Documentation of the OpenTURNS-FFTW
module

Documentation built from package otfftw-0.5

April 10, 2018

otfftw — Documentation 2

Abstract

The purpose of this document is to present the OpenTURNS-FFTW module.
This document is organised according to the Open TURNS documentation :

e a Reference Guide which gives some theoretical basis,

e o Use cases Guide which details scripts in python (the Textual Interface langage of Open TURNS) and
helps the User to learn as quickly as possible the manipulation of the otf ftw module,

o the User Manual which details the otf ftw objects and give the list of their methods,

o the Examples Guide which provides at the moment only one example performed with the ot f ftw module.

Contents

1 Reference Guide 3

2 Use Cases Guide 4
2.1 Which python modules to import 7o 4
2.2 Which python modules to import 7 L 4
2.3 UC: Using the FFTW algorithm to perform discrete Fourier transforms 4
2.4 UC: Using the FFTW algorithm to speed-up spectral process simulation 5)
2.5 UC: Using the FFTW algorithm to speed-up spectral model estimation 6

3 User Manual 8
3.1 FFETW L o e e 8

4 Examples Guide 9
4.1 Python script o L o e e e 9

(©2009-2013 EDF-EADS-Phimeca

otfftw — Documentation 3

1 Reference Guide

The OpenTURNS-FFTW library provides a bridge between the OpenTURNS library and the FFTW library,
one of the most efficient implementation of the Fast Fourier Transform available to date. This library imple-
ments both the direct and inverse discrete Fourier transform.

More precisely, given a complex-valued sequence (zp,...,2n—1), its direct discrete Fourier transform z =
(20y-..,2n—1) reads:

n—1 .
~ — it
5 = § :zje 2im

J=0

and its inverse discrete Fourier transform Z = (2o, ..., Z,_1) reads:

1 n—1 .
.« il
5= — § :Zj€227rn
n <
Jj=0

which gives the relation z = 2.

It is worth noting that the FFTW library does not include the % normalization factor for the inverse transform.
The FFTW library provides an O(nlogn) complexity implementation of such transforms even for prime n, but
the best performance is achieved when n is a power of 2.

(©2009-2013 EDF-EADS-Phimeca

otfftw — Documentation 4

2 Use Cases Guide

This section presents the main functionalities of the module ot f ftw in their context.

2.1 Which python modules to import ?
In order to use the functionalities described in this documentation, it is necessary to import :
e the ot f ftw module which links the openturns module.

Python script for this use case :

from otfftw import =

2.2 Which python modules to import ?

In order to use the functionalities described in this documentation, it is necessary to import :
e the openturns python module which gives access to the Open TURNS functionalities,
e the ot f ftw module which links the openturns module.

Python script for this use case :

Load OpenTURNS to manipulate NumericalComplexCollection
from openturns import =

Load the link between OT and FFIW
from otfftw import =x

2.3 UC: Using the FFTW algorithm to perform discrete Fourier transforms

With the ot f ftw module, it is possible to perform both direct and inverse discrete Fourier transforms using
the high-performance fftw library. To perform such transforms, the needed data are:

e a collection of complex values: collection
type: NumericalComplexCollection

e the index of the first element to be transformed: first

Requirements
type: UnsignedInteger
e the size of the sub-sequence of values to be transformed: size
type: UnsignedInteger
e the transformed sequence : transformedCollection,
Results

type: NumericalComplexCollection

Python script for this use case:

(©2009-2013 EDF-EADS-Phimeca

otfftw — Documentation 5

from openturns import x
from otfftw import x

Create the data

n = 16
collection = NumericalComplexCollection (n)
for i in range(n):
collection[i] = (1.0 + i) % (1.0 — 0.2j)
first = 3
size = 8
print ”"collection=", collection
print 7 first=", first
print "size=", size

Create a FFTW algorithm
myFFT = FFTW()

Direct transform of the whole collection
transformedCollection = myFFT. transform (collection)
print 7 Direct_transform_of_the_whole_collection=", transformedCollection

Direct transform of a sub—sequence
transformedCollection = myFFT. transform (collection , first , size)
print 7 Direct _transform._of_a_sub—sequence=", transformedCollection

Inverse transform of the whole collection
transformedCollection = myFFT.inverseTransform (collection)
print "Inverse_transform._of_the_whole_collection=", transformedCollection

Inverse transform of a sub—sequence
transformedCollection = myFFT.inverseTransform (collection , first , size)
print "Inverse._transform._of_a_.sub—sequence=", transformedCollection

2.4 UC: Using the FFTW algorithm to speed-up spectral process simulation

The fftw library is much more efficient than the FFT library provided by OpenTURNS. Knowing this point,
OpenTURNS has been designed such that the TTF implementation can be plugged at run time for the most
demanding algorithms. One of these algorithms is the simulation of SpectralProcess processes.

(©2009-2013 EDF-EADS-Phimeca

otfftw — Documentation 6

e a spectral normal process : process

type: SpectralNormalProcess

Requirements

e a sample size : size

type: UnsignedInteger

e a sample of size size of the process : sample,
Results

type: SampleProcess

Python script for this use case:

from openturns import x
from otfftw import x
from time import time

Create a discretized spectral mormal process

dim =1

n =238

tg = RegularGrid (0.0, 1.0, n)

process = SpectralNormalProcess(CauchyModel(NumericalPoint (dim, 1), NumericalPoint (dim,

Sample size
size = 3

FFT algorithm
fft = FFITW()

process.setFFTAlgorithm (fft)

Sample the process
sample = process.getSample(size)

print ”sample=", sample
2.5 UC: Using the FFTW algorithm to speed-up spectral model estimation

The same way the FFTW class can be used to speed-up the SpectralNormal class, it can be used to speed-up
the WelchFactory class.

(©2009-2013 EDF-EADS-Phimeca

otfftw — Documentation

e a process sample : sample

type: ProcessSample

Requirements

e a Welch factory : factory

type: WelchFactory

e a spectral model : spectralModel,
Results

type: UserDefinedSpectralModel

Python script for this use case:

from openturns import x
from otfftw import x
from time import time

Create a process sample

dim =1

n =238

tg = RegularGrid (0.0, 1.0, n)

process = SpectralNormalProcess(CauchyModel (NumericalPoint (dim,

Sample size
size = 3

Sample the process
sample = process.getSample(size)

Welch factory
factory = WelchFactory ()

FFT algorithm
fft = FFIW()

Use this fft in the spectral process
factory .setFFTAlgorithm (fft)

FEstimate the spectral model
spectralModel = factory.build (sample)

print "spectral_model=", spectralModel

1), NumericalPoint (dim,

(©2009-2013 EDF-EADS-Phimeca

otfftw —

Documentation 8

3 User Manual

This section gives an exhaustive presentation of the objects and functions provided by the ot f ftw module, in
the alphabetic order.

3.1 FFTW

Usage :

FFTW ()

Arguments : None

Value :

a FFTW instance, it means an algorithm able to perform discrete Fourier transforms using the fftw

library.

Some methods :

transform

Usage : transform(collection)
Usage : transform(collection, first, size)
Arguments :
collection : a Numerical ComplexCollection of length n.
first : an integer, the index of the first element of collection to be taken into account. We
must have first < n.
size : an integer, the size of the sub-sequence of collection to be transformed. We must have
first + size < n.
Value : a Numerical ComplexCollection, containing the direct discrete Fourier transform of the
whole collection for the first usage and of the sub-sequence starting at position first and of
length size for the second usage.

inverselransform

Usage : inverseTransform(collection)
Usage : inverseTransform(collection, first, size)
Arguments :
collection : a NumericalComplexCollection of length n.
first : an integer, the index of the first element of collection to be taken into account. We
must have first < n.
size : an integer, the size of the sub-sequence of collection to be transformed. We must have
first 4+ size < n.
Value : a NumericalComplexCollection, containing the inverse discrete Fourier transform of the
whole collection for the first usage and of the sub-sequence starting at position first and of
length size for the second usage.

(©2009-2013 EDF-EADS-Phimeca

otfftw — Documentation 9

4 Examples Guide

We present here an example of an uncertainty propagation study based on a representation of the uncertainty
thanks to a normal process X (t). We define the input normal process using a spectral model, then we sample
this model and propagate it through a linear model L(x). Then, we recover the spectral model of the output
process Y (t) based on the output sample. This study is FFT intensive, and all the computations will be done
using the FFTW object.

The input process is of dimension 1, and based on a normalized Cauchy spectral model defined by a spectral
density S(f) such that:

2
Vi eR, SX(f):W

The linear model L(z) is simply a scaling transformation:
VeeR, L(z)=ax

The theoretical output process Y (t) is also normal, stationnary and its spectral density is given by:

2

VfeR, SY(f):W

A graphical comparison between this theoretical spectral density and the reconstructed one is given on figure
1.
The speed-up with respect to the default OpenTURNS FFT algorithm is:

e a sampling time divided by a factor of 1.14
e an estimation time divided by a factor of 2.31

on an Intel QuadCore Q9300 at 2.53GHz based laptop running Linux Mandriva 2010.2

4.1 Python script

from openturns import x*
from otfftw import x
from math import x*
from time import time

Create the input process
first , the time grid

tMin = 0.0
tStep = 0.5
nStep = 2002

timeGrid = RegularGrid (tMin, tStep, nStep)
second, the process
inputProcess = SpectralNormalProcess (CauchyModel (), timeGrid)

Create the FFT algorithm

myFFT = FFTW()
inputProcess.setFFTAlgorithm (myFFT)

(©2009-2013 EDF-EADS-Phimeca

otfftw — Documentation

10

Output DSP comparison

= estimated
reference
w N N
W
@ —]
a 0,
(0))]
0 < |
h,
W
N K“um
R w,
W
h__"mw
r"%*cw‘%;a._\'u* —
O a e = pp gt
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: Estimated spectral density (red) and theoretical one (green) of the output process

Create the linear model
alpha = 2.0
model = SpatialFunction (NumericalMathFunction(”x”, str(alpha) + ”"xx”))

Create the output process
outputProcess = CompositeProcess(DynamicalFunction(model), inputProcess)

outputProcess.setTimeGrid (timeGrid)

Sample the output process

size = 1000

t0 = time ()

sample = outputProcess.getSample(size)
print ”"sampling._time=", time() — t0, ”s”

Build an estimation of the output spectral density

(©2009-2013 EDF-EADS-Phimeca

otfftw — Documentation 11

factory = WelchFactory ()
factory .setFFTAlgorithm (myFFT)

t0 = time ()
outputSpectralModel = factory.build (sample)
print "estimation_time=", time() — t0, ”s”

Graphical comparison of the output spectral models
referenceOutputSpectralModel = CauchyModel ([alpha], [1.0])
frequencyGrid = outputSpectralModel.getFrequencyGrid ()
nFrequency = frequencyGrid.getN ()
dataEstimated = NumericalSample (nFrequency, 2)
dataReference = NumericalSample (nFrequency, 2)
for i in range(nFrequency):

f = frequencyGrid.getValue(1i)

dataEstimated[i, 0] = f

dataReference[i, 0] = f

dataEstimated[i, 1] = outputSpectralModel.computeSpectralDensity (f)[0, 0].real

dataReference[i, 1] = referenceOutputSpectralModel.computeSpectralDensity(f)[0, 0].
g = Graph(” Output_.DSP_comparison”, ”{”, "DSP”, True, ”topright”)

estimated = Curve(dataEstimated)
estimated .setColor (”red”)

estimated .setLegendName (” estimated”)
estimated .setLineWidth (2)
g.add(estimated)

reference = Curve(dataReference)
reference.setColor (” green”)

reference .setLegendName (" reference”)
reference.setLineStyle (”dashed”)
reference .setLineWidth (2)
g.add(reference)

Show (g)

g.draw (" DSPComparison” , 640, 480, Graphlmplementation.PDF)

(©2009-2013 EDF-EADS-Phimeca

	Reference Guide
	Use Cases Guide
	Which python modules to import ?
	Which python modules to import ?
	UC: Using the FFTW algorithm to perform discrete Fourier transforms
	UC: Using the FFTW algorithm to speed-up spectral process simulation
	UC: Using the FFTW algorithm to speed-up spectral model estimation

	User Manual
	FFTW

	Examples Guide
	Python script

