We create a binary functor \(F\) with one covariant and one contravariant component in two ways. Here is the first way to model a binary functor:
gap> field := HomalgFieldOfRationals( );; gap> vec := LeftPresentations( field );; gap> F := CapFunctor( "CohomForVec", [ vec, [ vec, true ] ], vec );; gap> obj_func := function( A, B ) return TensorProductOnObjects( A, DualOnObjects( B ) ); end;; gap> mor_func := function( source, alpha, beta, range ) return TensorProductOnMorphismsWithGivenTensorProducts( source, alpha, DualOnMorphisms( beta ), range ); end;; gap> AddObjectFunction( F, obj_func );; gap> AddMorphismFunction( F, mor_func );;
CAP regards \(F\) as a binary functor on a technical level, as we can see by looking at its input signature:
gap> InputSignature( F ); [ [ Category of left presentations of Q, false ], [ Category of left presentations of Q, true ] ]
We can see that ApplyFunctor
works both on two arguments and on one argument (in the product category).
gap> V1 := TensorUnit( vec );; gap> V3 := DirectSum( V1, V1, V1 );; gap> pi1 := ProjectionInFactorOfDirectSum( [ V1, V1 ], 1 );; gap> pi2 := ProjectionInFactorOfDirectSum( [ V3, V1 ], 1 );; gap> value1 := ApplyFunctor( F, pi1, pi2 );; gap> input := Product( pi1, Opposite( pi2 ) );; gap> value2 := ApplyFunctor( F, input );; gap> IsCongruentForMorphisms( value1, value2 ); true
Here is the second way to model a binary functor:
gap> F2 := CapFunctor( "CohomForVec2", Product( vec, Opposite( vec ) ), vec );; gap> AddObjectFunction( F2, a -> obj_func( a[1], Opposite( a[2] ) ) );; gap> AddMorphismFunction( F2, function( source, datum, range ) return mor_func( source, datum[1], Opposite( datum[2] ), range ); end );; gap> value3 := ApplyFunctor( F2,input );; gap> IsCongruentForMorphisms( value1, value3 ); true
CAP regards \(F2\) as a unary functor on a technical level, as we can see by looking at its input signature:
gap> InputSignature( F2 ); [ [ Product of: Category of left presentations of Q, Opposite of Category of left presentations of Q, false ] ]
Installation of the first functor as a GAP-operation. It will be installed both as a unary and binary version.
gap> InstallFunctor( F, "F_installation" );; gap> F_installation( pi1, pi2 );; gap> F_installation( input );; gap> F_installationOnObjects( V1, V1 );; gap> F_installationOnObjects( Product( V1, Opposite( V1 ) ) );; gap> F_installationOnMorphisms( pi1, pi2 );; gap> F_installationOnMorphisms( input );;
Installation of the second functor as a GAP-operation. It will be installed only as a unary version.
gap> InstallFunctor( F2, "F_installation2" );; gap> F_installation2( input );; gap> F_installation2OnObjects( Product( V1, Opposite( V1 ) ) );; gap> F_installation2OnMorphisms( input );;
gap> ReadPackage( "CAP", "examples/testfiles/FieldAsCategory.gi" );; gap> Q := HomalgFieldOfRationals();; gap> Qoid := FieldAsCategory( Q );; gap> a := FieldAsCategoryMorphism( 1/2, Qoid );; gap> b := FieldAsCategoryMorphism( -2/3, Qoid );; gap> u := FieldAsCategoryUniqueObject( Qoid );; gap> IsCongruentForMorphisms( a, > InterpretMorphismFromDinstinguishedObjectToHomomorphismStructureAsMorphism( > u,u, > InterpretMorphismAsMorphismFromDinstinguishedObjectToHomomorphismStructure( > a > ) > ) > ); true gap> c := FieldAsCategoryMorphism( 3, Qoid );; gap> d := FieldAsCategoryMorphism( 0, Qoid );; gap> left_coeffs := [ [ a, b ], [ c, d ] ];; gap> right_coeffs := [ [ PreCompose( a, b ), PreCompose( b, c ) ], [ c, PreCompose( a, a ) ] ];; gap> right_side := [ a, b ];; gap> solution := > SolveLinearSystemInAbCategory( > left_coeffs, > right_coeffs, > right_side > );; gap> ForAll( [ 1, 2 ], i -> > IsCongruentForMorphisms( > Sum( List( [ 1, 2 ], j -> PreCompose( [ left_coeffs[i][j], solution[j], right_coeffs[i][j] ] ) ) ), > right_side[i] > ) > ); true gap> Lift( c, d ); fail gap> Lift( d, c ); 0 gap> Colift( c, d ); 0 gap> Colift( d, c ); fail
gap> ZZ := HomalgRingOfIntegersInSingular( ); Z gap> C1 := FreeLeftPresentation( 1, ZZ ); <An object in Category of left presentations of Z> gap> C2 := FreeLeftPresentation( 2, ZZ ); <An object in Category of left presentations of Z> gap> h1 := PresentationMorphism( C2, HomalgMatrix( [ [ 0 ], [ 4 ] ], ZZ ), C1 ); <A morphism in Category of left presentations of Z> gap> h2 := PresentationMorphism( C2, HomalgMatrix( [ [ 0 ], [ 2 ] ], ZZ ), C1 ); <A morphism in Category of left presentations of Z> gap> v1 := PresentationMorphism( C2, HomalgMatrix( [ [ 2, 0 ], [ 1, 2 ] ], ZZ ), C2 ); <A morphism in Category of left presentations of Z> gap> v2 := PresentationMorphism( C1, HomalgMatrix( [ [ 4 ] ], ZZ ), C1 ); <A morphism in Category of left presentations of Z> gap> cocomplex_h1 := CocomplexFromMorphismList( [ h1 ] ); <An object in Cocomplex category of Category of left presentations of Z> gap> cocomplex_h2 := CocomplexFromMorphismList( [ h2 ] ); <An object in Cocomplex category of Category of left presentations of Z> gap> cocomplex_mor := CochainMap( cocomplex_h2, [ v1, v2 ], cocomplex_h1 ); <A morphism in Cocomplex category of Category of left presentations of Z> gap> Zmod := CapCategory( C1 ); Category of left presentations of Z gap> CH0 := CohomologyFunctor( Zmod, 0 ); 0-th cohomology functor of Category of left presentations of Z gap> cmor0 := ApplyFunctor( CH0, cocomplex_mor ); <A morphism in Category of left presentations of Z> gap> Display( UnderlyingMatrix( cmor0 ) ); 2 gap> CH1 := CohomologyFunctor( Zmod, 1 ); 1-th cohomology functor of Category of left presentations of Z gap> cmor1 := ApplyFunctor( CH1, cocomplex_mor ); <A morphism in Category of left presentations of Z> gap> Display( UnderlyingMatrix( cmor1 ) ); 4 gap> ToComplex := CocomplexToComplexFunctor( Zmod ); Cocomplex to complex functor of Category of left presentations of Z gap> complex_mor := ApplyFunctor( ToComplex, cocomplex_mor ); <A morphism in Complex category of Category of left presentations of Z> gap> H0 := HomologyFunctor( Zmod, 0 ); 0-th homology functor of Category of left presentations of Z gap> mor0 := ApplyFunctor( H0, complex_mor ); <A morphism in Category of left presentations of Z> gap> Display( UnderlyingMatrix( mor0 ) ); 2 gap> Hm1 := HomologyFunctor( Zmod, -1 ); -1-th homology functor of Category of left presentations of Z gap> mor1 := ApplyFunctor( Hm1, complex_mor ); <A morphism in Category of left presentations of Z> gap> Display( UnderlyingMatrix( mor1 ) ); 4
gap> QQ := HomalgFieldOfRationalsInSingular( );; gap> R := QQ * "x,y"; Q[x,y] gap> SetRecursionTrapInterval( 10000 ); gap> category := LeftPresentations( R ); Category of left presentations of Q[x,y] gap> S := FreeLeftPresentation( 1, R ); <An object in Category of left presentations of Q[x,y]> gap> object_func := function( i ) return S; end; function( i ) ... end gap> morphism_func := function( i ) return IdentityMorphism( S ); end; function( i ) ... end gap> C0 := ZFunctorObjectExtendedByInitialAndIdentity( object_func, morphism_func, category, 0, 4 ); <An object in Functors from integers into Category of left presentations of Q[x,y]> gap> S2 := FreeLeftPresentation( 2, R ); <An object in Category of left presentations of Q[x,y]> gap> C1 := ZFunctorObjectFromMorphismList( [ InjectionOfCofactorOfDirectSum( [ S2, S ], 1 ) ], 2 ); <An object in Functors from integers into Category of left presentations of Q[x,y]> gap> C1 := ZFunctorObjectExtendedByInitialAndIdentity( C1, 2, 3 ); <An object in Functors from integers into Category of left presentations of Q[x,y]> gap> C2 := ZFunctorObjectFromMorphismList( [ InjectionOfCofactorOfDirectSum( [ S, S ], 1 ) ], 3 ); <An object in Functors from integers into Category of left presentations of Q[x,y]> gap> C2 := ZFunctorObjectExtendedByInitialAndIdentity( C2, 3, 4 ); <An object in Functors from integers into Category of left presentations of Q[x,y]> gap> delta_1_3 := PresentationMorphism( C1[3], HomalgMatrix( [ [ "x^2" ], [ "xy" ], [ "y^3"] ], 3, 1, R ), C0[3] ); <A morphism in Category of left presentations of Q[x,y]> gap> delta_1_2 := PresentationMorphism( C1[2], HomalgMatrix( [ [ "x^2" ], [ "xy" ] ], 2, 1, R ), C0[2] ); <A morphism in Category of left presentations of Q[x,y]> gap> delta1 := ZFunctorMorphism( C1, [ UniversalMorphismFromInitialObject( C0[1] ), UniversalMorphismFromInitialObject( C0[1] ), delta_1_2, delta_1_3 ], 0, C0 ); <A morphism in Functors from integers into Category of left presentations of Q[x,y]> gap> delta1 := ZFunctorMorphismExtendedByInitialAndIdentity( delta1, 0, 3 ); <A morphism in Functors from integers into Category of left presentations of Q[x,y]> gap> delta1 := AsAscendingFilteredMorphism( delta1 ); <A morphism in Ascending filtered object category of Category of left presentations of Q[x,y]> gap> delta_2_3 := PresentationMorphism( C2[3], HomalgMatrix( [ [ "y", "-x", "0" ] ], 1, 3, R ), C1[3] ); <A morphism in Category of left presentations of Q[x,y]> gap> delta_2_4 := PresentationMorphism( C2[4], HomalgMatrix( [ [ "y", "-x", "0" ], [ "0", "y^2", "-x" ] ], 2, 3, R ), C1[4] ); <A morphism in Category of left presentations of Q[x,y]> gap> delta2 := ZFunctorMorphism( C2, [ UniversalMorphismFromInitialObject( C1[2] ), delta_2_3, delta_2_4 ], 2, C1 ); <A morphism in Functors from integers into Category of left presentations of Q[x,y]> gap> delta2 := ZFunctorMorphismExtendedByInitialAndIdentity( delta2, 2, 4 ); <A morphism in Functors from integers into Category of left presentations of Q[x,y]> gap> delta2 := AsAscendingFilteredMorphism( delta2 ); <A morphism in Ascending filtered object category of Category of left presentations of Q[x,y]> gap> SetIsAdditiveCategory( CategoryOfAscendingFilteredObjects( category ), true ); gap> complex := ZFunctorObjectFromMorphismList( [ delta2, delta1 ], -2 ); <An object in Functors from integers into Ascending filtered object category of Category of left presentations of Q[x,y]> gap> complex := AsComplex( complex ); <An object in Complex category of Ascending filtered object category of Category of left presentations of Q[x,y]> gap> LessGenFunctor := FunctorLessGeneratorsLeft( R ); Less generators for Category of left presentations of Q[x,y] gap> s := SpectralSequenceEntryOfAscendingFilteredComplex( complex, 0, 0, 0 ); <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> gap> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); (an empty 0 x 1 matrix) gap> s := SpectralSequenceEntryOfAscendingFilteredComplex( complex, 1, 0, 0 ); <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> gap> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); (an empty 0 x 1 matrix) gap> s := SpectralSequenceEntryOfAscendingFilteredComplex( complex, 2, 0, 0 ); <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> gap> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); (an empty 0 x 1 matrix) gap> s := SpectralSequenceEntryOfAscendingFilteredComplex( complex, 3, 0, 0 ); <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> gap> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); x*y, x^2 gap> s := SpectralSequenceEntryOfAscendingFilteredComplex( complex, 4, 0, 0 ); <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> gap> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); x*y, x^2, y^3 gap> s := SpectralSequenceEntryOfAscendingFilteredComplex( complex, 5, 0, 0 ); <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> gap> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); x*y, x^2, y^3 gap> s := SpectralSequenceDifferentialOfAscendingFilteredComplex( complex, 3, 3, -2 ); <A morphism in Category of left presentations of Q[x,y]> gap> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, s ) ) ); y^3 gap> AscToDescFunctor := AscendingToDescendingFilteredObjectFunctor( category ); Ascending to descending filtered object functor of Category of left presentations of Q[x,y] gap> cocomplex := ZFunctorObjectFromMorphismList( [ ApplyFunctor( AscToDescFunctor, delta2 ), ApplyFunctor( AscToDescFunctor, delta1 ) ], -2 ); <An object in Functors from integers into Descending filtered object category of Category of left presentations of Q[x,y]> gap> SetIsAdditiveCategory( CategoryOfDescendingFilteredObjects( category ), true ); gap> cocomplex := AsCocomplex( cocomplex ); <An object in Cocomplex category of Descending filtered object category of Category of left presentations of Q[x,y]> gap> s := SpectralSequenceEntryOfDescendingFilteredCocomplex( cocomplex, 0, -2, 1 ); <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> gap> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); (an empty 0 x 2 matrix) gap> s := SpectralSequenceEntryOfDescendingFilteredCocomplex( cocomplex, 1, -2, 1 ); <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> gap> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); (an empty 0 x 2 matrix) gap> s := SpectralSequenceEntryOfDescendingFilteredCocomplex( cocomplex, 2, -2, 1 ); <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> gap> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); -y,x gap> s := SpectralSequenceEntryOfDescendingFilteredCocomplex( cocomplex, 3, -2, 1 ); <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> gap> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); (an empty 0 x 0 matrix) gap> s := SpectralSequenceDifferentialOfDescendingFilteredCocomplex( cocomplex, 2, -2, 1 ); <A morphism in Category of left presentations of Q[x,y]> gap> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, s ) ) ); x^2, x*y
gap> field := HomalgFieldOfRationals( );; gap> V := VectorSpaceObject( 1, field );; gap> W := VectorSpaceObject( 2, field );; gap> alpha := VectorSpaceMorphism( V, HomalgMatrix( [ [ 1, -1 ] ], 1, 2, field ), W );; gap> beta := VectorSpaceMorphism( W, HomalgMatrix( [ [ 1, 2 ], [ 3, 4 ] ], 2, 2, field ), W );; gap> IsLiftable( alpha, beta ); true gap> IsLiftable( beta, alpha ); false gap> IsLiftableAlongMonomorphism( beta, alpha ); true gap> gamma := VectorSpaceMorphism( W, HomalgMatrix( [ [ 1 ], [ 1 ] ], 2, 1, field ), V );; gap> IsColiftable( beta, gamma ); true gap> IsColiftable( gamma, beta ); false gap> IsColiftableAlongEpimorphism( beta, gamma ); true
gap> ZZ := HomalgRingOfIntegers();; gap> Ml := AsLeftPresentation( HomalgMatrix( [ [ 2 ] ], 1, 1, ZZ ) ); <An object in Category of left presentations of Z> gap> Nl := AsLeftPresentation( HomalgMatrix( [ [ 3 ] ], 1, 1, ZZ ) ); <An object in Category of left presentations of Z> gap> Tl := TensorProductOnObjects( Ml, Nl ); <An object in Category of left presentations of Z> gap> Display( UnderlyingMatrix( Tl ) ); [ [ 3 ], [ 2 ] ] gap> IsZeroForObjects( Tl ); true gap> Bl := Braiding( DirectSum( Ml, Nl ), DirectSum( Ml, Ml ) ); <A morphism in Category of left presentations of Z> gap> Display( UnderlyingMatrix( Bl ) ); [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 0, 1 ] ] gap> IsWellDefined( Bl ); true gap> Ul := TensorUnit( CapCategory( Ml ) ); <An object in Category of left presentations of Z> gap> IntHoml := InternalHomOnObjects( DirectSum( Ml, Ul ), Nl ); <An object in Category of left presentations of Z> gap> Display( UnderlyingMatrix( IntHoml ) ); [ [ -2, -1 ], [ 1, -1 ] ] gap> generator_l1 := StandardGeneratorMorphism( IntHoml, 1 ); <A morphism in Category of left presentations of Z> gap> morphism_l1 := LambdaElimination( DirectSum( Ml, Ul ), Nl, generator_l1 ); <A morphism in Category of left presentations of Z> gap> Display( UnderlyingMatrix( morphism_l1 ) ); [ [ 0 ], [ 2 ] ] gap> generator_l2 := StandardGeneratorMorphism( IntHoml, 2 ); <A morphism in Category of left presentations of Z> gap> morphism_l2 := LambdaElimination( DirectSum( Ml, Ul ), Nl, generator_l2 ); <A morphism in Category of left presentations of Z> gap> Display( UnderlyingMatrix( morphism_l2 ) ); [ [ 0 ], [ 2 ] ] gap> IsEqualForMorphisms( LambdaIntroduction( morphism_l1 ), generator_l1 ); false gap> IsCongruentForMorphisms( LambdaIntroduction( morphism_l1 ), generator_l1 ); true gap> IsEqualForMorphisms( LambdaIntroduction( morphism_l2 ), generator_l2 ); false gap> IsCongruentForMorphisms( LambdaIntroduction( morphism_l2 ), generator_l2 ); true gap> Mr := AsRightPresentation( HomalgMatrix( [ [ 2 ] ], 1, 1, ZZ ) ); <An object in Category of right presentations of Z> gap> Nr := AsRightPresentation( HomalgMatrix( [ [ 3 ] ], 1, 1, ZZ ) ); <An object in Category of right presentations of Z> gap> Tr := TensorProductOnObjects( Mr, Nr ); <An object in Category of right presentations of Z> gap> Display( UnderlyingMatrix( Tr ) ); [ [ 3, 2 ] ] gap> IsZeroForObjects( Tr ); true gap> Br := Braiding( DirectSum( Mr, Nr ), DirectSum( Mr, Mr ) ); <A morphism in Category of right presentations of Z> gap> Display( UnderlyingMatrix( Br ) ); [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 0, 1 ] ] gap> IsWellDefined( Br ); true gap> Ur := TensorUnit( CapCategory( Mr ) ); <An object in Category of right presentations of Z> gap> IntHomr := InternalHomOnObjects( DirectSum( Mr, Ur ), Nr ); <An object in Category of right presentations of Z> gap> Display( UnderlyingMatrix( IntHomr ) ); [ [ -2, 1 ], [ -1, -1 ] ] gap> generator_r1 := StandardGeneratorMorphism( IntHomr, 1 ); <A morphism in Category of right presentations of Z> gap> morphism_r1 := LambdaElimination( DirectSum( Mr, Ur ), Nr, generator_r1 ); <A morphism in Category of right presentations of Z> gap> Display( UnderlyingMatrix( morphism_r1 ) ); [ [ 0, 2 ] ] gap> generator_r2 := StandardGeneratorMorphism( IntHoml, 2 ); <A morphism in Category of left presentations of Z> gap> morphism_r2 := LambdaElimination( DirectSum( Ml, Ul ), Nl, generator_r2 ); <A morphism in Category of left presentations of Z> gap> Display( UnderlyingMatrix( morphism_r2 ) ); [ [ 0 ], [ 2 ] ] gap> IsEqualForMorphisms( LambdaIntroduction( morphism_r1 ), generator_r1 ); false gap> IsCongruentForMorphisms( LambdaIntroduction( morphism_r1 ), generator_r1 ); true gap> IsEqualForMorphisms( LambdaIntroduction( morphism_r2 ), generator_r2 ); false gap> IsCongruentForMorphisms( LambdaIntroduction( morphism_r2 ), generator_r2 ); true
gap> QQ := HomalgFieldOfRationals();; gap> vec := MatrixCategory( QQ );; gap> V1 := Opposite( TensorUnit( vec ) );; gap> V2 := DirectSum( V1, V1 );; gap> V3 := DirectSum( V1, V2 );; gap> V4 := DirectSum( V1, V3 );; gap> V5 := DirectSum( V1, V4 );; gap> alpha13 := InjectionOfCofactorOfDirectSum( [ V1, V2 ], 1 );; gap> alpha14 := InjectionOfCofactorOfDirectSum( [ V1, V2, V1 ], 3 );; gap> alpha15 := InjectionOfCofactorOfDirectSum( [ V2, V1, V2 ], 2 );; gap> alpha23 := InjectionOfCofactorOfDirectSum( [ V2, V1 ], 1 );; gap> alpha24 := InjectionOfCofactorOfDirectSum( [ V1, V2, V1 ], 2 );; gap> alpha25 := InjectionOfCofactorOfDirectSum( [ V2, V2, V1 ], 1 );; gap> mat := [ > [ alpha13, alpha14, alpha15 ], > [ alpha23, alpha24, alpha25 ] > ];; gap> mor := MorphismBetweenDirectSums( mat );; gap> IsWellDefined( mor ); true gap> IsWellDefined( Opposite( mor ) ); true gap> IsOne( UniversalMorphismFromImage( mor, [ CoastrictionToImage( mor ), ImageEmbedding( mor ) ] ) ); true
gap> vecspaces := CreateCapCategory( "VectorSpacesForGeneralizedMorphismsTest" ); VectorSpacesForGeneralizedMorphismsTest gap> ReadPackage( "CAP", "examples/testfiles/VectorSpacesAllMethods.gi" ); true gap> LoadPackage( "GeneralizedMorphismsForCAP" ); true gap> B := QVectorSpace( 2 ); <A rational vector space of dimension 2> gap> C := QVectorSpace( 3 ); <A rational vector space of dimension 3> gap> B_1 := QVectorSpace( 1 ); <A rational vector space of dimension 1> gap> C_1 := QVectorSpace( 2 ); <A rational vector space of dimension 2> gap> c1_source_aid := VectorSpaceMorphism( B_1, [ [ 1, 0 ] ], B ); A rational vector space homomorphism with matrix: [ [ 1, 0 ] ] gap> SetIsSubobject( c1_source_aid, true ); gap> c1_range_aid := VectorSpaceMorphism( C, [ [ 1, 0 ], [ 0, 1 ], [ 0, 0 ] ], C_1 ); A rational vector space homomorphism with matrix: [ [ 1, 0 ], [ 0, 1 ], [ 0, 0 ] ] gap> SetIsFactorobject( c1_range_aid, true ); gap> c1_associated := VectorSpaceMorphism( B_1, [ [ 1, 1 ] ], C_1 ); A rational vector space homomorphism with matrix: [ [ 1, 1 ] ] gap> c1 := GeneralizedMorphism( c1_source_aid, c1_associated, c1_range_aid ); <A morphism in Generalized morphism category of VectorSpacesForGeneralizedMorphismsTest> gap> B_2 := QVectorSpace( 1 ); <A rational vector space of dimension 1> gap> C_2 := QVectorSpace( 2 ); <A rational vector space of dimension 2> gap> c2_source_aid := VectorSpaceMorphism( B_2, [ [ 2, 0 ] ], B ); A rational vector space homomorphism with matrix: [ [ 2, 0 ] ] gap> SetIsSubobject( c2_source_aid, true ); gap> c2_range_aid := VectorSpaceMorphism( C, [ [ 3, 0 ], [ 0, 3 ], [ 0, 0 ] ], C_2 ); A rational vector space homomorphism with matrix: [ [ 3, 0 ], [ 0, 3 ], [ 0, 0 ] ] gap> SetIsFactorobject( c2_range_aid, true ); gap> c2_associated := VectorSpaceMorphism( B_2, [ [ 6, 6 ] ], C_2 ); A rational vector space homomorphism with matrix: [ [ 6, 6 ] ] gap> c2 := GeneralizedMorphism( c2_source_aid, c2_associated, c2_range_aid ); <A morphism in Generalized morphism category of VectorSpacesForGeneralizedMorphismsTest> gap> IsCongruentForMorphisms( c1, c2 ); true gap> IsCongruentForMorphisms( c1, c1 ); true gap> c3_associated := VectorSpaceMorphism( B_1, [ [ 2, 2 ] ], C_1 ); A rational vector space homomorphism with matrix: [ [ 2, 2 ] ] gap> c3 := GeneralizedMorphism( c1_source_aid, c3_associated, c1_range_aid ); <A morphism in Generalized morphism category of VectorSpacesForGeneralizedMorphismsTest> gap> IsCongruentForMorphisms( c1, c3 ); false gap> IsCongruentForMorphisms( c2, c3 ); false gap> c1 + c2; <A morphism in Generalized morphism category of VectorSpacesForGeneralizedMorphismsTest> gap> Arrow( c1 + c2 ); A rational vector space homomorphism with matrix: [ [ 12, 12 ] ]
First composition test:
gap> vecspaces := CreateCapCategory( "VectorSpacesForGeneralizedMorphismsTest" ); VectorSpacesForGeneralizedMorphismsTest gap> ReadPackage( "CAP", "examples/testfiles/VectorSpacesAllMethods.gi" ); true gap> A := QVectorSpace( 1 ); <A rational vector space of dimension 1> gap> B := QVectorSpace( 2 ); <A rational vector space of dimension 2> gap> C := QVectorSpace( 3 ); <A rational vector space of dimension 3> gap> phi_tilde_associated := VectorSpaceMorphism( A, [ [ 1, 2, 0 ] ], C ); A rational vector space homomorphism with matrix: [ [ 1, 2, 0 ] ] gap> phi_tilde_source_aid := VectorSpaceMorphism( A, [ [ 1, 2 ] ], B ); A rational vector space homomorphism with matrix: [ [ 1, 2 ] ] gap> phi_tilde := GeneralizedMorphismWithSourceAid( phi_tilde_source_aid, phi_tilde_associated ); <A morphism in Generalized morphism category of VectorSpacesForGeneralizedMorphismsTest> gap> psi_tilde_associated := IdentityMorphism( B ); A rational vector space homomorphism with matrix: [ [ 1, 0 ], [ 0, 1 ] ] gap> psi_tilde_source_aid := VectorSpaceMorphism( B, [ [ 1, 0, 0 ], [ 0, 1, 0 ] ], C ); A rational vector space homomorphism with matrix: [ [ 1, 0, 0 ], [ 0, 1, 0 ] ] gap> psi_tilde := GeneralizedMorphismWithSourceAid( psi_tilde_source_aid, psi_tilde_associated ); <A morphism in Generalized morphism category of VectorSpacesForGeneralizedMorphismsTest> gap> composition := PreCompose( phi_tilde, psi_tilde ); <A morphism in Generalized morphism category of VectorSpacesForGeneralizedMorphismsTest> gap> Arrow( composition ); A rational vector space homomorphism with matrix: [ [ 1/2, 1 ] ] gap> SourceAid( composition ); A rational vector space homomorphism with matrix: [ [ 1/2, 1 ] ] gap> RangeAid( composition ); A rational vector space homomorphism with matrix: [ [ 1, 0 ], [ 0, 1 ] ]
Second composition test
gap> vecspaces := CreateCapCategory( "VectorSpacesForGeneralizedMorphismsTest" ); VectorSpacesForGeneralizedMorphismsTest gap> ReadPackage( "CAP", "examples/testfiles/VectorSpacesAllMethods.gi" ); true gap> A := QVectorSpace( 1 ); <A rational vector space of dimension 1> gap> B := QVectorSpace( 2 ); <A rational vector space of dimension 2> gap> C := QVectorSpace( 3 ); <A rational vector space of dimension 3> gap> phi2_tilde_associated := VectorSpaceMorphism( A, [ [ 1, 5 ] ], B ); A rational vector space homomorphism with matrix: [ [ 1, 5 ] ] gap> phi2_tilde_range_aid := VectorSpaceMorphism( C, [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ], B ); A rational vector space homomorphism with matrix: [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ] gap> phi2_tilde := GeneralizedMorphismWithRangeAid( phi2_tilde_associated, phi2_tilde_range_aid ); <A morphism in Generalized morphism category of VectorSpacesForGeneralizedMorphismsTest> gap> psi2_tilde_associated := VectorSpaceMorphism( C, [ [ 1 ], [ 3 ], [ 4 ] ], A ); A rational vector space homomorphism with matrix: [ [ 1 ], [ 3 ], [ 4 ] ] gap> psi2_tilde_range_aid := VectorSpaceMorphism( B, [ [ 1 ], [ 1 ] ], A ); A rational vector space homomorphism with matrix: [ [ 1 ], [ 1 ] ] gap> psi2_tilde := GeneralizedMorphismWithRangeAid( psi2_tilde_associated, psi2_tilde_range_aid ); <A morphism in Generalized morphism category of VectorSpacesForGeneralizedMorphismsTest> gap> composition2 := PreCompose( phi2_tilde, psi2_tilde ); <A morphism in Generalized morphism category of VectorSpacesForGeneralizedMorphismsTest> gap> Arrow( composition2 ); A rational vector space homomorphism with matrix: [ [ 16 ] ] gap> RangeAid( composition2 ); A rational vector space homomorphism with matrix: [ [ 1 ], [ 1 ] ] gap> SourceAid( composition2 ); A rational vector space homomorphism with matrix: [ [ 1 ] ]
Third composition test
gap> vecspaces := CreateCapCategory( "VectorSpacesForGeneralizedMorphismsTest" ); VectorSpacesForGeneralizedMorphismsTest gap> ReadPackage( "CAP", "examples/testfiles/VectorSpacesAllMethods.gi" ); true gap> A := QVectorSpace( 3 ); <A rational vector space of dimension 3> gap> Asub := QVectorSpace( 2 ); <A rational vector space of dimension 2> gap> B := QVectorSpace( 3 ); <A rational vector space of dimension 3> gap> Bfac := QVectorSpace( 1 ); <A rational vector space of dimension 1> gap> Bsub := QVectorSpace( 2 ); <A rational vector space of dimension 2> gap> C := QVectorSpace( 3 ); <A rational vector space of dimension 3> gap> Cfac := QVectorSpace( 1 ); <A rational vector space of dimension 1> gap> Asub_into_A := VectorSpaceMorphism( Asub, [ [ 1, 0, 0 ], [ 0, 1, 0 ] ], A ); A rational vector space homomorphism with matrix: [ [ 1, 0, 0 ], [ 0, 1, 0 ] ] gap> Asub_to_Bfac := VectorSpaceMorphism( Asub, [ [ 1 ], [ 1 ] ], Bfac ); A rational vector space homomorphism with matrix: [ [ 1 ], [ 1 ] ] gap> B_onto_Bfac := VectorSpaceMorphism( B, [ [ 1 ], [ 1 ], [ 1 ] ], Bfac ); A rational vector space homomorphism with matrix: [ [ 1 ], [ 1 ], [ 1 ] ] gap> Bsub_into_B := VectorSpaceMorphism( Bsub, [ [ 2, 2, 0 ], [ 0, 2, 2 ] ], B ); A rational vector space homomorphism with matrix: [ [ 2, 2, 0 ], [ 0, 2, 2 ] ] gap> Bsub_to_Cfac := VectorSpaceMorphism( Bsub, [ [ 3 ], [ 0 ] ], Cfac ); A rational vector space homomorphism with matrix: [ [ 3 ], [ 0 ] ] gap> C_onto_Cfac := VectorSpaceMorphism( C, [ [ 1 ], [ 2 ], [ 3 ] ], Cfac ); A rational vector space homomorphism with matrix: [ [ 1 ], [ 2 ], [ 3 ] ] gap> generalized_morphism1 := GeneralizedMorphism( Asub_into_A, Asub_to_Bfac, B_onto_Bfac ); <A morphism in Generalized morphism category of VectorSpacesForGeneralizedMorphismsTest> gap> generalized_morphism2 := GeneralizedMorphism( Bsub_into_B, Bsub_to_Cfac, C_onto_Cfac ); <A morphism in Generalized morphism category of VectorSpacesForGeneralizedMorphismsTest> gap> IsWellDefined( generalized_morphism1 ); true gap> IsWellDefined( generalized_morphism2 ); true gap> p := PreCompose( generalized_morphism1, generalized_morphism2 ); <A morphism in Generalized morphism category of VectorSpacesForGeneralizedMorphismsTest> gap> SourceAid( p ); A rational vector space homomorphism with matrix: [ [ -1, 1, 0 ], [ 1, 0, 0 ] ] gap> Arrow( p ); A rational vector space homomorphism with matrix: (an empty 2 x 0 matrix) gap> RangeAid( p ); A rational vector space homomorphism with matrix: (an empty 3 x 0 matrix) gap> A := QVectorSpace( 3 ); <A rational vector space of dimension 3> gap> Asub := QVectorSpace( 2 ); <A rational vector space of dimension 2> gap> B := QVectorSpace( 3 ); <A rational vector space of dimension 3> gap> Bfac := QVectorSpace( 1 ); <A rational vector space of dimension 1> gap> Bsub := QVectorSpace( 2 ); <A rational vector space of dimension 2> gap> C := QVectorSpace( 3 ); <A rational vector space of dimension 3> gap> Cfac := QVectorSpace( 2 ); <A rational vector space of dimension 2> gap> Asub_into_A := VectorSpaceMorphism( Asub, [ [ 1, 0, 0 ], [ 0, 1, 0 ] ], A ); A rational vector space homomorphism with matrix: [ [ 1, 0, 0 ], [ 0, 1, 0 ] ] gap> Asub_to_Bfac := VectorSpaceMorphism( Asub, [ [ 1 ], [ 1 ] ], Bfac ); A rational vector space homomorphism with matrix: [ [ 1 ], [ 1 ] ] gap> B_onto_Bfac := VectorSpaceMorphism( B, [ [ 1 ], [ 1 ], [ 1 ] ], Bfac ); A rational vector space homomorphism with matrix: [ [ 1 ], [ 1 ], [ 1 ] ] gap> Bsub_into_B := VectorSpaceMorphism( Bsub, [ [ 2, 2, 0 ], [ 0, 2, 2 ] ], B ); A rational vector space homomorphism with matrix: [ [ 2, 2, 0 ], [ 0, 2, 2 ] ] gap> Bsub_to_Cfac := VectorSpaceMorphism( Bsub, [ [ 3, 3 ], [ 0, 0 ] ], Cfac ); A rational vector space homomorphism with matrix: [ [ 3, 3 ], [ 0, 0 ] ] gap> C_onto_Cfac := VectorSpaceMorphism( C, [ [ 1, 0 ], [ 0, 2 ], [ 3, 3 ] ], Cfac ); A rational vector space homomorphism with matrix: [ [ 1, 0 ], [ 0, 2 ], [ 3, 3 ] ] gap> generalized_morphism1 := GeneralizedMorphism( Asub_into_A, Asub_to_Bfac, B_onto_Bfac ); <A morphism in Generalized morphism category of VectorSpacesForGeneralizedMorphismsTest> gap> generalized_morphism2 := GeneralizedMorphism( Bsub_into_B, Bsub_to_Cfac, C_onto_Cfac ); <A morphism in Generalized morphism category of VectorSpacesForGeneralizedMorphismsTest> gap> IsWellDefined( generalized_morphism1 ); true gap> IsWellDefined( generalized_morphism2 ); true gap> p := PreCompose( generalized_morphism1, generalized_morphism2 ); <A morphism in Generalized morphism category of VectorSpacesForGeneralizedMorphismsTest> gap> SourceAid( p ); A rational vector space homomorphism with matrix: [ [ -1, 1, 0 ], [ 1, 0, 0 ] ] gap> Arrow( p ); A rational vector space homomorphism with matrix: [ [ 0 ], [ 0 ] ] gap> RangeAid( p ); A rational vector space homomorphism with matrix: [ [ -1 ], [ 2 ], [ 0 ] ]
Honest representative test
gap> vecspaces := CreateCapCategory( "VectorSpacesForGeneralizedMorphismsTest" ); VectorSpacesForGeneralizedMorphismsTest gap> ReadPackage( "CAP", "examples/testfiles/VectorSpacesAllMethods.gi" ); true gap> A := QVectorSpace( 1 ); <A rational vector space of dimension 1> gap> B := QVectorSpace( 2 ); <A rational vector space of dimension 2> gap> phi_tilde_source_aid := VectorSpaceMorphism( A, [ [ 2 ] ], A ); A rational vector space homomorphism with matrix: [ [ 2 ] ] gap> phi_tilde_associated := VectorSpaceMorphism( A, [ [ 1, 1 ] ], B ); A rational vector space homomorphism with matrix: [ [ 1, 1 ] ] gap> phi_tilde_range_aid := VectorSpaceMorphism( B, [ [ 1, 2 ], [ 3, 4 ] ], B ); A rational vector space homomorphism with matrix: [ [ 1, 2 ], [ 3, 4 ] ] gap> phi_tilde := GeneralizedMorphism( phi_tilde_source_aid, phi_tilde_associated, phi_tilde_range_aid ); <A morphism in Generalized morphism category of VectorSpacesForGeneralizedMorphismsTest> gap> HonestRepresentative( phi_tilde ); A rational vector space homomorphism with matrix: [ [ -1/4, 1/4 ] ] gap> IsWellDefined( phi_tilde ); true gap> IsWellDefined( psi_tilde ); true
gap> vecspaces := CreateCapCategory( "VectorSpacesForIsWellDefinedTest" ); VectorSpacesForIsWellDefinedTest gap> ReadPackage( "CAP", "examples/testfiles/VectorSpacesAllMethods.gi" ); true gap> LoadPackage( "GeneralizedMorphismsForCAP" ); true gap> A := QVectorSpace( 1 ); <A rational vector space of dimension 1> gap> B := QVectorSpace( 2 ); <A rational vector space of dimension 2> gap> alpha := VectorSpaceMorphism( A, [ [ 1, 2 ] ], B ); A rational vector space homomorphism with matrix: [ [ 1, 2 ] ] gap> g := GeneralizedMorphism( alpha, alpha, alpha ); <A morphism in Generalized morphism category of VectorSpacesForIsWellDefinedTest> gap> IsWellDefined( alpha ); true gap> IsWellDefined( g ); true
gap> vecspaces := CreateCapCategory( "VectorSpaces01" ); VectorSpaces01 gap> ReadPackage( "CAP", "examples/testfiles/VectorSpacesAddKernel01.gi" ); true gap> V := QVectorSpace( 2 ); <A rational vector space of dimension 2> gap> W := QVectorSpace( 3 ); <A rational vector space of dimension 3> gap> alpha := VectorSpaceMorphism( V, [ [ 1, 1, 1 ], [ -1, -1, -1 ] ], W ); A rational vector space homomorphism with matrix: [ [ 1, 1, 1 ], [ -1, -1, -1 ] ] gap> k := KernelObject( alpha ); <A rational vector space of dimension 1> gap> T := QVectorSpace( 2 ); <A rational vector space of dimension 2> gap> tau := VectorSpaceMorphism( T, [ [ 2, 2 ], [ 2, 2 ] ], V ); A rational vector space homomorphism with matrix: [ [ 2, 2 ], [ 2, 2 ] ] gap> k_lift := KernelLift( alpha, tau ); A rational vector space homomorphism with matrix: [ [ 2 ], [ 2 ] ] gap> HasKernelEmbedding( alpha ); false gap> KernelEmbedding( alpha ); A rational vector space homomorphism with matrix: [ [ 1, 1 ] ]
gap> vecspaces := CreateCapCategory( "VectorSpaces02" ); VectorSpaces02 gap> ReadPackage( "CAP", "examples/testfiles/VectorSpacesAddKernel02.gi" ); true gap> V := QVectorSpace( 2 ); <A rational vector space of dimension 2> gap> W := QVectorSpace( 3 ); <A rational vector space of dimension 3> gap> alpha := VectorSpaceMorphism( V, [ [ 1, 1, 1 ], [ -1, -1, -1 ] ], W ); A rational vector space homomorphism with matrix: [ [ 1, 1, 1 ], [ -1, -1, -1 ] ] gap> k := KernelObject( alpha ); <A rational vector space of dimension 1> gap> T := QVectorSpace( 2 ); <A rational vector space of dimension 2> gap> tau := VectorSpaceMorphism( T, [ [ 2, 2 ], [ 2, 2 ] ], V ); A rational vector space homomorphism with matrix: [ [ 2, 2 ], [ 2, 2 ] ] gap> k_lift := KernelLift( alpha, tau ); A rational vector space homomorphism with matrix: [ [ 2 ], [ 2 ] ] gap> HasKernelEmbedding( alpha ); false
gap> vecspaces := CreateCapCategory( "VectorSpaces03" ); VectorSpaces03 gap> ReadPackage( "CAP", "examples/testfiles/VectorSpacesAddKernel03.gi" ); true gap> V := QVectorSpace( 2 ); <A rational vector space of dimension 2> gap> W := QVectorSpace( 3 ); <A rational vector space of dimension 3> gap> alpha := VectorSpaceMorphism( V, [ [ 1, 1, 1 ], [ -1, -1, -1 ] ], W ); A rational vector space homomorphism with matrix: [ [ 1, 1, 1 ], [ -1, -1, -1 ] ] gap> k := KernelObject( alpha ); <A rational vector space of dimension 1> gap> k_emb := KernelEmbedding( alpha ); A rational vector space homomorphism with matrix: [ [ 1, 1 ] ] gap> IsIdenticalObj( Source( k_emb ), k ); true gap> V := QVectorSpace( 2 ); <A rational vector space of dimension 2> gap> W := QVectorSpace( 3 ); <A rational vector space of dimension 3> gap> beta := VectorSpaceMorphism( V, [ [ 1, 1, 1 ], [ -1, -1, -1 ] ], W ); A rational vector space homomorphism with matrix: [ [ 1, 1, 1 ], [ -1, -1, -1 ] ] gap> k_emb := KernelEmbedding( beta ); A rational vector space homomorphism with matrix: [ [ 1, 1 ] ] gap> IsIdenticalObj( Source( k_emb ), KernelObject( beta ) ); true
gap> vecspaces := CreateCapCategory( "VectorSpacesForFiberProductTest" ); VectorSpacesForFiberProductTest gap> ReadPackage( "CAP", "examples/testfiles/VectorSpacesAllMethods.gi" ); true gap> A := QVectorSpace( 1 ); <A rational vector space of dimension 1> gap> B := QVectorSpace( 2 ); <A rational vector space of dimension 2> gap> C := QVectorSpace( 3 ); <A rational vector space of dimension 3> gap> AtoC := VectorSpaceMorphism( A, [ [ 1, 2, 0 ] ], C ); A rational vector space homomorphism with matrix: [ [ 1, 2, 0 ] ] gap> BtoC := VectorSpaceMorphism( B, [ [ 1, 0, 0 ], [ 0, 1, 0 ] ], C ); A rational vector space homomorphism with matrix: [ [ 1, 0, 0 ], [ 0, 1, 0 ] ] gap> P := FiberProduct( AtoC, BtoC ); <A rational vector space of dimension 1> gap> p1 := ProjectionInFactorOfFiberProduct( [ AtoC, BtoC ], 1 ); A rational vector space homomorphism with matrix: [ [ 1/2 ] ] gap> p2 := ProjectionInFactorOfFiberProduct( [ AtoC, BtoC ], 2 ); A rational vector space homomorphism with matrix: [ [ 1/2, 1 ] ]
generated by GAPDoc2HTML