Documentation of the OTPMML module

Documentation built from package otpmml-1.5

April 10, 2018

Hidden layer
with nH neurons

Input e R™¥
Lud 2 IndinQ

3

nH and weights w:‘,j are the parameters of the ANN model

Image of an artificial neural network, copied from URANIE documentation

OTPMML — Documentation 2

Abstract

The purpose of this document is to present the OTPMML module.
This document is organized according to the OpenTURNS documentation :

o Architecture Guide gives UML diagrams of all implemented classes,

Reference Guide gives some theoretical basis,

Use cases Guide details scripts in Python (the Textual Interface language of Open TURNS) and helps to
learn as quickly as possible the manipulation of the otpmml module,

o User Manual details the otpmml objects and give the list of their methods,

Validation Guide which provides use cases to validate the otpmml module.

Contents
1 Architecture guide 3
1.1 DAT e, 3
1.2 NeuralNetwork e, 3
1.3 RegressionModel L 3
1.4 PMML Internal Classes o o 0 e e 4
1.4.1 PMMLDoOC e e 4
1.4.2 PMMLRegressionModel L 5)
1.4.3 PMMLNeuralNetwork e 5
2 Reference Guide 7
2.1 Neural network e e 7
2.2 Regression model L e 9
3 Use Cases Guide 11
3.1 NeuralNetwork import e e e 11
3.2 RegressionModel importo 11
3.3 Import and export of DAT files e 11
4 User Manual 13
4.1 DAT . e 13
4.2 NeuralNetwork o . o s 13
4.3 RegressionModel 14
5 Validation 15

©2014 EDF

OTPMML — Documentation 3

1 Architecture guide

This document makes up the general specification design for the architecture of the OTPMML module.

1.1 DAT

DAT

+Importiin datFile: FileNamel: Collection=NumericalSample=
+Exportiin datFile: FileMame, in input: Numerical Sample,
in output:Numerical Sample): void

Figure 1: DAT class

The DAT class is a utility class to import and export Uranie .dat files. It contains only static methods.

1.2 NeuralNetwork

OT::NumericalMathFunction

PMMLDocC

MeuralMNetwork

PMMLNeuralNetwork a2 |+NeuralMetwork(in pmmlFile: FileMName, in modelMame: String=""]

Figure 2: NeuralNetwork class

The NeuralNetwork class inherits from NumericalMathFunction. It uses PMMLDoc and PMMLNeuralNetwork
internal classes to parse .pmml files written by Uranie.

1.3 RegressionModel

PMMLDoc RegressionModel

-metamodel_: Pointer<LinearlLeastSquares:=

I- = +RegressionModel (1n pmmlFile: FileMame, 1n modelMame: String=""]
- +RegressionModel (in implementation: LinearLeastSquares)

PMM LREQI’ESSI&HMQ(’E' {_I +getlinearLeastSquares(): LinearLeastSquares const

I +exportToPMMLF1le(in pmmlFile: FileMame): void const

Figure 3: RegressionModel class

The RegressionModel class is a wrapper around RegressionModel XML elements found in .pmml files. It
uses PMMLDoc and PMMLRegressionModel internal classes.

©2014 EDF

OTPMML — Documentation 4

1.4 PMML Internal Classes
1.4.1 PMMLDoc

PMMLDoc

-document _: xmlDocPtr

-rootMode : xmlMNodePtr
-xpathContext : xmlXPathContextPtr
-xpathNsPrefix : String

+PMMLDoc ()
+PMMLDoc (1n pmmlF1le:FileName)
+~PMMLDoc ()
-checkInitialized(): veoid const
-getModelMames(1n category:String): Collection=String= const
-getXPathQueryScalar(in xpathQuery:String): float const
-getXPathQueryString(in xpathQuery:String): String const
+read(in pmmlFile:F1leName) : bool
+write(in pmmlFile:FileName): bool const
+getNumberOfNeuralNetworks(): 1nt const
+getNeuralNetworkModelNames () : Collection=String= const
+getNeuralietwork (1in modelName:String=""): PMMLMNeuralMNetwork const
+getNumbe rOfRegressionModels(): int const
+getRegressionModelMames(): Collection<Strings= const
+getRegressionModel (1n modelMame:String=""): PMMLRegressionModel con
+addRegressionModel (1n modelMame:String,

1n regression:LinearlLeastSquares): void

+addHeader () : void

Figure 4: PMMLDoc class

The PMMLDoc class reads an XML file (in the PMML 3.0 format, which is the format used by Uranie), and
provides several methods used by PMMLNeuralNetwork and PMMLRegressionModel classes. It internally uses
LibXML2 library to handle XML data; this library must be initialized before parsing XML data, and memory
must be explicitly deallocated when its job is over. For this reason, it had been decided to not expose PMMLDoc
to the Python interface. Calls to xm1InitParser and xmlCleanupParser are performed by higher-level classes
NeuralNetwork and RegressionModel.

XPath is used extensively to extract informations from XML data; two methods, getXPathQueryScalar and
getXPathQueryString, are provided for simple usages. PMMLNeuralNetwork and PMMLRegressionModel classes
are declared friend so that they can use these methods.

The xpathContext_ member stores the current XPath context, and is modified by setXPathContext methods
of PMMLNeuralNetwork and PMMLRegressionModel classes to point to their respective XML elements.

There are some caveats with XML namespaces when using XPath. In order to parse XML files with or without
namespaces, an xpathNsPrefix_ member has been added.

Note: In addRegressionModel, the LinearLeastSquares argument cannot be passed as a const reference
due to a bug which had been fixed only in OpenTURNS 1.5.

©2014 EDF

OTPMML — Documentation

1.4.2 PMMLRegressionModel

PMMLRegressionModel

-pmml_. const PMMLDoc*
-modelName_: const String
-node_: const xmlModePtr

in node: xmlNodePtr)
-set¥PathContext(): void
-checkValidi): woid const
+getModelMamei) : String const
+getIntercept(): fleoat const
+getTargetVariableName(): String const
+getCoefficients(): MNumericalSample const

+PMMLRegressionModel (in pmml: PMMLDoc®, in modelMame: String,

Figure 5: PMMLRegressionModel class

The PMMLRegressionModel class is straightforward. The checkValid private method ensures that this regres-
sion model can be mapped to a LinearLeastSquares instance. The following checks are performed:

e modelType attribute, if present, must be equal to linearRegression

e functionName attribute must be equal to regression
e normalizationMethod attribute must be equal to none

e there must be only one RegressionTable child element

e this RegressionTable must contain only NumericPredictor children and not CategoricalPredictor

e exponent attributes of NumericPredictor must be equal to 1

1.4.3 PMMLNeuralNetwork

PMMLMNeuralMNetwork

-pmml_: const PMMLDoc*
-modelName_: const String
-node_: const xmlModePtr

+PMMLMeuralMetwork(in pmml: PMMLDoc*, in modelName: String,

in node: xmLNodePtr)
-set¥PathContext(): woid
+getModelNamei) : String const
+getNumber0f Inputs(): int const
+getNumber0f Outputsi): int const
+getNumberdfLayers(): int const
+getlayerSizelin index:int): int const
+getBiasAtLayer(in index:int): MumericalPoint const
+getWeightsAtLayer(in index: int): Matrix const
+getNeuronIdsAtLayeriin index: int): Indices const
+getNeural InputMamelin id: int): String const
+getbctivat lonFunctionAtLlayer(in index:int): String const
+getEvaluat lonFunctionAtLayer(in index:int): MumericalMathFunction const
+getInputsiormalization(): NumericalSample const
+getOutputslormalization(): NumericalSample const
+get Inputsiormal izat ionFunctioni): MumericalMathFunction const
+getOutputsiormal izat ionFunctioni) NumaricalMathFunction const

Figure 6: PMMLNeuralNetwork class

©2014 EDF

OTPMML — Documentation 6

The PMMLNeuralNetwork class parses XML data and provides accessor methods which are used by NeuralNetwork.
Most functions could be private, they are public only to help testing and debugging.

Any valid NeuralNetwork XML element should be supported. There may be any number of hidden layers,
neural layers may have any number of neurons, layers may be sparse, all known activation functions are
supported. The only restriction is with normalization of inputs and outputs, piecewise normalization is not
supported. This should not be a problem since Uranie stores PMML files with this format.

Note: NumericalMathFunction is built from string formulas. In order to preserve accuracy, 20 digits are
used. The drawback is that pretty-printing looks uglier than with less digits.

©2014 EDF

OTPMML — Documentation 7

2 Reference Guide

The OTPMML library provides an interface to the URANIE platform. In particular, it can:

e read artificial neural networks generated by URANIE and transform them into a NumericalMathFunction
which can be used by OpenTURNS algorithms

e read inputs and outputs generated by URANIE
e write inputs and outputs in URANIE format

e convert regression model generated by URANIE into LinearLeastSquares instances, in both directions

2.1 Neural network

Mathematical description

Goal
The aim is to build an artificial neural network (often called neural network) function issued from the
URANIE platform. This mathematical model is inspired by biological neural networks.

Principles
A single-layer perceptron is given by n + 1 data and an activation function:

e w € R™ a vector of weights;
e 0 a real number, called bias;
e ¢: activation function, i.e. the rule. Formally, ¢ : R — [0, 1]

The expression of neural network model, evaluated on the point of interest x € R™, is given by:

M(z) = ¢p(w"z - 0) (1)
= gb <Z Wiy — 9) (2)
i=1
Usually, the notation adopted is:
n+1
M(z) = ¢ (Z w:c) (3)
i=1

with wy4+1 = 0,241 = —1. This model is referred as single layer and described hereafter.

©2014 EDF

OTPMML — Documentation 8

The activation function has to be fixed. The Heaviside function is commonly used and defined by:

0 <0
H(x):{l x>0

This function is however discontinuous and thus implies more complexity during the learning step.
In machine learning, several functions are commonly used:

1
The logistic function: o(x) = ———
e The logistic function: o(z) e
et —e ®
The h; bolic t t function: tanh =
° e hyperbolic tangent function: tan (113) et 4 =7

These functions are implemented in the module.

A multi-layer perceptron consists of multiple layers of perceptrons, each neuron in a layer being connected
to neurons of the previous layer. Each layer also contains an activation function (which has the same
properties as with single-layer perceptrons) and a bias. The most commonly used multi-layer perceptron
is the 2-layer perceptron:

Hidden layer

Inputs

Output

If we note (w, 6, ¢) (resp. (w!l, 07, ¢™)) weights, bias and activation function of the output layer (resp.
hidden layer), then the expression of this neural network model, evaluated on the point of interest = € R",
is given by:

M
M) = 6> wM(@) -6
j=1
[M MH
= ¢ ijgéH wal‘k—ﬁH -0
_]:1 k=1

This can be generalized to any number of layers, but in practice a single hidden layer is sufficient.

Other notations

©2014 EDF

OTPMML — Documentation 9

Link with OpenTURNS methodology

This method is aimed at building a response surface prior to tackling Step C “Uncertainty Propagation”.
It requires an experimental design together with the corresponding model evaluations.

References and theoretical basics

e Christopher M. Bishop 1995, “Neural Networks for Pattern Recognition”, Oxford University Press,
Inc, New York.

2.2 Regression model

Mathematical description

Goal

The objectif is to evaluate a linear model regression issued from the URANIE platform.
Principles

One considers global approximations of the model response using a polynomial of degree one:
nx
y ~ h(z) = ao—l—Zaimi
i=1

where (a;, j =0,...,nx) is a set of unknown coefficients.

Several techniques are used to estimate the coefficients of the model.

In the propagation context, an experimental design X = (a:(l), ooz)), i.e. a set of realizations of input
parameters is required, as well as the corresponding model evaluations)Y = (y(l), oy)). Thus the
coefficients a; may be computed using a least squares regression approach.

The following minimization problem has to be solved:
2
N) nx)
Find a that minimizes J(a) = Z y D — a — Z ajﬁ(z)
, =

=1

A necessary condition is that the size NV of the experimental design is not less than the number nx + 1 of
coefficients to estimate.

Other notations

©2014 EDF

OTPMML — Documentation 10

Link with OpenTURNS methodology
Within the global methodology, the method is used to assess the accuracy of a polynomial response surface

of a model output prior to tackling the step C: jjUncertainty propagationy.

References and theoretical basics

e A. Bjorck, 1996, “Numerical methods for least squares problems”, SIAM Press, Philadelphia, PA.

©2014 EDF

OTPMML — Documentation

11

3 Use Cases Guide

This section presents the main functionalities of the module otpmml in their context.

3.1 NeuralNetwork import

Class NeuralNetwork imports a neural network model from a PMML file.
Python script for this use case :

import openturns as ot
from otpmml import NeuralNetwork

Import the neural network
neural_network = NeuralNetwork ()
print (neural_network)

3.2 RegressionModel import

Class RegressionModel imports a regression model from a PMML file.
Python script for this use case :

g
import openturns as ot

from otpmml import RegressionModel

Import the model
model = RegressionModel ()
print (model)

LinearLeastSquares accessor
linearLeastSquares = model. getLinearLeastSquares ()

Ezxport model to Pmml file
model . exportToPMMLFile ()

3.3 Import and export of DAT files

Class I0 exports both input/output samples into a DAT file
Python script for this use case :

import openturns as ot
import otpmml.DAT as DAT
from math import pi, sin

a= 7.0

b=0.1

Create the Ishigami function
input_variables = | , ,]
formula = | + str(a) +

]

+ str(b) +

©2014 EDF

OTPMML — Documentation 12

model = ot.NumericalMathFunction(input_variables , formula)
model . setName ()

Generating

dist = ot.ComposedDistribution (3 *[ot.Uniform(—pi,pi)])

X = dist.getSample(100)

Y = model (X)

Export to DAT file

DAT. Export (X, Y)

Import DAT file

sampleCollection = DAT.Import ()
input_sample = sampleCollection [0]
output_sample = sampleCollection [1]

Export could be done also using only one sample.
Python script for this use case :

import openturns as ot
import otpmml.DAT as DAT
from math import pi, sin

a= 7.0

b=0.1

Create the Ishigami function
input_variables = | , ,]

formula = | + str(a) + + str(b) +
]

model = ot.NumericalMathFunction(input_variables , formula)

model . setName ()

Generating

dist = ot.ComposedDistribution(3 *[ot.Uniform(—pi,pi)])
X = dist.getSample(100)

Y = model (X)

Encapsulating both samples

Z = ot.NumericalSample (X)

Z.stack (Y)

FExport to DAT file

DAT. Export (YY)

©2014 EDF

OTPMML — Documentation 13

4 User Manual

This section gives an exhaustive presentation of the objects and functions provided by the otpmml module, in
the alphabetic order.

4.1 DAT

This class is used through its static methods in order to import/export a NumericalSample or a collection of
NumericalSample into a .dat file.

Methods:

Import
Usage:
DAT. Import(filename)
Arguments:
filename: a string, file that contains data
Value: a collection of samples of size 2. First sample corresponds to input data, second one to
output data.

FExport

Usage:
DAT. Export(filename, input, output)
DAT. Ezport(filename, inputOutput)

Arguments:
filename: a string, file where to export data.
mput: a NumericalSample, input sample, usually of dimension > 1.
output: a NumericalSample, output sample, usually of dimension 1.
putOutput: a NumericalSample, usually of dimension > 1.

Value: None.

4.2 NeuralNetwork
The class inherits from the NumericalMathFunction class.
Usage:
NeuralNetwork(pmmlFile)
Arguments:
pmmiFile: a string, PMML file that countains the neural network
Value: a NeuralNetwork, a NumericalMathFunction that implements neural network
Details:
NeuralNetwork constructor

Links

©2014 EDF

OTPMML — Documentation 14

4.3 RegressionModel
Usage:

RegressionModel(pmmlF'ile)

RegressionModel(linearLeastSquares)

Arguments:

pmmlFile: a string, PMML file that countains the regression model

linearLeastSquares: a LinearLeastSquare, object encapsulating least squares.
Value: a RegressionModel
Details:

With the first usage, the class loads a model implemented in PMML format

With the second usage, the class encapsulates a LinearLeastSquares attribut
getLinearLeastSquare

Usage: getLinearLeastSquare()
Arguments: no argument

Value: a LinearLeastSquare

exportToPMMLFile

Usage: exportToPMMLUFile(filename)
Arguments: filename, a string. Name of file for the export of regression model.

Value: none.

©2014 EDF

OTPMML — Documentation 15

5 Validation

This section aims at exposing the methodology used to validate numerical results of the module. The validation
of NeuralNetwork is exposed hereafter.

For that purposes, the jjbeam,;; example, illustrated in the ExampleGuide documentation of OpenTURNS, has
been choosen:

e A design of experiment and the evaluation of the deviation funcion on that design were provided (input_output.dat
file);

e Previous data were used to build a neural network model thanks to the Uranie module;
e The issued model (PMML file) is provided for validation.

In addition, the modulePMML.py script had been developed at EDF to parse PMML files. Thus the validation
of the neural network parsing uses a script that reads input data from input_output.dat file, evaluates the
same PMML file with modulePMML.py and OTPMLL, gets output values, absolute and relative errors.

import openturns as ot
import modulePMML
import otpmml

inputs, outputs = tuple(otpmml.DAT. Import ())
size = len(inputs)

model = modulePMML. monModelePMML ()
pmmlRef = ot.NumericalMathFunction (model)

pmmlOT = otpmml. NeuralNetwork ()
eval_module = pmmlRef(inputs)

eval otpmml = pmmlOT (inputs)

results = ot.NumericalSample (0, 4)
description = | , , ,]
results.setDescription(description)
for i in xrange(size):
point = ot.NumericalPoint (inputs|[i])
results.add ([\
eval_module[i][0],
eval_otpmml [i][0],
abs(eval_module |1]
abs((eval_module[i

1

[
]

)5\

— eval_otpmml[i][0]
i][0])/eval_module[i][0])

)
0] — eval_otpmml[i]

\
\
0 0
[[

print results
-

From that results, we compare in figure 7 outputs issued from modulePMML.py and OTPMML.

©2014 EDF

OTPMML — Documentation 16

Comparaison of PMML outputs

— modulePMML
.+ oTPMML

oTPMML

modulePMML

Figure 7: Comparison of outputs

In addition, errors are ploted in figure 8. Comparisons are very good, absolute error is less than 1.5 x 10714

Validation of OTPMML module

Absolute error

Relative error

Figure 8: Comparison of outputs

and relative errors less than 1.2 x 107! | which validate the parsing.

©2014 EDF

	Architecture guide
	DAT
	NeuralNetwork
	RegressionModel
	PMML Internal Classes
	PMMLDoc
	PMMLRegressionModel
	PMMLNeuralNetwork

	Reference Guide
	Neural network
	Regression model

	Use Cases Guide
	NeuralNetwork import
	RegressionModel import
	Import and export of DAT files

	User Manual
	DAT
	NeuralNetwork
	RegressionModel

	Validation

