Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

1 CAP Categories
 1.1 Categories
 1.2 Constructor
 1.3 Internal Attributes
 1.4 Logic switcher
 1.5 Tool functions
 1.6 Well-Definedness of Cells
 1.7 Caching
 1.8 Sanity checks
 1.9 Enable automatic calls of Add
 1.10 Performance tweaks

1 CAP Categories

Categories are the main GAP objects in CAP. They are used to associate GAP objects which represent objects and morphisms with their category. By associating a GAP object to the category, one of two filters belonging to the category (ObjectFilter/MorphismFilter) are set to true. Via Add methods, functions for specific existential quantifiers can be associated to the category and after that can be applied to GAP objects in the category. A GAP category object also knows which constructions are currently possible in this category.

1.1 Categories

1.1-1 IsCapCategory
‣ IsCapCategory( object )( filter )

Returns: true or false

The GAP category of CAP categories. Objects of this type handle the CAP category information, the caching, and filters for objects in the CAP category. Please note that the object itself is not related to methods, you only need it as a handler and a presentation of the CAP category.

1.1-2 IsCapCategoryCell
‣ IsCapCategoryCell( object )( filter )

Returns: true or false

The GAP category of CAP category cells. Every object, morphism, and \(2\)-cell of a CAP category lies in this GAP category.

1.1-3 IsCapCategoryObject
‣ IsCapCategoryObject( object )( filter )

Returns: true or false

The GAP category of CAP category objects. Every object of a CAP category lies in this GAP category.

1.1-4 IsCapCategoryMorphism
‣ IsCapCategoryMorphism( object )( filter )

Returns: true or false

The GAP category of CAP category morphisms. Every morphism of a CAP category lies in this GAP category.

1.1-5 IsCapCategoryTwoCell
‣ IsCapCategoryTwoCell( object )( filter )

Returns: true or false

The GAP category of CAP category \(2\)-cells. Every \(2\)-cell of a CAP category lies in this GAP category.

1.1-6 AddCategoricalProperty
‣ AddCategoricalProperty( list )( function )

Adds a categorical property to the list of CAP categorical properties. list must be a list containing one entry, if the property is self dual, or two, if the dual property has a different name. If the first entry of the list is empty and the second is a property name, the property is assumed to have no dual.

1.2 Constructor

1.2-1 CreateCapCategory
‣ CreateCapCategory( )( operation )

Returns: a category

Creates a new CAP category from scratch. It gets a generic name.

1.2-2 CreateCapCategory
‣ CreateCapCategory( s )( operation )

Returns: a category

The argument is a string \(s\). This operation creates a new CAP category from scratch. Its name is set to \(s\).

1.3 Internal Attributes

Each category \(C\) stores various filters. They are used to apply the right functions in the method selection.

1.3-1 CategoryFilter
‣ CategoryFilter( C )( attribute )

Returns: a filter

The argument is a category \(C\). The output is a filter in which \(C\) lies.

1.3-2 CellFilter
‣ CellFilter( C )( attribute )

Returns: a filter

The argument is a category \(C\). The output is a filter in which all cells of \(C\) shall lie.

1.3-3 ObjectFilter
‣ ObjectFilter( C )( attribute )

Returns: a filter

The argument is a category \(C\). The output is a filter in which all objects of \(C\) shall lie.

1.3-4 MorphismFilter
‣ MorphismFilter( C )( attribute )

Returns: a filter

The argument is a category \(C\). The output is a filter in which all morphisms of \(C\) shall lie.

1.3-5 TwoCellFilter
‣ TwoCellFilter( C )( attribute )

Returns: a filter

The argument is a category \(C\). The output is a filter in which all \(2\)-cells of \(C\) shall lie.

1.3-6 CommutativeRingOfLinearCategory
‣ CommutativeRingOfLinearCategory( C )( attribute )

Returns: a ring

The argument is a category \(C\) which is expected to lie in the filter IsLinearCategoryOverCommutativeRing. The output is a commutative ring over which the category is linear.

1.4 Logic switcher

1.4-1 CapCategorySwitchLogicOn
‣ CapCategorySwitchLogicOn( C )( function )

Activates the predicate implication logic for the category C.

1.4-2 CapCategorySwitchLogicOff
‣ CapCategorySwitchLogicOff( C )( function )

Deactivates the predicate implication logic for the category C.

1.5 Tool functions

1.5-1 CanCompute
‣ CanCompute( C, s )( operation )

Returns: true or false

The argument is a category \(C\) and a string \(s\), which should be the name of a basic operation, e.g., PreCompose. If applying this method is possible in \(C\), the method returns true, false otherwise. If the string is not the name of a basic operation, an error is raised.

1.5-2 CheckConstructivenessOfCategory
‣ CheckConstructivenessOfCategory( C, s )( operation )

Returns: a list

The arguments are a category \(C\) and a string \(s\). If \(s\) is a categorical property (e.g. "IsAbelianCategory"), the output is a list of strings with basic operations which are missing in \(C\) to have the categorical property constructively. If \(s\) is not a categorical property, an error is raised.

1.6 Well-Definedness of Cells

1.6-1 IsWellDefined
‣ IsWellDefined( c )( property )

Returns: a boolean

The argument is a cell \(c\). The output is true if \(c\) is well-defined, otherwise the output is false.

1.7 Caching

1.7-1 SetCachingOfCategory
‣ SetCachingOfCategory( category, type )( function )

Sets the caching of category to type.

1.7-2 SetCachingOfCategoryWeak
‣ SetCachingOfCategoryWeak( category )( function )
‣ SetCachingOfCategoryCrisp( category )( function )
‣ DeactivateCachingOfCategory( category )( function )

Sets the caching of category to weak, crisp or none, respectively.

1.7-3 SetDefaultCaching
‣ SetDefaultCaching( type )( function )
‣ SetDefaultCachingWeak( )( function )
‣ SetDefaultCachingCrisp( )( function )
‣ DeactivateDefaultCaching( )( function )

Sets the default caching behaviour, all new categories will have their caching set to either weak, crisp, or none. The default at startup is weak.

1.8 Sanity checks

1.8-1 DisableInputSanityChecks
‣ DisableInputSanityChecks( category )( function )
‣ DisableOutputSanityChecks( category )( function )
‣ EnablePartialInputSanityChecks( category )( function )
‣ EnablePartialOutputSanityChecks( category )( function )
‣ EnableFullInputSanityChecks( category )( function )
‣ EnableFullOutputSanityChecks( category )( function )
‣ DisableSanityChecks( category )( function )
‣ EnablePartialSanityChecks( category )( function )
‣ EnableFullSanityChecks( category )( function )

Most operations can perform optional sanity checks on their arguments and results. The checks can either be partial (set by default), full, or disabled. With the following commands you can either enable the full checks, the partial checks or, for performance, disable the checks altogether. You can do this for input checks, output checks or for both at once.

1.9 Enable automatic calls of Add

1.9-1 EnableAddForCategoricalOperations
‣ EnableAddForCategoricalOperations( C )( function )
‣ DisableAddForCategoricalOperations( C )( function )

Enables/disables the automatic call of Add for the output of primitively added functions for the category C. If the automatic call of Add is disabled (default), the output of primitively added functions must belong to the correct category. If the automatic call of Add is enabled, the output of primitively added functions only has to be a GAP object lying in IsAttributeStoringRep (with suitable attributes Source and Range if the output should be a morphism or a twocell).

1.10 Performance tweaks

CAP has several settings which can improve the performance. In the following some of these are listed.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 Ind

generated by GAPDoc2HTML