTR_EXP = 9
GENCONSTR_EXPA = 10
GENCONSTR_LOG = 11
GENCONSTR_LOGA = 12
GENCONSTR_POW = 13
GENCONSTR_SIN = 14
GENCONSTR_COS = 15
GENCONSTR_TAN = 16
GENCONSTR_LOGISTIC = 17

Numeric constants

INFINITY = 1e100
UNDEFINED = 1e101
MAXINT = 2000000000

Limits

MAX_NAMELEN = 255
MAX_STRLEN = 512
MAX_TAGLEN = 10240
MAX_CONCURRENT = 64

Other constants

DEFAULT_CS_PORT = 61000

521

Errors

ERROR_OUT_OF_MEMORY = 10001
ERROR_NULL_ARGUMENT = 10002
ERROR_INVALID_ARGUMENT = 10003
ERROR_UNKNOWN_ATTRIBUTE = 10004
ERROR_DATA_NOT_AVAILABLE = 10005
ERROR_INDEX_OUT_OF_RANGE = 10006
ERROR_UNKNOWN_PARAMETER = 10007
ERROR_VALUE_OUT_OF_RANGE = 10008
ERROR_NO_LICENSE = 10009
ERROR_SIZE_LIMIT_EXCEEDED = 10010
ERROR_CALLBACK = 10011
ERROR_FILE_READ = 10012
ERROR_FILE_WRITE = 10013
ERROR_NUMERIC = 10014
ERROR_IIS_NOT_INFEASIBLE = 10015
ERROR_NOT_FOR_MIP = 10016
ERROR_OPTIMIZATION_IN_PROGRESS = 10017
ERROR_DUPLICATES = 10018
ERROR_NODEFILE = 10019
ERROR_Q_NOT_PSD = 10020
ERROR_QCP_EQUALITY_CONSTRAINT = 10021
ERROR_NETWORK = 10022
ERROR_JOB_REJECTED = 10023
ERROR_NOT_SUPPORTED = 10024
ERROR_EXCEED_2B_NONZEROS = 10025
ERROR_INVALID_PIECEWISE_OBJ = 10026
ERROR_UPDATEMODE_CHANGE = 10027
ERROR_CLOUD = 10028
ERROR_MODEL_MODIFICATION = 10029
ERROR_CSWORKER = 10030
ERROR_TUNE_MODEL_TYPES = 10031

GRB.Attr
The constants defined in this class are used to get or set attributes (through Model.getAttr or Model.setAttr, for
example). Please refer to the Attributes section to see a list of all attributes and their functions. You refer to an
attribute using a GRB.Attr prefix (e.g., GRB.Attr.Obj). Note that these constants are simply strings, so wherever you
might use this constant, you also have the option of using the string directly (e.g, 'obj' rather than GRB.Attr.Obj).

GRB.Param
The constants defined in this class are used to get or set parameters Model.getParamInfo or Model.setParam. Please
refer to the Parameters section to see a list of all parameters and their functions. You refer to a parameter using a
GRB.Param prefix (e.g., GRB.Param.displayInterval). Note that these constants are simply strings, so wherever you
might use this constant, you also have the option of using the string directly (e.g, 'displayInterval' rather than
GRB.Param.displayInterval).

522

7.23 tuplelist
Gurobi tuple list. This is a sub-class of the Python list class that is designed to efficiently support a usage pattern
that is quite common when building optimization models. In particular, if a tuplelist is populated with a list of
tuples, the select function on this class efficiently selects tuples whose values match specified values in specified tuple
fields. To give an example, the statement l.select(1, '*', 5) would select all member tuples whose first field is
equal to ’1’ and whose third field is equal to ’5’. The '*' character is used as a wildcard to indicate that any value
is acceptable in that field.

You generally build tuplelist objects in the same way you would build standard Python lists. For example, you
can use the += operator to append a new list of items to an existing tuplelist, or the + operator to concatenate a
pair of tuplelist objects. You can also call the append, extend, insert, pop, and remove functions.

To access the members of a tuplelist, you also use standard list functions. For example, l[0] returns the first
member of a tuplelist, while l[0:10] returns a tuplelist containing the first ten members. You can also use
len(l) to query the length of a list.

Note that tuplelist objects build and maintain a set of internal data structures to support efficient select
operations. If you wish to reclaim the storage associated with these data structures, you can call the clean function.

A tuplelist is designed to store tuples containing scalar values (int, float, string, ...). It may produce
unpredictable results with other Python objects, such as tuples of tuples. Thus, you can store (1, 2.0, 'abc') in
a tuplelist, but you shouldn’t store ((1, 2.0), 'abc').

tuplelist()
tuplelist (list)

tuplelist constructor.
Arguments:

list: Initial list of member tuples.
Return value:

A tuplelist object.
Example usage:

l = tuplelist([(1,2), (1,3), (2,4)])
l = tuplelist([('A', 'B', 'C'), ('A', 'C', 'D')])

tuplelist.select()
select (pattern)

Returns a tuplelist containing all member tuples that match the specified pattern. The pattern requires one
argument for each field in the member tuple. A scalar argument must match the corresponding field exactly. A list
argument matches if any list member matches the corresponding field. A '*' argument matches any value in the
corresponding field.

Arguments:
pattern: Pattern to match for a member tuple.

Example usage:
l.select(1, 3, '*', 6)
l.select([1, 2], 3, '*', 6)
l.select('A', '*', 'C')

tuplelist.clean()
clean ()

Discards internal data structure associated with a tuplelist object. Note that calling this routine won’t affect
the contents of the tuplelist. It only affects the memory used and the performance of later calls to select.

Example usage:

523

l.clean()

tuplelist.__contains__()
__contains__ (val)

Provides efficient support for the Python in operator.
Example usage:

if (1,2) in l:
print("Tuple (1,2) is in tuplelist l")

524

7.24 tupledict
Gurobi tuple dict. This is a sub-class of the Python dict class that is designed to efficiently support a usage pattern
that is quite common when building optimization models. In particular, a tupledict is a Python dict where the
keys are stored as a Gurobi tuplelist, and where the values are typically Gurobi Var objects. Objects of this class
make it easier to build linear expressions on sets of Gurobi variables, using tuplelist.select() syntax and semantics.

You typically build a tupledict by calling Model.addVars. Once you’ve created a tupledict d, you can use
d.sum() to create a linear expression that captures the sum of the variables in the tupledict. You can also use
a command like d.sum(1, '*', 5) to create a sum over a subset of the variables in d. Assuming the keys for the
tupledict are tuples containing three fields, this statement would create a linear expression that captures the sum
over all variables in d whose keys contain a 1 in the first field of the tuple and a 5 in the third field (the '*' character
is a wildcard that indicates that any value is acceptable in that field). You can also use d.prod(coeff) to create
a linear expression where the coefficients are pulled from the dictionary coeff. For example, if d(1,2,5) contains
variable x and coeff(1,2,5) is 2.0, then the resulting expression would include term 2.0 ∗ x.

To access the members of a tupledict, you can use standard dict indexing. For example, d[1,2] returns the
value associated with tuple (1,2).

Note that a tupledict key must be a tuple of scalar values (int, float, string, ...). Thus, you can use
(1, 2.0, 'abc') as a key, but you can’t use ((1, 2.0), 'abc').

Note that tupledict objects build and maintain a set of internal data structures to support efficient select
operations. If you wish to reclaim the storage associated with these data structures, you can call the clean function.

tupledict()

tupledict (args, kwargs)

tupledict constructor. Arguments are identical to those of a Python dict constructor.
Note that you will typically use Model.addVars to build a tupledict.
Arguments:

args: Positional arguments.
kwargs: Named arguments.

Return value:
A tupledict object.

Example usage:

d = tupledict([((1,2), 'onetwo'), ((1,3), 'onethree'), ((2,3), 'twothree')])
print(d[1,2]) # prints 'onetwo'

tupledict.select()

select (pattern)

Returns a list containing the values associated with keys that match the specified tuple pattern. The pattern
should provide one value for each field in the key tuple. A '*' value indicates that any value is accepted in that field.

Without arguments, this method returns a list of all values in the tupledict.
Arguments:

pattern: Pattern to match for a key tuple.
Example usage:

d = tupledict([((1,2), 'onetwo'), ((1,3), 'onethree'), ((2,3), 'twothree')])
print(d.select()) # prints ['onetwo', 'onethree', 'twothree']
print(d.select(1, '*')) # prints ['onetwo', 'onethree']
print(d.select('*', 3)) # prints ['onethree', 'twothree']
print(d.select(1, 3)) # prints ['onethree']

525

tupledict.sum()
sum (pattern)

Returns the sum of the values associated with keys that match the specified pattern. If the values are Gurobi
Var objects, the result is a LinExpr. The pattern should provide one value for each field in the key tuple. A '*'
value indicates that any value is accepted in that field.

Without arguments, this method returns the sum of all values in the tupledict.
Arguments:

pattern: Pattern to match for a key tuple.
Example usage:

x = m.addVars([(1,2), (1,3), (2,3)])
expr = x.sum() # LinExpr: x[1,2] + x[1,3] + x[2,3]
expr = x.sum(1, '*') # LinExpr: x[1,2] + x[1,3]
expr = x.sum('*', 3) # LinExpr: x[1,3] + x[2,3]
expr = x.sum(1, 3) # LinExpr: x[1,3]

tupledict.prod()
prod (coeff, pattern)

Returns a linear expression that contains one term for each tuple that is present in both the tupledict and
the coeff argument; coeff should be a Python dict object that maps tuples to coefficient values. For example,
x.prod(coeff) would contain term 2.0*var if x[1,2] = var and coeff[1,2] = 2.0.

Arguments:
coeff: Python dict that maps tuples to coefficients.
pattern: Pattern to match for a key tuple.

Example usage:
x = m.addVars([(1,2), (1,3), (2,3)])
coeff = dict([((1,2), 2.0), ((1,3), 2.1), ((2,3), 3.3)])
expr = x.prod(coeff) # LinExpr: 2.0 x[1,2] + 2.1 x[1,3] + 3.3 x[2,3]
expr = x.prod(coeff, '*', 3) # LinExpr: 2.1 x[1,3] + 3.3 x[2,3]

tupledict.clean()
clean ()

Discards internal data structure associated with a tupledict object. Note that calling this routine won’t affect
the contents of the tupledict. It only affects the memory used and the performance of later calls to select.

Example usage:
d.clean()

526

7.25 General Constraint Helper Functions
Gurobi general constraint helper functions - used in conjunction with overloaded operators and Model.addConstr or
Model.addConstrs to build general constraints.

abs_()

abs_ (argvar)

Used to set a decision variable equal to the absolute value of another decision variable.
Arguments:

argvar (Var): The variable whose absolute value will be taken.
Example usage:

m.addConstr(y == abs_(x))

Return value:
Returns a GenExpr object.

and_()

and_ (*args)

Used to set a binary decision variable equal to the logical AND of a list of other binary decision variables.
Note that the Gurobi Python interface includes an equivalent all_() function.
Arguments:

*args (Var, or list of Var, or tupledict of Var values): The variables over which the AND con-
catenation will be taken.

Example usage:

m.addConstr(z == and_(x, y))
m.addConstr(z == and_([x, y]))

Return value:
Returns a GenExpr object.

max_()

max_ (*args, constant=None)

Used to set a decision variable equal to the maximum of a list of decision variables and, if desired, a constant.
Arguments:

*args (Var, or list of Var, or tupledict of Var values): The variables over which the MAX will be
taken.

constant (float, optional): The constant value to include among the arguments of the MAX operation.
Example usage:

m.addConstr(z == max_(x, y, constant=3))
m.addConstr(z == max_([x, y], constant=3))

Return value:
Returns a GenExpr object.

527

min_()
min_ (*args, constant=None)

Used to set a decision variable equal to the minimum of a list of decision variables and, if desired, a constant.
Arguments:

*args (Var, or list of Var, or tupledict of Var values): The variables over which the MIN will be
taken.

constant (float, optional): The constant value to include among the arguments of the MIN operation.
Example usage:

m.addConstr(z == min_(x, y, constant=3))
m.addConstr(z == min_([x, y], constant=3))

Return value:
Returns a GenExpr object.

or_()
or_ (*args)

Used to set a binary decision variable equal to the logical OR of a list of other binary decision variables.
Note that the Gurobi Python interface includes an equivalent any_() function.
Arguments:

*args (Var, or list of Var, or tupledict of Var values): The variables over which the OR concate-
nation will be taken.

Example usage:
m.addConstr(z == or_(x, y))
m.addConstr(z == or_([x, y]))

Return value:
Returns a GenExpr object.

norm()
norm (vars, which)

Used to set a decision variable equal to the norm of other decision variables.
Arguments:

vars (list of Var, or tupledict of Var values, or 1-dim MVar): The variables over which the NORM
will be taken. Note that this may not contain duplicates.

which (float): Which norm to use. Options are 0, 1, 2, and any value greater than or equal to GRB.INFINITY.
Example usage:

x = m.addVars(3)
nx = m.addVar()
m.addConstr(nx == norm(x, 1.0))

Return value:
Returns a GenExpr object.

528

MATLAB API Overview

This section documents the Gurobi MATLAB® interface. For those of you who are not familiar with MATLAB, it
is an environment for doing numerical computing. Please visit the MATLAB web site for more information. This
manual begins with a quick overview of the methods provided by our MATLAB API. It then continues with a
comprehensive presentation of all of the available methods, their arguments, and their return values.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide or the Example
Tour of the reference manual. These documents provide concrete examples of how to use the methods described here.

The MATLAB Optimization Toolbox provides its own interface for building optimization models (starting with
version 2017b). Gurobi supports this interface as well. We’ll discuss this aspect in the problem-based modeling section;
consult also the linprog, intlinprog, opttoolbox_lp, and opttoolbox_mip1 examples in the Gurobi distribution
for illustrations of how to pass models built using this interface to Gurobi.

A quick note for new users: the convention in math programming is that variables are non-negative unless
specified otherwise. You’ll need to explicitly set lower bounds if you want variables to be able to take negative values.
Models

Our Gurobi MATLAB interface enables you to express problems of the following form:
minimize xTQx+ cTx+ alpha
subject to Ax = b (linear constraints)

` ≤ x ≤ u (bound constraints)
some xj integral (integrality constraints)
xTQcx+ qTx ≤ beta (quadratic constraints)
some xi in SOS (special ordered set constraints)
min, max, abs, or, ... (general constraints)

Models are stored as struct variables, each consisting of multiple fields. The fields capture the different model
components listed above. Many of these model components are optional. For example, integrality constraints may
be omitted.

An optimization model may be loaded from a file (using the gurobi_read function), or it can be built by
populating the appropriate fields of a model variable (using standard MATLAB constructs). We will discuss the
details of how models are represented in the model argument section.

We often refer to the class of an optimization model. A model with a linear objective function, linear constraints,
and continuous variables is a Linear Program (LP). If the objective is quadratic, the model is a Quadratic Program
(QP). If any of the constraints are quadratic, the model is a Quadratically-Constrained Program (QCP). We will
sometimes refer to a few special cases of QCP: QCPs with convex constraints, QCPs with non-convex constraints,
bilinear programs, and Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-
continuous variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the model
is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, including Mixed Integer Linear
Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed Integer Quadratically-Constrained Programs
(MIQCP), and Mixed Integer Second-Order Cone Programs (MISOCP). The Gurobi Optimizer handles all of these
model classes.
Solving a Model

Once you have built a model, you can call gurobi to compute a solution. By default, gurobi will use the concurrent
optimizer to solve LP models, the barrier algorithm to solve QP models and QCP models with convex constraints,
and the branch-and-cut algorithm to solve mixed integer models. The solution is returned as a struct variable. We
will discuss the details of how optimization results are represented when we discuss the gurobi function.
Here is a simple example of a likely sequence of commands in the MATLAB API:
model = gurobi_read(’examples/data/stein9.mps’);

529

https://www.mathworks.com/products/matlab
https://www.gurobi.com/documentation/10.0/quickstart_windows/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html

result = gurobi(model);

Multiple Solutions and Multiple Objectives

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to a model with a
single objective function. Gurobi provides features that allow you to relax either of these assumptions. You should
refer to the section on Solution Pools for information on how to request more than one solution, or the section on
Multiple Objectives for information on how to specify multiple objective functions and control the trade-off between
them.
Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the infeasibility,
attempt to repair the infeasibility, or both. To obtain information that can be useful for diagnosing the cause of an
infeasibility, call gurobi_iis to compute an Irreducible Inconsistent Subsystem (IIS). This method can be used for
both continuous and MIP models, but you should be aware that the MIP version can be quite expensive. We will
discuss the details of how IIS results are represented in the gurobi_iis function documentation.

To attempt to repair an infeasibility, call gurobi_feasrelax to compute a feasibility relaxation for the model.
This relaxation allows you to find a solution that minimizes the magnitude of the constraint violation.
Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of the optimization
process. Factors like feasibility and optimality tolerances, choices of algorithms, strategies for exploring the MIP
search tree, etc., can be controlled by modifying Gurobi parameters before beginning the optimization.

Each Gurobi parameter has a default value. Desired parameter changes are passed in a struct variable. The
name of each field within this struct must be the name of a Gurobi parameter, and the associated value should be
the desired value of that parameter. You can find a complete list of the available Gurobi parameters in the reference
manual. We will provide additional details on changing parameter settings in the params argument section.
Monitoring Progress

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will send output to the
screen. A few simple controls are available for modifying the default logging behavior. If you would like to direct
output to a file as well as to the screen, set the LogFile parameter to the name of your desired log file. The frequency
of logging output can be controlled with the DisplayInterval parameter, and logging can be turned off entirely with
the OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging section of the
reference manual.
Error Handling

If unsuccessful, the methods of the Gurobi MATLAB interface will return an error code and an error message. A list
of possible error codes can be found in the Error Code section in the reference manual.
Environments and license parameters

By default, the various Gurobi functions will look for a valid license file and create a local Gurobi environment.
This environment exists for as long as the corresponding MATLAB API function is running, and is released upon
completion.

Another option is to provide licensing parameters through an optional params argument (also through a struct).
This argument allows you to solve the given problem on a Gurobi Compute Server, on Gurobi Instant Cloud, or using
a Gurobi Cluster Manager. We will discuss this topic further in the params argument section.

Gurobi will check the current working directory for a file named gurobi.env, and it will attempt to read parameter
settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter
name, followed by the desired value for that parameter).

530

8.1 Common Arguments
Most common arguments in the Gurobi MATLAB interface are MATLAB struct variables, each containing multiple
fields. Several of these fields are optional. Note that you refer to a field of a struct variable by adding a period to
the end of the variable name, followed by the name of the field. For example, model.A refers to field A of variable
model.

The model argument
Model variables store optimization problems (as described in the problem statement).

Models can be built in a number of ways. You can populate the appropriate fields of the model struct using
standard MATLAB routines. You can also read a model from a file, using gurobi_read. A few API functions (
gurobi_feasrelax and gurobi_relax) also return models.

Note that all vector fields within the model variable must be dense vectors except for the linear part of the
quadratic constraints and INDICATOR general constraints, all matrix fields must be sparse matrices, and all strings,
names, etc. must be char arrays.

The following is an enumeration of all of the fields of the model argument that Gurobi will take into account
when optimizing the model:

Commonly used fields

A: The linear constraint matrix.

obj (optional): The linear objective vector (the c vector in the problem statement). When present, you must
specify one value for each column of A. When absent, each variable has a default objective coefficient of 0.

sense (optional): The senses of the linear constraints. Allowed values are =, <, or >. You must specify one value
for each row of A, or a single value to specify that all constraints have the same sense. When absent, all senses
default to <.

rhs (optional): The right-hand side vector for the linear constraints (b in the problem statement). You must
specify one value for each row of A. When absent, the right-hand side vector defaults to the zero vector.

lb (optional): The lower bound vector. When present, you must specify one value for each column of A. When
absent, each variable has a default lower bound of 0.

ub (optional): The upper bound vector. When present, you must specify one value for each column of A. When
absent, the variables have infinite upper bounds.

vtype (optional): The variable types. This vector is used to capture variable integrality constraints. Allowed
values are C (continuous), B (binary), I (integer), S (semi-continuous), or N (semi-integer). Binary variables
must be either 0 or 1. Integer variables can take any integer value between the specified lower and upper
bounds. Semi-continuous variables can take any value between the specified lower and upper bounds, or a
value of zero. Semi-integer variables can take any integer value between the specified lower and upper bounds,
or a value of zero. When present, you must specify one value for each column of A, or a single value to specify
that all variables have the same type. When absent, each variable is treated as being continuous. Refer to the
variable section of the reference manual for more information on variable types.

modelsense (optional): The optimization sense. Allowed values are min (minimize) or max (maximize). When
absent, the default optimization sense is minimization.

modelname (optional): The name of the model. The name appears in the Gurobi log, and when writing a model
to a file.

objcon (optional): The constant offset in the objective function (alpha in the problem statement).

varnames (optional): The variable names vector. A cell array. When present, each element of this vector defines
the name of a variable. You must specify a name for each column of A.

constrnames (optional): The constraint names vector. A cell array. When present, each element of the vector
defines the name of a constraint. You must specify a name for each row of A.

531

Quadratic objective and constraint fields

Q (optional): The quadratic objective matrix. When present, Q must be a square matrix whose row and column
counts are equal to the number of columns in A.

quadcon (optional): The quadratic constraints. A struct array. When present, each element in quadcon defines a
single quadratic constraint: xTQcx+ qTx ≤ beta.
The Qc matrix must be a square matrix whose row and column counts are equal to the number of columns of A.
There are two options to store the matrix: (i) in model.quadcon(i).Qc as a sparse matrix; (ii) through three
dense vectors model.quadcon(i).Qrow, model.quadcon(i).Qcol, and model.quadcon(i).Qval specifying the
matrix in triple format, with row indices, column indices, and values, respectively.
The optional q vector defines the linear terms in the constraint. It can be a dense vector specifying a value for
each column of A or a sparse vector (sparse n-by-1 matrix). It is stored in model.quadcon(i).q.
The scalar beta is stored in model.quadcon(i).rhs. It defines the right-hand side value for the constraint.
The optional sense string defines the sense of the quadratic constraint. Allowed values are <, = or >. If not
present, the default sense is <. It is stored in model.quadcon(i).sense.
The optional name string defines the name of the quadratic constraint. It is stored in model.quadcon(i).name.

SOS constraint fields

sos (optional): The Special Ordered Set (SOS) constraints. A struct array. When present, each entry in sos defines
a single SOS constraint. A SOS constraint can be of type 1 or 2. The type of SOS constraint i is specified via
model.sos(i).type. A type 1 SOS constraint is a set of variables where at most one variable in the set may
take a value other than zero. A type 2 SOS constraint is an ordered set of variables where at most two variables
in the set may take non-zero values. If two take non-zeros values, they must be contiguous in the ordered
set. The members of an SOS constraint are specified by placing their indices in vector model.sos(i).index.
Weights associated with SOS members are provided in vector model.sos(i).weight. Please refer to SOS
Constraints section in the reference manual for details on SOS constraints.

Multi-objective fields

multiobj (optional): Multi-objective specification for the model. A struct array. When present, each entry in
multiobj defines a single objective of a multi-objective problem. Please refer to the Multiple Objectives
section in the reference manual for more details on multi-objective optimization. Each objective i may have
the following fields:

objn: Specified via model.multiobj(i).objn. This is the i-th objective vector.

objcon (optional): Specified via model.multiobj(i).objcon. If provided, this is the i-th objective constant.
The default value is 0.

priority (optional): Specified via model.multiobj(i).priority. If provided, this value is the hierarchical
priority for this objective. The default value is 0.

weight (optional): Specified via model.multiobj(i).weight. If provided, this value is the multiplier used
when aggregating objectives. The default value is 1.0.

reltol (optional): Specified via model.multiobj(i).reltol. If provided, this value specifies the relative
objective degradation when doing hierarchical multi-objective optimization. The default value is 0.

abstol (optional): Specified via model.multiobj(i).abstol. If provided, this value specifies the absolute
objective degradation when doing hierarchical multi-objective optimization. The default value is 0.

name (optional): Specified via model.multiobj(i).name. If provided, this string specifies the name of the
i-th objective function.

Note that when multiple objectives are present, the result.objval field that is returned in the result of an
optimization call will be a vector of the same length as model.multiobj.
A multi-objective model can’t have other objectives. Thus, combining model.multiobj with any of model.obj,
model.objcon, model.pwlobj, or model.Q is an error.

532

Computing an IIS

When computing an Irreducible Inconsistent Subsystem (IIS) for an infeasible model, additional model attributes
for variable bounds, linear constraints, quadratic constraints and general constraints may be set in order to indicate
whether a corresponing entity should explicitly included or excluded from the IIS:

iislbforce (optional): array of length equal to the number of variables. The value of model.iislbforce(i)
specifies the IIS force attribute for the lower bound of the i-th variable.

iisubforce (optional): array of length equal to the number of variables. The value of model.iisubforce(i)
specifies the IIS force attribute for the upper bound of the i-th variable.

iisconstrforce (optional): array of length equal to the number of constraints. The value of model.iisconstrforce(i)
specifies the IIS force attribute for the i-th constraint.

iisqconstrforce (optional): array of length equal to the number of quadratic constraints. The value of model.iisqconstrforce(i)
specifies the IIS force attribute for the i-th quadratic constraint.

iisgenconstrforce (optional): array of length equal to the number of general constraints. The value of model.iisgenconstrforce(i)
specifies the IIS force attribute for the i-th general constraint.

Possible values for all five attribute arraysfrom above are: −1 to let the algorithm decide, 0 to exclude the
corresponding entity from the IIS, and 1 to always include the corresponding entity in the IIS.

Note that setting this attribute to 0 may make the resulting subsystem feasible (or consistent), which would
then make it impossible to construct an IIS. Trying anyway will result in a GRB_ERROR_IIS_NOT_INFEASIBLE error.
Similarly, setting this attribute to 1 may result in an IIS that is not irreducible. More precisely, the system would
only be irreducible with respect to the model elements that have force values of -1 or 0.
General constraint fields

The struct arrays described below are used to add general constraints to a model.
Mathematical programming has traditionally defined a set of fundamental constraint types: variable bound

constraints, linear constraints, quadratic constraints, integrality constraints, and SOS constraints. These are typically
treated directly by the underlying solver (although not always), and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general (function)
constraints. These are typically not treated directly by the solver. Rather, they are transformed by presolve into
constraints (and variables) chosen from among the fundamental types listed above. In some cases, the resulting
constraint or constraints are mathematically equivalent to the original; in others, they are approximations. If such
constraints appear in your model, but if you prefer to reformulate them yourself using fundamental constraint types
instead, you can certainly do so. However, note that Gurobi can sometimes exploit information contained in the
other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

• MAX (genconmax): set a decision variable equal to the maximum value from among a set of decision variables
• MIN (genconmin): set a decision variable equal to the minimum value from among a set of decision variables
• ABS (genconabs): set a decision variable equal to the absolute value of some other decision variable
• AND (genconand): set a binary variable equal to one if and only if all of a set of binary decision variables are

equal to one
• OR (genconor): set a binary variable equal to one if and only if at least one variable out of a set of binary

decision variables is equal to one
• NORM (genconnorm): set a decision variable equal to the p-norm of a vector of decision variables
• INDICATOR (genconind): whenever a given binary variable takes a certain value, then the given linear

constraint must be satisfied
• Piecewise-linear constraints (genconpwl): set a variable equal to the piecewise-linear function defined by a set

of points using some other variable
• Polynomial (genconpoly): set a variable equal to the polynomial function defined by some other variable
• Natural exponential (genconexp): set a variable equal to the natural exponential function by some other

variable

533

• Exponential (genconexpa): set a variable equal to the exponential function by some other variable
• Natural logarithm (genconlog): set a variable equal to the natural logarithmic function by some other variable
• Logarithm (genconloga): set a variable equal to the logarithmic function by some other variable
• Logistic (genconlogistic) set a variable equal to the logistic function by some other variable
• Power (genconpow): set a variable equal to the power function by some other variable
• SIN (genconsin): set a variable equal to the sine function by some other variable
• COS (genconcos): set a variable equal to the cosine function by some other variable
• TAN (gencontan): set a variable equal to the tangent function by some other variable

Please refer to General Constraints section in the reference manual for additional details on general constraints.

genconmax (optional): A struct array. When present, each entry in genconmax defines a MAX general constraint
of the form

x[resvar] = max {con, x[j] : j ∈ vars}

Each entry may have the following fields:

resvar: Specified via model.genconmax(i).resvar. Index of the variable in the left-hand side of the con-
straint.

vars: Specified via model.genconmax(i).vars, it is a vector of indices of variables in the right-hand side of
the constraint.

con (optional): Specified via model.genconmax(i).con. When present, specifies the constant on the left-
hand side. Default value is −∞.

name (optional): Specified via model.genconmax(i).name. When present, specifies the name of the i-th
MAX general constraint.

genconmin (optional): A struct array. When present, each entry in genconmax defines a MIN general constraint of
the form

x[resvar] = min {con, x[j] : j ∈ vars}

Each entry may have the following fields:

resvar: Specified via model.genconmin(i).resvar. Index of the variable in the left-hand side of the con-
straint.

vars: Specified via model.genconmin(i).vars, it is a vector of indices of variables in the right-hand side of
the constraint.

con (optional): Specified via model.genconmin(i).con. When present, specifies the constant on the left-
hand side. Default value is ∞.

name (optional): Specified via model.genconmin(i).name. When present, specifies the name of the i-th MIN
general constraint.

genconabs (optional): A struct array. When present, each entry in genconmax defines an ABS general constraint
of the form

x[resvar] = |x[argvar]|

Each entry may have the following fields:

resvar: Specified via model.genconabs(i).resvar. Index of the variable in the left-hand side of the con-
straint.

argvar: Specified via model.genconabs(i).argvar. Index of the variable in the right-hand side of the con-
straint.

name (optional): Specified via model.genconabs(i).name. When present, specifies the name of the i-th ABS
general constraint.

534

genconand (optional): A struct array. When present, each entry in genconand defines an AND general constraint
of the form

x[resvar] = and{x[i] : i ∈ vars}

Each entry may have the following fields:

resvar: Specified via model.genconand(i).resvar. Index of the variable in the left-hand side of the con-
straint.

vars: Specified via model.genconand(i).vars, it is a vector of indices of variables in the right-hand side of
the constraint.

name (optional): Specified via model.genconand(i).name. When present, specifies the name of the i-th
AND general constraint.

genconor (optional): A struct array. When present, each entry in genconor defines an OR general constraint of
the form

x[resvar] = or{x[i] : i ∈ vars}

Each entry may have the following fields:

resvar: Specified via model.genconor(i).resvar. Index of the variable in the left-hand side of the constraint.
vars: Specified via model.genconor(i).vars, it is a vector of indices of variables in the right-hand side of the

constraint.
name (optional): Specified via model.genconor(i).name. When present, specifies the name of the i-th OR

general constraint.

genconnorm (optional): A struct array. When present, each entry in genconnorm defines a NORM general constraint
of the form

x[resvar] = norm(x[i] : i ∈ vars,which)

Each entry may have the following fields:

resvar: Specified via model.genconnorm(i).resvar. Index of the variable in the left-hand side of the con-
straint.

vars: Specified via model.genconnorm(i).vars, it is a vector of indices of variables in the right-hand side of
the constraint.

which: Specified via model.genconnorm(i).which. Specifies which p-norm to use. Possible values are 0, 1, 2
and ∞.

name (optional): Specified via model.genconnorm(i).name. When present, specifies the name of the i-th
NORM general constraint.

genconind (optional): A struct array. When present, each entry in genconind defines an INDICATOR general
constraint of the form

x[binvar] = binval⇒
∑

(x[j] · a[j]) sense rhs

This constraint states that when the binary variable x[binvar] takes the value binval then the linear constraint∑
(x[vars[j]] · val[j]) sense rhs must hold. Note that sense is one of =, <, or > for equality (=), less than or

equal (≤) or greater than or equal (≥) constraints. Each entry may have the following fields:

binvar: Specified via model.genconind(i).binvar. Index of the implicating binary variable.
binval: Specified via model.genconind(i).binval. Value for the binary variable that forces the following

linear constraint to be satisfied. It can be either 0 or 1.
a: Specified via model.genconind(i).a. Vector of coefficients of variables participating in the implied linear

constraint. You can specify a value for a for each column of A (dense vector) or pass a sparse vector
(sparse n-by-1 matrix).

sense: Specified via model.genconind(i).sense. Sense of the implied linear constraint. Must be one of =, <,
or >.

535

rhs: Specified via model.genconind(i).rhs. Right-hand side value of the implied linear constraint.
name (optional): Specified via model.genconind(i).name. When present, specifies the name of the i-th

INDICATOR general constraint.

genconpwl (optional): A struct array. When present, each entry in genconpwl defines a piecewise-linear constraint
of the form

x[yvar] = f(x[xvar])
The breakpoints for f are provided as arguments. Refer to the description of piecewise-linear objectives for
details of how piecewise-linear functions are defined
Each entry may have the following fields:

xvar: Specified via model.genconpwl(i).xvar. Index of the variable in the right-hand side of the constraint.
yvar: Specified via model.genconpwl(i).yvar. Index of the variable in the left-hand side of the constraint.
xpts: Specified via model.genconpwl(i).xpts. Specifies the x values for the points that define the piecewise-

linear function. Must be in non-decreasing order.
ypts: Specified via model.genconpwl(i).ypts. Specifies the y values for the points that define the piecewise-

linear function.
name (optional): Specified via model.genconpwl(i).name. When present, specifies the name of the i-th

piecewise-linear general constraint.

genconpoly (optional): A struct array. When present, each entry in genconpoly defines a polynomial function
constraint of the form

x[yvar] = p0x[xvar]d + p1x[xvar]d−1 + ...+ pd−1x[xvar] + pd

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discus-
sion.
Each entry may have the following fields:

xvar: Specified via model.genconpoly(i).xvar. Index of the variable in the right-hand side of the constraint.
yvar: Specified via model.genconpoly(i).yvar. Index of the variable in the left-hand side of the constraint.
p: Specified via model.genconpoly(i).p. Specifies the coefficients for the polynomial function (starting with

the coefficient for the highest power). If xd is the highest power term, a dense vector of length d+ 1 is
returned.

name (optional): Specified via model.genconpoly(i).name. When present, specifies the name of the i-th
polynomial function constraint.

funcpieces (optional): Specified via model.genconpoly(i).funcpieces. When present, specifies the Func-
Pieces attribute of the i-th polynomial function constraint.

funcpiecelength (optional): Specified via model.genconpoly(i).funcpiecelength. When present, speci-
fies the FuncPieceLength attribute of the i-th polynomial function constraint.

funcpieceerror (optional): Specified via model.genconpoly(i).funcpieceerror. When present, specifies
the FuncPieceError attribute of the i-th polynomial function constraint.

funcpieceratio (optional): Specified via model.genconpoly(i).funcpieceratio. When present, specifies
the FuncPieceRatio attribute of the i-th polynomial function constraint.

genconexp (optional): A struct array. When present, each entry in genconexp defines the natural exponential
function constraint of the form

x[yvar] = exp(x[xvar])
A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discus-
sion.
Each entry may have the following fields:

536

xvar: Specified via model.genconexp(i).xvar. Index of the variable in the right-hand side of the constraint.
yvar: Specified via model.genconexp(i).yvar. Index of the variable in the left-hand side of the constraint.
name (optional): Specified via model.genconexp(i).name. When present, specifies the name of the i-th

natural exponential function constraint.
funcpieces (optional): Specified via model.genconexp(i).funcpieces. When present, specifies the Func-

Pieces attribute of the i-th natural exponential function constraint.
funcpiecelength (optional): Specified via model.genconexp(i).funcpiecelength. When present, speci-

fies the FuncPieceLength attribute of the i-th natural exponential function constraint.
funcpieceerror (optional): Specified via model.genconexp(i).funcpieceerror. When present, specifies

the FuncPieceError attribute of the i-th natural exponential function constraint.
funcpieceratio (optional): Specified via model.genconexp(i).funcpieceratio. When present, specifies

the FuncPieceRatio attribute of the i-th natural exponential function constraint.

genconexpa (optional): A struct array. When present, each entry in genconexpa defines an exponential function
constraint of the form

x[yvar] = ax[xvar]

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discus-
sion.
Each entry may have the following fields:

xvar: Specified via model.genconexpa(i).xvar. Index of the variable in the right-hand side of the constraint.
yvar: Specified via model.genconexpa(i).yvar. Index of the variable in the left-hand side of the constraint.
a: Specified via model.genconexpa(i).a. Specifies the base of the exponential function a > 0.
name (optional): Specified via model.genconexpa(i).name. When present, specifies the name of the i-th

exponential function constraint.
funcpieces (optional): Specified via model.genconexpa(i).funcpieces. When present, specifies the Func-

Pieces attribute of the i-th exponential function constraint.
funcpiecelength (optional): Specified via model.genconexpa(i).funcpiecelength. When present, speci-

fies the FuncPieceLength attribute of the i-th exponential function constraint.
funcpieceerror (optional): Specified via model.genconexpa(i).funcpieceerror. When present, specifies

the FuncPieceError attribute of the i-th exponential function constraint.
funcpieceratio (optional): Specified via model.genconexpa(i).funcpieceratio. When present, specifies

the FuncPieceRatio attribute of the i-th exponential function constraint.

genconlog (optional): A struct array. When present, each entry in genconlog defines the natural logarithmic
function constraint of the form

x[yvar] = log(x[xvar])

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discus-
sion.
Each entry may have the following fields:

xvar: Specified via model.genconlog(i).xvar. Index of the variable in the right-hand side of the constraint.
yvar: Specified via model.genconlog(i).yvar. Index of the variable in the left-hand side of the constraint.
name (optional): Specified via model.genconlog(i).name. When present, specifies the name of the i-th

natural logarithmic function constraint.

537

funcpieces (optional): Specified via model.genconlog(i).funcpieces. When present, specifies the Func-
Pieces attribute of the i-th natural logarithmic function constraint.

funcpiecelength (optional): Specified via model.genconlog(i).funcpiecelength. When present, speci-
fies the FuncPieceLength attribute of the i-th natural logarithmic function constraint.

funcpieceerror (optional): Specified via model.genconlog(i).funcpieceerror. When present, specifies
the FuncPieceError attribute of the i-th natural logarithmic function constraint.

funcpieceratio (optional): Specified via model.genconlog(i).funcpieceratio. When present, specifies
the FuncPieceRatio attribute of the i-th natural logarithmic function constraint.

genconloga (optional): A struct array. When present, each entry in genconloga defines a logarithmic function
constraint of the form

x[yvar] = log(x[xvar]) \ log(a)

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discus-
sion.
Each entry may have the following fields:

xvar: Specified via model.genconloga(i).xvar. Index of the variable in the right-hand side of the constraint.
yvar: Specified via model.genconloga(i).yvar. Index of the variable in the left-hand side of the constraint.
a: Specified via model.genconloga(i).a. Specifies the base of the logarithmic function a > 0.
name (optional): Specified via model.genconloga(i).name. When present, specifies the name of the i-th

logarithmic function constraint.
funcpieces (optional): Specified via model.genconloga(i).funcpieces. When present, specifies the Func-

Pieces attribute of the i-th logarithmic function constraint.
funcpiecelength (optional): Specified via model.genconloga(i).funcpiecelength. When present, speci-

fies the FuncPieceLength attribute of the i-th logarithmic function constraint.
funcpieceerror (optional): Specified via model.genconloga(i).funcpieceerror. When present, specifies

the FuncPieceError attribute of the i-th logarithmic function constraint.
funcpieceratio (optional): Specified via model.genconloga(i).funcpieceratio. When present, specifies

the FuncPieceRatio attribute of the i-th logarithmic function constraint.

genconlogistic (optional): A struct array. When present, each entry in genconlog defines the logistic function
constraint of the form

x[yvar] = 1/(1− exp(−x[xvar]))

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discus-
sion.
Each entry may have the following fields:

xvar: Specified via model.genconlogistic(i).xvar. Index of the variable in the right-hand side of the
constraint.

yvar: Specified via model.genconlogistic(i).yvar. Index of the variable in the left-hand side of the con-
straint.

name (optional): Specified via model.genconlogistic(i).name. When present, specifies the name of the
i-th logistic function constraint.

funcpieces (optional): Specified via model.genconlogistic(i).funcpieces. When present, specifies the
FuncPieces attribute of the i-th logistic function constraint.

funcpiecelength (optional): Specified via model.genconlogistic(i).funcpiecelength. When present,
specifies the FuncPieceLength attribute of the i-th logistic function constraint.

538

funcpieceerror (optional): Specified via model.genconlogistic(i).funcpieceerror. When present, spec-
ifies the FuncPieceError attribute of the i-th logistic function constraint.

funcpieceratio (optional): Specified via model.genconlogistic(i).funcpieceratio. When present, spec-
ifies the FuncPieceRatio attribute of the i-th logistic function constraint.

genconpow (optional): A struct array. When present, each entry in genconpow defines a power function constraint
of the form

x[yvar] = x[xvar]a

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discus-
sion.
Each entry may have the following fields:

xvar: Specified via model.genconpow(i).xvar. Index of the variable in the right-hand side of the constraint.
yvar: Specified via model.genconpow(i).yvar. Index of the variable in the left-hand side of the constraint.
a: Specified via model.genconpow(i).a. Specifies the exponent of the power function.
name (optional): Specified via model.genconpow(i).name. When present, specifies the name of the i-th

power function constraint.
funcpieces (optional): Specified via model.genconpow(i).funcpieces. When present, specifies the Func-

Pieces attribute of the i-th power function constraint.
funcpiecelength (optional): Specified via model.genconpow(i).funcpiecelength. When present, speci-

fies the FuncPieceLength attribute of the i-th power function constraint.
funcpieceerror (optional): Specified via model.genconpow(i).funcpieceerror. When present, specifies

the FuncPieceError attribute of the i-th power function constraint.
funcpieceratio (optional): Specified via model.genconpow(i).funcpieceratio. When present, specifies

the FuncPieceRatio attribute of the i-th power function constraint.

genconsin (optional): A struct array. When present, each entry in genconsin defines the sine function constraint
of the form

x[yvar] = sin(x[xvar])

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discus-
sion.
Each entry may have the following fields:

xvar: Specified via model.genconsin(i).xvar. Index of the variable in the right-hand side of the constraint.
yvar: Specified via model.genconsin(i).yvar. Index of the variable in the left-hand side of the constraint.
name (optional): Specified via model.genconsin(i).name. When present, specifies the name of the i-th sine

function constraint.
funcpieces (optional): Specified via model.genconsin(i).funcpieces. When present, specifies the Func-

Pieces attribute of the i-th sine function constraint.
funcpiecelength (optional): Specified via model.genconsin(i).funcpiecelength. When present, speci-

fies the FuncPieceLength attribute of the i-th sine function constraint.
funcpieceerror (optional): Specified via model.genconsin(i).funcpieceerror. When present, specifies

the FuncPieceError attribute of the i-th sine function constraint.
funcpieceratio (optional): Specified via model.genconsin(i).funcpieceratio. When present, specifies

the FuncPieceRatio attribute of the i-th sine function constraint.

genconcos (optional): A struct array. When present, each entry in genconcos defines the cosine function constraint
of the form

539

x[yvar] = cos(x[xvar])

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discus-
sion.
Each entry may have the following fields:

xvar: Specified via model.genconcos(i).xvar. Index of the variable in the right-hand side of the constraint.

yvar: Specified via model.genconcos(i).yvar. Index of the variable in the left-hand side of the constraint.

name (optional): Specified via model.genconcos(i).name. When present, specifies the name of the i-th
cosine function constraint.

funcpieces (optional): Specified via model.genconcos(i).funcpieces. When present, specifies the Func-
Pieces attribute of the i-th cosine function constraint.

funcpiecelength (optional): Specified via model.genconcos(i).funcpiecelength. When present, speci-
fies the FuncPieceLength attribute of the i-th cosine function constraint.

funcpieceerror (optional): Specified via model.genconcos(i).funcpieceerror. When present, specifies
the FuncPieceError attribute of the i-th cosine function constraint.

funcpieceratio (optional): Specified via model.genconcos(i).funcpieceratio. When present, specifies
the FuncPieceRatio attribute of the i-th cosine function constraint.

gencontan (optional): A struct array. When present, each entry in gencontan defines the tangent function con-
straint of the form

x[yvar] = tan(x[xvar])

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discus-
sion.
Each entry may have the following fields:

xvar: Specified via model.gencontan(i).xvar. Index of the variable in the right-hand side of the constraint.

yvar: Specified via model.gencontan(i).yvar. Index of the variable in the left-hand side of the constraint.

name (optional): Specified via model.gencontan(i).name. When present, specifies the name of the i-th
tangent function constraint.

funcpieces (optional): Specified via model.gencontan(i).funcpieces. When present, specifies the Func-
Pieces attribute of the i-th tangent function constraint.

funcpiecelength (optional): Specified via model.gencontan(i).funcpiecelength. When present, speci-
fies the FuncPieceLength attribute of the i-th tangent function constraint.

funcpieceerror (optional): Specified via model.gencontan(i).funcpieceerror. When present, specifies
the FuncPieceError attribute of the i-th tangent function constraint.

funcpieceratio (optional): Specified via model.gencontan(i).funcpieceratio. When present, specifies
the FuncPieceRatio attribute of the i-th tangent function constraint.

Advanced fields

pwlobj (optional): The piecewise-linear objective functions. A struct array. When present, each entry in pwlobj
defines a piecewise-linear objective function for a single variable. The index of the variable whose objective
function is being defined is stored in model.pwlobj(i).var. The x values for the points that define the
piecewise-linear function are stored in
model.pwlobj(i).x. The values in the x vector must be in non-decreasing order. The y values for the points
that define the piecewise-linear function are stored in model.pwlobj(i).y.

540

vbasis (optional): The variable basis status vector. Used to provide an advanced starting point for the simplex
algorithm. You would generally never concern yourself with the contents of this vector, but would instead
simply pass it from the result of a previous optimization run to the input of a subsequent run. When present,
you must specify one value for each column of A.

cbasis (optional): The constraint basis status vector. Used to provide an advanced starting point for the simplex
algorithm. Consult the vbasis description for details. When present, you must specify one value for each row
of A.

varhintval (optional): A set of user hints. If you know that a variable is likely to take a particular value in high
quality solutions of a MIP model, you can provide that value as a hint. You can also (optionally) provide
information about your level of confidence in a hint with the varhintpri field. If present, you must specify
one value for each column of A. Use a value of nan for variables where no such hint is known. For more details,
please refer to the Attribute section in the reference manual.

varhintpri (optional): Priorities on user hints. After providing variable hints through the varhintval struct, you
can optionally also provide hint priorities to give an indication of your level of confidence in your hints. If
present, you must specify a value for each column of A. For more details, please refer to the Attribute section
in the reference manual.

branchpriority (optional): Variable branching priority. If present, the value of this attribute is used as the
primary criteria for selecting a fractional variable for branching during the MIP search. Variables with larger
values always take priority over those with smaller values. Ties are broken using the standard branch variable
selection criteria. If present, you must specify one value for each column of A.

pstart (optional): The current simplex start vector. If you set pstart values for every variable in the model and
dstart values for every constraint, then simplex will use those values to compute a warm start basis. For more
details, please refer to the Attribute section in the reference manual.

dstart (optional): The current simplex start vector. If you set dstart values for every linear constraint in the
model and pstart values for every variable, then simplex will use those values to compute a warm start basis.
For more details, please refer to the Attribute section in the reference manual.

lazy (optional): Determines whether a linear constraint is treated as a lazy constraint. If present, you must specify
one value for each row of A. For more details, please refer to the Attribute section in the reference manual.

start (optional): The MIP start vector. The MIP solver will attempt to build an initial solution from this vector.
When present, you must specify a start value for each variable. Note that you can set the start value for a
variable to nan, which instructs the MIP solver to try to fill in a value for that variable.

partition (optional): The MIP variable partition number, which is used by the MIP solution improvement heuris-
tic. If present, you must specify one value for each variable of A. For more details, please refer to the Attribute
section in the reference manual.

If any of the mandatory components listed above are missing, the gurobi() function will return an error.
Below is an example that demonstrates the construction of a simple optimization model:

model.A = sparse([1 2 3; 1 1 0]);
model.obj = [1 1 1];
model.modelsense = ’max’;
model.rhs = [4; 1];
model.sense = ’<>’

The params argument
As mentioned previously, the Gurobi optimizer provides a set of parameters that allow you to control many of the
details of the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms, strategies
for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters before beginning the
optimization.

Parameter changes are specified using a struct variable having multiple fields, which is passed as an argument
to the appropriate Gurobi function (e.g., gurobi). The name of each field must be the name of a Gurobi parameter,

541

and the associated value should be the desired value of that parameter. You can find a complete list of the available
Gurobi parameters in the reference manual.

To create a struct that would set the Gurobi Method parameter to 2 and the ResultFile parameter to model.mps,
you would do the following:
params.Method = 2;
params.ResultFile = ’model.mps’;

We should say a bit more about the ResultFile parameter. If this parameter is set, the optimization model that
is eventually passed to Gurobi will also be output to the specified file. The filename suffix should be one of .mps,
.lp, .rew, .rlp, .dua, or.dlp, to indicate the desired file format (see the file format section in the reference manual
for details on Gurobi file formats).

The params struct can also be used to set license specific parameters, that define the computational environment
to be used. We will discuss the two most common use cases next, and refer again to the collection of all available
parameters in the reference manual.
Using a Compute Server License

Gurobi Compute Server allows you to offload optimization jobs to a remote server. Servers are organized into clusters.
By providing the name of any node within the cluster, your job will automatically be sent to the least heavily loaded
node in the cluster. If all nodes are at capacity, your job will be placed in a queue, and will proceed once capacity
becomes available. You can find additional information about Gurobi Compute Server in the Gurobi Remote Services
Reference Manual. The most commonly used parameters are the following.

ComputeServer: A Compute Server. You can refer to the server using its name or its IP address. If you are using a
non-default port, the server name should be followed by the port number (e.g., server1:61000).

ServerPassword (optional): User password on the Compute Server cluster. Obtain this from your Compute Server
administrator.

CSPriority (optional): The priority of the job. Priorities must be between -100 and 100, with a default value of
0 (by convention). Higher priority jobs are chosen from the server job queue before lower priority jobs. A job
with priority 100 runs immediately, bypassing the job queue and ignoring the job limit on the server. You
should exercise caution with priority 100 jobs, since they can severely overload a server, which can cause jobs
to fail, and in extreme cases can cause the server to crash.

CSRouter (optional): The router for the Compute Server cluster. A router can be used to improve the robustness
of a Compute Server deployment. You can refer to the router using either its name or its IP address. A typical
Remote Services deployment won’t use a router, so you typically won’t need to set this.

CSTLSinsecure (optional): Indicates whether to use insecure mode in the TLS (Transport Layer Security). Set
this to 0 unless your server administrator tells you otherwise.

Here is an example of how to use a params argument to connect to a Compute Server:
params.ComputeServer = ’server1.mycompany.com:61000’;
params.CSPriority = 5;

Using a Gurobi Instant Cloud License

Gurobi Instant Cloud allows you to offload optimization jobs to a Gurobi Compute Server on the cloud. If an
appropriate machine is already running, the job will run on that machine. It will automatically launch a new
machine otherwise. Note that launching a new machine can take a few minutes. You can find additional information
about the Gurobi Instant Cloud service in the reference manual. The most commonly used parameters are the
following.

CloudAccessID: The access ID for your Gurobi Instant Cloud license. This can be retrieved from the Gurobi Instant
Cloud website. When used in combination with your CloudSecretKey, this allows you to launch Instant Cloud
instances and submit jobs to them.

CloudSecretKey: The secret key for your Gurobi Instant Cloud license. This can be retrieved from the Gurobi
Instant Cloud website. When used in combination with your CloudAccessID, this allows you to launch Instant
Cloud instances and submit jobs to them. Note that you should keep your secret key private.

542

https://www.gurobi.com/documentation/10.0/remoteservices/remoteservices.html
https://www.gurobi.com/documentation/10.0/remoteservices/remoteservices.html

CloudPool (optional): The machine pool. Machine pools allow you to create fixed configurations on the Instant
Cloud website (capturing things like type of machine, geographic region, etc.), and then launch and share
machines from client programs without having to restate configuration information each time you launch a
machine. If not provided, your job will be launched in the default pool associated with your cloud license.

CSPriority (optional): The priority of the job. Priorities must be between -100 and 100, with a default value of
0 (by convention). Higher priority jobs are chosen from the server job queue before lower priority jobs. A job
with priority 100 runs immediately, bypassing the job queue and ignoring the job limit on the server. You
should exercise caution with priority 100 jobs, since they can severely overload a server, which can cause jobs
to fail, and in extreme cases can cause the server to crash.

Here is an example of how to use a params argument to launch a Gurobi Instant Cloud instance:
params.CloudAccessID = ’3d1ecef9-dfad-eff4-b3fa’;
params.CloudSecretKey = ’ae6L23alJe3+fas’;

543

8.2 Solving a Model
gurobi()

gurobi (model)
gurobi (model, params)

This function optimizes the given model. The algorithm used for the optimization depends on the model type
(simplex or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful completion it will
return a struct variable containing solution information.

Please consult Variables and Constraints section in the reference manual for a discussion of some of the practical
issues associated with solving a precisely defined mathematical model using finite-precision floating-point arithmetic.

Arguments:
model: The model struct must contain a valid Gurobi model. See the model argument section for more
information.

params: The params struct, when provided, contains a list of modified Gurobi parameters. See the params
argument section for more information.

Example usage:

result = gurobi(model , params);
if strcmp(result.status , 'OPTIMAL ');

fprintf('Optimal objective: %e\n', result.objval);
disp(result.x)

else
fprintf('Optimization returned status: %s\n', result.status);

end

Return value:

The optimization result

The gurobi function returns a struct, with the various results of the optimization stored in its fields. The specific
results that are available depend on the type of model that was solved, the parameters used, and the status of the
optimization. The following is a list of fields that might be available in the returned result. We will discuss the
circumstances under which each will be available after presenting the list.
Model fields

status: The status of the optimization, returned as a string. The desired result is OPTIMAL, which indicates that an
optimal solution to the model was found. Other status are possible, for example if the model has no feasible
solution or if you set a Gurobi parameter that leads to early solver termination. See the Status Code section
for further information on the Gurobi status codes.

objval: The objective value of the computed solution. Note that for multi-objective models result.objval will be a
vector, where result.objval(i) stores the value for
model.multiobj(i).

objbound: Best available bound on solution (lower bound for minimization, upper bound for maximization).
objboundc: The best unrounded bound on the optimal objective. In contrast to objbound, this attribute does not

take advantage of objective integrality information to round to a tighter bound. For example, if the objective
is known to take an integral value and the current best bound is 1.5, objbound will return 2.0 while objboundc
will return 1.5.

mipgap: Current relative MIP optimality gap; computed as |ObjBound−ObjV al|/|ObjV al| (where ObjBound and
ObjV al are the MIP objective bound and incumbent solution objective, respectively). Returns GRB_INFINITY
when an incumbent solution has not yet been found, when no objective bound is available, or when the current
incumbent objective is 0. This is only available for mixed-integer problems.

runtime: The elapsed wall-clock time (in seconds) for the optimization.

544

work: The work (in work units) spent on the optimization. As opposed to the runtime in seconds, the work is
deterministic. This means that on the same hardware and with the same parameter and attribute settings,
solving the same model twice will lead to exactly the same amount of work in each of the two solves. One
work unit corresponds very roughly to one second, but this greatly depends on the hardware on which Gurobi
is running and on the model that has been solved.

itercount: Number of simplex iterations performed.
baritercount: Number of barrier iterations performed.
nodecount: Number of branch-and-cut nodes explored.
maxvio: Value of the maximal (unscaled) violation of the returned solution.
farkasproof: Magnitude of infeasibility violation in Farkas infeasibility proof. Only available if the model was found

to be infeasible. Please refer to Attribute section in the reference manual for details.

Variable fields

x: The computed solution. This vector contains one entry for each column of A.
rc: Variable reduced costs for the computed solution. This vector contains one entry for each column of A.
vbasis: Variable basis status values for the computed optimal basis. You generally should not concern yourself with

the contents of this vector. If you wish to use an advanced start later, you would simply copy the vbasis and
cbasis fields into the corresponding fields for the next model. This vector contains one entry for each column
of A.

unbdray: Unbounded ray. Provides a vector that, when added to any feasible solution, yields a new solution that is
also feasible but improves the objective. Only available if the model is found to be unbounded. This vector
contains one entry for each column of A.

Linear constraint fields

slack: The constraint slack for the computed solution. This vector contains one entry for each row of A.
pi: Dual values for the computed solution (also known as shadow prices). This vector contains one entry for each

row of A.
cbasis: Constraint basis status values for the computed optimal basis. This vector contains one entry for each row

of A.
farkasdual: Farkas infeasibility proof. Only available if the model was found to be infeasible. Please refer to

Attribute section in the reference manual for details.

Quadratic constraint fields

qcslack: The quadratic constraint slack in the current solution. This vector contains one entry for each quadratic
constraint.

qcpi: The dual values associated with the quadratic constraints. This vector contains one entry for each quadratic
constraint.

Solution Pool fields

pool: When multiple solutions are found during the optimization call, these solutions are returned in this field. A
struct array. When present, each struct has the following fields:

objval: Stores the objective value of the i-th solution in result.pool(i).objval. Note that when the model is
a multi-objective model, instead of a single value,
result.pool(i).objval(j) stores the value of the j-th objective function for the i-th solution.

xn: Stores the i-th solution in result.pool(i).xn. This vector contains one entry for each column of A.

Note that to query the number of solutions stored, you can query the length of result.pool.
poolobjbound: For single-objective MIP optimization problems, this value gives a bound on the best possible objective

of an undiscovered solution. The difference between this value and objbound is that the former gives an
objective bound for undiscovered solutions, while the latter gives a bound for any solution.

545

What is Available When

The status field will be present in all cases. It indicates whether Gurobi was able to find a proven optimal solution
to the model. In cases where a solution to the model was found, optimal or otherwise, the objval and x fields will
be present.

For linear and quadratic programs, if a solution is available, then the pi and rc fields will also be present. For
models with quadratic constraints, if the parameter qcpdual is set to 1, the field qcpi will be present. If the final
solution is a basic solution (computed by simplex), then vbasis and cbasis will be present. If the model is an
unbounded linear program and the InfUnbdInfo parameter is set to 1, the field unbdray will be present. Finally,
if the model is an infeasible linear program and the InfUnbdInfo parameter is set to 1, the fields farkasdual and
farkasproof will be set.

For mixed integer problems, no dual information (i.e. pi, slack, rc, vbasis, cbasis, qcslack, qcpi, ubdray or
farkasdual) is ever available. When multiple solutions are found, the pool and poolobjbound fields will be present.
Depending on the status field value, the fields nodecount, objbound, objbundc and mipgap will be available.

For continuous and mixed-integer models, under normal execution, the fields runtime, work, itercount and
baritercount will be available.

gurobi_iis()

gurobi_iis (model)
gurobi_iis (model, params)

Compute an Irreducible Inconsistent Subsystem (IIS).
An IIS is a subset of the constraints and variable bounds with the following properties:
• It is still infeasible, and
• If a single constraint or bound is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily the smallest
one; there may exist others with fewer constraints or bounds.

You can obtain information about the outcome of the IIS computation from the returned IIS result (described
below). Note that this method can be used to compute IISs for both continuous and MIP models.

Arguments:
model: The model struct must contain a valid Gurobi model. See the model argument section for more
information.

params: The params struct, when provided, contains a list of modified Gurobi parameters. See the params
argument section for more information.

Example usage:
model = gurobi_read(’examples/data/klein1.mps’);
iis = gurobi_iis(model);

Return value:

The gurobi_iis() function returns a struct, with various results stored in its fields. The specific results that
are available depend on the type of model.

The returned struct will always contain the following fields:
minimal: A logical scalar that indicates whether the computed IIS is minimal. It will normally be true, but it may

be false if the IIS computation was stopped early (due to a time limit or a user interrupt).
Arows: A logical vector that indicates whether a linear constraint appears in the computed IIS.
lb: A logical vector that indicates whether a lower bound appears in the computed IIS.
ub: A logical vector that indicates whether a upper bound appears in the computed IIS.

If your model contains general constraints, the returned struct will also contain the following fields:
genconmax: A logical vector that indicates whether a general MAX constraint appears in the computed IIS.

546

genconmin: A logical vector that indicates whether a general MIN constraint appears in the computed IIS.
genconand: A logical vector that indicates whether a general AND constraint appears in the computed IIS.
genconor: A logical vector that indicates whether a general OR constraint appears in the computed IIS.
genconabs: A logical vector that indicates whether a general ABS constraint appears in the computed IIS.
genconind: A logical vector that indicates whether a general INDICATOR constraint appears in the computed IIS.
genconpwl: A logical vector that indicates whether a general piecewise-linear function constraint appears in the

computed IIS.
genconpoly: A logical vector that indicates whether a polynomial function constraint appears in the computed IIS.
genconexp: A logical vector that indicates whether a natural exponential function constraint appears in the computed

IIS.
genconexpa: A logical vector that indicates whether a exponential function constraint appears in the computed IIS.
genconlog: A logical vector that indicates whether a natural logarithmic function constraint appears in the computed

IIS.
genconloga: A logical vector that indicates whether a logarithmic function constraint appears in the computed IIS.
genconlogistic: A logical vector that indicates whether a logistic function constraint appears in the computed IIS.
genconpow: A logical vector that indicates whether a power function constraint appears in the computed IIS.
genconsin: A logical vector that indicates whether a SIN function constraint appears in the computed IIS.
genconcos: A logical vector that indicates whether a COS function constraint appears in the computed IIS.
gencontan: A logical vector that indicates whether a TAN function constraint appears in the computed IIS.

If your model contains SOS constraints, the returned struct will also contain the following field:
sos: A logical vector that indicates whether an SOS constraint appears in the computed IIS

If your model contains quadratic constraints, the returned struct will also contain the following field:
quadcon: A logical vector that indicates whether a quadratic constraint appears in the computed IIS.

gurobi_feasrelax()

gurobi_feasrelax (model, relaxobjtype, minrelax, penalties)
gurobi_feasrelax (model, relaxobjtype, minrelax, penalties, params)

This function computes a feasibility relaxation for the input model argument. The feasibility relaxation is a
model that, when solved, minimizes the amount by which the solution violates the bounds and linear constraints
of the original model. You must provide a penalty to associate with relaxing each individual bound or constraint
(through the penalties argument). These penalties are interpreted in different ways, depending on the value of the
relaxobjtype argument.

Arguments:
model: The model struct must contain a valid Gurobi model. See the model argument section for more
information.

relaxobjtype: The approach used to impose penalties on violations.
If you specify relaxobjtype=0, the objective for the feasibility relaxation is to minimize the sum of the
weighted magnitudes of the bound and constraint violations.
If you specify relaxobjtype=1, the objective for the feasibility relaxation is to minimize the weighted sum
of the squares of the bound and constraint violations.
If you specify relaxobjtype=2, the objective for the feasibility relaxation is to minimize the weighted count
of bound and constraint violations.
In all cases, the weights are taken from penalties.lb, penalties.ub and penalties.rhs. You can provide
the special penalty value Inf to indicate that the corresponding bound or constraint cannot be relaxed.

minrelax: The minrelax argument is a boolean that controls the type of feasibility relaxation that is created.
If minrelax=false, optimizing the returned model gives a solution that minimizes the cost of the violation.

547

If minrelax=true, optimizing the returned model finds a solution that minimizes the original objective,
but only from among those solutions that minimize the cost of the violation. Note that gurobi_feasrelax
must solve an optimization problem to find the minimum possible relaxation when minrelax=true, which
can be quite expensive.

penalties: The penalties argument is a struct array, having the following optional fields (default: all Inf):
lb Penalty for violating each lower bound.
ub Penalty for violating each upper bound.
rhs Penalty for violating each constraint.

To give an example, if a constraint with penalties.rhs value p is violated by 2.0, it would contribute 2*p to the
feasibility relaxation objective for relaxobjtype=0, 2*2*p for relaxobjtype=1, and p for relaxobjtype=2.

params: The params struct, when provided, contains a list of modified Gurobi parameters. See the params
argument section for more information.

Return value:
A struct containing two fields:
result.model, a struct variable, as described in the model argument section.
result.feasobj, a scalar. If minrelax==true this is the relaxation problem objective value, 0.0 otherwise.

Example usage:
model = gurobi_read(’stein9.mps’);
penalties.lb = ones(length(model.lb),1);
penalties.ub = ones(length(model.ub),1);
penalties.rhs = ones(length(model.rhs),1);
feasrelaxresult = gurobi_feasrelax(model, 0, false, penalties);

gurobi_relax()

gurobi_relax (model)
gurobi_relax (model, params)

Create the relaxation of a MIP model. Transforms integer variables into continuous variables, and removes SOS
and general constraints.

Arguments:
model: The model struct must contain a valid Gurobi model. See the model argument section for more
information.

params: The params struct, when provided, contains a list of modified Gurobi parameters. See the params
argument section for more information.

Return value:
A model struct variable, as described in the model parameter section.

Example usage:
model = gurobi_read(’stein9.mps’);
relaxed = gurobi_relax(model);

548

8.3 Input/Output
gurobi_read()

gurobi_read (filename)
gurobi_read (filename, params)

Reads a model from a file.
Arguments:

filename: Name of the file to read. Note that the type of the file is encoded in the file name suffix. The
filename suffix should be one of .mps, .rew, .lp, .rlp, .dua, .dlp, .ilp, or .opb (see the file formats section
for details on Gurobi file formats). The files can be compressed, so additional suffixes of .gz, .bz2, .zip, or
.7z are accepted.

params: The params struct, when provided, contains a list of modified Gurobi parameters. See the params
argument section for more information.

Return value:
A model struct variable, as described in the model section.

Example usage:
model = gurobi_read(’stein9.mps’);
result = gurobi(model);

gurobi_write()

gurobi_write (model, filename)
gurobi_write (model, filename, params)

Writes a model to a file.
Arguments:

model: The model struct must contain a valid Gurobi model. See the model argument section for more
information.

filename: Name of the file to write. Note that the type of the file is encoded in the file name suffix. The
filename suffix should be one of .mps, .rew, .lp, .rlp, .dua, .dlp, or .ilp, to indicate the desired file format
(see the file formats section for details on Gurobi file formats). The files can be compressed, so additional
suffixes of .gz, .bz2, .zip, or .7z are accepted.

params: The params struct, when provided, contains a list of modified Gurobi parameters. See the params
argument section for more information.

Example usage:

model.A = sparse ([1 2 3; 1 1 0]);
model.obj = [1 1 2];
model.modelsense = 'max';
model.rhs = [4; 1];
model.sense = '<>';
gurobi_write(model , 'mymodel.mps');
gurobi_write(model , 'mymodel.lp');
gurobi_write(model , 'mymodel.mps.bz2');

549

8.4 Using Gurobi within MATLAB’s Problem-Based Optimization
Starting with release R2017b, the MATLAB Optimization Toolbox offers an alternative way to formulate optimization
problems, coined “Problem-Based Optimization”. In this section we’ll explain how this modeling technique can be
used in combination with the Gurobi solver.

The problem-based modeling approach uses an object-oriented paradigm for the components of an optimization
problem; the optimization problem itself, the decision variables, and the linear constraints are represented by objects.
Their creation and modification is effected through methods. The complete documentation for problem-based opti-
mization is part of the Optimization Toolbox; we will only walk through a simple example. For this it is important
that your MATLAB path contains Gurobi’s example directory, which can be set as follows:

addpath(fullfile(<path_to_Gurobi >, <architecture >, 'examples ', 'matlab '));

The first step is to create an optimization problem:

prob = optimproblem('ObjectiveSense ','maximize ');

The variable prob now refers to an optimization problem object, which we have specified to be a maximization
problem. Next we create three non-negative optimization variables: x, y and z:

x = optimvar('x', 'LowerBound ', 0);
y = optimvar('y', 'LowerBound ', 0);
z = optimvar('z', 'LowerBound ', 0);

With these variables at hand, we now build linear expressions in order to set an objective function, and to add
two linear constraints to prob:

prob.Objective = x + 2 * y + 3 * z;
prob.Constraints.cons1 = x + y <= 1;
prob.Constraints.cons2 = y + z <= 1;

Finally we create an options object that guides prob’s solution method to the linear program solver function
linprog, and call the solve method.

options = optimoptions('linprog ');
sol = solve(prob , options);

Since the examples directory of the Gurobi installation has been added to the path in the very first step above,
a bit of magic happens at this stage: The directory contains a file linprog.m, so that the invocation of the solve
method ends up calling this latter function instead of the built-in function linprog of MATLAB’s Optimization
Toolbox. The following output from Gurobi will be shown on the console:
Gurobi Optimizer version 10.0.0 build v10.0.0rc0 (linux64)
Optimize a model with 2 rows, 3 columns and 4 nonzeros
Model fingerprint: 0x3a4c68c2
Coefficient statistics:

Matrix range [1e+00, 1e+00]
Objective range [1e+00, 3e+00]
Bounds range [0e+00, 0e+00]
RHS range [1e+00, 1e+00]

Presolve removed 2 rows and 3 columns
Presolve time: 0.03s
Presolve: All rows and columns removed
Iteration Objective Primal Inf. Dual Inf. Time

0 -4.0000000e+00 0.000000e+00 0.000000e+00 0s

Solved in 0 iterations and 0.05 seconds
Optimal objective -4.000000000e+00

The example we just discussed can be found in the examples directory in the file opttoolbox_lp.m. The
example opttoolbox_mip1.m shows an analogous problem formulation with integer variables, that uses the function
intlinprog.m, also found in the Gurobi examples directory, as a surrogate for MATLAB’s built-in counterpart.

550

The modeling constructs provided by the Optimization Toolbox do not cover all the features of Gurobi, e.g.,
SOS, semi-continuous variables and general constraints to name a few. Moreover not all Gurobi parameters have
equivalent counterparts in the option objects for linprog and intlinprog. In order to use such features, Gurobi’s
own Matlab API should be used.

551

8.5 Setting up the Gurobi MATLAB interface
In order to use our MATLAB interface, you’ll need to use the MATLAB function gurobi_setup to tell MATLAB
where to find the Gurobi mex file. This file is stored in the <installdir>/matlab directory of your Gurobi instal-
lation. For example, if you installed the 64-bit Windows version of Gurobi 10.0 in the default location, you should run

>> cd c:/Users/jones/gurobi1000/win64/matlab
>> gurobi_setup

The gurobi_setup function adjusts your MATLAB path to include the <installdir>/matlab directory. If you
want to avoid typing this command every time you start MATLAB, follow the instructions issued by gurobi_setup
to permanently adjust your path.

The MATLAB examples provided with the Gurobi distribution are included in the
<installdir>/examples/matlab directory. To run these examples you need to change to this directory. For example,
if you are running the 64-bit Windows version of Gurobi, you would say:

>> cd c:/Users/jones/gurobi1000/win64/examples/matlab
>> mip1

If the Gurobi package was successfully installed, you should see the following output:

status: 'OPTIMAL'
versioninfo: [1x1 struct]

runtime: 2.9397e-04
objval: 3

x: [3x1 double]
slack: [2x1 double]

poolobjbound: 3
pool: [1x2 struct]

mipgap: 0
objbound: 3

objboundc: 3
itercount: 0

baritercount: 0
nodecount: 0

x 1
y 0
z 1
Obj: 3.000000e+00

552

R API Overview

This section documents the Gurobi R interface. For those of you who are not familiar with R, it is a free language for
statistical computing. Please visit the R web site for more information. This manual begins with a quick overview of
the methods provided by our R API. It then continues with a comprehensive presentation of all of the available
methods, their arguments, and their return values.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide or the Example
Tour of the reference manual. These documents provide concrete examples of how to use the methods described here.

A quick note for new users: the convention in math programming is that variables are non-negative unless
specified otherwise. You’ll need to explicitly set lower bounds if you want variables to be able to take negative values.

Models

Our Gurobi R interface enables you to express problems of the following form:
minimize xTQx+ cTx+ alpha
subject to Ax = b (linear constraints)

` ≤ x ≤ u (bound constraints)
some xj integral (integrality constraints)
xTQcx+ qTx ≤ beta (quadratic constraints)
some xi in SOS (special ordered set constraints)
min, max, abs, or, ... (general constraints)

Models are stored as list variables, each consisting of multiple named components. The named components
capture the different model components listed above. Many of these model components are optional. For example,
integrality constraints may be omitted.

An optimization model may be loaded from a file (using the gurobi_read function), or it can be built by
populating the appropriate named components of a model variable (using standard R constructs). We will discuss
the details of how models are represented in the model argument section.

We often refer to the class of an optimization model. A model with a linear objective function, linear constraints,
and continuous variables is a Linear Program (LP). If the objective is quadratic, the model is a Quadratic Program
(QP). If any of the constraints are quadratic, the model is a Quadratically-Constrained Program (QCP). We will
sometimes refer to a few special cases of QCP: QCPs with convex constraints, QCPs with non-convex constraints,
bilinear programs, and Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-
continuous variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the model
is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, including Mixed Integer Linear
Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed Integer Quadratically-Constrained Programs
(MIQCP), and Mixed Integer Second-Order Cone Programs (MISOCP). The Gurobi Optimizer handles all of these
model classes.

Solving a Model

Once you have built a model, you can call gurobi to compute a solution. By default, gurobi will use the concurrent
optimizer to solve LP models, the barrier algorithm to solve QP models and QCP models with convex constraints,
and the branch-and-cut algorithm to solve mixed integer models. The solution is returned as a list variable. We
will discuss the details of how optimization results are represented when we discuss the gurobi function.
Here is a simple example of a likely sequence of commands in the R API:
model <- gurobi_read(’examples/data/stein9.mps’)
result <- gurobi(model)

553

https://www.r-project.org
https://www.gurobi.com/documentation/10.0/quickstart_windows/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html
https://www.gurobi.com/documentation/10.0/examples/index.html

Multiple Solutions and Multiple Objectives

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to a model with a
single objective function. Gurobi provides features that allow you to relax either of these assumptions. You should
refer to the section on Solution Pools for information on how to request more than one solution, or the section on
Multiple Objectives for information on how to specify multiple objective functions and control the trade-off between
them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the infeasibility,
attempt to repair the infeasibility, or both. To obtain information that can be useful for diagnosing the cause of an
infeasibility, call gurobi_iis to compute an Irreducible Inconsistent Subsystem (IIS). This method can be used for
both continuous and MIP models, but you should be aware that the MIP version can be quite expensive. We will
discuss the details of how IIS results are represented in the gurobi_iis function documentation.

To attempt to repair an infeasibility, call gurobi_feasrelax to compute a feasibility relaxation for the model.
This relaxation allows you to find a solution that minimizes the magnitude of the constraint violation.

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of the optimization
process. Factors like feasibility and optimality tolerances, choices of algorithms, strategies for exploring the MIP
search tree, etc., can be controlled by modifying Gurobi parameters before beginning the optimization.

Each Gurobi parameter has a default value. Desired parameter changes are passed in a list variable. The
name of each named component within this list must be the name of a Gurobi parameter, and the associated value
should be the desired value of that parameter. You can find a complete list of the available Gurobi parameters in
the reference manual. We will provide additional details on changing parameter settings in the params argument
section.

Monitoring Progress

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will send output to the
screen. A few simple controls are available for modifying the default logging behavior. If you would like to direct
output to a file as well as to the screen, set the LogFile parameter to the name of your desired log file. The frequency
of logging output can be controlled with the DisplayInterval parameter, and logging can be turned off entirely with
the OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging section of the
reference manual.

Error Handling

If unsuccessful, the methods of the Gurobi R interface will return an error code and an error message. A list of
possible error codes can be found in the Error Code section in the reference manual.

Environments and license parameters

By default, the various Gurobi functions will look for a valid license file and create a local Gurobi environment. This
environment exists for as long as the corresponding R API function is running, and is released upon completion.

Another option is to provide licensing parameters through an optional params argument (also through a list).
This argument allows you to solve the given problem on a Gurobi Compute Server, on Gurobi Instant Cloud, or using
a Gurobi Cluster Manager. We will discuss this topic further in the params argument section.

Gurobi will check the current working directory for a file named gurobi.env, and it will attempt to read parameter
settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter
name, followed by the desired value for that parameter).

9.1 Common Arguments
Most common arguments in the Gurobi R interface are R list variables, each containing multiple named components.
Several of these named components are optional. Note that you refer to a named component of a list variable by
adding a dollar sign to the end of the variable name, followed by the name of the named component. For example,
model$A refers to named component A of variable model.

554

The model argument
Model variables store optimization problems (as described in the problem statement).

Models can be built in a number of ways. You can populate the appropriate named components of the model
list using standard R routines. You can also read a model from a file, using gurobi_read. A few API functions (
gurobi_feasrelax and gurobi_relax) also return models.

Note that all matrix named components within the model variable can be dense or sparse. Sparse matrices should
be built using either sparseMatrix from the Matrix package, or simple_triplet_matrix from the slam package.

The following is an enumeration of all of the named components of the model argument that Gurobi will take
into account when optimizing the model:
Commonly used named components

A: The linear constraint matrix.
obj (optional): The linear objective vector (the c vector in the problem statement). When present, you must

specify one value for each column of A. When absent, each variable has a default objective coefficient of 0.
sense (optional): The senses of the linear constraints. Allowed values are =, <, or >. You must specify one value

for each row of A, or a single value to specify that all constraints have the same sense. When absent, all senses
default to <.

rhs (optional): The right-hand side vector for the linear constraints (b in the problem statement). You must
specify one value for each row of A. When absent, the right-hand side vector defaults to the zero vector.

lb (optional): The lower bound vector. When present, you must specify one value for each column of A. When
absent, each variable has a default lower bound of 0.

ub (optional): The upper bound vector. When present, you must specify one value for each column of A. When
absent, the variables have infinite upper bounds.

vtype (optional): The variable types. This vector is used to capture variable integrality constraints. Allowed
values are C (continuous), B (binary), I (integer), S (semi-continuous), or N (semi-integer). Binary variables
must be either 0 or 1. Integer variables can take any integer value between the specified lower and upper
bounds. Semi-continuous variables can take any value between the specified lower and upper bounds, or a
value of zero. Semi-integer variables can take any integer value between the specified lower and upper bounds,
or a value of zero. When present, you must specify one value for each column of A, or a single value to specify
that all variables have the same type. When absent, each variable is treated as being continuous. Refer to the
variable section of the reference manual for more information on variable types.

modelsense (optional): The optimization sense. Allowed values are min (minimize) or max (maximize). When
absent, the default optimization sense is minimization.

modelname (optional): The name of the model. The name appears in the Gurobi log, and when writing a model
to a file.

objcon (optional): The constant offset in the objective function (alpha in the problem statement).
varnames (optional): The variable names vector. A character vector. When present, each element of this vector

defines the name of a variable. You must specify a name for each column of A.
constrnames (optional): The constraint names vector. A character vector. When present, each element of the

vector defines the name of a constraint. You must specify a name for each row of A.

Quadratic objective and constraint named components

Q (optional): The quadratic objective matrix. When present, Q must be a square matrix whose row and column
counts are equal to the number of columns in A.

quadcon (optional): The quadratic constraints. A list of lists. When present, each element in quadcon defines a
single quadratic constraint: xTQcx+ qTx ≤ beta.
The Qc matrix must be a square matrix whose row and column counts are equal to the number of columns of
A. It is stored in model$quadcon[[i]]$Qc.
The optional q vector defines the linear terms in the constraint. It can be a dense vector specifying a value
for each column of A or a sparse vector (should be built using sparseVector from the Matrix package). It is
stored in model$quadcon[[i]]$q.

555

The scalar beta is stored in model$quadcon[[i]]$rhs. It defines the right-hand side value for the constraint.
The optional sense string defines the sense of the quadratic constraint. Allowed values are <, = or >. If not
present, the default sense is <. It is stored in model$quadcon[[i]]$sense.
The optional name string defines the name of the quadratic constraint. It is stored in model$quadcon[[i]]$name.

SOS constraint named components

sos (optional): The Special Ordered Set (SOS) constraints. A list of lists. When present, each entry in sos defines
a single SOS constraint. A SOS constraint can be of type 1 or 2. The type of SOS constraint i is specified via
model$sos[[i]]$type. A type 1 SOS constraint is a set of variables where at most one variable in the set may
take a value other than zero. A type 2 SOS constraint is an ordered set of variables where at most two variables
in the set may take non-zero values. If two take non-zeros values, they must be contiguous in the ordered set.
The members of an SOS constraint are specified by placing their indices in vector model$sos[[i]]$index.
Weights associated with SOS members are provided in vector model$sos[[i]]$weight. Please refer to SOS
Constraints section in the reference manual for details on SOS constraints.

Multi-objective named components

multiobj (optional): Multi-objective specification for the model. A list of lists. When present, each entry in
multiobj defines a single objective of a multi-objective problem. Please refer to the Multiple Objectives
section in the reference manual for more details on multi-objective optimization. Each objective i may have
the following named components:

objn: Specified via model$multiobj[[i]]$objn. This is the i-th objective vector.
objcon (optional): Specified via model$multiobj[[i]]$objcon. If provided, this is the i-th objective con-

stant. The default value is 0.
priority (optional): Specified via model$multiobj[[i]]$priority. If provided, this value is the hierar-

chical priority for this objective. The default value is 0.
weight (optional): Specified via model$multiobj[[i]]$weight. If provided, this value is the multiplier used

when aggregating objectives. The default value is 1.0.
reltol (optional): Specified via model$multiobj[[i]]$reltol. If provided, this value specifies the relative

objective degradation when doing hierarchical multi-objective optimization. The default value is 0.
abstol (optional): Specified via model$multiobj[[i]]$abstol. If provided, this value specifies the absolute

objective degradation when doing hierarchical multi-objective optimization. The default value is 0.
name (optional): Specified via model$multiobj[[i]]$name. If provided, this string specifies the name of the

i-th objective function.

Note that when multiple objectives are present, the result$objval named component that is returned in the
result of an optimization call will be a vector of the same length as model$multiobj.
A multi-objective model can’t have other objectives. Thus, combining model$multiobj with any of model$obj,
model$objcon, model$pwlobj, or model$Q is an error.

Computing an IIS

When computing an Irreducible Inconsistent Subsystem (IIS) for an infeasible model, additional model attributes
for variable bounds, linear constraints, quadratic constraints and general constraints may be set in order to indicate
whether a corresponing entity should explicitly included or excluded from the IIS:

iislbforce (optional): list of length equal to the number of variables. The value of model$iislbforce[[i]]
specifies the IIS force attribute for the lower bound of the i-th variable.

iisubforce (optional): list of length equal to the number of variables. The value of model$iisubforce[[i]]
specifies the IIS force attribute for the upper bound of the i-th variable.

iisconstrforce (optional): list of length equal to the number of constraints. The value of model$iisconstrforce[[i]]
specifies the IIS force attribute for the i-th constraint.

iisqconstrforce (optional): list of length equal to the number of quadratic constraints. The value of model$iisqconstrforce[[i]]
specifies the IIS force attribute for the i-th quadratic constraint.

556

iisgenconstrforce (optional): list of length equal to the number of general constraints. The value of model$iisgenconstrforce[[i]]
specifies the IIS force attribute for the i-th general constraint.

Possible values for all five attribute of listsfrom above are: −1 to let the algorithm decide, 0 to exclude the
corresponding entity from the IIS, and 1 to always include the corresponding entity in the IIS.

Note that setting this attribute to 0 may make the resulting subsystem feasible (or consistent), which would
then make it impossible to construct an IIS. Trying anyway will result in a GRB_ERROR_IIS_NOT_INFEASIBLE error.
Similarly, setting this attribute to 1 may result in an IIS that is not irreducible. More precisely, the system would
only be irreducible with respect to the model elements that have force values of -1 or 0.
General constraint named components

The list of lists described below are used to add general constraints to a model.
Mathematical programming has traditionally defined a set of fundamental constraint types: variable bound

constraints, linear constraints, quadratic constraints, integrality constraints, and SOS constraints. These are typically
treated directly by the underlying solver (although not always), and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general (function)
constraints. These are typically not treated directly by the solver. Rather, they are transformed by presolve into
constraints (and variables) chosen from among the fundamental types listed above. In some cases, the resulting
constraint or constraints are mathematically equivalent to the original; in others, they are approximations. If such
constraints appear in your model, but if you prefer to reformulate them yourself using fundamental constraint types
instead, you can certainly do so. However, note that Gurobi can sometimes exploit information contained in the
other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

• MAX (genconmax): set a decision variable equal to the maximum value from among a set of decision variables
• MIN (genconmin): set a decision variable equal to the minimum value from among a set of decision variables
• ABS (genconabs): set a decision variable equal to the absolute value of some other decision variable
• AND (genconand): set a binary variable equal to one if and only if all of a set of binary decision variables are

equal to one
• OR (genconor): set a binary variable equal to one if and only if at least one variable out of a set of binary

decision variables is equal to one
• NORM (genconnorm): set a decision variable equal to the p-norm of a vector of decision variables
• INDICATOR (genconind): whenever a given binary variable takes a certain value, then the given linear

constraint must be satisfied
• Piecewise-linear constraints (genconpwl): set a variable equal to the piecewise-linear function defined by a set

of points using some other variable
• Polynomial (genconpoly): set a variable equal to the polynomial function defined by some other variable
• Natural exponential (genconexp): set a variable equal to the natural exponential function by some other

variable
• Exponential (genconexpa): set a variable equal to the exponential function by some other variable
• Natural logarithm (genconlog): set a variable equal to the natural logarithmic function by some other variable
• Logarithm (genconloga): set a variable equal to the logarithmic function by some other variable
• Logistic (genconlogistic) set a variable equal to the logistic function by some other variable
• Power (genconpow): set a variable equal to the power function by some other variable
• SIN (genconsin): set a variable equal to the sine function by some other variable
• COS (genconcos): set a variable equal to the cosine function by some other variable
• TAN (gencontan): set a variable equal to the tangent function by some other variable

Please refer to General Constraints section in the reference manual for additional details on general constraints.

genconmax (optional): A list of lists. When present, each entry in genconmax defines a MAX general constraint of
the form

557

x[resvar] = max {con, x[j] : j ∈ vars}

Each entry may have the following named components:

resvar: Specified via model$genconmax[[i]]$resvar. Index of the variable in the left-hand side of the con-
straint.

vars: Specified via model$genconmax[[i]]$vars, it is a vector of indices of variables in the right-hand side of
the constraint.

con (optional): Specified via model$genconmax[[i]]$con. When present, specifies the constant on the left-
hand side. Default value is −∞.

name (optional): Specified via model$genconmax[[i]]$name. When present, specifies the name of the i-th
MAX general constraint.

genconmin (optional): A list of lists. When present, each entry in genconmax defines a MIN general constraint of
the form

x[resvar] = min {con, x[j] : j ∈ vars}

Each entry may have the following named components:

resvar: Specified via model$genconmin[[i]]$resvar. Index of the variable in the left-hand side of the con-
straint.

vars: Specified via model$genconmin[[i]]$vars, it is a vector of indices of variables in the right-hand side of
the constraint.

con (optional): Specified via model$genconmin[[i]]$con. When present, specifies the constant on the left-
hand side. Default value is ∞.

name (optional): Specified via model$genconmin[[i]]$name. When present, specifies the name of the i-th
MIN general constraint.

genconabs (optional): A list of lists. When present, each entry in genconmax defines an ABS general constraint of
the form

x[resvar] = |x[argvar]|

Each entry may have the following named components:

resvar: Specified via model$genconabs[[i]]$resvar. Index of the variable in the left-hand side of the con-
straint.

argvar: Specified via model$genconabs[[i]]$argvar. Index of the variable in the right-hand side of the
constraint.

name (optional): Specified via model$genconabs[[i]]$name. When present, specifies the name of the i-th
ABS general constraint.

genconand (optional): A list of lists. When present, each entry in genconand defines an AND general constraint
of the form

x[resvar] = and{x[i] : i ∈ vars}

Each entry may have the following named components:

resvar: Specified via model$genconand[[i]]$resvar. Index of the variable in the left-hand side of the con-
straint.

vars: Specified via model$genconand[[i]]$vars, it is a vector of indices of variables in the right-hand side of
the constraint.

name (optional): Specified via model$genconand[[i]]$name. When present, specifies the name of the i-th
AND general constraint.

genconor (optional): A list of lists. When present, each entry in genconor defines an OR general constraint of the
form

558

x[resvar] = or{x[i] : i ∈ vars}

Each entry may have the following named components:

resvar: Specified via model$genconor[[i]]$resvar. Index of the variable in the left-hand side of the con-
straint.

vars: Specified via model$genconor[[i]]$vars, it is a vector of indices of variables in the right-hand side of
the constraint.

name (optional): Specified via model$genconor[[i]]$name. When present, specifies the name of the i-th
OR general constraint.

genconnorm (optional): A list of lists. When present, each entry in genconnorm defines a NORM general constraint
of the form

x[resvar] = norm(x[i] : i ∈ vars,which)

Each entry may have the following named components:

resvar: Specified via model$genconnorm[[i]]$resvar. Index of the variable in the left-hand side of the
constraint.

vars: Specified via model$genconnorm[[i]]$vars, it is a vector of indices of variables in the right-hand side
of the constraint.

which: Specified via model$genconnorm[[i]]$which. Specifies which p-norm to use. Possible values are 0, 1,
2 and ∞.

name (optional): Specified via model$genconnorm[[i]]$name. When present, specifies the name of the i-th
NORM general constraint.

genconind (optional): A list of lists. When present, each entry in genconind defines an INDICATOR general
constraint of the form

x[binvar] = binval⇒
∑

(x[j] · a[j]) sense rhs

This constraint states that when the binary variable x[binvar] takes the value binval then the linear constraint∑
(x[vars[j]] · val[j]) sense rhs must hold. Note that sense is one of =, <, or > for equality (=), less than or

equal (≤) or greater than or equal (≥) constraints. Each entry may have the following named components:

binvar: Specified via model$genconind[[i]]$binvar. Index of the implicating binary variable.
binval: Specified via model$genconind[[i]]$binval. Value for the binary variable that forces the following

linear constraint to be satisfied. It can be either 0 or 1.
a: Specified via model$genconind[[i]]$a. Vector of coefficients of variables participating in the implied linear

constraint. You can specify a value for a for each column of A (dense vector) or pass a sparse vector
(should be built using sparseVector from the Matrix package).

sense: Specified via model$genconind[[i]]$sense. Sense of the implied linear constraint. Must be one of =,
<, or >.

rhs: Specified via model$genconind[[i]]$rhs. Right-hand side value of the implied linear constraint.
name (optional): Specified via model$genconind[[i]]$name. When present, specifies the name of the i-th

INDICATOR general constraint.

genconpwl (optional): A list of lists. When present, each entry in genconpwl defines a piecewise-linear constraint
of the form

x[yvar] = f(x[xvar])

The breakpoints for f are provided as arguments. Refer to the description of piecewise-linear objectives for
details of how piecewise-linear functions are defined
Each entry may have the following named components:

xvar: Specified via model$genconpwl[[i]]$xvar. Index of the variable in the right-hand side of the constraint.
yvar: Specified via model$genconpwl[[i]]$yvar. Index of the variable in the left-hand side of the constraint.

559

xpts: Specified via model$genconpwl[[i]]$xpts. Specifies the x values for the points that define the piecewise-
linear function. Must be in non-decreasing order.

ypts: Specified via model$genconpwl[[i]]$ypts. Specifies the y values for the points that define the piecewise-
linear function.

name (optional): Specified via model$genconpwl[[i]]$name. When present, specifies the name of the i-th
piecewise-linear general constraint.

genconpoly (optional): A list of lists. When present, each entry in genconpoly defines a polynomial function
constraint of the form

x[yvar] = p0x[xvar]d + p1x[xvar]d−1 + ...+ pd−1x[xvar] + pd

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discus-
sion.
Each entry may have the following named components:

xvar: Specified via model$genconpoly[[i]]$xvar. Index of the variable in the right-hand side of the con-
straint.

yvar: Specified via model$genconpoly[[i]]$yvar. Index of the variable in the left-hand side of the constraint.
p: Specified via model$genconpoly[[i]]$p. Specifies the coefficients for the polynomial function (starting

with the coefficient for the highest power). If xd is the highest power term, a dense vector of length d+1
is returned.

name (optional): Specified via model$genconpoly[[i]]$name. When present, specifies the name of the i-th
polynomial function constraint.

funcpieces (optional): Specified via model$genconpoly[[i]]$funcpieces. When present, specifies the
FuncPieces attribute of the i-th polynomial function constraint.

funcpiecelength (optional): Specified via model$genconpoly[[i]]$funcpiecelength. When present, spec-
ifies the FuncPieceLength attribute of the i-th polynomial function constraint.

funcpieceerror (optional): Specified via model$genconpoly[[i]]$funcpieceerror. When present, speci-
fies the FuncPieceError attribute of the i-th polynomial function constraint.

funcpieceratio (optional): Specified via model$genconpoly[[i]]$funcpieceratio. When present, speci-
fies the FuncPieceRatio attribute of the i-th polynomial function constraint.

genconexp (optional): A list of lists. When present, each entry in genconexp defines the natural exponential
function constraint of the form

x[yvar] = exp(x[xvar])

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discus-
sion.
Each entry may have the following named components:

xvar: Specified via model$genconexp[[i]]$xvar. Index of the variable in the right-hand side of the constraint.
yvar: Specified via model$genconexp[[i]]$yvar. Index of the variable in the left-hand side of the constraint.
name (optional): Specified via model$genconexp[[i]]$name. When present, specifies the name of the i-th

natural exponential function constraint.
funcpieces (optional): Specified via model$genconexp[[i]]$funcpieces. When present, specifies the Func-

Pieces attribute of the i-th natural exponential function constraint.
funcpiecelength (optional): Specified via model$genconexp[[i]]$funcpiecelength. When present, spec-

ifies the FuncPieceLength attribute of the i-th natural exponential function constraint.

560

funcpieceerror (optional): Specified via model$genconexp[[i]]$funcpieceerror. When present, speci-
fies the FuncPieceError attribute of the i-th natural exponential function constraint.

funcpieceratio (optional): Specified via model$genconexp[[i]]$funcpieceratio. When present, speci-
fies the FuncPieceRatio attribute of the i-th natural exponential function constraint.

genconexpa (optional): A list of lists. When present, each entry in genconexpa defines an exponential function
constraint of the form

x[yvar] = ax[xvar]

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discus-
sion.
Each entry may have the following named components:

xvar: Specified via model$genconexpa[[i]]$xvar. Index of the variable in the right-hand side of the con-
straint.

yvar: Specified via model$genconexpa[[i]]$yvar. Index of the variable in the left-hand side of the constraint.
a: Specified via model$genconexpa[[i]]$a. Specifies the base of the exponential function a > 0.
name (optional): Specified via model$genconexpa[[i]]$name. When present, specifies the name of the i-th

exponential function constraint.
funcpieces (optional): Specified via model$genconexpa[[i]]$funcpieces. When present, specifies the

FuncPieces attribute of the i-th exponential function constraint.
funcpiecelength (optional): Specified via model$genconexpa[[i]]$funcpiecelength. When present, spec-

ifies the FuncPieceLength attribute of the i-th exponential function constraint.
funcpieceerror (optional): Specified via model$genconexpa[[i]]$funcpieceerror. When present, speci-

fies the FuncPieceError attribute of the i-th exponential function constraint.
funcpieceratio (optional): Specified via model$genconexpa[[i]]$funcpieceratio. When present, speci-

fies the FuncPieceRatio attribute of the i-th exponential function constraint.

genconlog (optional): A list of lists. When present, each entry in genconlog defines the natural logarithmic
function constraint of the form

x[yvar] = log(x[xvar])

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discus-
sion.
Each entry may have the following named components:

xvar: Specified via model$genconlog[[i]]$xvar. Index of the variable in the right-hand side of the constraint.
yvar: Specified via model$genconlog[[i]]$yvar. Index of the variable in the left-hand side of the constraint.
name (optional): Specified via model$genconlog[[i]]$name. When present, specifies the name of the i-th

natural logarithmic function constraint.
funcpieces (optional): Specified via model$genconlog[[i]]$funcpieces. When present, specifies the Func-

Pieces attribute of the i-th natural logarithmic function constraint.
funcpiecelength (optional): Specified via model$genconlog[[i]]$funcpiecelength. When present, spec-

ifies the FuncPieceLength attribute of the i-th natural logarithmic function constraint.
funcpieceerror (optional): Specified via model$genconlog[[i]]$funcpieceerror. When present, speci-

fies the FuncPieceError attribute of the i-th natural logarithmic function constraint.
funcpieceratio (optional): Specified via model$genconlog[[i]]$funcpieceratio. When present, speci-

fies the FuncPieceRatio attribute of the i-th natural logarithmic function constraint.

561

genconloga (optional): A list of lists. When present, each entry in genconloga defines a logarithmic function
constraint of the form

x[yvar] = log(x[xvar]) \ log(a)

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discus-
sion.
Each entry may have the following named components:

xvar: Specified via model$genconloga[[i]]$xvar. Index of the variable in the right-hand side of the con-
straint.

yvar: Specified via model$genconloga[[i]]$yvar. Index of the variable in the left-hand side of the constraint.
a: Specified via model$genconloga[[i]]$a. Specifies the base of the logarithmic function a > 0.
name (optional): Specified via model$genconloga[[i]]$name. When present, specifies the name of the i-th

logarithmic function constraint.
funcpieces (optional): Specified via model$genconloga[[i]]$funcpieces. When present, specifies the

FuncPieces attribute of the i-th logarithmic function constraint.
funcpiecelength (optional): Specified via model$genconloga[[i]]$funcpiecelength. When present, spec-

ifies the FuncPieceLength attribute of the i-th logarithmic function constraint.
funcpieceerror (optional): Specified via model$genconloga[[i]]$funcpieceerror. When present, speci-

fies the FuncPieceError attribute of the i-th logarithmic function constraint.
funcpieceratio (optional): Specified via model$genconloga[[i]]$funcpieceratio. When present, speci-

fies the FuncPieceRatio attribute of the i-th logarithmic function constraint.

genconlogistic (optional): A list of lists. When present, each entry in genconlog defines the logistic function
constraint of the form

x[yvar] = 1/(1− exp(−x[xvar]))

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discus-
sion.
Each entry may have the following named components:

xvar: Specified via model$genconlogistic[[i]]$xvar. Index of the variable in the right-hand side of the
constraint.

yvar: Specified via model$genconlogistic[[i]]$yvar. Index of the variable in the left-hand side of the
constraint.

name (optional): Specified via model$genconlogistic[[i]]$name. When present, specifies the name of the
i-th logistic function constraint.

funcpieces (optional): Specified via model$genconlogistic[[i]]$funcpieces. When present, specifies
the FuncPieces attribute of the i-th logistic function constraint.

funcpiecelength (optional): Specified via model$genconlogistic[[i]]$funcpiecelength. When present,
specifies the FuncPieceLength attribute of the i-th logistic function constraint.

funcpieceerror (optional): Specified via model$genconlogistic[[i]]$funcpieceerror. When present,
specifies the FuncPieceError attribute of the i-th logistic function constraint.

funcpieceratio (optional): Specified via model$genconlogistic[[i]]$funcpieceratio. When present,
specifies the FuncPieceRatio attribute of the i-th logistic function constraint.

genconpow (optional): A list of lists. When present, each entry in genconpow defines a power function constraint
of the form

x[yvar] = x[xvar]a

562

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discus-
sion.
Each entry may have the following named components:

xvar: Specified via model$genconpow[[i]]$xvar. Index of the variable in the right-hand side of the constraint.
yvar: Specified via model$genconpow[[i]]$yvar. Index of the variable in the left-hand side of the constraint.
a: Specified via model$genconpow[[i]]$a. Specifies the exponent of the power function.
name (optional): Specified via model$genconpow[[i]]$name. When present, specifies the name of the i-th

power function constraint.
funcpieces (optional): Specified via model$genconpow[[i]]$funcpieces. When present, specifies the Func-

Pieces attribute of the i-th power function constraint.
funcpiecelength (optional): Specified via model$genconpow[[i]]$funcpiecelength. When present, spec-

ifies the FuncPieceLength attribute of the i-th power function constraint.
funcpieceerror (optional): Specified via model$genconpow[[i]]$funcpieceerror. When present, speci-

fies the FuncPieceError attribute of the i-th power function constraint.
funcpieceratio (optional): Specified via model$genconpow[[i]]$funcpieceratio. When present, speci-

fies the FuncPieceRatio attribute of the i-th power function constraint.

genconsin (optional): A list of lists. When present, each entry in genconsin defines the sine function constraint
of the form

x[yvar] = sin(x[xvar])

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discus-
sion.
Each entry may have the following named components:

xvar: Specified via model$genconsin[[i]]$xvar. Index of the variable in the right-hand side of the constraint.
yvar: Specified via model$genconsin[[i]]$yvar. Index of the variable in the left-hand side of the constraint.
name (optional): Specified via model$genconsin[[i]]$name. When present, specifies the name of the i-th

sine function constraint.
funcpieces (optional): Specified via model$genconsin[[i]]$funcpieces. When present, specifies the Func-

Pieces attribute of the i-th sine function constraint.
funcpiecelength (optional): Specified via model$genconsin[[i]]$funcpiecelength. When present, spec-

ifies the FuncPieceLength attribute of the i-th sine function constraint.
funcpieceerror (optional): Specified via model$genconsin[[i]]$funcpieceerror. When present, speci-

fies the FuncPieceError attribute of the i-th sine function constraint.
funcpieceratio (optional): Specified via model$genconsin[[i]]$funcpieceratio. When present, speci-

fies the FuncPieceRatio attribute of the i-th sine function constraint.

genconcos (optional): A list of lists. When present, each entry in genconcos defines the cosine function constraint
of the form

x[yvar] = cos(x[xvar])

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discus-
sion.
Each entry may have the following named components:

563

xvar: Specified via model$genconcos[[i]]$xvar. Index of the variable in the right-hand side of the constraint.

yvar: Specified via model$genconcos[[i]]$yvar. Index of the variable in the left-hand side of the constraint.

name (optional): Specified via model$genconcos[[i]]$name. When present, specifies the name of the i-th
cosine function constraint.

funcpieces (optional): Specified via model$genconcos[[i]]$funcpieces. When present, specifies the Func-
Pieces attribute of the i-th cosine function constraint.

funcpiecelength (optional): Specified via model$genconcos[[i]]$funcpiecelength. When present, spec-
ifies the FuncPieceLength attribute of the i-th cosine function constraint.

funcpieceerror (optional): Specified via model$genconcos[[i]]$funcpieceerror. When present, speci-
fies the FuncPieceError attribute of the i-th cosine function constraint.

funcpieceratio (optional): Specified via model$genconcos[[i]]$funcpieceratio. When present, speci-
fies the FuncPieceRatio attribute of the i-th cosine function constraint.

gencontan (optional): A list of lists. When present, each entry in gencontan defines the tangent function constraint
of the form

x[yvar] = tan(x[xvar])

A piecewise-linear approximation of the function is added to the model. The details of the approximation
are controlled using the following four attributes (or using the parameters with the same names): FuncPieces,
FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discus-
sion.
Each entry may have the following named components:

xvar: Specified via model$gencontan[[i]]$xvar. Index of the variable in the right-hand side of the constraint.

yvar: Specified via model$gencontan[[i]]$yvar. Index of the variable in the left-hand side of the constraint.

name (optional): Specified via model$gencontan[[i]]$name. When present, specifies the name of the i-th
tangent function constraint.

funcpieces (optional): Specified via model$gencontan[[i]]$funcpieces. When present, specifies the Func-
Pieces attribute of the i-th tangent function constraint.

funcpiecelength (optional): Specified via model$gencontan[[i]]$funcpiecelength. When present, spec-
ifies the FuncPieceLength attribute of the i-th tangent function constraint.

funcpieceerror (optional): Specified via model$gencontan[[i]]$funcpieceerror. When present, speci-
fies the FuncPieceError attribute of the i-th tangent function constraint.

funcpieceratio (optional): Specified via model$gencontan[[i]]$funcpieceratio. When present, speci-
fies the FuncPieceRatio attribute of the i-th tangent function constraint.

Advanced named components

pwlobj (optional): The piecewise-linear objective functions. A list of lists. When present, each entry in pwlobj
defines a piecewise-linear objective function for a single variable. The index of the variable whose objective
function is being defined is stored in model$pwlobj[[i]]$var. The x values for the points that define the
piecewise-linear function are stored in
model$pwlobj[[i]]$x. The values in the x vector must be in non-decreasing order. The y values for the
points that define the piecewise-linear function are stored in model$pwlobj[[i]]$y.

vbasis (optional): The variable basis status vector. Used to provide an advanced starting point for the simplex
algorithm. You would generally never concern yourself with the contents of this vector, but would instead
simply pass it from the result of a previous optimization run to the input of a subsequent run. When present,
you must specify one value for each column of A.

cbasis (optional): The constraint basis status vector. Used to provide an advanced starting point for the simplex
algorithm. Consult the vbasis description for details. When present, you must specify one value for each row
of A.

564

varhintval (optional): A set of user hints. If you know that a variable is likely to take a particular value in high
quality solutions of a MIP model, you can provide that value as a hint. You can also (optionally) provide
information about your level of confidence in a hint with the varhintpri named component. If present, you
must specify one value for each column of A. Use a value of NA for variables where no such hint is known. For
more details, please refer to the Attribute section in the reference manual.

varhintpri (optional): Priorities on user hints. After providing variable hints through the varhintval list, you
can optionally also provide hint priorities to give an indication of your level of confidence in your hints. If
present, you must specify a value for each column of A. For more details, please refer to the Attribute section
in the reference manual.

branchpriority (optional): Variable branching priority. If present, the value of this attribute is used as the
primary criteria for selecting a fractional variable for branching during the MIP search. Variables with larger
values always take priority over those with smaller values. Ties are broken using the standard branch variable
selection criteria. If present, you must specify one value for each column of A.

pstart (optional): The current simplex start vector. If you set pstart values for every variable in the model and
dstart values for every constraint, then simplex will use those values to compute a warm start basis. For more
details, please refer to the Attribute section in the reference manual.

dstart (optional): The current simplex start vector. If you set dstart values for every linear constraint in the
model and pstart values for every variable, then simplex will use those values to compute a warm start basis.
For more details, please refer to the Attribute section in the reference manual.

lazy (optional): Determines whether a linear constraint is treated as a lazy constraint. If present, you must specify
one value for each row of A. For more details, please refer to the Attribute section in the reference manual.

start (optional): The MIP start vector. The MIP solver will attempt to build an initial solution from this vector.
When present, you must specify a start value for each variable. Note that you can set the start value for a
variable to NA, which instructs the MIP solver to try to fill in a value for that variable.

partition (optional): The MIP variable partition number, which is used by the MIP solution improvement heuris-
tic. If present, you must specify one value for each variable of A. For more details, please refer to the Attribute
section in the reference manual.

If any of the mandatory components listed above are missing, the gurobi() function will return an error.
Below is an example that demonstrates the construction of a simple optimization model:

model <- list()
model$A <- matrix(c(1,2,3,1,1,0), nrow=2, byrow=T)
model$obj <- c(1,1,1)
model$modelsense <- ’max’
model$rhs <- c(4,1)
model$sense <- c(’<’, ’>’)

You can also build A as a sparse matrix, using either sparseMatrix or simple_triplet_matrix:

model$A <- spMatrix(2, 3, c(1, 1, 1, 2, 2), c(1, 2, 3, 1, 2), c(1, 2, 3, 1, 1))
model$A <- simple_triplet_matrix(c(1, 1, 1, 2, 2), c(1, 2, 3, 1, 2), c(1, 2, 3, 1, 1))

Note that the Gurobi R interface allows you to specify a scalar value for most of the array-valued components.
The specified value will be expanded to an array of the appropriate size, with each component of the array equal to
the scalar (e.g., model$obj <- 1 would be equivalent to model$obj <- c(1,1,1) in the example).

The params argument
As mentioned previously, the Gurobi optimizer provides a set of parameters that allow you to control many of the
details of the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms, strategies
for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters before beginning the
optimization.

Parameter changes are specified using a list variable having multiple named components, which is passed as
an argument to the appropriate Gurobi function (e.g., gurobi). The name of each named component must be the

565

name of a Gurobi parameter, and the associated value should be the desired value of that parameter. You can find
a complete list of the available Gurobi parameters in the reference manual.

To create a list that would set the Gurobi Method parameter to 2 and the ResultFile parameter to model.mps,
you would do the following:
params <- list()
params$Method <- 2
params$ResultFile <- ’model.mps’

We should say a bit more about the ResultFile parameter. If this parameter is set, the optimization model that
is eventually passed to Gurobi will also be output to the specified file. The filename suffix should be one of .mps,
.lp, .rew, .rlp, .dua, or.dlp, to indicate the desired file format (see the file format section in the reference manual
for details on Gurobi file formats).

The params struct can also be used to set license specific parameters, that define the computational environment
to be used. We will discuss the two most common use cases next, and refer again to the collection of all available
parameters in the reference manual.

Using a Compute Server License

Gurobi Compute Server allows you to offload optimization jobs to a remote server. Servers are organized into clusters.
By providing the name of any node within the cluster, your job will automatically be sent to the least heavily loaded
node in the cluster. If all nodes are at capacity, your job will be placed in a queue, and will proceed once capacity
becomes available. You can find additional information about Gurobi Compute Server in the Gurobi Remote Services
Reference Manual. The most commonly used parameters are the following.

ComputeServer: A Compute Server. You can refer to the server using its name or its IP address. If you are using a
non-default port, the server name should be followed by the port number (e.g., server1:61000).

ServerPassword (optional): User password on the Compute Server cluster. Obtain this from your Compute Server
administrator.

CSPriority (optional): The priority of the job. Priorities must be between -100 and 100, with a default value of
0 (by convention). Higher priority jobs are chosen from the server job queue before lower priority jobs. A job
with priority 100 runs immediately, bypassing the job queue and ignoring the job limit on the server. You
should exercise caution with priority 100 jobs, since they can severely overload a server, which can cause jobs
to fail, and in extreme cases can cause the server to crash.

CSRouter (optional): The router for the Compute Server cluster. A router can be used to improve the robustness
of a Compute Server deployment. You can refer to the router using either its name or its IP address. A typical
Remote Services deployment won’t use a router, so you typically won’t need to set this.

CSTLSinsecure (optional): Indicates whether to use insecure mode in the TLS (Transport Layer Security). Set
this to 0 unless your server administrator tells you otherwise.

Here is an example of how to use a params argument to connect to a Compute Server:
params <- list()
params$ComputeServer <- ’server1.mycompany.com:61000’
params$CSPriority <- 5

Using a Gurobi Instant Cloud License

Gurobi Instant Cloud allows you to offload optimization jobs to a Gurobi Compute Server on the cloud. If an
appropriate machine is already running, the job will run on that machine. It will automatically launch a new
machine otherwise. Note that launching a new machine can take a few minutes. You can find additional information
about the Gurobi Instant Cloud service in the reference manual. The most commonly used parameters are the
following.

CloudAccessID: The access ID for your Gurobi Instant Cloud license. This can be retrieved from the Gurobi Instant
Cloud website. When used in combination with your CloudSecretKey, this allows you to launch Instant Cloud
instances and submit jobs to them.

566

https://www.gurobi.com/documentation/10.0/remoteservices/remoteservices.html
https://www.gurobi.com/documentation/10.0/remoteservices/remoteservices.html

CloudSecretKey: The secret key for your Gurobi Instant Cloud license. This can be retrieved from the Gurobi
Instant Cloud website. When used in combination with your CloudAccessID, this allows you to launch Instant
Cloud instances and submit jobs to them. Note that you should keep your secret key private.

CloudPool (optional): The machine pool. Machine pools allow you to create fixed configurations on the Instant
Cloud website (capturing things like type of machine, geographic region, etc.), and then launch and share
machines from client programs without having to restate configuration information each time you launch a
machine. If not provided, your job will be launched in the default pool associated with your cloud license.

CSPriority (optional): The priority of the job. Priorities must be between -100 and 100, with a default value of
0 (by convention). Higher priority jobs are chosen from the server job queue before lower priority jobs. A job
with priority 100 runs immediately, bypassing the job queue and ignoring the job limit on the server. You
should exercise caution with priority 100 jobs, since they can severely overload a server, which can cause jobs
to fail, and in extreme cases can cause the server to crash.

Here is an example of how to use a params argument to launch a Gurobi Instant Cloud instance:
params <- list()
params$CloudAccessID <- ’3d1ecef9-dfad-eff4-b3fa’
params$CloudSecretKey <- ’ae6L23alJe3+fas’

9.2 Solving a Model
gurobi()

gurobi (model, params=NULL)

This function optimizes the given model. The algorithm used for the optimization depends on the model type
(simplex or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful completion it will
return a list variable containing solution information.

Please consult Variables and Constraints section in the reference manual for a discussion of some of the practical
issues associated with solving a precisely defined mathematical model using finite-precision floating-point arithmetic.

Arguments:
model: The model list must contain a valid Gurobi model. See the model argument section for more
information.

params: The params list, when provided, contains a list of modified Gurobi parameters. See the params
argument section for more information.

Example usage:

result <- gurobi(model , params)
if (result$ status == 'OPTIMAL ') {

print(result$objval)
print(result$x)

} else {
cat('Optimization returned status:', formatC(result$ status), '\n')

}

Return value:

The optimization result

The gurobi function returns a list, with the various results of the optimization stored in its named components.
The specific results that are available depend on the type of model that was solved, the parameters used, and the
status of the optimization. The following is a list of named components that might be available in the returned result.
We will discuss the circumstances under which each will be available after presenting the list.

567

Model named components

status: The status of the optimization, returned as a string. The desired result is OPTIMAL, which indicates that an
optimal solution to the model was found. Other status are possible, for example if the model has no feasible
solution or if you set a Gurobi parameter that leads to early solver termination. See the Status Code section
for further information on the Gurobi status codes.

objval: The objective value of the computed solution. Note that for multi-objective models result$objval will be a
vector, where result$objval[[i]] stores the value for
model$multiobj[[i]].

objbound: Best available bound on solution (lower bound for minimization, upper bound for maximization).
objboundc: The best unrounded bound on the optimal objective. In contrast to objbound, this attribute does not

take advantage of objective integrality information to round to a tighter bound. For example, if the objective
is known to take an integral value and the current best bound is 1.5, objbound will return 2.0 while objboundc
will return 1.5.

mipgap: Current relative MIP optimality gap; computed as |ObjBound−ObjV al|/|ObjV al| (where ObjBound and
ObjV al are the MIP objective bound and incumbent solution objective, respectively). Returns GRB_INFINITY
when an incumbent solution has not yet been found, when no objective bound is available, or when the current
incumbent objective is 0. This is only available for mixed-integer problems.

runtime: The elapsed wall-clock time (in seconds) for the optimization.
work: The work (in work units) spent on the optimization. As opposed to the runtime in seconds, the work is

deterministic. This means that on the same hardware and with the same parameter and attribute settings,
solving the same model twice will lead to exactly the same amount of work in each of the two solves. One
work unit corresponds very roughly to one second, but this greatly depends on the hardware on which Gurobi
is running and on the model that has been solved.

itercount: Number of simplex iterations performed.
baritercount: Number of barrier iterations performed.
nodecount: Number of branch-and-cut nodes explored.
maxvio: Value of the maximal (unscaled) violation of the returned solution.
farkasproof: Magnitude of infeasibility violation in Farkas infeasibility proof. Only available if the model was found

to be infeasible. Please refer to Attribute section in the reference manual for details.

Variable named components

x: The computed solution. This vector contains one entry for each column of A.
rc: Variable reduced costs for the computed solution. This vector contains one entry for each column of A.
vbasis: Variable basis status values for the computed optimal basis. You generally should not concern yourself with

the contents of this vector. If you wish to use an advanced start later, you would simply copy the vbasis
and cbasis named components into the corresponding named components for the next model. This vector
contains one entry for each column of A.

unbdray: Unbounded ray. Provides a vector that, when added to any feasible solution, yields a new solution that is
also feasible but improves the objective. Only available if the model is found to be unbounded. This vector
contains one entry for each column of A.

Linear constraint named components

slack: The constraint slack for the computed solution. This vector contains one entry for each row of A.
pi: Dual values for the computed solution (also known as shadow prices). This vector contains one entry for each

row of A.
cbasis: Constraint basis status values for the computed optimal basis. This vector contains one entry for each row

of A.
farkasdual: Farkas infeasibility proof. Only available if the model was found to be infeasible. Please refer to

Attribute section in the reference manual for details.

568

Quadratic constraint named components

qcslack: The quadratic constraint slack in the current solution. This vector contains one entry for each quadratic
constraint.

qcpi: The dual values associated with the quadratic constraints. This vector contains one entry for each quadratic
constraint.

Solution Pool named components

pool: When multiple solutions are found during the optimization call, these solutions are returned in this named
component. A list of lists. When present, each list has the following named components:

objval: Stores the objective value of the i-th solution in result$pool[[i]]$objval. Note that when the model
is a multi-objective model, instead of a single value,
result$pool[[i]]$objval[j] stores the value of the j-th objective function for the i-th solution.

xn: Stores the i-th solution in result$pool[[i]]$xn. This vector contains one entry for each column of A.

Note that to query the number of solutions stored, you can query the length of result$pool.
poolobjbound: For single-objective MIP optimization problems, this value gives a bound on the best possible objective

of an undiscovered solution. The difference between this value and objbound is that the former gives an
objective bound for undiscovered solutions, while the latter gives a bound for any solution.

What is Available When

The status named component will be present in all cases. It indicates whether Gurobi was able to find a proven
optimal solution to the model. In cases where a solution to the model was found, optimal or otherwise, the objval
and x named components will be present.

For linear and quadratic programs, if a solution is available, then the pi and rc named components will also be
present. For models with quadratic constraints, if the parameter qcpdual is set to 1, the named component qcpi will
be present. If the final solution is a basic solution (computed by simplex), then vbasis and cbasis will be present. If
the model is an unbounded linear program and the InfUnbdInfo parameter is set to 1, the named component unbdray
will be present. Finally, if the model is an infeasible linear program and the InfUnbdInfo parameter is set to 1, the
named components farkasdual and farkasproof will be set.

For mixed integer problems, no dual information (i.e. pi, slack, rc, vbasis, cbasis, qcslack, qcpi, ubdray or
farkasdual) is ever available. When multiple solutions are found, the pool and poolobjbound named components
will be present. Depending on the status named component value, the named components nodecount, objbound,
objbundc and mipgap will be available.

For continuous and mixed-integer models, under normal execution, the named components runtime, work,
itercount and baritercount will be available.

gurobi_iis()

gurobi_iis (model, params=NULL)

Compute an Irreducible Inconsistent Subsystem (IIS).
An IIS is a subset of the constraints and variable bounds with the following properties:
• It is still infeasible, and
• If a single constraint or bound is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily the smallest
one; there may exist others with fewer constraints or bounds.

You can obtain information about the outcome of the IIS computation from the returned IIS result (described
below). Note that this method can be used to compute IISs for both continuous and MIP models.

Arguments:
model: The model list must contain a valid Gurobi model. See the model argument section for more
information.

params: The params list, when provided, contains a list of modified Gurobi parameters. See the params
argument section for more information.

Example usage:

569

model <- gurobi_read(’examples/data/klein1.mps’)
iis <- gurobi_iis(model)

Return value:

The gurobi_iis() function returns a list, with various results stored in its named components. The specific
results that are available depend on the type of model.

The returned list will always contain the following named components:

minimal: A logical scalar that indicates whether the computed IIS is minimal. It will normally be true, but it may
be false if the IIS computation was stopped early (due to a time limit or a user interrupt).

Arows: A logical vector that indicates whether a linear constraint appears in the computed IIS.

lb: A logical vector that indicates whether a lower bound appears in the computed IIS.

ub: A logical vector that indicates whether a upper bound appears in the computed IIS.

If your model contains general constraints, the returned list will also contain the following named components:

genconmax: A logical vector that indicates whether a general MAX constraint appears in the computed IIS.

genconmin: A logical vector that indicates whether a general MIN constraint appears in the computed IIS.

genconand: A logical vector that indicates whether a general AND constraint appears in the computed IIS.

genconor: A logical vector that indicates whether a general OR constraint appears in the computed IIS.

genconabs: A logical vector that indicates whether a general ABS constraint appears in the computed IIS.

genconind: A logical vector that indicates whether a general INDICATOR constraint appears in the computed IIS.

genconpwl: A logical vector that indicates whether a general piecewise-linear function constraint appears in the
computed IIS.

genconpoly: A logical vector that indicates whether a polynomial function constraint appears in the computed IIS.

genconexp: A logical vector that indicates whether a natural exponential function constraint appears in the computed
IIS.

genconexpa: A logical vector that indicates whether a exponential function constraint appears in the computed IIS.

genconlog: A logical vector that indicates whether a natural logarithmic function constraint appears in the computed
IIS.

genconloga: A logical vector that indicates whether a logarithmic function constraint appears in the computed IIS.

genconlogistic: A logical vector that indicates whether a logistic function constraint appears in the computed IIS.

genconpow: A logical vector that indicates whether a power function constraint appears in the computed IIS.

genconsin: A logical vector that indicates whether a SIN function constraint appears in the computed IIS.

genconcos: A logical vector that indicates whether a COS function constraint appears in the computed IIS.

gencontan: A logical vector that indicates whether a TAN function constraint appears in the computed IIS.

If your model contains SOS constraints, the returned list will also contain the following named component:

sos: A logical vector that indicates whether an SOS constraint appears in the computed IIS

If your model contains quadratic constraints, the returned list will also contain the following named component:

quadcon: A logical vector that indicates whether a quadratic constraint appears in the computed IIS.

570

gurobi_feasrelax()

gurobi_feasrelax (model, relaxobjtype, minrelax, penalties, params=NULL)

This function computes a feasibility relaxation for the input model argument. The feasibility relaxation is a
model that, when solved, minimizes the amount by which the solution violates the bounds and linear constraints
of the original model. You must provide a penalty to associate with relaxing each individual bound or constraint
(through the penalties argument). These penalties are interpreted in different ways, depending on the value of the
relaxobjtype argument.

Arguments:
model: The model list must contain a valid Gurobi model. See the model argument section for more
information.

relaxobjtype: The approach used to impose penalties on violations.
If you specify relaxobjtype=0, the objective for the feasibility relaxation is to minimize the sum of the
weighted magnitudes of the bound and constraint violations.
If you specify relaxobjtype=1, the objective for the feasibility relaxation is to minimize the weighted sum
of the squares of the bound and constraint violations.
If you specify relaxobjtype=2, the objective for the feasibility relaxation is to minimize the weighted count
of bound and constraint violations.
In all cases, the weights are taken from penalties$lb, penalties$ub and penalties$rhs. You can provide
the special penalty value Inf to indicate that the corresponding bound or constraint cannot be relaxed.

minrelax: The minrelax argument is a boolean that controls the type of feasibility relaxation that is created.
If minrelax=FALSE, optimizing the returned model gives a solution that minimizes the cost of the violation.
If minrelax=TRUE, optimizing the returned model finds a solution that minimizes the original objective,
but only from among those solutions that minimize the cost of the violation. Note that gurobi_feasrelax
must solve an optimization problem to find the minimum possible relaxation when minrelax=TRUE, which
can be quite expensive.

penalties: The penalties argument is a list of lists, having the following optional named components
(default: all Inf):
lb Penalty for violating each lower bound.
ub Penalty for violating each upper bound.
rhs Penalty for violating each constraint.

To give an example, if a constraint with penalties.rhs value p is violated by 2.0, it would contribute 2*p to the
feasibility relaxation objective for relaxobjtype=0, 2*2*p for relaxobjtype=1, and p for relaxobjtype=2.

params: The params list, when provided, contains a list of modified Gurobi parameters. See the params
argument section for more information.

Return value:
A list containing two named components:
result$model, a list variable, as described in the model argument section.
result$feasobj, a scalar. If minrelax==TRUE this is the relaxation problem objective value, 0.0 otherwise.

Example usage:
penalties <- list()
model <- gurobi_read(’stein9.mps’)
penalties$lb <- rep(1,length(model$lb))
penalties$ub <- rep(1,length(model$ub))
penalties$rhs <- rep(1,length(model$rhs))
feasrelaxresult <- gurobi_feasrelax(model, 0, FALSE, penalties)

gurobi_relax()

gurobi_relax (model, params=NULL)

571

Create the relaxation of a MIP model. Transforms integer variables into continuous variables, and removes SOS
and general constraints.

Arguments:
model: The model list must contain a valid Gurobi model. See the model argument section for more
information.

params: The params list, when provided, contains a list of modified Gurobi parameters. See the params
argument section for more information.

Return value:
A model list variable, as described in the model parameter section.

Example usage:
model <- gurobi_read(’stein9.mps’)
relaxed <- gurobi_relax(model)

9.3 Input/Output
gurobi_read()

gurobi_read (filename, params=NULL)

Reads a model from a file.
Arguments:

filename: Name of the file to read. Note that the type of the file is encoded in the file name suffix. The
filename suffix should be one of .mps, .rew, .lp, .rlp, .dua, .dlp, .ilp, or .opb (see the file formats section
for details on Gurobi file formats). The files can be compressed, so additional suffixes of .gz, .bz2, .zip, or
.7z are accepted.

params: The params list, when provided, contains a list of modified Gurobi parameters. See the params
argument section for more information.

Return value:
A model list variable, as described in the model section.

Example usage:
model <- gurobi_read(’stein9.mps’)
result <- gurobi(model)

gurobi_write()

gurobi_write (model, filename, params=NULL)

Writes a model to a file.
Arguments:

model: The model list must contain a valid Gurobi model. See the model argument section for more
information.

filename: Name of the file to write. Note that the type of the file is encoded in the file name suffix. The
filename suffix should be one of .mps, .rew, .lp, .rlp, .dua, .dlp, or .ilp, to indicate the desired file format
(see the file formats section for details on Gurobi file formats). The files can be compressed, so additional
suffixes of .gz, .bz2, .zip, or .7z are accepted.

params: The params list, when provided, contains a list of modified Gurobi parameters. See the params
argument section for more information.

Example usage:

572

model <- list()
model$A <- matrix(c(1,2,3,1,1,0), nrow=2, byrow=T)
model$obj <- c(1,1,2)
model$modelsense <- 'max'
model$rhs <- c(4,1)
model$sense <- c('<', '>')
gurobi_write(model , 'mymodel.mps');
gurobi_write(model , 'mymodel.lp');
gurobi_write(model , 'mymodel.mps.bz2');

9.4 Installing the R package
To use our R interface, you’ll need to install the Gurobi package in your local R installation. The R command for
doing this is:

install.packages('<R-package-file>', repos=NULL)

The Gurobi R package file can be found in the <installdir>/R directory of your Gurobi installation (the default
<installdir> for Gurobi 10.0.0 is /opt/gurobi1000/linux64 for Linux, c:\gurobi1000\win64 for 64-bit Windows,
and /Library/gurobi1000/macos_universal2 for Mac). You should browse the <installdir>/R directory to find the
exact name of the file for your platform (the Linux package is in file gurobi_10.0-0_R_4.2.0.tar.gz, the Windows
package is in file gurobi_10.0-0.zip, and the Mac package is in file gurobi_10.0-0_R_4.2.0.tgz).

Depending on your local R environment you might need to install the R package slam. To do this, you should
issue the following command within R:

install.packages('slam')

You will need to be careful to make sure that the R binary and the Gurobi package you install both use the
same instruction set. For example, if you are using the 64-bit version of R, you’ll need to install the 64-bit version
of Gurobi, and the 64-bit Gurobi R package. This is particularly important on Windows systems, where the error
messages that result from instruction set mismatches can be quite cryptic.

To run one of the R examples provided with the Gurobi distribution, you can use the source command in R.
For example, if you are running R from the Gurobi R examples directory, you can say:

> source('mip.R')

If the Gurobi package was successfully installed, you should see the following output:

[1] 'Solution:'
[1] 3
[1] 1 0 1

573

Variables and Constraints and Objectives

The lowest-level building blocks for Gurobi models are variables, constraints, and objectives. While each has a clean
mathematical definition, linear and integer programming aren’t performed in exact arithmetic, so computed results
can sometimes deviate from these clean definitions. This section discusses the use of and restrictions on these basic
building blocks.

10.1 Variables
Decision variables capture the results of the optimization. In a feasible solution, the computed values for the decision
variables satisfy all of the model constraints. Some of these constraints are associated with individual variables (e.g.,
variable bounds), while others capture relationships between variables. We’ll first consider the different types of
decision variables that can be added to a Gurobi model, and the implicit and explicit constraints associated with
these variable types.

Before starting, we should point out one important thing about the variables in a mathematical programming
model: their computed solution values will only satisfy bounds to tolerances, meaning that a variable may violate its
stated bounds. Mathematical programming is fundamentally built on top of linear algebra and in particular on the
numerical solution of systems of linear equations. These linear systems are solved using finite-precision arithmetic,
which means that small errors are unavoidable. For some models, large errors are unavoidable too; we’ll return to
that topic later in this section.

The available variables types are continuous, general integer, binary, semi-continuous, and semi-integer.
Continuous Variables

The simplest and least constrained of the available variable types is the continuous variable. This variable can take
any value between its lower and upper bound. In mathematical programming, the convention is that variables are
non-negative unless stated otherwise, so if you don’t explicitly provide bounds for a variable, you should assume that
the lower bound is 0 and the upper bound is infinite.

The Gurobi APIs provides a symbolic constant to allow you to indicate that a bound is infinite (GRB_INFINITY in
C and C++, GRB.INFINITY in C#, Java, and Python). A variable can have an infinite upper bound, an infinite lower
bound (negative infinity), or both. A variable with infinite upper and lower bounds is referred to as a free variable.
Any bound larger than 1e30 is treated as infinite.

As noted earlier, variables may violate their bounds by tolerances. In the case of variable bounds, the relevant
tolerance value is the FeasibilityTol. You can reduce the value of this tolerance parameter, but due to numerical
errors it may not be possible to achieve your desired accuracy.
General Integer Variables

General integer variables are more constrained than continuous variables. In addition to respecting the specified
lower and upper bounds, integer variables also take integral values.

Due to the limitations of finite-precision arithmetic, integer variables will often take values that aren’t exactly
integral. The magnitude of the allowed integrality violation is controlled by the IntFeasTol parameter. You can tighten
this parameter to reduce the magnitude of these integrality violations, but the cost of solving the optimization problem
may increase significantly as a result.

The fact that modern computers represent integer values using 32-bit values places some restrictions on the range
of an integral variable. Specifically, the largest and smallest bounds that can be placed on an integer variable are
+/- 2,000,000,000. Furthermore, integer variables with infinite bounds actually have these values as their implicit
bounds. A solution is not considered feasible unless all integer variables take values that satisfy these bounds.
Binary Variables

Binary variables are the most constrained variable type that can be added to your model. A binary variable takes a
value of either 0 or 1.

574

Again, due to the limitations of finite-precision arithmetic, binary variables will often take values that aren’t
exactly integral. The magnitude of the allowed integrality violation is controlled by the IntFeasTol parameter.

Semi-Continuous and Semi-Integer Variables

You can also add semi-continuous or semi-integer variables to your model. A semi-continuous variable has the
property that it takes a value of 0, or a value between the specified lower and upper bounds. A semi-integer variable
adds the additional restriction that the variable also take an integral value.

Again, these variables may violate these restrictions up to tolerances. In this case, the relevant tolerance is
IntFeasTol (even for semi-continuous variables).

10.2 Constraints
A constraint in Gurobi captures a restriction on the values that a set of variables may take. The simplest example
is a linear constraint, which states that a linear expression on a set of variables take a value that is either less-than-
or-equal, greater-than-or-equal, or equal to another linear expression. Recall that Gurobi works in finite-precision
arithmetic, so constraints are only satisfied to tolerances. Tolerances can be tightened to reduce such violations, but
there are limits to how small the violations can be -- errors are inherent in floating-point arithmetic.

The available constraint types are linear, SOS, quadratic (both convex and non-convex), and general.

Linear Constraints

A linear constraint allows you to restrict the value of a linear expression. For example, you may require that any
feasible solution satisfies the constraint 3x+ 4y ≤ 5z. Note that the matrix-oriented Gurobi APIs (C, MATLAB, and
R) require the right-hand side of a linear constraint to be a constant, while the object-oriented APIs (C++, Java,
.NET, and Python) allow arbitrary linear expressions on both sides of the comparator.

The computed solution should satisfy the stated constraint to within FeasibilityTol (although it may not in cases
of numerical ill-conditioning -- we’ll discuss this shortly).

Gurobi supports a limited set of comparators. Specifically, you can constrain an expression to be less-than-or-
equal, greater-than-or-equal, or equal another. We do not support strict less-than, strict greater-than, or not-equal
comparators. While these other comparators may seem appropriate for mathematical programming, we exclude
them to avoid potential confusion related to numerical tolerances. Consider a simple example of a strict inequality
constraint on a pair of continuous variables: x > y. How large would x − y need to be in order to satisfy the
constraint? Rather than trying to embed a subtle and potentially confusing strategy for handling such constraints
into the solver, we’ve chosen not to support them instead.

SOS Constraints

A Special-Ordered Set, or SOS constraint, is a highly specialized constraint that places restrictions on the values that
variables in a given list can take. There are two types of SOS constraints. In an SOS constraint of type 1 (an SOS1
constraint), at most one variable in the specified list is allowed to take a non-zero value. In an SOS constraint of
type 2 (an SOS2 constraint), at most two variables in the specified, ordered list are allowed to take a non-zero value,
and those non-zero variables must be contiguous in the list. The variables in an SOS constraint can be continuous,
integer, or binary.

Again, tolerances play an important role in SOS constraints. Specifically, variables that take values less than
IntFeasTol (in absolute value) are considered to be zero for the purposes of determining whether an SOS constraint
is satisfied.

An SOS constraint is described using a list of variables and a list of corresponding weights. While the weights
have historically had intuitive meanings associated with them, we simply use them to order the list of variables.
The weights should be unique. This is especially important for an SOS2 constraint, which relies on the notion of
contiguous variables. Since the variables in the SOS are ordered by weight, contiguity becomes ambiguous when
multiple variables have the same weight.

It is often more efficient to capture SOS structure using linear constraints rather than SOS constraints. The
optimizer will often perform this reformulation automatically. This is controlled with four parameters: PreSOS1BigM,
PreSOS1Encoding, PreSOS2BigM and PreSOS2Encoding.

The reformulation adds constraints of the form x ≤ Mb, where x is the variable that participates in the SOS
constraint, b is a binary variable, and M is an upper bound on the value of variable x. Large values of M can lead to
numerical issues. The two parameters PreSOS1BigM and PreSOS2BigM control the maximum value of M that can

575

be introduced by this reformulation. SOS constraints that would require a larger value aren’t converted. Setting one
of these parameters to 0 disables the corresponding reformulation.

Additionally, there are several known integer formulations for SOS1 and SOS2 constraints. These reformulations
differ in the number of variables that they introduce to the problem, in the complexity of the resulting LP relax-
ations, and in their properties in terms of branching and cutting planes. The two parameters PreSOS1Encoding and
PreSOS2Encoding control the choice of the reformulation performed.
Quadratic Constraints

A quadratic constraint allows you to restrict the value of a quadratic expression. For example, you may require that
any feasible solution satisfy the constraint 3x2 + 4y2 + 5z ≤ 10. Note that the matrix-oriented Gurobi APIs (C,
MATLAB, and R) require the right-hand side of a quadratic constraint to be a constant, while the object-oriented
APIs (C++, Java, .NET, and Python) allow arbitrary quadratic expressions on both sides of the comparator.

The computed solution should satisfy the stated constraint to within FeasibilityTol. Quadratic constraints are
often much more challenging to satisfy than linear constraints, so tightening the parameter may increase runtimes
dramatically.

Gurobi can handle both convex and non-convex quadratic constraints. However, there are some subtle and
important differences in how the different constraint types are handled. The default algorithms in Gurobi only accept
a few forms of quadratic constraints that are known to have convex feasible regions. Constraints of the following
forms are always accepted:

• xTQx+ qTx ≤ b, where Q is Positive Semi-Definite (PSD)
• xTx ≤ y2, where x is a vector of variables, and y is a non-negative variable (a Second-Order Cone constraint)
• xTx ≤ yz, where x is a vector of variables, and y and z are non-negative variables (a rotated Second-Order

Cone constraint)

To be more precise, a constraint will be accepted if presolve is able to transform it into one of these forms. Note that
if the quadratic terms each contain at least one binary variable, then presolve will always be able to transform it.

If you add a constraint that can’t be transformed into one of these forms, then with default settings you will
get an error (GRB_ERROR_Q_NOT_PSD) when you try to solve the model. Quadratic equality constraints are always
non-convex; they will give a GRB_ERROR_QCP_EQUALITY_CONSTRAINT error with default settings.

Why distinguish between quadratic constraints in this form and other types of quadratic constraints? Solving
models with non-convex quadratic constraints is typically much more expensive. To avoid accidentally solving a much
harder problem than may have been intended, Gurobi rejects such constraints by default. If you set the NonConvex
parameter to 2, however, then Gurobi will accept arbitrary quadratic constraints and attempt to solve the resulting
model.

Note that other non-convex quadratic solvers often only find locally optimal solutions. The algorithms in Gurobi
explore the entire search space, so they provide a globally valid lower bound on the optimal objective value, and given
enough time they will find a globally optimal solution (subject to tolerances).

We would like to note a subtle point here regarding terminology. A quadratic constraint that involves only
products of disjoint pairs of variables is often called a bilinear constraint, and a model that contains bilinear constraints
is often called a bilinear program. Bilinear constraints are a special case of non-convex quadratic constraints, and the
algorithms Gurobi uses to handle the latter are also well suited to solving bilinear programming problems.
General Constraints

The previously-described constraints are typically handled directly by the underlying optimization algorithms (but
not always). Gurobi includes an additional set of constraints, which we collectively refer to as general constraints.
General constraints are mostly a convenience feature, designed to allow you to define certain variable relationships
easily without having to immerse yourself in the often esoteric details of how to model these relationships in terms of
the more fundamental constraints of MIP. Capturing a single one of these general constraints can often require a large
set of linear and SOS constraints, plus a number of auxiliary decision variables. By supporting them directly in the
Gurobi API, we simplify the modeling process by performing the transformation to a corresponding MIP formulation
automatically and transparently during the solution process.

What sorts of variable relationships can be captured with general constraints? We think of them as belonging
to two types: function constraints and simple constraints. Function constraints allow you to state a relationship
y = f(x), where x and y are Gurobi decision variables and f() is chosen from a predefined list of functions. Gurobi
performs a piecewise-linear approximation of that function within the domain of x. Simple general constraints allow
you to state common but more direct relationships between decision variables. The translation that goes on under

576

the hood for these is much simpler, and the result is an exact representation of the original constraint (not an
approximation).
Simple General Constraints

Gurobi supports the following simple general constraints, each with its own syntax and semantics:

• MAX constraint: The constraint r = max{x1, . . . , xk, c} states that the resultant variable r should be
equal to the maximum of the operand variables x1, . . . , xk and the constant c. For example, a solution (r =
3, x1 = 2, x2 = 3, x3 = 0) would be feasible for the constraint r = max{x1, x2, x3, 1.7} because 3 is indeed the
maximum of 2, 3, 0, and 1.7.

• MIN constraint: Similar to a MAX constraint, the constraint r = min{x1, . . . , xk, c} states that the resultant
variable r should be equal to the minimum of the operand variables x1, . . . , xk and the constant c.

• ABS constraint: The constraint r = abs{x} states that the resultant variable r should be equal to the
absolute value of the operand variable x. For example, a solution (r = 3, x = −3) would be feasible for the
constraint r = abs{x}.

• AND constraint: The constraint r = and{x1, . . . , xk} states that the binary resultant variable r should be
equal 1 if and only if all of the binary operand variables x1, . . . , xk are equal to 1. For example, a solution
(r = 1, x1 = 1, x2 = 1, x3 = 1) would be feasible for the constraint r = and{x1, x2, x3}. Note that any involved
variables that are not already binary are converted to binary.

• OR constraint: Similar to an AND constraint, the constraint r = or{x1, . . . , xk} states that the binary
resultant variable r should be 1 if and only if at least one of the binary operand variables x1, . . . , xk is equal
to 1. Note that any involved variables that are not already binary are converted to binary.

• NORM constraint: The constraint r = norm{x1, . . . , xk} states that the resultant variable r should be equal
the vector norm of the operand variables x1, . . . , xk. A few options are available: the 0-norm, 1-norm, 2-norm,
and infinity-norm.

• INDICATOR constraints: An indicator constraint y = f → aTx ≤ b states that if the binary indicator
variable y is equal to f in a given solution, where f ∈ {0, 1}, then the linear constraint aTx ≤ b has to be
satisfied. On the other hand, if y 6= f (i.e., y = 1− f) then the linear constraint may be violated. Note that
the sense of the linear constraint can also be = or ≥; refer to this earlier section for a more detailed description
of linear constraints. Note also that declaring an INDICATOR constraint implicitly declares the indicator
variable to be of binary type.

• Piecewise-linear constraints: A piecewise-linear constraint y = f(x) states that the point (x, y) must lie on
the piecewise-linear function f() defined by a set of points (x1, y1), (x2, y2), ..., (xn, yn). Refer to the description
of piecewise-linear objectives for details of how piecewise-linear functions are defined.

Note that adding any of these constraints to an otherwise continuous model will transform it into a MIP
As stated above, each general constraint has an equivalent MIP formulation that consists of linear and SOS

constraints, and possibly auxiliary variables. Thus, you could always model such constraints yourself without using
a Gurobi general constraint. For example, the MAX constraint r = max{x1, . . . , xk, c} can be modeled as follows:

r = xj + sj for all j = 1, . . . , k
r = c+ sk+1

z1 + . . .+ zk+1 = 1
SOS1(sj , zj) for all j = 1, . . . , k + 1

sj ≥ 0 for all j = 1, . . . , k + 1
zj ∈ {0, 1} for all j = 1, . . . , k + 1

The first two constraints state that r ≥ max{x1, . . . , xk, c}, i.e., that the resultant variable r has to be at least as
large as each of the operand variables xj and the constant c. This can be modeled using inequalities, but we turned
them into equations by introducing explicit continuous slack variables sj ≥ 0, which we will reuse below.

Those slack variables and the remaining constraints model r ≤ max{x1, . . . , xk, c}, which is more complicated.
In addition to the explicit slacks, this requires the introduction of binary auxiliary variables zj ∈ {0, 1}. The SOS1
constraints state that at most one of the two variables sj and zj can be non-zero, which models the implication
zj = 1→ sj = 0. Due to the third constraint, one zj will be equal to 1 and thus at least one sj will be zero. Hence,
r = xj for at least one j due to the first constraint, or r = c due to the second constraint.

577

Tolerances play a role in general constraints, although as you might expect, the exact role depends on the
constraint type. Generally, violations in the resultant will be smaller than the feasibility tolerance, and integrality
violations in integer resultants will also satisfy the integrality tolerance.

By most measures, general constraints are just a means of concisely capturing relationships between variables
while removing the burden of creating an equivalent MIP formulation. However, general constraints have another
potential advantage: Gurobi might be able to simplify the MIP formulation if it can prove during presolve that
the simplified version suffices for the correctness of the model. For this reason, Gurobi might be able to produce a
smaller or tighter representation of the general constraint than you would get from the most general formulation. For
example, it might be the case that r ≤ max{x1, . . . , xk, c} is already implied by the other constraints in the model,
so that a simple set of inequalities

r ≥ xj for all j = 1, . . . , k
r ≥ c

to describe r ≥ max{x1, . . . , xk, c} suffices to model the relevant part of the MAX constraint.
Norm Constraint

The norm constraint introduces a few complications that are important to be aware of. As mentioned above, this
constraint allows you to set one variable equal to the norm of a vector of variables. A few norms are available. The
L1 norm is equal to the sum of the absolute values of the operand variables. The L-infinity norm is equal to the
maximum absolute value of any operand. The L2 norm is equal to the square root of the sum of the squares of the
operands. The L0 norm counts the number of non-zero values among the operands.

Regarding the L2 norm, one obvious complication comes from the fact that enforcing it requires a quadratic
constraint. If your model only ever bounds the result from above (e.g., r = ||x|| <= 1), then the resulting constraint
will be convex. If your model was otherwise convex, the resulting model will be a (convex) QCP. However, if you try
to bound the result from below (e.g., r = ||x|| >= y), adding the L2 norm constraint will lead to a non-convex QCP
model, which will typically be significantly harder to solve.

Regarding the L0 norm, note that results obtained with this constraint can be counter-intuitive. This is a
consequence of the fact that for nearly any feasible solution with a variable at exactly 0, you can add a small value
into that variable while still satisfying all associated constraints to tolerances. The net result is that a lower bound
on the L0 norm is often satisfied by “cheating” - by setting enough variables to values that are slightly different
from zero. We strongly recommend that you only bound the result from above. That is, you should avoid using the
resultant in situations where the model incentivizes a larger value. This would include situations where the objective
coefficient is negative, as well as situations where a larger value for the variable could help to satisfy a constraint
(e.g., a greater-than constraint where the resultant appears with a positive coefficient).
Function Constraints

Gurobi supports the following function constraints, each with somewhat different syntax and semantics (x and y
below are Gurobi decision variables, and other terms are constants provided as input when the constraint is added
to the model):

• Polynomial: y = p0x
n + p1x

n−1 + ...+ pnx+ pn+1

• Natural exponential: y = exp(x) or y = ex

• Exponential: y = ax, where a > 0 is the base for the exponential function
• Natural logarithm: y = loge(x) or y = ln(x)
• Logarithm: y = loga(x), where a > 0 is the base for the logarithmic function
• Logistic: y = 1

1+exp(−x) or y = 1
1+e−x

• Power: y = xa, where a >= 0
• Sine: y = sin(x)
• Cosine: y = cos(x)
• Tangent: y = tan(x)
As noted earlier, Gurobi will automatically add a piecewise-linear approximation of the function to the model.

You face a fundamental cost-versus-accuracy tradeoff when performing such an approximation, though: adding more
pieces produces smaller approximation errors, but also increases the cost of solving the problem. The tradeoff can be
complex. Gurobi provides a set of three attributes that help to navigate this tradeoff: FuncPieces, FuncPieceLength,
FuncPieceError. They are used as follows:

578

• If you would like to choose the number of pieces to use for the approximation, set the FuncPieces attribute
to the desired value. All pieces will have equal width. This approach allows you to control the size of the
approximation.

• If you would like to choose the width of each piece, set the FuncPieces attribute to a special value of 1 and set
the FuncPieceLength attribute equal to the desired width of each piece. This approach provides some control
over both the size and the error of the approximation. While this may appear to be a minor variation of the
first option, note that presolve may tighten the domain of x, often substantially, which can make it difficult
to predict the relationship between the width of each piece and the number of pieces.

• If you would like to set the maximum error you are willing to tolerate in the approximation, set the FuncPieces
attribute to a special value of -1 and set the FuncPieceError attribute equal to the maximum absolute approx-
imation you are willing to tolerate. Gurobi will choose pieces, typically of different sizes, to achieve that error
bound. Note that the number of pieces required may be quite large if you set a tight error tolerance. You can
control the maximum relative error rather than the absolute error by setting the FuncPieces attribute to -2
instead of -1.

These are attributes on the general constraints, so you can choose different values for each individual constraint.
The other relevant attribute is FuncPieceRatio, which controls whether the approximation is an underestimate

of the function (0.0), an overestimate (1.0), or somewhere in between (any value strictly between 0.0 and 1.0). You
can also choose the special value of -1, which will choose points that are on the original function.

Consider the following simple example:

Pu1

Pl1

Pu2

Pl2

Pu3

Pl3

1 2 x

1

2

3

4

y

The goal is to find an approximation of the polynomial y = x2. We’ve set FuncPieces to 1 and FuncPieceLength to 1.0,
so we’re performing an approximation with fixed-width pieces of width 1.0. The domain of x is [0, 2], so the approxima-
tion has two pieces. The figure shows 6 points: Pu1(0, 0), Pu2(1, 1), Pu3(2, 4), and Pl1(0,−0.25), Pl2(1, 0.75), Pl3(2, 3.75).
If FuncPieceRatio is set to 0.0, the approximation would be built from the points below the function (Pl1, Pl2, and
Pl3). Similarly, if it is set to 1.0, the approximation would be built from the points above the function (Pu1, Pu2,
and Pu3). A value of 0.6 would use weighted combinations of the points: 0.6 times Pui plus 0.4 times Pli. In this

579

case, the line segments would be built from the points (0,−0.1), (1, 0.9), and (2, 3.9). If FuncPieceRatio is set to −1,
meaning that the approximation would be built from points that are on the original function, in this case the upper
points (Pu1, Pu2, and Pu3) fit the bill. This will always be the case for a convex function.

Recall that you can set FuncPieces to −1 to control the maximum absolute error. In this case, choosing a
FuncPieceError value of 0.25 would give the piecewise approximation shown in the figure, since the distance between
the upper and lower curves is always 0.25. A smaller error value would of course lead to more pieces. We should add
that piece widths will typically be non-uniform when limiting the maximum approximation error. The approximation
algorithms we use try to limit the number of pieces needed to meet the error targets, which often requires more
refinement in some portions of the domain than in others.

Note that the approximations are guaranteed to be under- and over-estimates in all cases except for polynomials
of degree greater than 5. Finding the roots of higher-degree polynomials, which would be required to guarantee this
property, is quite difficult.

If you wish to experiment with different approaches to approximating a set of functions, it is often convenient to
be able to change the approach for all functions at once. We provide a set of parameters with the same names as the
attributes to make it easier to do this: FuncPieces, FuncPieceLength, FuncPieceError, and FuncPieceRatio. If you
set the FuncPieces attribute on a function constraint to 0, then the approximation approach for that constraint will
be determined by the parameter settings instead.

For some of the supported functions, modest x values can lead to enormous y values (and vice-versa). This can
cause numerical issues when solving the resulting piecewise-linear MIP model. To avoid such issues, we limit the
range of any x or y that participates in a function constraint to [-1e+6, 1e+6]. The parameter FuncMaxVal allows
you to change these limits, but we recommend that you proceed with caution.

We should point out that PWL approximations can sometimes cause unexpected results, including sub-optimal
solutions or even infeasible conclusions on feasible models. Consider a simple example with two constraints: y = 2x−1
and y = x2. Clearly (x, y) = (1, 1) is a feasible solution, but a piecewise-linear approximation could introduce
breakpoints at x = 0.9 and x = 1.1. The resulting approximation gives a y value of 1.01 at x = 1, which is
sufficiently far from the actual function value that Gurobi will not consider that a valid solution and declare the
model infeasible, since there are no other solutions to the constraints. Reducing the maximum approximation error
(by setting FuncPieces to -1 and FuncPieceError to a much smaller value) would help, but this isn’t always the best
way to address the problem, since tighter error tolerances can substantially increase the number of pieces in the
approximation and thus the cost. We recommend the following approach when you encounter unexpected results.
For inequalities, you should ask for an approximation that always overestimates or underestimates the function
(depending on the sense of the constraint), to ensure that your approximation will always satisfy the constraint. The
FuncPieceRatio parameter allows you to do this. For equalities, if you have a sense of where your solution is likely to
lie, one option for managing the size of the approximation is to introduce additional variables to capture your function
in different ranges, and then perform approximations with different levels of accuracy on these different pieces.

While users could perform piecewise-linear approximations themselves, there are several advantages to asking
Gurobi to do it instead. First, Gurobi can often reduce the domains of variables, by using bound strengthening in
presolve, or by exploiting repetition in periodic functions like sine or cosine. Smaller domains means fewer pieces
to achieve the same accuracy. Gurobi also provides many options to make experimentation easier (for error control,
piece length, etc.). These options can be quite difficult to implement and maintain.

10.3 Objectives
Every optimization model has an objective function, which is the function on the decision variables that you wish to
minimize or maximize. The objective is meant to capture your goals in solving the problem. Given a set of feasible
solutions, the objective tells the solver which is preferred.

Most optimization problems have multiple optimal solutions, plus many solutions whose objectives are within a
small gap from the optimal value. The solution that is returned by Gurobi depends on the type of problem you are
solving. The simple rule is that Gurobi returns a single optimal solution for continuous models (LP, QP, and QCP),
and a sequence of improving solutions for discrete models (MIP, MIQP, and MIQCP).

The Gurobi algorithms work on solving a model until they find a solution that is optimal to within the specified
tolerances. For the simplex algorithms (including barrier with crossover), the relevant tolerance is the Optimality-
Tol. For the barrier algorithm (without crossover), the relevant tolerances are the BarConvTol or BarQCPConvTol
(depending on the problem type). You can relax these tolerances, but note that it is rare for this to significantly
improve solution times. The simplex and barrier algorithms both return a single optimal solution.

580

For discrete models, while you can ask the MIP solver to find a solution with the best possible objective value, it
is more common to stop when the solution objective is within a specified gap from the optimal value. This optimality
gap is controlled by the MIPGap parameter, and the default value is 0.01%.

The MIP solver typically finds multiple sub-optimal solutions on the way to eventually finding an optimal solution.
These intermediate solutions can be queried once the optimization is complete (using the Xn attribute). You can
use the Solution Pool feature to take a more systematic approach to finding multiple solutions. This feature allows
you to indicate how many solutions you would like, to specify the largest gap to the optimal value you are willing to
accept, etc.

We should add that it is possible to specify a pure feasibility problem, where the sole goal is to find a solution
that satisfies the constraints. You can think of a feasibility problem as an optimization problem with a constant
objective function.

The available objective types are linear, piecewise-linear, quadratic (both convex and non-convex), and multi-
objective. While the property of having multiple objectives may appear to be orthogonal to the types of the objectives,
Gurobi only supports multi-objective models where all objectives are linear.
Linear Objectives

The simplest and most common objective function is linear - minimizing or maximizing a linear function on the
decision variables (e.g., 3x + 4y + 2). Linear objectives can be specified in a few ways. The first is by providing
an objective term when the decision variable is added to the model (typically through the addVar method). The
second is by setting the Obj attribute on the variable. The third and most convenient approach, available in the
object-oriented interfaces, is through the setObjective method (in C++, Java, .NET, or Python). This method
accepts a linear expression object as its argument.

A model with a linear objective, only linear constraints, and only continuous variables is a Linear Program (LP).
It can be solved using the simplex or barrier algorithms.
Piecewise-Linear Objectives

A useful variant of a linear objective is a piecewise-linear objective, where the objective for a single variable is captured
in a set of linear pieces. For example, suppose we want to define the objective value f(x) for variable x as follows:

(1, 1)

(3, 2)

(5, 4)

x[0] x[1] x[2]

y[0]

y[1]

y[2]

The vertices of the function occur at the points (1, 1), (3, 2) and (5, 4), so we define f(1) = 1, f(3) = 2 and f(5) = 4,
Other objective values are linearly interpolated between neighboring points. The first pair and last pair of points
each define a ray, so values outside the specified x values are extrapolated from these points. Thus, in our example,
f(−1) = 0 and f(6) = 5.

More formally, a piecewise-linear function is defined by a set of n points:

x = [x1, . . . , xn], y = [y1, . . . , yn]

These define the following piecewise-linear function:

581

f(v) =


y1 + y2−y1

x2−x1
(v − x1), if v ≤ x1,

yi + yi+1−yi

xi+1−xi
(v − xi), if v ≥ xi and v ≤ xi+1,

yn + yn−yn−1
xn−xn−1

(v − xn), if v ≥ xn.

We also allow special cases, such as jumps and single points, which are quite useful to define the fixed charges or
the penalties. A jump at x = xi means that the left piece and the right piece don’t intersect at x = xi, i.e. we have
(xi−1, yi−1), (xi, yi), (xi+1, yi+1), (xi+2, yi+2) with xi = xi+1 and yi 6= yi+1. So for the left piece, i.e. xi−1 ≤ x < xi,
the line segment between points (xi−1, yi−1) and (xi, yi) defines y, for the right piece, i.e. xi ≤ x < xi+2, the line
segment between points (xi+1, yi+1) and (xi+2, yi+2) defines y. Since we must allow some tolerance for numeric
computation, it means that at x = xi, y can take the value of either yi or yi+1. A single point at x = xi means that
both left and right pieces extend to x = xi, but both have different y values than yi. It can be described by the five
points (xi−2, yi−2), (xi−1, yi−1), (xi, yi), (xi+1, yi+1), (xi+2, yi+2) with xi−1 = xi = xi+1 and yi 6= yi−1 and yi 6= yi+1.
Note that yi−1 and yi+1 can be equal or different. Because of the tolerance, it means that at x = xi, y can take the
value of yi−1, yi or yi+1. Here below is an example with a jump and a single point.

(−1, 0)

(1, 1)

(1, 2) (3, 2)

(3, 0)

(5, 4)

−1 0 1 2 3 4 5 6

1

2

3

4

5

The above piecewise function for variable x are defined by 7 points (−1, 0), (1, 1), (1, 2), (3, 2), (3, 0), (3, 2) and (5, 4).
It has a jump at x = 1 from (1, 1) to (1, 2) and a single point (3, 0). Note that both left and right points have the
same x coordinate and for this example the two points are the same.

Note that a piecewise-linear objective can change the type of a model. Specifically, including a non-convex
piecewise-linear objective function in a continuous model will transform that model into a MIP. This can significantly
increase the cost of solving the model.

How do you determine whether your piecewise-linear objective is convex? A convex function has the property
that you can’t obtain a better objective value by interpolating between two points on the function. In the figure
below, you will note that all convex combinations of points on the piecewise-linear function are in the shaded region.

582

Stated another way, successive pieces will have non-decreasing slopes in a convex piecewise-linear objective (assuming
you are minimizing).

In contrast, in a non-convex piecewise-linear function you can get a better value by interpolating between points.
In the figure below, the value of f(1) for the piecewise-linear function is worse than the value obtained by interpolation.

Piecewise-linear objectives are defined on variables using a special method (in C, C++, Java, .NET, or Python).
Each variable can have its own piecewise-linear objective function, and each function requires a separate call to this
method.

A variable can’t have both a linear and a piecewise-linear objective term. Setting a piecewise-linear objective
for a variable will set the Obj attribute on that variable to 0. Similarly, setting the Obj attribute will delete the
piecewise-linear objective on that variable.

We should point out that it is fairly easy to specify a piecewise-linear function on a variable using a few extra
variables and simple linear objective terms. The advantages of using the piecewise-linear API methods are twofold.
The first is convenience - specifying the function directly leads to simpler and more readable code. The second is that
Gurobi includes a piecewise-linear simplex algorithm. If you provide a model that contains only linear constraints,
only continuous variables, and only linear or convex piecewise-linear objective terms, then this specialized simplex

583

algorithm will be used to solve the model. If your piecewise-linear function contains a large number of segments, the
specialized algorithm will be much faster than the standard simplex solver.
Quadratic Objectives

Your optimization objective can also contain quadratic terms (e.g., 3x2 + 4y2 + 2xy+ 2x+ 3). You specify quadratic
objectives in the object-oriented interfaces by building quadratic expressions and then calling setObjective (C++,
Java, .NET, or Python). In C, you input your quadratic terms using GRBaddqpterms.

There are four distinct algorithms that could be used to solve a model with a quadratic objective. The appropriate
one depends on a few specific properties of the objective and the rest of the model.

• Continuous QP If your quadratic objective is convex and your model only contains linear constraints and
continuous variables, then your model is a quadratic program (QP) and can be solved using either the simplex
or barrier algorithms. QP simplex will return an optimal basic solution. Gurobi does not have a QP crossover,
so QP barrier will return an interior solution.

• Discrete QP with Convex Relaxation If your quadratic objective is convex but the model contains
discrete elements (integer variables, SOS constraints, general constraints, etc.), then your model is a mixed
integer quadratic program (MIQP) and is solved using the MIP solver. Since MIP relies heavily on simplex
bases, the root relaxation must be solved using the primal or dual simplex algorithm.

• Discrete QP with Non-Convex Relaxation If your quadratic objective is not convex, then the model will
be solved using the MIP solver, even if your model has no explicit discrete elements. However, in this release
you need to take action for that to happen. Specifically, you need to set the NonConvex parameter to 2. With
default settings, a non-convex quadratic objective leads to a GRB_ERROR_Q_NOT_PSD error.

These properties are checked on the presolved model. As is always the case, presolve will try to simplify the model.
In this context, it will try to transform a non-convex MIQP into an equivalent convex MIQP. This simplification will
always succeed if each quadratic term contains at least one binary variable.

How can you determine whether your quadratic objective is convex? As was noted earlier, the crucial property for
convexity is that interpolation between any two points on the function never puts you below the function (assuming
minimization). In this figure, all points on a line segment between any two points on the parabola are always in the
shaded region.

How does this translate to multiple variables? For a quadratic function to be convex, the associated Q matrix must
be Positive Semi-Definite (PSD).

584

Multiple Objectives

You can also specify multiple (linear) objectives for your model, and Gurobi provides tools that allow you explore
the tradeoffs between them. Refer to the Multiple Objectives section for additional details.

10.4 Tolerances and Ill Conditioning -- A Caveat
As noted at several places in this section, finite-precision arithmetic limits the precision of the solutions Gurobi
computes. This limitation is managed through numerical tolerances in most cases; we treat a solution as satisfying
a constraint if the violation is smaller than the corresponding tolerance. The default tolerances are chosen to be
sufficiently large so that numerical errors aren’t an issue for most models.

Unfortunately, some models suffer from severe ill conditioning, which can greatly complicate the search for a
solution. This can show itself in a few ways. Ill conditioning can severely hurt performance, and it can lead to
solutions whose constraint violations are larger than the tolerances.

Ill conditioning is a measure of the amount of error that can result when solving linear systems of equations.
As noted earlier, linear and mixed-integer programming are built on top of linear solves, so errors in solving linear
systems directly lead to errors in LP and MIP solutions. Serious problems arise when the error in solving a linear
system is comparable to the desired tolerance. If you want to solve a linear programming problem to the default
feasibility tolerance of 1e−6, for example, and if your linear system solves produce errors that are also roughly 1e−6,
then you have no way of knowing whether your current solution is truly feasible. This can lead to oscillations, as
your solution bounces between feasible and infeasible due to nothing more than numerical error, which can make it
extremely difficult to achieve forward progress towards an optimal solution.

When solving linear and quadratic programming problems, we recommend that you check final primal and dual
constraint violations. Duality theory states that, if your solution is primal feasible, dual feasible, and complementary,
then you have an optimal solution. Complementarity is automatically enforced by the simplex method, so achieving
primal and dual feasibility (to tolerances) assures that the solution is optimal (to tolerances).

When solving a MIP model (which includes any model that contains discrete or non-convex features, such as
non-convex objectives, general constraints, semi-continuous variables, etc.), there is unfortunately no simple method
available to check the optimality of the result. While we work hard to identify and manage the negative effects of ill
conditioning, we are unable to provide a mathematical proof that the solution returned is truly optimal.

For additional information on numerical issues, please refer to the Gurobi Guidelines for Numerical Issues Section
of this manual.

585

Environments

An environment is a multi-purpose data structure in Gurobi. It is typically the first Gurobi object you create and
the last one you destroy. While the workings of environments are actually quite simple, the breadth of uses can
sometimes cause confusion. This section lays out the different usage scenarios to make this clearer.

At the highest level, environments provide three basic functions: (i) to capture a set of parameter settings, (ii)
to delineate a (single-threaded) Gurobi session, and (iii) to hold a Gurobi license. Things only get interesting once
you consider the many different ways these capabilities are used throughout the product:

• Configuration parameters: Environments allow you to configure your session (whether you will run locally or
on a Compute Server or on the Instant Cloud, your login credentials, etc.).

• Algorithmic parameters: Environments enable you to modify algorithmic parameters, which influence how the
solver solves your model.

• Concurrent environments: When using a concurrent algorithm, concurrent environments allow you to control
the algorithmic parameters used in each independent solve.

• Multi-objective environments: When solving a multi-objective model, multi-objective environments allow you
to control the algorithmic parameters used for each objective.

• Session boundaries: Environments indicate when your program starts and stops using Gurobi.

11.1 Session boundaries
One of the main purposes of an environment is to indicate when your program will start to use Gurobi, and when it is
done. When Gurobi is running on your own machine, creating an environment will obtain a license, and disposing of
the environment will release that license. When you are a client of a Gurobi Compute Server, starting an environment
will start a job on the server (or enter the queue if the server is fully occupied). Disposing of the environment will
end that job, allowing the next job in the queue to start. On Gurobi Instant Cloud, creating an environment will
launch a cloud instance (if it hasn’t been launched already). Disposing of the environment will end that session,
which may result in the cloud instance being shut down (depending on the policy you’ve set in your Instant Cloud
configuration).

If your program repeatedly creates, solves, and destroys optimization models, we strongly recommend that you
do so within a single Gurobi environment. Creating a Gurobi environment incurs overhead, ranging anywhere from
a quick local license check all the way to spinning up a machine on the cloud. By reusing a single environment, you
avoid paying this overhead multiple times.

We also recommend that you dispose of your environment as soon as your program is done using Gurobi. Doing
so releases all resources associated with that session, which in many cases can make those resources available to other
users. You should pay particular attention to this topic when using programming languages that perform garbage-
collection. While it is true that environments will be disposed of eventually by automated garbage-collection, that
will often happen much earlier if you dispose of them explicitly.

The actual steps for disposing of an environment will depend on the API you are using:

Python: Call Model.dispose() on all Model objects, Env.dispose() on any Env objects you created, or disposeDefault-
Env() if you used the default environment instead. For example:

Clean up model and environment
model.dispose ()
env.dispose ()
gp.disposeDefaultEnv ()

Java: Call GRBModel.dispose() on all GRBModel objects, then call GRBEnv.dispose() on the GRBEnv object. For
example:

586

// Clean up model and environment
model.dispose ()
env.dispose ()

.NET: Call GRBModel.Dispose() on all GRBModel objects, then call GRBEnv.Dispose() on the GRBEnv object.
C++: Call the delete operator on all GRBModel objects, and then on the GRBEnv object.
C: Call GRBfreemodel() for each model, then call GRBfreeenv() for the Gurobi environment. For example:

/* Clean up model and environment */
GRBfreemodel(model);
GRBfreeenv(env);

Note that the boundaries established by an environment are for a single thread. Gurobi environments are not
thread-safe, so you can’t have more than one thread of control within a single environment. You can however have a
single program that launches multiple threads, each with its own environment.

In Python you can take advantage of context managers for environment and model objects. Using them will
guarantee that these objects are automatically disposed of. Refer to Env class documentation for more information.
A typical use pattern is also shown in the example mip1_remote.py.

11.2 Configuration parameters
When you start a Gurobi session, you often have to provides details about your configuration. You may need to
indicate whether you want to use a license on your local machine, a license from a Token Server, or perhaps you want
to offload your computation to a Compute Server or to Gurobi Instant Cloud. In the case of a Token Server or a
Compute Server, you have to provide the name of the server. For Compute Server and Instant Cloud, you also need
to provide login credentials.

In many situations, the configuration information you need is already stored in your license file (gurobi.lic) or
in your environment file (gurobi.env). These files are read automatically, so you can simply create a standard Gurobi
environment object (using GRBloadenv in C, or through the appropriate GRBEnv constructor in the object-oriented
interfaces).

What if you need to provide configuration information from your application at runtime instead? You can use
an empty environment to split environment creation into a few steps (as opposed to the standard, single-step ap-
proach mentioned above). In the first step, you would create an empty environment object (using GRBemptyenv in
C, or through the appropriate GRBEnv constructor in the object-oriented interfaces). You would then set configura-
tion parameters on this environment using the standard parameter API. Finally, you would start the environment
(using GRBstartenv in C, or using the env.start() method in the object-oriented interfaces), which will use the
configuration parameters you just set.
Empty environment example

To give a simple example, if you want your Python program to offload the optimization computation to a Compute
Server named server1, you could say:

import gurobipy as gp
from gurobipy import GRB

Set up environment
env = gp.Env(empty=True)
env.setParam('ComputeServer ', 'server1 :61000 ')
env.setParam('ServerPassword ', 'passwd ')
env.start()

Load model and optimize
model = gp.read('misc07.mps', env=env)
model.optimize ()

An equivalent Java program would look like this:

587

import gurobi .*;
...

// Set up environment
GRBenv env = new GRBEnv(true);
env.set(GRB.StringParam.ComputeServer , "server1 :61000");
env.set(GRB.StringParam.ServerPassword , "passwd");
env.start ();

// Load model and optimize
GRBModel model = new GRBModel(env , "misc07.mps");
model.optimize ()

An equivalent C program would look like this:

include "gurobi_c.h"
int main(void) {

GRBenv *env = NULL;
GRBmodel *model = NULL;
int error = 0;

/* Set up environment */
error = GRBemptyenv (&env);
if (error) goto QUIT;
error = GRBsetstrparam(GRB_STR_PAR_COMPUTESERVER , "server1 :61000");
if (error) goto QUIT;
error = GRBsetstrparam(GRB_STR_PAR_SERVERPASSWORD , "passwd");
if (error) goto QUIT;
error = GRBstartenv(env);
if (error) goto QUIT;

/* Load model and optimize */
error = GRBreadmodel(env , "misc07.mps", &model);
if (error) goto QUIT;
error = GRBoptimize(model);
if (error) goto QUIT;

This example uses the ComputeServer parameter to connect to a Compute Server. To give a few more examples of
configuration parameters, you can use the CloudAccessID and CloudSecretKey parameters to provide your credentials
in order to launch an Instant Cloud instance. To connect to a token server, you would use the TokenServer parameter.
You can also use the LicenseID, WLSAccessID, and WLSSecret parameters to provide your IDs and secret key for
your WLS license. You can find more information about WLS licenses in your account on the Gurobi Web License
Manager site. The full list of Gurobi parameters can be found here.

Configuration parameters must be set before you start the Gurobi environment. Changes have no effect once the
environment has been started.

In Python you can also provide such configuration parameters directly as a dict argument to the environment
constructor, without creating an empty environment first. Please refer to the Env() documentation for an example.

11.3 Algorithmic parameters
Environments can also be used to set algorithmic parameters - parameters that control the behavior of the optimization
solver. To give a few examples, the TimeLimit parameter indicates the maximum allowed runtime for any solve, while
the Method parameter chooses the algorithm used to solve continuous optimization models.

Having said that, we actually recommend that you set algorithmic parameters on the model rather than on
the environment. The object-oriented APIs all include model.set methods that enable you to do so. What’s the
difference between setting parameters on the environment versus on the model? Parameter values are copied from
the environment when the model is created, so changes to parameter values in the environment have no effect on
models that have already been created. This is a frequent source of confusion.

588

https://license.gurobi.com
https://license.gurobi.com

In the C API, there is no method to set parameters on the model directly. Instead, the model environment can
be retrieved by calling GRBgetenv.

Please see the Parameter Examples section for examples on how parameters are set.

11.4 Concurrent environments
One algorithmic option available in Gurobi is concurrent optimization, where multiple independent solves are per-
formed in parallel and Gurobi takes care of collecting and combining the results. Concurrent optimization can be
quite powerful; it is actually the default approach for solving linear programming models.

The power of concurrent optimization comes from the fact that different approaches to solving a model may have
different performance characteristics, and performing them in parallel allows you to stop when the first one finishes.
All of our concurrent schemes have default choices for determining the strategy that each independent solve uses.
However, it is also possible for you to pick different strategies. This is done through concurrent environments. By
creating two or more concurrent environments for a model, and setting parameters on these environments, you can
control exactly what each concurrent solve does.

Concurrent environments are created via API routines (in C, C++, Java, .NET, or Python). You set parameters
on these environments as you would with any other environment, but in this case they only affect one of the several
independent solves.

To give a simple example, in Python you could do the following:

Create concurrent environments
env0 = model.getConcurrentEnv (0)
env1 = model.getConcurrentEnv (1)

Set parameters on concurrent environments
env0.setParam('MIPFocus ', 1)
env1.setParam('MIPFocus ', 2)

Perform (concurrent) optimization
model.optimize ()

This would launch two concurrent solves on your model, one with the MIPFocus parameter set to 1 and the other
with it set to 2.

Users of our command-line interface can set concurrent optimization parameters with .prm files using the Con-
currentSettings parameter.

11.5 Multi-objective environments
When solving a multi-objective model, the solution process typically proceeds in phases, where each phase solves for
one objective. The standard algorithmic parameters influence the strategy used to solve the overall multi-objective
model. However, in some cases you may want finer-grain control over the strategies used in each phase. The solver
enables this through multi-objective environments.

Multi-objective environments are created via API routines (in C, C++, Java, .NET, or Python). You set
parameters on these environments as you would with any other environment, but in this case they only affect one of
the several objective solves.

To give a simple example, in Python you could do the following:

Create multi -objective environments
env0 = model.getMultiobjEnv (0)
env1 = model.getMultiobjEnv (1)

Set parameters on multi -objective environments
env0.setParam('Method ', 2)
env1.setParam('Method ', 1)
env1.setParam('Presolve ', 0)

589

Perform multi -objective optimization
model.optimize ()

This would use the barrier solver (Method=2) for the first objective, and the dual simplex solver (Method=1) with no
presolve (Presolve=0) for the second. Note that you don’t need a multi-objective environment for each objective -
only for those where you want parameters to take different values from those of the model itself.

590

Attributes

The primary mechanism for querying and modifying properties of a Gurobi model is through the attribute interface.
A variety of different attributes are available. Some are only populated at certain times (e.g., those related to the
solution of a model), while others are available at all times (e.g., the number of variables in the model). Attributes can
be associated with variables (e.g., lower bounds), constraints (e.g., the right-hand side), SOSs (e.g., IIS membership),
or with the model as a whole (e.g., the objective value for the current solution).

The following tables list the full set of Gurobi attributes. The attributes have been grouped by type: model
attributes take scalar values, while variable, linear constraint, SOS constraint, quadratic constraint, and general
constraint attributes contain one entry per variable or constraint in the model. The APIs provide methods to query
attribute values for individual constraints or variables, or to query their values for arrays of constraints or variables
(refer to our Attribute Examples section for examples). Array queries are generally more efficient.

Note that the attributes that provide solution quality information have been split off into a separate table at the
end of this section. These attributes are also associated with the model as a whole.

Some solution attributes require information that is only computed by certain Gurobi algorithms. Such cases
are noted in the detailed attribute descriptions that follow. For example, the VBasis and CBasis attributes can only
be queried when a simplex basis is available (a basis is available when a continuous model has been solved using
primal simplex, dual simplex, or barrier with crossover). Sensitivity information (SAObjLow, SAObjUp, etc.) is also
only available for basic solutions.

591

Model attributes:
These attributes provide information about the overall model (as opposed to information about individual vari-

ables or constraints in the model).

Attribute name Description
NumVars Number of variables
NumConstrs Number of linear constraints
NumSOS Number of SOS constraints
NumQConstrs Number of quadratic constraints
NumGenConstrs Number of general constraints
NumNZs Number of non-zero coefficients in the constraint matrix
DNumNZs Number of non-zero coefficients in the constraint matrix (in double format)
NumQNZs Number of non-zero quadratic objective terms
NumQCNZs Number of non-zero terms in quadratic constraints
NumIntVars Number of integer variables
NumBinVars Number of binary variables
NumPWLObjVars Number of variables with piecewise-linear objective functions
ModelName Model name
ModelSense Model sense (minimization or maximization)
ObjCon Constant offset for objective function
Fingerprint Model fingerprint
ObjVal Objective value for current solution
ObjBound Best available objective bound (lower bound for minimization, upper bound for maximiza-

tion)
ObjBoundC Best available objective bound, without rounding (lower bound for minimization, upper

bound for maximization)
PoolObjBound Bound on best objective for solutions not in pool (lower bound for minimization, upper

bound for maximization)
PoolObjVal Objective value of alternatives solutions stored during the optimization process
MIPGap Current relative MIP optimality gap
Runtime Runtime for most recent optimization
Work Work spent on most recent optimization
Status Current optimization status
SolCount Number of stored solutions
IterCount Number of simplex iterations performed in most recent optimization
BarIterCount Number of barrier iterations performed in most recent optimization
NodeCount Number of branch-and-cut nodes explored in most recent optimization
OpenNodeCount Number of open branch-and-cut nodes at the end of most recent optimization
ConcurrentWinMethod Winning method of most recent concurrent optimization of continuous model
IsMIP Indicates whether the model is a MIP
IsQP Indicates whether the model is a QP/MIQP
IsQCP Indicates whether the model is a QCP/MIQCP
IsMultiObj Indicates whether the model has multiple objectives
IISMinimal Indicates whether the current IIS is minimal
MaxCoeff Maximum constraint matrix coefficient (in absolute value)
MinCoeff Minimum (non-zero) constraint matrix coefficient (in absolute value)
MaxBound Maximum finite variable bound
MinBound Minimum finite variable bound
MaxObjCoeff Maximum linear objective coefficient (in absolute value)
MinObjCoeff Minimum (non-zero) linear objective coefficient (in absolute value)
MaxRHS Maximum constraint right-hand side (in absolute value)
MinRHS Minimum (non-zero) constraint right-hand side (in absolute value)
MaxQCCoeff Maximum quadratic constraint matrix coefficient of quadratic part (in absolute value)
MinQCCoeff Minimum (non-zero) quadratic constraint matrix coefficient of quadratic part (in absolute

value)
MaxQCLCoeff Maximum quadratic constraint matrix coefficient in linear part (in absolute value)

592

MinQCLCoeff Minimum (non-zero) quadratic constraint matrix coefficient in linear part (in absolute
value)

MaxQCRHS Maximum quadratic constraint right-hand side (in absolute value)
MinQCRHS Minimum (non-zero) quadratic constraint right-hand side (in absolute value)
MaxQObjCoeff Maximum quadratic objective coefficient (in absolute value)
MinQObjCoeff Minimum (non-zero) quadratic objective coefficient (in absolute value)
Kappa Estimated basis condition number
KappaExact Exact basis condition number
FarkasProof Magnitude of infeasibility violation in Farkas infeasibility proof
TuneResultCount Number of improved parameter sets found by tuning tool
NumStart Number of MIP starts
LicenseExpiration License expiration date
Server For Compute Server, name of server

Variable attributes:
These attributes provide information that is associated with specific variables.

Attribute name Description
LB Lower bound
UB Upper bound
Obj Linear objective coefficient
VType Variable type (continuous, binary, integer, etc.)
VarName Variable name
VTag Variable tag
X Value in the current solution
Xn Value in a sub-optimal MIP solution
RC Reduced cost
BarX Value in the best barrier iterate (before crossover)
Start MIP start value (for constructing an initial MIP solution)
VarHintVal MIP hint value
VarHintPri MIP hint priority
BranchPriority Branching priority
Partition Variable partition
VBasis Basis status
PStart Simplex start vector
IISLB Indicates whether the lower bound participates in the IIS
IISUB Indicates whether the upper bound participates in the IIS
IISLBForce Forces variable lower bound into (1) or out of (0) the computed IIS
IISUBForce Forces variable upper bound into (1) or out of (0) the computed IIS
PoolIgnore Flag variables to ignore when checking whether two solutions are identical
PWLObjCvx Indicates whether the variable has a convex piecewise-linear objective
SAObjLow Objective coefficient sensitivity information
SAObjUp Objective coefficient sensitivity information
SALBLow Lower bound sensitivity information
SALBUp Lower bound sensitivity information
SAUBLow Upper bound sensitivity information
SAUBUp Upper bound sensitivity information
UnbdRay Unbounded ray

Linear constraint attributes:
These attributes provide information that is associated with specific linear constraints.

Attribute name Description
Sense Constraint sense (’<’, ’>’, or ’=’)
RHS Right-hand side value

593

ConstrName Constraint name
CTag Constraint tag
Pi Dual value (also known as the shadow price)
Slack Slack in the current solution
CBasis Basis status
DStart Simplex start vector
Lazy Determines whether a constraint is treated as a lazy constraint
IISConstr Indicates whether the constraint participates in the IIS
IISConstrForce Forces constraint into (1) or out of (0) the computed IIS
SARHSLow Right-hand side sensitivity information
SARHSUp Right-hand side sensitivity information
FarkasDual Farkas infeasibility proof

SOS attributes:
These attributes provide information that is associated with specific Special-Ordered Set (SOS) constraints.
Attribute name Description
IISSOS Indicates whether the SOS constraint participates in the IIS
IISSOSForce Forces the SOS constraint into (1) or out of (0) the computed IIS

Quadratic constraint attributes:
These attributes provide information that is associated with specific quadratic constraints.

Attribute name Description
QCSense Constraint sense (’<’, ’>’, or ’=’)
QCRHS Right-hand side
QCName Quadratic constraint name
QCPi Dual value
QCSlack Slack in the current solution
QCTag Quadratic constraint tag
IISQConstr Indicates whether the quadratic constraint participates in the IIS
IISQConstrForce Forces the quadratic constraint into (1) or out of (0) the computed IIS

General constraint attributes:
These attributes provide information that is associated with specific general constraints. Those starting with

"Func" are only for function constraints.
Attribute name Description
FuncPieceError Error allowed for PWL translation
FuncPieceLength Piece length for PWL translation
FuncPieceRatio Controls whether to under- or over-estimate function values in PWL approximation
FuncPieces Sets strategy for PWL function approximation
GenConstrType Type of general constraint
GenConstrName General constraint name
IISGenConstr Indicates whether the general constraint participates in the IIS
IISGenConstrForce Forces the general constraint into (1) or out of (0) the computed IIS

Solution quality attributes:

Attribute name Description
MaxVio Maximum (unscaled) violation
BoundVio Maximum (unscaled) bound violation
BoundSVio Maximum (scaled) bound violation
BoundVioIndex Index of variable with the largest (unscaled) bound violation
BoundSVioIndex Index of variable with the largest (scaled) bound violation
BoundVioSum Sum of (unscaled) bound violations
BoundSVioSum Sum of (scaled) bound violations
ConstrVio Maximum (unscaled) constraint violation
ConstrSVio Maximum (scaled) constraint violation

594

ConstrVioIndex Index of constraint with the largest (unscaled) violation
ConstrSVioIndex Index of constraint with the largest (scaled) violation
ConstrVioSum Sum of (unscaled) constraint violations
ConstrSVioSum Sum of (scaled) constraint violations
ConstrResidual Maximum (unscaled) primal constraint error
ConstrSResidual Maximum (scaled) primal constraint error
ConstrResidualIndex Index of constraint with the largest (unscaled) primal constraint error
ConstrSResidualIndex Index of constraint with the largest (scaled) primal constraint error
ConstrResidualSum Sum of (unscaled) primal constraint errors
ConstrSResidualSum Sum of (scaled) primal constraint errors
DualVio Maximum (unscaled) reduced cost violation
DualSVio Maximum (scaled) reduced cost violation
DualVioIndex Index of variable with the largest (unscaled) reduced cost violation
DualSVioIndex Index of variable with the largest (scaled) reduced cost violation
DualVioSum Sum of (unscaled) reduced cost violations
DualSVioSum Sum of (scaled) reduced cost violations
DualResidual Maximum (unscaled) dual constraint error
DualSResidual Maximum (scaled) dual constraint error
DualResidualIndex Index of variable with the largest (unscaled) dual constraint error
DualSResidualIndex Index of variable with the largest (scaled) dual constraint error
DualResidualSum Sum of (unscaled) dual constraint errors
DualSResidualSum Sum of (scaled) dual constraint errors
ComplVio Maximum complementarity violation
ComplVioIndex Index of variable with the largest complementarity violation
ComplVioSum Sum of complementarity violations
IntVio Maximum integrality violation
IntVioIndex Index of variable with the largest integrality violation
IntVioSum Sum of integrality violations

Multi-objective attributes:

Attribute name Description
ObjN Objectives of multi-objectives
ObjNCon Constant terms of multi-objectives
ObjNPriority Priorities of multi-objectives
ObjNWeight Weights of multi-objectives
ObjNRelTol Relative tolerances of multi-objectives
ObjNAbsTol Absolute tolerances of multi-objectives
ObjNVal Objective value of multi-objectives solutions
ObjNName Names of multi-objectives
NumObj Number of multi-objectives

595

Multi-scenario attributes:

Attribute name Description
ScenNLB Lower bound changes of current scenario in multi-scenario model
ScenNUB Upper bound changes of current scenario in multi-scenario model
ScenNObj Objective coefficient changes of current scenario in multi-scenario model
ScenNRHS Right-hand side changes of current scenario in multi-scenario model
ScenNName Name of current scenario in multi-scenario model
ScenNObjBound Objective bound of current scenario in multi-scenario model
ScenNObjVal Objective value for current solution of current scenario in multi-scenario model
ScenNX Value in the current solution of current scenario in multi-scenario model
NumScenarios Number of scenarios

Batch attributes:

Attribute name Description
BatchErrorCode Last error code received from the Cluster Manager
BatchErrorMessage Last error message received from the Cluster Manager
BatchID ID of the remote batch
BatchStatus Status of the batch

12.1 Model Attributes
These are model attributes, meaning that they are associated with the overall model (as opposed to being associated
with a particular variable or constraint of the model). You should use one of the various get routines to retrieve the
value of an attribute. These are described at the beginning of this section. For the object-oriented interfaces, model
attributes are retrieved by invoking the get method on the model object itself. For attributes that can be modified
directly by the user, you can use one of the various set methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute query routine
will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented interfaces will throw an exception.

Additional model attributes can be found in the Quality Attributes, Multi-objective Attributes, and Multi-
Scenario Attributes sections.

NumConstrs
Type: int
Modifiable: No

The number of linear constraints in the model.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumVars
Type: int
Modifiable: No

The number of decision variables in the model.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumSOS
Type: int
Modifiable: No

The number of Special Ordered Set (SOS) constraints in the model.
For examples of how to query or modify attributes, refer to our Attribute Examples.

596

NumQConstrs

Type: int
Modifiable: No

The number of quadratic constraints in the model.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumGenConstrs

Type: int
Modifiable: No

The number of general constraints in the model.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumNZs

Type: int
Modifiable: No

The number of non-zero coefficients in the linear constraints of the model. For models with more than 2 billion
non-zero coefficients use DNumNZs.

For examples of how to query or modify attributes, refer to our Attribute Examples.

DNumNZs

Type: double
Modifiable: No

The number of non-zero coefficients in the linear constraints of the model. This attribute is provided in double
precision format to accurately count the number of non-zeros in models that contain more than 2 billion non-zero
coefficients.

For examples of how to query or modify attributes, refer to our Attribute Examples.

NumQNZs

Type: int
Modifiable: No

The number of terms in the lower triangle of the Q matrix in the quadratic objective.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumQCNZs

Type: int
Modifiable: No

The number of non-zero coefficients in the quadratic constraints.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumIntVars

Type: int
Modifiable: No

The number of integer variables in the model. This includes both binary variables and general integer variables.
For examples of how to query or modify attributes, refer to our Attribute Examples.

597

NumBinVars
Type: int
Modifiable: No

The number of binary variables in the model.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumPWLObjVars
Type: int
Modifiable: No

The number of variables in the model with piecewise-linear objective functions. You can query the function for
a specific variable using the appropriate getPWLObj method for your language (in C, C++, C#, Java, and Python).

For examples of how to query or modify attributes, refer to our Attribute Examples.

ModelName
Type: string
Modifiable: Yes

The name of the model. The name has no effect on Gurobi algorithms. It is output in the Gurobi log file when
a model is solved, and when a model is written to a file.

For examples of how to query or modify attributes, refer to our Attribute Examples.

ModelSense
Type: int
Modifiable: Yes

Optimization sense. The default 1 value indicates that the objective is to minimize the objective. Setting this
attribute to -1 changes the sense to maximization.

For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjCon
Type: double
Modifiable: Yes

A constant value that is added into the model objective. The default value is 0.
For examples of how to query or modify attributes, refer to our Attribute Examples.

Fingerprint
Type: int
Modifiable: No

A hash value computed on model data and attributes that can influence the optimization process. The intent is
that models that differ in any meaningful way will have different fingerprints (almost always).

For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjVal
Type: double
Modifiable: No

The objective value for the current solution. If the model was solved to optimality, then this attribute gives the
optimal objective value.

For examples of how to query or modify attributes, refer to our Attribute Examples.

598

ObjBound

Type: double
Modifiable: No

The best known bound on the optimal objective. When solving a MIP model, the algorithm maintains both a
lower bound and an upper bound on the optimal objective value. For a minimization model, the upper bound is the
objective of the best known feasible solution, while the lower bound gives a bound on the best possible objective.

In contrast to ObjBoundC, this attribute takes advantage of objective integrality information to round to a
tighter bound. For example, if the objective is known to take an integral value and the current best bound is 1.5,
ObjBound will return 2.0 while ObjBoundC will return 1.5.

For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjBoundC

Type: double
Modifiable: No

The best known bound on the optimal objective. When solving a MIP model, the algorithm maintains both a
lower bound and an upper bound on the optimal objective value. For a minimization model, the upper bound is the
objective of the best known feasible solution, while the lower bound gives a bound on the best possible objective.

In contrast to ObjBound, this attribute does not take advantage of objective integrality information to round to
a tighter bound. For example, if the objective is known to take an integral value and the current best bound is 1.5,
ObjBound will return 2.0 while ObjBoundC will return 1.5.

For examples of how to query or modify attributes, refer to our Attribute Examples.

PoolObjBound

Type: double
Modifiable: No

Bound on the objective of undiscovered MIP solutions. The MIP solver stores solutions that it finds dur-
ing the MIP search, but it only provides quality guarantees for those whose objective is at least as good as
PoolObjBound. Specifically, further exploration of the MIP search tree will not find solutions whose objective is
better than PoolObjBound.

The difference between PoolObjBound and ObjBound is that the former gives an objective bound for undiscovered
solutions, while the latter gives a bound for any solution. Note that PoolObjBound and ObjBound can only have
different values if parameter PoolSearchMode is set to 2.

Please consult the section on Solution Pools for a more detailed discussion of this topic.
For examples of how to query or modify attributes, refer to our Attribute Examples.

PoolObjVal

Type: double
Modifiable: No

This attribute is used to query the objective value of the k-th solution stored in the pool of feasible solutions
found so far for the problem. You set k using the SolutionNumber parameter.

The number of stored solutions can be queried using the SolCount attribute.
Please consult the section on Solution Pools for a more detailed discussion of this topic.
For examples of how to query or modify attributes, refer to our Attribute Examples.

MIPGap

Type: double
Modifiable: No

599

Current relative MIP optimality gap; computed as |ObjBound−ObjV al|/|ObjV al| (where ObjBound and ObjVal
are the MIP objective bound and incumbent solution objective, respectively. Returns GRB_INFINITY when an incum-
bent solution has not yet been found, when no objective bound is available, or when the current incumbent objective
is 0.

For examples of how to query or modify attributes, refer to our Attribute Examples.

Runtime
Type: double
Modifiable: No

Runtime for the most recent optimization (in seconds). Note that all times reported by the Gurobi Optimizer
are wall-clock times.

For examples of how to query or modify attributes, refer to our Attribute Examples.

Work
Type: double
Modifiable: No

Work spent on the most recent optimization. In contrast to Runtime, work is deterministic, meaning that you
will get exactly the same result every time provided you solve the same model on the same hardware with the same
parameter and attribute settings. The units on this metric are arbitrary. One work unit corresponds very roughly to
one second on a single thread, but this greatly depends on the hardware on which Gurobi is running and the model
that is being solved.

For examples of how to query or modify attributes, refer to our Attribute Examples.

Status
Type: int
Modifiable: No

Current optimization status for the model. Status values are described in the Status Code section.
For examples of how to query or modify attributes, refer to our Attribute Examples.

SolCount
Type: int
Modifiable: No

Number of stored solutions from the most recent optimization.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IterCount
Type: double
Modifiable: No

Number of simplex iterations performed during the most recent optimization.
For examples of how to query or modify attributes, refer to our Attribute Examples.

BarIterCount
Type: int
Modifiable: No

Number of barrier iterations performed during the most recent optimization.
For examples of how to query or modify attributes, refer to our Attribute Examples.

600

NodeCount

Type: double
Modifiable: No

Number of branch-and-cut nodes explored in the most recent optimization.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConcurrentWinMethod

Type: int
Modifiable: No

This attribute is used to query the winning method after a continuous problem has been solved with concurrent
optimization. In this case it returns the corresponding method identifier 0 (for primal Simplex), 1 (for dual Simplex),
or 2 (for Barrier). In all other cases -1 is returned.

For examples of how to query or modify attributes, refer to our Attribute Examples.

IsMIP

Type: int
Modifiable: No

Indicates whether the model is a MIP. Note that any discrete elements make the model a MIP. Discrete elements
include binary, integer, semi-continuous, semi-integer variables, SOS constraints, and general constraints. In addition,
models having multiple objectives or multiple scenarios are considered as MIP models, even when all variables are
continuous and all constraints are linear.

For examples of how to query or modify attributes, refer to our Attribute Examples.

IsQP

Type: int
Modifiable: No

Indicates whether the model is a quadratic programming problem. Note that a model with both a quadratic
objective and quadratic constraints is classified as a QCP, not a QP.

For examples of how to query or modify attributes, refer to our Attribute Examples.

IsQCP

Type: int
Modifiable: No

Indicates whether the model has quadratic constraints.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IsMultiObj

Type: int
Modifiable: No

Indicates whether the model has multiple objectives.
Note that the case where the model has a single objective (NumObj = 1) is slightly ambiguous. If you used

setObjectiveN to set your objective, or if you set any of the multi-objective attributes (e.g., ObjNPriority), then the
model is considered to be a multi-objective model. Otherwise, it is not.

To reset a multi-objective model back to a single objective model, you should set the NumObj attribute to 0, call
model update, and then set a new single objective.

For examples of how to query or modify attributes, refer to our Attribute Examples.

601

IISMinimal

Type: int
Modifiable: No

Indicates whether the current Irreducible Inconsistent Subsystem (IIS) is minimal. This attribute is only available
after you have computed an IIS on an infeasible model. It will normally take value 1, but it may take value 0 if the
IIS computation was stopped early (e.g., due to a time limit or user interrupt).

For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxCoeff

Type: double
Modifiable: No

Maximum matrix coefficient (in absolute value) in the linear constraint matrix.
For examples of how to query or modify attributes, refer to our Attribute Examples.

MinCoeff

Type: double
Modifiable: No

Minimum non-zero matrix coefficient (in absolute value) in the linear constraint matrix.
For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxBound

Type: double
Modifiable: No

Maximum (finite) variable bound.
For examples of how to query or modify attributes, refer to our Attribute Examples.

MinBound

Type: double
Modifiable: No

Minimum (non-zero) variable bound.
For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxObjCoeff

Type: double
Modifiable: No

Maximum linear objective coefficient (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MinObjCoeff

Type: double
Modifiable: No

Minimum (non-zero) linear objective coefficient (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

602

MaxRHS

Type: double
Modifiable: No

Maximum linear constraint right-hand side value (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MinRHS

Type: double
Modifiable: No

Minimum (non-zero) linear constraint right-hand side value (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxQCCoeff

Type: double
Modifiable: No

Maximum coefficient in the quadratic part of all quadratic constraint matrices (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MinQCCoeff

Type: double
Modifiable: No

Minimum (non-zero) coefficient in the quadratic part of all quadratic constraint matrices (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxQCLCoeff

Type: double
Modifiable: No

Maximum coefficient in the linear part of all quadratic constraint matrices (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MinQCLCoeff

Type: double
Modifiable: No

Minimum (non-zero) coefficient in the linear part of all quadratic constraint matrices (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxQCRHS

Type: double
Modifiable: No

Maximum quadratic constraint right-hand side value (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

603

MinQCRHS
Type: double
Modifiable: No

Minimum (non-zero) quadratic constraint right-hand side value (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxQObjCoeff
Type: double
Modifiable: No

Maximum coefficient of the quadratic terms in the objective (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MinQObjCoeff
Type: double
Modifiable: No

Minimum (non-zero) coefficient of the quadratic terms in the objective (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

OpenNodeCount
Type: double
Modifiable: No

Number of open branch-and-cut nodes at the end of the most recent optimization. An open node is one that has
been created but not yet explored.

For examples of how to query or modify attributes, refer to our Attribute Examples.

Kappa
Type: double
Modifiable: No

Estimated condition number for the current LP basis matrix. Only available for basic solutions.
For examples of how to query or modify attributes, refer to our Attribute Examples.

KappaExact
Type: double
Modifiable: No

Exact condition number for the current LP basis matrix. Only available for basic solutions. The exact condition
number is much more expensive to compute than the estimate that you get from the Kappa attribute. Only available
for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

FarkasProof
Type: double
Modifiable: No

Together, attributes FarkasDual and FarkasProof provide a certificate of infeasibility for the given infeasible
problem. Specifically, FarkasDual provides a vector λ that can be used to form the following inequality from the
original constraints that is trivially infeasible within the bounds of the variables:

λtAx ≤ λtb.

604

This inequality is valid even if the original constraints have a mix of less-than and greater-than senses because
λi ≥ 0 if the i-th constraint has a ≤ sense and λi ≤ 0 if the i-th constraint has a ≥ sense.

Let

ā := λtA

be the coefficients of this inequality and

b̄ := λtb

be its right hand side. With Lj and Uj being the lower and upper bounds of the variables xj , we have āj ≥ 0 if
Uj =∞, and āj ≤ 0 if Lj = −∞.

The minimum violation of the Farkas constraint is achieved by setting x∗j := Lj for āj > 0 and x∗j := Uj for
āj < 0. Then, we can calculate the minimum violation as

β := ātx∗ − b̄ =
∑

j:āj>0
ājLj +

∑
j:āj<0

ājUj − b̄

where β > 0.
The FarkasProof attribute gives the value of β.
These attributes are only available when parameter InfUnbdInfo is set to 1.
For examples of how to query or modify attributes, refer to our Attribute Examples.

TuneResultCount

Type: int
Modifiable: No

After the tuning tool has been run, this attribute reports the number of parameter sets that were stored. This
value will be zero if no improving parameter sets were found, and its upper bound is determined by the TuneResults
parameter.

For examples of how to query or modify attributes, refer to our Attribute Examples.

NumStart

Type: int
Modifiable: Yes

Number of MIP starts in the model. Decreasing this attribute will discard existing MIP starts. Increasing it will
create new MIP starts (initialized to undefined).

You can use the StartNumber parameter to query or modify start values for different MIP starts, or to append
a new one. The value of StartNumber should always be less than NumStart.

For examples of how to query or modify attributes, refer to our Attribute Examples.

LicenseExpiration

Type: int
Modifiable: No

License expiration date. The format is YYYYMMDD, so for example if the license currently in use expired on
July 20, 2018, the result would be 20180720. If the license has no expiration date, the result will be 99999999.

This attribute is available for node licenses and for clients of a Gurobi Compute Server. Unfortunately, this
attribute isn’t available for clients of a Gurobi Token Server.

For examples of how to query or modify attributes, refer to our Attribute Examples.

605

Server

Type: string
Modifiable: No

If you are running on a Compute Server, this attribute provides the name of the Compute Server where the
current job is running.

For examples of how to query or modify attributes, refer to our Attribute Examples.

12.2 Variable Attributes
These are variable attributes, meaning that they are associated with specific variables in the model. You should use
one of the various get routines to retrieve the value of an attribute. These are described at the beginning of this
section. For the object-oriented interfaces, variable attributes are retrieved by invoking the get method on a variable
object. For attributes that can be modified directly by the user, you can use one of the various set methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute query routine
will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented interfaces will throw an exception.

Additional variable attributes can be found in the Multi-objective Attributes and Multi-Scenario Attributes
sections.

LB

Type: double
Modifiable: Yes

Variable lower bound. Note that any value less than -1e20 is treated as negative infinity.
For examples of how to query or modify attributes, refer to our Attribute Examples.

UB

Type: double
Modifiable: Yes

Variable upper bound. Note that any value greater than 1e20 is treated as infinite.
For examples of how to query or modify attributes, refer to our Attribute Examples.

Obj

Type: double
Modifiable: Yes

Linear objective coefficient. In our object-oriented interfaces, you typically use the setObjective method to set
the objective, but this attribute provides an alternative for setting or modifying linear objective terms.

Note that this attribute interacts with our piecewise-linear objective feature. If you set a piecewise-linear objective
function for a variable, that will automatically set the Obj attribute to zero. Similarly, if you set the Obj attribute
for a variable, that will automatically delete any previously specified piecewise-linear objective.

For examples of how to query or modify attributes, refer to our Attribute Examples.

VarName

Type: string
Modifiable: Yes

Variable name.
For examples of how to query or modify attributes, refer to our Attribute Examples.

606

VTag

Type: string
Modifiable: Yes

Tag for variables.
If you will be retrieving the solution to your model in JSON format, you might define a tag for every variable

that you plan to retrieve solution information for. Each variable tag must be unique, and if any tag is used (variable
tag, constraint tag, quadratic constraint tag) only tagged elements will appear in the JSON solution string. Tags
must consist of printable US-ASCII characters. Using extended characters or escaped characters will result in an
error. The maximum supported length for a tag is 10240 characters.

For examples of how to query or modify attributes, refer to our Attribute Examples.

VType

Type: char
Modifiable: Yes

Variable type ('C' for continuous, 'B' for binary, 'I' for integer, 'S' for semi-continuous, or 'N' for semi-
integer). Binary variables must be either 0 or 1. Integer variables can take any integer value between the specified
lower and upper bounds. Semi-continuous variables can take any value between the specified lower and upper bounds,
or a value of zero. Semi-integer variables can take any integer value between the specified lower and upper bounds,
or a value of zero.

Refer to this section for more information on variable types.
For examples of how to query or modify attributes, refer to our Attribute Examples.

X

Type: double
Modifiable: No

Variable value in the current solution.
For examples of how to query or modify attributes, refer to our Attribute Examples.

Xn

Type: double
Modifiable: No

The variable value in a sub-optimal MIP solution. Use parameter SolutionNumber to indicate which alternate
solution to retrieve. Solutions are sorted in order of worsening objective value. Thus, when SolutionNumber is 1, Xn
returns the second-best solution found. When SolutionNumber is equal to its default value of 0, querying attribute
Xn is equivalent to querying attribute X.

The number of sub-optimal solutions found during the MIP search will depend on the values of a few parameters.
The most important of these are PoolSolutions, PoolSearchMode, and PoolGap. Please consult the section on Solution
Pools for a more detailed discussion of this topic.

Only available for MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

RC

Type: double
Modifiable: No

The reduced cost in the current solution. Only available for convex, continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

607

BarX

Type: double
Modifiable: No

The variable value in the best barrier iterate (before crossover). Only available when the barrier algorithm was
selected.

For examples of how to query or modify attributes, refer to our Attribute Examples.

Start

Type: double
Modifiable: Yes

The current MIP start vector. The MIP solver will attempt to build an initial solution from this vector when
it is available. Note that the start can be partially populated -- the MIP solver will attempt to fill in values for
missing start values. If you wish to leave the start value for a variable undefined, you can either avoid setting the
Start attribute for that variable, or you can set it to a special undefined value (GRB_UNDEFINED in C and C++, or
GRB.UNDEFINED in Java, .NET, and Python).

If the Gurobi MIP solver log indicates that your MIP start didn’t produce a new incumbent solution, note that
there can be multiple explanations. One possibility is that your MIP start is infeasible. Another, more common
possibility is that one of the Gurobi heuristics found a solution that is as good as the solution produced by the MIP
start, so the MIP start solution was cut off. Finally, if you specified a partial MIP start, it is possible that the limited
MIP exploration done on this partial start was insufficient to find a new incumbent solution. You can try setting the
StartNodeLimit parameter to a larger value if you want Gurobi to work harder to try to complete the partial start.

If you solve a sequence of models, where one is built by modifying the previous one, and if you don’t provide a
MIP start, then Gurobi will try to construct one automatically from the solution of the previous model. If you don’t
want it to try this, you should reset the model before starting the subsequent solve. If you provided a MIP start
but would prefer to use the previous solution as the start instead, you should clear your start (by setting the Start
attribute to undefined for all variables).

If you have multiple start vectors, you can provide them to Gurobi by using the Start attribute in combination
with the NumStart attribute and the StartNumber parameter. Specifically, use the NumStart attribute to indicate
how many start vectors you will supply. Then set the StartNumber parameter to a value between 0 and NumStart-1
to indicate which start you are supplying. For each value of StartNumber, populate the Start attribute to supply
that start. Gurobi will use all of the provided starts. As an alternative, you can append new MIP start vectors to
your model by setting the StartNumber parameter to -1. In this case, whenever you read a MIP start, or use a
function to set a MIP start value for a set of variables, a new MIP start will be created, the parameter NumStart
will be increased, and any unspecified variable will be left as undefined.

If you want to diagnose an infeasible MIP start, you can try fixing the variables in the model to their values in
your MIP start (by setting their lower and upper bound attributes). If the resulting MIP model is infeasible, you
can then compute an IIS on this model to get additional information that should help to identify the cause of the
infeasibility.

Only affects MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

VarHintVal

Type: double
Modifiable: Yes

A set of user hints. If you know that a variable is likely to take a particular value in high quality solutions of a
MIP model, you can provide that value as a hint. You can also (optionally) provide information about your level of
confidence in a hint with the VarHintPri attribute.

The Gurobi MIP solver will use these variable hints in a number of different ways. Hints will affect the heuristics
that Gurobi uses to find feasible solutions, and the branching decisions that Gurobi makes to explore the MIP search
tree. In general, high quality hints should produce high quality MIP solutions faster. In contrast, low quality hints
will lead to some wasted effort, but shouldn’t lead to dramatic performance degradations.

608

Variables hints and MIP starts are similar in concept, but they behave in very different ways. If you specify a
MIP start, the Gurobi MIP solver will try to build a single feasible solution from the provided set of variable values.
If you know a solution, you should use a MIP start to provide it to the solver. In contrast, variable hints provide
guidance to the MIP solver that affects the entire solution process. If you have a general sense of the likely values
for variables, you should provide them through variable hints.

If you wish to leave the hint value for a variable undefined, you can either avoid setting the VarHintVal attribute
for that variable, or you can set it to a special undefined value (GRB_UNDEFINED in C and C++, GRB.UNDEFINED in
Java, .NET, and Python, NA in R or nan in Matlab).

Note that deleting variables from your model will cause several attributes to be discarded (variable hints and
branch priorities). If you’d like them to persist, your program will need to repopulate them after deleting the variables
and making a subsequent model update call.

Only affects MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

VarHintPri
Type: int
Modifiable: Yes

Priorities on user hints. After providing variable hints through the VarHintVal attribute, you can optionally also
provide hint priorities to give an indication of your level of confidence in your hints.

Hint priorities are relative. If you are more confident in the hint value for one variable than for another, you
simply need to set a larger priority value for the more solid hint. The default hint priority for a variable is 0.

Please refer to the VarHintVal discussion for more details on the role of variable hints.
Only affects MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

BranchPriority
Type: int
Modifiable: Yes

Variable branching priority. The value of this attribute is used as the primary criterion for selecting a fractional
variable for branching during the MIP search. Variables with larger values always take priority over those with
smaller values. Ties are broken using the standard branch variable selection criteria. The default variable branch
priority value is zero.

Note that deleting variables from your model will cause several attributes to be discarded (variable hints and
branch priorities). If you’d like them to persist, your program will need to repopulate them after deleting the variables
and making a subsequent model update call.

Only affects MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

Partition
Type: int
Modifiable: Yes

Variable partition. The MIP solver can perform a solution improvement heuristic using user-provided partition
information. The provided partition number can be positive, which indicates that the variable should be included
when the correspondingly numbered sub-MIP is solved, 0 which indicates that the variable should be included in
every sub-MIP, or -1 which indicates that the variable should not be included in any sub-MIP. Variables that are not
included in the sub-MIP are fixed to their values in the current incumbent solution. By default, all variables start
with a value of -1.

To give an example, imagine you are solving a model with 400 variables and you set the partition attribute to -1
for variables 0-99, 0 for variables 100-199, 1 for variables 200-299, and 2 for variables 300-399. The heuristic would
solve two sub-MIP models: sub-MIP 1 would fix variables 0-99 and 300-399 to their values in the incumbent and
solve for the rest, while sub-MIP 2 would fix variables 0-99 and 200-299.

Use the PartitionPlace parameter to control where the partition heuristic runs.

609

Only affects MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

VBasis
Type: int
Modifiable: Yes

The status of a given variable in the current basis. Possible values are 0 (basic), -1 (non-basic at lower bound),
-2 (non-basic at upper bound), and -3 (super-basic). Note that, if you wish to specify an advanced starting basis, you
must set basis status information for all constraints and variables in the model. Only available for basic solutions.

Note that if you provide a valid starting extreme point, either through PStart, DStart, or through VBasis,
CBasis, then LP presolve will be disabled by default. For models where presolve greatly reduces the problem size,
this might hurt performance. For presolve to be enabled, the parameter LPWarmStart must be set to 2.

For examples of how to query or modify attributes, refer to our Attribute Examples.

PStart
Type: double
Modifiable: Yes

The current simplex start vector. If you set PStart values for every variable in the model and DStart values
for every constraint, then simplex will use those values to compute a warm start basis. If you’d like to retract a
previously specified start, set any PStart value to GRB_UNDEFINED.

Note that any model modifications which are pending or are made after setting PStart (adding variables or
constraints, changing coefficients, etc.) will discard the start. You should only set this attribute after you are done
modifying your model.

Note also that you’ll get much better performance if you warm start your linear program using a simplex basis
(using VBasis and CBasis). The PStart attribute should only be used in situations where you don’t have a basis or
you don’t want to disable presolve.

If you’d like to provide a feasible starting solution for a MIP model, you should input it using the Start attribute.
Only affects LP models; it will be ignored for QP, QCP, or MIP models.
Note that if you provide a valid starting extreme point, either through PStart, DStart, or through VBasis,

CBasis, then LP presolve will be disabled by default. For models where presolve greatly reduces the problem size,
this might hurt performance. For presolve to be enabled, the parameter LPWarmStart must be set to 2.

For examples of how to query or modify attributes, refer to our Attribute Examples.

IISLB
Type: int
Modifiable: No

For an infeasible model, indicates whether the lower bound participates in the computed Irreducible Inconsistent
Subsystem (IIS). Note that the bounds for a binary variable are considered to be implicit in the variable type and
will never participate in an IIS.

Only available after you have computed an IIS.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IISLBForce
Type: int
Modifiable: Yes

When computing an Irreducible Inconsistent Subsystem (IIS) for an infeasible model, indicates whether the
variable lower bound should be included or excluded from the IIS.

The default value of -1 lets the IIS algorithm decide.
If the attribute is set to 0, the bound is not eligible for inclusion in the IIS.

610

If the attribute is set to 1, the bound is included in the IIS and the IIS algorithm never considers the possibility
of removing it.

Note that setting this attribute to 0 may make the resulting subsystem feasible (or consistent), which would
then make it impossible to construct an IIS. Trying anyway will result in a GRB_ERROR_IIS_NOT_INFEASIBLE error.
Similarly, setting this attribute to 1 may result in an IIS that is not irreducible. More precisely, the system would
only be irreducible with respect to the model elements that have force values of -1 or 0.

See the Model.computeIIS documentation for more details.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IISUB
Type: int
Modifiable: No

For an infeasible model, indicates whether the upper bound participates in the computed Irreducible Inconsistent
Subsystem (IIS). Note that the bounds for a binary variable are considered to be implicit in the variable type and
will never participate in an IIS.

Only available after you have computed an IIS.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IISUBForce
Type: int
Modifiable: Yes

When computing an Irreducible Inconsistent Subsystem (IIS) for an infeasible model, indicates whether the
variable upper bound should be included or excluded from the IIS.

The default value of -1 lets the IIS algorithm decide.
If the attribute is set to 0, the bound is not eligible for inclusion in the IIS.
If the attribute is set to 1, the bound is included in the IIS and the IIS algorithm never considers the possibility

of removing it.
Note that setting this attribute to 0 may make the resulting subsystem feasible (or consistent), which would

then make it impossible to construct an IIS. Trying anyway will result in a GRB_ERROR_IIS_NOT_INFEASIBLE error.
Similarly, setting this attribute to 1 may result in an IIS that is not irreducible. More precisely, the system would
only be irreducible with respect to the model elements that have force values of -1 or 0.

See the Model.computeIIS documentation for more details.
For examples of how to query or modify attributes, refer to our Attribute Examples.

PoolIgnore
Type: int
Modifiable: Yes

When solving a MIP model, the Gurobi Optimizer maintains a solution pool that contains the best solutions
found during the search. The PoolIgnore attribute allows you to discard some solutions. Specifically, if multiple
solutions differ only in variables where PoolIgnore is set to 1, only the solution with the best objective will be kept in
the pool. The default value for the attribute is 0, meaning that the variable should be used to distinguish solutions.

This attribute is particularly helpful when used in conjunction with the PoolSearchMode parameter. By identify-
ing variables that do not capture meaningful differences between solutions, you can make sure that the pool contains
some interesting variety.

For examples of how to query or modify attributes, refer to our Attribute Examples.

PWLObjCvx
Type: int
Modifiable: No

611

Indicates whether a variable has a convex piecewise-linear objective. Returns 0 if the piecewise-linear objective
function on the variable is non-convex. Returns 1 if the function is convex, or if the objective function on the variable
is linear.

This attribute is useful for isolating the particular variable that caused a continuous model with a piecewise-linear
objective function to become a MIP.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SAObjLow
Type: double
Modifiable: No

Objective coefficient sensitivity information: smallest objective value at which the current optimal basis would
remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SAObjUp
Type: double
Modifiable: No

Objective coefficient sensitivity information: largest objective value at which the current optimal basis would
remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SALBLow
Type: double
Modifiable: No

Lower bound sensitivity information: smallest lower bound value at which the current optimal basis would remain
optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SALBUp
Type: double
Modifiable: No

Lower bound sensitivity information: largest lower bound value at which the current optimal basis would remain
optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SAUBLow
Type: double
Modifiable: No

Upper bound sensitivity information: smallest upper bound value at which the current optimal basis would
remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SAUBUp
Type: double
Modifiable: No

Upper bound sensitivity information: largest upper bound value at which the current optimal basis would remain
optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

612

UnbdRay
Type: double
Modifiable: No

Unbounded ray (for unbounded linear models only). Provides a vector that, when added to any feasible solution,
yields a new solution that is also feasible but improves the objective. Only available when parameter InfUnbdInfo is
set to 1.

For examples of how to query or modify attributes, refer to our Attribute Examples.

12.3 Linear Constraint Attributes
These are linear constraint attributes, meaning that they are associated with specific linear constraints in the model.
You should use one of the various get routines to retrieve the value of an attribute. These are described at the
beginning of this section. For the object-oriented interfaces, linear constraint attributes are retrieved by invoking the
get method on a constraint object. For attributes that can be modified directly by the user, you can use one of the
various set methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute query routine
will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented interfaces will throw an exception.

Additional linear constraint attributes can be found in the Multi-Scenario Attributes section.

Sense
Type: char
Modifiable: Yes

Constraint sense ('<', '>', or '=').
For examples of how to query or modify attributes, refer to our Attribute Examples.

RHS
Type: double
Modifiable: Yes

Constraint right-hand side.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrName
Type: string
Modifiable: Yes

Constraint name.
For examples of how to query or modify attributes, refer to our Attribute Examples.

CTag
Type: string
Modifiable: Yes

Tag for constraints.
If you will be retrieving the solution to your model in JSON format, you might define a tag for every constraint

that you plan to retrieve solution information for. Each constraint tag must be unique, and if any tag is used (variable
tag, constraint tag, quadratic constraint tag) only tagged elements will appear in the JSON solution string. Tags
must consist of printable US-ASCII characters. Using extended characters or escaped characters will result in an
error. The maximum supported length for a tag is 10240 characters.

Note that constraint tags are only allowed for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

613

Pi

Type: double
Modifiable: No

The constraint dual value in the current solution (also known as the shadow price).
Given a linear programming problem

minimize c′x
subject to Ax ≥ b

x ≥ 0

and a corresponding dual problem

maximize b′y
subject to A′y ≤ c

y ≥ 0

the Pi attribute returns y.
Of course, not all models fit this canonical form. In general, dual values have the following properties:

• Dual values for ≥ constraints are ≥ 0.

• Dual values for ≤ constraints are ≤ 0.

• Dual values for = constraints are unconstrained.

For models with a maximization sense, the senses of the dual values are reversed: the dual is ≥ 0 for a ≤ constraint
and ≤ 0 for a ≥ constraint.

Note that constraint dual values for linear constraints of QCP models are only available when the QCPDual
parameter is set to 1. To query the duals of the quadratic constraints in a QCP model, see QCPi.

Only available for convex, continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

Slack

Type: double
Modifiable: No

The constraint slack in the current solution.
For examples of how to query or modify attributes, refer to our Attribute Examples.

CBasis

Type: int
Modifiable: Yes

The status of a given linear constraint in the current basis. Possible values are 0 (basic) or -1 (non-basic). A
constraint is basic when its slack variable is in the simplex basis. Note that, if you wish to specify an advanced
starting basis, you must set basis status information for all constraints and variables in the model. Only available for
basic solutions.

Note that if you provide a valid starting extreme point, either through PStart, DStart, or through VBasis,
CBasis, then LP presolve will be disabled by default. For models where presolve greatly reduces the problem size,
this might hurt performance. For presolve to be enabled, the parameter LPWarmStart must be set to 2.

For examples of how to query or modify attributes, refer to our Attribute Examples.

614

DStart
Type: double
Modifiable: Yes

The current simplex start vector. If you set DStart values for every linear constraint in the model and PStart
values for every variable, then simplex will use those values to compute a warm start basis. If you’d like to retract a
previously specified start, set any DStart value to GRB_UNDEFINED.

Note that any model modifications which are pending or are made after setting DStart (adding variables or
constraints, changing coefficients, etc.) will discard the start. You should only set this attribute after you are done
modifying your model.

Note also that you’ll get much better performance if you warm start your linear program from a simplex basis
(using VBasis and CBasis). The DStart attribute should only be used in situations where you don’t have a basis or
you don’t want to disable presolve.

If you’d like to provide a feasible starting solution for a MIP model, you should input it using the Start attribute.
Only affects LP models; it will be ignored for QP, QCP, or MIP models.
Note that if you provide a valid starting extreme point, either through PStart, DStart, or through VBasis,

CBasis, then LP presolve will be disabled by default. For models where presolve greatly reduces the problem size,
this might hurt performance. For presolve to be enabled, the parameter LPWarmStart must be set to 2.

For examples of how to query or modify attributes, refer to our Attribute Examples.

Lazy
Type: int
Modifiable: Yes

Determines whether a linear constraint is treated as a lazy constraint or a user cut.
At the beginning of the MIP solution process, any constraint whose Lazy attribute is set to 1, 2, or 3 (the default

value is 0) is treated as a lazy constraint; it is removed from the model and placed in the lazy constraint pool. Lazy
constraints remain inactive until a feasible solution is found, at which point the solution is checked against the lazy
constraint pool. If the solution violates any lazy constraints, the solution is discarded and one or more of the violated
lazy constraints are pulled into the active model.

Larger values for this attribute cause the constraint to be pulled into the model more aggressively. With a value
of 1, the constraint can be used to cut off a feasible solution, but it won’t necessarily be pulled in if another lazy
constraint also cuts off the solution. With a value of 2, all lazy constraints that are violated by a feasible solution
will be pulled into the model. With a value of 3, lazy constraints that cut off the relaxation solution at the root node
are also pulled in.

Any constraint whose Lazy attribute is set to -1 is treated as a user cut; it is removed from the model and placed
in the user cut pool. User cuts may be added to the model at any node in the branch-and-cut search tree to cut off
relaxation solutions.

The main difference between user cuts and lazy constraints is that that the former are not allowed to cut off
integer-feasible solutions. In other words, they are redundant for the MIP model, and the solver is free to decide
whether or not to use them to cut off relaxation solutions. The hope is that adding them speeds up the overall
solution process. Lazy constraints have no such restrictions. They are essential to the model, and the solver is forced
to apply them whenever a solution would otherwise not satisfy them.

Note that deleting constraints from your model will cause this attribute to be discarded. If you’d like it to persist,
your program will need to repopulate it after deleting the constraints and making a subsequent model update call.

Note that no corresponding attribute is available for other constraint types (quadratic, SOS, or general con-
straints). This attribute only affects MIP models.

For examples of how to query or modify attributes, refer to our Attribute Examples.

IISConstr
Type: int
Modifiable: No

For an infeasible model, indicates whether the linear constraint participates in the computed Irreducible Incon-
sistent Subsystem (IIS). Only available after you have computed an IIS.

615

For examples of how to query or modify attributes, refer to our Attribute Examples.

IISConstrForce
Type: int
Modifiable: Yes

When computing an Irreducible Inconsistent Subsystem (IIS) for an infeasible model, indicates whether the linear
constraint should be included or excluded from the IIS.

The default value of -1 lets the IIS algorithm decide.
If the attribute is set to 0, the constraint is not eligible for inclusion in the IIS.
If the attribute is set to 1, the constraint is included in the IIS and the IIS algorithm never considers the possibility

of removing it.
Note that setting this attribute to 0 may make the resulting subsystem feasible (or consistent), which would

then make it impossible to construct an IIS. Trying anyway will result in a GRB_ERROR_IIS_NOT_INFEASIBLE error.
Similarly, setting this attribute to 1 may result in an IIS that is not irreducible. More precisely, the system would
only be irreducible with respect to the model elements that have force values of -1 or 0.

See the Model.computeIIS documentation for more details.
For examples of how to query or modify attributes, refer to our Attribute Examples.

SARHSLow
Type: double
Modifiable: No

Right-hand side sensitivity information: smallest right-hand side value at which the current optimal basis would
remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SARHSUp
Type: double
Modifiable: No

Right-hand side sensitivity information: largest right-hand side value at which the current optimal basis would
remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

FarkasDual
Type: double
Modifiable: No

Together, attributes FarkasDual and FarkasProof provide a certificate of infeasibility for the given infeasible
problem. Specifically, FarkasDual provides a vector λ that can be used to form the following inequality from the
original constraints that is trivially infeasible within the bounds of the variables:

λtAx ≤ λtb.

This inequality is valid even if the original constraints have a mix of less-than and greater-than senses because
λi ≥ 0 if the i-th constraint has a ≤ sense and λi ≤ 0 if the i-th constraint has a ≥ sense.

Let

ā := λtA

be the coefficients of this inequality and

b̄ := λtb

616

be its right hand side. With Lj and Uj being the lower and upper bounds of the variables xj , we have āj ≥ 0 if
Uj =∞, and āj ≤ 0 if Lj = −∞.

The minimum violation of the Farkas constraint is achieved by setting x∗j := Lj for āj > 0 and x∗j := Uj for
āj < 0. Then, we can calculate the minimum violation as

β := ātx∗ − b̄ =
∑

j:āj>0
ājLj +

∑
j:āj<0

ājUj − b̄

where β > 0.
The FarkasProof attribute gives the value of β.
These attributes are only available when parameter InfUnbdInfo is set to 1.
For examples of how to query or modify attributes, refer to our Attribute Examples.

12.4 SOS Attributes
These are SOS attributes, meaning that they are associated with specific special-ordered set constraints in the model.
You should use one of the various get routines to retrieve the value of an attribute. These are described at the
beginning of this section. For the object-oriented interfaces, SOS attributes are retrieved by invoking the get method
on an SOS object. For attributes that can be modified directly by the user, you can use one of the various set
methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute query routine
will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented interfaces will throw an exception.

IISSOS
Type: int
Modifiable: No

For an infeasible model, indicates whether the SOS constraint participates in the computed Irreducible Inconsis-
tent Subsystem (IIS). Only available after you have computed an IIS.

For examples of how to query or modify attributes, refer to our Attribute Examples.

IISSOSForce
Type: int
Modifiable: Yes

When computing an Irreducible Inconsistent Subsystem (IIS) for an infeasible model, indicates whether the SOS
constraint should be included or excluded from the IIS.

The default value of -1 lets the IIS algorithm decide.
If the attribute is set to 0, the constraint is not eligible for inclusion in the IIS.
If the attribute is set to 1, the constraint is included in the IIS and the IIS algorithm never considers the possibility

of removing it.
Note that setting this attribute to 0 may make the resulting subsystem feasible (or consistent), which would

then make it impossible to construct an IIS. Trying anyway will result in a GRB_ERROR_IIS_NOT_INFEASIBLE error.
Similarly, setting this attribute to 1 may result in an IIS that is not irreducible. More precisely, the system would
only be irreducible with respect to the model elements that have force values of -1 or 0.

See the Model.computeIIS documentation for more details.
For examples of how to query or modify attributes, refer to our Attribute Examples.

12.5 Quadratic Constraint Attributes
These are quadratic constraint attributes, meaning that they are associated with specific quadratic constraints in
the model. You should use one of the various get routines to retrieve the value of an attribute. These are described
at the beginning of this section. For the object-oriented interfaces, quadratic constraint attributes are retrieved by

617

invoking the get method on a constraint object. For attributes that can be modified directly by the user, you can
use one of the various set methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute query routine
will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented interfaces will throw an exception.

QCSense
Type: char
Modifiable: Yes

Quadratic constraint sense ('<', '>', or '=').
For examples of how to query or modify attributes, refer to our Attribute Examples.

QCRHS
Type: double
Modifiable: Yes

Quadratic constraint right-hand side.
For examples of how to query or modify attributes, refer to our Attribute Examples.

QCName
Type: string
Modifiable: Yes

Quadratic constraint name.
For examples of how to query or modify attributes, refer to our Attribute Examples.

QCPi
Type: double
Modifiable: No

The constraint dual value in the current solution. Note that quadratic constraint dual values are only available
when the QCPDual parameter is set to 1.

Only available for convex, continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

QCSlack
Type: double
Modifiable: No

The constraint slack in the current solution.
For examples of how to query or modify attributes, refer to our Attribute Examples.

QCTag
Type: string
Modifiable: Yes

Tag for quadratic constraints.
If you will be retrieving the solution to your model in JSON format, you might define a tag for every quadratic

constraint that you plan to retrieve solution information for. Each quadratic constraint tag must be unique, and if
any tag is used (variable tag, constraint tag, quadratic constraint tag) only tagged elements will appear in the JSON
solution string. Tags must consist of printable US-ASCII characters. Using extended characters or escaped characters
will result in an error. The maximum supported length for a tag is 10240 characters.

Note that quadratic constraint tags are only allowed for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

618

IISQConstr

Type: int
Modifiable: No

For an infeasible model, indicates whether the quadratic constraint participates in the computed Irreducible
Inconsistent Subsystem (IIS). Only available after you have computed an IIS.

For examples of how to query or modify attributes, refer to our Attribute Examples.

IISQConstrForce

Type: int
Modifiable: Yes

When computing an Irreducible Inconsistent Subsystem (IIS) for an infeasible model, indicates whether the
quadratic constraint should be included or excluded from the IIS.

The default value of -1 lets the IIS algorithm decide.
If the attribute is set to 0, the constraint is not eligible for inclusion in the IIS.
If the attribute is set to 1, the constraint is included in the IIS and the IIS algorithm never considers the possibility

of removing it.
Note that setting this attribute to 0 may make the resulting subsystem feasible (or consistent), which would

then make it impossible to construct an IIS. Trying anyway will result in a GRB_ERROR_IIS_NOT_INFEASIBLE error.
Similarly, setting this attribute to 1 may result in an IIS that is not irreducible. More precisely, the system would
only be irreducible with respect to the model elements that have force values of -1 or 0.

See the Model.computeIIS documentation for more details.
For examples of how to query or modify attributes, refer to our Attribute Examples.

12.6 General Constraint Attributes
These are general constraint attributes, meaning that they are associated with specific general constraints in the
model. If the attribute name contains string "GenConstr", then it is for all types of general constraints. If it starts
with string "Func", then it is only for function constraints.

You should use one of the various get routines to retrieve the value of an attribute. These are described at the
beginning of this section. For the object-oriented interfaces, general constraint attributes are retrieved by invoking
the get method on a constraint object. For attributes that can be modified directly by the user, you can use one of
the various set methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute query routine
will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented interfaces will throw an exception.

FuncPieceError

Type: double
Modifiable: Yes

If the FuncPieces attribute is set to value −1 or −2, this attribute provides the maximum allowed error (absolute
for −1, relative for −2) in the piecewise-linear approximation.

For examples of how to query or modify attributes, refer to our Attribute Examples.

FuncPieceLength

Type: double
Modifiable: Yes

If the FuncPieces attribute is set to value 1, this attribute provides the length of each piece of the piecewise-linear
approximation.

For examples of how to query or modify attributes, refer to our Attribute Examples.

619

FuncPieceRatio
Type: double
Modifiable: Yes

This attribute controls whether the piecewise-linear approximation of a function constraint is an underestimate
of the function, an overestimate, or somewhere in between. A value of 0.0 will always underestimate, while a value
of 1.0 will always overestimate. A value in between will interpolate between the underestimate and the overestimate.
A special value of -1 chooses points that are on the original function.

See the discussion of function constraints for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

FuncPieces
Type: int
Modifiable: Yes

This attribute sets the strategy used for performing a piecewise-linear approximation of a function constraint.
There are a few options:

• FuncPieces = 0: Ignore the attribute settings for this function constraint and use the parameter settings
(FuncPieces, etc.) instead.

• FuncPieces >= 2: Sets the number of pieces; pieces are equal width.
• FuncPieces = 1: Uses a fixed width for each piece; the actual width is provided in the FuncPieceLength

attribute.
• FuncPieces = -1: Bounds the absolute error of the approximation; the error bound is provided in the

FuncPieceError attribute.
• FuncPieces = -2: Bounds the relative error of the approximation; the error bound is provided in the

FuncPieceError attribute.

See the discussion of function constraints for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

GenConstrType
Type: int
Modifiable: No

General constraint type.
The language APIs contain enums that allows you to map the integer constraint type to a more meaningful name.

In C, you’ll find GRB_GENCONSTR_MAX, GRB_GENCONSTR_MIN, etc. In the OO interfaces, you’ll find GRB.GENCONSTR_MAX,
GRB.GENCONSTR_MIN, etc.

For examples of how to query or modify attributes, refer to our Attribute Examples.

GenConstrName
Type: string
Modifiable: Yes

General constraint name.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IISGenConstr
Type: int
Modifiable: No

For an infeasible model, indicates whether the general constraint participates in the computed Irreducible Incon-
sistent Subsystem (IIS). Only available after you have computed an IIS.

For examples of how to query or modify attributes, refer to our Attribute Examples.

620

IISGenConstrForce

Type: int
Modifiable: Yes

When computing an Irreducible Inconsistent Subsystem (IIS) for an infeasible model, indicates whether the
general constraint should be included or excluded from the IIS.

The default value of -1 lets the IIS algorithm decide.
If the attribute is set to 0, the constraint is not eligible for inclusion in the IIS.
If the attribute is set to 1, the constraint is included in the IIS and the IIS algorithm never considers the possibility

of removing it.
Note that setting this attribute to 0 may make the resulting subsystem feasible (or consistent), which would

then make it impossible to construct an IIS. Trying anyway will result in a GRB_ERROR_IIS_NOT_INFEASIBLE error.
Similarly, setting this attribute to 1 may result in an IIS that is not irreducible. More precisely, the system would
only be irreducible with respect to the model elements that have force values of -1 or 0.

See the Model.computeIIS documentation for more details.
For examples of how to query or modify attributes, refer to our Attribute Examples.

12.7 Quality Attributes
These are solution quality attributes. They are associated with the overall model. You should use one of the various
get routines to retrieve the value of an attribute. These are described at the beginning of this section. For the
object-oriented interfaces, quality attributes are retrieved by invoking the get method on a constraint object. For
attributes that can be modified directly by the user, you can use one of the various set methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute query routine
will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented interfaces will throw an exception.

MaxVio

Type: double
Modifiable: No

Maximum of all (unscaled) violations that apply to model type.
For examples of how to query or modify attributes, refer to our Attribute Examples.

BoundVio

Type: double
Modifiable: No

Maximum (unscaled) bound violation.
Available for all model types.
For examples of how to query or modify attributes, refer to our Attribute Examples.

BoundSVio

Type: double
Modifiable: No

Maximum (scaled) bound violation.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

621

BoundVioIndex
Type: int
Modifiable: No

Index of variable with the largest (unscaled) bound violation.
Available for all model types.
For examples of how to query or modify attributes, refer to our Attribute Examples.

BoundSVioIndex
Type: int
Modifiable: No

Index of variable with the largest (scaled) bound violation.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

BoundVioSum
Type: double
Modifiable: No

Sum of (unscaled) bound violations.
Available for all model types.
For examples of how to query or modify attributes, refer to our Attribute Examples.

BoundSVioSum
Type: double
Modifiable: No

Sum of (scaled) bound violations.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrVio
Type: double
Modifiable: No

Reporting constraint violations for the simplex solver is actually more complex than it may appear, due to the
treatment of slacks on linear inequality constraints. The simplex solver introduces explicit non-negative slack variables
inside the algorithm. Thus, for example, aTx ≤ b becomes aTx + s = b. In this formulation, constraint errors can
show up in two places: (i) as bound violations on the computed slack variable values, and (ii) as differences between
aTx+ s and b. We report the former as ConstrVio and the latter as ConstrResidual.

For MIP models, the maximum violation of the constraints, including linear, quadratic, SOS and general con-
straints, is reported in ConstrVio.

Available for all model types.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrSVio
Type: double
Modifiable: No

Maximum (scaled) slack bound violation.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

622

ConstrVioIndex
Type: int
Modifiable: No

Index of linear constraint with the largest (unscaled) slack bound violation for continuous linear models solved
by simplex.

For MIP or other situations, it is for all the constraints. The constraint order is linear, quadratic, SOS and
general. Assume there are l linear, q quadratic, s SOS and g general constraints and the index i is between l+ q + s
and l + q + s+ g, then the general constraint with index i− l − q − s has the biggest violation.

Available for all model types.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrSVioIndex
Type: int
Modifiable: No

Index of linear constraint with the largest (scaled) slack bound violation.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrVioSum
Type: double
Modifiable: No

Sum of (unscaled) slack bound violations.
Available for all model types.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrSVioSum
Type: double
Modifiable: No

Sum of (scaled) slack bound violations.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrResidual
Type: double
Modifiable: No

Reporting constraint violations for the simplex solver is actually more complex than it may appear, due to the
treatment of slacks on linear inequality constraints. The simplex solver introduces explicit non-negative slack variables
inside the algorithm. Thus, for example, aTx ≤ b becomes aTx + s = b. In this formulation, constraint errors can
show up in two places: (i) as bound violations on the computed slack variable values, and (ii) as differences between
aTx+ s and b. We report the former as ConstrVio and the latter as ConstrResidual.

Only available for continuous models. For MIP models, constraint violations are reported in ConstrVio.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrSResidual
Type: double
Modifiable: No

Maximum (scaled) primal constraint error.
Only available for continuous models.

623

For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrResidualIndex

Type: int
Modifiable: No

Index of linear constraint with the largest (unscaled) constraint error.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrSResidualIndex

Type: int
Modifiable: No

Index of linear constraint with the largest (scaled) constraint error.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrResidualSum

Type: double
Modifiable: No

Sum of (unscaled) linear constraint violations.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrSResidualSum

Type: double
Modifiable: No

Sum of (scaled) linear constraint violations.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualVio

Type: double
Modifiable: No

Reporting dual constraint violations for the simplex solver is actually more complex than it may appear, due to
the treatment of reduced costs for bounded variables. The simplex solver introduces explicit non-negative reduced-
cost variables inside the algorithm. Thus, aT y ≥ c becomes aT y − z = c (where y is the dual vector and z is
the reduced cost). In this formulation, errors can show up in two places: (i) as bound violations on the computed
reduced-cost variable values, and (ii) as differences between aT y− z and c. We report the former as DualVio and the
latter as DualResidual.

DualVio reports the maximum (unscaled) reduced-cost bound violation.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

624

DualSVio
Type: double
Modifiable: No

Maximum (scaled) reduced cost violation.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualVioIndex
Type: int
Modifiable: No

Index of variable with the largest (unscaled) reduced cost violation. Note that the result may be larger than the
number of variables in the model, which indicates that a constraint slack is the variable with the largest violation.
Subtract the variable count from the result to get the index of the corresponding constraint.

Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualSVioIndex
Type: int
Modifiable: No

Index of variable with the largest (scaled) reduced cost violation. Note that the result may be larger than the
number of variables in the model, which indicates that a constraint slack is the variable with the largest violation.
Subtract the variable count from the result to get the index of the corresponding constraint.

Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualVioSum
Type: double
Modifiable: No

Sum of (unscaled) reduced cost violations.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualSVioSum
Type: double
Modifiable: No

Sum of (scaled) reduced cost violations.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualResidual
Type: double
Modifiable: No

Reporting dual constraint violations for the simplex solver is actually more complex than it may appear, due to
the treatment of reduced costs for bounded variables. The simplex solver introduces explicit non-negative reduced-
cost variables inside the algorithm. Thus, aT y ≥ c becomes aT y − z = c (where y is the dual vector and z is
the reduced cost). In this formulation, errors can show up in two places: (i) as bound violations on the computed
reduced-cost variable values, and (ii) as differences between aT y− z and c. We report the former as DualVio and the
latter as DualResidual.

625

DualResidual reports the maximum (unscaled) dual constraint error.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualSResidual
Type: double
Modifiable: No

Maximum (scaled) dual constraint error.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualResidualIndex
Type: int
Modifiable: No

Index of variable with the largest (unscaled) dual constraint error.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualSResidualIndex
Type: int
Modifiable: No

Index of variable with the largest (scaled) dual constraint error.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualResidualSum
Type: double
Modifiable: No

Sum of (unscaled) dual constraint errors.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualSResidualSum
Type: double
Modifiable: No

Sum of (scaled) dual constraint errors.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ComplVio
Type: double
Modifiable: No

Maximum complementarity violation. In an optimal solution, the product of the value of a variable and its
reduced cost must be zero. This isn’t always strictly true for interior point solutions. This attribute returns the
maximum complementarity violation for any variable.

Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

626

ComplVioIndex
Type: int
Modifiable: No

Index of variable with the largest complementarity violation.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ComplVioSum
Type: double
Modifiable: No

Sum of complementarity violation.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IntVio
Type: double
Modifiable: No

A MIP solver won’t always assign strictly integral values to integer variables. This attribute returns the largest
distance between the computed value of any integer variable and the nearest integer.

Only available for MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IntVioIndex
Type: int
Modifiable: No

Index of variable with the largest integrality violation.
Only available for MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IntVioSum
Type: double
Modifiable: No

Sum of integrality violations.
Only available for MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

12.8 Multi-objective Attributes
These are the attributes for setting and querying multiple objectives (refer to this section for additional information
on multi-objective optimization).

ObjN
Type: double
Modifiable: Yes

When the model has multiple objectives, this attribute is used to query or modify objective coefficients for
objective n. You set n using the ObjNumber parameter. Note that when ObjNumber is equal to 0, ObjN is equivalent
to Obj.

627

The number of objectives in the model can be queried (or modified) using the NumObj attribute.
Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjNCon

Type: double
Modifiable: Yes

When the model has multiple objectives, this attribute is used to query or modify the constant term for objective
n. You set n using the ObjNumber parameter. Note that when ObjNumber is equal to 0, ObjNCon is equivalent to
ObjCon.

The number of objectives in the model can be queried (or modified) using the NumObj attribute.
Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjNPriority

Type: int
Modifiable: Yes

This attribute is used to query or modify the priority of objective n when doing hierarchical multi-objective
optimization. You set n using the ObjNumber parameter.

The default priority for an objective is 0.
The number of objectives in the model can be queried (or modified) using the NumObj attribute.
Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjNWeight

Type: double
Modifiable: Yes

This attribute is used to query or modify the weight of objective n when doing blended multi-objective optimiza-
tion. You set n using the ObjNumber parameter.

The default weight for an objective is 1.0.
The number of objectives in the model can be queried (or modified) using the NumObj attribute.
Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjNRelTol

Type: double
Modifiable: Yes

This attribute is used to set the allowable degradation for objective n when doing hierarchical multi-objective
optimization for MIP models. You set n using the ObjNumber parameter.

Hierarchical multi-objective MIP optimization will optimize for the different objectives in the model one at a
time, in priority order. If it achieves objective value z when it optimizes for this objective, then subsequent steps are
allowed to degrade this value by at most ObjNRelTol*|z|.

Objective degradations are handled differently for multi-objective LP models. The allowable degradation is
controlled strictly using the ObjNAbsTol.

The default relative tolerance for an objective is 0.
The number of objectives in the model can be queried (or modified) using the NumObj attribute.
Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.
For examples of how to query or modify attributes, refer to our Attribute Examples.

628

ObjNAbsTol
Type: double
Modifiable: Yes

This attribute is used to set the allowable degradation for objective n when doing hierarchical multi-objective
optimization. You set n using the ObjNumber parameter.

Hierarchical multi-objective MIP optimization will optimize for the different objectives in the model one at a
time, in priority order. If it achieves objective value z when it optimizes for this objective, then subsequent steps are
allowed to degrade this value by at most ObjNAbsTol.

Objective degradations are handled differently for multi-objective LP models. For LP models, solution quality
for higher-priority objectives is maintained by fixing some variables to their values in previous optimal solutions.
These fixings are decided using variable reduced costs. The value of the ObjNAbsTol parameter indicates the amount
by which a fixed variable’s reduced cost is allowed to violate dual feasibility. The value of the related ObjNRelTol
attribute is ignored.

The default absolute tolerance for an objective is 1e-6.
The number of objectives in the model can be queried (or modified) using the NumObj attribute.
Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjNVal
Type: double
Modifiable: No

This attribute is used to query the objective value obtained for objective n by the k-th solution stored in the
pool of feasible solutions found so far for the problem. You set n using the ObjNumber parameter, while you set k
using the SolutionNumber parameter.

The number of objectives in the model can be queried (or modified) using the NumObj attribute; while the
number of stored solutions can be queried using the SolCount attribute.

Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjNName
Type: string
Modifiable: Yes

When the model has multiple objectives, this attribute is used to query or modify the name for objective n. You
set n using the ObjNumber parameter.

The number of objectives in the model can be queried (or modified) using the NumObj attribute.
Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumObj
Type: int
Modifiable: Yes

Number of objectives in the model. If you modify this attribute, it will change the number of objectives in the
model. Decreasing it will discard existing objectives. Increasing it will create new objectives (initialized to 0). Setting
it to 0 will create a model with no objective (i.e., a feasibility model). If you want to switch from a multi-objective
model to a single-objective model you also need to set NumObj to 0 and call model update before installing a new
single objective.

You can use the ObjNumber parameter, in conjunction with multi-objective attributes (ObjN, ObjNName, etc.),
to query or modify attributes for different objectives. The value of ObjNumber should always be less than NumObj.

Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.
For examples of how to query or modify attributes, refer to our Attribute Examples.

629

12.9 Multi-Scenario Attributes
These are the attributes for setting and querying multiple scenarios (refer to this section for additional information
on multi-scenario optimization).

ScenNLB
Type: double
Modifiable: Yes

When the model has multiple scenarios, this attribute is used to query or modify changes of the variable lower
bounds in scenario n w.r.t. the base model. You set n using the ScenarioNumber parameter.

If an element of this array attribute is set to the undefined value (GRB_UNDEFINED in C and C++, or GRB.UNDEFINED
in Java, .NET, and Python), it means that the corresponding value in the scenario is identical to the one in the base
model.

The number of scenarios in the model can be queried (or modified) using the NumScenarios attribute.
Please refer to the Multiple Scenarios discussion for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ScenNUB
Type: double
Modifiable: Yes

When the model has multiple scenarios, this attribute is used to query or modify changes of the variable upper
bounds in scenario n w.r.t. the base model. You set n using the ScenarioNumber parameter.

If an element of this array attribute is set to the undefined value (GRB_UNDEFINED in C and C++, or GRB.UNDEFINED
in Java, .NET, and Python), it means that the corresponding value in the scenario is identical to the one in the base
model.

The number of scenarios in the model can be queried (or modified) using the NumScenarios attribute.
Please refer to the Multiple Scenarios discussion for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ScenNObj
Type: double
Modifiable: Yes

When the model has multiple scenarios, this attribute is used to query or modify changes of the variable objective
coefficients in scenario n w.r.t. the base model. You set n using the ScenarioNumber parameter.

If an element of this array attribute is set to the undefined value (GRB_UNDEFINED in C and C++, or GRB.UNDEFINED
in Java, .NET, and Python), it means that the corresponding value in the scenario is identical to the one in the base
model.

The number of scenarios in the model can be queried (or modified) using the NumScenarios attribute.
Please refer to the Multiple Scenarios discussion for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ScenNRHS
Type: double
Modifiable: Yes

When the model has multiple scenarios, this attribute is used to query or modify changes of the linear constraint
right-hand sides in scenario n w.r.t. the base model. You set n using the ScenarioNumber parameter.

If an element of this array attribute is set to the undefined value (GRB_UNDEFINED in C and C++, or GRB.UNDEFINED
in Java, .NET, and Python), it means that the corresponding value in the scenario is identical to the one in the base
model.

The number of scenarios in the model can be queried (or modified) using the NumScenarios attribute.

630

Please refer to the Multiple Scenarios discussion for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ScenNName
Type: string
Modifiable: Yes

When the model has multiple scenarios, this attribute is used to query or modify the name for scenario n. You
set n using the ScenarioNumber parameter.

The number of scenarios in the model can be queried (or modified) using the NumScenarios attribute.
Please refer to the Multiple Scenarios discussion for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ScenNObjBound
Type: double
Modifiable: No

When the model has multiple scenarios, this attribute is used to query the objective bound for scenario n. You
set n using the ScenarioNumber parameter.

The number of scenarios in the model can be queried (or modified) using the NumScenarios attribute.
Please refer to the Multiple Scenarios discussion for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ScenNObjVal
Type: double
Modifiable: No

When the model has multiple scenarios, this attribute is used to query the objective value of the current solution
for scenario n. You set n using the ScenarioNumber parameter. If no solution is available, this returns GRB_INFINITY
(for a minimization objective).

The number of scenarios in the model can be queried (or modified) using the NumScenarios attribute.
Please refer to the Multiple Scenarios discussion for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ScenNX
Type: double
Modifiable: No

When the model has multiple scenarios, this attribute is used to query the variable value in the current solution
of scenario n. You set n using the ScenarioNumber parameter.

The number of scenarios in the model can be queried (or modified) using the NumScenarios attribute.
Please refer to the Multiple Scenarios discussion for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumScenarios
Type: int
Modifiable: Yes

Number of scenarios in the model. Modifying this attribute changes the number: decreasing it discards existing
scenarios; increasing it creates new scenarios (initialized to have no changes w.r.t. the base model); setting it to 0
discards all scenarios so that the base model is no longer a multi-scenario model.

You can use the ScenarioNumber parameter, in conjunction with multi-scenario attributes (ScenNLB, Scen-
NUB, ScenNObj, ScenNRHS, ScenNName, etc.), to query or modify attributes for different scenarios. The value of
ScenarioNumber should always be less than NumScenarios.

631

Please refer to the Multiple Scenarios discussion for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

12.10 Batch Attributes
BatchErrorCode
Type: int
Modifiable: No

Retrieve the last error code received from the Cluster Manager associated with this batch. A non-zero value
indicates that a problem occurred. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by querying BatchErrorMessage.

Note that all Batch attributes are cached locally, and are only updated when you create a client-side batch
object or when you explicitly update this cache (by calling the appropriate update function - GRBupdatebatch for
C, update for Python, etc.).

For examples of how to query or modify attributes, refer to our Attribute Examples.

BatchErrorMessage
Type: string
Modifiable: No

Retrieve the last error message received from the Cluster Manager associated with this batch. The related error
code can be queried through the BatchErrorCode attribute.

Note that all Batch attributes are cached locally, and are only updated when you create a client-side batch
object or when you explicitly update this cache (by calling the appropriate update function - GRBupdatebatch for
C, update for Python, etc.).

For examples of how to query or modify attributes, refer to our Attribute Examples.

BatchID
Type: string
Modifiable: No

The ID for the batch. Please refer to the Batch Optimization section for more details.
Note that all Batch attributes are cached locally, and are only updated when you create a client-side batch

object or when you explicitly update this cache (by calling the appropriate update function - GRBupdatebatch for
C, update for Python, etc.).

For examples of how to query or modify attributes, refer to our Attribute Examples.

BatchStatus
Type: int
Modifiable: No

Current status for the batch request. Status values are described in the Status Code section.
Note that all Batch attributes are cached locally, and are only updated when you create a client-side batch

object or when you explicitly update this cache (by calling the appropriate update function - GRBupdatebatch for
C, update for Python, etc.).

For examples of how to query or modify attributes, refer to our Attribute Examples.

12.11 Attribute Examples
Gurobi attribute handling is designed to be orthogonal, meaning that you only need to use a small number of routines
to work with a large number of attributes. In particular:

632

• The names and meanings of the various Gurobi attributes remain constant across the different programming
language APIs, although some decoration is required in each language.

• Given the type of an attribute (double, integer, etc.) and the programming language you wish to use it from,
you simply need to identify the appropriate routine for that attribute type in that language in order to query
or modify that attribute.

Consider the LB attribute, which captures the lower bound on a variable. You would refer to this attribute as
follows in the different Gurobi APIs:

Language Attribute
C GRB_DBL_ATTR_LB
C++ GRB_DoubleAttr_LB
Java GRB.DoubleAttr.LB
.NET GRB.DoubleAttr.LB, or just var.LB
Python GRB.Attr.LB, or just var.lb

To query the value of this attribute for an individual variable in the different APIs, you would do the following:

Language Attribute Query Example
C GRBgetdblattrelement(model, GRB_DBL_ATTR_LB, var_index, &value);
C++ var.get(GRB_DoubleAttr_LB)
Java var.get(GRB.DoubleAttr.LB)
.NET var.Get(GRB.DoubleAttr.LB), or just var.LB
Python var.getAttr(GRB.Attr.LB), or just var.lb

Our APIs also include routines for querying attribute values for multiple variables or constraints at once, which
is more efficient.

Attributes are referred to using a set of enum types in C++, Java, and .NET (one enum for double-valued
attributes, one for int-valued attributes, etc.). In C and Python, the names listed above are simply constants that
take string values. For example, GRB_DBL_ATTR_LB is defined in the C layer as:

#define GRB_DBL_ATTR_LB "LB"

In C and Python, you have the option of using the strings directly when calling attribute methods. If you wish to do
so, note that character case and underscores are ignored. Thus, MIN_COEFF and MinCoeff are equivalent.

One important point to note about attributes modification is that it is done in a lazy fashion. Modifications
don’t actually affect the model until the next request to either update or optimize the model (GRBupdatemodel or
GRBoptimize in C).

Refer to the following sections for more detailed examples of how to query or modify attributes from our various
APIs:

• C
• C++
• C#
• Java
• Python
• Visual Basic

You can also also browse our Examples to get a better sense of how to use our attribute interface.

C Attribute Examples
Consider the case where you have a Gurobi model m. You can retrieve the number of variables in the model by
querying the NumVars model attribute. This is an integer-valued, scalar attribute, so you use GRBgetintattr:

int cols;
error = GRBgetintattr(m, GRB_INT_ATTR_NUMVARS, &cols);

You can also use the name of the attribute directly:

633

https://www.gurobi.com/documentation/10.0/examples/index.html

int cols;
error = GRBgetintattr(m, "NumVars", &cols);

(Note that attribute capitalization doesn’t matter in the C interface, so you could also use "numVars" or "numvars").
If you’ve performed optimization on the model, the optimal objective value can be obtained by querying the

ObjVal model attribute. This is a double-valued, scalar attribute, so you use GRBgetdblattr:

double objval;
error = GRBgetdblattr(m, GRB_DBL_ATTR_OBJVAL, &objval);

If you’d like to query the value that a variable takes in the computed solution, you can query the X variable
attribute. This is a double-valued, vector attribute, so you have a few options for querying the associated values.
You can retrieve the value for a single variable using GRBgetdblattrelement:

double x0;
error = GRBgetdblattrelement(m, GRB_DBL_ATTR_X, 0, &x0);

(we query the solution value for variable 0 in this example). You can also query attribute values for multiple variables
using GRBgetdblattrarray or GRBgetdblattrlist:

double x[];
error = GRBgetdblattrarray(m, GRB_DBL_ATTR_X, 0, cols, x);

The former routine retrieves a contiguous set of values (cols values, starting from index 0 in our example). The
latter allows you to provide a list of indices, and it returns the values for the corresponding entries.

For each attribute query routine, there’s an analogous set routine. To set the upper bound of a variable, for
example, you would use GRBsetdblattrelement:

error = GRBsetdblattrelement(m, GRB_DBL_ATTR_UB, 0, 0.0);

(In this example, we’ve set the upper bound for variable 0 to 0). You can set attribute values for multiple variables
in a single call using GRBsetdblattrarray or GRBsetdblattrlist.

C++ Attribute Examples
Consider the case where you have a Gurobi model m. You can retrieve the number of variables in the model by
querying the NumVars model attribute using the get method:

cols = m.get(GRB_IntAttr_NumVars);

If you’ve performed optimization on the model, the optimal objective value can be obtained by querying the
ObjVal model attribute:

obj = m.get(GRB_DoubleAttr_ObjVal);

If you’d like to query the value that a variable takes in the computed solution, you can query the X attribute for
the corresponding variable object:

vars = m.getVars()
for (int j = 0; j < cols; j++)
xj = vars[j].get(GRB_DoubleAttr_X)

You can also query the value of X for multiple variables in a single get call on the model m:

double xvals[] = m.get(GRB_DoubleAttr_X, m.GetVars()))

For each attribute query method, there’s an analogous set routine. To set the upper bound of a variable, for
example:

v = m.getVars()[0]
v.set(GRB_DoubleAttr_UB, 0)

(In this example, we’ve set the upper bound for the first variable in the model to 0).

634

C# Attribute Examples
Consider the case where you have a Gurobi model m. You can retrieve the number of variables in the model by
querying the NumVars model attribute (which is implemented as a .NET property):

cols = m.NumVars;

If you’ve performed optimization on the model, the optimal objective value can be obtained by querying the
ObjVal model attribute:

obj = m.ObjVal;

If you’d like to query the value that a variable takes in the computed solution, you can query the X attribute for
the corresponding variable object:

vars = m.GetVars()
for (int j = 0; j < cols; j++)
xj = vars[j].X

You can also query the value of X for multiple variables in a single call using the Get method on the model m:

double[] xvals = m.Get(GRB.DoubleAttr.X, m.GetVars()))

For each attribute query method, there’s an analogous Set routine. To set the upper bound of a variable, for
example:

v = m.GetVars()[0]
v.UB = 0

(In this example, we’ve set the upper bound for the first variable in the model to 0).

Java Attribute Examples
Consider the case where you have a Gurobi model m. You can retrieve the number of variables in the model by
querying the NumVars model attribute using the get method:

cols = m.get(GRB.IntAttr.NumVars);

If you’ve performed optimization on the model, the optimal objective value can be obtained by querying the
ObjVal model attribute:

obj = m.get(GRB.DoubleAttr.ObjVal);

If you’d like to query the value that a variable takes in the computed solution, you can query the X attribute for
the corresponding variable object:

vars = m.getVars()
for (int j = 0; j < cols; j++)
xj = vars[j].get(GRB.DoubleAttr.X)

You can also query the value of X for multiple variables in a single get call on the model m:

double[] xvals = m.get(GRB.DoubleAttr.X, m.getVars()))

For each attribute query method, there’s an analogous set routine. To set the upper bound of a variable, for
example:

v = m.getVars()[0]
v.set(GRB.DoubleAttr.UB, 0)

(In this example, we’ve set the upper bound for the first variable in the model to 0).

635

Python Attribute Examples
Consider the case where you have a Gurobi model m. You can retrieve the number of variables in the model by
querying the NumVars model attribute:

print(m.numVars)

(Note that attribute capitalization doesn’t matter in the Python interface, so you could also query m.NumVars or
m.numvars).

If you’ve performed optimization on the model, the optimal objective value can be obtained by querying the
ObjVal model attribute:

print(m.objVal)

If you’d like to query the value that a variable takes in the computed solution, you can query the X attribute for
the corresponding variable object:

for v in m.getVars():
print(v.x)

You can also query the value of X for multiple variables in a single getAttr call on the model m:

print(m.getAttr(GRB.Attr.X, m.getVars()))

For each attribute query method, there’s an analogous set routine. To set the upper bound of a variable, for
example:

v = m.getVars()[0]
v.ub = 0

(In this example, we’ve set the upper bound for the first variable in the model to 0).

Visual Basic Attribute Examples
Consider the case where you have a Gurobi model m. You can retrieve the number of variables in the model by
querying the NumVars model attribute (which is implemented as a .NET property):

cols = m.NumVars;

If you’ve performed optimization on the model, the optimal objective value can be obtained by querying the
ObjVal model attribute:

obj = m.ObjVal;

If you’d like to query the value that a variable takes in the computed solution, you can query the X attribute for
the corresponding variable object:

vars = m.GetVars()
For j As Integer = 0 To cols - 1
xj = vars[j].X

You can also query the value of X for multiple variables in a single call using the Get method on the model m:

xvals = m.Get(GRB.DoubleAttr.X, m.GetVars()))

For each attribute query method, there’s an analogous Set routine. To set the upper bound of a variable, for
example:

v = m.GetVars()[0]
v.UB = 0

(In this example, we’ve set the upper bound for the first variable in the model to 0).

636

Parameters

Parameters control the operation of the Gurobi solvers. They must be modified before the optimization begins. While
you should feel free to experiment with different parameter settings, we recommend that you leave parameters at
their default settings unless you find a compelling reason not to. For a discussion of when you might want to change
parameter values, refer to our Parameter Guidelines.

The various Gurobi APIs all provide routines for querying and modifying parameter values. Refer to our Param-
eter Examples for additional information.

Some of the parameters below are used to configure a client program for use with a Compute Server, a Gurobi
Instant Cloud instance, or a token server. Refer to our discussion of empty environments for details.
Available Gurobi Parameters

Termination: These parameters affect the termination of the algorithms. If the algorithm exceeds any of these
limits, it will terminate and report a non-optimal termination status (see the Status Code section for further details).
Note that the algorithm won’t necessarily stop the moment it hits the specified limit. The termination check may
occur well after the limit has been exceeded.

Parameter name Purpose
BarIterLimit Barrier iteration limit
BestBdStop Best objective bound to stop
BestObjStop Best objective value to stop
Cutoff Objective cutoff
IterationLimit Simplex iteration limit
MemLimit Memory limit
NodeLimit MIP node limit
SoftMemLimit Soft memory limit
SolutionLimit MIP feasible solution limit
TimeLimit Time limit
WorkLimit Work limit

Tolerances: These parameters control the allowable feasibility or optimality violations.

Parameter name Purpose
BarConvTol Barrier convergence tolerance
BarQCPConvTol Barrier QCP convergence tolerance
FeasibilityTol Primal feasibility tolerance
IntFeasTol Integer feasibility tolerance
MarkowitzTol Threshold pivoting tolerance
MIPGap Relative MIP optimality gap
MIPGapAbs Absolute MIP optimality gap
OptimalityTol Dual feasibility tolerance
PSDTol Positive semi-definite tolerance

Simplex: These parameters control the operation of the simplex algorithms.

Parameter name Purpose
InfUnbdInfo Generate additional info for infeasible/unbounded models

637

LPWarmStart Warm start usage in simplex
NormAdjust Simplex pricing norm
PerturbValue Simplex perturbation magnitude
Quad Quad precision computation in simplex
Sifting Sifting within dual simplex
SiftMethod LP method used to solve sifting sub-problems
SimplexPricing Simplex variable pricing strategy

Barrier: These parameters control the operation of the barrier solver.

Parameter name Purpose
BarCorrectors Central correction limit
BarHomogeneous Barrier homogeneous algorithm
BarOrder Barrier ordering algorithm
Crossover Barrier crossover strategy
CrossoverBasis Crossover initial basis construction strategy
QCPDual Compute dual variables for QCP models

Scaling: These parameters control the operation of the simplex algorithms and the barrier solver.

Parameter name Purpose
ObjScale Objective scaling
ScaleFlag Model scaling

MIP: These parameters control the operation of the MIP algorithms.

Parameter name Purpose
BranchDir Branch direction preference
ConcurrentJobs Enables distributed concurrent solver
ConcurrentMIP Enables concurrent MIP solver
ConcurrentSettings Create concurrent environments from a list of .prm files
DegenMoves Degenerate simplex moves
Disconnected Disconnected component strategy
DistributedMIPJobs Enables the distributed MIP solver
Heuristics Turn MIP heuristics up or down
ImproveStartGap Trigger solution improvement
ImproveStartNodes Trigger solution improvement
ImproveStartTime Trigger solution improvement
LazyConstraints Programs that add lazy constraints must set this parameter
MinRelNodes Minimum relaxation heuristic control
MIPFocus Set the focus of the MIP solver
MIQCPMethod Method used to solve MIQCP models
NLPHeur Controls the NLP heuristic for non-convex quadratic models
NodefileDir Directory for MIP node files
NodefileStart Memory threshold for writing MIP tree nodes to disk
NodeMethod Method used to solve MIP node relaxations
NonConvex Control how to deal with non-convex quadratic programs
NoRelHeurTime Limits the amount of time (in seconds) spent in the NoRel heuristic
NoRelHeurWork Limits the amount of work performed by the NoRel heuristic
OBBT Controls aggressiveness of Optimality-Based Bound Tightening
PartitionPlace Controls when the partition heuristic runs
PumpPasses Feasibility pump heuristic control

638

RINS RINS heuristic
SolFiles Location to store intermediate solution files
SolutionNumber Sub-optimal MIP solution retrieval
StartNodeLimit Node limit for MIP start sub-MIP
StartNumber Set index of MIP start
SubMIPNodes Nodes explored by sub-MIP heuristics
Symmetry Symmetry detection
VarBranch Branch variable selection strategy
ZeroObjNodes Zero objective heuristic control

Presolve: These parameters control the operation of the presolve algorithms.
Parameter name Purpose
AggFill Allowed fill during presolve aggregation
Aggregate Presolve aggregation control
DualReductions Disables dual reductions in presolve
PreCrush Allows presolve to translate constraints on the original model to

equivalent constraints on the presolved model
PreDepRow Presolve dependent row reduction
PreDual Presolve dualization
PreMIQCPForm Format of presolved MIQCP model
PrePasses Presolve pass limit
PreQLinearize Presolve Q matrix linearization
Presolve Presolve level
PreSOS1BigM Controls largest coefficient in SOS1 reformulation
PreSOS1Encoding Controls SOS1 reformulation
PreSOS2BigM Controls largest coefficient in SOS2 reformulation
PreSOS2Encoding Controls SOS2 reformulation
PreSparsify Presolve sparsify reduction

Tuning: These parameters control the operation of the parameter tuning tool.
Parameter name Purpose
TuneBaseSettings Comma-separated list of base parameter settings
TuneCleanup Enables a tuning cleanup phase
TuneCriterion Specify tuning criterion
TuneJobs Enables distributed tuning
TuneMetric Metric to aggregate results into a single measure
TuneOutput Tuning output level
TuneResults Number of improved parameter sets returned
TuneTargetMIPGap A target gap to be reached
TuneTargetTime A target runtime in seconds to be reached
TuneTimeLimit Time limit for tuning
TuneTrials Perform multiple runs on each parameter set to limit the effect of

random noise

Multiple Solutions: These parameters allow you to modify the behavior of the MIP search in order to find more
than one solution to a MIP model.

Parameter name Purpose
PoolGap Relative gap for solutions in pool
PoolGapAbs Absolute gap for solutions in pool
PoolSearchMode Choose the approach used to find additional solutions
PoolSolutions Number of solutions to keep in pool

MIP Cuts: These parameters affect the generation of MIP cutting planes. In all cases, a value of -1 corresponds to an
automatic setting, which allows the solver to determine the appropriate level of aggressiveness in the cut generation.
Unless otherwise noted, settings of 0, 1, and 2 correspond to no cut generation, conservative cut generation, or

639

aggressive cut generation, respectively. The Cuts parameter provides global cut control, affecting the generation of
all cuts. This parameter also has a setting of 3, which corresponds to very aggressive cut generation. The other
parameters override the global Cuts parameter (so setting Cuts to 2 and CliqueCuts to 0 would generate all cut
types aggressively, except clique cuts which would not be generated at all).

Parameter name Purpose
BQPCuts BQP cut generation
Cuts Global cut generation control
CliqueCuts Clique cut generation
CoverCuts Cover cut generation
CutAggPasses Constraint aggregation passes performed during cut generation
CutPasses Root cutting plane pass limit
FlowCoverCuts Flow cover cut generation
FlowPathCuts Flow path cut generation
GomoryPasses Root Gomory cut pass limit
GUBCoverCuts GUB cover cut generation
ImpliedCuts Implied bound cut generation
InfProofCuts Infeasibility proof cut generation
LiftProjectCuts Lift-and-project cut generation
MIPSepCuts MIP separation cut generation
MIRCuts MIR cut generation
ModKCuts Mod-k cut generation
NetworkAlg Network simplex algorithm
NetworkCuts Network cut generation
ProjImpliedCuts Projected implied bound cut generation
PSDCuts PSD cut generation
RelaxLiftCuts Relax-and-lift cut generation
RLTCuts RLT cut generation
StrongCGCuts Strong-CG cut generation
SubMIPCuts Sub-MIP cut generation
ZeroHalfCuts Zero-half cut generation

Distributed algorithms: Parameters that are used to control our distributed parallel algorithms (distributed MIP,
distributed concurrent, and distributed tuning).

Parameter name Purpose
WorkerPassword Password for distributed worker cluster
WorkerPool Distributed worker cluster

Cloud: Parameters that are used to launch Gurobi Instant Cloud instances.

Parameter name Purpose
CloudAccessID Access ID for Gurobi Instant Cloud
CloudHost Host for the Gurobi Cloud entry point
CloudSecretKey Secret Key for Gurobi Instant Cloud
CloudPool Cloud pool to use for Gurobi Instant Cloud instance

Compute Server: Parameters that are used to configure and launch Gurobi Compute Server jobs. You will
normally set these in your license file, but you have the option of setting them through these parameters instead
(by first constructing an empty environment). Refer to the Gurobi Remote Services Reference Manual for more

640

https://www.gurobi.com/documentation/10.0/remoteservices/remoteservices.html

information.
Parameter name Purpose
ComputeServer Name of a node in the Remote Services cluster.
ServerPassword Client password for Remote Services cluster (or token server).
ServerTimeout Network timeout interval
CSPriority Job priority for Remote Services job
CSQueueTimeout Queue timeout for new jobs
CSRouter Router node for Remote Services cluster
CSGroup Group placement request for cluster
CSTLSInsecure Use insecure mode in Transport Layer Security (TLS)
CSIdleTimeout Idle time before Compute Server kills a job
JobID Job ID of current job

Cluster Manager: Parameters that are used to configure and launch Gurobi Cluster Manager. You will normally
set these in your license file, but you have the option of setting them through these parameters instead (by first
constructing an empty environment). Refer to the Gurobi Remote Services Reference Manual for more information.

Parameter name Purpose
CSAPIAccessID Access ID for Gurobi Cluster Manager
CSAPISecret Secret key for Gurobi Cluster Manager
CSAppName Application name of the batches or jobs
CSAuthToken Token used internally for authentication
CSBatchMode Controls Batch-Mode optimization
CSClientLog Turns logging on or off
CSManager URL for the Cluster Manager
UserName User name to use when connecting to the Cluster Manager

Token server: Parameters that are used to launch jobs that check out tokens from a token server. You will
normally set these in your license file, but you have the option of setting them through these parameters instead (by
first constructing an empty environment).

Parameter name Purpose
ServerPassword Client password for token server (or Remote Services cluster).
TokenServer Name of your token server.
TSPort Token server port number.

Web License Service: Parameters that are used to launch jobs that use the Web License Service (WLS). You will
normally set these in your license file, but you have the option of setting them through these parameters instead (by
first constructing an empty environment).

Parameter name Purpose
LicenseID License ID.
WLSAccessID WLS access ID.
WLSSecret WLS secret.
WLSToken WLS token.
WLSTokenDuration WLS token duration.
WLSTokenRefresh Relative WLS token refresh interval.

Other: Other parameters.

Parameter name Purpose
DisplayInterval Frequency at which log lines are printed
FeasRelaxBigM Big-M value for feasibility relaxations
FuncPieceError Error allowed for PWL translation of function constraint
FuncPieceLength Piece length for PWL translation of function constraint
FuncPieceRatio Controls whether to under- or over-estimate function values in

PWL approximation
FuncPieces Sets strategy for PWL function approximation

641

https://www.gurobi.com/documentation/10.0/remoteservices/remoteservices.html

FuncMaxVal Maximum value for x and y variables in function constraints
IgnoreNames Indicates whether to ignore names provided by users
IISMethod IIS method
InputFile File to be read before optimization commences
IntegralityFocus Set the integrality focus
JSONSolDetail Controls the level of detail stored in generated JSON solution
LogFile Log file name
LogToConsole Console logging
Method Algorithm used to solve continuous models
MultiObjMethod Warm-start method to solve for subsequent objectives
MultiObjPre Initial presolve on multi-objective models
MultiObjSettings Create multi-objective settings from a list of .prm files
NumericFocus Set the numerical focus
ObjNumber Set index of multi-objectives
OutputFlag Solver output control
Record Enable API call recording
ResultFile Result file written upon completion of optimization
ScenarioNumber Set index of scenario in multi-scenario models
Seed Modify the random number seed
Threads Number of parallel threads to use
UpdateMode Change the behavior of lazy updates

642

13.1 Parameter Guidelines
This section provides a brief discussion of the roles of the various Gurobi parameters when solving continuous or MIP
models, with some indication of their relative importance.

Note that you also have the option of using the Parameter Tuning Tool to tune parameters. We recommend that
you browse this section, though, even if you use the tuning tool, to get a better understanding of the roles of the
various parameters.

Continuous Models
If you wish to use Gurobi parameters to tune performance on continuous models, we offer the following guidelines.
Choosing the method for LP or QP

The most important parameter when solving an LP or QP is Method. The default setting (-1) uses the concurrent
optimizer for an LP, and the parallel barrier solver for a QP. While the default is usually a good choice, you may
want to choose a different method in a few situations.

If memory is tight, you should consider using the dual simplex method (Method=1) instead of the default. The
default will invoke the barrier method, which can take a lot more memory than dual. In addition, the default for
LP will try multiple algorithms simultaneously, and each requires a copy of the original model. By selecting dual
simplex, you will only use one copy of the model.

Another scenario where you should change the default is when you must get the exact same optimal basis each
time. For LP models, the default concurrent solver invokes multiple algorithms simultaneously on multi-core systems,
returning the optimal basis from the one that finishes first. In rare cases, one algorithm may complete first in one run,
while another completes first in another. This can potentially lead to different alternate optimal solutions. Selecting
any other method, including the deterministic concurrent solver, will avoid this possibility. Note, however, that the
deterministic concurrent solver can be significantly slower than the default concurrent solver.

Finally, if you are confronted with a difficult LP model, you should experiment with the different method options.
While the default is rarely significantly slower than the best choice, you may find that one option is consistently faster
or more robust for your models. There are no simple rules for predicting which method will work best for a particular
family of models.

If you are solving QCP or SOCP models, note that the barrier algorithm is your only option.
Parallel solution

Among the remaining parameters that affect continuous models, the only one that you would typically want to adjust
is Threads, which controls the number of threads used for the concurrent and parallel barrier algorithms. By default,
concurrent and barrier will use all available cores in your machine (up to 32). Note that the simplex solvers can only
use one thread, so this parameter has no effect on them.

If you would like to experiment with different strategies than the default ones when solving an LP model using
the concurrent optimizer, we provide methods in C, C++, Java, .NET, and Python that allow you to create and
configure concurrent environments.
Infeasible or unbounded models

If you are confronted with an infeasible or unbounded LP, additional details can be obtained when you set the
InfUnbdInfo parameter. For an unbounded model, setting this parameter allows you to retrieve an unbounded
ray (using the UnbdRay attribute). For an infeasible model, setting this parameter allows you to retrieve a Farkas
infeasibility proof (using the FarkasDual and FarkasProof attributes).

For the barrier algorithm, you should set the BarHomogeneous parameter to 1 whenever you have a model that
you suspect is infeasible or unbounded. This algorithm is better at diagnosing infeasibility or unboundedness.
Special structure

If you wish to solve an LP model that has many more variables than constraints, you may want to try the sifting
algorithm. Sifting is actually implemented within our dual simplex solver, so to select sifting, set the Method parameter
to 1 (to select dual), and then set the Sifting parameter to a positive value. You can use the SiftMethod parameter
to choose the algorithm that is used to solve the sub-problems that arise within the sifting algorithm. In general,
sifting is only effective when the ratio between variables and constraints is extremely large (100 to 1 or more). Note
that the default Sifting setting allows the Gurobi Optimizer to select sifting automatically when a problem has the
appropriate structure, so you won’t typically need to select it manually.

643

Additional parameters

The ScaleFlag parameter can be used to modify the scaling performed on the model. The default scaling value (-1) is
usually the most effective choice, but turning off scaling entirely (0) can sometimes reduce constraint violations on the
original model. Choosing a different scaling option (1, 2, or 3) can sometimes improve performance for particularly
numerically difficult models. The ObjScale parameter allows you to scale just the objective. Objective scaling can be
useful when the objective contains extremely large values, but it can also lead to large dual violations in the original,
unscaled model, so it should be used sparingly.

The SimplexPricing parameter determines the method used to choose a simplex pivot. The default is usually
the best choice. The NormAdjust parameter allows you to choose alternate simplex pricing norms. Again, the default
is usually best. The Quad parameter allows you to force the simplex solver to use (or not use) quad precision.
While quad precision can help for numerically difficult models, the default setting will typically recognize such cases
automatically. The PerturbValue parameter allows you to adjust the magnitude of the simplex perturbation (used
to overcome degeneracy). Again, the default value is typically effective.

Other Gurobi parameters control the details of the barrier solver. The BarConvTol and BarQCPConvTol parameters
allow you to adjust barrier termination. While you can ask for more precision than the default, you will typically run
into the limitations of double-precision arithmetic quite quickly. This parameter is typically used to indicate that you
are willing to settle for a less accurate answer than the defaults would give. The BarCorrectors parameter allows
you to adjust the number of central corrections applied in each barrier iteration. More corrections generally lead to
more forward progress in each iteration, but at a cost of more expensive iterations. The BarOrder parameter allows
you to choose the barrier ordering method. The default approach typically works well, but you can manually choose
the less expensive Approximate Minimum Degree ordering option (BarOrder=0) if you find that ordering is taking
too long.

MIP Models
While default settings generally work well, MIP models will often benefit from parameter tuning. We offer the
following guidelines, but we also encourage you to experiment.
Most Important Parameters

The two most important Gurobi settings when solving a MIP model are probably the Threads and MIPFocus param-
eters. The Threads parameter controls the number of threads used by the parallel MIP solver. The default is to use
all cores in the machine (up to 32). If you wish to leave some available for other activities, adjust this parameter
accordingly.

The MIPFocus parameter allows you to modify your high-level solution strategy, depending on your goals. By
default, the Gurobi MIP solver strikes a balance between finding new feasible solutions and proving that the current
solution is optimal. If you are more interested in good quality feasible solutions, you can select MIPFocus=1. If you
believe the solver is having no trouble finding the optimal solution, and wish to focus more attention on proving
optimality, select MIPFocus=2. If the best objective bound is moving very slowly (or not at all), you may want to try
MIPFocus=3 to focus on the bound.
Solution Improvement

The ImproveStartTime and ImproveStartGap parameters can also be used to modify your high-level solution strategy,
but in a different way. These parameters allow you to give up on proving optimality at a certain point in the search,
and instead focus all attention on finding better feasible solutions from that point onward. The ImproveStartTime pa-
rameter allows you to make this transition after the specified time has elapsed, while the ImproveStartGap parameter
makes the transition when the specified optimality gap has been achieved.
Termination

Another important set of Gurobi parameters affect solver termination. If the solver is unable to find a proven
optimal solution within the desired time, you will need to indicate how to limit the search. The simplest option is
to limit runtime using the TimeLimit parameter. Of course, using a wall-clock based time limit may lead to non-
deterministic results. This means that performing the same optimization twice with exactly the same input data can
lead to stopping at different points during the optimization process and thus producing different solver output. If a
deterministic stopping criterion is desired, one may use the WorkLimit parameter instead. This specifies a limit on
the total work that is spent on the optimization. One work unit corresponds very roughly to one second, but this
greatly depends on the hardware on which Gurobi is running and on the model that has been solved.

644

Another common termination choice for MIP models is to set the MIPGap parameter. This parameter allows
you to indicate that optimization should stop when the relative gap between the best known solution and the best
known bound on the solution objective is less than the specified value. You can terminate when the absolute gap is
below a desired threshold using the MIPGapAbs parameter. You can also terminate based strictly on the current lower
or upper bound using the BestBdStop or BestObjStop parameters. Other termination options include NodeLimit,
IterationLimit, SolutionLimit, and Cutoff. The first three indicate that optimization should terminate when the
number of branch-and-bound nodes, the total number of simplex iterations, or the number of discovered feasible
integer solutions exceeds the specified value, respectively. The Cutoff parameter indicates that the solver should
only consider solutions whose objective values are better than the specified value, and should terminate if no such
solutions are found.
Reducing Memory Usage

If you find that the Gurobi optimizer exhausts memory when solving a MIP, you should modify the NodefileStart
parameter. When the amount of memory used to store nodes (measured in GBytes) exceeds the specified parameter
value, nodes are written to disk. We recommend a setting of 0.5, but you may wish to choose a different value,
depending on the memory available in your machine. By default, nodes are written to the current working directory.
The NodefileDir parameter can be used to choose a different location.

If you still exhaust memory after setting the NodefileStart parameter to a small value, you should try limiting
the thread count. Each thread in parallel MIP requires a copy of the model, as well as several other large data
structures. Reducing the Threads parameter can sometimes significantly reduce memory usage.

Finally, to protect against exhausting the memory you can limit the memory that is available to Gurobi by
setting the MemLimit or the SoftMemLimit parameters. If the total amount of memory that Gurobi tries to allocate
exceeds this value (in GBytes), it will abort. In case of the MemLimit parameter, Gurobi will abort immediately with
an OUT_OF_MEMORY error. In contrast, the SoftMemLimit may be overshot a little bit, but instead of returning an error
it allows a graceful termination of the current optimization with a MEMLIMIT status code.
Speeding Up The Root Relaxation

The root relaxation in a MIP model can sometimes be quite expensive to solve. If you find that a lot of time is
spent here, consider using the Method parameter to select a different continuous algorithm for the root. For example,
Method=2 would select the parallel barrier algorithm at the root, and Method=3 would select the concurrent solver.
Note that you can choose a different algorithm for the MIP node relaxations using the NodeMethod parameter, but it
is rarely beneficial to change this from the default (dual simplex).
Difficult Relaxations

If you find that the solver is having trouble solving the root relaxation even after you have tried the recommendations
above, or is spending an inordinate amount of time at the root node, you should try the NoRel heuristic (controlled by
the NoRelHeurTime and NoRelHeurWork parameters). This heuristic attempts to find high-quality solutions without
ever solving the MIP relaxation. It can often be quite effective, although of course it won’t provide good lower bounds
on the optimal objective.
Heuristics

A few Gurobi parameters control internal MIP strategies. The Heuristics parameter controls the fraction of runtime
spent on feasibility heuristics. Increasing the parameter can lead to more and better feasible solutions, but it will also
reduce the rate of progress in the best bound. The SubMIPNodes parameter controls the number of nodes explored
in some of the more sophisticated local search heuristics inside the Gurobi solver. You can increase this if you are
having trouble finding good feasible solutions. The MinRelNodes, PumpPasses, and ZeroObjNodes parameters control
a set of expensive heuristics whose goal is to find a feasible solution. All are invoked at the end of the MIP root
node and usually only if no feasible solution has been found already. Try these if you are having trouble finding any
feasible solutions.
Cutting Planes

The Gurobi MIP solver employs a wide range of cutting plane strategies. The aggressiveness of these strategies can be
controlled at a coarse level through the Cuts parameter, and at a finer grain through a further set of cuts parameters
(e.g., FlowCoverCuts, MIRCuts, etc.). Each cut parameter can be set to Aggressive (2), Conservative (1), Automatic
(-1), or None (0). The more specific parameters override the more general, so for example setting MIRCuts to None
(0) while also setting Cuts to Aggressive (2) would aggressively generate all cut types, except MIR cuts which would
not be generated at all. Very easy models can sometimes benefit from turning cuts off, while extremely difficult
models can benefit from turning them to their Aggressive setting.

645

Presolve

Presolve behavior can be modified with a set of parameters. The Presolve parameter sets the aggressiveness level
of presolve. Options are Aggressive (2), Conservative (1), Automatic (-1), or None (0). More aggressive application
of presolve takes more time, but can sometimes lead to a significantly tighter model. The PrePasses provides finer-
grain control of presolve. It limits the number of passes presolve performs. Setting it to a small value (e.g., 3) can
reduce presolve runtime. The Aggregate parameter controls the aggregation level in presolve. Aggregation typically
leads to a smaller formulation, but in rare cases it can introduce numerical issues. The AggFill parameter controls
aggregation at a finer grain. It controls how much fill is tolerated in the constraint matrix from a single variable
aggregation. The PreSparsify parameter enables an algorithm that can sometimes significantly reduce the number
of non-zero values in the constraint matrix.

Coping with Integrality Violations

The MIP solver can sometimes exploit tolerances on integer variables to violate the intent of a constraint. The best-
known example of this is probably trickle flows, where trivial integrality violations on fixed-charge (binary) variables
can lead to solutions that allow significant flows down closed edges. The IntegralityFocus parameter allows you to
tell the solver to take a much stricter approach to integrality (at a small performance penalty).

Additional Parameters

The Symmetry parameter controls symmetry detection. The default value usually works well. The VarBranch param-
eter controls the branching variable selection strategy within the branch-and-bound process. Variable selection can
have a significant impact on overall time to solution, but the default strategy is usually the best choice.

Tolerances

The Gurobi solver includes a set of numerical tolerance parameters. These rarely require adjustment, and are included
for advanced users who are having trouble with the numerical properties of their models. The FeasibilityTol,
IntFeasTol, MarkowitzTol, and OptimalityTol parameters allow you to adjust the primal feasibility tolerance, the
integer feasibility tolerance, the Markowitz tolerance for simplex basis factorization, and the dual feasibility tolerance,
respectively.

13.2 Parameter Descriptions

AggFill
Presolve aggregation fill level
Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Controls the amount of fill allowed during presolve aggregation. Larger values generally lead to presolved models
with fewer rows and columns, but with more constraint matrix non-zeros.

The default value chooses automatically, and usually works well.
One important note about integer-valued parameters: while the maximum value that can be stored in a signed

integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

Aggregate
Presolve aggregation

646

Type: int
Default value: 1
Minimum value: 0
Maximum value: 2

Controls the aggregation level in presolve. The options are off (0), moderate (1), or aggressive (2). In rare
instances, aggregation can lead to an accumulation of numerical errors. Turning it off can sometimes improve
solution accuracy.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

BarConvTol
Barrier convergence tolerance
Type: double
Default value: 1e-8
Minimum value: 0.0
Maximum value: 1.0

The barrier solver terminates when the relative difference between the primal and dual objective values is less
than the specified tolerance (with a GRB_OPTIMAL status). Tightening this tolerance often produces a more accurate
solution, which can sometimes reduce the time spent in crossover. Loosening it causes the barrier algorithm to
terminate with a less accurate solution, which can be useful when barrier is making very slow progress in later
iterations.

Note: Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

BarCorrectors
Barrier central corrections
Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Limits the number of central corrections performed in each barrier iteration. The default value chooses auto-
matically, depending on problem characteristics. The automatic strategy generally works well, although it is often
possible to obtain higher performance on a specific model by selecting a value manually.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed
integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

Note: Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

BarHomogeneous
Barrier homogeneous algorithm

647

Type: int
Default value: -1
Minimum value: -1
Maximum value: 1

Determines whether to use the homogeneous barrier algorithm. At the default setting (-1), it is only used when
barrier solves a node relaxation for a MIP model. Setting the parameter to 0 turns it off, and setting it to 1 forces it
on. The homogeneous algorithm is useful for recognizing infeasibility or unboundedness. It is a bit slower than the
default algorithm.

Note: Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

BarIterLimit
Barrier iteration limit
Type: int
Default value: 1000
Minimum value: 0
Maximum value: MAXINT

Limits the number of barrier iterations performed. This parameter is rarely used. If you would like barrier to
terminate early, it is almost always better to use the BarConvTol parameter instead.

Optimization returns with an ITERATION_LIMIT status if the limit is exceeded (see the Status Code section for
further details).

Note: Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

BarOrder
Barrier ordering algorithm
Type: int
Default value: -1
Minimum value: -1
Maximum value: 1

Chooses the barrier sparse matrix fill-reducing algorithm. A value of 0 chooses Approximate Minimum Degree
ordering, while a value of 1 chooses Nested Dissection ordering. The default value of -1 chooses automatically. You
should only modify this parameter if you notice that the barrier ordering phase is consuming a significant fraction of
the overall barrier runtime.

Note: Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

BarQCPConvTol
Barrier convergence tolerance for QCP models

648

Type: double
Default value: 1e-6
Minimum value: 0.0
Maximum value: 1.0

When solving a QCP model, the barrier solver terminates when the relative difference between the primal and
dual objective values is less than the specified tolerance (with a GRB_OPTIMAL status). Tightening this tolerance may
lead to a more accurate solution, but it may also lead to a failure to converge.

Note: Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

BestBdStop
Objective bound to stop optimization
Type: double
Default value: Infinity
Minimum value: -Infinity
Maximum value: Infinity

Terminates as soon as the engine determines that the best bound on the objective value is at least as good as
the specified value. Optimization returns with an USER_OBJ_LIMIT status in this case.

Note that you should always include a small tolerance in this value. Without this, a bound that satisfies the
intended termination criterion may not actually lead to termination due to numerical round-off in the bound.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

BestObjStop
Objective value to stop optimization
Type: double
Default value: -Infinity
Minimum value: -Infinity
Maximum value: Infinity

Terminate as soon as the engine finds a feasible solution whose objective value is at least as good as the specified
value. Optimization returns with an USER_OBJ_LIMIT status in this case.

Note that you should always include a small tolerance in this value. Without this, a solution that satisfies the
intended termination criterion may not actually lead to termination due to numerical round-off in the objective.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

BQPCuts
BQP cut generation

649

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls Boolean Quadric Polytope (BQP) cut generation. Use 0 to disable these cuts, 1 for moderate cut
generation, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts
parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

BranchDir
Preferred branch direction
Type: int
Default value: 0
Minimum value: -1
Maximum value: 1

Determines which child node is explored first in the branch-and-cut search. The default value chooses automat-
ically. A value of -1 will always explore the down branch first, while a value of 1 will always explore the up branch
first.

Changing the value of this parameter rarely produces a significant benefit.
Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

CliqueCuts
Clique cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls clique cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive cut
generation. The default -1 value choose automatically. Overrides the Cuts parameter.

We have observed that setting this parameter to its aggressive setting can produce a significant benefit for some
large set partitioning models.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

CloudAccessID
Access ID for Gurobi Instant Cloud
Type: string
Default value: ""

650

Set this parameter to the Access ID for your Instant Cloud license when launching a new instance. You can
retrieve this string from your account on the Gurobi Instant Cloud Manager website.

You must set this parameter through either a gurobi.lic file (using CLOUDACCESSID=id) or an empty environment.
Changing the parameter after your environment has been created will have no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

CloudHost
Host for the Gurobi Cloud entry point
Type: string
Default value: ""

Set this parameter to the host name of the Gurobi Cloud entry point. Currently cloud.gurobi.com.
You must set this parameter through either a gurobi.lic file (using CLOUDHOST=host) or an empty environment.

Changing the parameter after your environment has been started will result in an error.
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter

Examples.

CloudSecretKey
Secret Key for Gurobi Instant Cloud
Type: string
Default value: ""

Set this parameter to the Secret Key for your Instant Cloud license when launching a new instance. You can
retrieve this string from your account on the Gurobi Instant Cloud Manager website.

You must set this parameter through either a gurobi.lic file (using CLOUDSECRETKEY=key) or an empty environ-
ment. Changing the parameter after your environment has been created will have no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

CloudPool
Cloud pool to use for Gurobi Instant Cloud instance
Type: string
Default value: ""

Set this parameter to the name of the cloud pool you would like to use for your new Instant Cloud instance. You
can browse your existing cloud pools or create new ones from your account on the Gurobi Instant Cloud Manager
website.

You must set this parameter through either a gurobi.lic file (using CLOUDPOOL=pool) or an empty environment.
Changing the parameter after your environment has been created will have no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

ComputeServer
Name of a node in the Remote Services cluster
Type: string
Default value: ""

651

https://cloud.gurobi.com
https://cloud.gurobi.com
https://cloud.gurobi.com

Set this parameter to the name of a node in the Remote Services cluster where you’d like your Compute Server
job to run. You can refer to the server using its name or its IP address. If you are using a non-default port, the
server name should be followed by the port number (e.g., server1:61000).

You will also need to set the ServerPassword parameter to supply the client password for the specified cluster.
You can provide a comma-separated list of nodes to increase robustness. If the first node in the list doesn’t

respond, the second will be tried, etc.
Refer to the Gurobi Remote Services Reference Manual for more information on starting Compute Server jobs.
You must set this parameter through either a gurobi.lic file (using COMPUTESERVER=server) or an empty

environment. Changing the parameter after your environment has been created will have no effect.
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter

Examples.

ConcurrentJobs
Distributed concurrent optimizer job count
Type: int
Default value: 0
Minimum value: 0
Maximum value: MAXINT

Enables distributed concurrent optimization, which can be used to solve LP or MIP models on multiple machines.
A value of n causes the solver to create n independent models, using different parameter settings for each. Each of these
models is sent to a distributed worker for processing. Optimization terminates when the first solve completes. Use
the ComputeServer parameter to indicate the name of the cluster where you would like your distributed concurrent
job to run (or use WorkerPool if your client machine will act as manager and you just need a pool of workers).

By default, Gurobi chooses the parameter settings used for each independent solve automatically. You can create
concurrent environments to choose your own parameter settings (refer to the concurrent optimization section for
details). The intent of concurrent MIP solving is to introduce additional diversity into the MIP search. By bringing
the resources of multiple machines to bear on a single model, this approach can sometimes solve models much faster
than a single machine.

The distributed concurrent solver produces a slightly different log from the standard solver, and provides different
callbacks as well. Please refer to the Distributed Algorithms section of the Gurobi Remote Services Reference
Manual for additional details.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed
integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

ConcurrentMIP
Enables the concurrent MIP solver
Type: int
Default value: 1
Minimum value: 1
Maximum value: MAXINT

This parameter enables the concurrent MIP solver. When the parameter is set to value n, the MIP solver performs
n independent MIP solves in parallel, with different parameter settings for each. Optimization terminates when the
first solve completes.

By default, Gurobi chooses the parameter settings used for each independent solve automatically. You can
create concurrent environments to choose your own parameter settings (refer to the concurrent optimization section
for details). The intent of concurrent MIP solving is to introduce additional diversity into the MIP search. This

652

https://www.gurobi.com/documentation/10.0/remoteservices/remoteservices.html
https://www.gurobi.com/documentation/10.0/remoteservices/remoteservices.html
https://www.gurobi.com/documentation/10.0/remoteservices/remoteservices.html

approach can sometimes solve models much faster than applying all available threads to a single MIP solve, especially
on very large parallel machines.

The concurrent MIP solver divides available threads evenly among the independent solves. For example, if you
have 6 threads available and you set ConcurrentMIP to 2, the concurrent MIP solver will allocate 3 threads to each
independent solve. Note that the number of independent solves launched will not exceed the number of available
threads.

The concurrent MIP solver produces a slightly different log from the standard MIP solver, and provides different
callbacks as well. Please refer to the concurrent optimizer discussion for additional details.

Concurrent MIP is not deterministic. If runtimes for different independent solves are very similar, and if the
model has multiple optimal solutions, you may get slightly different results from multiple runs on the same model.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed
integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

ConcurrentSettings
Create concurrent environments from a list of .prm files
Type: string
Default value: ""

This command-line only parameter allows you to specify a comma-separated list of .prm files that are used to
set parameters for the different instances in a concurrent MIP run.

To give an example, you could create two .prm files with the following contents...
s0.prm:

MIPFocus 0

s1.prm:

MIPFocus 1

Issuing the command gurobi_cl ConcurrentSettings=s0.prm,s1.prm model.mps would invoke the concurrent
MIP solver, using parameter setting MIPFocus=0 in one of the two concurrent solves and MIPFocus=1 in the other.

Note that if you want to run concurrent MIP on multiple machines, you must also set the ConcurrentJobs
parameter. The command for running distributed concurrent optimization using the two example parameter files on
two machines would be

> gurobi_cl ConcurrentJobs=2 ConcurrentSettings=s0.prm,s1.prm model.mps

Note: Command-line only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

CoverCuts
Cover cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

653

Controls cover cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive cut
generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

Crossover
Barrier crossover strategy
Type: int
Default value: -1
Minimum value: -1
Maximum value: 4

Determines the crossover strategy used to transform the interior solution produced by barrier into a basic solution
(note that crossover is not available for QP or QCP models). Crossover consists of three phases: (i) a primal push
phase, where primal variables are pushed to bounds, (ii) a dual push phase, where dual variables are pushed to
bounds, and (iii) a cleanup phase, where simplex is used to remove any primal or dual infeasibilities that remain after
the push phases are complete. The order of the first two phases and the algorithm used for the third phase are both
controlled by the Crossover parameter:

Parameter value First push Second push Cleanup
0 Disabled Disabled Disabled
1 Dual Primal Primal
2 Dual Primal Dual
3 Primal Dual Primal
4 Primal Dual Dual

The default value of -1 chooses the strategy automatically. Use value 0 to disable crossover; this setting returns
the interior solution computed by barrier.

Note: Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

CrossoverBasis
Crossover basis construction strategy
Type: int
Default value: -1
Minimum value: -1
Maximum value: 1

Determines the initial basis construction strategy for crossover. A value of 0 chooses an initial basis quickly. A
value of 1 can take much longer, but often produces a more numerically stable start basis. The default value of -1
makes an automatic choice.

Note: Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

CSAPIAccessID
Access ID for Gurobi Cluster Manager

654

Type: string
Default value: ""

A unique identifier used to authenticate an application on a Gurobi Cluster Manager.
You can provide either an access ID and a secret key, or a username and password, to authenticate your connection

to a Cluster Manager.
You must set this parameter through either a gurobi.lic file (using CSAPIACCESSID=YOUR_API_ID) or an empty

environment. Changing the parameter after your environment has been started will result in an error.
Note: Cluster Manager only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

CSAPISecret
Secret key for Gurobi Cluster Manager
Type: string
Default value: ""

The secret password associated with an API access ID.
You can provide either an access ID and a secret key, or a username and password, to authenticate your connection

to a Cluster Manager.
You must set this parameter through either a gurobi.lic file (using CSAPISECRET=YOUR_API_SECRET_KEY) or an

empty environment. Changing the parameter after your environment has been started will result in an error.
Note: Cluster Manager only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

CSAppName
Application name of the batches or jobs
Type: string
Default value: ""

The application name which will be sent to the server to track which application is submitting the batches or
jobs.

Note: Cluster Manager only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

CSAuthToken
JSON Web Token for accessing the Cluster Manager
Type: string
Default value: ""

When a client authenticates with a Cluster Manager using a username and password, a signed token is returned
by the server to be used in further calls or command-line operations. It is used internally.

Note: Cluster Manager only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

655

CSBatchMode
Controls Batch-Mode optimization
Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

When set to 1, enable the local creation of models, and later submit batch-optimization jobs to the Cluster
Manager. See the Batch Optimization section for more details. Note that if CSBatchMode is enabled, only batch-
optimization calls are allowed.

You must set this parameter through either a gurobi.lic file (using CSBATCHMODE=1) or an empty environment.
Changing the parameter after your environment has been started will result in an error.

Note: Cluster Manager only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

CSClientLog
Turns logging on or off
Type: int
Default value: 0
Minimum value: 0
Maximum value: 3

Turns logging on or off for Compute Server. Options are off (0), only error messages (1), information and error
messages (2), or (3) verbose, information, and error messages.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

CSGroup
Group placement request for cluster
Type: string
Default value: ""

Specifies one or more groups of cluster nodes to control the placement of the job. The list is a comma-separated
string of group names, with optionally a priority for a group. For example, specifying group1:10,group2:50 means
that the job will run on machines of group1 or group2, and if the job is queued, it will have priority 10 on group1
and 50 on group2. Note that if the group is not specified, the job may run on any node. If there are no nodes in the
cluster having the specified groups, the job will be rejected.

Refer to the Gurobi Remote Services Reference Manual for more information on starting Compute Server jobs
and in particular to Gurobi Remote Services cluster Grouping for more information on grouping cluster nodes.

You must set this parameter through either a license file (using GROUP=name) or an empty environment. Changing
the parameter after your environment has been created will have no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

CSIdleTimeout
Idle time before Compute Server kills a job

656

https://www.gurobi.com/documentation/10.0/remoteservices/remoteservices.html
../remoteservices/grouping.html

Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

This parameter allows you to set a limit on how long a Compute Server job can sit idle before the server kills
the job (in seconds). A job is considered idle if the server is not currently performing an optimization and the client
has not issued any additional commands.

The default value will allow a job to sit idle indefinitely in all but one circumstance. Currently the only exception
is the Gurobi Instant Cloud, where the default setting will automatically impose a 30 minute idle time limit (1800
seconds). If you are using an Instant Cloud pool, the actual value will be the maximum between this parameter value
and the idle timeout defined by the pool.

You must set this parameter through either a gurobi.lic file (using IDLETIMEOUT=n) or an empty environment.
Changing the parameter after your environment has been created will have no effect.

Refer to the Gurobi Remote Services Reference Manual for more information on starting Compute Server jobs.
One important note about integer-valued parameters: while the maximum value that can be stored in a signed

integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

CSManager
URL of the Cluster Manager for the Remote Services cluster
Type: string
Default value: ""

URL of the Cluster Manager for the Remote Services cluster.
You must set this parameter through either a gurobi.lic file (using CSMANAGER=YOUR_MANAGER_URL) or an empty

environment. Changing the parameter after your environment has been started will result in an error.
Note: Cluster Manager only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

CSPriority
Client password for Remote Services cluster
Type: int
Default value: 0
Minimum value: -100
Maximum value: 100

The priority of the Compute Server job. Priorities must be between -100 and 100, with a default value of 0 (by
convention). Higher priority jobs are chosen from the server job queue before lower priority jobs. A job with priority
100 runs immediately, bypassing the job queue and ignoring the job limit on the server. You should exercise caution
with priority 100 jobs, since they can severely overload a server, which can cause jobs to fail, and in extreme cases
can cause the server to crash.

Refer to the Gurobi Remote Services Reference Manual for more information on starting Compute Server jobs.
You must set this parameter through either a gurobi.lic file (using PRIORITY=n) or an empty environment.

Changing the parameter after your environment has been created will have no effect.
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter

Examples.

657

https://www.gurobi.com/documentation/10.0/remoteservices/remoteservices.html
https://www.gurobi.com/documentation/10.0/remoteservices/remoteservices.html

CSQueueTimeout
Queue timeout for new jobs
Type: double
Default value: -1
Minimum value: -1
Maximum value: Infinity

This parameter allows you to set a limit (in seconds) on how long a new Compute Server job will wait in queue
before it gives up (and reports a JOB_REJECTED error). Note that there might be a delay of up to 20 seconds for the
actual signaling of the time out.

Any negative value will allow a job to sit in the Compute Server queue indefinitely.
You must set this parameter through a gurobi.lic file (using QUEUETIMEOUT=n) or an empty environment.

Changing the parameter after your environment has been created will have no effect.
Refer to the Gurobi Remote Services Reference Manual for more information on starting Compute Server jobs.
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter

Examples.

CSRouter
Router node for Remote Services cluster
Type: string
Default value: ""

The router node for a Remote Services cluster. A router can be used to improve the robustness of a Compute
Server deployment. You can refer to the router using either its name or its IP address. A typical Remote Services
deployment won’t use a router, so you typically won’t need to set this parameter.

Refer to the Gurobi Remote Services Reference Manual for more information on starting Compute Server jobs.
You must set this parameter through either a gurobi.lic file (using ROUTER=name) or an empty environment.

Changing the parameter after your environment has been created will have no effect.
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter

Examples.

CSTLSInsecure
Use insecure mode in Transport Layer Security (TLS)
Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

Indicates whether the Remote Services cluster is using insecure mode in the TLS (Transport Layer Security).
Set this to 0 unless your server administrator tells you otherwise.

Refer to the Gurobi Remote Services Reference Manual for more information on starting Compute Server jobs.
You must set this parameter through either a gurobi.lic file (using CSTLSINSECURE) or an empty environment.

Changing the parameter after your environment has been created will have no effect.
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter

Examples.

CutAggPasses
Constraint aggregation passes in cut generation

658

https://www.gurobi.com/documentation/10.0/remoteservices/remoteservices.html
https://www.gurobi.com/documentation/10.0/remoteservices/remoteservices.html
https://www.gurobi.com/documentation/10.0/remoteservices/remoteservices.html

Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

A non-negative value indicates the maximum number of constraint aggregation passes performed during cut
generation. Overrides the Cuts parameter.

Changing the value of this parameter rarely produces a significant benefit.
One important note about integer-valued parameters: while the maximum value that can be stored in a signed

integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

Cutoff
Objective cutoff
Type: double
Default value: Infinity for minimization, -Infinity for maximization
Minimum value: -Infinity
Maximum value: Infinity

Indicates that you aren’t interested in solutions whose objective values are worse than the specified value. If
the objective value for the optimal solution is equal to or better than the specified cutoff, the solver will return the
optimal solution. Otherwise, it will terminate with a CUTOFF status (see the Status Code section for further details).

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

CutPasses
Cutting plane passes
Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

A non-negative value indicates the maximum number of cutting plane passes performed during root cut genera-
tion. The default value chooses the number of cut passes automatically.

In addition to cutting plane separation, each cut pass also applies heuristicsand node probing and also may
launch parallel root helper threads. So even when the Cuts parameter is set to 0, the cut loop will apply probing,
heuristics and parallel root helpers in a single cut loop iteration.

You should experiment with different values of this parameter if you notice the MIP solver spending significant
time on root cut passes that have little impact on the objective bound.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed
integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

659

Cuts
Global cut control
Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Global cut aggressiveness setting. Use value 0 to shut off cuts, 1 for moderate cut generation, 2 for aggressive
cut generation, and 3 for very aggressive cut generation. The default -1 value chooses automatically. This parameter
is overridden by the parameters that control individual cut types (e.g., CliqueCuts).

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

DegenMoves
Degenerate simplex moves
Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Limits degenerate simplex moves. These moves are performed to improve the integrality of the current relaxation
solution. By default, the algorithm chooses the number of degenerate move passes to perform automatically.

The default setting generally works well, but there can be cases where an excessive amount of time is spent after
the initial root relaxation has been solved but before the cut generation process or the root heuristics have started.
If you see multiple ’Total elapsed time’ messages in the log immediately after the root relaxation log, you may want
to try setting this parameter to 0.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

Disconnected
Disconnected component strategy
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

A MIP model can sometimes be made up of multiple, completely independent sub-models. This parameter
controls how aggressively we try to exploit this structure. A value of 0 ignores this structure entirely, while larger
values try more aggressive approaches. The default value of -1 chooses automatically.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

DisplayInterval
Frequency of log lines

660

Type: int
Default value: 5
Minimum value: 1
Maximum value: MAXINT

Determines the frequency at which log lines are printed (in seconds).
One important note about integer-valued parameters: while the maximum value that can be stored in a signed

integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

DistributedMIPJobs

Distributed MIP job count
Type: int
Default value: 0
Minimum value: 0
Maximum value: MAXINT

Enables distributed MIP. A value of n causes the MIP solver to divide the work of solving a MIP model among n
machines. Use the ComputeServer parameter to indicate the name of the cluster where you would like your distributed
MIP job to run (or use WorkerPool if your client machine will act as manager and you just need a pool of workers).

The distributed MIP solver produces a slightly different log from the standard MIP solver, and provides different
callbacks as well. Please refer to the Distributed Algorithms section of the Gurobi Remote Services Reference
Manual for additional details.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed
integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

DualReductions

Controls dual reductions
Type: int
Default value: 1
Minimum value: 0
Maximum value: 1

Determines whether dual reductions are performed during the optimization process. You should disable these
reductions if you received an optimization status of INF_OR_UNBD and would like a more definitive conclusion.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

FeasibilityTol

Primal feasibility tolerance

661

https://www.gurobi.com/documentation/10.0/remoteservices/remoteservices.html
https://www.gurobi.com/documentation/10.0/remoteservices/remoteservices.html

Type: double
Default value: 1e-6
Minimum value: 1e-9
Maximum value: 1e-2

All constraints must be satisfied to a tolerance of FeasibilityTol. Tightening this tolerance can produce smaller
constraint violations, but for numerically challenging models it can sometimes lead to much larger iteration counts.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

FeasRelaxBigM
Big-M value for feasibility relaxations
Type: double
Default value: 1e6
Minimum value: 0
Maximum value: Infinity

When relaxing a constraint in a feasibility relaxation, it is sometimes necessary to introduce a big-M value. This
parameter determines the default magnitude of that value.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

FlowCoverCuts
Flow cover cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls flow cover cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive
cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

FlowPathCuts
Flow path cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls flow path cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive
cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

662

FuncPieceError
Error allowed for PWL translation of function constraints
Type: double
Default value: 1e-3
Minimum value: 1e-6
Maximum value: 1e+6

If the FuncPieces parameter is set to value −1 or −2, this attribute provides the maximum allowed error (absolute
for −1, relative for −2) in the piecewise-linear approximation.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

FuncPieceLength
Piece length for PWL translation of function constraints
Type: double
Default value: 1e-2
Minimum value: 1e-5
Maximum value: 1e+6

If the FuncPieces parameter is set to value 1, this parameter gives the length of each piece of the piecewise-linear
approximation.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

FuncPieceRatio
Control whether to under- or over-estimate function values in PWL approximation
Type: double
Default value: -1
Minimum value: -1
Maximum value: 1

This parameter controls whether the piecewise-linear approximation of a function constraint is an underestimate
of the function, an overestimate, or somewhere in between. A value of 0.0 will always underestimate, while a value
of 1.0 will always overestimate. A value in between will interpolate between the underestimate and the overestimate.
A special value of -1 chooses points that are on the original function.

See the discussion of function constraints for more information.
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter

Examples.

FuncPieces
Sets strategy for PWL function approximation
Type: int
Default value: 0
Minimum value: -2
Maximum value: MAXINT

This parameter sets the strategy used for performing a piecewise-linear approximation of a function constraint.
There are a few options:

• FuncPieces >= 2: Sets the number of pieces; pieces are equal width.

663

• FuncPieces = 1: Uses a fixed width for each piece; the actual width is provided in the FuncPieceLength
parameter.

• FuncPieces = 0: Default value; chooses automatically.

• FuncPieces = -1: Bounds the absolute error of the approximation; the error bound is provided in the
FuncPieceError parameter.

• FuncPieces = -2: Bounds the relative error of the approximation; the error bound is provided in the
FuncPieceError parameter.

This parameter only applies to function constraints whose FuncPieces attribute has been set to 0.
See the discussion of function constraints for more information.
One important note about integer-valued parameters: while the maximum value that can be stored in a signed

integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

FuncMaxVal
Maximum allowed value for x and y variables in function constraints
Type: double
Default value: 1e+6
Minimum value: 0
Maximum value: Infinity

Very large values in piecewise-linear approximations can cause numerical issues. This parameter limits the bounds
on the variables that participate in function constraints. Specifically, if x or y participate in a function constraint,
any bound larger than FuncMaxVal (in absolute value) will be truncated.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

GomoryPasses
Gomory cut passes
Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

A non-negative value indicates the maximum number of Gomory cut passes performed. Overrides the Cuts
parameter.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed
integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

GUBCoverCuts
GUB cover cut generation

664

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls GUB cover cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive
cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

Heuristics
Time spent in feasibility heuristics
Type: double
Default value: 0.05
Minimum value: 0
Maximum value: 1

Determines the amount of time spent in MIP heuristics. You can think of the value as the desired fraction of
total MIP runtime devoted to heuristics (so by default, we aim to spend 5% of runtime on heuristics). Larger values
produce more and better feasible solutions, at a cost of slower progress in the best bound.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

IgnoreNames
Indicates whether to ignore names provided by users.
Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

This parameter affects how Gurobi deals with names. If set to 1, subsequent calls to add variables or constraints
to the model will ignore the associated names. Names for objectives and the model will also be ignored. In addition,
subsequent calls to modify name attributes will have no effect. Note that variables or constraints that had names at
the point this parameter was changed to 1 will retain their names. If you wish to discard all name information, you
should set this parameter to 1 before adding variables or constraints to the model.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

IISMethod
Selects method used to compute IIS
Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

665

Chooses the IIS method to use. Method 0 is often faster, while method 1 can produce a smaller IIS. Method 2
ignores the bound constraints. Method 3 will return the IIS for the LP relaxation of a MIP model if the relaxation
is infeasible, even though the result may not be minimal when integrality constraints are included. The default value
of -1 chooses automatically.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

ImpliedCuts
Implied bound cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls implied bound cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for
aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

ImproveStartGap
Solution improvement strategy control
Type: double
Default value: 0.0
Minimum value: 0.0
Maximum value: Infinity

The MIP solver can change parameter settings in the middle of the search in order to adopt a strategy that
gives up on moving the best bound and instead devotes all of its effort towards finding better feasible solutions.
This parameter allows you to specify an optimality gap at which the MIP solver switches to a solution improvement
strategy. For example, setting this parameter to 0.1 will cause the MIP solver to switch strategies once the relative
optimality gap is smaller than 0.1.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

ImproveStartNodes
Solution improvement strategy control
Type: double
Default value: Infinity
Minimum value: 0.0
Maximum value: Infinity

The MIP solver can change parameter settings in the middle of the search in order to adopt a strategy that
gives up on moving the best bound and instead devotes all of its effort towards finding better feasible solutions. This
parameter allows you to specify the node count at which the MIP solver switches to a solution improvement strategy.
For example, setting this parameter to 10 will cause the MIP solver to switch strategies once the node count is larger
than 10.

666

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

ImproveStartTime
Solution improvement strategy control
Type: double
Default value: Infinity
Minimum value: 0.0
Maximum value: Infinity

The MIP solver can change parameter settings in the middle of the search in order to adopt a strategy that
gives up on moving the best bound and instead devotes all of its effort towards finding better feasible solutions. This
parameter allows you to specify the time when the MIP solver switches to a solution improvement strategy. For
example, setting this parameter to 10 will cause the MIP solver to switch strategies 10 seconds after starting the
optimization.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

InfProofCuts
Infeasibility proof cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls infeasibility proof cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for
aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

InfUnbdInfo
Additional info for infeasible/unbounded models
Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

Determines whether simplex (and crossover) will compute additional information when a model is determined
to be infeasible or unbounded. Set this parameter if you want to query the unbounded ray for unbounded mod-
els (through the UnbdRay attribute), or the infeasibility proof for infeasible models (through the FarkasDual and
FarkasProof attributes).

Note that if a model is found to be either infeasible or unbounded, and you simply want to know which one it is,
you should use the DualReductions parameter instead. It performs much less additional computation.

667

Note: Only affects linear programming (LP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

InputFile
Import data into a model before beginning optimization
Type: string
Default value: ""

Specifies the name of a file that will be read before beginning a command-line optimization run. This parameter
can be used to input a MIP start (a .mst or .sol file), MIP hints (a .hnt file), a simplex basis (a .bas file), Gurobi
attributes (a .attr file), or a set of parameter settings (a .prm file) from the Gurobi command line. The suffix may
optionally be followed by .zip, .gz, .bz2, or .7z if the input files are compressed.

Note: Command-line only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

IntegralityFocus
Integrality focus
Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

One unfortunate reality in MIP is that integer variables don’t always take exact integral values. While this
typically doesn’t create significant problems, in some situations the side-effects can be quite undesirable. The best-
known example is probably a trickle flow, where a continuous variable that is meant to be zero when an associated
binary variable is zero instead takes a non-trivial value. More precisely, given a constraint y ≤ Mb, where y is a
non-negative continuous variable, b is a binary variable, and M is a constant that captures the largest possible value
of y, the constraint is intended to enforce the relationship that y must be zero if b is zero. With the default integer
feasibility tolerance, the binary variable is allowed to take a value as large as 1e − 5 while still being considered as
taking value zero. If the M value is large, then the Mb upper bound on the y variable can be substantial.

Reducing the value of the IntFeasTol parameter can mitigate the effects of such trickle flows, but often at a
significant cost, and often with limited success. The IntegralityFocus parameter provides a better alternative.
Setting this parameter to 1 requests that the solver work harder to try to avoid solutions that exploit integrality
tolerances. More precisely, the solver tries to find solutions that are still (nearly) feasible if all integer variables are
rounded to exact integral values. We should say that the solver won’t always succeed in finding such solutions, and
that this setting introduces a modest performance penalty, but the setting will significantly reduce the frequency and
magnitude of such violations.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

IntFeasTol
Integer feasibility tolerance
Type: double
Default value: 1e-5
Minimum value: 1e-9
Maximum value: 1e-1

668

An integrality restriction on a variable is considered satisfied when the variable’s value is less than IntFeasTol
from the nearest integer value. Tightening this tolerance can produce smaller integrality violations, but very tight
tolerances may significantly increase runtime. Loosening this tolerance rarely reduces runtime.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

IterationLimit
Simplex iteration limit
Type: double
Default value: Infinity
Minimum value: 0
Maximum value: Infinity

Limits the number of simplex iterations performed. The limit applies to MIP, barrier crossover, and simplex.
Optimization returns with an ITERATION_LIMIT status if the limit is exceeded (see the Status Code section for further
details).

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

JobID
Compute Server Job ID
Type: string
Default value: ""

If you are running on a Compute Server, this parameter provides the Compute Server Job ID for the current job.
Note that this is a read-only parameter.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

JSONSolDetail
Level of detail in JSON solution format
Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

This parameter controls the amount of detail included in a JSON solution. For example, when this parameter is
set to 1, the JSON string will contain data for all of the variables, even those with solution value 0.

For a precise description of the contents of the resulting JSON string, please refer to the JSON solution format
section.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

LazyConstraints
Programs that use lazy constraints must set this parameter

669

Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

Programs that add lazy constraints through a callback must set this parameter to value 1. The parameter tells
the Gurobi algorithms to avoid certain reductions and transformations that are incompatible with lazy constraints.

Note that if you use lazy constraints by setting the Lazy attribute (and not through a callback), there’s no need
to set this parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

LicenseID
License ID
Type: int
Default value: 0
Minimum value: 0
Maximum value: MAXINT

When using a WLS license, set this parameter to the license ID. You can retrieve this value from your account
on the Gurobi Web License Manager site.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

LiftProjectCuts
Lift-and-project cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls lift-and-project cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for
aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

LPWarmStart
Controls whether and how to warm-start LP optimization
Type: int
Default value: 1
Minimum value: 0
Maximum value: 2

Controls whether and how Gurobi uses warm start information for an LP optimization. The non default setting
of 2 is particularly useful for communicating advanced start information while retaining the performance benefits of

670

https://license.gurobi.com

presolve. A warm start can consist of any combination of basis statuses, a primal start vector, or a dual start vector.
It is specified using the attributes VBasis and CBasis or PStart and DStart on the original model.

As a general rule, setting this parameter to 0 ignores any start information and solves the model from scratch.
Setting it to 1 (the default) uses the provided warm start information to solve the original, unpresolved problem,
regardless of whether presolve is enabled. Setting it to 2 uses the start information to solve the presolved problem,
assuming that presolve is enabled. This involves mapping the solution of the original problem into an equivalent
(or sometimes nearly equivalent) crushed solution of the presolved problem. If presolve is disabled, then setting 2
still prioritizes start vectors, while setting 1 prioritizes basis statuses. Taken together, the LPWarmStart parameter
setting, the LP algorithm specified by Gurobi’s Method parameter, and the available advanced start information
determine whether Gurobi will use basis statuses only, basis statuses augmented with information from start vectors,
or a basis obtained by applying the crossover method to the provided primal and dual start vectors to jump start the
optimization.

When Gurobi’s Method parameter requests the barrier solver, primal and dual start vectors are prioritized over
basis statuses (but only if you provide both). These start vectors are fed to the crossover procedure. This is the
same crossover that is used to compute a basic solution from the interior solution produced by the core barrier
algorithm, but in this case crossover is started from arbitrary start vectors. If you set the LPWarmStart parameter
to 1, crossover will be invoked on the original model using the provided vectors. Any provided basis information
will not be used in this case. If you set LPWarmStart to 2, crossover will be invoked on the presolved model using
crushed start vectors. If you set the parameter to 2 and provide a basis but no start vectors, the basis will be used
to compute the corresponding primal and dual solutions on the original model. Those solutions will then be crushed
and used as primal and dual start vectors for the crossover, which will then construct a basis for the presolved model.
Note that for all of these settings and start combinations, no barrier algorithm iterations are performed.

The simplex algorithms provide more warm-starting options, With a parameter value of 1, simplex will start
from a provided basis, if available. Otherwise, it uses a provided start vector to refine the crash basis it computes.
Primal simplex will use PStart and dual simplex will use DStart in this refinement process.

With a value of 2, simplex will use the crushed start vector on the presolved model (PStart for primal simplex,
DStart for dual) to refine the crash basis. This is true regardless of whether the start is derived from start vectors
or a starting basis from the original model. The difference is that if you provide an advanced basis, the basis will be
used to compute the corresponding primal and dual solutions on the original model from which the primal or dual
start on the presolved model will be derived.

Note: Only affects linear programming (LP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

LogFile
Name for Gurobi log file
Type: string
Default value: ""

Determines the name of the Gurobi log file. Modifying this parameter closes the current log file and opens the
specified file. Use an empty string for no log file. Use OutputFlag to shut off all logging.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

LogToConsole
Control console logging
Type: int
Default value: 1
Minimum value: 0
Maximum value: 1

Enables or disables console logging. Use OutputFlag to shut off all logging.

671

Note that this refers to all the output of Gurobi to the console including the various display and print functions
provided by the API in interactive environments. It also disables logging on the remote side of Instant Cloud or
Compute Server environments.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

MarkowitzTol
Threshold pivoting tolerance
Type: double
Default value: 0.0078125
Minimum value: 1e-4
Maximum value: 0.999

The Markowitz tolerance is used to limit numerical error in the simplex algorithm. Specifically, larger values
reduce the error introduced in the simplex basis factorization. A larger value may avoid numerical problems in rare
situations, but it will also harm performance.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

MemLimit
Memory limit
Type: double
Default value: Infinity
Minimum value: 0
Maximum value: Infinity

Limits the total amount of memory (in GB, i.e., 109 bytes) available to Gurobi. If more is needed, Gurobi will
fail with an OUT_OF_MEMORY error (see the Error Code section for further details).

Note that it is not possible to retrieve solution information after an error termination. Thus, the behavior of this
parameter is different from that of other termination criteria like SoftMemLimit, TimeLimit, or NodeLimit, where
the solver will terminate with a Status Code and solution information will still be available.

One advantage of using this parameter rather than the similar SoftMemLimit is that MemLimit is checked after
every memory allocation, so Gurobi will terminate at precisely the point where the limit is exceeded.

Note that allocated memory is tracked across all models within a Gurobi environment. If you create multiple
models in one environment, these additional models will count towards overall memory consumption.

Memory usage is also tracked across all threads. One consequence of this is that termination may be non-
deterministic for multi-threaded runs.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

Method
Algorithm used to solve continuous models
Type: int
Default value: -1
Minimum value: -1
Maximum value: 5

Algorithm used to solve continuous models or the initial root relaxation of a MIP model. Options are:
• -1=automatic,
• 0=primal simplex,

672

• 1=dual simplex,
• 2=barrier,
• 3=concurrent,
• 4=deterministic concurrent, and
• 5=deterministic concurrent simplex.
Available settings and default behaviour depend on the model type or the type of the initial root relaxation. In

the current release, the default Automatic (-1) setting will typically choose non-deterministic concurrent (Method=3)
for an LP, barrier (Method=2) for a QP or QCP, and dual (Method=1) for the MIP root relaxation. If the size
of the MIP root relaxation is large, then it will often select deterministic concurrent (Method=4) or deterministic
concurrent simplex (Method=5).

Concurrent methods aren’t available for QP and QCP. Only the simplex and barrier algorithms are available for
continuous QP models. If you select barrier (Method=2) to solve the root of an MIQP model, then you need to also
select barrier for the node relaxations (i.e. set NodeMethod=2). Only barrier is available for continuous QCP models.
However if you choose LP relaxations for solving MIQCP, you can also select the simplex algorithms (Method=0 or
1).

Concurrent optimizers run multiple solvers on multiple threads simultaneously, and choose the one that finishes
first. Method=3 and Method=4 will run dual simplex, barrier, and sometimes primal simplex (depending on the num-
ber of available threads). Method=5 will run both primal and dual simplex. The deterministic options (Method=4
and Method=5) give the exact same result each time, while Method=3 is often faster but can produce different
optimal bases when run multiple times.

The default setting is rarely significantly slower than the best possible setting, so you generally won’t see a big
gain from changing this parameter. There are classes of models where one particular algorithm is consistently fastest,
though, so you may want to experiment with different options when confronted with a particularly difficult model.

Note that if memory is tight on an LP model, you should consider using the dual simplex method (Method=1).
The concurrent optimizer, which is typically chosen when using the default setting, consumes a lot more memory
than dual simplex alone.

In multiobjective LP optimization:
• The first objective is solved using LP defaults. It can be set by the user using the Method parameter.
• Subsequent objectives are solved by default using primal simplex to allow for warm starting. The method used

here can be controlled using MultiObjMethod.
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter

Examples.

MinRelNodes
Minimum relaxation heuristic
Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Number of nodes to explore in the minimum relaxation heuristic. Note that this heuristic is only applied at the
end of the MIP root, and only when no other root heuristic finds a feasible solution.

This heuristic is quite expensive, and generally produces poor quality solutions. You should generally only use
it if other means, including exploration of the tree with default settings, fail to produce a feasible solution.

The default value automatically chooses whether to apply the heuristic. It will only rarely choose to do so.
One important note about integer-valued parameters: while the maximum value that can be stored in a signed

integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

673

MIPFocus
MIP solver focus
Type: int
Default value: 0
Minimum value: 0
Maximum value: 3

The MIPFocus parameter allows you to modify your high-level solution strategy, depending on your goals. By
default, the Gurobi MIP solver strikes a balance between finding new feasible solutions and proving that the current
solution is optimal. If you are more interested in finding feasible solutions quickly, you can select MIPFocus=1. If you
believe the solver is having no trouble finding good quality solutions, and wish to focus more attention on proving
optimality, select MIPFocus=2. If the best objective bound is moving very slowly (or not at all), you may want to try
MIPFocus=3 to focus on the bound.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

MIPGap
Relative MIP optimality gap
Type: double
Default value: 1e-4
Minimum value: 0
Maximum value: Infinity

The MIP solver will terminate (with an optimal result) when the gap between the lower and upper objective
bound is less than MIPGap times the absolute value of the incumbent objective value. More precisely, if zP is the
primal objective bound (i.e., the incumbent objective value, which is the upper bound for minimization problems),
and zD is the dual objective bound (i.e., the lower bound for minimization problems), then the MIP gap is defined as

gap = |zP − zD|/|zP |.

Note that if zP = zD = 0, then the gap is defined to be zero. If zP = 0 and zD 6= 0, the gap is defined to be
infinity.

For most models, zP and zD will have the same sign throughout the optimization process, and then the gap is
monotonically decreasing. But if zP and zD have opposite signs, the relative gap may increase after finding a new
incumbent solution, even though the absolute gap |zP − zD| has decreased.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

MIPGapAbs
Absolute MIP optimality gap
Type: double
Default value: 1e-10
Minimum value: 0
Maximum value: Infinity

The MIP solver will terminate (with an optimal result) when the gap between the lower and upper objective
bound is less than MIPGapAbs.

674

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

MIPSepCuts
MIP separation cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls MIP separation cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for
aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

MIQCPMethod
Method used to solve MIQCP models
Type: int
Default value: -1
Minimum value: -1
Maximum value: 1

Controls the method used to solve MIQCP models. Value 1 uses a linearized, outer-approximation approach,
while value 0 solves continuous QCP relaxations at each node. The default setting (-1) chooses automatically.

Note: Only affects MIQCP models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

MIRCuts
MIR cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls Mixed Integer Rounding (MIR) cut generation. Use 0 to disable these cuts, 1 for moderate cut genera-
tion, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

ModKCuts
Mod-k cut generation

675

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls mod-k cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive
cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

MultiObjMethod
Method used for multi-objective solves
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

When solving a continuous multi-objective model using a hierarchical approach, the model is solved once for
each objective. The algorithm used to solve for the highest priority objective is controlled by the Method parameter.
This parameter determines the algorithm used to solve for subsequent objectives. As with the Method parameters,
values of 0 and 1 use primal and dual simplex, respectively. A value of 2 indicates that warm-start information from
previous solves should be discarded, and the model should be solved from scratch (using the algorithm indicated by
the Method parameter). The default setting of -1 usually chooses primal simplex.

Note: Only affects continuous multi-objective models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

MultiObjPre
Initial presolve level on multi-objective models
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls the initial presolve level used for multi-objective models. Value 0 disables the initial presolve, value 1
applies presolve conservatively, and value 2 applies presolve aggressively. The default -1 value usually applies presolve
conservatively. Aggressive presolve may increase the chance of the objective values being slightly different than those
for other options.

Note: Only affects multi-objective models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

MultiObjSettings
Create multi-objective settings from a list of .prm files
Type: string
Default value: ""

676

This command-line only parameter allows you to specify a comma-separated list of .prm files that are used to
set parameters for the different solves in a multi-objective model.

To give an example, you could create two .prm files with the following contents...
vb0.prm:

VarBranch 0

vb1.prm:

VarBranch 1

Issuing the command gurobi_cl MultiObjSettings=vb0.prm,vb1.prm model.mps would use different branching
strategies when solving for the two objectives of the multi-objective model.

Note: Command-line only
Note: Only affects multi-objective models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

NetworkAlg
Network simplex algorithm
Type: int
Default value: -1
Minimum value: -1
Maximum value: 1

Controls whether to use network simplex. Value 0 doesn’t use network simplex. Value 1 indicates to use network
simplex, if an LP is a network problem. The default -1 value chooses automatically.

Note: Only affects linear programming (LP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

NetworkCuts
Network cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls network cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive
cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

NLPHeur
Controls the NLP heuristic

677

Type: int
Default value: 1
Minimum value: 0
Maximum value: 1

The NLP heuristic uses a non-linear barrier solver to find feasible solutions to non-convex quadratic models. It
can often find solutions much more quickly than the alternative, but in some cases it can consume significant runtime
without producing a solution. By default, the heuristic is enabled (1). Use 0 to disable the heuristic.

Note: Only affects models with nonconvex quadratic expressions in the objective or constraints

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

NodefileDir

Directory for node files
Type: string
Default value: "."

Determines the directory into which nodes are written when node memory usage exceeds the specified Node-
fileStart value.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

NodefileStart

Write MIP nodes to disk
Type: double
Default value: Infinity
Minimum value: 0
Maximum value: Infinity

If you find that the Gurobi optimizer exhausts memory when solving a MIP, you should modify the NodefileStart
parameter. When the amount of memory used to store nodes (measured in GB, i.e., 109 bytes) exceeds the specified
parameter value, nodes are compressed and written to disk. We recommend a setting of 0.5, but you may wish to
choose a different value, depending on the memory available in your machine. By default, nodes are written to the
current working directory. The NodefileDir parameter can be used to choose a different location.

If you still exhaust memory after setting the NodefileStart parameter to a small value, you should try limiting
the thread count. Each thread in parallel MIP requires a copy of the model, as well as several other large data
structures. Reducing the Threads parameter can sometimes significantly reduce memory usage.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

NodeLimit

MIP node limit

678

Type: double
Default value: Infinity
Minimum value: 0
Maximum value: Infinity

Limits the number of MIP nodes explored. Optimization returns with an NODE_LIMIT status if the limit is exceeded
(see the Status Code section for further details). Note that if multiple threads are used for the optimization, the
actual number of explored nodes may be slightly larger than the set limit.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

NodeMethod
Method used to solve MIP node relaxations
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Algorithm used for MIP node relaxations (except for the initial root node relaxation, see Method). Options are:
-1=automatic, 0=primal simplex, 1=dual simplex, and 2=barrier. Note that barrier is not an option for MIQP node
relaxations.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

NonConvex
Strategy for handling non-convex quadratic programs
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Sets the strategy for handling non-convex quadratic objectives or non-convex quadratic constraints. With setting
0, an error is reported if the original user model contains non-convex quadratic constructs, except for Q matrix
linearization controlled by the PreQLinearize parameter. With setting 1, an error is reported if non-convex quadratic
constructs could not be discarded or linearized during presolve. With setting 2, non-convex quadratic problems are
solved by means of translating them into bilinear form and applying spatial branching. The default -1 setting is
currently equivalent to 1, and may change in future releases to be equivalent to 2.

Note: Only affects QP, QCP, MIQP, and MIQCP models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

NoRelHeurTime
Limits the amount of time spent in the NoRel heuristic

679

Type: double
Default value: 0
Minimum value: 0
Maximum value: Infinity

Limits the amount of time (in seconds) spent in the NoRel heuristic. This heuristic searches for high-quality
feasible solutions before solving the root relaxation. It can be quite useful on models where the root relaxation is
particularly expensive.

Note that this parameter will introduce non-determinism - different runs may take different paths. Use the
NoRelHeurWork parameter for deterministic results.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

NoRelHeurWork
Limits the amount of work spent in the NoRel heuristic
Type: double
Default value: 0
Minimum value: 0
Maximum value: Infinity

Limits the amount of work spent in the NoRel heuristic. This heuristic searches for high-quality feasible solutions
before solving the root relaxation. It can be quite useful on models where the root relaxation is particularly expensive.

The work metric used in this parameter is tough to define precisely. A single unit corresponds to roughly a second,
but this will depend on the machine, the core count, and in some cases the model. You may need to experiment to
find a good setting for your model.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

NormAdjust
Choose simplex pricing norm.
Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Chooses from among multiple pricing norm variants. The details of how this parameter affects the simplex pricing
algorithm are subtle and difficult to describe, so we’ve simply labeled the options 0 through 3. The default value of
-1 chooses automatically.

Changing the value of this parameter rarely produces a significant benefit.
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter

Examples.

NumericFocus
Numerical focus

680

Type: int
Default value: 0
Minimum value: 0
Maximum value: 3

The NumericFocus parameter controls the degree to which the code attempts to detect and manage numerical
issues. The default setting (0) makes an automatic choice, with a slight preference for speed. Settings 1-3 increasingly
shift the focus towards being more careful in numerical computations. With higher values, the code will spend more
time checking the numerical accuracy of intermediate results, and it will employ more expensive techniques in order
to avoid potential numerical issues.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

OBBT
Controls aggressiveness of Optimality-Based Bound Tightening
Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Value 0 disables Optimality-Based Bound Tightening (OBBT). Levels 1-3 describe the amount of work allowed
for OBBT ranging from moderate to aggressive. The default -1 value is an automatic setting which chooses a rather
moderate setting.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

ObjNumber
Selects objective index of multi-objectives
Type: int
Default value: 0
Minimum value: 0
Maximum value: MAXINT

When working with multiple objectives, this parameter selects the index of the objective you want to work with.
When you query or modify an attribute associated with multiple objectives (ObjN, ObjNVal, etc.), the ObjNumber
parameter will determine which objective is actually affected. The value of this parameter should be less than the
value of the NumObj attribute (which captures the number of objectives in the model).

Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.
One important note about integer-valued parameters: while the maximum value that can be stored in a signed

integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

ObjScale
Objective scaling
Type: double
Default value: 0.0
Minimum value: -1
Maximum value: Infinity

681

When positive, divides the model objective by the specified value to avoid numerical issues that may result from
very large or very small objective coefficients. The default value of 0 decides on the scaling automatically. A value
less than zero uses the maximum coefficient to the specified power as the scaling (so ObjScale=-0.5 would scale by
the square root of the largest objective coefficient).

Note that objective scaling can lead to large dual violations on the original, unscaled objective when the optimality
tolerance with the scaled objective is barely satisfied, so it should be used sparingly. Note also that scaling will be
more effective when all objective coefficients are of similar orders of magnitude, as opposed to objectives with a wide
range of coefficients. In the latter case, consider using the Multiple Objectives feature instead.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

OptimalityTol
Dual feasibility tolerance
Type: double
Default value: 1e-6
Minimum value: 1e-9
Maximum value: 1e-2

Reduced costs must all be smaller than OptimalityTol in the improving direction in order for a model to be
declared optimal.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

OutputFlag
Controls Gurobi output
Type: int
Default value: 1
Minimum value: 0
Maximum value: 1

Enables or disables solver output. Use LogFile and LogToConsole for finer-grain control. Setting OutputFlag to
0 is equivalent to setting LogFile to "" and LogToConsole to 0.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

PartitionPlace
Controls where the partition heuristic runs
Type: int
Default value: 15
Minimum value: 0
Maximum value: 31

Setting the Partition attribute on at least one variable in a model enables the partitioning heuristic, which uses
large-neighborhood search to try to improve the current incumbent solution.

This parameter determines where that heuristic runs. Options are:
• Before the root relaxation is solved (16)
• At the start of the root cut loop (8)
• At the end of the root cut loop (4)
• At the nodes of the branch-and-cut search (2)

682

• When the branch-and-cut search terminates (1)
The parameter value is a bit vector, where each bit turns the heuristic on or off at that place. The numerical values
next to the options listed above indicate which bit controls the corresponding option. Thus, for example, to enable
the heuristic at the beginning and end of the root cut loop (and nowhere else), you would set the 8 bit and the 4 bit
to 1, which would correspond to a parameter value of 12.

The default value of 15 indicates that we enable every option except the first one listed above.
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter

Examples.

PerturbValue
Simplex perturbation
Type: double
Default value: 0.0002
Minimum value: 0
Maximum value: Infinity

Magnitude of the simplex perturbation. Note that perturbation is only applied when progress has stalled, so the
parameter will often have no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

PoolGap
Maximum relative gap for stored solutions
Type: double
Default value: Infinity
Minimum value: 0
Maximum value: Infinity

Determines how large a (relative) gap to tolerate in stored solutions. When this parameter is set to a non-default
value, solutions whose objective values exceed that of the best known solution by more than the specified (relative)
gap are discarded. For example, if the MIP solver has found a solution at objective 100, then a setting of PoolGap=0.2
would discard solutions with objective worse than 120 (assuming a minimization objective).

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

PoolGapAbs
Maximum absolute gap for stored solutions
Type: double
Default value: Infinity
Minimum value: 0
Maximum value: Infinity

Determines how large a (absolute) gap to tolerate in stored solutions. When this parameter is set to a non-
default value, solutions whose objective values exceed that of the best known solution by more than the specified
(absolute) gap are discarded. For example, if the MIP solver has found a solution at objective 100, then a setting of
PoolGapAbs=20 would discard solutions with objective worse than 120 (assuming a minimization objective).

Note: Only affects mixed integer programming (MIP) models

683

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

PoolSearchMode
Selects different modes for exploring the MIP search tree
Type: int
Default value: 0
Minimum value: 0
Maximum value: 2

Selects different modes for exploring the MIP search tree. With the default setting (PoolSearchMode=0), the
MIP solver tries to find an optimal solution to the model. It keeps other solutions found along the way, but those are
incidental. By setting this parameter to a non-default value, the MIP search will continue after the optimal solution
has been found in order to find additional, high-quality solutions. With a non-default value (PoolSearchMode=1 or
PoolSearchMode=2), the MIP solver will try to find n solutions, where n is determined by the value of the PoolSolutions
parameter. With a setting of 1, there are no guarantees about the quality of the extra solutions, while with a setting of
2, the solver will find the n best solutions. The cost of the solve will increase with increasing values of this parameter.

Once optimization is complete, the PoolObjBound attribute can be used to evaluate the quality of the solutions
that were found. For example, a value of PoolObjBound=100 indicates that there are no other solutions with objective
better 100, and thus that any known solutions with objective better than 100 are better than any as-yet undiscovered
solutions.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

PoolSolutions
Number of MIP solutions to store
Type: int
Default value: 10
Minimum value: 1
Maximum value: MAXINT

Determines how many MIP solutions are stored. For the default value of PoolSearchMode, these are just the solu-
tions that are found along the way in the process of exploring the MIP search tree. For other values of PoolSearchMode,
this parameter sets a target for how many solutions to find, so larger values will impact performance.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed
integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

PreCrush
Controls presolve reductions that affect user cuts
Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

684

Shuts off a few reductions in order to allow presolve to transform any constraint on the original model into
an equivalent constraint on the presolved model. You should consider setting this parameter to 1 if you are using
callbacks to add your own cuts. A cut that cannot be applied to the presolved model will be silently ignored. The
impact on the size of the presolved problem is usually small.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

PreDepRow
Controls the presolve dependent row reduction
Type: int
Default value: -1
Minimum value: -1
Maximum value: 1

Controls the presolve dependent row reduction, which eliminates linearly dependent constraints from the con-
straint matrix. The default setting (-1) applies the reduction to continuous models but not to MIP models. Setting
0 turns the reduction off for all models. Setting 1 turns it on for all models.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

PreDual
Controls presolve model dualization
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls whether presolve forms the dual of a continuous model. Depending on the structure of the model,
solving the dual can reduce overall solution time. The default setting uses a heuristic to decide. Setting 0 forbids
presolve from forming the dual, while setting 1 forces it to take the dual. Setting 2 employs a more expensive heuristic
that forms both the presolved primal and dual models (on two threads), and heuristically chooses one of them.

Note: Only affects LP, QP, and QCP models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

PreMIQCPForm
Format of presolved MIQCP model
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Determines the format of the presolved version of an MIQCP model. Option 0 leaves the model in MIQCP
form, so the branch-and-cut algorithm will operate on a model with arbitrary quadratic constraints. Option 1 always
transforms the model into MISOCP form; quadratic constraints are transformed into second-order cone constraints.
Option 2 always transforms the model into disaggregated MISOCP form; quadratic constraints are transformed into
rotated cone constraints, where each rotated cone contains two terms and involves only three variables.

The default setting (-1) choose automatically. The automatic setting works well, but there are cases where forcing
a different form can be beneficial.

685

Note: Only affects MIQCP models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

PrePasses
Presolve pass limit
Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Limits the number of passes performed by presolve. The default setting (-1) chooses the number of passes
automatically. You should experiment with this parameter when you find that presolve is consuming a large fraction
of total solve time.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed
integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

PreQLinearize
Presolve quadratic linearization
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls presolve Q matrix linearization. Binary variables in quadratic expressions provide some freedom to state
the same expression in multiple different ways. Options 1 and 2 of this parameter attempt to linearize quadratic
constraints or a quadratic objective, replacing quadratic terms with linear terms, using additional variables and linear
constraints. This can potentially transform an MIQP or MIQCP model into an MILP. Option 1 focuses on producing
an MILP reformulation with a strong LP relaxation, with a goal of limiting the size of the MIP search tree. Option
2 aims for a compact reformulation, with a goal of reducing the cost of each node. Option 0 attempts to leave Q
matrices unmodified; it won’t add variables or constraints, but it may still perform adjustments on quadratic objective
functions to make them positive semi-definite (PSD). The default setting (-1) chooses automatically.

Note: Only affects MIQP and MIQCP models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

Presolve
Controls the presolve level
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

686

Controls the presolve level. A value of -1 corresponds to an automatic setting. Other options are off (0),
conservative (1), or aggressive (2). More aggressive application of presolve takes more time, but can sometimes lead
to a significantly tighter model.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

PreSOS1BigM
Threshold for SOS1-to-binary reformulation
Type: double
Default value: -1
Minimum value: -1
Maximum value: 1e10

Controls the automatic reformulation of SOS1 constraints into binary form. SOS1 constraints are often handled
more efficiently using a binary representation. The reformulation often requires big-M values to be introduced as
coefficients. This parameter specifies the largest big-M that can be introduced by presolve when performing this
reformulation. Larger values increase the chances that an SOS1 constraint will be reformulated, but very large values
(e.g., 1e8) can lead to numerical issues.

The default value of -1 chooses a threshold automatically. You should set the parameter to 0 to shut off SOS1
reformulation entirely, or a large value to force reformulation.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

Please refer to this section for more information on SOS constraints.

PreSOS1Encoding
Encoding used for SOS1 reformulation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Controls the automatic reformulation of SOS1 constraints. Such constraints can be handled directly by the
MIP branch-and-cut algorithm, but they are often handled more efficiently by reformulating them using binary or
integer variables. There are several diffent ways to perform this reformulation; they differ in their size and strength.
Smaller reformulations add fewer variables and constraints to the model. Stronger reformulations reduce the number
of branch-and-cut nodes required to solve the resulting model.

Options 0 and 1 of this parameter encode an SOS1 constraint using a formulation whose size is linear in the
number of SOS members. Option 0 uses a so-called multiple choice model. It usually produces an LP relaxation that
is easier to solve. Option 1 uses an incremental model. It often gives a stronger representation, reducing the amount
of branching required to solve harder problems.

Options 2 and 3 of this parameter encode the SOS1 using a formulation of logarithmic size. They both only apply
when all the variables in the SOS1 are non-negative. Option 3 additionally requires that the sum of the variables
in the SOS1 is equal to 1. Logarithmic formulations are often advantageous when the SOS1 constraint has a large
number of members. Option 2 focuses on a formulation whose LP relaxation is easier to solve, while option 3 has
better branching behaviour.

The default value of -1 chooses a reformulation for each SOS1 constraint automatically.
Note that the reformulation of SOS1 constraints is also influenced by the PreSOS1BigM parameter. To shut off

the reformulation entirely you should set that parameter to 0.
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter

Examples.
Please refer to this section for more information on SOS constraints.

687

PreSOS2BigM

Threshold for SOS2-to-binary reformulation
Type: double
Default value: -1
Minimum value: -1
Maximum value: 1e10

Controls the automatic reformulation of SOS2 constraints into binary form. SOS2 constraints are often handled
more efficiently using a binary representation. The reformulation often requires big-M values to be introduced as
coefficients. This parameter specifies the largest big-M that can be introduced by presolve when performing this
reformulation. Larger values increase the chances that an SOS2 constraint will be reformulated, but very large values
(e.g., 1e8) can lead to numerical issues.

The default value of -1 chooses a threshold automatically. You should set the parameter to 0 to shut off SOS2
reformulation entirely, or a large value to force reformulation.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

Please refer to this section for more information on SOS constraints.

PreSOS2Encoding

Encoding used for SOS2 reformulation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Controls the automatic reformulation of SOS2 constraints. Such constraints can be handled directly by the
MIP branch-and-cut algorithm, but they are often handled more efficiently by reformulating them using binary or
integer variables. There are several diffent ways to perform this reformulation; they differ in their size and strength.
Smaller reformulations add fewer variables and constraints to the model. Stronger reformulations reduce the number
of branch-and-cut nodes required to solve the resulting model.

Options 0 and 1 of this parameter encode an SOS2 constraint using a formulation whose size is linear in the the
number of SOS members. Option 0 uses a so-called multiple choice model. It usually produces an LP relaxation that
is easier to solve. Option 1 uses an incremental model. It often gives a stronger representation, reducing the amount
of branching required to solve harder problems.

Options 2 and 3 of this parameter encode the SOS2 using a formulation of logarithmic size. They both only apply
when all the variables in the SOS2 are non-negative. Option 3 additionally requires that the sum of the variables
in the SOS2 is equal to 1. Logarithmic formulations are often advantageous when the SOS2 constraint has a large
number of members. Option 2 focuses on a formulation whose LP relaxation is easier to solve, while option 3 has
better branching behaviour.

The default value of -1 chooses a reformulation for each SOS2 constraint automatically.
Note that the reformulation of SOS2 constraints is also influenced by the PreSOS2BigM parameter. To shut off

the reformulation entirely you should set that parameter to 0.
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter

Examples.
Please refer to this section for more information on SOS constraints.

PreSparsify

Controls the presolve sparsify reduction

688

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls the presolve sparsify reduction. This reduction can sometimes significantly reduce the number of non-
zero values in the presolved model. Value 0 shuts off the reduction, while value 1 forces it on for mixed integer
programming (MIP) models and value 2 forces it on for all types of models, including linear programming (LP)
models, and MIP relaxations. The default value of -1 chooses automatically.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

ProjImpliedCuts
Projected implied bound cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls projected implied bound cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or
2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

PSDCuts
PSD cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls PSD cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive cut
generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Note: Only affects models with nonconvex quadratic expressions in the objective or constraints

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

PSDTol
Positive semi-definite tolerance
Type: double
Default value: 1e-6
Minimum value: 0
Maximum value: Infinity

Sets a limit on the amount of diagonal perturbation that the optimizer is allowed to perform on a Q matrix
in order to correct minor PSD violations. If a larger perturbation is required, the optimizer will terminate with a
GRB_ERROR_Q_NOT_PSD error.

689

Note: Only affects QP, QCP, MIQP, and MIQCP models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

PumpPasses
Passes of the feasibility pump heuristic
Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Number of passes of the feasibility pump heuristic. Note that this heuristic is only applied at the end of the MIP
root.

This heuristic is quite expensive, and generally produces poor quality solutions. You should generally only use
it if other means, including exploration of the tree with default settings, fail to produce a feasible solution.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed
integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

QCPDual
Dual variables for QCP models
Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

Determines whether dual variable values are computed for QCP models. Computing them can add significant
time to the optimization, so you should only set this parameter to 1 if you need them.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

Quad
Controls quad precision in simplex
Type: int
Default value: -1
Minimum value: -1
Maximum value: 1

Enables or disables quad precision computation in simplex. The -1 default setting allows the algorithm to decide.
Quad precision can sometimes help solve numerically challenging models, but it can also significantly increase runtime.
Quad precision is only available on processors that support quadruple precision, e.g., common Intel processors.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

690

Record
Enables API call recording
Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

Enables API call recording. When enabled, Gurobi will write one or more files (named gurobi000.grbr or
similar) that capture the sequence of Gurobi commands that your program issued. This file can subsequently be
replayed using the Gurobi command-line tool. Replaying the file will repeat the exact same sequence of commands,
and when completed will show the time spent in Gurobi API routines, the time spent in Gurobi algorithms, and
will indicate whether any Gurobi environments or models were leaked by your program. Replay files are particularly
useful in tech support situations. They provide an easy way to relay to Gurobi tech support the exact sequence of
Gurobi commands that led to a question or issue.

This parameter must be set before starting an empty environment (or in a gurobi.env file). All Gurobi commands
will be recorded until the environment is freed or the program ends.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

ResultFile
Write a result file upon completion of optimization
Type: string
Default value: ""

Specifies the name of the result file to be written upon completion of optimization. The type of the result file is
determined by the file suffix. The most commonly used suffixes are .sol (to capture the solution vector), .bas (to
capture the simplex basis), and .mst (to capture the solution vector on the integer variables). You can also write
a .ilp file (to capture the IIS for an infeasible model), or a .mps, .rew, .lp, or .rlp file (to capture the original
model), or a .dua or .dlp file (to capture the dual of a pure LP model). The file suffix may optionally be followed
by .gz, .bz2, or .7z, which produces a compressed result.

More information on the file formats can be found in the File Format section.
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter

Examples.

RINS
Relaxation Induced Neighborhood Search (RINS) heuristic frequency
Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Frequency of the RINS heuristic. Default value (-1) chooses automatically. A value of 0 shuts off RINS. A
positive value n applies RINS at every n-th node of the MIP search tree.

Increasing the frequency of the RINS heuristic shifts the focus of the MIP search away from proving optimality,
and towards finding good feasible solutions. We recommend that you try MIPFocus, ImproveStartGap, or ImproveS-
tartTime before experimenting with this parameter.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed
integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

691

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

RelaxLiftCuts
Relax-and-lift cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls relax-and-lift cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for
aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

RLTCuts
RLT cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls Relaxation Linearization Technique (RLT) cut generation. Use 0 to disable these cuts, 1 for moderate
cut generation, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts
parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

ScaleFlag
Model scaling
Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Controls model scaling. By default, the rows and columns of the model are scaled in order to improve the
numerical properties of the constraint matrix. The scaling is removed before the final solution is returned. Scaling
typically reduces solution times, but it may lead to larger constraint violations in the original, unscaled model. Turning
off scaling (ScaleFlag=0) can sometimes produce smaller constraint violations. Choosing a different scaling option
can sometimes improve performance for particularly numerically difficult models. Using geometric mean scaling
(ScaleFlag=2) is especially well suited for models with a wide range of coefficients in the constraint matrix rows or
columns. Settings 1 and 3 are not as directly connected to any specific model characteristics, so experimentation
with both settings may be needed to assess performance impact.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

692

ScenarioNumber
Selects scenario index of multi-scenario models
Type: int
Default value: 0
Minimum value: 0
Maximum value: MAXINT

When working with multiple scenarios, this parameter selects the index of the scenario you want to work with.
When you query or modify an attribute associated with multiple scenarios (ScenNLB, ScenNUB, ScenNObj, Scen-
NRHS, etc.), the ScenarioNumber parameter will determine which scenario is actually affected. The value of this
parameter should be less than the value of the NumScenarios attribute (which captures the number of scenarios in
the model).

Please refer to the discussion of Multiple Scenarios for more information on the use of alternative scenarios.
One important note about integer-valued parameters: while the maximum value that can be stored in a signed

integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

Seed
Random number seed
Type: int
Default value: 0
Minimum value: 0
Maximum value: MAXINT

Modifies the random number seed. This acts as a small perturbation to the solver, and typically leads to different
solution paths.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed
integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

ServerPassword
Client password for Remote Services cluster or token server
Type: string
Default value: ""

The password for connecting to the server (either a Compute Server or a token server).
For connecting to the Remote Services cluster referred to by the ComputeServer parameter, you’ll need to supply

the client password. Refer to the Gurobi Remote Services Reference Manual for more information on starting Compute
Server jobs.

Supply the token server password (if needed) when connecting to the server referred to by the TokenServer
parameter,

You must set this parameter through either a gurobi.lic file (using PASSWORD=pwd) or an empty environment.
Changing the parameter after your environment has been created will have no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

693

https://www.gurobi.com/documentation/10.0/remoteservices/remoteservices.html

ServerTimeout
Network timeout
Type: int
Default value: 60
Minimum value: 1
Maximum value: MAXINT

Network time-out for Compute Server and token server (in seconds). If the client program is unable to contact
the server for more than the specified amount of time, the client will quit with a network error.

Refer to the Gurobi Remote Services Reference Manual for more information on starting Compute Server jobs.
You must set this parameter using an empty environment. Changing the parameter after your environment has

been created will have no effect.
One important note about integer-valued parameters: while the maximum value that can be stored in a signed

integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

Sifting
Controls sifting within dual simplex
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Enables or disables sifting within dual simplex. Sifting can be useful for LP models where the number of variables
is many times larger than the number of constraints (we typically only see significant benefits when the ratio is 100
or more). Options are Automatic (-1), Off (0), Moderate (1), and Aggressive (2). With a Moderate setting, sifting
will be applied to LP models and to the initial root relaxation for MIP models. With an Aggressive setting, sifting
will be applied any time dual simplex is used, including at the nodes of a MIP. Note that this parameter has no effect
if you aren’t using dual simplex. Note also that Gurobi will ignore this parameter in cases where sifting is obviously
a worse choice than dual simplex.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

SiftMethod
LP method used to solve sifting sub-problems
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

LP method used to solve sifting sub-problems. Options are Automatic (-1), Primal Simplex (0), Dual Simplex
(1), and Barrier (2). Note that this parameter only has an effect when you are using dual simplex and sifting has
been selected (either automatically by dual simplex, or through the Sifting parameter).

Changing the value of this parameter rarely produces a significant benefit.
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter

Examples.

694

https://www.gurobi.com/documentation/10.0/remoteservices/remoteservices.html

SimplexPricing
Simplex pricing strategy
Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Determines the simplex variable pricing strategy. Available options are Automatic (-1), Partial Pricing (0),
Steepest Edge (1), Devex (2), and Quick-Start Steepest Edge (3).

Changing the value of this parameter rarely produces a significant benefit.
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter

Examples.

SoftMemLimit
Soft memory limit
Type: double
Default value: Infinity
Minimum value: 0
Maximum value: Infinity

Limits the total amount of memory (in GB, i.e., 109 bytes) available to Gurobi. If more is needed, Gurobi will
terminate with a MEM_LIMIT status code (see the Status Code section for further details).

In contrast to the MemLimit parameter, the SoftMemLimit parameter leads to a graceful exit of the optimization,
such that it is possible to retrieve solution information afterwards or (in the case of a MIP solve) resume the
optimization.

A disadvantage compared to MemLimit is that the SoftMemLimit is only checked at places where optimization
can be terminated gracefully, so memory use may exceed the limit between these checks.

Note that allocated memory is tracked across all models within a Gurobi environment. If you create multiple
models in one environment, these additional models will count towards overall memory consumption.

Memory usage is also tracked across all threads. One consequence of this is that termination may be non-
deterministic for multi-threaded runs.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

SolutionLimit
MIP solution limit
Type: int
Default value: MAXINT
Minimum value: 1
Maximum value: MAXINT

Limits the number of feasible MIP solutions found. Optimization returns with a SOLUTION_LIMIT status once the
limit has been reached (see the Status Code section for further details). To find a feasible solution quickly, Gurobi
executes additional feasible point heuristics when the solution limit is set to exactly 1.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed
integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

695

SolFiles
Location to store intermediate solution files
Type: string
Default value: ""

During the MIP solution process, multiple incumbent solutions are typically found on the path to finding a proven
optimal solution. Setting this parameter to a non-empty string causes these solutions to be written to files (in .sol
format) as they are found. The MIP solver will append _n.sol to the value of the parameter to form the name of
the file that contains solution number n. For example, setting the parameter to value solutions/mymodel will create
files mymodel_0.sol, mymodel_1.sol, etc., in directory solutions.

Note that intermediate solutions can be retrieved as they are generated through a callback (by requesting the
MIPSOL_SOL in a MIPSOL callback). This parameter makes the process simpler.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

SolutionNumber
Select a sub-optimal MIP solution
Type: int
Default value: 0
Minimum value: 0
Maximum value: MAXINT

When querying attribute Xn, ObjNVal, or PoolObjVal to retrieve an alternate MIP solution, this parameter
determines which alternate solution is retrieved. The value of this parameter should be less than the value of the
SolCount attribute.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed
integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

StartNodeLimit
Limit MIP start sub-MIP nodes
Type: int
Default value: -1
Minimum value: -3
Maximum value: MAXINT

This parameter limits the number of branch-and-bound nodes explored when completing a partial MIP start.
The default value of -1 uses the value of the SubMIPNodes parameter. A value of -2 means to only check full MIP starts
for feasibility and to ignore partial MIP starts. A value of -3 shuts off MIP start processing entirely. Non-negative
values are node limits.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed
integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

696

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

StartNumber
Selects MIP start index
Type: int
Default value: 0
Minimum value: -1
Maximum value: MAXINT

This parameter selects the index of the MIP start you want to work with. When you modify a MIP start value
(using the Start attribute) the StartNumber parameter will determine which MIP start is actually affected. The value
of this parameter should be less than the value of the NumStart attribute (which captures the number of MIP starts
in the model).

The special value -1 is meant to append new MIP start to a model, but querying a MIP start when StartNumber
is -1 will result in an error.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed
integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

StrongCGCuts
Strong-CG cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls Strong Chvátal-Gomory (Strong-CG) cut generation. Use 0 to disable these cuts, 1 for moderate cut
generation, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts
parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

SubMIPCuts
Sub-MIP cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls sub-MIP cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive
cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

697

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

SubMIPNodes
Nodes explored in sub-MIP heuristics
Type: int
Default value: 500
Minimum value: 0
Maximum value: MAXINT

Limits the number of nodes explored by MIP-based heuristics (such as RINS). Exploring more nodes can produce
better solutions, but it generally takes longer.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed
integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

Symmetry
Symmetry detection
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls symmetry detection. A value of -1 corresponds to an automatic setting. Other options are off (0),
conservative (1), or aggressive (2).

Symmetry can impact a number of different parts of the algorithm, including presolve, the MIP tree search, and
the LP solution process. Default settings are quite effective, so changing the value of this parameter rarely produces
a significant benefit.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

Threads
Thread count
Type: int
Default value: 0
Minimum value: 0
Maximum value: The number of virtual processors available to the process running Gurobi

Controls the number of threads to apply to parallel algorithms (concurrent LP, parallel barrier, parallel MIP,
etc.). The default value of 0 is an automatic setting. It will generally use as many threads as there are virtual
processors. The number of virtual processors may exceed the number of cores due to hyperthreading or other similar
hardware features.

While you will generally get the best performance by using all available cores in your machine, there are a few
exceptions. One is of course when you are sharing a machine with other jobs. In this case, you should select a thread
count that doesn’t oversubscribe the machine.

698

We have also found that certain classes of MIP models benefit from reducing the thread count, often all the way
down to one thread. Starting multiple threads introduces contention for machine resources. For classes of models
where the first solution found by the MIP solver is almost always optimal, and that solution isn’t found at the root,
it is often better to allow a single thread to explore the search tree uncontested.

Another situation where reducing the thread count can be helpful is when memory is tight. Each thread can
consume a significant amount of memory.

We’ve made the pragmatic choice to impose a soft limit of 32 threads for the automatic setting (0). If your
machine has more, and you find that using more increases performance, you should feel free to set the parameter to
a larger value.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

TimeLimit
Time limit
Type: double
Default value: Infinity
Minimum value: 0
Maximum value: Infinity

Limits the total time expended (in seconds). Optimization returns with a TIME_LIMIT status if the limit is
exceeded (see the Status Code section for further details).

Note that optimization may not stop immediately upon hitting the time limit. It will stop after performing the
required additional computations of the attributes associated with the terminated optimization. As a result, the
Runtime attribute may be larger than the specified TimeLimit upon completion, and repeating the optimization with
a TimeLimit set to the Runtime attribute of the stopped optimization may result in additional computations and a
larger attribute value.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

TokenServer
Name of your token server
Type: string
Default value: ""

When using a token license, set this parameter to the name of the token server. You can refer to the server using
its name or its IP address.

You can provide a comma-separated list of token servers to increase robustness. If the first server in the list
doesn’t respond, the second will be tried, etc.

You must set this parameter through either a gurobi.lic file (using TOKENSERVER=server) or an empty environ-
ment. Changing the parameter after your environment has been created will have no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

TSPort
Port for token server
Type: int
Default value: 41954
Minimum value: 0
Maximum value: 65536

699

Port to use when connecting to the Gurobi token server. You should only change this if your network administrator
tells you to.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

TuneBaseSettings
Comma-separated list of base parameter settings
Type: string
Default value: ""

A list of parameter files (e.g., base1.prm,base2.prm) that define settings that should be tried first during the
tuning process, in the order they are given. Default parameter settings will also be tried, but after the settings
provided in these files. You can include an empty parameter file in the list if you would like default settings to be
tried earlier.

Note: Command-line only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

TuneCleanup
Enables a tuning cleanup phase
Type: double
Default value: 0.0
Minimum value: 0.0
Maximum value: 1.0

Enables a cleanup phase at the end of tuning. The parameter indicates the percentage of total tuning time to
devote to this phase, with a goal of reducing the number of parameter changes required to achieve the best tuning
result.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

TuneCriterion
Tuning criterion
Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Modifies the tuning criterion for the tuning tool. The primary tuning criterion is always to minimize the runtime
required to find a proven optimal solution. However, for MIP models that don’t solve to optimality within the
specified time limit, a secondary criterion is needed. Set this parameter to 1 to use the optimality gap as the
secondary criterion. Choose a value of 2 to use the objective of the best feasible solution found. Choose a value of
3 to use the best objective bound. Choose 0 to ignore the secondary criterion and focus entirely on minimizing the
time to find a proven optimal solution. The default value of -1 chooses automatically.

Note that for multi-objective problems value 1 and 3 are unsupported. See the Multiple Objectives section for
more details on this.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

700

TuneJobs
Distributed tuning job count
Type: int
Default value: 0
Minimum value: 0
Maximum value: MAXINT

Enables distributed parallel tuning, which can significantly increase the performance of the tuning tool. A value
of n causes the tuning tool to distribute tuning work among n parallel jobs. These jobs are distributed among a set
of machines. Use the WorkerPool parameter to provide a distributed worker cluster.

Note that distributed tuning is most effective when the worker machines have similar performance. Distributed
tuning doesn’t attempt to normalize performance by server, so it can incorrectly attribute a boost in performance to
a parameter change when the associated setting is tried on a worker that is significantly faster than the others.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed
integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

TuneMetric
Method for aggregating tuning results
Type: int
Default value: -1
Minimum value: -1
Maximum value: 1

A single tuning run typically produces multiple timing results for each candidate parameter set, either as a result
of performing multiple trials, or tuning multiple models, or both. This parameter controls how these results are
aggregated into a single measure. The default setting (-1) chooses the aggregation automatically; setting 0 computes
the average of all individual results; setting 1 takes the maximum.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

TuneOutput
Tuning output level
Type: int
Default value: 2
Minimum value: 0
Maximum value: 3

Controls the amount of output produced by the tuning tool. Level 0 produces no output; level 1 produces tuning
summary output only when a new best parameter set is found; level 2 produces tuning summary output for each
parameter set that is tried; level 3 produces tuning summary output, plus detailed solver output, for each parameter
set tried.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

TuneResults
Number of improved parameter sets returned

701

Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

The tuning tool often finds multiple parameter sets that produce better results than the baseline settings. This
parameter controls how many of these sets should be retained when tuning is complete. The default value retains
the best results that were found for each count of changed parameters. In other words, it retains the best result for
one changed parameter, for two changed parameter, etc. Results that aren’t on the efficient frontier are discard.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed
integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

TuneTargetMIPGap
A target gap to be reached
Type: double
Default value: 0
Minimum value: 0
Maximum value: Infinity

A target gap to be reached. As soon as the tuner has found parameter settings that allow Gurobi to reach the
target gap for the given model(s), it stops trying to improve parameter settings further. Instead, the tuner switches
into the cleanup phase (see TuneCleanup parameter).

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

TuneTargetTime
A target runtime in seconds to be reached
Type: double
Default value: 0.005
Minimum value: 0
Maximum value: Infinity

A target runtime in seconds to be reached. As soon as the tuner has found parameter settings that allow Gurobi
to solve the model(s) within the target runtime, it stops trying to improve parameter settings further. Instead, the
tuner switches into the cleanup phase (see TuneCleanup parameter).

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

TuneTimeLimit
Tuning tool time limit
Type: double
Default value: -1
Minimum value: -1
Maximum value: Infinity

Limits total tuning runtime (in seconds). The default setting (-1) chooses a time limit automatically.

702

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

TuneTrials
Perform multiple runs on each parameter set to limit the effect of random noise
Type: int
Default value: 0
Minimum value: 0
Maximum value: MAXINT

Performance on a MIP model can sometimes experience significant variations due to random effects. As a result,
the tuning tool may return parameter sets that improve on the baseline only due to randomness. This parameter
allows you to perform multiple solves for each parameter set, using different Seed values for each, in order to reduce
the influence of randomness on the results. The default value of 0 indicates an automatic choice that depends on
model characteristics.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed
integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

UpdateMode
Changes the behavior of lazy updates
Type: int
Default value: 1
Minimum value: 0
Maximum value: 1

Determines how newly added variables and linear constraints are handled. The default setting (1) allows you to
use new variables and constraints immediately for building or modifying the model. A setting of 0 requires you to
call update before these can be used.

Since the vast majority of programs never query Gurobi for details about the optimization models they build, the
default setting typically removes the need to call update, or even be aware of the details of our lazy update approach
for handling model modifications. However, these details will show through when you try to query modified model
information.

In the Gurobi interface, model modifications (bound changes, right-hand side changes, objective changes, etc.)
are placed in a queue. These queued modifications are applied to the model at three times: when you call update,
when you call optimize, or when you call write to write the model to disk. When you query information about the
model, the result will depend on both whether that information was modified and when it was modified. In particular,
no matter what setting of UpdateMode you use, if the modification is sitting in the queue, you’ll get the result from
before the modification.

To expand on this a bit, all attribute modifications are actually placed in a queue. This includes attributes
that may not traditionally be viewed as being part of the model, including things like variable branching priorities,
constraint basis statuses, etc. Querying the values of these attributes will return their previous values if subsequent
modifications are still in the queue.

The only potential benefit to changing the parameter to 0 is that in unusual cases this setting may allow simplex
to make more aggressive use of warm-start information after a model modification.

If you want to change this parameter, you need to set it as soon as you create your Gurobi environment.
Note that you still need to call update to modify an attribute on an SOS constraint, quadratic constraint, or

general constraint.
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter

Examples.

703

UserName
User name for Remote Services
Type: string
Default value: ""

Identify the user connecting to the Remote Services Manager.
You can provide either a username and password, or an access ID and a secret key, to authenticate your connection

to a Cluster Manager.
You can set this parameter through either a gurobi.lic file (using USERNAME=YOUR_USERNAME) or an empty

environment. Changing the parameter after your environment has been started will result in an error.
Note: Cluster Manager only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

VarBranch
Branch variable selection strategy
Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Controls the branch variable selection strategy. The default -1 setting makes an automatic choice, depending
on problem characteristics. Available alternatives are Pseudo Reduced Cost Branching (0), Pseudo Shadow Price
Branching (1), Maximum Infeasibility Branching (2), and Strong Branching (3).

Changing the value of this parameter rarely produces a significant benefit.
Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

WLSAccessID
Web License Service access ID
Type: string
Default value: ""

When using a WLS license, set this parameter to the access ID for your license. You can retrieve this string from
your account on the Gurobi Web License Manager site.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

WLSSecret
Web License Service secret
Type: string
Default value: ""

When using a WLS license, set this parameter to the secret key for your license. You can retrieve this string
from your account on the Gurobi Web License Manager site.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

704

https://license.gurobi.com
https://license.gurobi.com

WLSToken
Web License Service token
Type: string
Default value: ""

If you are using a WLS license and have retrieved your own token through the WLS REST API, use this parameter
to pass that token to the library. If you do this, you don’t need to set any other WLS-related parameters.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

WLSTokenDuration
Web License Service token duration
Type: int
Default value: 0
Minimum value: 0
Maximum value: MAXINT

When using a WLS license, this parameter can be used to adjust the lifespan (in minutes) of a token. A token
enables Gurobi to run on that client for the life of the token. Gurobi will automatically request a new token if the
current one expires, but it won’t notify the WLS server if it completes its work before the current token expires.
A shorter lifespan is better for short-lived usage. A longer lifespan is better for environments where the network
connection to the WLS server is unreliable.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

WLSTokenRefresh
Web License Service token refresh interval
Type: double
Default value: 0.9
Minimum value: 0.0
Maximum value: 1.0

The value specifies the fraction of the token duration after which a token refresh is triggered. So, for example, if
the token duration is 30 minutes and WLSTokenRefresh is set to 0.6, the token will be refreshed every 18 minutes.
The minimum refresh interval is 4 minutes.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

WorkerPassword
Distributed worker password
Type: string
Default value: ""

When using a distributed algorithm (distributed MIP, distributed concurrent, or distributed tuning), this param-
eter allows you to specify the password for the distributed worker cluster provided in the WorkerPool parameter.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

705

WorkerPool
Distributed worker cluster (for distributed algorithms)
Type: string
Default value: ""

When using a distributed algorithm (distributed MIP, distributed concurrent, or distributed tuning), this param-
eter allows you to specify a Remote Services cluster that will provide distributed workers. You should also specify
the access password for that cluster, if there is one, in the WorkerPassword parameter. Note that you don’t need to
set either of these parameters if your job is running on a Compute Server node and you want to use the same cluster
for the distributed workers.

You can provide a comma-separated list of machines for added robustness. If the first node in the list is unavail-
able, the client will attempt to contact the second node, etc.

To give an example, if you have a Remote Services cluster that uses port 61000 on a pair of machines named
server1 and server2, you could set WorkerPool to
"server1:61000" or "server1:61000,server2:61000".

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

WorkLimit
Work limit
Type: double
Default value: Infinity
Minimum value: 0
Maximum value: Infinity

Limits the total work expended (in work units). Optimization returns with a WORK_LIMIT status if the limit is
exceeded (see the Status Code section for further details).

In contrast to the TimeLimit, work limits are deterministic. This means that on the same hardware and with the
same parameter and attribute settings, a work limit will stop the optimization of a given model at the exact same
point every time. One work unit corresponds very roughly to one second on a single thread, but this greatly depends
on the hardware on which Gurobi is running and the model that is being solved.

Note that optimization may not stop immediately upon hitting the work limit. It will stop when the optimization
is next in a deterministic state, and it will then perform the required additional computations of the attributes
associated with the terminated optimization. As a result, the Work attribute may be larger than the specified
WorkLimit upon completion, and repeating the optimization with a WorkLimit set to the Work attribute of the
stopped optimization may result in additional computations and a larger attribute value.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

ZeroHalfCuts
Zero-half cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls zero-half cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive
cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

706

ZeroObjNodes
Zero-objective heuristic
Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Number of nodes to explore in the zero objective heuristic. Note that this heuristic is only applied at the end of
the MIP root, and only when no other root heuristic finds a feasible solution.

This heuristic is quite expensive, and generally produces poor quality solutions. You should generally only use
it if other means, including exploration of the tree with default settings, fail to produce a feasible solution.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed
integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter
Examples.

13.3 Parameter Examples
Gurobi parameter handling is designed to be orthogonal, meaning that you only need to use a small number of
routines to work with a large number of parameters. In particular:

• The names and meanings of the various Gurobi parameters remain constant across the different programming
language APIs, although some decoration is required in each language.

• Given the type of a parameter (double, integer, etc.) and the programming language you wish to use it from,
you simply need to identify the appropriate routine for that parameter type in that language in order to query
or modify that parameter.

Please refer to the following sections for detailed examples of how to work with parameters from our various
APIs:

• C
• C++
• C#
• Java
• MATLAB
• Python
• R
• Visual Basic

You can also browse our Examples to get a better sense of how to use our parameter interface.
One important note about integer-valued parameters: while the maximum value that can be stored in a signed

integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger
than this maximum will produce an error.

C Parameter Examples
The C interface defines a symbolic constant for each parameter. The symbolic constant name is prefixed by
GRB_type_PAR_, where type is either INT, DBL, or STR. This is followed by the capitalized parameter name. For
example, the symbolic constant for the integer Threads parameter (found in C header file gurobi_c.h) is:

#define GRB_INT_PAR_THREADS "Threads"

707

https://www.gurobi.com/documentation/10.0/examples/index.html

The routine you use to modify a parameter value depends on the type of the parameter. For a double-valued
parameter, you would use GRBsetdblparam.

Recall that each model gets its own copy of the environment when it is created. Parameter changes to the original
environment therefore have no effect on existing models. You’ll need to use GRBgetenv to retrieve the environment
associated with a particular model if you want to change a parameter for that model.

To set the TimeLimit parameter for a model, you’d do:

error = GRBsetdblparam(GRBgetenv(model), GRB_DBL_PAR_TIMELIMIT, 100.0);

If you’d prefer to use a string for the parameter name, you can also do:

error = GRBsetdblparam(GRBgetenv(model), "TimeLimit", 100.0);

The case of the string is ignored, as are underscores. Thus, TimeLimit and TIME_LIMIT are equivalent.
Use GRBgetdblparam to query the current value of a (double) parameter:

double currentvalue;
error = GRBgetdblparam(modelenv, "TimeLimit", ¤tvalue);

C++ Parameter Examples
In the C++ interface, parameters are grouped by datatype into three enums: GRB_DoubleParam, GRB_IntParam, and
GRB_StringParam. You refer to a specific parameter by appending the parameter name to the enum name. For
example, the Threads parameter is GRB_IntParam_Threads.

To modify a parameter, you use GRBModel::set. Recall that you can also set parameters on an environment,
but changes to the environment won’t affect models that have already been created using that environment. It is
generally simpler to set parameters on the model itself.

To set the TimeLimit parameter for a model, you’d do:

GRBModel *m = ...;
m->set(GRB_DoubleParam_TimeLimit, 100.0);

You can also set the value of a parameter using strings for the parameter name and desired value. For example:

GRBModel *m = ...;
m->set("TimeLimit", "100.0");

Use GRBModel::get to query the current value of a parameter:

currentlimit = m.get(GRB_DoubleParam_TimeLimit);

C# Parameter Examples
In the C# interface, parameters are grouped by datatype into three enums: GRB.DoubleParam, GRB.IntParam, and
GRB.StringParam. You would refer to the integer Threads parameter as GRB.IntParam.Threads.

To modify a parameter, set the corresponding .NET property from Model.Parameters. To set the TimeLimit
parameter, for example:

GRBModel m = ...;
m.Parameters.TimeLimit = 100.0;

You can also use GRBModel.Set:

m.Set(GRB.DoubleParam.TimeLimit, 100.0);

You can also set the value of a parameter using strings for the parameter name and desired value. For example:

GRBModel m = ...;
m.Set("TimeLimit", "100.0");

To query the current value of a parameter, use:

currentlimit = m.Parameters.TimeLimit;

You can also use GRBModel.Get:

currentlimit = m.Get(GRB.DoubleParam.TimeLimit);

708

Java Parameter Examples
In the Java interface, parameters are grouped by datatype into three enums: GRB.DoubleParam, GRB.IntParam, and
GRB.StringParam. You would refer to the integer Threads parameter as GRB.IntParam.Threads.

To modify a parameter, you use GRBModel.set. Recall that you can also set parameters on an environment,
but changes to the environment won’t affect models that have already been created using that environment. It is
generally simpler to set parameters on the model itself.

To set the TimeLimit parameter for a model, you’d do:

GRBModel m = ...;
m.set(GRB.DoubleParam.TimeLimit, 100.0);

You can also set the value of a parameter using strings for the parameter name and desired value. For example:

GRBModel m = ...;
m.set("TimeLimit", "100.0");

Use GRBModel.get to query the current value of a parameter:

currentlimit = m.get(GRB.DoubleParam.TimeLimit);

MATLAB Parameter Examples
In the MATLAB interface, parameters are passed to Gurobi through a struct. To modify a parameter, you create
a field in the struct with the appropriate name, and set it to the desired value. For example, to set the TimeLimit
parameter to 100 you’d do:

params.timelimit = 100;

The case of the parameter name is ignored, as are underscores. Thus, you could also do:

params.timeLimit = 100;

...or...

params.TIME_LIMIT = 100;

All desired parameter changes should be stored in a single struct, which is passed as the second parameter to
the gurobi function.

Python Parameter Examples
In the Python interface, parameters are listed as constants within the GRB.Param class. You would refer to the
Threads parameter as GRB.Param.Threads.

To modify a parameter, you can set the appropriate member of Model.Params. To set the time limit for model
m, you’d do:

m.Params.timeLimit = 100.0

The case of the parameter name is actually ignored, as are underscores, so you could also do:

m.Params.timelimit = 100.0

...or...

m.Params.TIME_LIMIT = 100.0

You can also use the Model.setParam method:

m.setParam(GRB.Param.TimeLimit, 100.0)

If you’d prefer to use a string for the parameter name, you can also do:

m.setParam("TimeLimit", 100.0);

To query the current value of a parameter, use:

currentlimit = m.Params.timeLimit

709

R Parameter Examples
In the R interface, parameters are passed to Gurobi through a list. To modify a parameter, you create a named component
in the list with the appropriate name, and set it to the desired value. For example, to set the TimeLimit parameter
to 100 you’d do:

params <- list(TimeLimit=100)

The case of the parameter name is ignored, as are underscores. Thus, you could also do:

params <- list(timeLimit = 100)

...or...

params <- list(TIME_LIMIT = 100)

All desired parameter changes should be stored in a single list, which is passed as the second parameter to the
gurobi function.

Visual Basic Parameter Examples
In the Visual Basic interface, parameters are grouped by datatype into three enums: GRB.DoubleParam, GRB.IntParam,
and GRB.StringParam. You would refer to the integer Threads parameter as GRB.IntParam.Threads.

To modify a parameter, set the corresponding .NET property from Model.Parameters. To set the TimeLimit
parameter, for example:

GRBModel m = ...
m.Parameters.TimeLimit = 100.0

You can also use GRBModel.Set:

m.Set(GRB.DoubleParam.TimeLimit, 100.0)

You can also set the value of a parameter using strings for the parameter name and desired value. For example:

GRBModel m = ...
m.Set("TimeLimit", "100.0")

To query the current value of a parameter, use:

currentlimit = m.Parameters.TimeLimit

You can also use GRBModel.Get:

currentlimit = m.Get(GRB.DoubleParam.TimeLimit)

710

Optimization Status Codes

Once an optimize call has returned, the Gurobi optimizer sets the Status attribute of the model to one of several
possible values. The attribute takes an integer value, but we recommend that you use one of the predefined status
constants to check the status in your program. Each code has a name, and each language requires a prefix on this
name to obtain the appropriate constant. You would access status code OPTIMAL in the following ways from the
available Gurobi interfaces:

Language Status Code
C GRB_OPTIMAL
C++ GRB_OPTIMAL
Java GRB.Status.OPTIMAL
.NET GRB.Status.OPTIMAL
Python GRB.OPTIMAL

Possible status codes are as follows. Note that for statuses involving limits or other early termination of the
optimization, if the feasibility of the reported solution is not evident from the status, you can assess the feasibility
by accessing the appropriate solution quality attribute.

Status code Value Description
LOADED 1 Model is loaded, but no solution information is available.
OPTIMAL 2 Model was solved to optimality (subject to tolerances), and an optimal

solution is available.
INFEASIBLE 3 Model was proven to be infeasible.
INF_OR_UNBD 4 Model was proven to be either infeasible or unbounded. To obtain a

more definitive conclusion, set the DualReductions parameter to 0 and
reoptimize.

UNBOUNDED 5 Model was proven to be unbounded. Important note: an unbounded
status indicates the presence of an unbounded ray that allows the objective
to improve without limit. It says nothing about whether the model has
a feasible solution. If you require information on feasibility, you should
set the objective to zero and reoptimize.

CUTOFF 6 Optimal objective for model was proven to be worse than the value
specified in the Cutoff parameter. No solution information is available.

ITERATION_LIMIT 7 Optimization terminated because the total number of simplex iterations
performed exceeded the value specified in the IterationLimit parame-
ter, or because the total number of barrier iterations exceeded the value
specified in the BarIterLimit parameter.

NODE_LIMIT 8 Optimization terminated because the total number of branch-and-cut
nodes explored exceeded the value specified in the NodeLimit parameter.

TIME_LIMIT 9 Optimization terminated because the time expended exceeded the value
specified in the TimeLimit parameter.

SOLUTION_LIMIT 10 Optimization terminated because the number of solutions found reached
the value specified in the SolutionLimit parameter.

INTERRUPTED 11 Optimization was terminated by the user.
NUMERIC 12 Optimization was terminated due to unrecoverable numerical difficulties.
SUBOPTIMAL 13 Unable to satisfy optimality tolerances; a sub-optimal solution is avail-

able.
INPROGRESS 14 An asynchronous optimization call was made, but the associated opti-

mization run is not yet complete.

711

USER_OBJ_LIMIT 15 User specified an objective limit (a bound on either the best objective
or the best bound), and that limit has been reached.

WORK_LIMIT 16 Optimization terminated because the work expended exceeded the value
specified in the WorkLimit parameter.

MEM_LIMIT 17 Optimization terminated because the total amount of allocated memory
exceeded the value specified in the SoftMemLimit parameter.

712

Batch Status Codes

All batches have a current status, which is queried through the BatchStatus attribute on a Batch object. The attribute
takes an integer value, but we recommend that you use one of the predefined status constants to check the status in
your program. Each code has a name, and each language requires a prefix on this name to obtain the appropriate
constant. You would access status code COMPLETED in the following ways from the available Gurobi interfaces:

Language Status Code
C GRB_BATCH_COMPLETED
C++ GRB_BATCH_COMPLETED
Java GRB.BatchStatus.COMPLETED
.NET GRB.BatchStatus.COMPLETED
Python GRB.BATCH_COMPLETED

Possible batch status codes are as follows:
Status code Value Description
CREATED 1 Batch was created, but is not ready to be scheduled.
SUBMITTED 2 The batch has been completely specified, and now is waiting for a job to finish processing the request.
ABORTED 3 Batch processing was aborted by the user.
FAILED 4 Batch processing failed.
COMPLETED 5 A Batch Job successfully processed the Batch request.

See the Batch Optimization section for more details.

713

Callback Codes

The Gurobi callback routines make use of a pair of arguments: where and what. When a user callback function is
called, the where argument indicates from where in the Gurobi optimizer it is being called (presolve, simplex, barrier,
MIP, etc.). When the user callback wishes to obtain more detailed information about the state of the optimization,
the what argument can be passed to an appropriate get method for your language to obtain additional information
(e.g., GRBcbget in C, GRBCallback::getIntInfo in C++, GRBCallback.getIntInfo in Java, GRBCallback.GetIntInfo
in .NET, and Model.cbGet in Python).

More detailed information on how to use callbacks in your application can be found in the reference manuals for
the different Gurobi language interfaces (C, C++, Java, .NET, and Python).

Note that changing parameters from within a callback is not supported, doing so may lead to undefined behavior.
Possible values for the where and what arguments are listed in the following tables. Note that these values are

referred to in slightly different ways from the different Gurobi interfaces. Consider the SIMPLEX value as an example.
You would refer to this constant as follows from the different Gurobi APIs:

Language Callback constant
C GRB_CB_SIMPLEX
C++ GRB_CB_SIMPLEX
Java GRB.Callback.SIMPLEX
.NET GRB.Callback.SIMPLEX
Python GRB.Callback.SIMPLEX

Possible where values are:
where Numeric value Optimizer status
POLLING 0 Periodic polling callback
PRESOLVE 1 Currently performing presolve
SIMPLEX 2 Currently in simplex
MIP 3 Currently in MIP
MIPSOL 4 Found a new MIP incumbent
MIPNODE 5 Currently exploring a MIP node
MESSAGE 6 Printing a log message
BARRIER 7 Currently in barrier
MULTIOBJ 8 Currently in multi-objective optimization
IIS 9 Currently computing an IIS

Allowable what values depend on the value of the where argument. Valid combinations are:

what where Result
type

Description

RUNTIME Any except
POLLING

double Elapsed solver runtime (seconds).

WORK Any except
POLLING

double Elapsed solver work (work units).

PRE_COLDEL PRESOLVE int The number of columns removed by presolve
to this point.

PRE_ROWDEL PRESOLVE int The number of rows removed by presolve to
this point.

PRE_SENCHG PRESOLVE int The number of constraint senses changed by
presolve to this point.

PRE_BNDCHG PRESOLVE int The number of variable bounds changed by
presolve to this point.

714

PRE_COECHG PRESOLVE int The number of coefficients changed by pre-
solve to this point.

SPX_ITRCNT SIMPLEX double Current simplex iteration count.
SPX_OBJVAL SIMPLEX double Current simplex objective value.
SPX_PRIMINF SIMPLEX double Current primal infeasibility.
SPX_DUALINF SIMPLEX double Current dual infeasibility.
SPX_ISPERT SIMPLEX int Is problem currently perturbed?
MIP_OBJBST MIP double Current best objective.
MIP_OBJBND MIP double Current best objective bound.
MIP_NODCNT MIP double Current explored node count.
MIP_SOLCNT MIP int Current count of feasible solutions found.
MIP_CUTCNT MIP int Current count of cutting planes applied.
MIP_NODLFT MIP double Current unexplored node count.
MIP_ITRCNT MIP double Current simplex iteration count.
MIP_OPENSCENARIOS MIP int Number of scenarios that are still open in a

multi-scenario model.
MIP_PHASE MIP int Current phase in the MIP solution pro-

cess. Possible values are 0 (in the NoRel
heuristic), 1 (in the standard MIP search),
or 2 (performing MIP solution improve-
ment). Predefined constants are available
(e.g., GRB.PHASE_MIP_SEARCH).

MIPSOL_SOL MIPSOL double * Solution vector for new solution (C only).
The resultP argument to C routine GR-
Bcbget should point to an array of doubles
that is at least as long as the number of vari-
ables in the user model. Use the getSolution
callback method in the object-oriented inter-
faces.

MIPSOL_OBJ MIPSOL double Objective value for new solution.
MIPSOL_OBJBST MIPSOL double Current best objective.
MIPSOL_OBJBND MIPSOL double Current best objective bound.
MIPSOL_NODCNT MIPSOL double Current explored node count.
MIPSOL_SOLCNT MIPSOL int Current count of feasible solutions found.
MIPSOL_OPENSCENARIOS MIPSOL int Number of scenarios that are still open in a

multi-scenario model.
MIPSOL_PHASE MIPSOL int Current phase in the MIP solution. Possi-

ble values are 0 (in the NoRel heuristic), 1
(in the standard MIP search), or 2 (perform-
ing MIP solution improvement). Predefined
constants are available (e.g., GRB.PHASE_-
MIP_SEARCH).

MIPNODE_STATUS MIPNODE int Optimization status of current MIP node (see
the Status Code section for further informa-
tion).

MIPNODE_OBJBST MIPNODE double Current best objective.
MIPNODE_OBJBND MIPNODE double Current best objective bound.
MIPNODE_NODCNT MIPNODE double Current explored node count.
MIPNODE_SOLCNT MIPNODE int Current count of feasible solutions found.
MIPNODE_OPENSCENARIOS MIPNODE int Number of scenarios that are still open in a

multi-scenario model.

715

MIPNODE_PHASE MIPNODE int Current phase in the MIP solution pro-
cess. Possible values are 0 (in the NoRel
heuristic), 1 (in the standard MIP search),
or 2 (performing MIP solution improve-
ment). Predefined constants are available
(e.g., GRB.PHASE_MIP_SEARCH).

MIPNODE_REL MIPNODE double * Relaxation solution for the current node,
when its optimization status is GRB_OPTI-
MAL (C only). The resultP argument to C
routine GRBcbget should point to an array
of doubles that is at least as long as the num-
ber of variables in the user model. Use the
getNodeRel callback method in the object-
oriented interfaces.

BARRIER_ITRCNT BARRIER int Current barrier iteration count.
BARRIER_PRIMOBJ BARRIER double Primal objective value for current barrier it-

erate.
BARRIER_DUALOBJ BARRIER double Dual objective value for current barrier iter-

ate.
BARRIER_PRIMINF BARRIER double Primal infeasibility for current barrier iterate.
BARRIER_DUALINF BARRIER double Dual infeasibility for current barrier iterate.
BARRIER_COMPL BARRIER double Complementarity violation for current bar-

rier iterate.
MULTIOBJ_OBJCNT MULTIOBJ int Current count of objectives already opti-

mized.
MULTIOBJ_SOLCNT MULTIOBJ int Current count of feasible solutions found.
MULTIOBJ_SOL MULTIOBJ double * Solution vector for new solution (C only).

The resultP argument to C routine
IIS_CONSTRMIN IIS int Minimum number of constraints in the IIS.
IIS_CONSTRMAX IIS int Maximum number of constraints in the IIS.
IIS_CONSTRGUESS IIS int Estimated number of constraints in the IIS.
IIS_BOUNDMIN IIS int Minimum number of variable bounds in the

IIS.
IIS_BOUNDMAX IIS int Maximum number of variable bounds in the

IIS.
IIS_BOUNDGUESS IIS int Estimated number of variable bounds in the

IIS.
MSG_STRING MESSAGE char * The message that is being printed.

Remember that the appropriate prefix must be added to the what or where name listed above, depending on the
language you are using.

Callback notes

Note that the POLLING callback does not allow any additional information to be retrieved. It is provided in order to
allow interactive applications to regain control frequently, so that they can maintain application responsiveness.

The object-oriented interfaces have specialized methods for obtaining the incumbent or relaxation solution. While
in C you would use GRBcbget, you use getSolution or getNodeRel in the object-oriented interfaces. Please consult
the callback descriptions for C++, Java, .NET, or Python for further details.

Note that the MIPNODE callback will be called once for each cut pass during the root node solve. The MIPNODE_NODCNT
value will remain at 0 until the root node is complete. If you query relaxation values from during the root node, the
first MIPNODE callback will give the relaxation with no cutting planes, and the last will give the relaxation after all
root cuts have been applied.

Note that the multi-objective optimization algorithm solves a sequence of optimization problems. In each solve
the MULTIOBJ callback will be called. Also, MIP-related callbacks will be called if the original model is a MIP, and
LP-related callbacks will be called if the original model is an LP.

716

Note that there are certain restrictions concerning the available callbacks when using the Gurobi Remote Services
(Compute Server, Instant Cloud, etc.). Please refer to the Callbacks section of the Gurobi Remote Services Manual
for more information.

717

../remoteservices/cb_s.html

Error Codes

Errors can arise in most of the Gurobi library routines. In the C interface, library routines return an integer error
code. In the C++, Java, .NET, and Python interfaces, Gurobi methods can throw an exception (a C++ exception,
a Java exception, a .NET exception, or a Python exception)

Underlying all Gurobi error reporting is a set of error codes. These are integer values, but we recommend that
you use one of the predefined error code constants to check the error status in your program. Each error code has a
name, and each language requires a prefix on this name to obtain the appropriate constant. You would access error
code OUT_OF_MEMORY in the following ways from the available Gurobi interfaces:

Language Error Code
C GRB_ERROR_OUT_OF_MEMORY
C++ GRB_ERROR_OUT_OF_MEMORY
Java GRB.Error.OUT_OF_MEMORY
.NET GRB.Error.OUT_OF_MEMORY
Python GRB.Error.OUT_OF_MEMORY

Note that when an error occurs, it produces both an error code and an error message. The message can be
obtained through GRBgeterrormessage in C, through GRBException::getMessage() in C++, through the inherited
getMessage() method on the GRBException class in Java, through the inherited Message property on the GRBEx-
ception class in .NET, or through the e.message attribute on the GurobiError object in Python.

Possible error codes are:

Error code Error
number

Description

OUT_OF_MEMORY 10001 Available memory was exhausted
NULL_ARGUMENT 10002 NULL input value provided for a required argument
INVALID_ARGUMENT 10003 An invalid value was provided for a routine argument
UNKNOWN_ATTRIBUTE 10004 Tried to query or set an unknown attribute
DATA_NOT_AVAILABLE 10005 Attempted to query or set an attribute that could not be

accessed at that time
INDEX_OUT_OF_RANGE 10006 Tried to query or set an attribute, but one or more of the

provided indices (e.g., constraint index, variable index) was
outside the range of valid values

UNKNOWN_PARAMETER 10007 Tried to query or set an unknown parameter
VALUE_OUT_OF_RANGE 10008 Tried to set a parameter to a value that is outside the

parameter’s valid range
NO_LICENSE 10009 Failed to obtain a valid license
SIZE_LIMIT_EXCEEDED 10010 Attempted to solve a model that is larger than the limit

for a demo license
CALLBACK 10011 Problem in callback
FILE_READ 10012 Failed to read the requested file
FILE_WRITE 10013 Failed to write the requested file
NUMERIC 10014 Numerical error during requested operation
IIS_NOT_INFEASIBLE 10015 Attempted to perform infeasibility analysis on a feasible

model
NOT_FOR_MIP 10016 Requested operation not valid for a MIP model
OPTIMIZATION_IN_PROGRESS 10017 Tried to query or modify a model while optimization was

in progress
DUPLICATES 10018 Constraint, variable, or SOS contained duplicated indices
NODEFILE 10019 Error in reading or writing a node file during MIP opti-

mization

718

Q_NOT_PSD 10020 Q matrix in QP model is not positive semi-definite
QCP_EQUALITY_CONSTRAINT 10021 QCP equality constraint specified (only inequalities are

supported unless the NonConvex parameter is set to 2)
NETWORK 10022 Problem communicating with the Gurobi Compute Server
JOB_REJECTED 10023 Gurobi Compute Server responded, but was unable to pro-

cess the job (typically because the queuing time exceeded
the user-specified timeout or because the queue has ex-
ceeded its maximum capacity)

NOT_SUPPORTED 10024 Indicates that a Gurobi feature is not supported under your
usage environment (for example, some advanced features
are not supported in a Compute Server environment)

EXCEED_2B_NONZEROS 10025 Indicates that the user has called a query routine on a
model with more than 2 billion non-zero entries, and the
result would exceed the maximum size that can be returned
by that query routine. The solution is typically to move to
the GRBX version of that query routine.

INVALID_PIECEWISE_OBJ 10026 Piecewise-linear objectives must have certain properties (as
described in the documentation for the various setPWLObj
methods). This error indicates that one of those properties
was violated.

UPDATEMODE_CHANGE 10027 The UpdateMode parameter can not be modified once a
model has been created.

CLOUD 10028 Problems launching a Gurobi Instant Cloud job.
MODEL_MODIFICATION 10029 Indicates that the user has modified the model in such

a way that the model became invalid. For example, this
happens when a general constraint exists in the model and
the user deletes the resultant variable of this constraint.
In such a case, the general constraint does not have any
meaningful interpretation anymore. The solution is to also
delete the general constraint when a resultant variable is
deleted.

CSWORKER 10030 When you are using a client-server feature, this error indi-
cates that there was an application problem.

TUNE_MODEL_TYPES 10031 Indicates that tuning was invoked on a set of models, but
the models were of different types (e.g., one an LP, another
a MIP).

SECURITY 10032 Indicates that an authentication step failed or that an op-
eration was attempted for which the current credentials do
not warrant permission.

NOT_IN_MODEL 20001 Tried to use a constraint or variable that is not in the
model, either because it was removed or because it has not
yet been added.

FAILED_TO_CREATE_MODEL 20002 Failed to create the requested model
INTERNAL 20003 Internal Gurobi error

719

Model File Formats

The Gurobi Optimizer works with a variety of text file formats:
• The MPS, REW, LP, RLP, ILP, OPB DLP, and DUA formats are used to hold optimization models.
• The MST format is used to hold MIP start data. Importing this data into a MIP model allows optimization

to start with a known feasible solution.
• The HNT format is used to hold MIP hints. Importing this data into a MIP model guides the MIP search

towards a guess at a high-quality feasible solution.
• The ORD format is used to hold MIP variable branching priorities. Importing this data into a MIP model

affects the search strategy.
• The BAS format holds simplex basis information. Importing this data into a continuous models allows the

simplex algorithm to start from the given simplex basis.
• The SOL and JSON solution formats are used to hold solution information. The latter includes additional

information about the results of the optimization. Both formats can only be written after the model has been
optimized.

• The ATTR format stores a collection of attributes of a model, including (multiple) MIP starts, solution, basis
information, partitions, variable hints and branching priorities.

• The PRM format holds parameter values. Importing this data into a model changes the values of the referenced
parameters.

Note that all of the Gurobi file I/O routines can work with compressed versions of these files. Specifically, we can
read or write files with the following extensions: .zip, .gz, .bz2, and .7z (assuming that the associated compression
tool, e.g., 7zip for .7z, is installed on your machine and a corresponding entry is part of you PATH environment
variable).

18.1 MPS format
MPS format is the oldest and most widely used format for storing math programming models. There are actually
two variants of this format in wide use. In fixed format, the various fields must always start at fixed columns in the
file. Free format is very similar, but the fields are separated by whitespace characters instead of appearing in specific
columns. One important practical difference between the two formats is in name length. In fixed format, row and
column names are exactly 8 characters, and spaces are part of the name. In free format, names can be arbitrarily
long (although the Gurobi reader places a 255 character limit on name length), and names may not contain spaces.
The Gurobi MPS reader reads both MPS types, and recognizes the format automatically.

Note that any line that begins with the * character is a comment. The contents of that line are ignored.
NAME section

The first section in an MPS format file is the NAME section. It gives the name of the model:

NAME AFIRO

In fixed format, the model name starts in column 15.
OBJSENSE section

The OBJSENSE section is an optional section for maximizing the objective function. By default, Gurobi assumes the
objective function of an MPS file should be minimized, in which case the OBJSENSE section can be omitted.

To instruct Gurobi to maximize the objective function, add the line

OBJSENSE MAX

after the NAME section.

720

ROWS section

The next section is the ROWS section. It begins with the word ROWS on its own line, and continues with one line for
each row in the model. These lines indicate the constraint type (E for equality, L for less-than-or-equal, or G for
greater-than-or-equal), and the constraint name. In fixed format, the type appears in column 2 and the row name
starts in column 5. Here’s a simple example:

ROWS
E R09
E R10
L X05
N COST

Note that an N in the type field indicates that the row is a free row. The first free row is used as the objective function.
If the file includes multiple N rows, each including a priority, weight, relative, and absolute tolerance field, then

each such row is treated as an objective in a multi-objective model. The additional fields must appear after the name,
separated by spaces. For example, the following would capture a pair of objectives, where the first has priority 2 and
the second has priority 1 (and both have identical weights, and relative and absolute tolerances):

N OBJ0 2 1 0 0
N OBJ1 1 1 0 0

Please refer to the multi-objective, ObjNPriority, ObjNWeight, ObjNAbsTol, and ObjNRelTol sections for informa-
tion on the meanings of these fields. Note that all objectives of a multi-objective optimization problem have to be
linear.
LAZYCONS section

The next section is the LAZY CONSTRAINTS section. It begins with the line LAZYCONS, optionally followed by a space
and a laziness level 1-3 (if no laziness level is specified 1 is assumed), and continues with one line for each lazy
constraint. The format is the same as that of the ROWS section: each line indicates the constraint type (E for equality,
L for less-than-or-equal, or G for greater-than-or-equal), and the constraint name. In fixed format, the type appears
in column 2 and the row name starts in column 5. For example:

LAZYCONS
E R01
G R07
L S01
LAZYCONS 2
E R02
G R03
L S11

Lazy constraints are linear constraints, and they are semantically equivalent to standard linear constraints (i.e.,
entries in the ROWS section). Depending on their laziness level they are enforced differently by the MIP solver. Please
refer to the description of the Lazy attribute for details.

This section is optional.
USERCUTS section

The next section is the USER CUTS section. It begins with the line USERCUTS, on its own line, and continues with one
line for each user cut. The format is the same as that of the ROWS section: each line indicates the constraint type (E
for equality, L for less-than-or-equal, or G for greater-than-or-equal), and the constraint name. In fixed format, the
type appears in column 2 and the row name starts in column 5. For example:

USERCUTS
E R01
G R07
L S01

User cuts are linear constraints, and they are semantically equivalent to standard linear constraints (i.e., entries
in the ROWS section). Please refer to the description of the Lazy attribute for details.

This section is optional.

721

COLUMNS section

The next and typically largest section of an MPS file is the COLUMNS section, which lists the columns in the model and
the non-zero coefficients associated with each. Each line in the columns section provides a column name, followed
by either zero, one, or two non-zero coefficients from that column. Coefficients are specified using a row name first,
followed by a floating-point value. Consider the following example:

COLUMNS
X01 X48 .301 R09 -1.
X01 R10 -1.06 X05 1.
X02 X21 -1. R09 1.
X02 COST -4.

The first line indicates that column X01 has a non-zero in row X48 with coefficient .301, and a non-zero in row R09
with coefficient -1.0. Note that multiple lines associated with the same column must be contiguous in the file.

In fixed format, the column name starts in column 5, the row name for the first non-zero starts in column 15, and
the value for the first non-zero starts in column 25. If a second non-zero is present, the row name starts in column
40 and the value starts in column 50.

Integrality markers

The COLUMNS section can optionally include integrality markers. The variables introduced between a pair of markers
must take integer values. All variables within markers will have a default lower bound of 0 and a default upper bound
of 1 (other bounds can be specified in the BOUNDS section). The beginning of an integer section is marked by an
INTORG marker:

MARK0000 'MARKER' 'INTORG'

The end of the section is marked by an INTEND marker:

MARK0000 'MARKER' 'INTEND'

The first field (beginning in column 5 in fixed format) is the name of the marker (which is ignored). The second field
(in column 15 in fixed format) must be equal to the string 'MARKER' (including the single quotes). The third field (in
column 40 in fixed format) is 'INTORG' at the start and 'INTEND' at the end of the integer section.

The COLUMNS section can contain an arbitrary number of such marker pairs.

RHS section

The next section of an MPS file is the RHS section, which specifies right-hand side values. Each line in this section
may contain one or two right-hand side values.

RHS
B X50 310. X51 300.
B X05 80. X17 80.

The first line above indicates that row X50 has a right-hand side value of 310, and X51 has a right-hand side value
of 300. In fixed format, the variable name for the first bound starts in column 15, and the first bound value starts
in column 25. For the second bound, the variable name starts in column 40 and the value starts in column 50. The
name of the RHS is specified in the first field (column 5 in fixed format), but this name is ignored by the Gurobi
reader. If a row is not mentioned anywhere in the RHS section, that row takes a right-hand side value of 0. You may
define an objective offset by setting the negative offset as right-hand side of the objective row. For example, if the
linear objective row in the problem is called COST and you want to add an offset of 1000 to your objective function,
you can add the following to the RHS section:

RHS
RHS1 COST -1000

722

BOUNDS section

The next section in an MPS file is the optional BOUNDS section. By default, each variable takes a lower bound of 0
and an infinite upper bound. Each line in this section can modify the lower bound of a variable, the upper bound,
or both. Each line indicates a bound type (in column 2 in fixed format), a bound name (ignored), a variable name
(in column 15 in fixed format), and a bound value (in columns 25 in fixed format). The different bound types, and
the meaning of the associate bound value, are as follows:
LO lower bound
UP upper bound
FX variable is fixed at the specified value
FR free variable (no lower or upper bound)
MI infinite lower bound
PL infinite upper bound
BV variable is binary (equal 0 or 1)
LI lower bound for integer variable
UI upper bound for integer variable
SC upper bound for semi-continuous variable
SI upper bound for semi-integer variable

Consider the following example:

BOUNDS
FR BND X49
UP BND X50 80.
LO BND X51 20.
FX BND X52 30.

In this BOUNDS section, variable X49 gets a lower bound of -infinity (infinite upper bound is unchanged), variable
X50 gets a upper bound of 80 (lower bound is unchanged at 0, X51 gets a lower bound of 20 (infinite upper bound is
unchanged), and X52 is fixed at 30.
QUADOBJ section

The next section in an MPS file is the optional QUADOBJ section, which contains quadratic objective terms. Each line
in this section represents a single non-zero value in the lower triangle of the Q matrix. The names of the two variable
that participate in the quadratic term are found first (starting in columns 5 and 15 in fixed format), followed by
the numerical value of the coefficient (in column 25 in fixed format). By convention, the Q matrix has an implicit
one-half multiplier associated with it. Here’s an example containing three quadratic terms:

QUADOBJ
X01 X01 10.0
X01 X02 2.0
X02 X02 2.0

These three terms would represent the quadratic function (10X012 + 2X01 ∗X02 + 2X02 ∗X01 + 2X022)/2 (recall
that the single off-diagonal term actually represents a pair of non-zero values in the symmetric Q matrix).
QCMATRIX section

The next section in an MPS file contains zero or more QCMATRIX blocks. These blocks contain the quadratic terms
associated with the quadratic constraints. There should be one block for each quadratic constraint in the model.

Each QCMATRIX block starts with a line that indicates the name of the associated quadratic constraint (starting
in column 12 in fixed format). This is followed by one of more quadratic terms. Each term is described on one line,
which gives the names of the two involved variables (starting in columns 5 and 15 in fixed format), followed by the
coefficient (in column 25 in fixed format). For example:

QCMATRIX QC0
X01 X01 10.0
X01 X02 2.0
X02 X01 2.0
X02 X02 2.0

723

These four lines describe three quadratic terms: quadratic constraint QC0 contains terms 10X012, 4X01 ∗X02, and
2X022. Note that a QCMATRIX block must contain a symmetric matrix, so for example an X01*X02 term must be
accompanied by a matching X02*X01 term.

Linear terms for quadratic constraint QC0 appear in the COLUMNS section. The sense and right-hand side value
appear in the ROWS and RHS sections, respectively.
PWLOBJ section

The next section in an MPS file is the optional PWLOBJ section, which contains piecewise-linear objective functions.
Each line in this section represents a single point in a piecewise-linear objective function. The name of the associated
variable appears first (starting in column 4), followed by the x and y coordinates of the point (starting in columns 14
and 17). Here’s an example containing two piecewise-linear expressions, for variables X01 and X02, each with three
points:

X01 1 1
X01 2 2
X01 3 4
X02 1 1
X02 3 5
X02 7 10

SOS section

The next section in an MPS file is the optional SOS section. The representation for a single SOS constraint contains
one line that provides the type of the SOS set (S1 for SOS type 1 or S2 for SOS type 2, found in column 2 in fixed
format) and the name of the SOS set (column 5 in fixed format) of the SOS set. This is followed by one line for each
SOS member. The member line gives the name of the member (column 5 in fixed format) and the associated weight
(column 15 in fixed format). Here’s an example containing two SOS2 sets.

SOS
S2 sos1

x1 1
x2 2
x3 3

S2 sos2
x3 1
x4 2
x5 3

Indicator Constraint section

The indicator constraint section is optional in the MPS format. It starts with the keyword INDICATORS. Each
subsequent line of the indicator section starts with the keyword IF (placed at column 2 in fixed format) followed by
a space and a row name (the row must have already been defined in the ROWS section). The line continues with a
binary variable (placed at column 15 in fixed format) and finally a value 0 or 1 (placed at column 25 in fixed format).

Here a simple example:

INDICATORS
IF row1 x1 0
IF row2 y1 1

The first indicator constraint in this example states that row1 has to be fulfilled if the x1 takes a value of 0.
General Constraint section

An MPS file may contain an optional section that captures general constraints. This section starts with the keyword
GENCONS.

General constraints can be of two basic types: simple general constraints - MIN , MAX , OR, AND, NORM , ABS
or PWL, or function constraints - polynomial (POLY), power (POW), exponential (EXP or EXPA), logarithmic
(LOG, LOGA), or logistic (LOGISTIC), and trigonometric functions (SIN , COS , or TAN).

Each general constraint starts with a general constraint type specifier (MIN , MAX , OR, AND, NORM , ABS ,
PWL, POLY , POW , EXP, EXPA, LOG, LOGA, LOGISTIC , SIN , COS , or TAN), found in column 2 in fixed

724

format. Optionally a space and a constraint name may follow. For a NORM constraint, the norm type (0, 1, 2, or
INF) follows the type specifier (and is optionally followed by a constraint name).

For function constraints, the next line defines a few attributes used to perform the piecewise-linear approxi-
mation. The line starts with the keyword Options (found in column 5 in fixed format), followed by two spaces,
followed by four values (separated by two spaces) that define the FuncPieces, FuncPieceLength, FuncPieceError,
and FuncPieceRatio attribute values (in that order).

What follows depends on the general constraint type. Simple general constraints start with the name of the
so-called resultant variable, placed on it’s own line (starting at column 5 in fixed format). For MIN or MAX
constraints, a non empty list of variables or values follows (with each variable name on its own line). For OR, AND,
and NORM constraints, a list of variables follows (each on its own line). The variables must be binary for OR and
AND constraints. For ABS constraints, only one additional variable follows (on its own line). In fixed format, all of
these variables or values begin in column 5.

Piecewise-linear constraints start with the name of the so-called operand variable (starting at column 5 in fixed
format), followed by the so-called resultant variable. The next lines contain the piecewise-linear function breakpoints,
each represented as pair of x and y values. The x values must be non-decreasing.

Function constraints also start with the name of the operand variable (starting at column 5 in fixed format),
followed by two spaces, followed by the name of the resultant variable. This is sufficient to define EXP LOG,
LOGISTIC , SIN , COS , and TAN functions. The POW , EXPA and LOGA functions require an exponent or base,
respectively, which is defined on the next line (starting in column 5 in fixed format). For the polynomial function, the
following lines contain a coefficient (at column 5 in fixed format), followed by two spaces, followed by the associated
power (natural numbers only). Note that powers must be decreasing.

The other general constraint type, the INDICATOR constraint, appears in a separate Indicator section, which
is described above.

The following shows an example of a general constraint section:

GENCONS
MAX gc0

r1
x1
x2
x10
0.7

MIN gencons1
r2
y0
10
y1
r1

AND and1
r
b1
b2

OR or1
r
b3
b4

NORM 2 norm2
r3
x1
y1
z1

ABS GC14
xabs
x

PWL GC0
x[0] y[0]

725

-1 2
0 1
0 0
0 1
1 2

POLY GC2
Options 0 0.01 0.001 -1
x y
4 7
2 3

SIN gc1
Options 0 0.01 1e-05 0.5
y z

LOGA gc6
Options 0 0.01 0.001 -1
x y
10

EXPA gc4
Options 0 0.01 0.001 -1
y z
3

For more information, consult the general constraint discussion.
Scenario section

An MPS file may contain an optional section that captures scenario data. A model can have multiple scenarios,
where each defines a set of changes to the original model (which we refer to as the base model).

This section starts with the keyword SCENARIOS, followed by the number of scenarios. Scenarios are described
as a set of changes to the objective function, the right-hand sides of linear constraints, and the bounds of variables.
Objective changes are stated first, followed by right-hand side changes, then bound changes. A scenario can be empty
(i.e., identical to the base model).

Each scenario starts with the keyword NAME (starting at column 2 in fixed format), followed by a scenario name.
Changes to the objective function are defined in the COLUMNS subsection (starting at column 2 in fixed format).

Each objective change is on its own line; that line contains the variable name (starting at column 5 in fixed format),
the objective name (starting at column 15 in fixed format), and the modified objective value (starting at column 25
in fixed format). The format is similar to the columns section above.

Changes to the right-hand sides of linear constraints are defined in the RHS subsection (starting at column 2 in
fixed format). Each right-hand side change is on its own line; that line contains a right-hand side specifier (starting
at column 5 in fixed format), the constraint name (starting at column 15 in fixed format), and the right-hand side
value (starting at column 25 in fixed format). The format is similar to the right-hand side section above.

Changes to variable bounds are defined in the BOUNDS subsection. Each changed variable bound is on its own
line. The format is similar to the bounds section above (with a small difference that the first and second column in
fixed format are 5 and 8, respectively).

The following example shows three scenarios in MPS format:

SCENARIOS 3
NAME scenario0
NAME scenario1
COLUMNS

x1 OBJ 0
x2 OBJ 1

RHS
RHS1 c1 2
RHS1 c2 2

BOUNDS
FR BND1 x1
LO BND1 x3 0.5

726

UP BND1 x3 1.5
FX BND1 x2 0

NAME scenario2
BOUNDS

FX BND1 x3 3

For more information, consult the multiple scenario discussion.
ENDATA

The final line in an MPS file must be an ENDATA statement.
Additional notes

Note that in the Gurobi optimizer, MPS models are always written in full precision. That means that if you write a
model and then read it back, the data associated with the resulting model will be bit-for-bit identical to the original
data.

18.2 REW format
The REW format is identical to the MPS format, except in how objects are named when files are written. When
writing an MPS format file, the Gurobi optimizer refers to constraints and variables using their given names. When
writing an REW format file, the Gurobi optimizer ignores the given names and instead refers to the variables using
a set of default names that are based on row and column numbers. The constraint name depends solely on the
associated row number: row i gets name ci. The variable name depends on the type of the variable, the column
number of the variable in the constraint matrix, and the number of non-zero coefficients in the associated column. A
continuous variable in column 7 with column length 2 would get name C7(2), for example. A binary variable with
the same characteristics would get name B7(2).

18.3 DUA format
The DUA format is identical to the MPS format. The only difference is in how they are used. Writing a DUA file
will generate and write the dual formulation of a pure LP model.

18.4 LP format
The LP format captures an optimization model in a way that is easier for humans to read than MPS format, and
can often be more natural to produce. One limitation of the LP format is that it doesn’t preserve several model
properties. In particular, LP files do not preserve column order when read, and they typically don’t preserve the
exact numerical values of the coefficients (although this isn’t inherent to the format).

Unlike MPS files, LP files do not rely on fixed field widths. Line breaks and whitespace characters are used to
separate objects. Here is a simple example:

\ LP format example

Maximize
x + y + z

Subject To
c0: x + y = 1
c1: x + 5 y + 2 z <= 10
qc0: x + y + [x ^ 2 - 2 x * y + 3 y ^ 2] <= 5

Bounds
0 <= x <= 5
z >= 2

Generals
x y z

End

727

The backslash symbol starts a comment; the remainder of that line is ignored.
Variable names play a major role in LP files. Each variable must have its own unique name. A name should be

no longer than 255 characters, and to avoid confusing the LP parser, it can not begin with a number or any of the
characters +, -, *, ^, <, >, =, (,), [,], ,, or :. For similar reasons, a name should not contain any of the
characters +, -, *, ^, or :. Also, variable names should not be equal (case insensitive) to any of the LP file format
keywords, e.g., st, bounds, min, max, binary, or end. Names must be preceded and followed by whitespace.

The same rules apply to any other type of names in the LP format, e.g., constraint names or the objective name.
Note that whitespace characters are not optional in the Gurobi LP format. Thus, for example, the text x+y+z

would be treated as a single variable name, while x + y + z would be treated as a three term expression.
LP files are structured as a list of sections, where each section captures a logical piece of the whole optimization

model. Sections begin with particular keywords, and must generally come in a fixed order, although a few are allowed
to be interchanged.
Objective Section

The first section in an LP file is the objective section. This section begins with one of the following six keywords:
minimize, maximize, minimum, maximum, min, or max. Capitalization is ignored. This keyword may appear alone,
or it may be immediately followed by multi-objectives, which indicates that the model contains multiple objective
functions.
Single-Objective Case

Let us consider single-objective models first, where this header is followed by a single linear or quadratic expression
that captures the objective function.

The objective optionally begins with a label. A label consists of a name, followed by a colon character, following
by a space. A space is allowed between the name and the colon, but not required.

The objective then continues with a list of linear terms, separated by the + or - operators. A term can contain
a coefficient and a variable (e.g., 4.5 x), or just a variable (e.g., x). The objective can be spread over many lines, or
it may be listed on a single line. Line breaks can come between tokens, but never within tokens.

The objective may optionally continue with a list of quadratic terms. The quadratic portion of the objective
expression begins with a [symbol and ends with a] symbol, followed by / 2. These brackets should enclose
one or more quadratic terms. Either squared terms (e.g., 2 x ^ 2) or product terms (e.g., 3 x * y) are accepted.
Coefficients on the quadratic terms are optional.

For variables with piecewise-linear objective functions, the objective section will include a __pwl(x) term, where
x is the name of the variable. The actual piecewise-linear expressions are pulled from the later PWLObj section.

The objective expression must always end with a line break.
An objective section might look like the following:

Minimize
obj: 3.1 x + 4.5 y + 10 z + [x ^ 2 + 2 x * y + 3 y ^ 2] / 2

Multi-Objective Case

In the multi-objective case, the header is followed by one or more linear objective functions, where each starts with
its own sub-header. The sub-header gives the name of the objective, followed by a number of fields that provide a
Priority, Weight, absolute tolerance (AbsTol) and relative tolerance (RelTol) for that objective (see ObjNPriority,
ObjNWeight, ObjNAbsTol, and ObjNRelTol for details on the meanings of these fields). The fields start with the
field name, followed by a =, followed by the value. For example:

OBJ0: Priority=2 Weight=1 AbsTol=0 RelTol=0

Please refer to the multi-objective section for additional details.
Each sub-header is followed by a linear expression that captures that objective.
A complete multi-objective section might look like the following:

Minimize multi-objectives
OBJ0: Priority=2 Weight=1 AbsTol=0 RelTol=0
3.1 x + 4.5 y + 10 z

OBJ1: Priority=1 Weight=1 AbsTol=0 RelTol=0
10 x + 0.1 y

The objective section is optional. The objective is set to 0 when it is not present.

728

Constraints Section

The next section is the constraints section. It begins with one of the following headers, on its own line: subject to,
such that, st, or s.t.. Capitalization is ignored.

The constraint section can have an arbitrary number of constraints. Each constraint starts with an optional
label (constraint name, followed by a colon, followed by a space), continues with a linear expression, followed by
an optional quadratic expression (enclosed in square brackets), and ends with a comparison operator, followed by a
numerical value, followed by a line break. Valid comparison operators are =, <=, <, >=, or >. Note that LP format
does not distinguish between strict and non-strict inequalities, so for example < and <= are equivalent.

Note that the left-hand side of a constraint may not contain a constant term; the constant must appear on the
right-hand side.

The following is a simple example of a valid linear constraint:

c0: 2.5 x + 2.3 y + 5.3 z <= 8.1

The following is a valid quadratic constraint:

qc0: 3.1 x + 4.5 y + 10 z + [x ^ 2 + 2 x * y + 3 y ^ 2] <= 10

The constraint section may also contain another constraint type: the so-called indicator constraint. Indicator
constraints start with an optional label (constraint name, followed by a colon, followed by a space), followed by a
binary variable, a space, a =, again a space and a value, either 0 or 1. They continue with a space, followed by ->,
and again a space and finally a linear constraint (without a label).

For example:

c0: b1 = 1 -> 2.5 x + 2.3 y + 5.3 z <= 8.1

This example constraint requires the given linear constraint to be satisfied if the variable b1 takes a value of 1.
Every LP format file must have a constraints section.

Lazy Constraints Section

The next section is the lazy constraints section. It begins with the line Lazy Constraints, optionally followed by
a space and a laziness level 1-3 (if no laziness level is specified 1 is assumed), and continues with a list of linear
constraints in the exact same format as the linear constraints in the constraints section. For example:

Lazy Constraints
c0: 2.5 x + 2.3 y + 5.3 z <= 8.1

Lazy Constraints 2
c1: 1.5 x + 3.3 y + 4.3 z <= 8.1

Lazy constraints are linear constraints, and they are semantically equivalent to standard linear constraints.
Depending on their laziness level they are enforced differently by the MIP solver. Please refer to the description of
the Lazy attribute for details.

This section is optional.

User Cuts Section

The next section is the user cuts section. It begins with the line User Cuts, on its own line, and is followed by a list
of linear constraints in the exact same format as the linear constraints in the constraints section. For example:

User Cuts
c0: 2.5 x + 2.3 y + 5.3 z <= 8.1

User cuts are linear constraints, and they are semantically equivalent to standard linear constraints. Please refer
to the description of the Lazy attribute for details.

This section is optional.

729

Bounds Section

The next section is the bounds section. It begins with the word Bounds, on its own line, and is followed by a list of
variable bounds. Each line specifies the lower bound, the upper bound, or both for a single variable. The keywords
inf or infinity can be used in the bounds section to specify infinite bounds. A bound line can also indicate that a
variable is free, meaning that it is unbounded in either direction.

Here are examples of valid bound lines:

0 <= x0 <= 1
x1 <= 1.2
x2 >= 3
x3 free
x2 >= -Inf

It is not necessary to specify bounds for all variables; by default, each variable has a lower bound of 0 and an
infinite upper bound. In fact, the entire bounds section is optional.
Variable Type Section

The next section is the variable types section. Variables can be designated as being either binary, general integer, or
semi-continuous. In all cases, the designation is applied by first providing the appropriate header (on its own line),
and then listing the variables that have the associated type. For example:

Binary
x y z

Variable type designations don’t need to appear in any particular order (e.g., general integers can either precede or
follow binaries). If a variable is included in multiple sections, the last one determines the variable type.

Valid keywords for variable type headers are: binary, binaries, bin, general, generals, gen, semi-continuous,
semis, or semi.

The variable types section is optional. By default, variables are assumed to be continuous.
SOS Section

An LP file can contain a section that captures SOS constraints of type 1 or type 2. The SOS section begins with
the SOS header on its own line (capitalization isn’t important). An arbitrary number of SOS constraints can follow.
An SOS constraint starts with a name, followed by a colon (unlike linear constraints, the name is not optional here).
Next comes the SOS type, which can be either S1 or S2. The type is followed by a pair of colons.

Next come the members of the SOS set, along with their weights. Each member is captured using the variable
name, followed by a colon, followed by the associated weight. Spaces can optionally be placed before and after the
colon. An SOS constraint must end with a line break.

Here’s an example of an SOS section containing two SOS constraints:

SOS
sos1: S1 :: x1 : 1 x2 : 2 x3 : 3
sos2: S2 :: x4:8.5 x5:10.2 x6:18.3

The SOS section is optional.
PWLObj Section

An LP file can contain a section that captures piecewise-linear objective functions. The PWL section begins with the
PWLObj header on its own line (capitalization isn’t important). Each piecewise-linear objective function is associated
with a model variable. A PWL function starts with the corresponding variable name, followed immediately by a
colon (the name is not optional). Next come the points that define the piecewise-linear function. These points are
represented as (x, y) pairs, with parenthesis surrounding the two values and a comma separating them. A PWL
function must end with a line break.

Here’s an example of a PWLObj section containing two simple piecewise-linear functions:

PWLObj
x1: (1, 1) (2, 2) (3, 4)
x2: (1, 3) (3, 5) (100, 300)

The PWLObj section is optional.

730

General Constraint Section

An LP file may contain an optional section that captures general constraints. This section starts with one of the
following keywords general constraints, general constraint, gencons, or g.c. (capitalization is ignored).

General constraints can be of two basic types: simple general constraints - MIN , MAX , OR, AND, NORM ,
ABS , or PWL, or function constraints - polynomial (POLY), power (POW), exponential (EXP or EXPA), logarithmic (LOG,
LOGA), logistic (LOGISTIC), or trigonometric (SIN, COS, or TAN).

A simple general constraint starts with an optional label (constraint name, followed by a colon), followed by a
variable name (the so-called resultant), then an equals sign =. The line continues with a general constraint type spec-
ifier (MIN , MAX , OR, AND, NORM , or ABS), then a (. All tokens must be separated using spaces. Capitalization
is ignored.

What follows depends on the general constraint type. MIN or MAX constraints expect a non-empty, comma-
separated list of variables or values. OR and AND constraints expect a comma-separated list of binary variables.
NORM expects a norm type (0, 1, 2, or INF), in parenthesis, followed by a comma-separated list of variables. ABS
constraints expect only one variable name. Again, all tokens (including commas) must be separated using spaces.

All of these general constraints end with a) and a line break.
Here are a few examples:

gc0: r1 = MAX (x1 , x2 , x10 , 0.7)
gencons1: r2 = MIN (y0 , 10 , y1 , r1)
and1: r = AND (b1 , b2)
or1: r = OR (b3 , b4)
norm2: r = NORM (2) (x1 , y1, z1)
GC14: xabs = ABS (x)

Piecewise-linear constraints also start with an optional label (constraint name, followed by a colon). The line
continues with a variable name (the so-called resultant) and an equal sign =. Next comes the keyword PWL that
indicates that the constraint is of type piecewise-linear. This is followed by a (, and then by a variable name (the
so-called operand) followed by a). The line continues with a : and then the list of piecewise-linear breakpoints in
parentheses (e.g., (x0, y0) (x1, y1)) with non-decreasing values on x. Recall that spaces are required between tokens.

Here an example:

GC0: y[0] = PWL (x[0]) : (-1, 2) (0, 1) (0, 0) (0, 1) (1, 2)

There is one other type of simple constraint, the INDICATOR constraint. Those appear in the regular constraints
section (described above), not in the general constraint section.

Function constraints also start with an optional label (constraint name, followed by a colon). An optional list of
attribute assignments follows. These start with a (, then a space-separate list of Name=Value strings (no spaces before
or after the =), closed with a). An example is shown below. Default values are used if no attributes are specified.

The line continues with a variable name (the so-called resultant) and an equal sign =. Next comes a keyword that
indicates the type of function being defined (POLY , POW , EXP, EXPA, LOG, LOG_A, LOGISTIC , SIN , COS ,
or TAN). For a LOG, use LOG_A if it isn’t a natural log, where A is the base. This is followed by a (, and then
by the expression that defines the actual function. The line closes with a). Recall that spaces are required between
tokens.

Polynomials and powers are described in what is hopefully the natural way, with exponents preceded by the ^
symbol.

The following give examples of a few function constraints:

gc1: (PieceError=1e-05 PieceRatio=0.5) z = SIN (y)
GC2: (PieceLength=0.001) y = POLY (5 x ^ 3 + 2 x + 5)
gc3: z = EXPA (3.5 ^ y)
gc4: z = LOG_10 (y)
logytoz: z = LOG (y)

For more information, consult the general constraint discussion.

731

Scenario Section

An LP file may contain an optional section that captures scenario data. A model can have multiple scenarios, where
each defines a set of changes to the original model (which we refer to as the base model).

This section starts with the Scenario keyword (capitalization is ignored), followed by a scenario name. Scenarios
are described as a set of changes to the objective function, the right-hand sides of linear constraints, and the bounds
of variables. Objective changes are stated first, followed by right-hand side changes, then bound changes. A scenario
can be empty (i.e., identical to the base model).

Changes to the objective function start with one of the allowed objective keywords (Minimize, Maximize, etc.;
see objective section above for additional information). Note that the keyword needs to match the objective sense of
the base model. This is followed by a line for each changed objective coefficient that contains the variable name and
its modified value (separated by a space).

Changes to the right-hand sides of linear constraints start with one of the allowed constraint section keywords
(Subject To, etc.; see the constraints section above for additional information). This is followed by a line for each
changed right-hand side value that contains the constraint name followed by a colon, then a space, the constraint
sense, a space, and the scenario right-hand side value.

Changes to variable bounds start with the Bounds keyword. This is followed by a line for each variable with
changed scenario bounds; the format of each such line is the same as in the bounds section above.

The following example shows three scenarios in LP format:

Scenario scenario0
Scenario scenario1
Maximize
x1 0
x2 1
Subject To
c1: <= 2
c2: >= 2
Bounds
x3 <= 1.5
x1 free
0 <= x2 <= 0
x3 >= 0.5
Scenario scenario2
Bounds
x3 = 3

For more information, consult the multiple scenario discussion.
End statement

The last line in an LP format file should be an End statement.

18.5 RLP format
The RLP format is identical to the LP format, except in how objects are named when files are written. When writing
an LP format file, the Gurobi optimizer refers to constraints and variables using their given names. When writing
an RLP format file, the Gurobi optimizer ignores the given names and instead refers to the variables using names
that are based on variable or constraint characteristics. The constraint name depends solely on the associated row
number: row i gets name ci. The variable name depends on the type of the variable, the column number of the
variable in the constraint matrix, and the number of non-zero coefficients in the associated column. A continuous
variable in column 7 with column length 2 would get name C7(2), for example. A binary variable with the same
characteristics would get name B7(2).

18.6 DLP format
The DLP file format is identical to the LP format. The only difference is in how they are used. Writing a DLP file
will generate and write the dual formulation of a pure LP model.

732

18.7 ILP format
The ILP file format is identical to the LP format. The only difference is in how they are used. ILP files are specifically
used to write computed Irreducible Inconsistent Subsystem (IIS) models.

18.8 OPB format
The OPB file format is used to store pseudo-boolean satisfaction and pseudo-boolean optimization models. These
models may only contain binary variables, but these variables may be complemented and multiplied together in
constraints and objectives. Pseudo-boolean models in OPB files are translated into a MIP representation by Gurobi.
The syntax of the OPB format is described in detail by Roussel and Manquinho. However, the OPB format supported
by Gurobi is less restrictive, e.g., fractional coefficients are allowed.

The following is an example of a pseudo-boolean optimization model

minimize y − 1.3x(1− z) + (1− z)
subject to 2y − 3x+ 1.7w = 1.7

−y + x+ xz(1− v) ≥ 0
−y ≤ 0,
v, w, x, y, z ∈ {0, 1}.

(1)

The corresponding OPB file for this example is given by

* This is a dummy pseudo-boolean optimization model
min: y - 1.3 x ~z + ~z;
2 y - 3 x + 1.7 w = 1.7;
-1 y + x + x z ~v >= 0;
-1 y <= 0;

Lines starting with * are treated as comments and ignored. Non-comment lines must end with a semicolon ;.
Whitespace characters must be used to separate variables. The complement of a variable may be specified with a
tilde ~.

Only minimization models are supported. These models must be specified with the min: objective keyword.
This keyword must appear before other constraints. Satisfiability models may be defined by omitting the objective.

Constraint senses >=, =, and <= are supported.

18.9 MST format
A MIP start (MST) file is used to specify an initial solution for a mixed integer programming model. The file lists
values to assign to the variables in the model. If a MIP start has been imported into a MIP model before optimization
begins (using GRBread, for example), the Gurobi optimizer will attempt to build a feasible solution from the specified
start values. A good initial solution often speeds the solution of the MIP model, since it provides an early bound on
the optimal value, and also since the specified solution can be used to seed the local search heuristics employed by
the MIP solver.

A MIP start file consists of variable-value pairs, each on its own line. Any line that begins with the hash sign
(#) is a comment line and is ignored. The following is a simple example:

MIP start
x1 1
x2 0
x3 1

Importing a MIP start into a model is equivalent to setting the Start attribute for each listed variable to the
associated value. If the same variable appears more than once in a start file, the last assignment is used. Importing
multiple start files is equivalent to reading the concatenation of the imported files.

Note that start files don’t need to specify values for all variables. When variable values are left unspecified, the
Gurobi solver will try to extend the specified values into a feasible solution for the full model.

733

https://www.cril.univ-artois.fr/PB12/format.pdf

It is important to mention that when saving an MST file, Gurobi will not save the values of continuous variables.
If you want to save a complete description of the best solution found, we recommend to save it as a solution file (SOL
format). This will guarantee that you will save the values for each variable present in your model.

18.10 HNT format
A MIP hint (HNT) file is used to provide hints for the values of the variables in a mixed integer programming model
(typically obtained from a solution to a related model). The file lists values for variables in the model, and priorities
for those hints. When MIP hints are imported into a MIP model before optimization begins (using GRBread, for
example), the MIP search is guided towards the values captured in those hints. Good hints often allow the MIP
solver to find high-quality solutions much more quickly.

A MIP hint file consists of variable-value-priority triples, each on its own line. Any line that begins with the
hash sign (#) is a comment line and is ignored. The following is a simple example:

MIP hints
x1 1 2
x2 0 1
x3 1 1

Importing hints into a model is equivalent to setting the VarHintVal and VarHintPri attributes for each listed
variable to the associated values. If the same variable appears more than once in a hint file, the last assignment is
used. Importing multiple hint files is equivalent to reading the concatenation of the imported files.

Note that hint files don’t need to specify values for all variables. When values are left unspecified, the Gurobi
MIP solver won’t attempt to adjust the search strategy for those variables.

18.11 ORD format
A priority ordering (ORD) file is used to input a set of variable priority orders. Reading a priority file (using GRBread,
for example) modifies the MIP branch variable selection. When choosing a branching variable from among a set of
fractional variables, the Gurobi MIP solver will always choose a variable with higher priority over one with a lower
priority.

The file consists of variable-value pairs, each on its own line. The file contains one line for each variable in the
model. Any line that starts with the hash sign (#) is treated as a comment line and is ignored. The following is a
simple example:

Branch priority file
x 1
y 1
z -1

Variables have a default branch priority value of 0, so it is not necessary to specify values for all variables.
Importing a priority order file is equivalent to replacing the BranchPriority attribute value for each variable in

the model. Note that you can still modify the BranchPriority attribute after importing an ordering file.

18.12 BAS format
An LP basis (BAS) file is used to specify an initial basis for a continuous model. The file provides basis status
information for each variable and constraint in the model. If written by Gurobi, to reduce the size of the file, it only
includes the difference to the slack basis. In a slack basis for each row the corresponding slack variable is basic while
all other problem variables are at their lower bound. If a basis has been imported into a continuous model before
optimization begins (using GRBread, for example), and if a simplex optimizer has been selected (through the Method
parameter), the Gurobi simplex optimizer begins from the specified basis.

A BAS file begins with a NAME line, and ends with an ENDATA statement. No information is retrieved from these
lines, but they are required by the format. Between these two lines are basis status lines, each consisting of two or

734

three fields and starting with a white space character. If the first field is LL, UL, or BS, the variable named (slack
variables are not allowed) in the second field is non-basic at its lower bound, non-basic at its upper bound, or basic,
respectively. Any additional fields are ignored. If the first field is XL or XU, the variable named in the second field is
basic, while the row named in the third field states that the corresponding slack variable is non-basic at its lower or
upper bound, respectively.

The following is a simple example:

NAME example.bas
XL x1 c1
XU x2 c2
UL x3
LL x4
ENDATA

Importing a basis into a model is equivalent to setting the VBasis and CBasis attributes for each listed variable
and constraint to the specified basis status.

A near-optimal basis can speed the solution of a difficult LP model. However, specifying a start basis that is not
extremely close to an optimal solution will often slow down the solution process. Exercise caution when providing
start bases.

18.13 SOL format
A Gurobi solution (SOL) file is used to output a solution vector. It can be written (using GRBwrite, for example)
whenever a solution is available.

The file consists of variable-value pairs, each on its own line. The file contains one line for each variable in the
model. The following is a simple example:

Solution file
x 1.0
y 0.5
z 0.2

18.14 JSON solution format
JSON (or JavaScript Object Notation) is a lightweight, text-based, language-independent data interchange format.
It was derived from JavaScript, but many modern programming languages include code to generate and parse JSON-
format data.

Gurobi JSON solution format is meant to be a simple and standard way to capture and share optimization
results. It conforms to the RFC-8259 standard. JSON solutions can be written to a file or captured in a string.

The JSON solution captures the values of various Gurobi attributes associated with the solution to the model.
Some are related to the model overall, some to individual variables, and some to individual constraints. The exact
contents of a JSON solution string will depend on a few factors:

• The type of model being solved (linear, quadratic, mixed-integer, multi-objective, etc.). Some solution infor-
mation is simply not available for certain problem types (e.g., dual variable values for MIP models).

• The set of tagged elements in the model. By default the JSON solution will contain only model attributes
and variable data. Users can tag variables (using the VTag attribute), linear constraints (using the CTag
attribute), and quadratic constraints (using the QCTag attribute) to request data on a more selective basis.
If any such attribute is used, only tagged elements will have solution information in the JSON solution.

• The JSONSolDetail parameter, which controls how much detail is included in the JSON solution.

• Parameter settings such as InfUnbdInfo or QCPDual, which cause the optimization process to generate more
solution information.

735

https://www.rfc-editor.org/rfc/rfc8259.html

JSON solutions aren’t generally meant to be interpreted directly by humans. Instead, you typically feed them
into a JSON parser, which provides tools for extracting the desired information from the string. JSON is a widely-
used format, and nearly all modern program languages have libraries available for helping to parse JSON strings and
files. And if you are determined to examine the string directly, JSON parsers typically also include pretty-printing
utilities that make it easier to do so.
Basic Structure

A JSON solution string consists of a collection of named components. In its simplest form, it might look like the
following:

{ "SolutionInfo": { "Status": 3,
"Runtime": 3.4289908409118652e-01,
"BoundVio": 0,
"ConstrVio": 0,
"IterCount": 0,
"BarIterCount": 0}}

A JSON parser makes it relatively easy to extract the various components from this string. In Python, for example,
you would be able to retrieve the optimization status by accessing result['SolutionInfo']['Status'] after parsing.

Before discussing the specific information that is available in this format, let us first say a word about how data is
represented. The type of each data item follows from the attribute type. For example, Status is an integer attribute,
so the corresponding value is stored as an integer. Runtime is a double attribute, which is represented as a string,
and that string always captures the exact, double-precision (IEEE754) value of the attribute.
Named Components

A JSON solution will always have at least one named object: SolutionInfo. It may contain up to three optional
named arrays: Vars, Constrs, QConstrs. A JSON solution string may look like:

{"SolutionInfo": {...},
"Vars": [...],
"Constrs": [...],
"QConstrs": [...]}

The exact contents of the three optional sections will depend on what model components have been tagged and on
what solution information is available. If no element is tagged, for example, then the Vars array will be present and
contain names and solution values for all variables with non-zero solution values. For a MIP model, the Constrs
array will not be present, since MIP solutions don’t contain any constraint information.
SolutionInfo Object

The SolutionInfo object contains high-level information about the solution that was computed for this model.
Some entries will always be present, while others depend on the problem type or the results of the optimization. This
component may include the following model attributes:
Status (always present): The optimization status (optimal, infeasible, hit the time limit, etc.).
Runtime (always present): Runtime for the optimization (in seconds).
ObjVal: The solution objective value.
ObjBound: The best known bound on the objective value.
ObjBoundC: The best known bound on the objective value (before using integrality information to strengthen the

bound).
MIPGap: The optimality gap.
IntVio: The maximum integrality violation.
BoundVio: The maximum bound violation.
ConstrVio: The maximum constraint violation.
ObjNVal (multi-objective only): An array of objective values, one for each objective.
ScenNObjVal (multi-scenario only): An array of objective values, one for each scenario.

736

ScenNObjBound (multi-scenario only): An array of objective bounds, one for each scenario.
IterCount: Number of simplex iterations.
BarIterCount: Number of barrier iterations.
NodeCount: Number of branch-and-cut nodes explored for MIP models.
FarkasProof: Part of the infeasibility certificate for infeasible models. Note that you have to set the InfUnbdInfo

parameter before the optimization call for this information to be available.
SolCount: Number of stored solutions (only for MIP models).
PoolObjBound: Bound on the objective of undiscovered MIP solutions.
PoolObjVal: Only for MIP models with at least one solution. For single-objective models, this is an array containing

the objective value for each stored solution (starting with the incumbent). For multi-objective models, this is
an array containing SolCount arrays of values, each array contains the objective value for each multi-objective
for the particular solution.

Here’s an example of a SolutionInfo object for a MIP model:

{ "SolutionInfo": { "Status": 2,
"Runtime": 5.8451418876647949e+00,
"ObjVal": 3089,
"ObjBound": 3089,
"ObjBoundC": 3089,
"MIPGap": 0,
"IntVio": 0,
"BoundVio": 0,
"ConstrVio": 0,
"IterCount": 32,
"BarIterCount": 0,
"NodeCount": 1,
"SolCount": 1,
"PoolObjBound": 3089,
"PoolObjVal": [3089]}}

Vars Array

The Vars component is an array (possibly empty) of objects containing information about variables. If no explicit
tags (VTag, CTag, or QCTag) have been set at all, all variables will be included, along with their names. Otherwise
only variables wih a set VTag will be included, and this tag will be part of the object. Some data will always be
present, while other data will depend on the problem type or the results of the optimization. This component may
include the following variable attributes:

VarName: The variable’s name in the model. Present only if no tags have been set.
VTag: Array containing the variable tag. Note that this is stored as an array, but the array will currently only ever

contain a single string.
X (always present): Value for the variable corresponding to the VarName or VTag in the current solution. Note

objects with a zero variable value will be omitted from the Vars array unless JSONSolDetail is greater than
zero.

Xn: Values for all stored solutions including the incumbent solution (only for MIP).
ScenNX: For multiple scenarios, values for all scenario solutions.
RC: For continuous models with dual information, the reduced cost for the variable.
VBasis: For continuous models whose solution is basic, the basis status for the variable.
UnbdRay: For unbounded models with InfUnbdInfo enabled, the unbounded ray component associated with the

variable.

The following attributes are only included if JSONSolDetail is greater than 0: RC, UnbdRay, VBasis, Xn.
These objects may look like:

737

{ "VTag": ["VTag7"], "X": 1}
{ "VTag": ["VTag12"], "X": 3.6444895037909271e-02, "RC": 0}
{ "VTag": ["VTag2747"],

"X": 0,
"Xn": [0, 1, 1, 1, 0, 1, 1, 0, 0, 0]}

Constrs Array

The Constrs component is an array (possibly empty) of objects containing information about tagged linear con-
straints. Some entries will always be present, while others depend on the problem type or the results of the optimiza-
tion. This component may include the following constraint attributes:
CTag (always present): Array containing the linear constraint tag. Note that this is stored as an array, but the

array will currently only ever contain a single string.
Slack (always present): Value for the slack variable in the current solution.
Pi: For continuous models with dual information, the dual value for the corresponding constraint.
FarkasDual: For infeasible models with InfUnbdInfo enabled, the Farkas dual component associated with the con-

straint.
This component will always be empty for MIP models.

The following attributes are only included if JSONSolDetail is greater than 0: CBasis, FarkasDual, Pi, Slack.
These objects may look like:

{ "CTag": ["CTag72"],
"Slack": -1.3877787807814457e-17,
"Pi": -5.6530866311690423e-02}

QConstrs Array

The QConstrs component is an array (possibly empty) of objects containing information about tagged quadratic
constraints. Some entries will always be present, while others depend on the problem type or the results of the
optimization. This component may include the following quadratic constraint attributes:
QCTag (always present): Array containing the quadratic constraint tag. Note that this is stored as an array, but

the array will currently only ever contain a single string.
QCSlack (always present): Value for the slack variable in the current solution.
QCPi: For continuous models with dual information, the dual value for the corresponding constraint.
This component will always be empty for MIP models.

The following attributes are only included if JSONSolDetail is greater than 0: QCPi, QCSlack.
JSON Solution Examples

For a continuous model, the JSON solution string may look like

{ "SolutionInfo": {
"Status": 2,
"Runtime": 9.9294495582580566e-01,
"ObjVal": 5.2045497375374854e-07,
"BoundVio": 0,
"ConstrVio": 1.002e-07,
"IterCount": 0,
"BarIterCount": 3},

"Vars": [
{"VTag": ["VTag7"], "X": -3.0187172916263982e-09, "RC": 0},
{"VTag": ["VTag1340"], "X": -3.0696132844593768e-09, "RC": 0},
{"VTag": ["VTag2673"], "X": -4.8134359014615295e-09, "RC": 0},
{"VTag": ["VTag4006"], "X": -7.1652420015125937e-02, "RC": 0},
{"VTag": ["VTag5339"], "X": -1.5815441619302997e-02, "RC": 0},
{"VTag": ["VTag6672"], "X": 1.4945278866946186e-02, "RC": 0}],

738

"Constrs": [
{"CTag": ["CTag7"], "Slack": 4.85722506e-17, "Pi": 2.3140310696e-06},
{"CTag": ["CTag673"], "Slack": 0, "Pi": -1.4475853138350041e-06},
{"CTag": ["CTag1339"], "Slack": -2.7758914e-17, "Pi": -3.7443785e-06},
{"CTag": ["CTag2005"], "Slack": 4.3420177e-18, "Pi": -1.0277524e-06},
{"CTag": ["CTag2671"], "Slack": -1.3895245e-17, "Pi": 8.0012944e-07},
{"CTag": ["CTag3337"], "Slack": 6.39465e-16, "Pi": -5.3368958e-06}]}

For a multi-objective LP, the JSON solution string may look like

{ "SolutionInfo": {
"Status": 2,
"Runtime": 2.2838807106018066e-01,
"ObjNVal": [10, 339],
"IterCount": 112,
"BarIterCount": 0,
"NodeCount": 0},

"Vars": [
{"VTag": ["VTag7"], "X": 0},
{"VTag": ["VTag569"], "X": 0},
{"VTag": ["VTag1131"], "X": 0},
{"VTag": ["VTag1693"], "X": 0},
{"VTag": ["VTag2255"], "X": 0},
{"VTag": ["VTag2817"], "X": 0},
{"VTag": ["VTag3379"], "X": 0},
{"VTag": ["VTag3941"], "X": 0},
{"VTag": ["VTag4503"], "X": 0},
{"VTag": ["VTag5065"], "X": 1},
{"VTag": ["VTag5627"], "X": 1},
{"VTag": ["VTag6189"], "X": 1}]}

For a regular MIP problem, the JSON solution string may look like

{ "SolutionInfo": {
"Status": 2,
"Runtime": 2.4669170379638672e-03,
"ObjVal": 3124,
"ObjBound": 3124,
"ObjBoundC": 3124,
"MIPGap": 0,
"IntVio": 1.958742e-08,
"BoundVio": 0,
"ConstrVio": 1.002e-07,
"IterCount": 465,
"BarIterCount": 0,
"NodeCount": 1,
"SolCount": 4,
"PoolObjBound": 3124,
"PoolObjVal": [3124, 3124, 3124, 3124]},

"Vars": [
{"VTag": ["VTag7"], "X": 1, "Xn": [1, 1, 1, 1]},
{"VTag": ["VTag466"], "X": 0, "Xn": [0, 1, 1, 0]},
{"VTag": ["VTag925"], "X": 0, "Xn": [0, 0, 0, 0]},
{"VTag": ["VTag1384"], "X": 0, "Xn": [0, 0, 1, 1]},
{"VTag": ["VTag1843"], "X": 0, "Xn": [0, 1, 0, 0]},
{"VTag": ["VTag2302"], "X": 0, "Xn": [0, 1, 1, 0]}]}

For a multi-objective MIP, the JSON solution string may look like

739

{ "SolutionInfo": {
"Status": 2,
"Runtime": 3.5403838157653809e+00,
"ObjNVal": [2763, 704],
"IterCount": 595,
"BarIterCount": 0,
"NodeCount": 1,
"SolCount": 6,
"PoolObjVal": [[2763, 704], [2763, 705],

[2763, 716], [2763, 718],
[2763, 769], [2763, 1060]]},

"Vars": [
{"VTag": ["VTag7"], "X": 1, "Xn": [1, 1, 1, 1, 1, 1]},
{"VTag": ["VTag466"], "X": 0, "Xn": [0, 1, 0, 0, 0, 0]},
{"VTag": ["VTag925"], "X": 0, "Xn": [0, 0, 0, 0, 1, 1]},
{"VTag": ["VTag1384"], "X": 0, "Xn": [0, 0, 0, 0, 0, 0]},
{"VTag": ["VTag1843"], "X": 0, "Xn": [0, 0, 1, 1, 0, 0]},
{"VTag": ["VTag2302"], "X": 0, "Xn": [0, 1, 0, 0, 0, 0]}]}

For a multi-scenario model, the JSON solution string may look like

{ "SolutionInfo": {
"Status": 2,
"Runtime": 3.5403838157653809e+00,
"ObjVal": 2763,
"ObjBound": 2763,
"ObjBoundC": 1324,
"IntVio": 0,
"BoundVio": 0,
"ConstrVio": 0,
"ScenNObjVal": [2763, 3413, 1e+100],
"ScenNObjBound": [2763, 3413, 1e+100],
"IterCount": 595,
"BarIterCount": 0,
"NodeCount": 1,
"SolCount": 3,
"PoolObjBound": 2763,
"PoolObjVal": [2763, 2763, 2763]},

"Vars": [
{"VTag": ["VTag7"], "X": 1, "ScenNX": [1, 0, 1e+101], "Xn": [1, 0, 1]},
{"VTag": ["VTag466"], "X": 0, "ScenNX": [1, 1, 1e+101], "Xn": [1, 1, 1]},
{"VTag": ["VTag925"], "X": 0, "ScenNX": [0, 0, 1e+101], "Xn": [0, 0, 0]},
{"VTag": ["VTag1384"], "X": 0, "ScenNX": [2, 1, 1e+101], "Xn": [2, 1, 0]},
{"VTag": ["VTag1843"], "X": 0, "ScenNX": [0, 2, 1e+101], "Xn": [0, 2, 1]},
{"VTag": ["VTag2302"], "X": 0, "ScenNX": [0, 1, 1e+101], "Xn": [0, 1, 0]}]}

If the scenario objective value ScenNObjVal is infinite (GRB_INFINITY = 1e+100 for minimization, -GRB_INFINITY =
-1e+100 for maximization), then no feasible solution has been found for this scenario. The corresponding ScenNX
value for each variable will be GRB_UNDEFINED = 1e+101. Moreover, if the ScenNObjBound value for the scenario is
also infinite, it means that the scenario has been proven to be infeasible.

18.15 ATTR format
A Gurobi attribute (ATTR) file is used to store, and read, attribute information of a model -- provided by the user
or generated during a previous solution call -- that affects the optimization process.

740

More precisely, this file stores -- if available -- the following attributes: X, the primal solution to the last
optimization call. Pi, the dual solution to the last optimization call. Start, all the stored MIP start vectors.
Partition, the variable partition. VarHintVal and VarHintPri, the variable hint information. BranchPriority, the
variable branch priority vector. Lazy, the lazy attribute for each constraint. VTag, CTag and QCTag, the tagged
elements of the model. VBasis and CBasis, the basis information for variables and constraints. PStart and DStart,
the simplex-start information for variables and constraints.

Any line starting with the character ’#’, or empty lines, are considered as comments, and will be discarded at
reading time. The file should start by a line of the form
GRB_ATTR_FILE_VERSION 0100000
which indicate the version of the file. Older versions are backward-compatible. Then follows a number of sections,
each storing one set of attributes. Each section starts with one of the following:

• SECTION SOLUTION

• SECTION MIPSTART

• SECTION PARTITION

• SECTION VARHINTS

• SECTION BRANCHPRIORITY

• SECTION LAZYCONSTRS

• SECTION BASIS

• SECTION PSTART

• SECTION DSTART

• SECTION VTAG

• SECTION CTAG

• SECTION QCTAG

For those attributes for which there is a dedicated file extension, the following format is exactly the same as
described in the corresponding file format description.

For sections involving other variable attributes, each line is a tuple describing the variable name, and the at-
tribute(s) value related to it. Variables with attribute values at default may be omitted.

For sections involving other constraint attributes, each line is a tuple describing the constraint name, and the
attribute(s) value related to it. Constraints with attribute values at default may be omitted.

If a model has multiple MIP starts, each of them will be saved in a different SECTION MIPSTART. Whenever an
attribute file is loaded into a model, each SECTION MIPSTART will be loaded into a new MIP start vector.

The tags of variables and constraints must be enclosed in double quotes. If the tag itself contains a double quote,
this needs to be escaped by a backslash. Moreover, if the tag contains a backslash, this also needs to be escaped,
which yields two consecutive backslashes. For example, if a variable named “V01” has as a tag the string: “My Tag"\”,
the corresponding line in the attribute file will contain:

V01 "My Tag \"\\"

Note that tags can only consist of US-ASCII printable characters.

18.16 PRM format
A Gurobi parameter (PRM) file is used to specify parameter settings. Reading a parameter file (using GRBread, for
example) causes the parameters specified in the file to take the specified values.

The file consists of parameter-value pairs, each on its own line. Any line that begins with the hash sign (#) is a
comment line and is ignored. The following is a simple example:

Parameter settings
Cuts 2
Heuristics 0.5

741

If an unknown parameter name is listed in the file, a warning is printed and the associated line is ignored.
Note that when you write a Gurobi parameter file (using GRBwrite in C, Model.write in Python, or in any of

the other APIs), both integer or double parameters not at their default value will be saved, but no string parameter
will be saved into the file.

742

Logging

The Gurobi Optimizer produces a log that allows you to track the progress of the optimization. The Gurobi command-
line tool and the Gurobi Interactive Shell put the log to both the screen and to a file named gurobi.log by default.
The other interfaces just put the log to the screen. Screen output can be controlled using the OutputFlag parameter,
and file output can be controlled using the LogFile parameter.

19.1 Header
When you solve a model, the first part of the resulting log contains basic information about the model you are solving
and the machine you are solving it on. You will first see a line that looks like this:

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

This shows the number of physical cores and logical processors in the machine. The latter may be larger than the
former due to Simultaneous Multi Threading (SMT), which allows one physical core to appear as multiple logical
processors. This log line also shows the maximum number of threads that the solver will use in this instance. This
depends on the number of (logical) processors in the machine, but also on the number requested (through the Threads
parameter), and for some license types on the number enabled by your license.

Next you will see summary information about the model you are solving:

Optimize a model with 755 rows, 2756 columns and 8937 nonzeros
Model fingerprint: 0x22935346
Variable types: 0 continuous, 2756 integer (0 binary)

The first line shows the size of the model. The second shows the model fingerprint, which is a hash value that takes
into account the values of all attributes of all components of the model. The intent is that models that differ in
any way will most always have different fingerprints. The last log line above provides additional information about
variable integrality (for MIP models).

The final portion of the header contains statistics about the constraint matrix:

Coefficient statistics:
Matrix range [1e+00, 1e+04]
Objective range [1e+00, 1e+04]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+04]

This information gives a very rough indication of whether you can expect numerical issues when solving your model.
Please consult the numerical guidelines section to learn more.

The format of the remainder of the log depends on the algorithm that is invoked (simplex, barrier, sifting,
branch-and-cut, or IIS. We now describe the contents of the log for each.

19.2 Simplex Logging
The simplex log can be divided into three sections: the presolve section, the simplex progress section, and the
summary section.

743

Presolve Section

The first thing the Gurobi optimizer does when optimizing a model is to apply a presolve algorithm in order to
simplify the model. The first section of the Gurobi log provides information on the extent to which presolve succeeds
in this effort. Consider the following example output from NETLIB model dfl001:

Presolve removed 2349 rows and 3378 columns
Presolve time: 0.04s
Presolved: 3722 rows, 8852 columns, 30908 nonzeros

The example output shows that presolve was able to remove 2349 rows and 3378 columns, and it required 0.04
seconds. The final line in the presolve section shows the size of the model after presolve. This is size of the model
that is passed to the simplex optimizer. Note that the solution that is computed for this model is automatically
transformed into a solution for the original problem once simplex finishes (in a process often called uncrushing), but
this uncrush step is transparent and produces no log output.
Progress Section

The second section of the Gurobi simplex output provides information on the progress of the simplex method:

Iteration Objective Primal Inf. Dual Inf. Time
0 -2.4571000e+32 4.000000e+30 2.457100e+02 0s

18420 1.1265574e+07 1.655263e+03 0.000000e+00 5s
20370 1.1266393e+07 0.000000e+00 0.000000e+00 6s

The five columns in each output row show the number of simplex iterations performed to that point, the objective
value for the current basis, the magnitude of the primal infeasibility for the current basis (computed as the sum of the
absolute values of all constraint and bound violations), the magnitude of the dual infeasibility (computed as the sum
of the absolute values of all dual constraint violations), and the amount of time expended to that point (measured
using wall clock time). The default simplex algorithm in the Gurobi solver is dual simplex, which tries to maintain
dual feasibility while performing simplex pivots to improve the objective. Thus, once the dual simplex algorithm has
found an initial dual feasible basis, you will generally see a dual infeasibility value of zero. When the primal and dual
infeasibilities both reach zero, the basis is optimal and optimization is complete.

By default, the Gurobi optimizer produces a log line every 5 seconds. The frequency of log lines can be changed
by modifying the DisplayInterval parameter (see the Parameter section of this document for more information).
Summary Section

The third section of the simplex log provides summary information. It provides a summary of the work that the
simplex algorithm performed, including the iteration count and the runtime, and it provides information on outcome
of the optimization. The summary for a model that is solved to optimality would look like this:

Solved in 20370 iterations and 5.75 seconds
Optimal objective 1.126639304e+07

Other termination states produce different summaries. For example, a user interrupt would produce a summary that
looks like:

Stopped in 7482 iterations and 3.41 seconds
Solve interrupted

Hitting a time limit would produce a summary that looks like:

Stopped in 18082 iterations and 5.00 seconds
Time limit reached

19.3 Barrier Logging
The barrier log can be divided into five sections: the presolve section, the barrier preprocessing section, the barrier
progress section, the crossover progress section, and the summary section.

744

Presolve Section

As mentioned earlier, the first thing the Gurobi optimizer does when optimizing a model is to apply a presolve
algorithm in order to simplify the model. The first section of the Gurobi log provides information on the extent to
which presolve succeeds in this effort. Consider the following example output from NETLIB model dfl001:

Presolve removed 2349 rows and 3378 columns
Presolve time: 0.04s
Presolved: 3722 rows, 8852 columns, 30908 nonzeros

The example output shows that presolve was able to remove 2349 rows and 3378 columns, and it required 0.04
seconds. The final line in the presolve section shows the size of the model after presolve. This is size of the model
that is passed to the barrier optimizer. Note that the solution that is computed for this model is automatically
transformed into a solution for the original problem once barrier finishes (in a process often called uncrushing), but
this uncrush step is transparent and produces no log output.
Barrier Preprocessing Section

The factor matrix for the linear system solved in each iteration of the barrier method can be quite large and quite
expensive to compute. In order to reduce the cost of this computation, the first step of the barrier algorithm is to
compute a fill-reducing reordering of the rows and columns of this matrix. This step can be quite expensive, but the
cost is recouped in the reduced cost of the subsequent barrier iterations.

Once this fill-reducing reordering has been computed, the Gurobi Optimizer outputs information related to the
barrier factor matrix:

Barrier statistics:
AA' NZ : 3.657e+04
Factor NZ : 8.450e+05 (roughly 12 MBytes of memory)
Factor Ops : 3.944e+08 (less than 1 second per iteration)
Threads : 8

The First line shows the number of off-diagonal entries in the lower triangle of AAT . A scaled version of this matrix
is factored in each iteration of the barrier algorithm, so the structure of the Cholesky factor depends on the structure
of AAT .

The next two lines indicate the number of non-zero values in the factor matrix, and the number of floating-point
operations required to factor it. Note that the log also provides an estimate of how much memory will be needed
by the barrier algorithm, and how long each barrier iteration will require: These are rough estimates that are meant
to provide a general sense of how difficult the model will be to solve. If you want to obtain an estimate of overall
solution time, note that most models achieve convergence in roughly 50 iterations, but there are many exceptions.
Crossover runtime is typically comparable to the cost of a few barrier iterations, but this time can vary considerably,
depending on the model characteristics.

The final line shows the number of threads that will be used to perform the barrier iterations.
You may sometimes see two other lines in this section:

Dense cols : 3
Free vars : 20

The first indicates how many columns from the constraint matrix were treated as dense. The second indicates how
many variables in the model are free. Dense columns and free variables can sometimes lead to numerical difficulties
in the barrier solver, so it is useful to know when they are present.
Progress Section

The third section of the Gurobi barrier output provides information on the progress of the barrier method:

Objective Residual
Iter Primal Dual Primal Dual Compl Time

0 1.47340463e+12 -1.05838204e+09 1.49e+04 2.46e+02 1.94e+09 0s
1 6.13234163e+11 -3.97417254e+10 5.97e+03 5.98e+06 8.82e+08 0s
2 2.89634303e+11 -9.20268188e+10 2.54e+03 2.24e+06 3.81e+08 0s
3 6.57753936e+10 -9.40746258e+10 2.39e+02 2.87e+05 5.17e+07 0s

745

4 2.44710457e+10 -2.59852944e+10 3.16e+01 3.01e+04 9.00e+06 0s
5 6.74069830e+09 -1.78169224e+10 4.01e+00 2.01e+04 3.17e+06 0s
6 1.93163205e+09 -3.10778084e+09 2.46e-01 3.13e+03 5.62e+05 0s
7 6.54973737e+08 -6.89946649e+08 4.40e-02 5.35e+02 1.47e+05 0s
8 2.44764500e+08 -3.47987016e+08 1.47e-02 4.02e+02 6.46e+04 0s
9 1.35906001e+08 -1.41063037e+08 7.16e-03 1.66e+02 3.01e+04 0s
10 9.29132721e+07 -6.69973369e+07 4.58e-03 7.60e+01 1.73e+04 0s

The seven columns in each output row show the number of barrier iterations performed to that point, the primal and
dual objective values for the current barrier iterate, the magnitude of the primal and dual infeasibilities for the current
iterate (computed as the infinity-norms of the primal and dual residual vectors, respectively), the magnitude of the
complementarity violation of the current primal and dual iterates (the dot product of the primal solution and the dual
reduced cost vector), and the amount of time expended to that point (measured using wall clock time). When the
primal infeasibility, dual infeasibility, and complementarity satisfy barrier convergence tolerances (controlled using
the BarConvTol parameter), the solution is declared optimal and optimization is complete.

Unlike the simplex and MIP optimizers, the barrier optimizer produces a log line for each iterate, independent
of the value of the DisplayInterval parameter.

You may sometimes see a star after the iteration count in the barrier progress log:

15 2.42800468e+03 8.54543324e+04 1.68e+02 1.02e-09 8.30e+04 0s
16 4.05292006e+03 4.65997441e+04 1.82e+02 2.50e-01 4.25e+04 0s
17* 4.88742259e+08 4.30781025e+10 5.17e+00 1.31e-01 2.52e-02 0s
18* 1.21709951e+06 3.39471138e+13 8.55e-06 3.14e-06 3.14e-05 0s
19* -1.38021972e+06 3.31580578e+16 3.42e-08 8.20e-09 3.22e-08 0s
20* 1.25182178e+06 3.31575855e+19 6.54e-12 7.34e-09 3.22e-11 0s

This indicates that the model may be primal or dual infeasible. Note that these intermediate indications of infeasibility
won’t necessarily turn into an infeasibility proof, so the star may disappear in later iterations.
Crossover Section

The fourth section of the barrier log provides information on the crossover step. This section is only present when
crossover is selected (as controlled through the Crossover parameter. Crossover converts the interior point solution
produced by the barrier algorithm to a basic solution.

The first stage in crossover is to push variables to bounds in order to obtain a valid basic solution. By default,
this is done for dual variables first, then for primal variables. Progress of this phase is tracked with this portion of
the crossover log...

Crossover log...

1610 DPushes remaining with DInf 0.0000000e+00 1s
0 DPushes remaining with DInf 0.0000000e+00 1s

144 PPushes remaining with PInf 5.7124800e-03 1s
0 PPushes remaining with PInf 5.7124800e-03 1s

Push phase complete: Pinf 5.7124800e-03, Dinf 8.1488315e-07 1s

Each line indicates how many push steps remain, the amount of infeasibility in the current solution, and the elapsed
barrier time.

Upon completion of the push phase, crossover has a basic solution that isn’t necessarily optimal. The resulting
basis is passed to simplex, and simplex completes the optimization...

Iteration Objective Primal Inf. Dual Inf. Time
1700 1.1266352e+07 5.712480e-03 0.000000e+00 1s
1868 1.1266393e+07 0.000000e+00 0.000000e+00 1s

The five columns in each output row of the simplex log show the number of simplex iterations performed to that
point in the crossover algorithm (including the push steps), the objective value for the current basis, the magnitude

746

of the primal infeasibility for the current basis (computed as the sum of the absolute values of all constraint and
bound violations), the magnitude of the dual infeasibility (computed as the sum of the absolute values of all dual
constraint violations), and the amount of time expended by the crossover algorithm to that point (measured using
wall clock time). When the primal and dual infeasibilities both reach zero, the basis is optimal and optimization is
complete.
Summary Section

The final section of the barrier log provides summary information. It provides a summary of the work that the barrier
algorithm performed, including the iteration count and the runtime, and it provides information on outcome of the
optimization. The summary for a model that is solved to optimality would look like this:

Solved in 1868 iterations and 1.05 seconds
Optimal objective 1.126639304e+07

Other termination states produce different summaries. For example, a user interrupt would produce a summary that
looks like:

Stopped in 7482 iterations and 3.41 seconds
Solve interrupted

Hitting a time limit would produce a summary that looks like:

Stopped in 9221 iterations and 5.00 seconds
Time limit exceeded

19.4 Sifting Logging
Sifting will sometimes be used within the dual simplex method, either as a result of an automatic choice by the
Gurobi Optimizer or because the user selected it through the Sifting parameter. The sifting log consists of three
sections: the presolve section, the sifting progress section, and the summary section. The first and last are identical
to those for simplex, so we’ll only discuss the middle section here.
Sifting Progress Section

As we mentioned, output for sifting and dual simplex are indistinguishable until the progress section begins. For
sifting, the progress section begins with a clear indication that sifting has been selected:

Starting sifting (using dual simplex for sub-problems)...

The sifting algorithm performs a number of major iterations, where each iteration solves a smaller LP sub-problem.
It uses the result to update the current primal and dual solution. The sifting log prints one line per major iteration,
with information on the current primal and dual objective values:

Iter Pivots Primal Obj Dual Obj Time
0 0 infinity 2.0000000e+01 11s
1 4662 1.5220652e+03 2.7034420e+02 12s
2 8917 1.3127217e+03 4.6530259e+02 13s
3 16601 1.1651147e+03 6.4767742e+02 17s
4 30060 1.0881514e+03 7.8842688e+02 29s
5 45169 1.0618879e+03 8.8656855e+02 46s
6 59566 1.0549766e+03 9.5404159e+02 64s
7 73614 1.0540577e+03 1.0172213e+03 82s

The first column in the log gives the major iteration number. The second shows the total number of simplex iterations
performed in solving the sifting sub-problems. The third and fourth columns show the primal and dual objective
values for the current solution. The final column shows elapsed runtime.

The completion of sifting is indicated with the following message:

Sifting complete

747

The basis computed by sifting is then handed back to dual simplex, and the log from that point forward comes from
the dual simplex algorithm.

19.5 MIP Logging
The MIP log can be divided into three sections: the presolve section, the simplex progress section, and the summary
section.
Presolve Section

As with the simplex and barrier logs, the first section of the MIP log is the presolve section. Here is presolve output
for MIPLIB model mas76:

Presolve removed 0 rows and 3 columns
Presolve time: 0.01s
Presolved: 12 rows, 148 columns, 1615 nonzeros
Variable types: 1 continuous, 147 integer (145 binary)

In this example, presolve was able to remove 3 columns. The last two lines show the size of the model that is passed
to the branch-and-cut algorithm and the types of remaining variables.
Progress Section

The next section in the MIP log tracks the progress of the branch-and-cut search. The search involves a number of
different steps, so this section typically contains a lot of detailed information. The first thing to observe in the log
for example mas76 is this line:

Found heuristic solution: objective 157344.61033

It indicates that the Gurobi heuristics found an integer-feasible solution before the root relaxation was solved.
The next thing you will see in the log is the root relaxation solution display. For a model where the root solves

quickly, this display contains a single line:

Root relaxation: objective 3.889390e+04, 50 iterations, 0.00 seconds

For models where the root relaxation takes more time (MIPLIB model dano3mip, for example), the Gurobi solver
will automatically include a detailed simplex log for the relaxation itself:

Root simplex log...

Iteration Objective Primal Inf. Dual Inf. Time
15338 5.7472018e+02 6.953458e+04 0.000000e+00 5s
19787 5.7623162e+02 0.000000e+00 0.000000e+00 7s

Root relaxation: objective 5.762316e+02, 19787 iterations, 6.18 seconds

To be more precise, this more detailed log is triggered whenever the time to solve the root relaxation exceeds the
DisplayInterval parameter value (5 seconds by default).

The next section provides progress information on the branch-and-cut tree search:

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 38893.9036 0 11 157344.610 38893.9036 75.3% - 0s
H 0 0 80297.610430 38893.9036 51.6% - 0s
H 0 0 60361.518931 38893.9036 35.6% - 0s
H 0 0 41203.601476 38893.9036 5.61% - 0s

0 0 38923.3264 0 12 41203.6015 38923.3264 5.53% - 0s
0 0 38923.3264 0 12 41203.6015 38923.3264 5.53% - 0s

H 0 0 40697.054142 38923.3264 4.36% - 0s

748

0 0 38923.3264 0 13 40697.0541 38923.3264 4.36% - 0s
H 0 0 40005.054142 38923.3264 2.70% - 0s

0 0 38939.3131 0 15 40005.0541 38939.3131 2.66% - 0s
0 0 38964.7042 0 13 40005.0541 38964.7042 2.60% - 0s
0 0 39004.6387 0 15 40005.0541 39004.6387 2.50% - 0s
0 0 39008.7922 0 15 40005.0541 39008.7922 2.49% - 0s
0 0 39008.9356 0 12 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 14 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 15 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 15 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 16 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 17 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 17 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 19 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 18 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 18 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 19 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 19 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 18 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 18 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 18 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 18 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 18 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 19 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 21 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 21 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 19 40005.0541 39008.9356 2.49% - 0s
0 2 39008.9356 0 19 40005.0541 39008.9356 2.49% - 0s

This display is somewhat dense with information, but each column is hopefully fairly easy to understand. The Nodes
section (the first two columns) provides general quantitative information on the progress of the search. The first
column shows the number of branch-and-cut nodes that have been explored to that point, while the second shows
the number of leaf nodes in the search tree that remain unexplored. At times, there will be an H or * character at the
beginning of the output line. These indicate that a new feasible solution has been found, either by a MIP heuristic
(H) or by branching (*).

The Current Node section provides information on the specific node that was explored at that point in the
branch-and-cut tree. It shows the objective of the associated relaxation, the depth of that node in the branch-and-cut
tree, and the number of integer variables that have non-integral values in the associated relaxation.

The Objective Bounds section provides information on the best known objective value for a feasible solution
(i.e., the objective value of the current incumbent), and the current objective bound provided by leaf nodes of the
search tree. The optimal objective value is always between these two values. The third column in this section (Gap)
shows the relative gap between the two objective bounds. When this gap is smaller than the MIPGap parameter,
optimization terminates.

The Work section of the log provides information on how much work has been performed to that point. The first
column shows the average number of simplex iterations performed per node in the branch-and-cut tree. The final
column shows the elapsed time since the solve began.

By default, the Gurobi MIP solver prints a log line every 5 seconds (although the interval can sometimes be
longer for models with particularly time-consuming nodes). The interval between log lines can be adjusted with the
DisplayInterval parameter (see the Parameter section of this document for more information).

Note that the explored node count often stays at 0 for an extended period. This means that the Gurobi MIP
solver is processing the root node. The Gurobi solver can often expend a significant amount of effort on the root node,
generating cutting planes and trying various heuristics in order to reduce the size of the subsequent branch-and-cut
tree.

Summary Section

The third section in the log provides summary information once the MIP solver has finished:

749

Cutting planes:
Gomory: 1
MIR: 17

Explored 313128 nodes (1741251 simplex iterations) in 4.80 seconds
Thread count was 8 (of 8 available processors)

Solution count 7: 40005.1 40697.1 41203.6 ... 157345

Optimal solution found (tolerance 1.00e-04)
Best objective 4.000505414200e+04, best bound 4.000505414200e+04, gap 0.0000%

In this example, the Gurobi solver required just under 5 seconds to solve the model to optimality, and it used 8
threads to do so (the thread count can be limited with the Threads parameter). The solution count provides the
number of solutions found during the optimization process (7 in this case). If the number exceeds 10, then only the
best 10 solutions are listed in this log line. The gap between the best feasible solution objective and the best bound
is 0.0%, which produces an Optimal termination status, since the achieved gap is smaller than the default MIPGap
parameter value.

19.6 Solution Pool and Multi-Scenario Logging
Populating a solution pool or solving for multiple scenarios involves looking for more than one solution, which leads
to different logging output. In particular, logging for these methods comes in two phases. In the first, the log shows
progress towards finding one provably optimal solution (for multi-scenario optimization, this is the best solution over
all scenarios). The log for this first phase is identical to the standard MIP log. It shows progress in the lower and
upper bounds, and the phase terminates when these are sufficiently close to each other.

The second phase starts once attention has shifted towards finding solutions beyond that one optimal solution.
You will see a message indicating that a new phase has begun. When populating a solution pool, you will see:

Optimal solution found at node 7407 - now completing solution pool...

When solving for multiple scenarios, you will see:

Optimal solution found at node 15203 - now completing multiple scenarios...

You will also see an additional header, which is slightly different from the standard MIP header. For a solution
pool:

Nodes | Current Node | Pool Obj. Bounds | Work
| | Worst |

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

For multiple scenarios:

Nodes | Current Node | Scenario Obj. Bounds | Work
| | Worst |

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

The most important difference versus the standard header is in the Incumbent column. In the standard MIP log, this
column shows the objective value for the best solution found so far. For a solution pool or multiple scenarios, this
column shows the objective value for the worst solution. This of course isn’t the worst solution ever found. Rather,
it shows the objective value for the worst solution among all the solutions that the MIP solver has been asked to
find. For example, if you have set the PoolSolutions parameter to 100 to ask for the 100 best solutions, this column
will show the objective value for the 100th best solution found so far. If you are solving a multi-scenario model, this
column shows the worst solution found over all scenarios. As the search progresses, the value in this column will
improve monotonically as the MIP solver replaces this worst solution with better solutions.

One other important difference in this second phase log is in the meaning of the BestBd column. In the standard
MIP log, this column gives a bound on the best possible objective value for any solution. In this log, this column

750

shows the best possible objective value for any solution that has not yet been found. To give an example, if a
minimization model has a unique optimal solution at objective 100, the second phase will begin once the lower bound
reaches 100, and the BestBd column will show a value larger than 100 once the solver has determined that only one
solution exists at objective 100.

The BestBd and Incumbent columns allow you to track progress towards completion of the solution pool or multi-
scenario solve. Specifically, once the best bound for any solution that has not yet been found reaches the objective
value for the worst solution, we know that we can’t improve that solution and we can stop.

19.7 Multi-Objective Logging
The contents of the log for a multi-objective solve will depend on the approach you use to solve the model. As noted
in the section on multi-objective models, you have two options. In a blended approach, where the objectives are
combined into a single objective, the log will be the same as what you’d see for a single-objective model. When using
a hierarchical approach, a series of models is solved, one for each objective priority level. If your model is a pure
hierarchical multi-objective problem with three objectives, the optimization process log will start with

Multi-objectives: starting optimization with 3 objectives ...

If your model is a mixed hierarchical-blended multi-objective problem with five objectives but only three priorities,
the optimization log will start with

Multi-objectives: starting optimization with 5 objectives (3 combined) ...

You will also see a log for each solve, introduced by a small header

Multi-objectives: optimize objective 1 Name ...

Where Name will be the name of the objective function being optimize, or (weighted) if the objective function is the
result of blending more than one objective function.

The logs for the individual solves will again be the same as what you’d see for a single-objective model.

19.8 Distributed MIP Logging
Logging for distributed MIP is very similar to the standard MIP logging. The main difference is in the progress
section. The header for the standard MIP logging looks like this:

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

In contrast, the distributed MIP header has a different label for the second-to-last field:

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | ParUtil Time

Instead of showing iterations per node, this field in the distributed log shows parallel utilization. Specifically, it
shows the fraction of the preceding time period (the time since the previous progress log line) that the workers spent
actively processing MIP nodes.

Here is an example of a distributed MIP progress log:

751

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | ParUtil Time

H 0 157344.61033 - - 0s
H 0 40707.729144 - - 0s
H 0 28468.534497 - - 0s
H 0 18150.083886 - - 0s
H 0 14372.871258 - - 0s
H 0 13725.475382 - - 0s

0 0 10543.7611 0 19 13725.4754 10543.7611 23.2% 99% 0s
* 266 12988.468031 10543.7611 18.8% 0s
H 1503 12464.099984 10630.6187 14.7% 0s
* 2350 12367.608657 10632.7061 14.0% 1s
* 3360 12234.641804 10641.4586 13.0% 1s
H 3870 11801.185729 10641.4586 9.83% 1s

Ramp-up phase complete - continuing with instance 2 (best bd 10661)

16928 2731 10660.9626 0 12 11801.1857 10660.9635 9.66% 99% 2s
135654 57117 11226.5449 19 12 11801.1857 11042.3036 6.43% 98% 5s
388736 135228 11693.0268 23 12 11801.1857 11182.6300 5.24% 96% 10s
705289 196412 cutoff 11801.1857 11248.8963 4.68% 98% 15s
1065224 232839 11604.6587 28 10 11801.1857 11330.2111 3.99% 98% 20s
1412054 238202 11453.2202 31 12 11801.1857 11389.7119 3.49% 99% 25s
1782362 209060 cutoff 11801.1857 11437.2670 3.08% 97% 30s
2097018 158137 11773.6235 20 11 11801.1857 11476.1690 2.75% 92% 35s
2468495 11516 cutoff 11801.1857 11699.9393 0.86% 78% 40s
2481830 0 cutoff 11801.1857 11801.1857 0.00% 54% 40s

One thing you may find in the progress section is that node counts may not increase monotonically. Distributed
MIP tries to create a single, unified view of node numbers, but with multiple machines processing nodes independently,
possibly at different rates, some inconsistencies are inevitable.

Another difference is the line that indicates that the distributed ramp-up phase is complete. At this point, the
distributed strategy transitions from a concurrent approach to a distributed approach. The log line indicates which
worker was the winner in the concurrent approach. Distributed MIP continues by dividing the partially explored
MIP search tree from this worker among all of the workers.

Another difference in the distributed log is in the summary section. The distributed MIP log includes a breakdown
of how runtime was spent:

Runtime breakdown:
Runtime breakdown:

Active: 37.85s (93%)
Sync: 2.43s (6%)
Comm: 0.34s (1%)

This is an aggregated view of the utilization data that is displayed in the progress log lines. In this example, the
workers spent 93% of runtime actively working on MIP nodes, 6% waiting to synchronize with other workers, and
1% communicating data between machines.

19.9 IIS Logging
Recall that an Irreducible Infeasible Subsystem (IIS) is a subset of the constraints and variable bounds in your
infeasible model with the following properties:

• It is still infeasible, and
• If a single constraint or bound is removed, the subsystem becomes feasible.

752

The process of identifying an IIS is one of addition and subtraction. The algorithm grows a set of constraints and
bounds that are known to be part of an IIS, and also a set that are known not to be. You can track the progress of
this process in the IIS log.

Computing Irreducible Inconsistent Subsystem (IIS)...

Constraints | Bounds | Runtime
Min Max Guess | Min Max Guess |

--
0 17509 - 0 4 - 0s
0 12996 - 0 4 - 5s
0 10398 20 0 0 - 10s
0 9749 20 0 0 - 15s
1 9584 20 0 0 - 20s
4 9576 20 0 0 - 25s
6 9406 20 0 0 - 30s
8 8432 40 0 0 - 35s

11 8422 40 0 0 - 40s
15 8413 60 0 0 - 45s
18 8241 60 0 0 - 50s
21 7908 50 0 0 - 55s
24 7735 50 0 0 - 60s

...

The first two columns show the minimum and maximum sizes of the set of constraints in the IIS. The fourth and
fifth column give the same information for the set of variable bounds. The final column shows elapsed runtime.

The third and sixth columns in the IIS log provide guesses at the final size of the IIS. Computing an IIS can be
quite time-consuming, and it is often useful to have a sense of how large the result will be. These guesses can be
quite accurate in some cases, but unfortunately there are some models that can fool our heuristic. You should treat
these as very rough estimates.

When the process completes, the algorithm outputs the size of the IIS (the number of constraints and bounds in
the irreducible subsystem):

IIS computed: 102 constraints, 0 bounds
IIS runtime: 129.91 seconds

Note in this case that early guesses were in the neighborhood of 50 constraints, but the IIS contained 102.
If you terminate the process early, you will get a non-minimal infeasible subsystem instead:

Non-minimal IIS computed: 3179 constraints, 0 bounds
IIS runtime: 120.29 seconds

753

Gurobi Command-Line Tool

The Gurobi command-line tool allows you to perform simple commands without the overhead or complexity of an
interactive interface. While the most basic usage of the command-line tool is quite straightforward, the tool has a
number of uses that are perhaps less obvious. This section talks about its full capabilities.

To use this tool, you’ll need to type commands into a command-line interface. Linux and Mac users can use a
Terminal window. Windows users will need to open a Command Prompt (also known as a Console window or a cmd
window). To launch one, hold down the Start and R keys simultaneously, and then type cmd into the Run box that
appears.

The command to solve a model using the command-line tool is:

gurobi_cl [parameter=value]* modelfile

The Gurobi log file is printed to the screen as the model solves, and the command terminates when the solve is
complete. Parameters are chosen from among the Gurobi parameters. The final argument is the name of a file that
contains an optimization model, stored in MPS or LP format. You can learn more about using the command-line
tool to solve models in this section.

The command-line tool can also be used to replay recordings of API calls. The command for this usage is:

gurobi_cl recordingfile

A recording file is a binary file generated by Gurobi with a .grbr extension. You can learn more about using the
command-line tool to replay recordings in this section.

The command-line tool can also be used to check on the status of a Gurobi token server. The command is:

gurobi_cl --tokens

This command will show you whether the token server is currently serving tokens, and which users and machines are
currently using tokens.

You can also type:

gurobi_cl --help

to get help on the use of the tool, or:

gurobi_cl --version

to get version information, or:

gurobi_cl --license

to get the location of the current Gurobi license file.

20.1 Solving a Model
The command-line tool provides an easy way to solve a model stored in a file. The model can be stored in several
different formats, including MPS, REW, LP, and RLP, and the file can optionally be compressed using gzip, bzip2,
or 7z. See the File Format discussion for more information on accepted formats.

The most basic command-line command is the following:

gurobi_cl model.mps

754

This will read the model from the indicated file, optimize it, and display the Gurobi log file as the solve proceeds.
You can optionally include an arbitrary number of parameter=value commands before the name of the file. For

example:

gurobi_cl Method=2 TimeLimit=100 model.mps

The full set of Gurobi parameters is described in the Parameter section.
Gurobi Compute Server users can add the --server= switch to specify a server. For example, the command:

gurobi_cl --server=server1 Method=2 TimeLimit=100 model.mps

would solve the model stored in file model.mps on machine server1, assuming it is running Gurobi Compute Server.
If the Compute Server has an access password, use the --password= switch to specify it.

Gurobi Instant Cloud users can add the --accessid=, --secretkey=, and --pool= switches to run a model on
a cloud instance. For example, the command:

gurobi_cl --accessid=0f5e0ace-f929-a919-82d5-02272b3b0e19 \
--secretkey=8EDZOIf7T9avp0ZHef9Tsw --pool=mypool model.mps

would solve the model stored in file model.mps on cloud pool mypool using the provided access ID and secret key. If
the pool isn’t currently active, it will launch it first.
Writing Result Files

While it is often useful to simply solve a model and display the log, it is also common to want to review the resulting
solution. You can use the ResultFile parameter to write the solution to a file:

gurobi_cl ResultFile=model.sol model.mps

The file name suffix determines the type of file written. Useful file formats for solution information are .sol (for
solution vectors) and .bas (for simplex basis information). Again, you should consult the section on File Formats for
a list of the supported formats

If you have an infeasible model, you may want to examine a corresponding Irreducible Inconsistent Subsystem
(IIS) to identify the cause of the infeasibility. You can ask the command-line tool to write a .ilp format file. It will
attempt to solve the model, and if the model is found to be infeasible, it will automatically compute an IIS and write
it to the requested file name. An IIS is a subset of the constraints and variable bounds with the following properties:

• It is still infeasible, and
• If a single constraint or bound is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily the smallest
one; there may exist others with fewer constraints or bounds.

IIS results are returned in a number of attributes: IISConstr, IISLB, IISUB, IISSOS, IISQConstr, and IISGen-
Constr. Each indicates whether the corresponding model element is a member of the computed IIS.

The IIS log provides information about the progress of the algorithm, including a guess at the eventual IIS size.
If an IIS computation is interrupted before completion, Gurobi will return the smallest infeasible subsystem found

to that point.
The IISConstrForce, IISLBForce, IISUBForce, IISSOSForce, IISQConstrForce, and IISGenConstrForce attributes

allow you mark model elements to either include or exclude from the computed IIS. Setting the attribute to 1 forces
the corresponding element into the IIS, setting it to 0 forces it out of the IIS, and setting it to -1 allows the algorithm
to decide.

To give an example of when these attributes might be useful, consider the case where an initial model is known
to be feasible, but it becomes infeasible after adding constraints or tightening bounds. If you are only interested
in knowing which of the changes caused the infeasibility, you can force the unmodified bounds and constraints into
the IIS. That allows the IIS algorithm to focus exclusively on the new constraints, which will often be substantially
faster.

Note that setting any of the Force attributes to 0 may make the resulting subsystem feasible, which would
then make it impossible to construct an IIS. Trying anyway will result in a GRB_ERROR_IIS_NOT_INFEASIBLE error.
Similarly, setting this attribute to 1 may result in an IIS that is not irreducible. More precisely, the system would
only be irreducible with respect to the model elements that have force values of -1 or 0.

Another use of ResultFile is to translate between file formats. For example, if you want to translate a model
from MPS format to LP format, you could issue the following command:

755

gurobi_cl TimeLimit=0 ResultFile=model.lp model.mps

Gurobi can write compressed files directly, so this command would also work (assuming that 7zip is installed on your
machine):

gurobi_cl TimeLimit=0 ResultFile=model.lp.7z model.mps

The ResultFile parameter works differently from other parameters in the command-line interface. While a
parameter normally takes a single value, you can actually specify multiple result files. For example, the following
command:

gurobi_cl ResultFile=model.sol ResultFile=model.bas model.mps

will write two files.
Reading Input Files

You can use the InputFile parameter to read input files during the optimization. The most common input formats
are .bas (a simplex basis), .mst (a MIP start), .sol (also a MIP start), .hnt (MIP hints), and .ord (a MIP priority
order). For example, the following command:

gurobi_cl InputFile=model.bas model.mps

would start the optimization of the continuous model stored in file model.mps using the basis provided in file
model.bas.

Reading input files is equivalent to setting the values of Gurobi attributes. A .bas file populates the VBasis and
CBasis attributes, while a .ord file populates the BranchPriority attribute. A .mst or .sol file populates the Start
attribute. A .hnt file populates the VarHintVal and VarHintPri attributes.

Again, you should consult the File Formats section for more information on supported file formats

20.2 Replaying Recording Files
If you’ve generated a recording of the Gurobi API calls made by your program, you may use the command-line tool
to replay this recording.

Recordings are stored in files with .grbr extensions. To replay a recording from a file named recording000.grbr
issue the following command:

gurobi_cl recording000.grbr

You should adjust the file name to match the recording you wish to replay.
You will know you have succeeded in replaying a recording, if you see lines similar to the following at the beginning

of the command-line tool’s output:

Replay* Replay of file ’recording000.grbr’
Replay* Recording captured Tue Sep 13 19:28:48 2022
Replay* Recording captured with Gurobi version 10.0.0 (linux64)

For information about recording API calls and replaying them, see the Recording API Calls chapter.

756

Solution Pool

While the default goal of the Gurobi Optimizer is to find one proven optimal solution to your model, with a possible
side-effect of finding other solutions along the way, the solver provides a number of parameters that allow you to
change this behavior.

21.1 Finding Multiple Solutions
By default, the Gurobi MIP solver will try to find one proven optimal solution to your model. It will typically find
multiple sub-optimal solutions along the way, which can be retrieved later (using the SolutionNumber parameter,
and the Xn and PoolObjVal attributes). However, these solutions aren’t produced in a systematic way. The set of
solutions that are found depends on the exact path the solver takes through the MIP search. You could solve a MIP
model once, obtaining a set of interesting sub-optimal solutions, and then solve the same problem again with different
parameter settings, and find only one optimal solution or a different set of sub-optimal solutions.

If you’d like more control over how solutions are found and retained, the Gurobi Optimizer has a number of
parameters available for this. The first and simplest one is PoolSolutions, which controls the size of the solution pool.
Changing this parameter won’t affect the number of solutions that are found - it simply determines how many of
those are retained.

You can use the PoolSearchMode parameter to control the approach used to find multiple solutions. In its default
setting (0), the MIP search simply aims to find one optimal solution. Setting the parameter to 1 causes the MIP
search to expend additional effort to find more solutions, but in a non-systematic way, and with no guarantee on the
quality of these solutions: you will get more solutions, but not necessarily the best solutions. Setting the parameter to
2 causes the MIP to do a systematic search for the n best solutions. For both non-default settings, the PoolSolutions
parameter sets the target for the number of solutions to find.

If you are only interested in solutions that are within a certain gap of the best solution found, you can set the
PoolGap parameter. Solutions that are not within the specified gap are discarded.

Obtaining an OPTIMAL optimization return status when using PoolSearchMode=2 indicates that the MIP solver
succeeded in finding the desired number of best solutions, or it proved that the model doesn’t have that many distinct
feasible solutions. If the solver terminated early (e.g., due to a time limit), you can use the PoolObjBound attribute
to evaluate the quality of the solutions that were found. You can find more details on how to do this later in this
section.

There are a few subtleties associated with finding multiple solutions that you should be aware of. For example,
the notion of finding the n best solutions can be a bit ambiguous when you have a non-zero optimality tolerance.
Also, it isn’t obvious whether two solutions should be considered different when the model has continuous variables.
We’ll discuss these issues later in this section.

21.2 Retrieving Solutions
After optimization has completed, you can retrieve solutions from the solution pool using a few parameters and
attributes. The SolCount attribute indicates how many solutions were retained by the MIP solver. The best solution
can always be obtained through the X attribute. Sub-optimal solutions can be obtained by first setting the Solution-
Number parameter and then querying the Xn attribute to obtain the solution or the PoolObjVal attribute to obtain
the objective value for the corresponding solution.

Solutions in the solution pool are ordered from best to worst. For example, to retrieve the worst solution
kept by the MIP solver, you’d first query SolCount to determine how many solutions are available, then set the
SolutionNumber parameter to SolCount-1, then query the Xn attribute.

The PoolObjBound attribute gives a bound on the objective value of undiscovered solutions (i.e., of solutions
that aren’t already in the solution pool). Further tree exploration won’t find solutions having a better objective value
than PoolObjBound.

757

The difference between this attribute and ObjBound is that the latter gives a bound on the objective for any
solution, while PoolObjBound only refers to undiscovered solutions (which are not in the solution pool). PoolObjBound
is always at least as tight as ObjBound and it is often strictly tighter than ObjBound if PoolSearchMode=2. If
PoolSearchMode=0 or PoolSearchMode=1, then PoolObjBound and ObjBound will always take the same value.

If the solver terminated early (e.g. due to reaching the time limit), you can still use the attribute PoolObjBound
to get a count of how many of the n best solutions you found: any solutions having objective values that are at least
as good as PoolObjBound are among the n best. This is illustrated in the examples on the next section.

21.3 Examples
Parameter usage

Let’s continue with a few examples on how the parameters related to solution pools would be used. Imagine that
you are solving a MIP model with an optimal (minimization) objective of 100. Further imagine that, using default
settings, the MIP solver finds four solutions to this model with objectives 100, 110, 120, and 130.

If you set the PoolSolutions parameter to 3 and solve the model again, the MIP solver would return with 3
solutions in the solution pool (i.e., the SolCount attribute would have value 3). If you instead set the PoolGap
parameter to value 0.2, the MIP solver would discard any solutions whose objective value is worse than 120 (which
would also leave 3 solutions in the solution pool).

If you set the PoolSearchMode parameter to 1 and the PoolSolutions parameter to 10, the MIP solver would
continue running after having found an optimal solution trying to find and store 10 solutions, but with no guarantee
on the quality of the additional solutions.

If you set the PoolSearchMode parameter to 2 and the PoolSolutions parameter to 10, the MIP solver would
attempt to find the 10 best solutions to the model. An OPTIMAL return status would indicate that either (i) it found
the 10 best solutions, or (ii) it found all feasible solutions to the model, and there were fewer than 10. If you also
set the PoolGap parameter to a value of 0.1, the MIP solver would try to find 10 solutions with objective no worse
than 110. While this may appear equivalent to asking for 10 solutions and simply ignoring those with objective worse
than 110, the solve will typically complete significantly faster with this parameter set, since the solver does not have
to expend effort looking for solutions beyond the requested gap.
Interpreting attribute information

Let’s try to better understand the attributes related to solution pools. Consider again a minimization problem where
the parameter settings PoolSearchMode=2 and PoolSolutions=10 have been used.

First, imagine that the solver terminated with an OPTIMAL return status. We look at several possible hypothetical
values of some attributes:

• Case 1 : ObjVal=100, ObjBound=100, PoolObjBound=500, and the objective value of the 10th solution in the
pool is 500.
The first solution in the pool is optimal (because ObjVal and ObjBound are equal), and the solver was able to
find 10 solutions of value at most 500. Because PoolObjBound=500, we know that all solutions that the solver
did not find have an objective value of at least 500. Since the last solution in the pool has value 500, the 10
solutions in the pool are definitely the 10 best solutions.

• Case 2 : ObjVal=100, ObjBound=100, PoolObjBound=+infinity, SolCount=7, and the values of the 7th and
8th solutions in the pool are 350 and +infinity, respectively.
The solver has found 7 solutions and has proven that no other feasible solution for the model exists. The best
of these 7 solutions has objective 100, the worst of them has objective 350.

Now, imagine that the solver terminated early due to a time limit (return status TIME_LIMIT). Again, we look
at several possible hypothetical values of some attributes:

• Case 3: ObjVal=100, ObjBound=50, PoolObjBound=50
Since ObjBound < ObjVal, the solver did not prove optimality of the incumbent solution (the first solution in
the pool). There can be better solutions than the incumbent.

• Case 4: ObjVal=100, ObjBound=100, PoolObjBound=100, and the objective value of the 10th solution in the
pool is 500.

758

The first solution in the pool is optimal (because ObjVal and ObjBound are equal), and the solver was able
to find 10 solutions with objective value at most 500. Because PoolObjBound=100, we know that all solutions
that the solver did not find have an objective value of at least 100. Since the value of the last solution in the
pool is 500, it could be the case that there exist 10 or more solutions with objective smaller than 500 (but
greater than or equal to 100). In particular, solutions that are currently in the pool and have objective value
greater than 100 might not be among the 10 best solutions.

• Case 5: ObjVal=100, ObjBound=100, PoolObjBound=200, and the objective values of the 4th, 5th and 10th
solutions in the pool are 180, 220 and 500, respectively.
The first solution in the pool is optimal (because ObjVal and ObjBound are equal), and the solver was able to
find 10 solutions of value at most 500. Because PoolObjBound=200, we know that all solutions that the solver
did not find have an objective value of at least 200. This means that the first 4 solutions in the pool (up to
the solution with value 180) are definitely the best four solutions that exist. The 5th solution with value 220
(and subsequent solutions in the pool) may be inferior to other undiscovered solutions.

21.4 Subtleties and Limitations
There are a few subtleties associated with finding multiple solutions that we’ll cover now.
Continuous Variables

One subtlety arises when considering multiple solutions for models with continuous variables. Specifically, you may
have two solutions that take identical values on the integer variables but where some continuous variables differ. By
choosing different points on the line between these two solutions, you actually have an infinite number of choices for
feasible solutions to the problem. This might be an issue, because the solution pool could be filled with solutions that
only differ in the values of continuous variables but are otherwise equivalent, providing little interesting information.
To avoid this issue, we define two solutions as being equivalent if

• in the presolved space, the integer variables and continuous variables participating in SOS and bilinear con-
straints assume the same values, or

• in the original model space, all variables assume the same values.

A solution will be discarded if it is equivalent to another solution that is already in the pool.
Optimality Gap

The interplay between the optimality gap (MIPGap or MIPGapAbs) and multiple solutions can be a bit subtle. When
using the default PoolSearchMode, a non-zero optimality gap indicates that you are willing to allow the MIP solver
to declare a solution optimal, even though the model may have other, better solutions. The claim the solver makes
upon termination is that no other solution would improve the incumbent objective by more than the optimality gap.
Terminating at this point is ultimately a pragmatic choice - we’d probably rather have the true best solution, but
the cost of reducing the optimality gap to zero can often be prohibitive.

This pragmatic choice can produce a bit of confusion when finding multiple optimal solutions. Specifically, if you
ask for the n best solutions, the optimality gap plays a similar role as it does in the default case, but the implications
may be a bit harder to understand. Specifically, a non-zero optimality gap means that you are willing to allow the
solver to declare that it has found the n best solutions, even though there may be solutions that are better than those
that were returned. The claim in this case is that any solution not among the reported n best would improve on the
objective for the worst among the n best by less than the optimality gap.

If you want to avoid this source of potential confusion, you should set the optimality gap to 0 when using
PoolSearchMode=2.
Logging

The log for a MIP solve with PoolSearchMode set to a non-default value is different from the standard MIP log. You
should consult the section Solution Pool and Multi-Scenario Logging for details.
Distributed MIP

One limitation that we should point out related to multiple solutions is that the distributed MIP solver has not
been extended to support non-default PoolSearchMode settings. Distributed MIP will typically produce many more
feasible solutions than non-distributed MIP, but there’s no way to ask it to find the n best solutions.

759

Multiple Objectives

While typical optimization models have a single objective function, real-world optimization problems often have
multiple, competing objectives. For example, in a production planning model, you may want to both maximize
profits and minimize late orders, or in a workforce scheduling application, you may want to minimize the number of
shifts that are short-staffed while also respecting worker’s shift preferences.

The main challenge you face when working with multiple, competing objectives is deciding how to manage
the trade-offs between them. Gurobi provides tools that simplify the task: Gurobi allows you to blend multiple
objectives, to treat them hierarchically, or to combine the two approaches. In a blended approach, you optimize a
weighted combination of the individual objectives. In a hierarchical or lexicographic approach, you set a priority for
each objective, and optimize in priority order. When optimizing for one objective, you only consider solutions that
would not degrade the objective values of higher-priority objectives. Gurobi allows you to enter and manage your
objectives, to provide weights for a blended approach, and to set priorities for a hierarchical approach.

22.1 Specifying Multiple Objectives
Let us first discuss the interface for managing multiple objectives. An empty model starts with one objective function,
which is initially just 0.0. We’ll refer to this as the primary objective. You can modify the primary objective in two
ways: you can set the Obj attribute, or you can use the setObjective method from your language API (e.g.,
Model.setObjective in Python). In contrast to models with a single objective, where the primary objective can be
linear, quadratic, or piecewise-linear, all objectives must be linear for multi-objective models. In general, attributes
and methods that aren’t specific to multi-objective optimization will work with the primary objective function.

Every objective in a multi-objective model has the following settable attributes: ObjNCon with default value 0,
ObjNPriority with default value 0, ObjNWeight with default value 1, ObjNRelTol with default value 0, ObjNAbsTol
with default value 0, and ObjNName.

To provide additional objectives, use the setObjectiveNmethod from your language API (e.g. Model.setObjectiveN
in Python). Objectives are numbered 0 through NumObj-1. The order of the objectives is arbitrary, but you must
provide a unique index for each one (specified using the index argument to setObjectiveN). You can query the num-
ber of objectives in your model using the NumObj attribute. As noted above, all objectives, including the primary
one, must be linear.

You can query and modify information about multiple objectives using the ObjNumber parameter, in conjunction
with several model and variable attributes. For example, to retrieve the coefficient for variable x in objective 2, you’d
set the ObjNumber parameter to 2, then query the ObjN attribute for x. Similarly, querying the ObjNName attribute
after setting ObjNumber to 3 would give the name of objective 3.

We should note that there is one important exception to our statement above that the order of objectives is
arbitrary: objective 0 is treated as the primary objective. One consequence is that the original objective automatically
becomes objective 0 when you add a second objective. Another is that querying the ObjN attribute is equivalent to
querying the Obj attribute when ObjNumber is 0.

Note that a model has a single objective sense (controlled by the ModelSense attribute). This means that you
can’t maximize the first objective and minimize the second. However, you can achieve the same result with a simple
trick. Each objective has a weight, and these weights are allowed to be negative. Minimizing an objective function is
equivalent to maximizing the negation of that function.

You can change the number of objectives in your model as many times as you like (by modifying the NumObj
attribute). When you increase the objective count, the newly added objectives and their associated attributes are
set to 0. When you decrease the count, objectives beyond the new count are discarded. If you set the number of
objectives to zero, the model becomes a pure feasibility problem.

We have extended the LP and MPS file formats, so writing a model with multiple objectives to a file will capture
those objectives. Similarly, if you read a model file that contains multiple objectives, then NumObj and ObjN will
capture the objectives stored in the file. See the file format section for details.

760

22.2 Working With Multiple Objectives
Of course, specifying a set of objectives is only the first step in solving a multi-objective optimization problem. The
next step is to indicate how the objectives should be combined. As noted earlier, we support two approaches: blended
and hierarchical.
Blended Objectives

A blending approach creates a single objective by taking a linear combination of your objectives. You provide a
weight for each objective as an argument to setObjectiveN. Alternatively, you can use the ObjNWeight attribute,
together with ObjNumber. The default weight for an objective is 1.0.

To give an example, if your model has two objectives, 1 + x+ 2y and y+ 2z, and if you give weights of −1 and 2
to them, respectively, then Gurobi would solve your model with a blended objective of −1 · (1+x+2y)+2 · (y+2z) =
−1− x+ 4z.

You should avoid weights that are very large or very small. A very large weight (i.e., larger than 106) may lead
to very large objective coefficients, which can cause numerical difficulties. A very small weight (i.e., smaller than
1e− 6) may cause the contribution from that objective to the overall blended objective to be smaller than tolerances,
which may lead to that objective being effectively ignored.
Hierarchical Objectives

A hierarchical or lexicographic approach assigns a priority to each objective, and optimizes for the objectives in
decreasing priority order. At each step, it finds the best solution for the current objective, but only from among those
that would not degrade the solution quality for higher-priority objectives. You provide the priority for each objective
as an argument to setObjectiveN. Alternatively, you can use the ObjNPriority attribute. Priorities are integral, not
continuous. Larger values indicate higher priorities. The default priority for an objective is 0.

To give an example, if your model has two objectives, with priorities 10 and 5, and objective weights 1.0 and
-1.0. Assuming the optimal solution for the first objective has value 100, then the solver will find the solution that
optimizes −1 times the second objective from among all solutions with objective 100 for the first objective.
Allowing Multiple-Objective Degradation

By default, our hierarchical approach won’t allow later objectives to degrade earlier objectives, subject to the user-
given ending gap conditions for the optimization problem. More precisely, the base value used to define what solutions
are acceptable for lower priorities objectives – for a minimization problem – is computed as:

base_value = max{bestsol, bestbound+ |bestsol| ∗ rgap, bestbound+ agap},

where bestsol is the value of the best incumbent solution, bestbound is the value of the best proven lower bound
for the problem, rgap is the relative MIP gap, and agap is the absolute MIP gap, and the set of feasible solutions for
the next objective will consider solutions whose objective value is at most that value.

This behavior can be relaxed for MIPs through a pair of tolerances: a relative and an absolute tolerance. These
are provided as arguments to setObjectiveN, or they can be set using attributes ObjNRelTol and ObjNAbsTol.
By setting one of these for a particular objective, you can indicate that later objectives are allowed to degrade this
objective by the specified relative or absolute amount, respectively. In our earlier example, if the optimal value for
the first objective is 100, and if we set ObjNAbsTol for this objective to 20, then the second optimization step would
find the best solution for the second objective from among all solutions with objective 120 or better for the first
objective. Note that if you modify both tolerances, later optimizations would use the looser of the two values (i.e.,
the one that allows the larger degradation).

Objective degradations are handled differently for multi-objective LP models. For LP models, solution quality
for higher-priority objectives is maintained by fixing some variables to their values in previous optimal solutions.
These fixings are decided using variable reduced costs. The value of the ObjNAbsTol parameter indicates the amount
by which a fixed variable’s reduced cost is allowed to violate dual feasibility, whereas the ObjNRelTol parameter is
simply ignored. If you want the MIP behavior, where the degradation is controlled more directly, you can add a
dummy binary variable to the model, thus transforming it into a MIP. Solving the resulting multi-objective MIP will
be much more time consuming than solving the original multi-objective LP.
Combining Blended and Hierarchical Objectives

Every objective in a multi-objective model has both a weight and a priority, which allows you to seamlessly combine
blended and hierarchical approaches. To understand how this works, we should first provide more detail on how
hierarchical objectives are handled.

761

When you specify a different priority for each of n objectives, the solver performs n separate optimization steps. In
each step, in decreasing priority order, it optimizes for the current objective multiplied by its ObjNWeight attribute,
while imposing constraints that ensure that the quality of higher-priority objectives isn’t degraded by more than the
specified tolerances.

If you give the same priority to multiple objectives, then they will be handled in the same optimization step,
resulting in fewer than n total steps for n objectives. More precisely, one optimization step is performed per distinct
priority value, in order of decreasing priority, and all objectives with the same priority are blended together, using
the weights for those objectives. This gives you quite a bit of flexibility when combining the blended and hierarchical
approaches.

One subtle point when blending multiple objectives within a single level in a hierarchical approach relates to the
handling of degradations from lower-priority levels. The objective degradation allowed after a blended optimization
step is the maximum absolute and relative degradations allowed by each of the participating objectives. For example,
if we have three objectives with ObjNPriority equal to {2, 2, 1}, and ObjNRelTol equal to {0.10, 0.05, 0.00} and
ObjNAbsTol equal to {0, 1, 2}, and if the best solution for the first priority objective is 10, then the allowed degradation
for the first priority objective is max{10 · 0.10, 10 · 0.05, 0, 1} = 1.
Querying multi-objective results

Multiple objective values can be queried programmatically in all our APIs. The basic notion is that you have to specify
for which multi objective you want to query information (by setting the parameter ObjNumber). Furthermore, you
can also specify for which solution you want to query this information (by setting the parameter SolutionNumber).
For example, in Python you can do the following:

Read and solve a model with multiple objectives
m = read('input.mps')
m.optimize ()

get the set of variables
x = m.getVars ()

Ensure status is optimal
assert m.Status == GRB.Status.OPTIMAL

Query number of multiple objectives , and number of solutions
nSolutions = m.SolCount
nObjectives = m.NumObj
print('Problem has', nObjectives , 'objectives ')
print('Gurobi found', nSolutions , 'solutions ')

For each solution , print value of first three variables , and
value for each objective function
solutions = []
for s in range(nSolutions):

Set which solution we will query from now on
m.params.SolutionNumber = s

Print objective value of this solution in each objective
print('Solution ', s, ':', end='')
for o in range(nObjectives):

Set which objective we will query
m.params.ObjNumber = o
Query the o-th objective value
print(' ',m.ObjNVal , end='')

print first three variables in the solution
n = min(len(x),3)
for j in range(n):

print(x[j].VarName , x[j].Xn, end='')

762

print('')

query the full vector of the o-th solution
solutions.append(m.getAttr('Xn',x))

22.3 Additional Details
Multi-Objective Environments

By default, the termination criteria (e.g. TimeLimit, SolutionLimit, etc.) for each pass in a hierarchical multiple-
objective optimization are controlled by the parameters defined in the model environment. However, we provide
a feature called multi-objective environments that allows you to create a Gurobi environment for each objective
function and set parameters on those environments. Those settings will only affect the corresponding pass of the
multi-objective optimization. Thus, for example, if the TimeLimit parameter for the model is 100, but you use a
multi-objective environment to set the parameter to 10 for a particular multi-objective pass, then the multi-objective
optimization will spend at most 10 seconds on that particular pass (and at most 100 seconds in total).

To create a multi-objective environment for a particular multi-objective pass, use the getMultiobjEnv method
from your language API (e.g. Model.getMultiobjEnv in Python). The index argument gives the index of the multi-
objective pass that you want to control.

Note that multi-objective environments are tied to a given multi-objective optimization pass and not to a given
multi-objective function, so multi-objective environment 0 is always tied to the highest priority (possibly blended)
objective, while multi-objective environment 1 is always tied to the second highest priority objective (if any).

Once you create multi-objective environments, they will be used for every subsequent multi-objective optimization
on that model. Use the discardMultiobjEnvs method from your language API (e.g. Model.discardMultiobjEnvs in
Python) to revert back to default multi-objective optimization behavior.
Other Details

We haven’t attempted to generalize the notions of dual solutions or simplex bases for continuous multi-objective
models, so you can’t query attributes such as Pi, RC, VBasis, or CBasis for multi-objective solutions. Because of
this, we’ve concluded that the most consistent result to return for attribute IsMIP is 1. Note, however, that several
MIP-specific attributes such as ObjBound, ObjBoundC and MIPGap don’t make sense for multi-objective models
and are also not available.

Gurobi will only solve multi-objective models with strictly linear objectives. If the primary objective is quadratic
or piecewise linear, the solve call will return an error.

When solving a continuous multi-objective model using a hierarchical approach, you have a choice of which
optimization algorithm to use for the different steps (primal simplex, dual simplex, or barrier). The first step will
always use the algorithm specified in the Method parameter. The algorithm for subsequent steps is controlled by
the MultiObjMethod parameter. This parameter has no effect for multi-objective MIP models. Note you can get
finer-grained control over the algorithm choice using our multi-objective environment feature, by setting the Method
parameter for individual objectives.

For the hierarchical approach, Gurobi will perform a conservative presolve step at the beginning of the multi-
objective optimization, and a more aggressive presolve step at the beginning of each step (assuming presolve hasn’t
been turned off). You can optionally perform a more aggressive presolve step at the beginning of the multi-objective
optimization by setting parameter MultiObjPre to value 2. This can help performance, but it makes a few simplifying
assumptions that could lead to small degradations in the values achieved for lower-priority objectives.

The log file when using a hierarchical approach will show optimization progress for each step of the process.
You’ll see log lines that look like this:

Multi-objectives: optimize objective 1 (Obj1Name) ...
...
Multi-objectives: optimize objective 2 (weighted) ...
...

For further details, please see section Multi-Objective Logging.
Callbacks are available for multi-objective optimization, but they are a bit more involved than those for single-

objective optimization. When you are solving for a specific objective (either in one phase of a hierarchical optimization

763

or when solving a blended objective), you will receive callbacks from the algorithm that solves that model: MIP
callbacks if the model is a MIP, and simplex or barrier callbacks if the model is continuous. For a hierarchical
objective, you will also get a MULTIOBJ callback at the end of each phase that allows you to query the current
solution, the number of solutions found, and the number of objectives that have been solved for at that point. Refer
to the Callback discussion for further details.

764

Multiple Scenarios

When solving an optimization model, it is often useful to understand the sensitivity of the computed solution to
changes in the inputs. How would profits be affected if the price of a particular raw material increased significantly?
Would I still be able to satisfy customer orders if one of my machines broke down? The most general form of this
problem would fall into the domain of stochastic or robust optimization, but those fields bring significant complexity
with them. The Gurobi Optimizer includes scenario analysis features that have a much more modest goal: to allow
the user to specify a set of scenarios, and to compute optimal solutions for all of these scenarios as quickly as possible.
These solutions often provide significant insight into how the solution would change as inputs vary.

23.1 Definition of a Multi-Scenario Model
Before diving into the details of working with multiple scenarios, we first need to explain exactly what we mean by
the term. Let us start by claiming that it only makes sense to consider a set of models as being different scenarios
for the same underlying model if they have a lot in common. They should definitely share the same set of variables.
They should also have similar sets of constraints and similar objectives. In our approach, scenarios are described
as a set of changes from a single base model. More specifically, scenarios can only modify model features that are
present in the base model. We should add that other modifications, including addition and deletion of variables or
constraints, can be achieved through the clever use of various tricks. For now, though, it is best to think of scenarios
as being small variations on the same base.

What variations do we allow from this base model? Scenarios can differ in the following attributes:

• Linear objective function coefficients.

• Variable lower and upper bounds.

• Constraint right-hand side values.

A single scenario can have multiple changes from the base, so for example you could change an objective coefficient,
two variable bounds, and a right-hand side value in the same scenario.

After you have defined a set of scenarios (the specific mechanics for doing so will be described shortly), the next
step is to find solutions for all of the scenarios. A single call to the standard Gurobi optimize method is all that is
needed. This will of course be much more expensive than finding an optimal solution for a single model, but our goal
is for it to be faster and more convenient than formulating and solving separate models for each scenario.

23.2 Specifying Multiple Scenarios
Your first step in building a multi-scenario model is to modify the NumScenarios attribute to indicate how many
scenarios you would like to consider. Once you have changed this attribute, you can describe the different scenarios
by changing various scenario-related attributes (listed below). When you later call optimize on a multi-scenario
model (a model where NumScenarios is greater than 0), the solver will try to find optimal solutions for all specified
scenarios. Note that it will not try to find a solution for the base model.

Variations in the different scenarios are expressed through a set of four attributes:

• ScenNObj

• ScenNLB

• ScenNUB

• ScenNRHS

The first three are variable attributes, and the last is a linear constraint attribute. You can give each scenario a name
through the ScenNName attribute (a model attribute).

765

You use the ScenarioNumber parameter to modify scenario attributes for a specific scenario. Scenarios are
numbered 0 through NumScenarios-1. To give an example, to create a model where binary variable x is fixed to 0
and 1 in two scenarios, you would:

• Set the NumScenarios attribute to 2, to indicate that your model has two scenarios.

• Set the ScenarioNumber parameter to 0, to indicate that you would first like to modify scenario attributes for
scenario 0.

• Set the ScenNUB attribute for variable x to 0 (to fix the binary variable to zero in this scenario).

• Set the ScenarioNumber parameter to 1, to move on to scenario 1.

• Set the ScenNLB attribute for variable x to 1 (to fix the binary variable to one in this scenario).

You query scenario attributes in a similar manner: set the ScenarioNumber parameter to choose the scenario
you would like to query, and then use the appropriate attribute query routine to obtain the desired attribute values
(consult our Attribute Examples for examples).

Note that unmodified scenario attributes take a special value of GRB.UNDEFINED. If you modified a scenario
attribute and would like to revert that modification, you can set the attribute back to GRB.UNDEFINED.

You can change the number of scenarios in your model as many times as you like (by modifying the NumScenarios
attribute). When you increase the count, new empty scenarios are created (an empty scenario is a scenario with no
changes from the base model). When you decrease the count, existing scenarios are discarded. When you set the
count to zero, the model is no longer treated as a multi-scenario model.

We have extended the LP and MPS file formats, so writing a model with multiple scenarios to a file will capture
those scenarios. Similarly, if you read a model file that contains multiple scenarios, then NumScenarios and the
various scenario attributes will capture the scenarios stored in the file. See the file format section for details.

23.3 Logging
When solving a multi-scenario model, logging is somewhat different from standard MIP logging. You should consult
this section for details.

23.4 Retrieving Solutions for Multiple Scenarios
Your first step in retrieving the solutions computed by an optimize call on a multi-scenario model is to query
the Status attribute. A status of OPTIMAL indicates that optimal solutions were found (subject to tolerances) for
all scenarios that have feasible solutions, and that the other scenarios were determined to be infeasible. If all
scenarios were found to be infeasible, the status will be INFEASIBLE. If any scenario is unbounded, the status will
be UNBOUNDED. An early termination status code (e.g., TIME_LIMIT) indicates that the outcomes may vary across the
different scenarios, and you will have to look at individual scenarios for more information.

Results for individual scenarios can be found in three attributes:

• ScenNObjVal: The objective value for the solution for scenario number n.

• ScenNObjBound: The best known bound on the optimal objective value for scenario number n.

• ScenNX: The solution vector for scenario number n.

The ScenNObjVal and ScenNObjBound attributes are model attributes, while ScenNX is a variable attribute. Again,
use the ScenarioNumber parameter to select the scenario you’d like to query.

If your optimize call terminated early, you should use the ScenNObjBound attribute to interpret the results.
This attribute provides a bound on the optimal objective value for the selected scenario (much like ObjBound provides
a bound for a single model). For example, if ScenNObjVal is 100 for a scenario and ScenNObjBound is 90 (assuming
minimization), then you have a solution with a 10% optimality gap for that scenario.

You can also query the ObjVal and ObjBound attributes for a multi-scenario model. The former gives the best
objective value for any solution found in any scenario. The latter provides a lower bound on the objective value for
any solution that was not found.

Note that ScenNObjVal and ScenNObjBound are computed using the objective function for the corresponding
scenario, which you may have changed from the base model.

766

If you query the ScenNX attribute and no feasible solution has been found for that scenario, you will get a
DATA_NOT_AVAILABLE error.

23.5 Tips and Tricks
Through clever use of the features provided in the multi-scenario interface, it is actually possible to do a lot more
than it may first appear.
Adding or Deleting Variables or Constraints

The multi-scenario interface provides no way to add or remove variables or constraints in a scenario, but the same
effect can be achieved by changing variable bounds and constraint right-hand side values. To remove a variable in a
scenario, simply change its lower and upper bounds to zero. To add a variable, set its bounds to zero in the base model
and change them to their true values in the scenario. To remove a less-than constraint, change the right-hand-value
in the scenario to GRB.INFINITY. To add one, set its right-hand side to GRB.INFINITY in the base model and change
it to its true value in the scenario.

Changing the sense of a constraint can also be done using similar tricks. For example, you can transform an
equality constraint in the base model into an inequality in a scenario by splitting the equality into a pair of inequalities.
The right-hand side values for both inequalities in the base model would be equal to the true value in the equality.
The right-hand side value on one of the two inequalities can then be relaxed to GRB.INFINITY in the scenario.

You can also change the type of a variable. For example, to transform an integer variable in the base model
into a continuous variable in a scenario, you can add both variables in the base model, along with a split equality
constraint that sets them equal to each other. That equality constraint could then be relaxed in the scenario (using
the techniques just described).

This isn’t meant to be an exhaustive list of all of the ways that you can use supported multi-scenario features
to achieve seemingly unsupported outcomes. The set of building blocks that we have provided can be assembled in
a variety of different ways.

If all scenarios in your multi-scenario model are infeasible, your optimize call will produce an INFEASIBLE (or
INF_OR_UNBD) status code. While you can’t compute an IIS on a multi-scenario model, you can extract individual
scenarios as Gurobi model objects using the singleScenarioModel method (see below) and then compute an IIS on
each scenario individually.
Solving The Base Model

As noted earlier, an optimize call on a multi-scenario model will not solve the base model. If you’d like to solve that
model too, include an empty scenario among your scenarios.
Extracting One Scenario

If you’d like to extract one scenario from a multi-scenario model, you can use the singleScenarioModel method (in
C, C++, Java, .NET, and Python).
Performance Considerations

While it may appear to be important to minimize the number of scenarios in your model, note that some scenarios
are trivial to solve and thus have no impact on overall solution cost. The main thing to keep in mind is that, if (1)
the solution for one scenario is feasible for another scenario, and (2) the bounds and right-hand side values for the
first scenario are never tighter than the bounds for the other scenario, then the optimal solution for the first scenario
is also optimal for the other scenario. This means that some scenarios won’t increase solution cost significantly.

23.6 Limitations and Additional Considerations
We should note a few additional considerations for solving multi-scenario models.

Nearly any model can serve as the base model in a multi-scenario model. The base model can be continuous or
discrete, and it can contain quadratic constraints, general constraints, SOS constraints, semi-continuous variables,
etc. One important exception is multiple objectives; a multi-scenario model can only have a single objective.

The IsMIP attribute will always be 1 for a multi-scenario model, even if the model is otherwise continuous.
Multi-scenario models can have lazy constraints, specified either through a user callback or through the Lazy

attribute. Those that are provided through a callback must be valid across all scenarios. Those that are specified
through the Lazy attribute can have different right-hand side values in different scenarios.

767

You can also add your own cutting planes to multi-scenario models through a user callback. Cuts must be valid
across all scenarios.

768

Batch Optimization

Batch optimization is a feature available with the Gurobi Cluster Manager. It allows a client program to build an
optimization model, submit it as a batch request to a Compute Server cluster (through a Cluster Manager), and
later check on the status of the request and retrieve the solution. Once a batch is submitted to the Cluster Manager,
it is identified through a unique BatchID. The client program (or any other program) can use this ID to query the
BatchStatus of the batch (submitted, completed, etc.). Once the batch has completed and a solution is available, the
client can retrieve that solution as a JSON string.

This section explains the steps required to perform the various tasks listed above. We’ll use the batchmode.py
Python example, which is included with the distribution, to illustrate these steps.

24.1 Setting Up a Batch Environment
Recall that the first step in building an optimization model is to create a Gurobi environment. An environment
provides a number of configuration options; among them is an option to indicate where the model should be solved.
You can solve a model locally, on a Compute Server, or using a Gurobi Instant Cloud server. If you have a Cluster
Manager installed, you also have the option of using batch optimization.

To use batch optimization, you should configure your environment as if you will be using a Compute Server
through a Cluster Manager. You’ll need to set the CSManager parameter to point to your Cluster Manager, and
provide a valid UserName and ServerPassword. The difference is that you will also need to set the CSBatchMode
parameter to 1. This will cause the client to build the model locally, and only submit it to the server once a call to
the optimizeBatch method is made. This is in contrast to a standard Compute Server job, where the connection to
the server is established immediately and the model is actually built on the server.

The following shows how you might set up your environment for batch optimization (in Python):

env = gp.Env(empty=True)
env.setParam('LogFile ', 'batchmode.log')
env.setParam('CSManager ', 'http :// localhost :61080 ')
env.setParam('UserName ', 'gurobi ')
env.setParam('ServerPassword ', 'pass')
env.setParam('CSBatchMode ', 1)

Note that you can also use CSAPIAccessID and CSAPISecret (instead of UserName and ServerPassword) to
connect to a Cluster Manager.

24.2 Tagging Variables or Constraints
Batch optimization separates the process of building a model from the process of retrieving and acting on its solution.
For example, you can build your model on one machine, submit a batch request, and then use the resulting BatchID
to retrieve the solution on a completely different machine.

Of course, disconnecting a model from its solution introduces a mapping problem: the process that retrieves the
solution needs to know how to map the elements of the solution back to the corresponding elements of the model.
This is done through tags. When a model is built, the user associates unique strings with the variables and constraints
of interest in the model. Solution values are then associated with these strings. If the user doesn’t provide a tag for
a model element, no solution information is stored or returned for that element.

You can tag variables (using the VTag attribute), linear constraints (using the CTag attribute), and quadratic
constraints (using the QCTag attribute). We should point out that solutions to mixed-integer models don’t contain
any constraint information, so constraint tags have no effect for such models.

For details on the information that is available in the solution in different situations, please refer to the JSON
solution format section.

769

Here’s a simple example that tags the first 10 variables in a model:

Define tags for some variables in order to access their values later
for count , v in enumerate(model.getVars ()):

v.VTag = "Variable {}".format(count)
if count >= 10:

break

24.3 Submitting a Batch Optimization Request
Once you have built your model and tagged the elements of interest, you are ready to submit your batch request. This
is done by invoking the optimizeBatch method (e.g., optimizeBatch in Python). This method returns a BatchID
string which is used for later queries. Here’s a simple example:

Submit batch request
batchID = model.optimizeBatch ()

24.4 Interacting with Batch Requests
You can use a BatchID string to ask the Cluster Manager for more information about the corresponding batch.
Specifically, you can query the BatchStatus for that batch, and if the batch is complete you can retrieve the computed
solution as a JSON string.

Your first step in using a BatchID to gather more information is to create a Gurobi environment that enables
you to connect to your Cluster Manager. This is done in this line of our Python example:

with setupbatchenv (). start() as env , gp.Batch(batchID , env) as batch:

The setupbatchenvmethod creates an environment with the CSManager, UserName, and ServerPassword parameters
set to appropriate values.

With this environment and our BatchID, we can now create a Batch object (by calling the Batch constructor in
the above code segment) that holds information about the batch.

That Batch object can be used to query the BatchStatus:

with setupbatchenv (). start() as env , gp.Batch(batchID , env) as batch:

starttime = time.time()
while batch.BatchStatus == GRB.BATCH_SUBMITTED:

Abort this batch if it is taking too long
curtime = time.time()
if curtime - starttime > maxwaittime:

batch.abort ()
break

Wait for two seconds
time.sleep (2)

Update the resident attribute cache of the Batch object with the
latest values from the cluster manager.
batch.update ()

If the batch failed , we retry it
if batch.BatchStatus == GRB.BATCH_FAILED:

batch.retry ()

It can also be used to perform various operations on the batch, including aborting or retrying the batch.
Once a batch has been completed, you can query the solution and all related attributes for tagged elements in

the model by retrieving the associated JSON solution string (or by saving it into a file):

770

print("JSON solution:")
Get JSON solution as string , create dict from it
sol = json.loads(batch.getJSONSolution ())

By default, the Cluster Manager will keep the solution for the model and other information for a while (the exact
retention policy is set by the Cluster Manager). You can ask the Cluster Manager to discard information for a batch
by explicitly calling the discard method:

Remove batch request from manager
batch.discard ()

No further queries on that batch are possible after this has been done.

24.5 Interpreting the JSON Solution
Once you have retrieved a JSON solution string, you can use a JSON parser to retrieve solution information for
individual variables and constraints. This parser isn’t included in the Gurobi library. Rather, programming languages
have libraries for doing this. The appropriate package in Python is (not surprisingly) called json. The following
provides a simple example of how this library can be used to parse a JSON solution string and extract a few pieces
of solution information:

Get JSON solution as string , create dict from it
sol = json.loads(batch.getJSONSolution ())

Pretty printing the general solution information
print(json.dumps(sol["SolutionInfo"], indent =4))

24.6 A Complete Example

#!/usr/bin/env python3 .7

Copyright 2022, Gurobi Optimization , LLC

This example reads a MIP model from a file , solves it in batch mode ,
and prints the JSON solution string.
#
You will need a Cluster Manager license for this example to work.

import sys
import time
import json
import gurobipy as gp
from gurobipy import GRB

Set up the environment for batch mode optimization.
#
The function creates an empty environment , sets all necessary parameters ,
and returns the ready -to-be-started Env object to caller. It is the
caller 's responsibility to dispose of this environment when it's no
longer needed.
def setupbatchenv ():

env = gp.Env(empty=True)
env.setParam('LogFile ', 'batchmode.log')

771

env.setParam('CSManager ', 'http :// localhost :61080 ')
env.setParam('UserName ', 'gurobi ')
env.setParam('ServerPassword ', 'pass')
env.setParam('CSBatchMode ', 1)

No network communication happened up to this point. This will happen
once the caller invokes the start () method of the returned Env object.

return env

Print batch job error information , if any
def printbatcherrorinfo(batch):

if batch is None or batch.BatchErrorCode == 0:
return

print("Batch ID {}: Error code {} ({})".format(
batch.BatchID , batch.BatchErrorCode , batch.BatchErrorMessage))

Create a batch request for given problem file
def newbatchrequest(filename):

Start environment , create Model object from file
#
By using the context handlers for env and model , it is ensured that
model.dispose () and env.dispose () are called automatically
with setupbatchenv (). start() as env , gp.read(filename , env=env) as model:

Set some parameters
model.Params.MIPGap = 0.01
model.Params.JSONSolDetail = 1

Define tags for some variables in order to access their values later
for count , v in enumerate(model.getVars ()):

v.VTag = "Variable {}".format(count)
if count >= 10:

break

Submit batch request
batchID = model.optimizeBatch ()

return batchID

Wait for the final status of the batch.
Initially the status of a batch is "submitted "; the status will change
once the batch has been processed (by a compute server).
def waitforfinalstatus(batchID):

Wait no longer than one hour
maxwaittime = 3600

Setup and start environment , create local Batch handle object
with setupbatchenv (). start() as env , gp.Batch(batchID , env) as batch:

starttime = time.time()

772

while batch.BatchStatus == GRB.BATCH_SUBMITTED:
Abort this batch if it is taking too long
curtime = time.time()
if curtime - starttime > maxwaittime:

batch.abort ()
break

Wait for two seconds
time.sleep (2)

Update the resident attribute cache of the Batch object with the
latest values from the cluster manager.
batch.update ()

If the batch failed , we retry it
if batch.BatchStatus == GRB.BATCH_FAILED:

batch.retry ()

Print information about error status of the job that processed the batch
printbatcherrorinfo(batch)

def printfinalreport(batchID):
Setup and start environment , create local Batch handle object
with setupbatchenv (). start() as env , gp.Batch(batchID , env) as batch:

if batch.BatchStatus == GRB.BATCH_CREATED:
print("Batch status is 'CREATED '")

elif batch.BatchStatus == GRB.BATCH_SUBMITTED:
print("Batch is 'SUBMITTED")

elif batch.BatchStatus == GRB.BATCH_ABORTED:
print("Batch is 'ABORTED '")

elif batch.BatchStatus == GRB.BATCH_FAILED:
print("Batch is 'FAILED '")

elif batch.BatchStatus == GRB.BATCH_COMPLETED:
print("Batch is 'COMPLETED '")
print("JSON solution:")
Get JSON solution as string , create dict from it
sol = json.loads(batch.getJSONSolution ())

Pretty printing the general solution information
print(json.dumps(sol["SolutionInfo"], indent =4))

Write the full JSON solution string to a file
batch.writeJSONSolution('batch -sol.json.gz')

else:
Should not happen
print("Batch has unknown BatchStatus")

printbatcherrorinfo(batch)

Instruct the cluster manager to discard all data relating to this BatchID
def batchdiscard(batchID):

Setup and start environment , create local Batch handle object
with setupbatchenv (). start() as env , gp.Batch(batchID , env) as batch:

Remove batch request from manager

773

batch.discard ()

Solve a given model using batch optimization
if __name__ == '__main__ ':

Ensure we have an input file
if len(sys.argv) < 2:

print("Usage: {} filename".format(sys.argv [0]))
sys.exit (0)

Submit new batch request
batchID = newbatchrequest(sys.argv [1])

Wait for final status
waitforfinalstatus(batchID)

Report final status info
printfinalreport(batchID)

Remove batch request from manager
batchdiscard(batchID)

print('Batch optimization OK')

24.7 Limitations
It is currently not possible to optimize models with Multiple Objectives via the Batch Optimization feature. The
Concurrent Optimizer and the Parameter Tuning Tool are also not available via the Batch Optimization feature.

774

Recording API Calls

The Gurobi Optimizer provides the option to record the set of Gurobi commands issued by your program and store
them to a file. The commands can be played back later using the Gurobi Command-Line Tool. If you replay the
commands on a machine with the same specs (operating system, core count, and instruction set) as the machine
where you created the recording, your Gurobi calls will take the exact same computational paths that they took
when you ran your original program.

Recording can be useful in a number of situations.

• If you want to understand how much time is being spent in Gurobi routines, the replay will show you the total
time spent in Gurobi API routines, and the total time spent in Gurobi algorithms.

• If you want to check for leaks of Gurobi data, the replay will show you how many Gurobi models and environ-
ments were never freed by your program.

• If you run into a question or an issue and you would like to get help from Gurobi, your recording will allow
Gurobi technical support to reproduce the exact results that you are seeing without requiring you to send your
entire application.

Recording is useful for testing across deployment scenarios. In particular, you can do the following:

• A recording made on a Compute Server can be replayed on a Compute Server or locally. By default, the
recording will use localhost:61000; this can be overridden by setting the GRB_COMPUTESERVER environment
variable. If GRB_COMPUTESERVER is set to an empty string, the replay will occur locally.

• A Cluster Manager recording can be replayed via a Cluster Manager, on a Compute Server, or locally.
GRB_COMPUTESERVER has priority over GRB_CSMANAGER. If GRB_CSMANAGER is set to "", the replay will run lo-
cally or on the specified Compute Server.

• A Gurobi Instant Cloud recording can be replayed on the cloud, on a Compute Server, or locally. Setting
GRB_CLOUDACCESSID and GRB_CLOUDSECRETKEY will run the replay on the cloud. GRB_COMPUTESERVER has pri-
ority over GRB_CLOUDACCESSID (and GRB_CLOUDSECRETKEY). If GRB_CLOUDACCESSID is set to "", the replay will
run locally or on the specified Compute Server.

• A token server recording can be replayed. The recording tries to use a token server at localhost (with
the default port 41954). This can be overridden by setting the GRB_TOKENSERVER environment variable. If
GRB_TOKENSERVER is set to an empty string, the replay will be done using a local license.

• A recording that includes the WorkerPool parameter (used in the distributed MIP and distributed concurrent
algorithms) can only be done by setting the GRB_WORKERPOOL environment variable.

For recordings of optimization with Compute Server or Instant Cloud, the recording will query the number of
processors and cores from the remote worker and store this information in the recording file. When replaying a
recording file, Gurobi uses these stored values.

25.1 Recording
To enable recording, you simply need to set the Record parameter to 1 as soon as you create your Gurobi environment.
The easiest way to do this is with a gurobi.env file. This file should contain the following line:

Record 1

If you put this file in the same directory as your application, Gurobi will pick up the setting when your application
makes its first Gurobi call. You can also set this parameter through the standard parameter modification routines in
your program.

Once this parameter is set, you should see the following in your log:

775

*** Start recording in file recording000.grbr

If your application creates more than one Gurobi environment, you may see more than one of these messages.
Each will write to a different file:

*** Start recording in file recording001.grbr

As your program runs, Gurobi will write the commands and data that are passed into Gurobi routines to these
files. Recording continues until you free your Gurobi environment (or until your program ends). When you free the
environment, if Gurobi logging is enabled you will see the following message:

*** Recording complete - close file recording000.grbr

At this point, you have a recording file that is ready for later replay.

25.2 Replay
To replay a Gurobi recording, you issue the following command:

> gurobi_cl recording000.grbr

You should adjust the file name to match the file you wish to replay. If your program generated multiple recording
files, you will need to replay each one separately.

When the replay starts, the first output you will see will look like this:

Replay* Replay of file ’recording000.grbr’
Replay* Recording captured Tue Sep 13 19:28:48 2022
Replay* Recording captured with Gurobi version 10.0.0 (linux64)

After this output, the replay will start executing the commands issued by your program...

Replay Load new Gurobi environment
Replay Create new Gurobi model (0 rows, 0 cols)
Replay Update Gurobi model
Replay Change objective sense to -1
Replay Add 3 new variables

This continues until the recording file ends. At that point, the replay will print out a final runtime accounting...

Replay Replay complete

Replay Gurobi API routine runtime: 0.05s
Replay Gurobi solve routine runtime: 2.31s

If your program leaked any Gurobi models or environments, you may also see that in the output:

Replay Models leaked: 2
Replay Environments leaked: 1

25.3 Limitations
Recording works with most programs that call Gurobi. There are a few Gurobi features that aren’t supported,
though:

• Recording won’t capture calls to the Gurobi tuning tool.
• Recording won’t capture data passed into control callbacks. In other words, you can’t record a program that

adds lazy constraints, user cuts, or solutions through callbacks.
• Recording is not yet compatible with Batch Mode.

776

Concurrent Optimizer

Concurrent optimization is a simple approach for exploiting multiple processors. It starts multiple, independent solves
on a model, using different strategies for each. Optimization terminates when the first one completes. By pursuing
multiple different strategies simultaneously, the concurrent optimizer can often obtain a solution faster than it would
if it had to choose a single strategy.

Concurrent optimization is our default choice for solving LP models, and a user-selectable option for solving MIP
models. The concurrent optimizer can be controlled in a few different ways. These will be discussed in this section.
To avoid confusion when reporting results from multiple simultaneous solves, we’ve chosen to produce simplified logs
and callbacks when performing concurrent optimization. These will also be discussed in this section.
Controlling Concurrent Optimization

If you wish to use the concurrent optimizer to solve your model, the steps you need to take depend on the model
type. As mentioned earlier, the concurrent optimizer is the default choice for LP models. This choice is controlled by
the Method parameter. For MIP models, you can select the concurrent optimizer by modifying the ConcurrentMIP
parameter.

When controlling the concurrent optimizer using these parameters, the strategies used for the different indepen-
dent solves are chosen automatically. While we reserve the right to change our choices in the future, for LP models
we currently devote the first concurrent thread to dual simplex, the second through fourth to a single parallel barrier
solve, and the fifth to primal simplex. Additional threads are devoted to the one parallel barrier solve. Thus, for
example, a concurrent LP solve using four threads would devote one thread to dual simplex and three to parallel
barrier. For MIP, we divide available threads evenly among the independent solves, and we choose different values
for the MIPFocus and Seed parameters for each.

If you want more control over concurrent optimization (e.g., to choose the exact strategies used for each indepen-
dent solve), you can do so by creating two or more concurrent environments. These can be created via API routines
(in C, C++, Java, .NET, or Python), or they can be created from .prm files using the ConcurrentSettings parameter
if you are using our command-line interface. Once these have been created, subsequent optimization calls will start
one independent solve for each concurrent environment you created. To control the strategies used for each solve,
you simply set the parameters in each environment to the values you would like them to take in the corresponding
solve. For example, if you create two concurrent environments and set the MIPFocus parameter to 1 in the first and 2
in the second, subsequent MIP optimize calls will perform two solves in parallel, one with MIPFocus=1 and the other
with MIPFocus=2.
Logging

Your first indication that the concurrent optimizer is being used is output in the Gurobi log that looks like this...

Concurrent LP optimizer: dual simplex and barrier
Showing barrier log only...

...or like this...

Concurrent MIP optimizer: 2 concurrent instances (2 threads per instance)

These log lines indicate how many independent solves will be launched. For the LP case, the lines also indicate which
methods will be used for each.

Since it would be quite confusing to see results from multiple solves interleaved in a single log, we’ve chosen
to use a simplified log format for concurrent optimization. For concurrent LP, we only present the log for a single
solve. For concurrent MIP, the log is similar to our standard MIP log, except that it only provides periodic summary
information (see the MIP logging section if you are unfamiliar with our standard MIP log). Each concurrent MIP
log line shows the objective for the best feasible solution found by any of the independent solves to that point, the
best objective bound proved by any of the independent solves, and the relative gap between these two values:

777

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 - - - 24.00000 13.00000 45.8% 0s
0 0 - - - 16.50000 13.21154 19.9% 0s
0 0 - - - 16.50000 13.25000 19.7% 0s
0 0 - - - 16.50000 13.37500 18.9% 0s
0 0 - - - 16.50000 13.37500 18.9% 0s
0 0 - - - 16.50000 13.37500 18.9% 0s
0 6 - - - 15.50000 13.37500 13.7% 0s

310 149 - - - 15.00000 13.66923 8.87% 0s
3873 1634 - - - 15.00000 14.00000 6.67% 5s
9652 4298 - - - 15.00000 14.12500 5.83% 10s

16535 6991 - - - 15.00000 14.18056 5.46% 15s
23610 9427 - - - 15.00000 14.22333 5.18% 20s
...

We also include node counts from one of the independent solves, as well as elapsed times, to give some indication of
forward progress.
Determinism

Concurrent optimization essentially sets up a race between multiple threads to solve your model, with the winning
thread returning the solution that it found. In cases where multiple threads solve the model in roughly the same
amount of time, small variations in runtime from one run to the next could mean that the winning thread is not the
same each time. If your model has multiple optimal solutions (which is quite common in LP and MIP), then it is
possible that running a concurrent solver multiple times on the same model could produce different optimal solutions.
This is known as non-deterministic behavior.

By default, the Gurobi concurrent solvers all produce non-deterministic behavior. You can obtain deterministic
behavior for the concurrent LP solver by setting the Method parameter to value 4. This setting typically increases
runtimes slightly, but if your application is dependent on deterministic behavior, deterministic concurrent LP is often
your best option. There is no similar setting for the concurrent MIP solver.
Callbacks

Rather than providing callbacks from multiple independent solves simultaneously, we’ve again chosen to simplify
behavior for the concurrent optimizer. In particular, we only supply callbacks from a single solve. A few consequences
of this choice:

• Information retrieved by your callback (solutions, objective bounds, etc.) will come from a single model.
• User cutting planes are only applied to a single model.
• You aren’t allowed to use lazy constraints with concurrent MIP, since they would only be applied to one model.
Callbacks are further restricted for multi-objective problems. While you would normally get both multi-objective-

specific callbacks and callbacks from the algorithm that solves the model associated with each phase of the compu-
tation, you only get multi-objective-specific callbacks (and only from a single solve) for concurrent multi-objective
solves.

778

Parameter Tuning Tool

The Gurobi Optimizer provides a wide variety of parameters that allow you to control the operation of the optimization
engines. The level of control varies from extremely coarse-grained (e.g., the Method parameter, which allows you
to choose the algorithm used to solve continuous models) to very fine-grained (e.g., the MarkowitzTol parameter,
which allows you to adjust the tolerances used during simplex basis factorization). While these parameters provide
a tremendous amount of user control, the immense space of possible options can present a significant challenge when
you are searching for parameter settings that improve performance on a particular model. The purpose of the Gurobi
tuning tool is to automate this search.

The Gurobi tuning tool performs multiple solves on your model, choosing different parameter settings for each
solve, in a search for settings that improve runtime. The longer you let it run, the more likely it is to find a significant
improvement. If you are using a Gurobi Compute Server, you can harness the power of multiple machines to perform
distributed parallel tuning in order to speed up the search for effective parameter settings.

The tuning tool can be invoked through two different interfaces. You can either use the grbtune command-line
tool, or you can invoke it from one of our programming language APIs. Both approaches share the same underlying
tuning algorithm. The command-line tool offers more tuning features. For example, it allows you to provide a list of
models to tune, or specify a list of base settings to try (TuneBaseSettings).

A number of tuning-related parameters allow you to control the operation of the tuning tool. The most important
is probably TuneTimeLimit, which controls the amount of time spent searching for an improving parameter set. Other
parameters include TuneTrials (which attempts to limit the impact of randomness on the result), TuneCriterion (which
specifies the tuning criterion), TuneResults (which controls the number of results that are returned), and TuneOutput
(which controls the amount of output produced by the tool).

Before we discuss the actual operation of the tuning tool, let us first provide a few caveats about the results. While
parameter settings can have a big performance effect for many models, they aren’t going to solve every performance
issue. One reason is simply that there are many models for which even the best possible choice of parameter settings
won’t produce an acceptable result. Some models are simply too large and/or difficult to solve, while others may
have numerical issues that can’t be fixed with parameter changes.

Another limitation of automated tuning is that performance on a model can experience significant variations due
to random effects (particularly for MIP models). This is the nature of search. The Gurobi algorithms often have
to choose from among multiple, equally appealing alternatives. Seemingly innocuous changes to the model (such as
changing the order of the constraint or variables), or subtle changes to the algorithm (such as modifying the random
number seed) can lead to different choices. Often times, breaking a single tie in a different way can lead to an entirely
different search. We’ve seen cases where subtle changes in the search produce 100X performance swings. While the
tuning tool tries to limit the impact of these effects, the final result will typically still be heavily influenced by such
issues.

The bottom line is that automated performance tuning is meant to give suggestions for parameters that could
produce consistent, reliable improvements on your models. It is not meant to be a replacement for efficient modeling
or careful performance testing.

27.1 Command-Line Tuning
The grbtune command-line tool provides a very simple way to invoke parameter tuning on a model (or a set of
models). You specify a list of parameter=value arguments first, followed by the name of the file containing the model
to be tuned. For example, you can issue the following command (in a Windows command window, or in a Linux/Mac
terminal window)...

> grbtune TuneTimeLimit=10000 c:\gurobi1000\win64\examples\data\misc07

(substituting the appropriate path to a model, stored in an MPS or LP file). The tool will try to find parameter
settings that reduce the runtime on the specified model. When the tuning run completes, it writes a set of .prm files

779

in the current working directory that capture the best parameter settings that it found. It also writes the Gurobi log
files for these runs (in a set of .log files).

You can also invoke the tuning tool through our programming language APIs. That will be discussed shortly.
If you specify multiple model files at the end of the command line, the tuning tool will try to find settings that

minimize the total runtime for the listed models.
Running the Tuning Tool

The first thing the tuning tool does is to perform a baseline run. The parameters for this run are determined by your
choice of initial parameter values. If you set a parameter, it will take the chosen value throughout tuning. Thus, for
example, if you set the Method parameter to 2, then the baseline run and all subsequent tuning runs will include this
setting. In the example above, you’d do this by issuing the command:

> grbtune Method=2 TuneTimeLimit=100 misc07

For a MIP model, you will note that the tuning tool actually performs several baseline runs, and captures the
mean runtime over all of these trials. In fact, the tool will perform multiple runs for each parameter set considered.
This is done to limit the impact of random effects on the results, as discussed earlier. Use the TuneTrials parameter
to adjust the number of trials performed.

Once the baseline run is complete, the time for that run becomes the time to beat. The tool then starts its search
for improved parameter settings. Under the default value of the TuneOutput parameter, the tool prints output for
each parameter set that it tries...

Testing candidate parameter set 33...

Method 2 (fixed)
BranchDir -1
Heuristics 0.001
VarBranch 1
Presolve 2

Solving with random seed #1 ... runtime 0.50s
Solving with random seed #2 ... runtime 0.60s+

Progress so far:
baseline: mean runtime 0.76s
best: mean runtime 0.46s

Total elapsed tuning time 49s (51s remaining)

This output indicates that the tool has tried 33 parameter sets so far. For the 33rd set, it changed the value of the
BranchDir parameter, the Heuristics parameter, the VarBranch parameter and the Presolve parameter (the Method
parameter was changed in our initial parameter settings, so this change will appear in every parameter set that the
tool tries and is marked to be fixed). The first trial solved the model in 0.50 seconds, while the second hit a time
limit that was set by the tuning tool (as indicated by the + after the runtime output). If any trial hits a time limit,
the corresponding parameter set is considered to be worse than any set that didn’t hit a time limit. The output also
shows that the best parameter set found so far gives a runtime of 0.46s. Finally, it shows elapsed and remaining
runtime.

Tuning normally proceeds until the elapsed time exceeds the tuning time limit. However, hitting CTRL-C will
also stop the tool.

When the tuning tool finishes, it prints a summary...

Tested 83 parameter sets in 98.87s

Baseline parameter set: mean runtime 0.76s

Method 2 (fixed)

Name 0 1 2 Avg Std Dev
0 MISC07 0.85s 0.76s 0.67s 0.76s 0.07

780

Improved parameter set 1 (mean runtime 0.40s):

Method 2 (fixed)
DegenMoves 1
Heuristics 0
VarBranch 1
CutPasses 5

Name 0 1 2 Avg Std Dev
0 MISC07 0.38s 0.41s 0.42s 0.40s 0.01

Improved parameter set 2 (mean runtime 0.44s):

Method 2 (fixed)
Heuristics 0
VarBranch 1
CutPasses 5

Name 0 1 2 Avg Std Dev
0 MISC07 0.42s 0.44s 0.45s 0.44s 0.01

Improved parameter set 3 (mean runtime 0.49s):

Method 2 (fixed)
Heuristics 0
VarBranch 1

Name 0 1 2 Avg Std Dev
0 MISC07 0.49s 0.50s 0.49s 0.49s 0.01

Improved parameter set 4 (mean runtime 0.67s):

Method 2 (fixed)
VarBranch 1

Name 0 1 2 Avg Std Dev
0 MISC07 0.74s 0.58s 0.70s 0.67s 0.07

Wrote parameter files: tune1.prm through tune4.prm
Wrote log files: tune1.log through tune4.log

The summary shows the number of parameter sets it tried, and provides details on a few of the best parameter sets
it found. It also shows the names of the .prm and .log files it writes. You can change the names of these files using
the ResultFile parameter. If you set ResultFile=model.prm, for example, the tool would write model1.prm through
model4.prm and model1.log through model4.log. For each displayed parameter set, we print the parameters used
and a small summary table showing results for each model and each trial, together with the average runtime and the
standard deviation.

The number of sets that are retained by the tuning tool is controlled by the TuneResults parameter. The default
behavior is to keep the sets that achieve the best trade-off between runtime and the number of changed parameters.
In other words, we report the set that achieves the best result when changing one parameter, when changing two
parameters, etc. We actually report a Pareto frontier, so for example we won’t report a result for three parameter
changes if it is worse than the result for two parameter changes.
Other Tuning Parameters

So far, we’ve only talked about using the tuning tool to minimize the time to find an optimal solution. For MIP
models, you can also minimize the optimality gap after a specified time limit. You don’t have to take any special

781

action to do this; you just set a time limit. Whenever a baseline run hits this limit, the tuning tool will automatically
try to minimize the MIP gap. To give an example, the command...

> grbtune TimeLimit=100 glass4

...will look for a parameter set that minimizes the optimality gap achieved after 100s of runtime on model glass4. If
the tool happens to find a parameter set that solves the model within the time limit, it will then try to find settings
that minimize mean runtime.

For models that don’t solve to optimality in the specified time limit, you can gain more control over the criterion
used to choose a winning parameter set with the TuneCriterion parameter. This parameter allows you to tell the
tuning tool to search for parameter settings that produce the best incumbent solution or the best lower bound, rather
than always minimizing the MIP gap,

You can modify the TuneOutput parameter to produce more or less output. The default value is 2. A setting of
0 produces no output; a setting of 1 only produces output when an improvement is found; a setting of 3 produces a
complete Gurobi log for each run performed.

If you would like to use a MIP start with your tuning run, you can include the name of the start file immediately
after the model name in the argument list. For example:

> grbtune misc07.mps misc07.mst

You can also use MIP starts when tuning over multiple models; any model that is immediately followed by a start
file in the argument list will use the corresponding start. For example:

> grbtune misc07.mps misc07.mst p0033.mps p0548.mps p0548.mst

27.2 Tuning API
The tuning tool can be invoked from our C, C++, Java, .NET, and Python interfaces. The tool behaves slightly
differently when invoked from these interfaces. Rather than writing the results to a set of files, upon completion the
tool populates a TuneResultCount attribute, which gives a count of the number of improving parameter sets that were
found and retained. The user program can then query the value of this attribute, and then use the GetTuneResult
method to copy any of these parameter sets into a model (using C, C++, Java, .NET, or Python). Once loaded into
the model, the parameter set can be used to perform a subsequent optimization, or the list of changed parameters
can be written to a .prm file using the appropriate Write routine (from C, C++, Java, .NET, or Python).

782

Gurobi Instant Cloud

Gurobi Instant Cloud allows you to start and stop Gurobi Compute Servers on the cloud. You can start multiple
machines without the need for your own hardware or local Gurobi licenses. Computations are seamlessly offloaded to
these servers. Depending on your cloud license type, these machines provide the full set of Compute Server features,
including queuing, load balancing, and distributed parallel computing.
Overview

When using the Instant Cloud, there are always three systems involved: your client machine, the Instant Cloud
Manager, and a cloud Compute Server.

The program that requests a Gurobi Instant Cloud machine and submits optimization models to this server runs
on your client machine. Note, however, that this program does not actually need to be aware that it will be using
Gurobi Instant Cloud. You have a few options for configuring the client to use the Instant Cloud. The simplest and
most seamless is to set up a cloud license file. The alternative is to use a programming language API, which gives
your program additional control over how it uses the cloud. Details on launching cloud machines from your client
program follow shortly.

The Instant Cloud Manager manages the configuration and launching of cloud machines. Your client program
will send credential information to this website, along with a request to launch an Instant Cloud machine. The
specific action taken in response to this request depend on configuration information that you manage through the
website. For each license, you set up things like the number of servers to launch, the types and geographic regions of
these machines, the maximum number of simultaneous jobs to run on each server, etc.

Once the Instant Cloud Manager launches the requested Compute Servers, it passes information about these
servers back to your client program. The client program then directly interacts with the servers, sending the Gurobi
model, launching a solve on the model, requesting solution information, etc. As with any Gurobi Compute Server,
this process is entirely transparent to the client program.

Now that we’ve given a high-level description of the overall process, we need to cover a few important details.

28.1 Client Setup
As noted previously, a client program that wishes to launch a Gurobi Instant Cloud machine must pass credential
information to the Instant Cloud Manager. Every Instant Cloud license has such credentials associated with it. This
information is captured in a pair strings, an access ID and a secret key. These strings can be retrieved from your
account on the Instant Cloud Manager. Note that you shouldn’t share these credentials with others, since anyone
who knows these two strings can launch Instant Cloud machines in your account.

Once you have the credentials associated with your license, there are two ways to configure your client program
to use them. The simplest is to use a cloud license file. This is just like any other Gurobi license file, except that its
fields are specific to the cloud. A cloud license file will contain two lines with credential information:

CLOUDACCESSID=312e9gef-e0bc-4114-b6fb-26ed7klaeff9
CLOUDKEY=ae32L0H321dgaL

It may also contain an optional third line:

CLOUDPOOL=pool1

We’ll discuss cloud pools a bit later. You can download a gurobi.lic file containing this information from the Instant
Cloud website, or you can create one yourself in a text editor. If you follow the standard process for setting up a
Gurobi license file (refer to the Quick Start Guide for details), then Gurobi will automatically use the Instant Cloud
rather than running locally.

The other option for passing credential information to the Instant Cloud Manager is programmatically via
parameters. Use the configuration parameters to set access ID and secret key.

783

https://cloud.gurobi.com
https://cloud.gurobi.com
https://cloud.gurobi.com
https://cloud.gurobi.com

28.2 Instant Cloud Setup
As noted previously, cloud configuration is done via the Instant Cloud Manager. The client program requests that a
cloud machine be launched, but the Instant Cloud Manager determines exactly how to respond to that request.

One essential concept when configuring your Instant Cloud license is the notion of a cloud pool. Pools allow you
to create multiple configurations within a single cloud license. For example, you may set up one pool for jobs in
the US and another for jobs in Europe, or one for short-running jobs and another for long-running jobs, or one for
single-machine jobs and another for distributed parallel jobs. For each of the available cloud configuration options
(which will be discussed below), you can select different values for different pools. Every license always has a default
pool, which comes pre-configured with what we consider to be reasonable default values. Thus, you always have the
option of ignoring cloud pools and simply using the default pool if you don’t need multiple configurations.

The main things that a user may want to configure on the Instant Cloud website are the idle shutdown time, the
number of machines to launch, the number of distributed workers to launch, the machine region, and the machine
type. These can take different values in different pools.

The idle shutdown time is a vital concept in the Instant Cloud. When a client program requests a cloud server,
it takes some time (typically less than 2 minutes) to launch that server. Rather than forcing client programs to incur
this delay each time they run, the Gurobi Instant Cloud leaves a server running until is has been idle for the specified
idle shutdown time. In this way, later client programs may find a cloud server already available. You can set this to
a small value if you want your server to shut down immediately after your job finishes, or to a very large value if you
want your server to always be available.

Another configuration option is the number of machines associated with the pool. Gurobi Compute Server
automatically handles queuing and load balancing between servers, so launching multiple machines allows you to
distribute the work of many simultaneous client programs among them. A pool can also be configured to launch any
number of distributed workers, if you want to use distributed computing.

Cloud machines can be launched in multiple geographic regions, including the US, Europe, Asia, and South
America. You should visit the website to see the full list. We offer several options for machine type, although we’ve
chosen what we believe is the best general-purpose machine for running Gurobi as the default, so you are unlikely to
want to change this setting.

784

https://cloud.gurobi.com

Guidelines for Numerical Issues

Numerical instability is a generic label often applied to situations where solving an optimization model produces
results that are erratic, inconsistent, or unexpected, or when the underlying algorithms exhibit poor performance or
are unable to converge. There are many potential causes of this behavior; however, most can be grouped into four
categories:

• Rounding coefficients while building the model.
• Limitations of floating-point arithmetic.
• Unrealistic expectations about achievable precision.
• Ill conditioning, or geometry-induced issues.
This section explains these issues and how they affect both performance and solution quality. We also provide

some general rules and some advanced techniques to help avoid them. Although we will treat each of these four
sources separately, it is important to remember that their effects often feed off of each other. We also provide tips
on how to diagnose numerical instability in your models.

Finally, we discuss the Gurobi parameters that can be modified to improve solution accuracy. We should stress
now, however, that the best way to improve numerical behavior and performance is to reformulate your model.
Parameters can help to manage the effects of numerical issues, but there are limits to what they can do, and they
typically come with a substantial performance cost.

29.1 Avoid rounding of input
A common source of numerical issues is numerical rounding in the numbers that are used to represent constraint
matrix coefficients. To illustrate the issue, consider the following example:

x− 6y = 1
0.333x− 2y = .333

It may be tempting to say that the two equations are equivalent, but adding both to a model will lead to an incorrect
result. This is an important point for our users: Gurobi will always trust the input numbers that they provide, and
will never change them unless the change can be shown to not affect the solution.

So, with this in mind, during presolve Gurobi can use the second constraint to determine:

y := 0.1665x− 0.1665

When substituted into the first constraint, this yields

x− 6 · (0.1665x− 0.1665) = 1
⇔ 0.001x = 0.001

and thus x = 1, y = 0 as the only solution.
If user had provided these two equations instead:

x− 6y = 1
0.3333333333333333x− 2y = 0.3333333333333333

this would give:

y := 0.1666666666666667x− 0.1666666666666667

which yields:

785

x− 6 · (0.1666666666666667x− 0.1666666666666667) = 1
⇔ 2 · 10−16x+ 1 + 2 · 10−16 ≈ 1

Even with a very small threshold for treating a coefficient as zero, the result here is that the first constraint is truly
redundant. Any solution with x = 6y + 1 would be accepted as feasible.

The main point is that constraints that are exactly parallel, or linearly dependent (within double-precision
floating-point and small tolerances) are harmless, but constraints that are almost parallel to each other produce tiny
coefficients in the linear system solves and in preprocessing, which can wreak havoc on the solution process. In the
next section, we expand on the limits double-precision floating-point numbers, and in particular why 1 ≈ 1+2 ·10−16.

29.2 Real numbers are not real
To say that real numbers aren’t real is not just a play on words, but a computational reality. Let’s do a simple
experiment: try the following in your favorite number-crunching tool. In Excel:

=IF(1+1E-016 = 1,1,0)

will print 1. In Python:

>>> 1 == 1+1e-16
True

In C, the code

#include <stdio.h>
int main(void)
{

if (1+1e-16 == 1) printf("True\n");
else printf("False\n");
return 0;

}

will print True. In R:

> 1 == 1+1e-16
[1] TRUE

Note that this behavior is not restricted to small numbers; it also happens with larger numbers. For example:

>>> 1+1 e16 == 1e16
True

This shows that the precision of the result depends on the relative scale of the involved numbers.
Although this behavior is typical, there are some exceptions. One is the GNU-bc command line tool:

> bc
1.0 == 1.0+10^(-16)
1
scale=20
1.0 == 1.0+10^(-16)
0
1.0 == 1.0+10^(-21)
1

When we set the scale parameter to 20, the code is able to recognize that the numbers are different. This just shifts
the bar, though; bc still fails to recognize the difference between the last two numbers. Another library that allows
for extended, or even unlimited (up to memory) precision is the GNU Multiple Precision Arithmetic Library, but its
details are beyond the scope of this document.

The reason for these failures is that computers must store numbers as a sequence of bits, and most common
implementations adhere to the IEEE 754 standard. In particular, IEEE-754 sets the standard for double-precision
format. This standard is so pervasive that almost all computers have specialized hardware to improve performance

786

https://www.gnu.org/software/bc/manual/html_mono/bc.html
https://gmplib.org
https://en.wikipedia.org/wiki/IEEE_754

for operations on numbers represented as such. One consequence is that mathematical operations on alternative
extended number representations tend to be significantly slower than operations on numbers represented following
the IEEE 754 standard. Degradation of 10X or even 100X are common.

Due to the performance obtained from hardware support for double-precision arithmetic, Gurobi relies on this
standard (as does most software). However, this speed comes at a cost: computed results often differ from what
mathematics may dictate. For example, the associative property (a + (b + c) = (a + b) + c) is a fundamental
property of arithmetic, but double-precision arithmetic gives (in Python):

>>> (1+1e -16)+1e-16 == 1 + (1e-16 + 1e-16)
False

Furthermore, many common numbers (e.g. 0.1) cannot be represented exactly.
Consequently, simple questions like whether two numbers are equal, or whether a number is equal zero, or whether

a number is integral, can be quite complicated when using floating-point arithmetic.

29.3 Tolerances and user-scaling
Gurobi will solve the model as defined by the user. However, when evaluating a candidate solution for feasibility, in
order to account for possible round-off errors in the floating-point evaluations, we must allow for some tolerances.

To be more precise, satisfying Optimality Conditions requires us to test at least the following three criteria:
IntFeasTol: Integrality of solutions, i.e., whether a integer variable x takes an integer value or not. More precisely,

x will be considered integral if abs(x - floor(x + 0.5)) ≤ IntFeasTol.
FeasibilityTol: Feasibility of primal constraints, i.e., whether a ·x ≤ b holds for the primal solution. More precisely,

a · x ≤ b will be considered to hold if (a * x) - b ≤ FeasibilityTol.
OptimalityTol: Feasibility of dual constraints, i.e., whether a · y ≤ c holds for the dual solution. More precisely,

a · y ≤ c will be considered to hold if (a * y) - c ≤ OptimalityTol.
Note that these tolerances are absolute; they do not depend on the scale of the quantities involved in the computation.
This means that when formulating a problem, these tolerances should be taken into account, specially to select the
units in which variables and constraints will be expressed.

It is very important to note that the usage of these tolerances implicitly defines a gray zone in the search space in
which solutions that are very slightly infeasible can still be accepted as feasible. However, the solver will not explicitly
search for such solutions.

For this reason, it is actually possible (although highly unlikely for well-posed problems) for a model to be
reported as being both feasible and infeasible (in the sense stated above). This can occur if the model is infeasible in
exact arithmetic, but there exists a solution that is feasible within the solver tolerances. For instance, consider:

min 0
s.t. x ≤ 0

x ≥ 10−10

Models at the edge of infeasibility
• As we saw in the introduction, seemingly contradictory results regarding the feasibility or infeasibility of a

model can legitimately occur for models that are at the boundary between feasibility and infeasibility.
• A more complicated example is x+108y = −1, x, y >= 0. It has two bases, one where x is basic and one where

y is basic. If x is basic, we get x = −1, which is clearly infeasible. However, if y is basic we get y = −108,
which is feasible within tolerance. Different algorithms could lead to either of such bases and thus come to
apparently contradictory feasibility results.

• Presolve reductions can also play a role. A presolve reduction, e.g. fixing a variable to a bound, implicitly
forces a tolerance of 0 for that variable. When solving the reduced model, the optimizer therefore no longer
has the option to "spread" a slight infeasibility of the model over these variables and produce a solution that
is feasible within tolerances. This leads to seemingly contradictory feasibilty results when solving the model
with presolve enabled or disabled.

• What can be done to diagnose such cases:

787

– First step is to tighten the FeasibilityTol to 10−9 and try again. In many cases this will lead to a
consistent declaration of infeasibility of the model at hand, which tells you that the model is on this
boundary of infeasibiltiy.

– Use feasRelax to solve your model (again with a tight FeasibilityTol. This boundary case is identified
by a non-zero relaxation value.

– Compute the IIS (again with a tight FeasibilityTol) to analyze the infeasibility.

• Another source of seemlingly contradictory results is due to numerical issues of the model and will be discussed
in the following subsections.

Gurobi tolerances and the limitations of double-precision arithmetic
The default values for these primal and dual feasibility tolerances are 10−6, and the default for the integrality tolerance
is 10−5. If you choose the range for your inequalities and variables correctly, you can typically ignore tolerance issues
entirely.

To give an example, if your constraint right-hand side is on the order of 103, then relative numeric errors from
computations involving the constraint (if any) are likely to be less than 10−9, i.e., less than one in a billion. This is
usually far more accurate than the accuracy of input data, or even of what can be measured in practice.

However, if you define a variable x ∈ [−10−6, 10−6], then relative numeric error may be as big as 50% of the
variable range.

If, on the other hand, you have a variable x ∈ [−1010, 1010], and you are using default primal feasibility tolerances;
then what you are really asking is for the relative numeric error (if any) to be less than 10−16. However, this is beyond
the limits of comparison for double-precision numbers. This implies that you are not allowing any round-off error at
all when testing feasible solutions for this particular variable. And although this might sound as a good idea, in fact,
it is really bad, as any round-off computation may result in your truly optimal solution being rejected as infeasible.

Why scaling and geometry is relevant
This section provides a simple example of how scaling problems can slow down problem solving and, in extreme cases,
result in unexpected answers. Consider the problem:

(P) max{cx : Ax = b, l ≤ x ≤ u}

and let D be a diagonal matrix where Dii > 0, ∀i. In theory, solving (P) should be equivalent to solving the related
problem (PD):

(PD) max{cDx′ : ADx′ = b,D−1l ≤ x′ ≤ D−1u}

However, in practice, the two models behave very differently. To demonstrate this, we use a simple script rescale.py
that randomly rescales the columns of the model. Let’s consider the impact of rescaling on the problem pilotnov.mps.bz2.
Solving the original problem gives the following output:

Using license file /opt/gurobi950/gurobi.lic
Read MPS format model from file pilotnov.mps.bz2
Reading time = 0.01 seconds
PILOTNOV: 975 rows, 2172 columns, 13057 nonzeros
Gurobi Optimizer version 9.5.0 build v9.5.0rc0 (linux64)
Thread count: 6 physical cores, 12 logical processors, using up to 12 threads
Optimize a model with 975 rows, 2172 columns and 13057 nonzeros
Model fingerprint: 0xe6e7cf84
Coefficient statistics:

Matrix range [1e-06, 1e+07]
Objective range [2e-03, 1e+00]
Bounds range [5e-06, 8e+04]
RHS range [1e-05, 4e+04]

Warning: Model contains large matrix coefficient range

788

Consider reformulating model or setting NumericFocus parameter
to avoid numerical issues.

Presolve removed 254 rows and 513 columns
Presolve time: 0.01s
Presolved: 721 rows, 1659 columns, 11455 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0 -3.2008682e+05 1.274630e+05 0.000000e+00 0s

Extra simplex iterations after uncrush: 1
1085 -4.4972762e+03 0.000000e+00 0.000000e+00 0s

Solved in 1085 iterations and 0.05 seconds
Optimal objective -4.497276188e+03
Kappa: 1.841766e+07

Note the log message regarding the matrix coefficient range in the log (which in this case shows a range of [1e-06,
1e+07]).

If we run rescale.py -f pilotnov.mps.bz2 -s 1e3 (randomly rescaling columns up or down by as much as
103), we obtain:

Using license file /opt/gurobi950/gurobi.lic
Read MPS format model from file pilotnov.mps.bz2
Reading time = 0.01 seconds
PILOTNOV: 975 rows, 2172 columns, 13057 nonzeros
Gurobi Optimizer version 9.5.0 build v9.5.0rc0 (linux64)
Thread count: 6 physical cores, 12 logical processors, using up to 12 threads
Optimize a model with 975 rows, 2172 columns and 13057 nonzeros
Model fingerprint: 0x79ed9354
Coefficient statistics:

Matrix range [6e-09, 1e+10]
Objective range [5e-06, 9e+02]
Bounds range [5e-09, 5e+07]
RHS range [1e-05, 4e+04]

Warning: Model contains large matrix coefficient range
Consider reformulating model or setting NumericFocus parameter
to avoid numerical issues.

Presolve removed 100 rows and 255 columns
Presolve time: 0.00s
Presolved: 875 rows, 1917 columns, 11899 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0 -6.2390277e+32 7.095340e+31 6.239028e+02 0s

Extra simplex iterations after uncrush: 2
1141 -4.4972762e+03 0.000000e+00 0.000000e+00 0s

Solved in 1141 iterations and 0.05 seconds
Optimal objective -4.497276188e+03
Kappa: 1.166265e+18

This time, the optimization process takes more iterations, and also, we get an extra warning:

Extra 2 simplex iterations after uncrush,

This indicates that extra simplex iterations were performed on the unpresolved model. Also, note the very large
value for Kappa; its meaning will be discussed in this section.

789

If we run rescale.py -f pilotnov.mps.bz2 -s 1e6, we obtain:

Using license file /opt/gurobi950/gurobi.lic
Read MPS format model from file pilotnov.mps.bz2
Reading time = 0.01 seconds
PILOTNOV: 975 rows, 2172 columns, 13057 nonzeros
Gurobi Optimizer version 9.5.0 build v9.5.0rc0 (linux64)
Thread count: 6 physical cores, 12 logical processors, using up to 12 threads
Optimize a model with 975 rows, 2172 columns and 13057 nonzeros
Model fingerprint: 0xf2c9bd15
Coefficient statistics:

Matrix range [9e-12, 1e+13]
Objective range [2e-09, 1e+06]
Bounds range [6e-12, 4e+10]
RHS range [1e-05, 4e+04]

Warning: Model contains large matrix coefficient range
Warning: Model contains large bounds

Consider reformulating model or setting NumericFocus parameter
to avoid numerical issues.

Presolve removed 101 rows and 255 columns
Presolve time: 0.00s
Presolved: 874 rows, 1917 columns, 11897 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0 -6.8659608e+34 7.041252e+31 6.865961e+04 0s

Extra simplex iterations after uncrush: 47
1537 -4.4972762e+03 0.000000e+00 0.000000e+00 0s

Solved in 1537 iterations and 0.07 seconds
Optimal objective -4.497276188e+03
Kappa: 1.851538e+25

Now we get a much larger number of extra simplex iterations, and more troublingly, we get a warning about the
quality of the resulting solution:

Warning: unscaled primal violation = 5.65274e-05 and residual = 5.65274e-05,

This message indicates that the solver had trouble finding a solution that satisfies the default tolerances.
Finally, if we run rescale.py -f pilotnov.mps.bz2 -s 1e8, we obtain:

Using license file /opt/gurobi950/gurobi.lic
Read MPS format model from file pilotnov.mps.bz2
Reading time = 0.01 seconds
PILOTNOV: 975 rows, 2172 columns, 13057 nonzeros
Gurobi Optimizer version 9.5.0 build v9.5.0rc0 (linux64)
Thread count: 6 physical cores, 12 logical processors, using up to 12 threads
Optimize a model with 975 rows, 2172 columns and 13057 nonzeros
Model fingerprint: 0xfea2a63e
Coefficient statistics:

Matrix range [3e-13, 1e+15]
Objective range [6e-11, 2e+08]
Bounds range [6e-14, 5e+12]
RHS range [1e-05, 4e+04]

Warning: Model contains large matrix coefficient range
Warning: Model contains large bounds

790

Consider reformulating model or setting NumericFocus parameter
to avoid numerical issues.

Presolve removed 103 rows and 258 columns
Presolve time: 0.00s
Presolved: 872 rows, 1914 columns, 11795 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0 -9.3067584e+36 7.106821e+31 9.306758e+06 0s

Solved in 1469 iterations and 0.06 seconds
Infeasible model

In this case, the optimization run terminates almost instantly, but with the unexpected Infeasible result.
As you can see, as we performed larger and larger rescalings, we continued to obtain the same optimal value,

but there were clear signs that the solver struggled. We see warning messages, as well increasing iteration counts,
runtimes, and Kappa values. However, once we pass a certain rescaling value, the solver is no longer able to solve the
model and instead reports that it is Infeasible.

Note that this is not a bug in Gurobi. It has to do with changing the meaning of numbers depending on their
range, the use of fixed tolerances, and in the changing geometry of the problem due to scaling. We will discuss this
topic further in a later section.

Recommended ranges for variables and constraints
Keeping the lessons of the previous section in mind, we recommended that right-hand sides of inequalities representing
physical quantities (even budgets) should be scaled so that they are on the order of 104 or less. The same applies to
variable domains, as variable bounds are again linear constraints.

In the case of objective functions, we recommend that good solutions should have an optimal value that is less
than 104, and ideally also above one (unless the objective coefficients are all zero). This is because the OptimalityTol
is used to ensure that reduced cost are close enough to zero. If coefficients are too large, we again face difficulties
in determining whether an LP solution truly satisfies the optimality conditions or not. On the other hand, if the
coefficients are too small, then it may be too easy to satisfy the feasibility conditions.

The coefficients of the constraint matrix are actually more important than the right-hand side values, variable
bounds, and objective coefficients mentioned here. We’ll discuss those shortly.

Improving ranges for variables and constraints
There are three common ways to improve ranges for objectives, constraints and variables:

• Use problem-specific information to tighten bounds:
Although presolve, and, in particular, bound strengthening, is quite good at deriving implied variables bounds,
it may not have access to all of the information known to the modeler. Incorporating tighter bounds directly
into the model can not only improve the numerical behavior, but it can also speed up the optimization process.

• Choose the right units to express your variables and constraints:
When defining your variables and constraints, it is important to choose units that are consistent with tolerances.
To give an example, a constraint with a 1010 right-hand side value is not going to work well with the default
10−6 feasibility tolerance. By changing the units (e.g., replacing pounds with tons, or dollars with millions of
dollars, or ...), it is often possible to significantly improve the numerics of the problems.

• Disaggregate multiple objectives:
A common source for very large range of objective coefficients is the practice of modeling hierarchical objectives
as an aggregation of objective functions with large multipliers. For example, if the user wants to optimize a
problem P with objective function f1(x) and then, subject to f1(x) being optimal, optimize f2(x), a common
trick is to use as surrogate objective f̄(x) = Mf1(x) + f2(x) where M is a large constant. When you combine
a large M with a relatively tight dual feasibility tolerance, it becomes much harder for the solver to find
solutions that achieve dual feasibility. We recommend that you either use as small a constant M as possible or
reformulate your model using a hierarchical objective (which is made easier by our multi-objective optimization
features).

791

These techniques are usually sufficient to eliminate the problems that arise from bad scaling.

Advanced user scaling
In the previous sections, we presented some simple strategies to limit the ranges of variable bounds, constraint right-
hand sides, objective values, and constraint matrix coefficients. However, it could happen that by scaling constraints
or variables, some constraint coefficients become too small. Note that Gurobi will treat any constraint coefficient
with absolute value under 10−13 as zero. Consider the following example:

10−7x+ 10y ≤ 10
x+ 104z ≤ 103

x, y, z ≥ 0,

In this example, the matrix coefficients range in [10−7, 104]. If we multiply all x coefficients by 105, and divide all
coefficients in the second constraint by 103, we obtain:

10−2x′ + 10y ≤ 10
102x′ + 10z ≤ 1

x′, y, z ≥ 0,

where x = 105x′. The resulting matrix coefficients have a range in [10−2, 102]. Essentially the trick is to simultaneously
scale a column and a row to achieve a smaller range in the coefficient matrix.

We recommend that you scale the matrix coefficients so that their range is contained in six orders of magnitude
or less, and hopefully within [10−3, 106].

Avoid hiding large coefficients
As we said before, a typical recommendation for improving numerics is to limit the range of constraint matrix
coefficients. The rationale behind this guideline is that terms to be added in a linear expression should be of
comparable magnitudes so that rounding errors are minimized. For example:

x− 106y ≥ 0
y ∈ [0, 10]

is usually considered a potential source of numerical instabilities due to the wide range of the coefficients in the
constraint. However, it is easy to implement a simple (but useless) alternative:

x− 10y1 ≥ 0
y1 − 10y2 = 0
y2 − 10y3 = 0
y3 − 10y4 = 0
y4 − 10y5 = 0
y5 − 10y = 0

y ∈ [0, 10]

This form certainly has nicer values in the matrix. However, the solution y = −10−6, x = −1 might still be considered
feasible as the bounds on variables and constraints might be violated within the tolerances. A better alternative is
to reformulate

x− 106y ≥ 0
y ∈ [0, 10]

as

x− 103y′ ≥ 0
y′ ∈ [0, 104]

where 10−3y′ = y. In this setting, the most negative values for x which might be considered feasible would be −10−3,
and for the original y variable it would be −10−9, which is a clear improvement over the original situation.

792

Dealing with big-M constraints
Big-M constraints are a regular source of instability for optimization problems. They are so named because they
typically involve a large coefficientM that is chosen to be larger than any reasonable value that a continuous variable
or expression may take. Here’s a simple example:

x ≤ 106y
x ≥ 0
y ∈ {0, 1},

Big-M constraints are typically used to propagate the implications of a binary, on-off decision to a continuous variable.
For example, a big-M might be used to enforce the condition that an edge can only admit flow if you pay the fixed
charge associated with opening the edge, or a facility can only produce products if you build it. In our example, note
that the y = 0.0000099999 satisfies the default integrality tolerance (IntFeasTol=10−5), which allows x to take a
value of 9.999. In other words, x can take a positive value without incurring an expensive fixed charge on y, which
subverts the intent of only allowing a non-zero value for x when the binary variable y has the value of 1. You can
reduce the effect of this behavior by adjusting the IntFeasTol parameter, but you can’t avoid it entirely.

However, if the modeler has additional information that the x variable will never be larger than 103, then you
could reformulate the earlier constraint as:

x ≤ 103y
x ≥ 0
y ∈ {0, 1}

And now, y = 0.0000099999 would only allow for x ≤ 0.01.
For cases when it is not possible to either rescale variable x or tighten its bounds, an SOS constraints or an

indicator constraint (of the form y = 0 ⇒ x = 0) may produce more accurate solutions, but often at the expense of
additional processing time.

29.4 Does my model have numerical issues?
You can follow these steps to help determine whether a model is experiencing numerical issues:

1. Isolate the model for testing by exporting a model file and a parameter file. The easiest way to do this is to
create a gurobi.env file in your working directory that contains the following line:

Record 1

Once you have done this, running your program will produce one recordingXYZ.grbr file for each Gurobi
environment your program creates (where XYZ is a three-digit, 0-padded value that increases from 000). You
can replay this recording file using gurobi_cl (e.g., gurobi_cl recording000.grbr). Consult this section for
more information on recording files.

2. Using the Gurobi Interactive shell, run some simple Python code to read the model that the replay produces,
and print the summary statistics:

m = read('gurobi.rew')
m.printStats ()

The output will look like:

Statistics for model (null) :
Linear constraint matrix : 25050 Constrs, 15820 Vars, 94874 NZs
Variable types : 14836 Continuous, 984 Integer
Matrix coefficient range : [0.00099, 6e+06]
Objective coefficient range : [0.2, 65]
Variable bound range : [1, 5e+07]
RHS coefficient range : [1, 5e+07]

The range of numerical coefficients is one indication of potential numerical issues. As a very rough guideline,
the ratio of the largest to the smallest coefficient should be less than 109; smaller is better.
In this example, the matrix range is

793

6 · 106/0.00099 = 6.0606 · 109.

3. If possible, re-solve the model using the same parameters and review the logs. With the Python shell, use
code like the following:

m.read('gurobi.prm')
m.optimize ()

Here are some examples of warning messages that suggest numerical issues:

Warning: Model contains large matrix coefficient range
Consider reformulating model or setting NumericFocus parameter
to avoid numerical issues.

Warning: Markowitz tolerance tightened to 0.5
Warning: switch to quad precision
Numeric error
Numerical trouble encountered
Restart crossover...
Sub-optimal termination
Warning: ... variables dropped from basis
Warning: unscaled primal violation = ... and residual = ...
Warning: unscaled dual violation = ... and residual = ...

4. When the optimize function completes, print solution statistics. With the Python shell, use code like the
following:

m.printQuality ()

which provides a summary of solution quality:

Solution quality statistics for model Unnamed :
Maximum violation:
Bound : 2.98023224e-08 (X234)
Constraint : 9.30786133e-04 (C5)
Integrality : 0.00000000e+00

Violations that are larger than the tolerances are another indication of numerical issues. Also, for a pure LP
(without integer variables), print the condition number via the following Python command:

m.KappaExact

The condition number measures the potential for error in linear calculations; a large condition number, such
as 1012, is another indication of possible numerical issues, see this section for more details.

5. If changing parameters (e.g., Method or Seed) leads to a different optimization status (e.g., Infeasible instead
of optimal), or if the optimal objective values changes, this is usually a sign of numerical issues. To further
assess this you can tighten tolerances (to the order of 10−8 or even 10−9), and see if the behavior of the solver
becomes consistent again. Note that tightening tolerances usually comes at the price of more computing time,
and should not be considered as a solution for numerical issues.

29.5 Solver parameters to manage numerical issues
Reformulating a model may not always be possible, or it may not completely resolve numerical issues. When you
must solve a model that has numerical issues, some Gurobi parameters can be helpful. We discuss these now, in
descending order of relevance.

794

Presolve
Gurobi presolve algorithms are designed to make a model smaller and easier to solve. However, in some cases, presolve
can contribute to numerical issues. The following Python code can help you determine if this is happening. First,
read the model file and print summary statistics for the presolved model:

m = read('gurobi.rew')
p = m.presolve ()
p.printStats ()

If the numerical range looks much worse than the original model, try the parameter Aggregate=0:

m.reset ()
m.Params.Aggregate = 0
p = m.presolve ()
p.printStats ()

If the resulting model is still numerically problematic, you may need to disable presolve completely using the parameter
Presolve=0; try the steps above using

m.reset ()
m.Params.Presolve = 0
p = m.presolve ()
p.printStats ()

If the statistics look better with Aggregate=0 or Presolve=0, you should further test these parameters. For a
continuous (LP) model, you can test them directly. For a MIP, you should compare the LP relaxation with and
without these parameters. The following Python commands create three LP relaxations: the model without presolve,
the model with presolve, and the model with Aggregate=0:

m = read('gurobi.rew')
r = m.relax ()
r.write('gurobi.relax -nopre.rew')
p = m.presolve ()
r = p.relax ()
r.write('gurobi.relax -pre.rew')
m.reset ()
m.Params.Aggregate = 0
p = m.presolve ()
r = p.relax ()
r.write('gurobi.relax -agg0.rew')

With these three files, use the techniques mentioned earlier to determine if Presolve=0 or Aggregate=0 improves the
numerics of the LP relaxation.

Finally, if Aggregate=0 helps numerics but makes the model too slow, try AggFill=0 instead.

Choosing the right algorithm
Gurobi Optimizer provides two main algorithms to solve continuous models and the continuous relaxations of mixed-
integer models: barrier and simplex.

The barrier algorithm is usually fastest for large, difficult models. However, it is also more numerically sensitive.
And even when the barrier algorithm converges, the crossover algorithm that usually follows can stall due to numerical
issues.

The simplex method is often a good alternative, since it is generally less sensitive to numerical issues. To use
dual simplex or primal simplex, set the Method parameter to 1 or 0, respectively.

Note that, in many optimization applications, not all problem instances have numerical issues. Thus, choosing
simplex exclusively may prevent you from taking advantage of the performance advantages of the barrier algorithm
on numerically well-behaved instances. In such cases, you should use the concurrent optimizer, which uses multiple
algorithms simultaneously and returns the solution from the first one to finish. The concurrent optimizer is the
default for LP models, and can be selected for MIP by setting the Method parameter to 3 or 4.

795

For detailed control over the concurrent optimizer, you can create concurrent environments, where you can set
specific algorithmic parameters for each concurrent solve. For example, you can create one concurrent environment
with Method=0 and another with Method=1 to use primal and dual simplex simultaneously. Finally, you can use
concurrent optimization with multiple distinct computers using distributed optimization. On a single computer, the
different algorithms run on multiple threads, each using different processor cores. With distributed optimization,
independent computers run the separate algorithms, which can be faster since the computers do not compete for
access to memory.

Making the algorithm less sensitive
When all else fails, try the following parameters to make the algorithms more robust:

ScaleFlag, ObjScale (All models): It is always best to reformulate a model yourself. However, for cases when
that is not possible, these two parameters provide some of the same benefits. Set ScaleFlag=2 for aggressive
scaling of the coefficient matrix. ObjScale rescales the objective row; a negative value will use the largest
objective coefficient to choose the scaling. For example, ObjScale=-0.5 will divide all objective coefficients by
the square root of the largest objective coefficient.

NumericFocus (All models): The NumericFocus parameter controls how the solver manages numerical issues. Set-
tings 1-3 increasingly shift the focus towards more care in numerical computations, which can impact perfor-
mance. The NumericFocus parameter employs a number of strategies to improve numerical behavior, including
the use of quad precision and a tighter Markowitz tolerance. It is generally sufficient to try different values of
NumericFocus. However, when NumericFocus helps numerics but makes everything much slower, you can try
setting Quad=1 and/or larger values of MarkowitzTol such as 0.1 or 0.5.

NormAdjust (Simplex): In some cases, the solver can be more robust with different values of the simplex pricing
norm. Try setting NormAdjust to 0, 1, 2 or 3.

BarHomogeneous (Barrier): For models that are infeasible or unbounded, the default barrier algorithm may have
numerical issues. Try setting BarHomogeneous=1.

CrossoverBasis (Barrier): Setting CrossoverBasis=1 takes more time but can be more robust when creating the
initial crossover basis.

GomoryPasses (MIP): In some MIP models, Gomory cuts can contribute to numerical issues. Setting GomoryPasses=0
may help numerics, but it may make the MIP more difficult to solve.

Cuts (MIP): In some MIP models, various cuts can contribute to numerical issues. Setting Cuts=1 or Cuts=0 may
help numerics, but it may make the MIP more difficult to solve.

Tolerance values (FeasibilityTol, OptimalityTol, IntFeasTol) are generally not helpful for addressing numerical
issues. Numerical issues are better handled through model model reformulation.

29.6 Instability and the geometry of optimization problems
As we have seen, whenever we solve a problem numerically, we have to accept that the input we provide and the
output we obtain may differ from the theoretical or mathematical solution to the given problem. For example, 0.1, in
a computer, will be represented by a number that differs from 0.1 by about 10−17. Thus, a natural thing to worry
about is if these small differences may induce large differences in the computed solution.

This is the idea behind the notion of the Condition Number for a given problem. While it is true that for most
practical optimization problems, small perturbations in the input only induce small perturbations in the final answer
to the problem, there are some special situations where this is not the case. These ill behaving problems are called
Ill Conditioned or Numerically Unstable.

This sections aims to show, in the context of linear optimization problems, the most common sources for this
behavior, and also how to avoid the behavior altogether. We will review first the problem of solving linear systems
with unique solutions, and then move into the more central issue of linear optimization problems, its geometric
interpretation, and then describe some of the most common bad cases. We then provide two thought experiments
with interactive material to help illustrate the concepts of this section. We conclude with some further thoughts on
this topic.

796

Note that although the notion of the Condition Number has received a lot of attention from the academic
community, reviewing this literature is beyond the scope of this document. If you want to start looking into this
topic, a good entry point can be the Condition Number page at Wikipedia.

The case of linear systems:
Solving linear systems is a very common sub-routine in any MI(QC)P-solver, as we have to solve many linear systems
during the full execution of the algorithm.

So, consider that we have a linear system Ax = b with an unique solution (i.e. A is a square matrix with full
rank), and you want to evaluate how the solution to the system might change if we perturb the right-hand side b.
Since the system has a unique solution, we know that given b, the solution will be A−1b, and if we perturb b with ε,
the solution will be A−1(b+ ε). A measure for the relative change in the solution with respect to the relative change
in the input would be the ratio

η(b, ε) := ‖A−1b‖
‖A−1(b+ε)‖/

‖b‖
‖b+ε‖ .

Note that the above definition is independent of the magnitudes of b and ε. From there, the worst possible ratio
would be the result of

κ(A) := maxb,ε η(b, ε).

This quantity is known as the condition number of the matrix A and is defined as

κ(A) = ‖A‖‖A−1‖.

A common interpretation of κ(A) = 10k is that, when solving the system Ax = b, you may lose up to k digits of
accuracy in x from the accuracy you have in b.

The condition number for the optimal simplex basis in an LP is captured in the KappaExact attribute. A very
large κ value might be an indication that the result might be unstable.

When this is indeed the case, the best advice is to scale the constraint matrix coefficients so that the resulting
range of coefficients is small. This transformation will typically reduce the κ value of the final basis; please refer to
the Scaling section for a discussion on how to perform this rescaling, and also for caveats on scaling in general.

The geometry of linear optimization problems
Before showing optimization models that exhibit bad behavior, we first need to understand the geometry behind
them. Consider a problem of the form

max cx
s.t. Ax ≤ b.

For example:

max x+ y ~c = (1, 1)
s.t. −x ≤ 0 A1· = (−1, 0)

x ≤ 1 A2· = (1, 0)
−y ≤ 0 A3· = (0,−1)
y ≤ 1 A4· = (0, 1).

Note that if we denote bt := (0, 1, 0, 1), then the problem can be stated as

maxx∈R2{~cx : Ax ≤ b}.

The feasible region, direction of improvement ~c, and optimal solution x∗ can be depicted as

797

https://en.wikipedia.org/wiki/Condition_number

x

y ~c

A1·

A2·

A3· A4·

x∗

Note that whenever we move in the direction of ~c, the value ~cx increases. Furthermore, since we can not move from
x∗ to another feasible point with better objective value, we can conclude that x∗ is indeed the optimal solution for
the problem. Note that x∗ is a corner point of the feasible region. This is not a coincidence; you will always find an
optimal solution at a corner point if the feasible region is bounded and ~c is not zero. If the objective is zero then all
feasible solutions are optimal; we will talk more about zero objectives and their implications later.

To understand how changes in the input data affect the feasible region and the optimal solution, consider a small
modification: b̃t = (ε, 1, 0, 1), ~̃c = (1 + ε, 1), and Ã4· = (ε, 1). Then our optimization problem would look like

798

x

y ~c ~̃c

A1·

A2·

A3·
Ã4·

A4·

x̃∗x∗

Note that although we changed the right-hand side, this change had no effect in the optimal solution to the
problem, but it did change the feasible region by enlarging the bottom part of the feasible area.

Changing the objective vector tilts the corresponding vector in the graphical representation. This of course also
changes the optimal objective value. Perturbing a constraint tilts the graphical representation of the constraint. The
change in A4· changes the primal solution itself. The amount of tilting constraint undergoes depends on the relative
value of the perturbation. For example, although the constraint x ≤ 1 and the constraint 100x ≤ 100 induce the
same feasible region, the perturbation x+ εy ≤ 1 will induce more tilting that the perturbation 100x+ εy ≤ 100.

Multiple optimal solutions

A common misconception among beginners in optimization is the idea that optimization problems really have just
one solution. Surprisingly, this is typically not true. For many practical problems, the objective (whether it is cost
or revenue or ...) is dominated by a handful of variables, while most variables are just there to ensure that the actual
operation of the solution is possible. Consider a staffing problem, for example, where cost is typically driven by the
number of people who work on a given day, not by the specific people.

These kind of situations naturally lead to problems similar to

max y ~c = (0, 1)
s.t. −x ≤ 0 A1· = (−1, 0)

x ≤ 1 A2· = (1, 0)
−y ≤ 0 A3· = (0,−1)
y ≤ 1 A4· = (0, 1).

Graphically this can be depicted as

799

x

y ~c

A1·

A2·

A3· A4·

x1 x2 x3

In this situation is clear that x1, x3, and all solutions lying on the line between these two points are optimal. The
simplex algorithm will return either x1 or x3 (and may switch if you change parameters). The barrier algorithm
(without crossover) will return x2. These solutions are all correct; the problem as stated has no reason to prefer one
over the other. If you do have a preference, you’ll need to state it in your objective function.

Dealing with epsilon-optimal solutions

The previous section considered the case of multiple (true) optimal solutions. What happens when we have several
ε-optimal solutions? To be more specific, consider

max εx+ y ~c = (ε, 1)
s.t. −x ≤ 0 A1· = (−1, 0)

x ≤ 1 A2· = (1, 0)
−y ≤ 0 A3· = (0,−1)
y ≤ 1 A4· = (0, 1).

Graphically this can be depicted as

800

x

y ~co~c−ε ~cε

A1·

A2·

A3· A4·

x1 x2

If ε is zero, then we are in the situation described before. Note, however, that a small perturbation of the objective
vector may lead to either x1 or x2 being reported as optimal. And tolerances can play a big role here. If ε is negative,
for example, then x1 would be the mathematically optimal result, but due to the optimality tolerance, simplex might
conclude that x2 is optimal. More precisely, if ε is less than the default optimality tolerance of 10−6, then simplex is
free to declare either solution optimal (within tolerances).

The above statement is true whenever the distance between x1 and x2 is not too large. To see this, consider what
happens when we change the right-hand side of A4· from 1 to 106. Then the feasible region would then be a very
long rectangular box, with vertices (0, 0), (0, 1), (106, 1) and (106, 0). Perhaps somewhat surprisingly, if ε is below
the dual tolerance, simplex may consider (106, 1) optimal, even though its objective value is 1− 106ε, which can be
very relevant in terms of the final objective value.

Note that both situations share one ingredient: The objective function is (almost) parallel to one of the sides of
the feasible region. In the first case, this side is relatively short, and thus jumping from x2 to x1 translate into a
small change in objective value. In the second case, the side almost parallel to the objective function is very long,
and now the jump from x2 to x1 can have a significant impact on the final objective function.

If you take out either of these two ingredients, namely the objective vector being almost parallel to a constraint,
or the edge induced by this nearly-parallel constraint being very long, then this problem can not arise. For the reasons
discussed at the beginning of this section, it is common for the objective function to be close to parallel to one or
more constraints. Thus, the best way to avoid this situation is to avoid the second condition. The simplest way to do
this is to ensure that the ranges for your variables are not too large. Please refer to the Scaling section for guidance
on this.

Thin feasible regions
We now consider another extreme situation that can lead to unexpected results. Consider the problem defined as

max y ~c = (0, 1)
s.t. −x+ εy ≤ 1 A1· = (−1, ε)

x+ εy ≤ 1 A2· = (1, ε)
−y ≤ 0 A3· = (0,−1)

and its graphical representation

801

x

~c

A1·

A2·

A3·

x∗

It is clear from the graphical representation that the optimal solution for the problem will be at the intersection
of constraints A1· with A2·; and if we do the algebra, we will get that x∗ = (0, 1

ε
). Also note that as you decrease ε

the feasible region stretches upwards, leaving its base unchanged. We will consider the case where ε is a very small,
positive number (between 10−9 and 10−6).

If we perturb the right-hand side vector b from (1, 1) to (1 + δ, 1), the new solution will be x̃∗ = (− δ2 ,
2+δ
2ε). To

assess the impact of this perturbation, we compute the L1 distance between this modified solution and the previous
solution, which is given by

‖x∗ − x̃∗‖1 = |δ|
2 + |δ|

ε

This quantity can be either small or very large, depending on the relative magnitude between δ and ε. If δ is much
smaller than ε, then this quantity will be small. However, if δ is larger than or even the same order of magnitude
as ε, the opposite will be true. Very small perturbations in the input data can lead to big changes in the optimal
solution.

A similar issue arises if we perturb A1· to (−1, δ); the new optimal solution becomes x̃∗ = (1 − 2ε
ε+δ ,

2
ε+δ). But

now, if δ = ε/2, then the new solution for y will change from 1
ε
to 4

3ε (a 33% relative difference). Again, small changes
in the input can produce big changes in the optimal solution.

What is driving this bad behavior? The problem is that the optimal point is defined by two constraints that
are nearly parallel. The smaller ε is, the closer to parallel the are. When the constraints are so close parallel, small
changes in the slopes can lead to big movements in the point where they intersect. Mathematically speaking:

limε→0+ ‖x∗‖ =∞

Note however that, if the original problem had an additional variable bound of the form y ≤ 104, then neither of
these bad behavior would have been possible. For any ε value smaller than 10−4, the optimal point would be defined
by the new constraint and one of the constraints A2· or A1·, which would lead again to a well-behaved (i.e. stable)
solutions. In summary, this sort of issue can only arise when either the feasible region is either unbounded or very
large. See the Scaling section for further guidance on bounding the feasible region.

802

Optimizing over the circle:
Now we provide our first thought experiment: Consider the problem of optimizing a linear function over the feasible
region defined by the constraints

sin(2π i
106)x+ cos(2π i

106)y ≤ 1, ∀i ∈ {1, . . . , 106},

i.e. the feasible region is essentially a unit circle in R2. Note that for all objective functions, the corresponding
optimal point will be defined by two linear constraints that are very close to be parallel. What will happen to the
numerical solution to the problem? Can you guess? The situation is depicted in the figure below:

~c

To perform the experiment, we execute the code circleOpt.py, where we randomly select an objective vector,
find the optimal solution to the resulting optimization problem, and compute several relevant quantities:

• The worst distance between the reported primal solution, and the theoretical solution to the problem of actually
optimizing over a perfect circle, over all previous runs.

• The worst bound violation reported by Gurobi over all previous runs.
• The worst constraint violation reported by Gurobi over all previous runs.
• The worst dual violation reported by Gurobi over all previous runs.
• The number of previous experiments.
• Accumulated number of simplex iterations.
• The κ (KappaExact attribute) value for the current optimal basis.
Sample output is shown below:

Added 2 Vars and 1048576 constraints in 19.19 seconds
Errors: 8.65535e-08 0 2.94137e-07 2.77556e-17 Iter 0 10 Kappa 3150.06
Errors: 4.81978e-07 0 3.22359e-07 2.77556e-17 Iter 1 21 Kappa 3009.12

803

Errors: 4.81978e-07 0 3.4936e-07 1.11022e-16 Iter 2 33 Kappa 2890.58
Errors: 1.53201e-06 0 9.78818e-07 1.11022e-16 Iter 6 79 Kappa 1727.89
Errors: 1.61065e-06 0 8.26005e-07 1.11022e-16 Iter 46 536 Kappa 1880.73
Errors: 1.61065e-06 0 8.84782e-07 1.11022e-16 Iter 52 602 Kappa 1817.27
Errors: 1.61065e-06 0 9.4557e-07 1.11022e-16 Iter 54 625 Kappa 1757.96
Errors: 1.69167e-06 0 9.78818e-07 1.11022e-16 Iter 64 742 Kappa 1727.89
Errors: 1.69167e-06 0 3.8268e-07 1.66533e-16 Iter 88 1022 Kappa 2761.99
Errors: 1.69167e-06 0 9.04817e-07 1.66533e-16 Iter 92 1067 Kappa 1797.06
Errors: 1.69167e-06 0 2.94137e-07 2.22045e-16 Iter 94 1089 Kappa 3150.06
Errors: 1.69167e-06 0 3.29612e-07 2.22045e-16 Iter 95 1101 Kappa 2975.84
Errors: 1.69167e-06 0 3.4936e-07 2.22045e-16 Iter 98 1137 Kappa 2890.58
Errors: 1.69167e-06 0 9.25086e-07 2.22045e-16 Iter 99 1147 Kappa 1777.3
Errors: 1.69167e-06 0 9.78818e-07 2.22045e-16 Iter 107 1237 Kappa 1727.89
Errors: 1.69167e-06 0 9.99895e-07 2.22045e-16 Iter 112 1293 Kappa 1709.61
Errors: 1.84851e-06 0 9.78818e-07 2.22045e-16 Iter 132 1523 Kappa 1727.89
Errors: 1.96603e-06 0 9.99895e-07 2.22045e-16 Iter 134 1545 Kappa 1709.61

Surprisingly the reported errors are rather small. Why is this? There are at least two contributing factors: the
model has a bounded feasible region (in this case the range of both variables is [−1, 1]). In addition, the distance
from one extreme point (a point at the intersection of two neighboring constraints) to its neighbor is also relatively
small, so all ε-optimal solutions are close to each other.

We encourage you to play with this code, perturb some of the input data, and analyze the results. You will see
the discrepancies between the theoretical and the numerical optimal solution will be comparable to the sizes of the
perturbations.

Optimizing over thin regions:

Now we move to our second thought experiment: Consider a feasible region consisting of a triangle in R2 with a very
wide base and very short height, as depicted here:

~c 1

~c2

Consider the case where the ratio of the base to the height is on the order of 105, and that we consider a nominal
objective function ~c1 as in the figure.

In theory, the optimal solution should be the apex of the triangle, but assume that we randomly perturb both
the right-hand side and the objective function with terms in the order of 10−6. What will happen with the numerical
solution?

To perform the experiment, we execute the code thinOpt.py, where we perform a series of re-optimizations with
different perturbations as described above. To be more precise, whenever the new computed solution is further from
the mathematical solution by more than it has been in previous trials, we print:

• The new maximum distance among solutions.

• The current iteration.

• The κ (KappaExact attribute) value for the current optimal basis.

• The bound violation as reported by Gurobi for the current solution.

• The constraint violation as reported by Gurobi for the current solution.

• The dual violation as reported by Gurobi for the current solution.

Sample output is shown below:

804

New maxdiff 4e+16 Iter 0 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 1 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 2 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 7 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 83 Kappa 3.31072 Violations: 0 0 2.64698e-23
New maxdiff 4e+16 Iter 194 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 1073 Kappa 3.31072 Violations: 0 1.13687e-13 0
New maxdiff 4e+16 Iter 4981 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 19514 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 47117 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 429955 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 852480 Kappa 3.31072 Violations: 0 0 0

Results look very different from what we saw in our first test. The distance between the solution to the unper-
turbed model and the solution to the perturbed one is huge, even from the very first iteration. Also, the κ values
are relatively small, and the reported primal, dual, and bound violations are almost zero. So, what happened? Note
that when we choose ~c1 = (0, 1), we are choosing an optimal point where a small tilting of the objective function may
move us to another extreme point very far away, and hence the large norm. This is possible because the region is
very large and, in principle, without any bounds, i.e. this is related to the case of ε-optimal solutions and very long
sides.

Again, we encourage you to play with this example. For example, what would happen if the nominal objective
function is ~c2 = (1, 0)?

Stability and convergence
The algorithms used to solve linear programming problems are all forced to make an assumption: that tiny changes
to the system (e.g., making a small step in barrier) lead to small changes in the solution. If this is not true (due to
ill-conditioning), then the algorithm may jump around in the solution space and have a hard time converging.

Finally, one way to improve the geometry of a problem is by suitably scaling variables and constraints as explained
in the Scaling section, and working with bounded feasible sets with reasonable ranges for all variables.

29.7 Further reading
• A Characterization of Stability in Linear Programming, Stephen M. Robinson, 1977, Operations Research

25-3:435--447.
• IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754), IEEE Computer Society, 1985.
• What every computer scientist should know about floating-point arithmetic, David Goldberg, 1991, ACM Com-

puting Surveys (CSUR), 23:5--48.
• Numerical Computing with IEEE Floating Point Arithmetic, Michael L. Overton, SIAM, 2001.
• Practical guidelines for solving difficult linear programs, Ed Klotz and Alexandra M. Newman, 2013, Surveys

in Operations Research and Management Science, 18-1:1--17.
• Identification, Assessment, and Correction of Ill-Conditioning and Numerical Instability in Linear and Integer

Programs, Ed Klotz, Bridging Data and Decisions, Chapter 3, 54--108.

Source code examples:
Source code for the experiment of optimizing over a circle

from gurobipy import *
from math import *
import random
import time

805

import sys

Work on a circle defined on a million constraints
t0 = time.time()
n = 1024 * 1024
m = Model('Circle Optimization ')
X = m.addVars(2,lb=-2,ub=2)
Wb = 0
Wc = 0
Wd = 0
maxdiff = 0
niter = 0
margin = 1.01

m.addConstrs(X[0]* cos ((2*pi*i)/n) + X[1]* sin ((2*pi*i)/n) <= 1
for i in range(n))

print('Added 2 Vars and %d constraints in %.2f seconds ' %
(n, time.time()-t0))

m.Params.OutputFlag = 0
m.Params.Presolve = 0

Now select random objectives and optimize. Resulting optimal
solution must be in the circle
for i in range (4096):

theta =2*pi*random.random ()
a = cos(theta)
b = sin(theta)
m.setObjective(X[0] * a + X[1] * b)
m.optimize ()
niter += m.IterCount

See how far is the solution from the boundary of a circle of
radius one , if we minimize (a,b) the optimal solution should be (-a,-b)
error = (X[0].X+a)*(X[0].X+a) + (X[1].X+b)*(X[1].X+b)

Display most inacurate solution
if (error > margin * maxdiff or

m.BoundVio > margin * Wb or
m.ConstrVio > margin * Wc or
m.DualVio > margin * Wd):

maxdiff = max(maxdiff , error)
Wb = max(Wb , m.BoundVio)
Wc = max(Wb , m.ConstrVio)
Wd = max(Wd , m.DualVio)
print('Errors: %g %g %g %g Iter %d %d Kappa %g' %

(maxdiff , Wb, Wc, Wd, i, niter , m.KappaExact))
sys.stdout.flush()

Source code for the experiment on a thin feasible region

from gurobipy import *
import random
import sys

Test the effect of small perturbations on the optimal solutions
for a problem with a thin feasible region

806

rhs = 1e3
m = Model('Thin line Optimization ')
x = m.addVar(obj=1)
y = m.addVar(obj=0, lb=-GRB.INFINITY , ub=GRB.INFINITY)
c1 = m.addConstr(1e-5 * y + 1e-0 * x <= rhs)
c2 = m.addConstr(- 1e-5 * y + 1e-0 * x <= rhs)
m.Params.OutputFlag = 0
m.Params.Presolve = 0
m.optimize ()
xval = x.X
yval = y.X
maxdiff = 0
for i in range (1024*1024):

c1.Rhs = rhs + 2e-6 * random.random ()
c2.Rhs = rhs + 2e-6 * random.random ()
x.Obj = 1 + 2e-6 * random.random ()
y.Obj = 0 + 2e-6 * random.random ()
m.optimize ()
x2val = x.X
y2val = y.X
error = (xval -x2val)*(xval -x2val) + (yval -y2val)*(yval -y2val)
if error > 1e-5 + maxdiff:

print('New maxdiff %g Iter %d Kappa %g Violations: %g %g %g' %
(error , i, m.KappaExact , m.BoundVio , m.ConstrVio ,
m.DualVio))

sys.stdout.flush()
maxdiff = error

Source code for the experiment with column scalings

import sys
import random
import argparse
import gurobipy as gp

Use parameters for greater flexibility
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-f','--infile ', help='Problem File',

default=None , required=True)
parser.add_argument('-s','--scale ', help='Scaling Factor ',

type=float , default =10000.0)
args = parser.parse_args ()

Load input problem
m = gp.read(args.infile)

Scale domain of all columns randomly in the given domain
for var in m.getVars ():

if var.vtype == gp.GRB.CONTINUOUS:
scale = random.uniform(args.scale /2.0, args.scale *2.0)
flip = random.randint (0,3)
if flip == 0:

scale = 1.0
elif flip == 1:

scale = 1.0/ scale
col = m.getCol(var)

807

for i in range(col.size ()):
coeff = col.getCoeff(i)
row = col.getConstr(i)
m.chgCoeff(row , var , coeff*scale)

var.obj = var.obj*scale
if var.lb > -gp.GRB.INFINITY:

var.lb = var.lb/scale
if var.ub < gp.GRB.INFINITY:

var.ub = var.ub/scale

Optimize
m.optimize ()
if m.Status == gp.GRB.OPTIMAL:

print('Kappa: %e\n' % m.KappaExact)

Copyright Notices for 3rd Party Libraries

The Gurobi Optimizer use several open-source libraries: libcurl, OpenSSL, zlib, l8w8jwt, mbedtls, chillbuff,
checknum, and jsmn. This section provides license information for these libraries.

The libcurl library is distributed under the following license:

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1996 - 2021, Daniel Stenberg, <daniel@haxx.se>, and many
contributors, see the THANKS file.

All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright
notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN
NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization of the copyright holder.

The OpenSSL library is distributed under the following license:

The OpenSSL toolkit stays under a double license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts.

OpenSSL License

808

/* ==
* Copyright (c) 1998-2019 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

809

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are adhered to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publicly available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be

810

* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

The zlib library is distributed under the zlib/libpng License.
The l8w8jwt library is distributed under the Apache License Version 2.0:

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions

811

https://opensource.org/licenses/Zlib

to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

812

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all

813

other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright 2020 Raphael Beck

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

The mbedtls library is distributed under the Apache License Version 2.0:

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by

814

the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable

815

copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions

816

for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following

817

boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

The chillbuff library is distributed under the Apache License Version 2.0:

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,

818

and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

819

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each

820

Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright 2019 Raphael Beck

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

821

limitations under the License.

The checknum library is distributed under the Apache License Version 2.0:

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of

822

the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained

823

within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

824

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright 2020 Raphael Beck

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

The jsmn library is distributed under the MIT License:

Copyright (c) 2010 Serge A. Zaitsev

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

825

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

826

	Introduction
	Detailed Release Notes 10
	C API Overview
	Environment Creation and Destruction
	GRBloadenv
	GRBemptyenv
	GRBstartenv
	GRBfreeenv
	GRBgetconcurrentenv
	GRBgetmultiobjenv
	GRBdiscardconcurrentenvs
	GRBdiscardmultiobjenvs

	Model Creation and Modification
	GRBloadmodel
	GRBnewmodel
	GRBcopymodel
	GRBaddconstr
	GRBaddconstrs
	GRBaddgenconstrXxx
	GRBaddgenconstrMax
	GRBaddgenconstrMin
	GRBaddgenconstrAbs
	GRBaddgenconstrAnd
	GRBaddgenconstrOr
	GRBaddgenconstrNorm
	GRBaddgenconstrIndicator
	GRBaddgenconstrPWL
	GRBaddgenconstrPoly
	GRBaddgenconstrExp
	GRBaddgenconstrExpA
	GRBaddgenconstrLog
	GRBaddgenconstrLogA
	GRBaddgenconstrLogistic
	GRBaddgenconstrPow
	GRBaddgenconstrSin
	GRBaddgenconstrCos
	GRBaddgenconstrTan
	GRBaddqconstr
	GRBaddqpterms
	GRBaddrangeconstr
	GRBaddrangeconstrs
	GRBaddsos
	GRBaddvar
	GRBaddvars
	GRBchgcoeffs
	GRBdelconstrs
	GRBdelgenconstrs
	GRBdelq
	GRBdelqconstrs
	GRBdelsos
	GRBdelvars
	GRBsetobjectiven
	GRBsetpwlobj
	GRBupdatemodel
	GRBfreemodel
	GRBXaddconstrs
	GRBXaddrangeconstrs
	GRBXaddvars
	GRBXchgcoeffs
	GRBXloadmodel

	Model Solution
	GRBoptimize
	GRBoptimizeasync
	GRBcomputeIIS
	GRBfeasrelax
	GRBfixmodel
	GRBreset
	GRBsync

	Model Queries
	GRBgetcoeff
	GRBgetconstrbyname
	GRBgetconstrs
	GRBgetenv
	GRBgetgenconstrMax
	GRBgetgenconstrMin
	GRBgetgenconstrAbs
	GRBgetgenconstrAnd
	GRBgetgenconstrOr
	GRBgetgenconstrNorm
	GRBgetgenconstrIndicator
	GRBgetgenconstrPWL
	GRBgetgenconstrPoly
	GRBgetgenconstrExp
	GRBgetgenconstrExpA
	GRBgetgenconstrLog
	GRBgetgenconstrLogA
	GRBgetgenconstrLogistic
	GRBgetgenconstrPow
	GRBgetgenconstrSin
	GRBgetgenconstrCos
	GRBgetgenconstrTan
	GRBgetjsonsolution
	GRBgetpwlobj
	GRBgetq
	GRBgetqconstr
	GRBgetqconstrbyname
	GRBgetsos
	GRBgetvarbyname
	GRBgetvars
	GRBsinglescenariomodel
	GRBXgetconstrs
	GRBXgetvars

	Input/Output
	GRBreadmodel
	GRBread
	GRBwrite

	Attribute Management
	GRBgetattrinfo
	GRBgetintattr
	GRBsetintattr
	GRBgetintattrelement
	GRBsetintattrelement
	GRBgetintattrarray
	GRBsetintattrarray
	GRBgetintattrlist
	GRBsetintattrlist
	GRBgetdblattr
	GRBsetdblattr
	GRBgetdblattrelement
	GRBsetdblattrelement
	GRBgetdblattrarray
	GRBsetdblattrarray
	GRBgetdblattrlist
	GRBsetdblattrlist
	GRBgetcharattrelement
	GRBsetcharattrelement
	GRBgetcharattrarray
	GRBsetcharattrarray
	GRBgetcharattrlist
	GRBsetcharattrlist
	GRBgetstrattr
	GRBsetstrattr
	GRBgetstrattrelement
	GRBsetstrattrelement
	GRBgetstrattrarray
	GRBsetstrattrarray
	GRBgetstrattrlist
	GRBsetstrattrlist
	GRBgetbatchattrinfo

	Parameter Management and Tuning
	GRBtunemodel
	GRBgettuneresult
	GRBgetdblparam
	GRBgetintparam
	GRBgetstrparam
	GRBsetdblparam
	GRBsetintparam
	GRBsetstrparam
	GRBgetdblparaminfo
	GRBgetintparaminfo
	GRBgetstrparaminfo
	GRBreadparams
	GRBwriteparams

	Monitoring Progress - Logging and Callbacks
	GRBmsg
	GRBsetcallbackfunc
	GRBgetcallbackfunc
	GRBcbget
	GRBversion

	Modifying Solver Behavior - Callbacks
	GRBcbcut
	GRBcblazy
	GRBcbsolution
	GRBcbproceed
	GRBcbstoponemultiobj
	GRBterminate

	Batch Requests
	GRBabortbatch
	GRBdiscardbatch
	GRBfreebatch
	GRBgetbatch
	GRBgetbatchenv
	GRBgetbatchintattr
	GRBgetbatchjsonsolution
	GRBgetbatchstrattr
	GRBoptimizebatch
	GRBretrybatch
	GRBupdatebatch
	GRBwritebatchjsonsolution

	Error Handling
	GRBgeterrormsg

	Advanced simplex routines
	GRBFSolve
	GRBBSolve
	GRBBinvColj
	GRBBinvRowi
	GRBgetBasisHead

	C++ API Overview
	GRBEnv
	GRBEnv()
	GRBEnv::get()
	GRBEnv::getErrorMsg()
	GRBEnv::getParamInfo()
	GRBEnv::message()
	GRBEnv::readParams()
	GRBEnv::resetParams()
	GRBEnv::set()
	GRBEnv::start()
	GRBEnv::writeParams()

	GRBModel
	GRBModel()
	GRBModel::addConstr()
	GRBModel::addConstrs()
	GRBModel::addGenConstrXxx()
	GRBModel::addQConstr()
	GRBModel::addRange()
	GRBModel::addRanges()
	GRBModel::addSOS()
	GRBModel::addVar()
	GRBModel::addVars()
	GRBModel::chgCoeff()
	GRBModel::chgCoeffs()
	GRBModel::computeIIS()
	GRBModel::discardConcurrentEnvs()
	GRBModel::discardMultiobjEnvs()
	GRBModel::feasRelax()
	GRBModel::fixedModel()
	GRBModel::get()
	GRBModel::getCoeff()
	GRBModel::getCol()
	GRBModel::getConcurrentEnv()
	GRBModel::getConstrByName()
	GRBModel::getConstrs()
	GRBModel::getGenConstrXxx()
	GRBModel::getGenConstrs()
	GRBModel::getJSONSolution()
	GRBModel::getMultiobjEnv()
	GRBModel::getObjective()
	GRBModel::getPWLObj()
	GRBModel::getQCRow()
	GRBModel::getQConstrs()
	GRBModel::getRow()
	GRBModel::getSOS()
	GRBModel::getSOSs()
	GRBModel::getTuneResult()
	GRBModel::getVarByName()
	GRBModel::getVars()
	GRBModel::optimize()
	GRBModel::optimizeasync()
	GRBModel::optimizeBatch()
	GRBModel::presolve()
	GRBModel::read()
	GRBModel::remove()
	GRBModel::reset()
	GRBModel::setCallback()
	GRBModel::set()
	GRBModel::setObjective()
	GRBModel::setObjectiveN()
	GRBModel::setPWLObj()
	GRBModel::singleScenarioModel()
	GRBModel::sync()
	GRBModel::terminate()
	GRBModel::tune()
	GRBModel::update()
	GRBModel::write()

	GRBVar
	GRBVar::get()
	GRBVar::index()
	GRBVar::sameAs()
	GRBVar::set()

	GRBConstr
	GRBConstr::get()
	GRBConstr::index()
	GRBConstr::sameAs()
	GRBConstr::set()

	GRBQConstr
	GRBQConstr::get()
	GRBQConstr::set()

	GRBSOS
	GRBSOS::get()
	GRBSOS::set()

	GRBGenConstr
	GRBGenConstr::get()
	GRBGenConstr::set()

	GRBExpr
	GRBExpr::getValue()

	GRBLinExpr
	GRBLinExpr()
	GRBLinExpr::addTerms()
	GRBLinExpr::clear()
	GRBLinExpr::getConstant()
	GRBLinExpr::getCoeff()
	GRBLinExpr::getValue()
	GRBLinExpr::getVar()
	GRBLinExpr::operator=
	GRBLinExpr::operator+
	GRBLinExpr::operator-
	GRBLinExpr::operator+=
	GRBLinExpr::operator-=
	GRBLinExpr::operator*=
	GRBLinExpr::remove()
	GRBLinExpr::size()

	GRBQuadExpr
	GRBQuadExpr()
	GRBQuadExpr::addTerm()
	GRBQuadExpr::addTerms()
	GRBQuadExpr::clear()
	GRBQuadExpr::getCoeff()
	GRBQuadExpr::getLinExpr()
	GRBQuadExpr::getValue()
	GRBQuadExpr::getVar1()
	GRBQuadExpr::getVar2()
	GRBQuadExpr::operator=
	GRBQuadExpr::operator+
	GRBQuadExpr::operator-
	GRBQuadExpr::operator+=
	GRBQuadExpr::operator-=
	GRBQuadExpr::operator*=
	GRBQuadExpr::remove()
	GRBQuadExpr::size()

	GRBTempConstr
	GRBColumn
	GRBColumn()
	GRBColumn::addTerm()
	GRBColumn::addTerms()
	GRBColumn::clear()
	GRBColumn::getCoeff()
	GRBColumn::getConstr()
	GRBColumn::remove()
	GRBColumn::size()

	GRBCallback
	GRBCallback()
	GRBCallback::abort()
	GRBCallback::addCut()
	GRBCallback::addLazy()
	GRBCallback::getDoubleInfo()
	GRBCallback::getIntInfo()
	GRBCallback::getNodeRel()
	GRBCallback::getSolution()
	GRBCallback::getStringInfo()
	GRBCallback::proceed()
	GRBCallback::setSolution()
	GRBCallback::stopOneMultiObj()
	GRBCallback::useSolution()

	GRBException
	GRBException()
	GRBException::getErrorCode()
	GRBException::getMessage()

	GRBBatch
	GRBBatch()
	GRBBatch::abort()
	GRBBatch::discard()
	GRBBatch::getJSONSolution()
	GRBBatch::get()
	GRBBatch::retry()
	GRBBatch::update()
	GRBBatch::writeJSONSolution()

	Non-Member Functions
	operator==
	operator<=
	operator>=
	operator+
	operator-
	operator*
	operator/

	Attribute Enums
	GRB_CharAttr
	GRB_DoubleAttr
	GRB_IntAttr
	GRB_StringAttr

	Parameter Enums
	GRB_DoubleParam
	GRB_IntParam
	GRB_StringParam

	Java API Overview
	GRBEnv
	GRBEnv()
	GRBEnv.dispose()
	GRBEnv.get()
	GRBEnv.getErrorMsg()
	GRBEnv.getParamInfo()
	GRBEnv.message()
	GRBEnv.readParams()
	GRBEnv.release()
	GRBEnv.resetParams()
	GRBEnv.set()
	GRBEnv.setLogCallback()
	GRBEnv.start()
	GRBEnv.writeParams()

	GRBModel
	GRBModel()
	GRBModel.addConstr()
	GRBModel.addConstrs()
	GRBModel.addGenConstrXxx()
	GRBModel.addQConstr()
	GRBModel.addRange()
	GRBModel.addRanges()
	GRBModel.addSOS()
	GRBModel.addVar()
	GRBModel.addVars()
	GRBModel.chgCoeff()
	GRBModel.chgCoeffs()
	GRBModel.computeIIS()
	GRBModel.discardConcurrentEnvs()
	GRBModel.discardMultiobjEnvs()
	GRBModel.dispose()
	GRBModel.feasRelax()
	GRBModel.fixedModel()
	GRBModel.get()
	GRBModel.getCoeff()
	GRBModel.getCol()
	GRBModel.getConcurrentEnv()
	GRBModel.getConstrByName()
	GRBModel.getConstrs()
	GRBModel.getGenConstrXxx()
	GRBModel.getGenConstrs()
	GRBModel.getJSONSolution()
	GRBModel.getMultiobjEnv()
	GRBModel.getObjective()
	GRBModel.getPWLObj()
	GRBModel.getQCRow()
	GRBModel.getQConstrs()
	GRBModel.getRow()
	GRBModel.getSOS()
	GRBModel.getSOSs()
	GRBModel.getTuneResult()
	GRBModel.getVarByName()
	GRBModel.getVars()
	GRBModel.optimize()
	GRBModel.optimizeasync()
	GRBModel.optimizeBatch()
	GRBModel.presolve()
	GRBModel.read()
	GRBModel.remove()
	GRBModel.reset()
	GRBModel.setCallback()
	GRBModel.set()
	GRBModel.setLogCallback()
	GRBModel.setObjective()
	GRBModel.setObjectiveN()
	GRBModel.setPWLObj()
	GRBModel.singleScenarioModel()
	GRBModel.sync()
	GRBModel.terminate()
	GRBModel.tune()
	GRBModel.update()
	GRBModel.write()

	GRBVar
	GRBVar.get()
	GRBVar.index()
	GRBVar.sameAs()
	GRBVar.set()

	GRBConstr
	GRBConstr.get()
	GRBConstr.index()
	GRBConstr.sameAs()
	GRBConstr.set()

	GRBQConstr
	GRBQConstr.get()
	GRBQConstr.set()

	GRBSOS
	GRBSOS.get()
	GRBSOS.set()

	GRBGenConstr
	GRBGenConstr.get()
	GRBGenConstr.set()

	GRBExpr
	GRBExpr.getValue()

	GRBLinExpr
	GRBLinExpr()
	GRBLinExpr.add()
	GRBLinExpr.addConstant()
	GRBLinExpr.addTerm()
	GRBLinExpr.addTerms()
	GRBLinExpr.clear()
	GRBLinExpr.getConstant()
	GRBLinExpr.getCoeff()
	GRBLinExpr.getValue()
	GRBLinExpr.getVar()
	GRBLinExpr.multAdd()
	GRBLinExpr.remove()
	GRBLinExpr.size()

	GRBQuadExpr
	GRBQuadExpr()
	GRBQuadExpr.add()
	GRBQuadExpr.addConstant()
	GRBQuadExpr.addTerm()
	GRBQuadExpr.addTerms()
	GRBQuadExpr.clear()
	GRBQuadExpr.getCoeff()
	GRBQuadExpr.getLinExpr()
	GRBQuadExpr.getValue()
	GRBQuadExpr.getVar1()
	GRBQuadExpr.getVar2()
	GRBQuadExpr.multAdd()
	GRBQuadExpr.remove()
	GRBQuadExpr.size()

	GRBColumn
	GRBColumn()
	GRBColumn.addTerm()
	GRBColumn.addTerms()
	GRBColumn.clear()
	GRBColumn.getCoeff()
	GRBColumn.getConstr()
	GRBColumn.remove()
	GRBColumn.size()

	GRBCallback
	GRBCallback()
	GRBCallback.abort()
	GRBCallback.addCut()
	GRBCallback.addLazy()
	GRBCallback.getDoubleInfo()
	GRBCallback.getIntInfo()
	GRBCallback.getNodeRel()
	GRBCallback.getSolution()
	GRBCallback.getStringInfo()
	GRBCallback.proceed()
	GRBCallback.setSolution()
	GRBCallback.stopOneMultiObj()
	GRBCallback.useSolution()

	GRBException
	GRBException()
	GRBException.getErrorCode()

	GRBBatch
	GRBBatch()
	GRBBatch.abort()
	GRBBatch.discard()
	GRBBatch.dispose()
	GRBBatch.getJSONSolution()
	GRBBatch.get()
	GRBBatch.retry()
	GRBBatch.update()
	GRBBatch.writeJSONSolution()

	GRB
	Constants
	GRB.CharAttr
	GRB.DoubleAttr
	GRB.DoubleParam
	GRB.IntAttr
	GRB.IntParam
	GRB.StringAttr
	GRB.StringParam

	.NET API Overview
	GRBEnv
	GRBEnv()
	GRBEnv.Dispose()
	GRBEnv.ErrorMsg
	GRBEnv.Get()
	GRBEnv.GetParamInfo()
	GRBEnv.Message()
	GRBEnv.ReadParams()
	GRBEnv.Release()
	GRBEnv.ResetParams()
	GRBEnv.Set()
	GRBEnv.Start()
	GRBEnv.WriteParams()

	GRBModel
	GRBModel()
	GRBModel.AddConstr()
	GRBModel.AddConstrs()
	GRBModel.AddGenConstrXxx()
	GRBModel.AddQConstr()
	GRBModel.AddRange()
	GRBModel.AddRanges()
	GRBModel.AddSOS()
	GRBModel.AddVar()
	GRBModel.AddVars()
	GRBModel.ChgCoeff()
	GRBModel.ChgCoeffs()
	GRBModel.ComputeIIS()
	GRBModel.DiscardConcurrentEnvs()
	GRBModel.DiscardMultiobjEnvs()
	GRBModel.Dispose()
	GRBModel.FeasRelax()
	GRBModel.FixedModel()
	GRBModel.Get()
	GRBModel.GetCoeff()
	GRBModel.GetCol()
	GRBModel.GetConcurrentEnv()
	GRBModel.GetConstrByName()
	GRBModel.GetConstrs()
	GRBModel.GetGenConstrXxx()
	GRBModel.GetGenConstrs()
	GRBModel.GetJSONSolution()
	GRBModel.GetMultiobjEnv()
	GRBModel.GetObjective()
	GRBModel.GetPWLObj()
	GRBModel.GetQConstr()
	GRBModel.GetQConstrs()
	GRBModel.GetQCRow()
	GRBModel.GetRow()
	GRBModel.GetSOS()
	GRBModel.GetSOSs()
	GRBModel.GetTuneResult()
	GRBModel.GetVarByName()
	GRBModel.GetVars()
	GRBModel.Optimize()
	GRBModel.OptimizeAsync()
	GRBModel.OptimizeBatch()
	GRBModel.Presolve()
	GRBModel.Read()
	GRBModel.Remove()
	GRBModel.Reset()
	GRBModel.SetCallback()
	GRBModel.Set()
	GRBModel.SetObjective()
	GRBModel.SetObjectiveN()
	GRBModel.SetPWLObj()
	GRBModel.SingleScenarioModel()
	GRBModel.Sync()
	GRBModel.Terminate()
	GRBModel.Tune()
	GRBModel.Update()
	GRBModel.Write()

	GRBVar
	GRBVar.Get()
	GRBVar.Index
	GRBVar.SameAs()
	GRBVar.Set()

	GRBConstr
	GRBConstr.Get()
	GRBConstr.Index
	GRBConstr.SameAs()
	GRBConstr.Set()

	GRBQConstr
	GRBQConstr.Get()
	GRBQConstr.Set()

	GRBSOS
	GRBSOS.Get()
	GRBSOS.Set()

	GRBGenConstr
	GRBGenConstr.Get()
	GRBGenConstr.Set()

	GRBExpr
	GRBExpr.Value

	GRBLinExpr
	GRBLinExpr()
	GRBLinExpr.Add()
	GRBLinExpr.AddConstant()
	GRBLinExpr.AddTerm()
	GRBLinExpr.AddTerms()
	GRBLinExpr.Clear()
	GRBLinExpr.Constant
	GRBLinExpr.GetCoeff()
	GRBLinExpr.GetVar()
	GRBLinExpr.MultAdd()
	GRBLinExpr.Remove()
	GRBLinExpr.Size
	GRBLinExpr.Value

	GRBQuadExpr
	GRBQuadExpr()
	GRBQuadExpr.Add()
	GRBQuadExpr.AddConstant()
	GRBQuadExpr.AddTerm()
	GRBQuadExpr.AddTerms()
	GRBQuadExpr.Clear()
	GRBQuadExpr.GetCoeff()
	GRBQuadExpr.GetVar1()
	GRBQuadExpr.GetVar2()
	GRBQuadExpr.LinExpr()
	GRBQuadExpr.MultAdd()
	GRBQuadExpr.Remove()
	GRBQuadExpr.Size
	GRBQuadExpr.Value

	GRBTempConstr
	GRBColumn
	GRBColumn()
	GRBColumn.AddTerm()
	GRBColumn.AddTerms()
	GRBColumn.Clear()
	GRBColumn.GetCoeff()
	GRBColumn.GetConstr()
	GRBColumn.Remove()
	GRBColumn.Size

	Overloaded Operators
	operator <=
	operator >=
	operator ==
	operator +
	operator -
	operator *
	operator /
	implicit cast

	GRBCallback
	GRBCallback()
	GRBCallback.Abort()
	GRBCallback.AddCut()
	GRBCallback.AddLazy()
	GRBCallback.GetDoubleInfo()
	GRBCallback.GetIntInfo()
	GRBCallback.GetNodeRel()
	GRBCallback.GetSolution()
	GRBCallback.GetStringInfo()
	GRBCallback.Proceed()
	GRBCallback.SetSolution()
	GRBCallback.StopOneMultiObj()
	GRBCallback.UseSolution()

	GRBException
	GRBException()
	GRBException.ErrorCode

	GRBBatch
	GRBBatch()
	GRBBatch.Abort()
	GRBBatch.Discard()
	GRBBatch.GetJSONSolution()
	GRBBatch.Get()
	GRBBatch.Retry()
	GRBBatch.Update()
	GRBBatch.WriteJSONSolution()

	GRB
	Constants
	GRB.CharAttr
	GRB.DoubleAttr
	GRB.DoubleParam
	GRB.IntAttr
	GRB.IntParam
	GRB.StringAttr
	GRB.StringParam

	Python API Overview
	Global Functions
	models()
	disposeDefaultEnv()
	multidict()
	paramHelp()
	quicksum()
	read()
	readParams()
	resetParams()
	setParam()
	system()
	writeParams()

	Model
	Model()
	Model.addConstr()
	Model.addConstrs()
	Model.addGenConstrXxx()
	Model.addGenConstrMax()
	Model.addGenConstrMin()
	Model.addGenConstrAbs()
	Model.addGenConstrAnd()
	Model.addGenConstrOr()
	Model.addGenConstrNorm()
	Model.addGenConstrIndicator()
	Model.addGenConstrPWL()
	Model.addGenConstrPoly()
	Model.addGenConstrExp()
	Model.addGenConstrExpA()
	Model.addGenConstrLog()
	Model.addGenConstrLogA()
	Model.addGenConstrLogistic()
	Model.addGenConstrPow()
	Model.addGenConstrSin()
	Model.addGenConstrCos()
	Model.addGenConstrTan()
	Model.addLConstr()
	Model.addMConstr()
	Model.addMQConstr()
	Model.addMVar()
	Model.addQConstr()
	Model.addRange()
	Model.addSOS()
	Model.addVar()
	Model.addVars()
	Model.cbCut()
	Model.cbGet()
	Model.cbGetNodeRel()
	Model.cbGetSolution()
	Model.cbLazy()
	Model.cbProceed()
	Model.cbSetSolution()
	Model.cbStopOneMultiObj()
	Model.cbUseSolution()
	Model.chgCoeff()
	Model.computeIIS()
	Model.copy()
	Model.discardConcurrentEnvs()
	Model.discardMultiobjEnvs()
	Model.dispose()
	Model.feasRelaxS()
	Model.feasRelax()
	Model.fixed()
	Model.getA()
	Model.getAttr()
	Model.getCoeff()
	Model.getCol()
	Model.getConcurrentEnv()
	Model.getConstrByName()
	Model.getConstrs()
	Model.getGenConstrMax()
	Model.getGenConstrMin()
	Model.getGenConstrAbs()
	Model.getGenConstrAnd()
	Model.getGenConstrOr()
	Model.getGenConstrNorm()
	Model.getGenConstrIndicator()
	Model.getGenConstrPWL()
	Model.getGenConstrPoly()
	Model.getGenConstrExp()
	Model.getGenConstrExpA()
	Model.getGenConstrLog()
	Model.getGenConstrLogA()
	Model.getGenConstrLogistic()
	Model.getGenConstrPow()
	Model.getGenConstrSin()
	Model.getGenConstrCos()
	Model.getGenConstrTan()
	Model.getGenConstrs()
	Model.getJSONSolution()
	Model.getMultiobjEnv()
	Model.getObjective()
	Model.getParamInfo()
	Model.getPWLObj()
	Model.getQConstrs()
	Model.getQCRow()
	Model.getRow()
	Model.getSOS()
	Model.getSOSs()
	Model.getTuneResult()
	Model.getVarByName()
	Model.getVars()
	Model.message()
	Model.optimize()
	Model.optimizeBatch()
	Model.presolve()
	Model.printAttr()
	Model.printQuality()
	Model.printStats()
	Model.read()
	Model.relax()
	Model.remove()
	Model.reset()
	Model.resetParams()
	Model.setAttr()
	Model.setMObjective()
	Model.setObjective()
	Model.setObjectiveN()
	Model.setPWLObj()
	Model.setParam()
	Model.singleScenarioModel()
	Model.terminate()
	Model.tune()
	Model.update()
	Model.write()

	Var
	Var.getAttr()
	Var.sameAs()
	Var.index
	Var.setAttr()

	MVar
	MVar.copy()
	MVar.diagonal()
	MVar.fromlist()
	MVar.fromvar()
	MVar.getAttr()
	MVar.item()
	MVar.ndim
	MVar.reshape()
	MVar.setAttr()
	MVar.shape
	MVar.size
	MVar.sum()
	MVar.T
	MVar.tolist()
	MVar.transpose()

	Constr
	Constr.getAttr()
	Constr.index
	Constr.sameAs()
	Constr.setAttr()

	MConstr
	MConstr.tolist()
	MConstr.getAttr()
	MConstr.setAttr()

	MConstr
	MQConstr.tolist()
	MQConstr.getAttr()
	MQConstr.setAttr()

	QConstr
	QConstr.getAttr()
	QConstr.setAttr()

	SOS
	SOS.getAttr()
	SOS.setAttr()

	GenConstr
	GenConstr.getAttr()
	GenConstr.setAttr()

	LinExpr
	LinExpr()
	LinExpr.add()
	LinExpr.addConstant()
	LinExpr.addTerms()
	LinExpr.clear()
	LinExpr.copy()
	LinExpr.getConstant()
	LinExpr.getCoeff()
	LinExpr.getValue()
	LinExpr.getVar()
	LinExpr.remove()
	LinExpr.size()
	LinExpr.__eq__()
	LinExpr.__le__()
	LinExpr.__ge__()

	QuadExpr
	QuadExpr()
	QuadExpr.add()
	QuadExpr.addConstant()
	QuadExpr.addTerms()
	QuadExpr.clear()
	QuadExpr.copy()
	QuadExpr.getCoeff()
	QuadExpr.getLinExpr()
	QuadExpr.getValue()
	QuadExpr.getVar1()
	QuadExpr.getVar2()
	QuadExpr.remove()
	QuadExpr.size()
	QuadExpr.__eq__()
	QuadExpr.__le__()
	QuadExpr.__ge__()

	GenExpr
	MLinExpr
	MLinExpr.clear()
	MLinExpr.copy()
	MLinExpr.getValue()
	MLinExpr.item()
	MLinExpr.ndim
	MLinExpr.shape
	MLinExpr.size
	MLinExpr.sum()
	MLinExpr.zeros()
	MLinExpr.__eq__()
	MLinExpr.__ge__()
	MLinExpr.__getitem__()
	MLinExpr.__le__()
	MLinExpr.__setitem__()

	MQuadExpr
	MQuadExpr.clear()
	MQuadExpr.copy()
	MQuadExpr.getValue()
	MQuadExpr.item()
	MQuadExpr.ndim
	MQuadExpr.shape
	MQuadExpr.size
	MQuadExpr.sum()
	MQuadExpr.zeros()
	MQuadExpr.__eq__()
	MQuadExpr.__ge__()
	MQuadExpr.__getitem__()
	MQuadExpr.__le__()
	MQuadExpr.__setitem__()

	TempConstr
	Column
	Column()
	Column.addTerms()
	Column.clear()
	Column.copy()
	Column.getCoeff()
	Column.getConstr()
	Column.remove()
	Column.size()

	Callbacks
	GurobiError
	Env
	Env()
	Env.resetParams()
	Env.setParam()
	Env.start()
	Env.writeParams()
	Env.dispose()

	Batch
	Batch()
	Batch.abort()
	Batch.discard()
	Batch.dispose()
	Batch.getJSONSolution()
	Batch.retry()
	Batch.update()
	Batch.writeJSONSolution()

	GRB
	Constants
	GRB.Attr
	GRB.Param

	tuplelist
	tuplelist()
	tuplelist.select()
	tuplelist.clean()
	tuplelist.__contains__()

	tupledict
	tupledict()
	tupledict.select()
	tupledict.sum()
	tupledict.prod()
	tupledict.clean()

	General Constraint Helper Functions
	abs_()
	and_()
	max_()
	min_()
	or_()
	norm()

	MATLAB API Overview
	Common Arguments
	The model argument
	The params argument

	Solving a Model
	gurobi()
	gurobi_iis()
	gurobi_feasrelax()
	gurobi_relax()

	Input/Output
	gurobi_read()
	gurobi_write()

	Using Gurobi within MATLAB's Problem-Based Optimization
	Setting up the Gurobi MATLAB interface

	R API Overview
	Common Arguments
	The model argument
	The params argument

	Solving a Model
	gurobi()
	gurobi_iis()
	gurobi_feasrelax()
	gurobi_relax()

	Input/Output
	gurobi_read()
	gurobi_write()

	Installing the R package

	Variables and Constraints and Objectives
	Variables
	Constraints
	Objectives
	Tolerances and Ill Conditioning --A Caveat

	Environments
	Session boundaries
	Configuration parameters
	Algorithmic parameters
	Concurrent environments
	Multi-objective environments

	Attributes
	Model Attributes
	NumConstrs
	NumVars
	NumSOS
	NumQConstrs
	NumGenConstrs
	NumNZs
	DNumNZs
	NumQNZs
	NumQCNZs
	NumIntVars
	NumBinVars
	NumPWLObjVars
	ModelName
	ModelSense
	ObjCon
	Fingerprint
	ObjVal
	ObjBound
	ObjBoundC
	PoolObjBound
	PoolObjVal
	MIPGap
	Runtime
	Work
	Status
	SolCount
	IterCount
	BarIterCount
	NodeCount
	ConcurrentWinMethod
	IsMIP
	IsQP
	IsQCP
	IsMultiObj
	IISMinimal
	MaxCoeff
	MinCoeff
	MaxBound
	MinBound
	MaxObjCoeff
	MinObjCoeff
	MaxRHS
	MinRHS
	MaxQCCoeff
	MinQCCoeff
	MaxQCLCoeff
	MinQCLCoeff
	MaxQCRHS
	MinQCRHS
	MaxQObjCoeff
	MinQObjCoeff
	OpenNodeCount
	Kappa
	KappaExact
	FarkasProof
	TuneResultCount
	NumStart
	LicenseExpiration
	Server

	Variable Attributes
	LB
	UB
	Obj
	VarName
	VTag
	VType
	X
	Xn
	RC
	BarX
	Start
	VarHintVal
	VarHintPri
	BranchPriority
	Partition
	VBasis
	PStart
	IISLB
	IISLBForce
	IISUB
	IISUBForce
	PoolIgnore
	PWLObjCvx
	SAObjLow
	SAObjUp
	SALBLow
	SALBUp
	SAUBLow
	SAUBUp
	UnbdRay

	Linear Constraint Attributes
	Sense
	RHS
	ConstrName
	CTag
	Pi
	Slack
	CBasis
	DStart
	Lazy
	IISConstr
	IISConstrForce
	SARHSLow
	SARHSUp
	FarkasDual

	SOS Attributes
	IISSOS
	IISSOSForce

	Quadratic Constraint Attributes
	QCSense
	QCRHS
	QCName
	QCPi
	QCSlack
	QCTag
	IISQConstr
	IISQConstrForce

	General Constraint Attributes
	FuncPieceError
	FuncPieceLength
	FuncPieceRatio
	FuncPieces
	GenConstrType
	GenConstrName
	IISGenConstr
	IISGenConstrForce

	Quality Attributes
	MaxVio
	BoundVio
	BoundSVio
	BoundVioIndex
	BoundSVioIndex
	BoundVioSum
	BoundSVioSum
	ConstrVio
	ConstrSVio
	ConstrVioIndex
	ConstrSVioIndex
	ConstrVioSum
	ConstrSVioSum
	ConstrResidual
	ConstrSResidual
	ConstrResidualIndex
	ConstrSResidualIndex
	ConstrResidualSum
	ConstrSResidualSum
	DualVio
	DualSVio
	DualVioIndex
	DualSVioIndex
	DualVioSum
	DualSVioSum
	DualResidual
	DualSResidual
	DualResidualIndex
	DualSResidualIndex
	DualResidualSum
	DualSResidualSum
	ComplVio
	ComplVioIndex
	ComplVioSum
	IntVio
	IntVioIndex
	IntVioSum

	Multi-objective Attributes
	ObjN
	ObjNCon
	ObjNPriority
	ObjNWeight
	ObjNRelTol
	ObjNAbsTol
	ObjNVal
	ObjNName
	NumObj

	Multi-Scenario Attributes
	ScenNLB
	ScenNUB
	ScenNObj
	ScenNRHS
	ScenNName
	ScenNObjBound
	ScenNObjVal
	ScenNX
	NumScenarios

	Batch Attributes
	BatchErrorCode
	BatchErrorMessage
	BatchID
	BatchStatus

	Attribute Examples
	C Attribute Examples
	C++ Attribute Examples
	C# Attribute Examples
	Java Attribute Examples
	Python Attribute Examples
	Visual Basic Attribute Examples

	Parameters
	Parameter Guidelines
	Continuous Models
	MIP Models

	Parameter Descriptions
	AggFill
	Aggregate
	BarConvTol
	BarCorrectors
	BarHomogeneous
	BarIterLimit
	BarOrder
	BarQCPConvTol
	BestBdStop
	BestObjStop
	BQPCuts
	BranchDir
	CliqueCuts
	CloudAccessID
	CloudHost
	CloudSecretKey
	CloudPool
	ComputeServer
	ConcurrentJobs
	ConcurrentMIP
	ConcurrentSettings
	CoverCuts
	Crossover
	CrossoverBasis
	CSAPIAccessID
	CSAPISecret
	CSAppName
	CSAuthToken
	CSBatchMode
	CSClientLog
	CSGroup
	CSIdleTimeout
	CSManager
	CSPriority
	CSQueueTimeout
	CSRouter
	CSTLSInsecure
	CutAggPasses
	Cutoff
	CutPasses
	Cuts
	DegenMoves
	Disconnected
	DisplayInterval
	DistributedMIPJobs
	DualReductions
	FeasibilityTol
	FeasRelaxBigM
	FlowCoverCuts
	FlowPathCuts
	FuncPieceError
	FuncPieceLength
	FuncPieceRatio
	FuncPieces
	FuncMaxVal
	GomoryPasses
	GUBCoverCuts
	Heuristics
	IgnoreNames
	IISMethod
	ImpliedCuts
	ImproveStartGap
	ImproveStartNodes
	ImproveStartTime
	InfProofCuts
	InfUnbdInfo
	InputFile
	IntegralityFocus
	IntFeasTol
	IterationLimit
	JobID
	JSONSolDetail
	LazyConstraints
	LicenseID
	LiftProjectCuts
	LPWarmStart
	LogFile
	LogToConsole
	MarkowitzTol
	MemLimit
	Method
	MinRelNodes
	MIPFocus
	MIPGap
	MIPGapAbs
	MIPSepCuts
	MIQCPMethod
	MIRCuts
	ModKCuts
	MultiObjMethod
	MultiObjPre
	MultiObjSettings
	NetworkAlg
	NetworkCuts
	NLPHeur
	NodefileDir
	NodefileStart
	NodeLimit
	NodeMethod
	NonConvex
	NoRelHeurTime
	NoRelHeurWork
	NormAdjust
	NumericFocus
	OBBT
	ObjNumber
	ObjScale
	OptimalityTol
	OutputFlag
	PartitionPlace
	PerturbValue
	PoolGap
	PoolGapAbs
	PoolSearchMode
	PoolSolutions
	PreCrush
	PreDepRow
	PreDual
	PreMIQCPForm
	PrePasses
	PreQLinearize
	Presolve
	PreSOS1BigM
	PreSOS1Encoding
	PreSOS2BigM
	PreSOS2Encoding
	PreSparsify
	ProjImpliedCuts
	PSDCuts
	PSDTol
	PumpPasses
	QCPDual
	Quad
	Record
	ResultFile
	RINS
	RelaxLiftCuts
	RLTCuts
	ScaleFlag
	ScenarioNumber
	Seed
	ServerPassword
	ServerTimeout
	Sifting
	SiftMethod
	SimplexPricing
	SoftMemLimit
	SolutionLimit
	SolFiles
	SolutionNumber
	StartNodeLimit
	StartNumber
	StrongCGCuts
	SubMIPCuts
	SubMIPNodes
	Symmetry
	Threads
	TimeLimit
	TokenServer
	TSPort
	TuneBaseSettings
	TuneCleanup
	TuneCriterion
	TuneJobs
	TuneMetric
	TuneOutput
	TuneResults
	TuneTargetMIPGap
	TuneTargetTime
	TuneTimeLimit
	TuneTrials
	UpdateMode
	UserName
	VarBranch
	WLSAccessID
	WLSSecret
	WLSToken
	WLSTokenDuration
	WLSTokenRefresh
	WorkerPassword
	WorkerPool
	WorkLimit
	ZeroHalfCuts
	ZeroObjNodes

	Parameter Examples
	C Parameter Examples
	C++ Parameter Examples
	C# Parameter Examples
	Java Parameter Examples
	MATLAB Parameter Examples
	Python Parameter Examples
	R Parameter Examples
	Visual Basic Parameter Examples

	Optimization Status Codes
	Batch Status Codes
	Callback Codes
	Error Codes
	Model File Formats
	MPS format
	REW format
	DUA format
	LP format
	RLP format
	DLP format
	ILP format
	OPB format
	MST format
	HNT format
	ORD format
	BAS format
	SOL format
	JSON solution format
	ATTR format
	PRM format

	Logging
	Header
	Simplex Logging
	Barrier Logging
	Sifting Logging
	MIP Logging
	Solution Pool and Multi-Scenario Logging
	Multi-Objective Logging
	Distributed MIP Logging
	IIS Logging

	Gurobi Command-Line Tool
	Solving a Model
	Replaying Recording Files

	Solution Pool
	Finding Multiple Solutions
	Retrieving Solutions
	Examples
	Subtleties and Limitations

	Multiple Objectives
	Specifying Multiple Objectives
	Working With Multiple Objectives
	Additional Details

	Multiple Scenarios
	Definition of a Multi-Scenario Model
	Specifying Multiple Scenarios
	Logging
	Retrieving Solutions for Multiple Scenarios
	Tips and Tricks
	Limitations and Additional Considerations

	Batch Optimization
	Setting Up a Batch Environment
	Tagging Variables or Constraints
	Submitting a Batch Optimization Request
	Interacting with Batch Requests
	Interpreting the JSON Solution
	A Complete Example
	Limitations

	Recording API Calls
	Recording
	Replay
	Limitations

	Concurrent Optimizer
	Parameter Tuning Tool
	Command-Line Tuning
	Tuning API

	Gurobi Instant Cloud
	Client Setup
	Instant Cloud Setup

	Guidelines for Numerical Issues
	Avoid rounding of input
	Real numbers are not real
	Tolerances and user-scaling
	Models at the edge of infeasibility
	Gurobi tolerances and the limitations of double-precision arithmetic
	Why scaling and geometry is relevant
	Recommended ranges for variables and constraints
	Improving ranges for variables and constraints
	Advanced user scaling
	Avoid hiding large coefficients
	Dealing with big-M constraints

	Does my model have numerical issues?
	Solver parameters to manage numerical issues
	Presolve
	Choosing the right algorithm
	Making the algorithm less sensitive

	Instability and the geometry of optimization problems
	The case of linear systems:
	The geometry of linear optimization problems
	Multiple optimal solutions
	Dealing with epsilon-optimal solutions
	Thin feasible regions
	Optimizing over the circle:
	Optimizing over thin regions:
	Stability and convergence

	Further reading
	Source code for the experiment of optimizing over a circle
	Source code for the experiment on a thin feasible region
	Source code for the experiment with column scalings

	Copyright Notices for 3rd Party Libraries

