
Page 1 of 57

Watchdog

1 Introduction
2 Install and Configure Watchdog

2.1 Requirements
2.2 Installation
2.3 Build from source
2.4 JAR Files
2.5 Getting started
2.6 E-Mail Server Configuration
2.7 SSH Configuration
2.8 DRMAA Cluster Configuration

3 Watchdog Overview
3.1 Modules
3.2 Basic XML structure

4 Detailed XML format explanation
4.1 Process blocks
4.2 Dependencies
4.3 Execution environments
4.4 Execution wrappers
4.5 Global constants
4.6 Environment variables
4.7 Mail notification
4.8 Standard streams and working directory
4.9 Task actions
4.10 Simple calculations
4.11 Multiple module search folders
4.12 Custom success and error checker

5 Creating custom modules
5.1 Input parameter definition
5.2 Output parameter definition
5.3 Binary call command and other settings
5.4 Assign a name to the new module
5.5 Putting it all together
5.6 Module versions
5.7 Requirements to support package manager wrappers
5.8 Documentation of modules
5.9 Other matters

6 New features in Watchdog 2.0
6.1 Documentation template extractor
6.2 Module reference book generator
6.3 Report generator
6.4 Module and workflow validator
6.5 Module and workflow repositories

http://www.how-to-draw-funny-cartoons.com/free-images-ebooks.html

Page 2 of 57

6.6 New execution modes
6.7 Software version logging

7 Extend Watchdog's functionality
7.1 Virtual file systems for task actions
7.2 XML Plugins

8 Docker
8.1 Install the Watchdog Docker image
8.2 Sharing of files
8.3 Port forwarding
8.4 How to use the Docker Watchdog image
8.5 Use Docker in modules

Page 3 of 57

1 Introduction
Here, we present Watchdog, a WMS for the automated and distributed analysis of large-
scale experimental data. Watchdog is implemented in Java and is thus platform-
independent.

Main features include:

straightforward processing of replicate data
support for distributed computer systems
remote storage support
customizable error detection
manual intervention into workflow execution
a GUI for workflow construction using pre-defined modules
a helper script for creating new module definitions
no restriction to specific programming languages
provides a flexible plugin system for extending without modifying the original
sources

New features in Watchdog 2.0:

[new] execution: execute only altered or unfinished tasks (resume mode)
[new] execution: detach from workflow execution and attach later on
(detach/reattach mode)
[new] execution: use custom before and after command scripts
[new] execution: implementation of XML plugin supporting package managers and
virtualizer
[new] execution: support of Conda package manager for module dependencies
[new] execution: support of Docker container
[new] graphical user interface for module creation
[new] documentation: standardized documentation format for modules
[new] documentation: generation of module reference book
[new] documentation: documentation template generator
[new] reporting: module versioning
[new] reporting: retrieval of third-party software versions
[new] reporting: create report on workflow execution
[new] sharing: community platform for sharing of modules and workflows

https://github.com/watchdog-wms/
https://github.com/watchdog-wms/watchdog-wms-modules
https://github.com/watchdog-wms/watchdog-wms-workflows

Page 4 of 57

2 Install and Configure Watchdog

2.1 Requirements
Watchdog is platform independent as it is written in Java. It requires JDK 11 or higher.
Oracle provides an installation guide for Windows, Linux and macOS.

The GUI of the workflow designer and the moduleMaker depend on the JavaFX SDK 11
or higher. The JavaFX SDK is also included with Watchdog and located in
jars/libs/modules/. This version is used by default.

Alternatively, it can be downloaded from Gluon. An installation guide is provided here.
Both launcher bash scripts (workflowDesigner.sh and moduleMaker.sh) will try to
identify the installation location of the JavaFX SDK automatically. If that fails or the
installation location of the JavaFX SDK is known, the JFX_SDK_LIB_PATH_ENV
environment variable can be used to set the path manually using export

JFX_SDK_LIB_PATH_ENV=/path/to/javafx/sdk/.

Most Watchdog modules require a Unix based system and were tested on SUSE Linux.
They might not run without any changes on other Unix systems or Windows but users
can define custom modules that are compatible with their installed software and
operating system. Each of the modules might require additional software to be installed.
These requirements can be checked for the modules that are delivered with Watchdog
with the help of helper_scripts/dependencyTest.sh as described below.

2.2 Installation
The installation of Watchdog is very easy. After downloading a release, extract the
provided archive into a folder of your choice (either using tar xfvz

watchdog.tar.gz or unzip watchdog.zip depending on which archive you
downloaded). The folder must be accessible for remote or cluster executors if you plan
to use some. Alternatively Watchdog can be installed automatically via conda using
conda install -c bioconda -c conda-forge watchdog-wms. In that case the
binaries are named watchdog-cmd and watchdog-gui while the rest of the files is
located in ${PREFIX}/share/watchdog-wms-${VERSION}. If you want to use
Watchdog with Docker, read section 8.

Modules previously delivered with Watchdog are now located at the community github
repository watchdog-wms/watchdog-wms-modules. The reference book for all modules
part of this repository is available at https://watchdog-wms.github.io/watchdog-wms-
modules. Thus, as a next step you should download Watchdog modules from the
community github repository and extract them into the modules/ folder of the Watchdog
directory. Alternatively, you can run modules/downloadCommunityModules.sh from
the Watchdog directory.

https://docs.oracle.com/en/java/javase/11/install/overview-jdk-installation.html
https://gluonhq.com/products/javafx/
https://openjfx.io/openjfx-docs/
https://github.com/klugem/watchdog/releases
https://github.com/watchdog-wms/watchdog-wms-modules
https://watchdog-wms.github.io/watchdog-wms-modules
https://github.com/watchdog-wms/watchdog-wms-modules

Page 5 of 57

In the next few lines the content of each folder is explained:

core_lib: some core functions that can be used in bash module scripts
documentation: contains Watchdog's documentation in HTML- and PDF-format
examples: contains the examples that are also presented in the documentation
helper_scripts: scripts for generating new modules, configure the examples or
testing of all modules
jars: runnable JAR-files that are build from Watchdog's source code
java_source: Watchdog's source code
modules: module folder that is used by default in workflows
test_data: contains some test data that is used by multiple modules
tmp: is used for Watchdog's temporary files
webserver_data: data which is accessed by the internal webserver
xsd: definition of the module and workflow in xsd format

The script helper_scripts/dependencyTest.sh can be used to test if software
required by modules using a wrapper bash script is available via the PATH variable. For
this purpose, software requirements have to be provided in the $USED_TOOLS variable
of the bash script. In addition, availability of R and perl packages that are used in scripts
are checked. During workflow execution availability of required software is also checked.

In order to test if all modules that provide tests work as expected on your system you
can run helper_scripts/moduleTest.sh. If you want to test the examples which
are discussed in this manual, you can configure them by running:

helper_scripts/configureExamples.sh -i

/path/to/install/folder/of/watchdog [-m your@mail-adress.com] (mail
attribute (-m) is optional, see 2.6 for E-mail server configuration)

Afterwards the configured examples will be located in
/path/to/install/folder/of/watchdog/examples/ and can be executed (from
the watchdog installation directory) using the following command: ./watchdog.sh -x
examples/filename.xml or alternatively java -jar jars/watchdog.jar -x
examples/filename.xml

For instance: ./watchdog.sh -x

examples/workflow1_basic_information_extraction.xml

If you want to use the workflow designer (GUI), you can start it by using (from the
watchdog installation directory): ./workflowDesigner.sh or alternatively java -
jar jars/WatchdogDesigner.jar

2.3 Build from source
Watchdog can be build from the source files using Maven. The command `mvn`
downloads all dependencies into jars/libs and rebuilds the jar files.

Page 6 of 57

2.4 JAR Files
These runnable JAR-files (except moduleMaker.jar) are shipped together with Watchdog
in the jars/ subdirectory of the Watchdog installation folder.

watchdog.jar: command-line tool that executes Watchdog workflows
watchdogDesigner.jar: graphical user interface for workflow design and
execution
moduleMaker.jar: provides a graphical user interface for module creation
docuTemplateExtractor.jar: generates templates for module documentation
refBookGenerator.jar: creates a module reference book based on a set of
modules
reportGenerator.jar: basic reporting of steps performed during execution of a
workflow
moduleValidator.jar: command-line tool that can be used to verify integrity of
modules
workflowValidator.jar: command-line tool that can be used to verify integrity
of workflows
watchdog-[DEV|RELEASE].jar: contains the compiled Watchdog classes,
which are invoked by all other JARs

If watchdog-DEV.jar and watchdog-RELEASE.jar are avalilabe, the compiled
classes from watchdog-DEV.jar will be used.

More information on how to use these programmes can be found in the manual in
section 6. Please note that the moduleMaker is not shipped with Watchdog but can be
obtained by running helper_scripts/downloadModuleMaker.sh located in the
Watchdog installation directory. See watchdog-wms/moduleMaker for more information.

2.5 Getting started
Once Watchdog is correctly installed, you can run example workflows shipped with
Watchdog. To configure them run helper_scripts/configureExamples.sh -i
/path/to/install/folder/of/watchdog [-m your@mail-adress.com].
Afterwards, the example workflows are located in examples/ and can be started using
./watchdog.sh -x path2/xml-file.xml.

example_basic_sleep.xml - basic example with one task to show XML workflow
structure
example_dependencies.xml - workflow with dependencies between tasks
example_execution_environments.xml - workflow using different execution
environments (requires modifications)
example_process_blocks.xml - shows how to work with process sequences, folders
and tables
example_execution_wrapper.xml - usage of the Conda as package manager and
Docker as virtualizer (requires modifications)
example_task_actions.xml - introduces task actions using the example of a file copy
action

https://github.com/watchdog-wms/moduleMaker/blob/master/README.md

Page 7 of 57

example_checkers.xml - shows how to use a custom success checker
example_docker.xml - uses a module that internally uses a docker image containing
bowtie2
example_include.xml - shows how to use additional module folders
example_simple_calculations.xml - usage of simple mathematical calculations within
a workflow
example_constant_replacement.xml - shows to to use constants in workflows
example_environment_variables.xml - setting environment variables
example_mail_notification.xml - example with mail notifications on completed
subtasks and checkpoints
example_streams.xml - rediction of stdout and stderr streams
workflow1_basic_information_extraction.xml - simple workflow that extracts
information from files using basic UNIX tools
workflow2_differential_gene_expression.xml - workflow performing a differential
gene expression analysis on an example data set (needs bwa and ContextMap2 to
be installed and configured)

More information on these example workflows can be found in section 3 and 4.

An introduction on how to analyse replicate data or how to use the workflow designer
(GUI) can be found in the documentation/ folder.

2.6 E-Mail Server Configuration
As Watchdog will send e-mails it needs a working mail configuration. If you don't want
Watchdog to send e-mails, simply don't use the mail attribute of the <tasks> tag. In
that case the content of the mails with be printed to the standard output stream.

By default a server listening on SMTP port 25 is expected that accepts mails without
authentication. In order to use another configuration the parameter -mailConfig of
Watchdog can be used. It expects a tab-separated file that contains information on how
to connect to the mail server using the SMTP protocol. If the mail server expects some
authentication we strongly suggest to use a mail account that was explicitely created for
the use with Watchdog as the password is stored unencrypted.

Example 1: Example mail config for a gmail account

 1 mail.smtp.auth true

 2 mail.smtp.host smtp.googlemail.com

 3 mail.smtp.port 587

 4 mail.smtp.user johns_watchdog@gmail.com

 5 mail.smtp.pw r9x74l(klsab

 6 mail.smtp.from johns_watchdog@gmail.com

 7 mail.smtp.starttls.enable true

file:///home/users/kluge/workspace_newest/Watchdog/watchdog/doc/ReplicateAnalysis_Overview.pdf
file:///home/users/kluge/workspace_newest/Watchdog/watchdog/doc/WorkflowDesigner_Overview.pdf

Page 8 of 57

Example 1 shows a configuration for a gmail account. More information about the
variables that can be used can be found here. An template mail config file that can be
edited can be found in examples/mail_config once the examples are configured as
described above.

2.7 SSH Configuration
Watchdog supports execution of tasks via ssh on remote hosts. In order to use that
feature a private ssh key must be provided. It is strongly recommended that the private
key is protected by a passphrase. In that case the passphrase must be entered after
Watchdog was started and will be hold encrypted in memory until the passphrase is
needed.

A key pair that can be used for ssh authentification can be generated using the tool
ssh-keygen that is part of openssh. If you need further information you can find many
online tutorials that explain how to use a private key for ssh authentication. E.g. How To
Set Up SSH Keys and SSH/OpenSSH/Keys

2.8 DRMAA Cluster Configuration
Watchdog supports cluster solutions which provide a DRMAA java binding. By default it is
bundled with a DRMAA binding for the sun grid engine (SGE 6.1).

The following environment variables must be set correctly in order to communicate with
the SGE:

SGE_ROOT: path to the installation folder of the SGE
LD_LIBRARY_PATH: path to the library path of the SGE; in most cases it will be
$SGE_ROOT/lib/lx24-amd64 or $SGE_ROOT/lib/lx24-x86

Basically there are two ways to change the default cluster extension in order to use
another DRMAA solution than the SGE:

dynamically by adding arguments to the jar invocation:
1. set class name of DRMAA Sessionfactory via -

Dorg.ggf.drmaa.SessionFactory=classname
2. add DRMAA java binding to class path via -cp
/path/to/drmaaImplementation.jar

permanently by changing Watchdog's jar file:
1. jar files can be opened and edited with every tool that supports zip files
2. replace name of DRMAA Sessionfactory stored in /META-
INF/services/org.ggf.drmaa.SessionFactory

3. add class files of the DRMAA java binding to Watchdog's jar file

Probably further settings are needed which depend on the used DRMAA library.

Alternatively, binary-based executors can be used, which are currently implemented for

https://javamail.java.net/nonav/docs/api/com/sun/mail/smtp/package-summary.html
https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys--2
https://help.ubuntu.com/community/SSH/OpenSSH/Keys

Page 9 of 57

SLURM and SGE. The required control binaries must be accessible via the $PATH
variable.

Page 10 of 57

3 Watchdog Overview

3.1 Modules
Modules represent re-usable components that perform certain tasks, e.g. compression of
files or creating histograms. Watchdog is delivered with a set of predefined modules.
Additionally the user has the possibility to define own modules as described in section 5.
The modules are stored in the modules directory located in the root folder of the
Watchdog installation. Each module is stored in its own folder and consists at least of an
XSD file with the name of the module. The XSD file contains a definition of the
parameters which can be set in the XML format and the tools which are executed in the
background when the module is used.

Example 2: XSD definition of the sleep module

 1 <?xml version="1.0" encoding="UTF-8" ?>

 2 <x:schema xmlns:x="http://www.w3.org/2001/XMLSchema"

xmlns:vc="http://www.w3.org/2007/XMLSchema-versioning"

vc:minVersion="1.1" xmlns:xerces="http://xerces.apache.org">

 3

 4 <!-- definition of the task parameters -->

 5 <x:complexType name="sleepTaskParameterType">

 6 <x:all>

 7 <x:element name="wait"

type="paramWait_sleep" minOccurs="1" maxOccurs="1" />

 8 </x:all>

 9 </x:complexType>

10

11 ...

12

13 <!-- make task definition availible via substitution

group -->

14 <x:element name="sleepTask" type="sleepTaskType"

substitutionGroup="abstractTask" />

15

16 <!-- module specific parameter types -->

17 <x:complexType name="paramWait_sleep">

18 <x:simpleContent>

19 <x:restriction base="paramString">

20 <x:assertion test="matches($value,

'(${[A-Za-z_]+})|($(.+))|([[({]($[A-Za-z_]+(,s*){0,1}){0,1}([0-

9]+(,S*){0,1}){0,1}[])}])') or matches($value, '^[0-9]+[smhd]

{0,1}$')" xerces:message="Parameter with name '{$tag}' must

match [0-9]+[smhd]{0,1}." />

21 </x:restriction>

22 </x:simpleContent>

23 </x:complexType>

Page 11 of 57

24

25 </x:schema>

Example 2 shows parts of the XSD definition of a module which are important to know for
the user. At the beginning parameters and flags which are accepted by the module are
defined in an element named sleepTaskParameterType (5-9). In this case only one
parameter named wait is defined that must occur exactly once (7). The type of the
parameter is specified at the bottom of the example (17-23). In this case the parameter
is a string that must match a regex pattern, which first accepts numbers followed by a
letter as optional suffix (19-21). Additionally values that are placeholders for constants or
variables are allowed by the first matches() function whereby the user must take care
that the replaced value is valid with regard to the second part of the specification (20).
The attribute name of the element in line 14 defines how the module can be referenced
in the XML file. In this example the module can be called using the name sleepTask.

3.2 Basic XML structure
Tasks which should be executed by Watchdog must be defined in an XML file. In the
following the structure of the XML file is presented. The expression <?Task> is used to
refer to a task which is not further specified. In general this syntax is used if some
attributes are valid for all classes that inherit from that class type. In all examples, the
following variables serve only as placeholders and have to be replaced by user-specific
values. They are not part of the Watchdog XML syntax and cannot be used in a
workflow.

{%INSTALL%} - path to the root installation directory of Watchdog
{%MAIL%} - email adress of the user
{%EXAMPLE_DATA%} - path to the folder in which the example data is located

You already have configured your examples by calling the script
helper_scripts/configureExamples.sh as described in 2.

Example 3: Most basic XML input for Watchdog

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <watchdog xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:noNamespaceSchemaLocation="watchdog.xsd"

watchdogBase="{%INSTALL%}" isTemplate="true">

 3

 4 <!-- begin task block and use that mail to inform the

user on success or failure -->

 5 <tasks mail="{%MAIL%}">

 6

 7 <!-- definition a simple sleep task -->

 8 <sleepTask id="1" name="sleep">

 9 <parameter>

10 <wait>30s</wait>

Page 12 of 57

11 </parameter>

12 </sleepTask>

13 </tasks>

14 </watchdog>

Example 3 shows a most basic XML file that contains only a single task named sleep.
Every XML file that should be parsed by Watchdog must contain a <watchdog>
element as root element (2). The attribute watchdogBase of it must refer to the folder in
which Watchdog was installed. The attribute isTemplate prevents Watchdog from
executing workflows that contain variables that must be set by the user and is removed
automatically by the configure script. Afterwards as childs of <tasks> the tasks which
should be executed must be defined (5). Each task must contain an id and name
attribute (8). With the <parameter> element, values can be assigned to the parameters
of the task, which have to be specified in the XSD file of the module. Flags are activated
by using <flagName>true</flagName> or <flagName>1</flagName> while
parameters can be set with <paramName>value</paramName> (10).

Table 1: Attributes in the context of Watchdog

In the following sections the structure of the XML format is described in greater detail.

element attribute type function
<watchdog> watchdogBase string path to the install path of watchdog

<watchdog> isTemplate boolean prevents Watchdog from executing unconfigured workflow templates;
default: false

<tasks> [mail] string mail which is used for notification; if not set, the content of the mails with
be printed to the standard output stream; default: not set

<tasks> [projectName] string name of the complete process; default: not set

<?Task> [id] integer numeric id of the task; if not set all id's will be automatically generated;
default: not set

<?Task> name string name of the task
<?Task> [processBlock] string processBlock as source of varying parameters (see 4.1)
<?Task> [executor] string execution environment on which the task is executed (see 4.3)
<?Task> [environment] string use globally defined environment variables (see 4.6)
<?Task> [maxRunning] integer maximal number of simultaneously running tasks; default: not restricted

<?Task> [notify] enum
notification of the user via mail on success; enabled: release complete
task at once when all subtasks are finished; subtask: release every
subtask separately; default: disabled (see 4.7)

<?Task> [checkpoint] enum
does not schedule tasks which depend on this task until manually
released by the user; enabled: release complete task at once when all
subtasks are finished; subtask: release every subtask separately; default:
disabled

<?Task> [confirmParam] enum
allows the user to modify the parameters before the task is scheduled;
enabled: task will not be scheduled until the user checks the parameter;
default: disabled

<?Task> [version] integer version of the module that should be used for that task; default: 1 (see 5.6)
<?Task> [posX] integer x coordinate for display in GUI; default: not set
<?Task> [posY] integer y coordinate for display in GUI; default: not set

Page 13 of 57

4 Detailed XML format explanation
In the following sections the complete range of functions of Watchdog's XML format is
explained. The following elements must be defined as child elements of the
<settings> element before the <tasks> element begins and are valid within the
complete XML file:

<processBlock> - process a task with varying parameters (see 4.1)
<executors> - define different executor environments (see 4.3)
<wrappers> - execution wrappers usable as package managers or for virtualization
(see 4.4)
<constants> - defines constants that substitute placeholders (see 4.5)
<environments> - define or update environment variables (see 4.6)
<modules> - define multiple module include directories (see 4.11)

Apart from the <parameter> element, the following elements are allowed in <?Task>
elements:

<environment> - define or update environment variables (see 4.6)
<dependencies> - define dependencies between tasks (see 4.2)
<streams> - define location of standard streams and set a working directory (see
4.8)
<checkers> - usage of custom success or error checkers (see 4.12)
<actions> - define task actions that are performed before or after tasks execution
(see 4.9)

4.1 Process blocks
Watchdog is able to process multiple tasks of the same type, which differ only in some
parameter values, without the need to define all of these tasks separately. This function
is referred to as process blocks while the tasks created by an process block are called
subtasks of the task. There are four different possibilities to define process blocks as
childs of the <processBlock> element:

<processSequence> - argument is numeric
<processFolder> - argument is a path to a file
<processInput> - multiple arguments obtained from dependencies
<processTable> - multiple arguments stored in a tab-separated file with names of
variables stored in the first line

When the <processBlock> attribute of a task is set the argument of the process folder
or sequence is substituted at run time within <parameter>, <streams>, <checkers>,
<actions> and <environment> elements in the following manner:

<processSequence> - []/{}/() -> number
<processFolder> - {} -> absolute path to the file
<processFolder> - () -> absolute path to the parent folder of the file

Page 14 of 57

<processFolder> - [] -> name of the file
<processFolder> - [n]/{n} -> n suffixes of the filename are truncated using . as
separator
<processFolder> - (n) -> n suffixes of the parent folder are truncated using / as
separator
<processFolder> - ([{n,sep}]) -> suffixes of the value are truncated using sep as
separator (might also be a regex)
<processTable> - ([{$COL_NAME}]) -> value stored in the column named
$COL_NAME

<processTable> - ([{$COL_NAME,n,sep}]) -> value stored in the column named
$COL_NAME but with suffix truncation as described above
<processInput> - ([{$RET_NAME}]) -> return value of a dependency with the name
$RET_NAME

<processInput> - ([{$RET_NAME,n,sep}]) -> return value of a dependency with
the name $RET_NAME but with suffix truncation as described above

If a task depends on two tasks, which return variables with the same name, the return
value of the task with the smaller id will be overwritten. Deviating from this, return values
from separate dependencies will overwrite the ones from global dependencies if both
use the same name for a variable.

Example 4: Definition of different process blocks

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <watchdog xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:noNamespaceSchemaLocation="watchdog.xsd"

watchdogBase="{%INSTALL%}" isTemplate="true">

 3

 4 <settings>

 5 <!-- definition of different process blocks -->

 6 <processBlock>

 7 <processSequence name="qualities" start="1"

end="9" step="2" />

 8 <processFolder name="specialFiles" folder="

{%EXAMPLE_DATA%}/spec/" pattern="*.spec" />

 9 <baseFolder folder="{%EXAMPLE_DATA%}/">

10 <processFolder name="txtFiles"

folder="txt/" pattern="*.txt" />

11 <processFolder name="txtFiles"

folder="other_txt/" pattern="*.txt" append="true" maxDepth="1"

/>

12 <processFolder name="gzFiles"

folder="txt_zipped/" pattern="*.gz"

disableExistenceCheck="true" />

13 <processTable name="sleepTable"

table="processTable.input.txt" />

14 </baseFolder>

15 </processBlock>

16 </settings>

Page 15 of 57

17

18 <tasks mail="{%MAIL%}">

19 <!-- compress all files with *.txt ending in

/some/base/folder/TXT -->

20 <gzipTask id="1" name="compress files"

processBlock="txtFiles" checkpoint="enabled">

21 <parameter>

22 <input>{}</input>

23 <output>

{%EXAMPLE_DATA%}/txt_zipped/[1].gz</output>

24 </parameter>

25 </gzipTask>

26

27 <!-- test quality values 1,3,5,7 and 9 -->

28 <gzipTask id="2" name="quality test"

processBlock="qualities" checkpoint="subtask">

29 <dependencies>

30 <depends>1</depends>

31 </dependencies>

32 <parameter>

33 <input>

{%EXAMPLE_DATA%}/txt/txtFile1.txt</input>

34 <output>

{%EXAMPLE_DATA%}/qualityTest/txtFile1_q[].gz</output>

35 <quality>[]</quality>

36 </parameter>

37 <environment>

38 <var name="QUALITY">{}</var>

39 </environment>

40 </gzipTask>

41

42 <!-- sleep tasks which are created based on a

process table -->

43 <sleepTask id="3" name="table sleep"

processBlock="sleepTable">

44 <dependencies>

45 <depends>2</depends>

46 </dependencies>

47 <streams>

48 <stdout>{$OUT, 1}</stdout>

49 </streams>

50 <parameter>

51 <wait>{$DURATION}</wait>

52 </parameter>

53 <environment>

54 <var name="IMPORTANT_ID_RAW">

[$IMPORTANT_ID]</var>

55 <var

name="IMPORTANT_ID_CALC">$([$IMPORTANT_ID]*3)</var>

56 </environment>

57 </sleepTask>

Page 16 of 57

58 </tasks>

59 </watchdog>

Example 4 shows three different ways how process blocks can be specified. First a
<processSequence> named qualities is defined that creates the
numbers 1,3,5,7 and 9 (7). In the next line a <processFolder> is defined that will
process all files stored in {%EXAMPLE_DATA%}/spec that end with .spec (8). The
syntax which must be used in the pattern attribute is the same as in bash. If a
<processFolder> is a child element of a <baseFolder>, the folder attribute of the
<processFolder> will be prefixed with the folder attribute of the <baseFolder>
(9-14). The attribute disableExistenceCheck that is enabled for the
<processFolder> with the name gzFiles causes Watchdog not to force the
existence of the folder when it is started (12).
The task with id 1 will compress all .txt files in the folders {%EXAMPLE_DATA%}/txt
and {%EXAMPLE_DATA%}/other_txt and store them in
{%EXAMPLE_DATA%}/txt_zipped (20-25). Whereas, the task with id 2 will compress
a file with different quality values (28-40). The compressed files will be stored with
txtFile1_q as prefix and the used quality as suffix in
{%EXAMPLE_DATA%}/qualityTest (34). Additionally, an environment variable with
the name QUALITY is set which also contains the set quality (38). The sleep task at the
end of the example shows how the colums of a <processTable> can be used as
input (43-57). If the variable is of numeric type it can also be used within simple
calculations which are presented in 4.10 (55).

Table 2: Attributes in the context of process blocks

element attribute type function
<?ProcessBlock> name string is used as reference in the processBlock attribute of a task
<?Task> processBlock string name of a <?ProcessBlock> element

<?ProcessBlock> [append] boolean
if set to true, two or more process blocks of the same type can be
merged; supported by processSequence and ProcessFolder;
default: false

<processSequence> start double inclusive start of the numeric series

<processSequence> [step] double number that is added until the value is greater than end; default:
1

<processSequence> end double break condition, might be inclusive
<processFolder> folder integer absolute or relative to a <baseFolder> path to a folder

<processFolder> pattern string pattern selecting files that should be substituted; syntax as in
bash

<processFolder> [ignore] string files matching that pattern will be ignored; syntax as in bash;
default: not set

<processFolder>
[disable

ExistenceCheck]
boolean folder must not exist when Watchdog is started; default: false

<processFolder> [maxDepth] integer
a positive integer will cause that maxDepth levels of
subdirectories are traversed while by default only the parent
folder is processed; default: 0

<baseFolder> folder string absolute path which is used as prefix before the path of the
<processFolder> is added

<baseFolder> [maxDepth] integer see description of <processFolder> [maxDepth]; if both are set,
the value of the <processFolder> element is set; default: 0

Page 17 of 57

4.2 Dependencies
By default all tasks specified in the XML document are independent from each other.
That implies that all tasks are scheduled at the same time if no other constraints exist. It
is possible to define dependencies between tasks using the <depends> element that
expects as value the id or name of an already defined task. The element must be a child
of a <dependencies> element. Without any arguments the task will not be scheduled
until all (sub)tasks of the dependencies have finished successfully. By setting the
separate argument to true a subtask can depend only on the corresponding subtask
the task depends on. This option is only meaningful if both tasks are process block tasks
and work on the same input set or a transformed version of it.

Example 5: Definition of dependencies

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <watchdog xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:noNamespaceSchemaLocation="watchdog.xsd"

watchdogBase="{%INSTALL%}" isTemplate="true">

 3

 4 <settings>

 5 <!-- definition of two process folders -->

 6 <processBlock>

 7 <baseFolder folder="{%EXAMPLE_DATA%}/">

 8 <processFolder name="txtFiles"

folder="txt/" pattern="*.txt" />

 9 <processFolder name="gzFiles"

folder="txt_zipped/" pattern="*.gz"

disableExistenceCheck="true" />

10 </baseFolder>

11 </processBlock>

12 </settings>

13

14 <tasks mail="{%MAIL%}">

15 <!-- definition a simple sleep task -->

16 <sleepTask id="1" name="sleep">

17 <parameter>

18 <wait>30s</wait>

19 </parameter>

element attribute type function

<processTable> table string path to a tab-separated file with header; the column names must
consist out of [A-Za-z_]

<processTable>
[disable

ExistenceCheck]
boolean table file must not exist when Watchdog is started; default: false

<processTable> [compareName] column name that should be used to compare names of separate
dependencies; default: complete line

<processInput> sep string separator which is used to join multiple values of global
dependencies together; default: :

<processInput> [compareName] string name of return value that should be used to compare names of
separate dependencies; default: name of precursor node

Page 18 of 57

20 </sleepTask>

21

22 <!-- compress all files with *.txt ending in

/some/base/folder/TXT -->

23 <gzipTask id="2" name="compress"

processBlock="txtFiles">

24 <parameter>

25 <input>{}</input>

26 <output>

{%EXAMPLE_DATA%}/txt_zipped/[1].gz</output>

27 </parameter>

28 <!-- dependency definition -->

29 <dependencies>

30 <depends>1</depends>

31 </dependencies>

32 </gzipTask>

33

34 <!-- decompress all files with *.gz ending in

/some/base/folder/TXT_ZIPPED -->

35 <gzipTask id="3" name="decompress"

processBlock="gzFiles">

36 <parameter>

37 <input>{}</input>

38 <output>

{%EXAMPLE_DATA%}/txt_decompressed/[1].txt</output>

39 <decompress>true</decompress>

40 </parameter>

41 <!-- dependency definition -->

42 <dependencies>

43 <depends separate="true" prefixName="

[1]">2</depends>

44 </dependencies>

45 </gzipTask>

46 </tasks>

47 </watchdog>

In example 5 a compress task with id 2 is defined which depends on the before defined
sleep task (23-32). Additionally, a task, which will decompress the compressed files
immediately after the compression is finished, is defined (35-45). In order to achieve this
behavior the separate attribute is set to true (43). Because the .txt ending of the
original filename was cropped and a .gz ending was added, only the first part of the
filename is considered as specified in the prefixName attribute (26,43).

Table 3: Attributes in the context of dependencies

element attribute type function
<dependencies> parent of <depends> elements and child of <?Task>
<depends> integer already defined task id on which the task should depend on

<depends> [separate] boolean if set to true each subtask depends only on its corresponding subtask;
default: false

Page 19 of 57

4.3 Execution environments
By default the tasks are executed one after the other locally on the host which runs
Watchdog. It is possible to define different execution environments using the
<executors> element. Possible environments:

<local> - task is executed on the local host
<remote> - task is executed on a remote host using ssh
<cluster> - task is executed on a computer cluster using DRMAA
<sge> - task is executed on a SGE computer cluster using control binaries
<slurm> - task is executed on a SLURM computer cluster using control binaries

Example 6: Definition of different execution environments

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <watchdog xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:noNamespaceSchemaLocation="watchdog.xsd"

watchdogBase="{%INSTALL%}" isTemplate="true">

 3

 4 <settings>

 5 <!-- examples of different execution

environments -->

 6 <executors>

 7 <local name="localhost" maxRunning="2" />

 8 <sge name="defaultCluster" default="true"

memory="1G" beforeScripts="ulimitMemory.sh" queue="short.q" />

 9 <sge name="highPerformanceCluster"

slots="4" memory="3G" maxRunning="4" queue="short.q" />

10 <remote name="superComputer"

user="mustermann" host="superComputer"

privateKey="/path/to/private/auth/key" port="22"

disableStrictHostCheck="false" />

11 </executors>

12 </settings>

13

14 <tasks mail="{%MAIL%}">

15 <!-- execute this task on the localhost -->

16 <sleepTask id="1" name="sleep"

executor="localhost">

element attribute type function

<depends> [keep4Slave] boolean
if set to true a executor in slave mode will wait until all tasks with that
id, which are running on that slave, are finished; only valid for separate
dependencies; default: false

<depends> [prefixName] [[0-9]*]

only meaningful if separate is set to true; defines in which manner the
variables of the two process blocks must be equal to each other:
[]/[0]: complete variables of the subtasks are compared
[n]: it is checked if the variable of a subtask begins with the prefix of the
finished subtask this task depends on; the first n parts are taken was
prefix whereby '.' is used as separator; default: []

<depends> [sep] string separator which is used together with prefixName; default: .

Page 20 of 57

17 <parameter>

18 <wait>30s</wait>

19 </parameter>

20 </sleepTask>

21 </tasks>

22 </watchdog>

In example 6 four different execution environments are defined as childs of the
<executors> element (6-11). Tasks scheduled on first executor will run on the host on
which Watchdog was started (7).

The executor with the name defaultCluster is used by default and runs on the
short.q queue of the computer cluster (8). Before the actual module command is
executed on that executor, the commands stored in the before script
ulimitMemory.sh are executed. If a relative path is given, the script must be located
in core_lib/executor_scripts. In this example the script will enforce that the
requested memory is not exceeded using the ulimit command.

The next executor is reserved for high performance tasks because it reserves 4 slots on
the cluster with each slot consuming three gigabyte of main memory (9). In order not to
occupy the complete computing power the attribute maxRunning is set to four which
means that a maximum of four tasks will run simultaneously on that execution
environment.

In line 10 an example for a remote executor is given which executes tasks via ssh using
a host named superComputer.

Afterwards the same sleep task is defined as in the first example and will run on the local
executor (16). The other executors can be tested once you adapted them to your local
infrastructure (see 2.7 and 2.8).

Table 4: Attributes in the context of execution environments

element attribute type function
<?

Executor>
name string is used as reference in the executor attribute of a task

<?Task> executor string name of a <?Executor> element
<?

Executor>
[environment] string environment with that name is used as default environment;

default: not set
<?

Executor>
[default] boolean defines which execution environment is taken as default;

default: false
<?

Executor>
[maxRunning] integer number of tasks that can run at the same time; default: not

restricted
<?

Executor>
[workingDir] string working directory to which the executor switches before task

execution; default: /usr/local/storage/

<?

Executor>
[stickToHost] boolean

activates slave mode for that executor which means that tasks
that depend on each other are executed on the same execution
host; default: false

Page 21 of 57

4.4 Execution wrappers
Execution wrappers can be used in combination with <?Executor> to support the use
of package managers (e.g. Conda) or virtualization (e.g. Docker). Multiple execution

element attribute type function
<?

Executor>
[maxSlaveRunning] integer number of tasks that can run at the same time on a slave if

stickToHost is enabled; default: 1
<?

Executor>
[pathToJava] string path to java binary which is used for slave mode execution;

default: /usr/bin/java

<?

Executor>
[shebang] string

shebang, which is used if a temporary script is build that defines
environment variables or before/after script commands; default:
#!/bin/bash

<?

Executor>
[beforeScripts] string

path to a script containing commands that are executed before
the actual module command; multiple scripts can be provided
by using ':' as separator; default: not set

<?

Executor>
[afterScripts] string

path to a script containing commands that are executed after the
actual module command; multiple scripts can be provided by
using ':' as separator; default: not set

<?

Executor>
packageManagers string list of name(s) of <?Wrapper> package manager separated by ',';

the first package manager a module supports will be used
<?

Executor>
container string name of a <?Wrapper> virtualizer

<remote> user string name of the user on the remote host system

<remote> host string
name of the host which should be used for execution; multiple
hostnames must be separated by ';' - in that case the
maxRunning argument is applied on each host separately

<remote> privateKey string path the to private ssh auth key; should be protected by a
passphrase!

<remote> [port] integer port which is used for the ssh connection; default: 22

<remote> [disableStrictHostCheck] boolean disables the validation of the public key of the host; not
recommended!; default: false

<cluster> [customParameters] string additional parameters that are directly passed to the DRMAA
system without further processing; default: not set

<sge> [slots] integer number of cores which are reserved on the computer cluster;
default: 1

<sge> [memory] string memory per slot suffixed with M (megabyte) or G (gigabyte);
default: 3000M

<sge> [queue] string queue on which the tasks should run on the computer cluster;
default: not set

<sge> [disableDefault] boolean default parameters are ignored; default: false

<sge> [customParameters] string additional parameters that are directly passed to the SGE
system without further processing; default: not set

<slurm> cluster string cluster to communicate with; default: not set

<slurm> [cpu] integer number of cores which are reserved on the computer cluster;
default: 1

<slurm> [memory] string memory per slot suffixed with M (megabyte) or G (gigabyte);
default: 3000M

<slurm> [partition] string partition of the cluster on which the job should be executed;
default: not set

<slurm> [timelimit] string maximum time the task will require to complete; default: 0-12:0
<slurm> [disableDefault] boolean default parameters are ignored; default: false

<slurm> [customParameters] string additional parameters that are directly passed to the SLURM
system without further processing; default: not set

Page 22 of 57

wrappers can be defined within the <wrappers> element. Additional execution
wrappers can be implemented using Watchdog's plugin system (see 7.2).

Implemented package managers:

<conda> - tasks are executed in a Conda environment if supported by the module
(see 5.7)

Implemented virtualizer:

<docker> - tasks are executed in a Docker container

Example 7: Definition of Conda execution wrapper

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <watchdog xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:noNamespaceSchemaLocation="watchdog.xsd"

watchdogBase="{%INSTALL%}" isTemplate="true">

 3 <settings>

 4 <!-- definition of execution wrappers -->

 5 <wrappers>

 6 <!-- TODO: modify path2conda and

path2environments-->

 7 <conda name="condaWrapper"

path2conda="/your/local/path/to/bin/conda"

path2environments="/tmp/conda_watchdog_env/" />

 8

 9 <conda name="condaContainer"

path2conda="/usr/local/bin/conda"

path2environments="/tmp/conda_watchdog_env/" />

10 <!-- TODO: modify path2docker to point to

docker/podman/singularity binary-->

11 <docker name="podman"

path2docker="/your/path/to/bin/podman"

image="conda/miniconda3">

12 <blacklist

pattern="/usr/local/storage/" />

13 <!-- in this case /tmp/watchdogLogs/

is used to store stdout and stderr -->

14 <mount>

15 <host>/tmp/watchdogLogs/</host>

16 </mount>

17 </docker>

18 </wrappers>

19 <executors>

20 <!-- local executor that will use the

package manager condaWrapper for supporting modules -->

21 <local name="localhost"

packageManagers="condaWrapper" />

22 <!-- the condaWrapper is started within a

container additionally -->

Page 23 of 57

23 <local name="localDocker"

packageManagers="condaContainer" container="podman" />

24 </executors>

25 </settings>

26 <tasks>

27 <!-- will be executed in a Conda environment -->

28 <sleepTask id="1" name="sleep I"

executor="localhost">

29 <parameter>

30 <wait>10s</wait>

31 </parameter>

32 <streams>

33

<stdout>/tmp/watchdogLogs/sleep.conda.out</stdout>

34

<stderr>/tmp/watchdogLogs/sleep.conda.err</stderr>

35 </streams>

36 </sleepTask>

37

38 <!-- will be executed in a Conda environment

that is started in a Docker container -->

39 <sleepTask id="2" name="sleep II"

executor="localDocker">

40 <parameter>

41 <wait>10s</wait>

42 </parameter>

43 <streams>

44

<stdout>/tmp/watchdogLogs/sleep.docker.out</stdout>

45

<stderr>/tmp/watchdogLogs/sleep.docker.err</stderr>

46 </streams>

47 </sleepTask>

48 </tasks>

49 </watchdog>

In example 7 a Conda execution wrapper is defined as child of the <wrappers>
element (5-18). The wrapper will be used for tasks that were created from modules that
support the Conda package manager wrapper (7). If a module does not support the
Conda package manager, the package manager will be ignored during task execution.
The attribute path2conda defines the conda binary to use. Conda environments are
initialized once per module and stored in the path2environments directory.

In line 9 another Conda execution wrapper is defined, which is configured to be used
within a Docker image. The Docker wrapper is defined with the <docker>

element (11-17). The attribute path2docker must specify the path to the virtualizer
binary, which can be docker, podman or singularity. The image attribute defines which
image is used to start the container (e.g. conda/miniconda3; in case of singularity use
docker://conda/miniconda3). If the image is not present in the local image store, it

Page 24 of 57

will be downloaded from the default registry by the virtualizer binary. A different image
registry can be used with this syntax: <registry-ip>:<registry-port>/image

By default module specific images are used instead of the image provided in the image
attribute. Module specific image are identified from files matching the pattern
'docker.image(.v[0-9]+)?.name' in the module directory, which contain only a
single line with the image name. For different versions, different image files can be
included (ending in '.v[0-9]+.name'). If no image name file for the module version
used in a task is included in the module, the default image name file for the module
('docker.image.name') is used. If no image name file is included in the module, the
image name provided in the image attribute is used. If a Docker wrapper should not
use the module specific image names, the attribute loadModuleSpecificImage can
be set to false.

Most tasks process files stored on the host file system. Hence, these files must be made
available within the container using mount points. Watchdog will try to detect the
required mount paths automatically using parameters und streams of a task. Hence,
most workflows can be run in a Docker container without further adjustments. The
element <blacklist> can be used to avoid mounting of automatically detected
directories (e.g. directories mounted on local disks as /tmp/ or
/usr/local/storage/). Another possibility is to disable the automatic detection
using the disableAutodetectMount attribute and to define the required mounts
manually using <mount> (14-16).

In line 21, a localhost executor is defined that uses the previously defined execution
wrapper named condaWrapper. Another local executor is defined in line 23, which uses
the Docker wrapper podman and the Conda execution wrapper condaContainer. On
both executors a simple sleep task will be executed (28-47).

Table 5: Attributes in the context of execution wrappers

element attribute type function

<?Wrapper> name string is used as reference in the packageManagers or container
attribute of an executor

<?Executor> packageManagers string list of name(s) of <?Wrapper> package manager separated
by ','

<?Executor> container string name of a <?Wrapper> virtualizer
<conda> path2conda string absolute path to conda binary

<conda> [path2environments] string
path to directory in which Conda environments will be
installed; path can also be relative to Watchdog's tmp/
folder; default: conda_watchdog_env/

<docker> path2docker string path to the virtualizer binary; tested with docker, podman
and singularity

<docker> image string
name of the image that should be used; ip and port of
registry can be set as prefix; in case of singularity a pseudo-
protocol can be added as prefix

<docker> [addCallParams] string additional parameters that are passed to the binary; default:
not set

<docker> [execKeyword] string keyword that is used to start a command within the
container; default: run

Page 25 of 57

4.5 Global constants
A constant can be defined globally using the <const> elements which must be a child
of a <constants> element. The parent element itself must be a child of the
<settings> environment. Every <const> element must own a unique name which is
set with the name attribute. The value of the constant is stored between the opening and
closing element tag. ${NAME_OF_CONSTANT} is substituted with the corresponding
constant in every attribute or text content. Only the watchdogBase attribute of
<watchdog>, the default attribute of <?Executor> and the <id> attribute of <?
Task> and within <depends> elements can not be substituted.

Currently, there are two pre-defined constants. The first is named ${TMP} and is
substituted within <?Task> tags with the working directory of the executor that will
execute the task. The second is named ${WF_PARENT} and is replaced with the parent
folder containing the XML workflow file.

Example 8: Definition and use of global constants

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <watchdog xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:noNamespaceSchemaLocation="watchdog.xsd"

watchdogBase="{%INSTALL%}" isTemplate="true">

 3

 4 <settings>

 5 <!-- definition of a constant named WAIT_TIME --

>

 6 <constants>

 7 <const name="WAIT_TIME">30s</const>

 8 <const name="FILE_NAME">sleep</const>

element attribute type function

<docker> [disableAutodetectMount] boolean
disables the automatic detection of volume mount points,
which is based on defined constants and task parameters;
default: false

<docker> [loadModuleSpecificImage] boolean

uses module specific image names from a file located in the
module folder matching the filename pattern
'docker.image(.v[0-9]+)?.name'; '.v[0-9]+' indicates the
module version and is optional; only the first line of the file is
used; if no appropriate file is found the image defined with
image is used; default: true

<mount>

parent of <host> and <container> and child of <docker>;
used to make folders of the host available within the
container

<host> string path to a folder on the host, which should be made availible
within the container

<container> string if set the host directory is mounted with a different name
within the container; element is optional

<blacklist> pattern string

child of <docker>; path or regular expression that can be
used to avoid mounting of automatically detected
directories; e.g. directories mounted on local disks as /tmp/
or /usr/local/storage/

Page 26 of 57

 9 <const name="LOG_BASE">/tmp</const>

10 </constants>

11 </settings>

12

13 <tasks mail="{%MAIL%}">

14

15 <!-- definition a simple sleep task with

constant replacement -->

16 <sleepTask id="1" name="sleep test">

17 <streams>

18

<stdout>${LOG_BASE}/${FILE_NAME}.out</stdout>

19 </streams>

20 <parameter>

21 <wait>${WAIT_TIME}</wait>

22 </parameter>

23 </sleepTask>

24 </tasks>

25 </watchdog>

In example 8 three constants are defined (6-10). The constant named ${WAIT_TIME} is
used as wait time in the sleep task (21). The other two constants are used to construct
the standard output file path (18).

Table 6: Attributes in the context of global constants

4.6 Environment variables
Some tools expect specific environment variables to be set correctly. For example the
PATH variable is important because executable programs are located only in directories
defined by that variable. The environment variables which are set on the host running
Watchdog can be simply inherited. With help of the <var> element new variables can be
defined or updated. The name of the variable must be defined with the name attribute
while the value is stored between the opening and closing element tag. The parent
element of each <var> element must be a <environment> element which also owns a
name attribute. This name attribute is used to link the environment with a task using the
environment attribute all tasks possess. It is also possible to define environment
variables locally within task definitions. If local and global variables with the same name
are set, the local ones override the global variables.

The following environment variables are set by Watchdog by default:

element attribute type function
<constants> parent of <const> elements and child of <settings>

<const> name string
name of the variable that is replaced with ${name} in attributes and text content;
only chars out of [A-Za-z_] are allowed as first character followed by [A-Za-z_0-9] in
the name; apart from a few exceptions it is allowed everywhere

<const> string replacement value

Page 27 of 57

IS_WATCHDOG_JOB: if module was executed by Watchdog this value is set to 1
WATCHDOG_CORES: number of reserved cores if task runs on a cluster
environment
WATCHDOG_MEMORY: number of total reserved memory in megabyte if task runs
on a cluster environment

Example 9: Definition of environment variables

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <watchdog xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:noNamespaceSchemaLocation="watchdog.xsd"

watchdogBase="{%INSTALL%}" isTemplate="true">

 3

 4 <settings>

 5 <!-- definition of a environment -->

 6 <environments>

 7 <environment name="pathEnv">

 8 <var name="PATH"

update="true">~/software/bin</var>

 9 </environment>

10 </environments>

11 </settings>

12

13 <!-- begin task block and use that mail to inform the

user on success or failure -->

14 <tasks mail="{%MAIL%}">

15

16 <!-- definition of a simple sleep task using

custom environment variables -->

17 <envTask id="1" name="env"

environment="pathEnv">

18 <streams>

19 <stdout>/tmp/env.test</stdout>

20 </streams>

21

22 <!-- definition of a local environment with

two variables -->

23 <environment>

24 <var name="SHELL">/bin/sh</var>

25 <var name="TEST" update="true"

sep="@">separator test</var>

26 </environment>

27 </envTask>

28 </tasks>

29 </watchdog>

In example 9 an environment named pathEnv is defined in which the variable PATH is
updated (8). The entry ~/software/bin is added at the beginning of the PATH variable
and after the default seperator character the previous value is kept. The environment

Page 28 of 57

attribute of the env task is set to the name of the previously defined environment (17).
Additionally two local environment variables are defined (23-26). The first one replaces
the default shell with /bin/sh while the second one updates a variable called TEST
using an alternative separator.

Table 7: Attributes in the context of environment variables

4.7 Mail notification
By default Watchdog informs the user only when an error occurs during the execution of
a task or if an error was detected afterwards. But these behaviour can be changed using
the notify attribute of tasks.

Example 10: Different mail notification options

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <watchdog xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:noNamespaceSchemaLocation="watchdog.xsd"

watchdogBase="{%INSTALL%}" isTemplate="true">

 3

 4 <settings>

 5 <!-- definition of different process blocks -->

 6 <processBlock>

 7 <processSequence name="sleepTime" start="5"

end="15" step="5" />

 8 </processBlock>

 9 </settings>

element attribute type function
<environment> name string is used as reference in the environment attribute of a task

<environment> [copyLocalValue] boolean

copies all environment variables which are set on the host
running Watchdog; set variables are not deleted on the remote
system; bash functions which names are ending with () are not
copied as this might cause problems; default: false

<environment> [useExternalExport] boolean

uses a external command to set the variables; is necessary to
update variables on remote or cluster executors and might also
be necessary to set environment variables on remote hosts
because of ssh security policies; default: true

<environment> [exportCommand] string
custom command to set a environment variable; {$NAME} and
{$VALUE} are substituted and must be part of the command;
default: export {$NAME}="{$VALUE}"

<?Task> environment string name of a <environment> element
<var> string value of the environment variable
<var> name string name of the environment variable

<var> [update] boolean
if true the value is added at the beginning of the variable and the
old values comes afterwards separated with the value stored in
the sep attribute; default: false

<var> [sep] string separator which is used when the value of the variable should be
updated; default: :

<var> [copyLocalValue] boolean copies the environment variables with the name name which is
set on the host running Watchdog; default: false

Page 29 of 57

10

11 <!-- begin task block and use that mail to inform the

user on success or failure -->

12 <tasks mail="{%MAIL%}">

13 <!-- definition a simple sleep task -->

14 <sleepTask id="1" name="sleep simple"

notify="enabled">

15 <parameter>

16 <wait>10s</wait>

17 </parameter>

18 </sleepTask>

19

20 <!-- definition of process sequence sleep tasks

-->

21 <sleepTask id="2" name="sleep process sequence"

notify="subtask" processBlock="sleepTime">

22 <parameter>

23 <wait>[]s</wait>

24 </parameter>

25 </sleepTask>

26 </tasks>

27 </watchdog>

In example 10 different notification options are presented. The first defined task is the
simple sleep task from the previous examples for which the notify attribute is set to
enabled (14). Once the task is finished a mail will be sent to the address the user
specified in the mail attribute of the <tasks> element (12). The second defined task is
based on a process block named sleepTime and causes Watchdog to inform the user
as soon as a subtask is finished because the notify attribute is set to subtask
(7, 21).

Table 8: Attributes in the context of mail notification

4.8 Standard streams and working directory
By default the stdout and stderr stream of the tool which is executed by watchdog is not
saved. This can be changed by setting a path via the <stdout> or <stderr> element.
It is also possible to use a file as input via the <stdin> element. Additionally, a working
directory can be set by using the <workingDir> element. When this is done also
relative path for <stdout>, <stderr> and <stdin> are allowed. Other than usual, the

element attribute type function
<tasks> mail string mail adress which is used for notification

<?Task> notify enum
enabled: inform when complete task was executed
subtask: inform when a subtask was executed
disabled: notification only in case of an error

<?Task> processBlock string reference to a process block when notify is set to subtask

Page 30 of 57

elements must occour in the same order as they are listed in the following:
<workingDir>, <stdout>, <stderr> and <stdin> (but each of them is optional)

Example 11: Definition of standard streams and working directory

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <watchdog xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:noNamespaceSchemaLocation="watchdog.xsd"

watchdogBase="{%INSTALL%}" isTemplate="true">

 3

 4 <!-- begin task block and use that mail to inform the

user on success or failure -->

 5 <tasks mail="{%MAIL%}">

 6

 7 <!-- definition a simple sleep task -->

 8 <sleepTask id="1" name="sleep">

 9 <parameter>

10 <wait>30s</wait>

11 </parameter>

12 <!-- definition of a standard output

location and switch of the working directory -->

13 <streams>

14 <workingDir>/tmp/</workingDir>

15 <stdout>

{%EXAMPLE_DATA%}/sleepTest.out</stdout>

16 <stderr

append="true">sleepTest.err</stderr>

17 </streams>

18 </sleepTask>

19 </tasks>

20 </watchdog>

In example 11 the working directory is set to /tmp (14). Afterwards, the standard output
of the sleep task is written to the file {%EXAMPLE_DATA%}/sleepTest.out (15). The
standard error stream is appended at the end of a file named /tmp/sleepTest.err
(16).

Table 9: Attributes in the context of standard streams_and_working_directory

element attribute type function

<streams> [saveResourceUsage] boolean saves used resources to .res if standard output stream is
saved to a file; default: false

<workingDir> string sets a custom working directory before the tool is
executed; default: /usr/local/storage

<stdout> string writes standard output stream into file; default not saved
<stderr> string writes standard error stream into file; default not saved
<stdin> string file is used as standard input; default: not set

<stdin> [disableExistenceCheck] boolean file must not exist when Watchdog is started; default:
false

Page 31 of 57

4.9 Task actions
Additional operations can be executed before and after the actual task is executed.
Currently a set of IO operations are implemented that can be used to roll out data the
task depends on or to clean up once the task is finished. This feature is especically
usefull when Watchdog is running in slave mode (see 4.3) in order to reduce load for the
shared file system as some files might be requirements for different tasks. Hence, these
files would have to be transfered multiple times from the shared file system to the host
executing the task.
Moreover, files stored on remote files systems can be up- or downloaded by Watchdog.
By default, virtual file systems based on the protocols File, HTTP, HTTPS, FTP, FTPS
and SFTP as well as the main memory (RAM) are supported. These virtual file systems
are provided by the Commons Virtual File System project of the Apache Software
Foundation. Examples for valid URIs of these file systems can be can be found here.
However, any file system with an implementation of the FileProvider can also be
included by the user as described in 7.1.

Task actions are defined in an <actions> tag as child of <?Task>. Slave mode is
automatically activated if a task action is used. Currently six different IO operations are
implemented:

<createFile> - creates an empty file
<createFolder> - create an empty folder
<copyFile> - copies a file
<copyFolder> - copies a folder (with content)
<deleteFile> - deletes a file
<deleteFolder> - deletes a folder (with content)

The event after which the task actions are executed must be defined using the time
attribute each <actions> tag owns. The following arguments are available:

beforeTask - before the task is executed
afterTask - after the task is executed
onSuccess - when the task was successfully executed
onFailure - when task execution failed
beforeTerminate - before Watchdog or a slave terminates itself

Example 12: Definition of task actions

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <watchdog xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:noNamespaceSchemaLocation="watchdog.xsd"

watchdogBase="{%INSTALL%}" isTemplate="true">

 3

 4 <tasks mail="{%MAIL%}">

element attribute type function
<stdout>/<stderr> [append] boolean appends the stream at the end of the file; default: false

https://commons.apache.org/proper/commons-vfs/filesystems.html

Page 32 of 57

 5 <gzipTask id="1" name="gzip task">

 6 <parameter>

 7 <!-- path to a file that does not

exist yet -->

 8

<input>/tmp/watchdog_file_to_compress.tmp</input>

 9 </parameter>

10 <!-- action that copies a to the input

location -->

11 <actions time="beforeTask">

12 <copyFile file="

{%INSTALL%}examples/example_task_actions.xml"

destination="/tmp/watchdog_file_to_compress.tmp"

override="true" />

13 </actions>

14 </gzipTask>

15 </tasks>

16 </watchdog>

In example 12 a file name /tmp/watchdog_file_to_compress.tmp is compressed
using gzip (5-14). Before the compress task is executed, the task action defined within
the <actions> tag is executed because the time attribute is set to beforeTask (11-
13). The task action copies the file stored in
{%INSTALL%}/examples/example_task_actions.xml to
/tmp/watchdog_file_to_compress.tmp (12).

Table 10: Attributes in the context of actions

element attribute type function

<actions> time enum

defines when the task action block is executed; beforeTask:
before the task is executed; afterTask: after the task is
executed; onSuccess: when the task was successfully
executed; onFailure: when task execution failed;
beforeTerminate: before Watchdog or a slave terminates
itself

<actions> [uncoupleFromExecutor] boolean if enabled, task actions are executed on the host running
Watchdog instead of the execution host; default: false

<createFile> file string path to the file that should be created

<createFile> [override] boolean defines if an existing file should be overwritten; default:
false

<createFile> [createParent] boolean defines if the parent directories should be created if
nonexistent; default: true

<createFolder> folder string path to the folder that should be created and will be empty if
action succeeds

<createFolder> [override] boolean defines if an existing folder should be deleted; default: false

<createFolder> [createParent] boolean defines if the parent directories should be created if
nonexistent; default: true

<copyFile> file string path to the file that should be copied
<copyFile> destination string path to the destination of the new file

<copyFile> [override] boolean defines if an existing file should be overwritten; default:
false

Page 33 of 57

4.10 Simple calculations
Within a <?Task> element simple calculations can be preformed using the $(expr)
construct whereby expr must be a numerical equation. The following operators are
supported: +, -, *, /, ^, ² and ³. Additional the brackets () are provided. Moreover in case
of a <processSequence> i is replaced by the current value of the process sequence.
In the more general case of a <processBlock> x is substituted by an increasing
number starting at 1. The result of all calculations is rounded to five decimal places or
converted to an integer if it is one.

Example 13: Definition of simple calculations

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <watchdog xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:noNamespaceSchemaLocation="watchdog.xsd"

watchdogBase="{%INSTALL%}" isTemplate="true">

 3

 4 <settings>

 5 <!-- definition of two process blocks -->

 6 <processBlock>

 7 <processSequence name="sleepTime" start="1"

end="5" step="1.5" />

 8 <processFolder name="txtFiles" folder="

{%EXAMPLE_DATA%}/txt/" pattern="*.txt" />

 9 </processBlock>

10 </settings>

11

12 <tasks mail="{%MAIL%}">

13 <!-- sleep task with a simple calculation -->

14 <sleepTask id="1" name="sleep"

processBlock="sleepTime">

element attribute type function

<copyFile> [deleteSource] boolean deletes the source file after the copy operation; default:
false

<copyFile> [createParent] boolean defines if the parent directories should be created if
nonexistent; default: true

<copyFolder> folder string path to the folder that should be copied
<copyFolder> destination string path to the destination folder

<copyFolder> [pattern] string pattern selecting files that should be copied in that folder;
syntax as in bash

<copyFolder> [override] boolean defines if an existing folder should be deleted; default: false

<copyFolder> [deleteSource] boolean deletes the source folder after the copy operation; default:
false

<copyFolder> [createParent] boolean defines if the parent directories should be created if
nonexistent; default: true

<deleteFile> file string path to the file that should be deleted
<deleteFolder> folder string path to the folder that should be deleted

<deleteFolder> [pattern] string pattern selecting files that should be deleted in that folder;
syntax as in bash

Page 34 of 57

15 <parameter>

16 <wait>$((i+1)^2-1)s</wait>

17 </parameter>

18 </sleepTask>

19

20 <!-- compress txt files and write log files to

()/log/* -->

21 <gzipTask id="2" name="quality test"

processBlock="txtFiles">

22 <streams>

23 <stdout>()/log/$(x).out</stdout>

24 </streams>

25 <parameter>

26 <input>{}</input>

27 <output>{}.gz</output>

28 <quality>3</quality>

29 </parameter>

30 </gzipTask>

31 </tasks>

32 </watchdog>

In example 13 the usage of the $(expr) construct is shown. The wait time for the sleep
task is calculated based on the input numbers of the <processSequence> (7, 16). In
the second gzip task the number of the subtask is used to name the standard output
files (23).

4.11 Multiple module search folders
By default Watchdog tries to locate modules in a folder named modules/ stored in the
installation directory of Watchdog. By using the <modules> element as child of
<settings>, additional folders can be added.

Example 14: Definition of multiple module include folders

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <watchdog xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:noNamespaceSchemaLocation="watchdog.xsd"

watchdogBase="{%INSTALL%}" isTemplate="true">

 3

 4 <settings>

 5 <!-- TODO: modify one of these folders

{%INSTALL%}myCustomFolder/ or -->

 6 <!-- /home/TODO/additionalModules/ to match a

folder that contains the 'sleep' module -->

 7 <modules defaultFolder="myCustomFolder/">

 8

<folder>/home/TODO/additionalModules/</folder>

 9 </modules>

Page 35 of 57

10 </settings>

11

12 <!-- begin task block and use that mail to inform the

user on success or failure -->

13 <tasks mail="{%MAIL%}">

14 <!-- definition a simple sleep task -->

15 <sleepTask id="1" name="sleep">

16 <parameter>

17 <wait>30s</wait>

18 </parameter>

19 </sleepTask>

20 </tasks>

21 </watchdog>

In example 14 the default directory is changed to myCustomFolder/ with the
defaultFolder attribute (7). Moreover, in line 8 an additional folder is added to
Watchdog's search path. Watchdog will now try to locate modules in the directories
{%INSTALL%}/myCustomFolder/ and /home/additionalModules/. In order to
test that example you must create a new folder, copy the sleep module from
Watchdog's module folder and adapt the path in line 7 or 8 to match that folder.

Table 11: Attributes in the context of module include_folders

4.12 Custom success and error checker
In some cases the exit code of a command is not a reliable indicator whether the
command was executed successfully or not. For example some tools return as exit code
zero regardless of whether the command succeeded or failed. Furthermore, a command
could succeed technically but the desired result is not obtained (e.g. wrong index used
for mapping of RNA-seq data results in a very low mapping rate). In order to handle such
cases the user has the option to implement custom success and error checkers in Java
that are executed by Watchdog once a task has terminated. Two steps must be
performed to use custom checkers: implementation in Java and invocation in the XML
workflow.

Interfaces for checkers are stored in the package de.lmu.ifi.bio.watchdog.interfaces.
Basically a function returning a boolean value that indicates whether the task succeeded
or failed must be implemented. The constructor must accept as first argument a object of
the type Task that contains information about the task that was finished. Additional
arguments of type Boolean, Integer, Double or String can be passed via the XML
definition.

element attribute type function

<modules> [defaultFolder] string changes the default search folder; an absolute or relative path to Watchdog's
install dir is allowed (must end with /); default: modules/

<folder> string adds a new directory to that is used for localization of modules

Page 36 of 57

Example 15: Load custom checkers

Example 15 shows an example of how an success checker can be added to a task by
using the <checkers> element as a child of <?Task> (12-18). In addition to the
location of the compiled Java class and the full class name arguments can be passed to
the constructor of the class. In this example one variable of type string is passed to
the constructor of the success checker using the <cArg> element (16). Once the task is
finished, the checkers are evaluated in the same order as they were added in the XML
workflow. In cases in which simultaneously success and error were detected, the task
will be treated as failed. In this example the success checker will ensure that the file
{%INSTALL%}/examples/mail_config exists and is not empty (15-16)

Table 12: Attributes in the context of custom checkers

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <watchdog xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:noNamespaceSchemaLocation="watchdog.xsd"

watchdogBase="{%INSTALL%}" isTemplate="true">

 3

 4 <!-- begin task block and use that mail to inform the

user on success or failure -->

 5 <tasks mail="{%MAIL%}">

 6

 7 <!-- definition a simple sleep task -->

 8 <sleepTask id="1" name="sleep">

 9 <parameter>

10 <wait>30s</wait>

11 </parameter>

12 <checkers>

13 <!-- load a success checker with one

additional constructor argument -->

14 <!-- it will check, if the file

{%INSTALL%}examples/mail_config exists and is not empty -->

15 <checker classPath="

{%EXAMPLE_DATA%}/OutputFileExistsSuccessChecker.class"

className="de.lmu.ifi.bio.watchdog.successChecker.OutputFileExist

 type="success">

16 <cArg type="string">

{%INSTALL%}examples/mail_config</cArg>

17 </checker>

18 </checkers>

19 </sleepTask>

20 </tasks>

21 </watchdog>

element attribute type function

<checker> type enum type of the checker; success: checker should be used as success checker; error:
checker is used as error checker

Page 37 of 57

element attribute type function
<checker> className string complete class name including the package the class is located in
<checker> classPath string absolute path to the compiled java class file

<cArg> type enum type to which the argument should be parsed in java; possible values: boolean,
integer, double and string

Page 38 of 57

5 Creating custom modules
In the following the steps that are needed to create a custom module named
nameOfModule are explained. Basic XSD skills are needed to understand how things
work together. Modules are defined in XSD format and should have the basic structure
showed in example 16. To actually create modules the script
helper_scripts/createNewModule.sh can be used and modified by hand as not
all settings can be configured by it.

Alternatively, the newly developed GUI moduleMaker (available at watchdog-
wms/moduleMaker) can be used to automatically extract parameters and flags from a
software help page to more conveniently create the corresponding module. See 2.4 for
installation hints.

Example 16: Basic XSD structure

 1 <?xml version="1.0" encoding="UTF-8" ?>

 2 <x:schema xmlns:x="http://www.w3.org/2001/XMLSchema"

xmlns:vc="http://www.w3.org/2007/XMLSchema-versioning"

vc:minVersion="1.1" xmlns:xerces="http://xerces.apache.org">

 3

 4 ...

 5

 6 </x:schema>

As a first step, a folder with the name nameOfModule must be created in the modules
folder. That folder must contain a file named nameOfModule.xsd which will hold the
actual module definition.

5.1 Input parameter definition
Example 17 shows how input parameters and flags can be defined.

Example 17: Input parameter

 1 <!-- definition of the task parameters -->

 2 <x:complexType name="nameOfModuleTaskParameterType">

 3 <x:all>

 4 <x:element name="parameter1"

type="paramAbsoluteFilePath" minOccurs="1" maxOccurs="1" />

 5 <x:element name="parameter2" type="paramString"

minOccurs="0" maxOccurs="unbounded" />

 6 <x:element name="flag1" type="paramBoolean"

minOccurs="0" maxOccurs="1" />

https://github.com/watchdog-wms/moduleMaker

Page 39 of 57

 7 </x:all>

 8 </x:complexType>

In line 4 and 5 two parameters are defined while line 6 creates a flag. Using the
minOccurs and maxOccurs attributes it can be specified how often a parameter can be
used. Also parameters can have different types which are enforced during the validation
of the XML workflows. Some pre-defined types are

paramBoolean (for flags)
paramString
paramInteger
paramDouble

These types accept by default booleans, strings, integers or doubles but also allow all
values that are substituted by Watchdog. Moreover own parameter types can be defined
as showed in example 18.

Example 18: Input parameter

 1 <!-- module specific parameter types -->

 2 <x:complexType name="paramWait_sleep">

 3 <x:simpleContent>

 4 <x:restriction base="paramString">

 5 <x:assertion test="matches($value, '(${[A-

Za-z_]+})|($(.+))|([[({]($[A-Za-z_]+(,s*){0,1}){0,1}([0-9]+

(,S*){0,1}){0,1}[])}])') or matches($value, '^[0-9]+[smhd]

{0,1}$')" xerces:message="Parameter with name '{$tag}' must

match [0-9]+[smhd]{0,1}." />

 6 </x:restriction>

 7 </x:simpleContent>

 8 </x:complexType>

5.2 Output parameter definition
Optionally a module can return output parameters that can be used for the following
tasks as input. Return parameters must be written to a file in the format
{%VAR_NAME%} TAB {%VALUE%}. The name of the file to write into is automatically
sent to the module by Watchdog using the returnFilePathParameter parameter. If
you want to change this default parameter name see 5.3.

Example 19: Output parameter

 1 <!-- define output parameters which must be written to a

file -->

 2 <x:complexType name="nameOfModuleTaskReturnType">

Page 40 of 57

 3 <x:complexContent>

 4 <x:extension base="taskReturnType">

 5 <x:all>

 6 <x:element name="outputParam1"

type="x:string" />

 7 </x:all>

 8 </x:extension>

 9 </x:complexContent>

10 </x:complexType>

Line 6 in example 19 specifies that the module must return a parameter named
outputParam1 of type x:string. The module itself must ensure that the parameters
are written physically before the module exits or otherwise Watchdog will terminate itself.
In case of a bash script which is executed, two functions named writeParam2File
and blockUntilFileIsWritten defined in core_lib/functions.sh can be used.

5.3 Binary call command and other settings
Now the command that will be executed can be defined. Example 20 specifies that a
script named nameOfModule.sh that is stored in modules/nameOfModule will be
called.

Example 20: Binary call command

 1 <!-- set command and other settings -->

 2 <x:complexType name="nameOfModuleTaskOverrideType">

 3 <x:complexContent>

 4 <x:restriction base="baseAttributeTaskType">

 5 <x:attribute name="binName" type="x:string"

fixed="nameOfModule.sh" />

 6 </x:restriction>

 7 </x:complexContent>

 8 </x:complexType>

In addition to that, the following settings can be modified:

binName: name of the command which should be called
preBinCommand: command that is added before the binName; e.g. interpreter
isWatchdogModule: by default the command must be located in
modules/binName; if this parameter is false the command must point to a absolute
binary or be reachable via the PATH environment variable
returnFilePathParameter: name of the parameter that is used to store the
return values
watchdogModuleVersionParameter: name of the parameter that passes the
module version to the called command if a version different to 1 should be used;

Page 41 of 57

default: moduleVersion (using the default parameter pasing options defined with
the settings below; use an empty string to disable the passing of the module version)
paramFormat: defines how names of parameters are prefixed; (do not print
parameter name, - or --); default: --
spacingFormat: defines how names of parameters and values are spaced;
default: blank
quoteFormat: defines how values are quoted; default: single quoting
separateFormat: defines the separator string between multiple occurrences of the
same parameter; default: ,
versionQueryParameter: parameter of the binName command used to query
software versions of third-party software; is called on the executor after task
execution and stored together with the used parameters in a log file; default: not set

The last three arguments can also be used for each parameter separately.

5.4 Assign a name to the new module
Finally, a name must be assigned to the module. This can simply be done by creating a
element with the attribute name of type nameOfModuleType and
substitutionGroup set to abstractTask. Example 21 shows the needed line for
the example module. Afterwards the type of the task is defined (5-15). If no output
parameters are used line 10 can be omitted.

Example 21: Assign a name to the module

 1 <!-- make task definition availible via substitution group

-->

 2 <x:element name="nameOfModuleTask" type="nameOfModuleType"

substitutionGroup="abstractTask" />

 3

 4 <!-- definition of final task -->

 5 <x:complexType name="nameOfModuleTaskType">

 6 <x:complexContent>

 7 <x:extension

base="nameOfModuleTaskOverrideType">

 8 <x:all>

 9 <x:element name="parameter"

type="nameOfModuleTaskParameterType" minOccurs="1"

maxOccurs="1" />

10 <x:element name="return"

type="nameOfModuleTaskReturnType" minOccurs="0" maxOccurs="0"

/>

11 <x:group ref="defaultTaskElements" />

12 </x:all>

13 </x:extension>

14 </x:complexContent>

15 </x:complexType>

Page 42 of 57

5.5 Putting it all together
Example 22 shows the definition of the complete module.

Example 22: Putting it all together

 1 <?xml version="1.0" encoding="UTF-8" ?>

 2 <x:schema xmlns:x="http://www.w3.org/2001/XMLSchema"

xmlns:vc="http://www.w3.org/2007/XMLSchema-versioning"

vc:minVersion="1.1" xmlns:xerces="http://xerces.apache.org">

 3

 4 <!-- definition of the task parameters -->

 5 <x:complexType name="nameOfModuleTaskParameterType">

 6 <x:all>

 7 <x:element name="parameter1"

type="paramAbsoluteFilePath" minOccurs="1" maxOccurs="1" />

 8 <x:element name="parameter2"

type="paramString" minOccurs="0" maxOccurs="unbounded" />

 9 <x:element name="flag1" type="paramBoolean"

minOccurs="0" maxOccurs="1" />

10 </x:all>

11 </x:complexType>

12

13 <!-- define output parameters which must be written

to a file -->

14 <x:complexType name="nameOfModuleTaskReturnType">

15 <x:complexContent>

16 <x:extension base="taskReturnType">

17 <x:all>

18 <x:element name="outputParam1"

type="x:string" />

19 </x:all>

20 </x:extension>

21 </x:complexContent>

22 </x:complexType>

23

24 <!-- set command and other settings -->

25 <x:complexType name="nameOfModuleTaskOverrideType">

26 <x:complexContent>

27 <x:restriction

base="baseAttributeTaskType">

28 <x:attribute name="binName"

type="x:string" fixed="nameOfModule.sh" />

29 </x:restriction>

30 </x:complexContent>

31 </x:complexType>

32

33 <!-- make task definition availible via substitution

group -->

34 <x:element name="nameOfModuleTask"

type="nameOfModuleTaskType" substitutionGroup="abstractTask" />

Page 43 of 57

35

36 <!-- definition of final task -->

37 <x:complexType name="nameOfModuleTaskType">

38 <x:complexContent>

39 <x:extension

base="nameOfModuleTaskOverrideType">

40 <x:all>

41 <x:element name="parameter"

type="nameOfModuleTaskParameterType" minOccurs="1"

maxOccurs="1" />

42 <x:element name="return"

type="nameOfModuleTaskReturnType" minOccurs="0" maxOccurs="0"

/>

43 <x:group

ref="defaultTaskElements" />

44 </x:all>

45 </x:extension>

46 </x:complexContent>

47 </x:complexType>

48

49 </x:schema>

5.6 Module versions
As parameters of the command that is called by the module might change over time, it is
possible to define different versions of the same module. The version that should be
used during XML validation and workflow execution can be set using the version
attribute each <?Task> tag owns. By default version 1 of each module is used. Be
aware that only one version of the same module can be used within a workflow.

In order to avoid duplication of the complete XSD file, the minimum and maximum
supported module version can be defined for each tag within the XSD file using the
minVersion and maxVersion attributes. If a tag is not part of a particular version, it is
removed with all its childs from the XSD file that is generated dynamically at runtime for
that module version. By using these two attributes the input parameter, the return
parameter, the called command and more can be changed for different module version.
Example 23 shows a part of the featureCounts module. Among other things a
parameter needs to be renamed to support the most recent binary of featureCounts
(11-12).

Example 23: Rename of parameters

 1 <?xml version="1.0" encoding="UTF-8" ?>

 2 <x:schema xmlns:x="http://www.w3.org/2001/XMLSchema"

xmlns:vc="http://www.w3.org/2007/XMLSchema-versioning"

vc:minVersion="1.1" xmlns:xerces="http://xerces.apache.org">

 3

 4 <!-- definition of the task parameters -->

Page 44 of 57

 5 <x:complexType name="featureCountsTaskParameterType">

 6 <x:all>

 7 <!-- attributes common to all versions -->

 8 ...

 9

10 <!-- attributes that differ between

versions -->

11 <x:element name="minOverlap"

type="paramInteger" minOccurs="0" maxOccurs="1" maxVersion="1"

/>

12 <x:element name="minReadOverlap"

type="paramInteger" minOccurs="0" maxOccurs="1" minVersion="2"

/>

13 ...

14 </x:all>

15 </x:complexType>

16 ...

17 </x:schema>

Example 24 shows how a module script can be made version dependent using bash
functions that are delivered with Watchdog. First, the bash variable
${MODULE_VERSION_PARAMETER_NAME} is set to the complete name of the
parameter that is used to pass the module version (e.g. --moduleVersion) (3). After
sourcing of includeBasics.sh the module version is automatically stored in the
${MODULE_VERSION} variable. This information can be used to alter the parameters
and the behavior of the script as an alternative to duplication if differences between
module versions are only minor (15,18).

Example 24: Version dependent bash script

 1 #!/bin/bash

 2 SCRIPT_FOLDER=$(cd "$(dirname "${BASH_SOURCE[0]}")" &&

pwd)

 3 MODULE_VERSION_PARAMETER_NAME="--moduleVersion"

 4 source $SCRIPT_FOLDER/../../core_lib/includeBasics.sh $@

 5 ...

 6

 7 # define parameters

 8 # params used in any version of the module

 9 DEFINE_string 'annotation' '' 'feature annotation in GTF

or SAF format' 'a'

10 DEFINE_string 'input' '' 'index bam file which should be

used for counting' 'i'

11 DEFINE_string 'output' '' 'path to output file' 'o'

12 ...

13

14 # params only available in module version 1

15 if [${MODULE_VERSION} -eq 1]; then

16 DEFINE_string 'minOverlap' '1' '[optional] minimum

Page 45 of 57

number of overlapped bases required to assign a read to a

feature; also negative values are allowed' 'm'

17 # params only available in module version 2

18 elif [${MODULE_VERSION} -eq 2]; then

19 DEFINE_string 'minReadOverlap' '1' '[optional]

minimum number of overlapped bases required to assign a read to

a feature; also negative values are allowed' 'm'

20 ...

21 fi

22 DEFINE_integer 'moduleVersion' '1' '[optional] version of

the module that should be used' ''

23 DEFINE_boolean 'debug' 'false' '[optional] prints out

debug messages.' ''

24 ...

5.7 Requirements to support package manager wrappers
Currently, only the Conda package manager is supported as execution wrapper. A
module that should support the <conda> wrapper must contain a YAML file defining the
Conda environment. The suffix of file the must be .conda.yml to be detected by the
conda wrapper. If a module version requires a different environment, additional files
following the name schema .v[0-9]+.conda.yml can be created.

Example 25: Conda environment file format

 1 channels:

 2 - bioconda

 3 - conda-forge

 4 dependencies:

 5 - coreutils=8.31

 6 - grep=2.14

 7 - samtools=1.10

 8 - sed=4.7

Example 25 shows the Conda environment file for the indexBam module.

In order to use a Conda environment, Conda downloads and installs packages that are
required by the module in a dedicated folder. The folder name is set as the sha256 hash
sum of the *.conda.yml file. If multiple modules have the same requirements and
corresponding Conda environment files are sorted alphabetically, the sha256 hash sum
is the same for the *.conda.yml file. In this case, the corresponding Conda
environment will only be initialized once. If the Conda environment is already available
from a previous workflow run, the existing environment will be loaded. The script
helper_scripts/formatCondaYaml.py can be used to sort Conda environment
files. It recursively finds all *.conda.yml files, sorts channels and dependencies and
saves the sorted file under the original name. The script

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#create-env-file-manually

Page 46 of 57

helper_scripts/installCondaYaml.sh initializes all conda environments located
in a module folder.

5.8 Documentation of modules
Modules can be documented using an XML format that is defined by an XSD schema.
Such an XML module documentation file consists of the main sections <info>,
<parameter> and <return>. The first section is mandatory while the other two are
optional (e.g. for modules that do not require any parameter or do not return variables).

Example 26: XML module documentation format

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <documentation

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="documentation.xsd">

 3 <!-- mandatory fields: author, category, updated,

description -->

 4 <info>

 5 <!-- forename lastname -->

 6 <author>Michael Kluge</author>

 7 <!-- day the module was updated the last time -->

 8 <updated>2019-03-13</updated>

 9 <category>Sequencing</category>

10 <description maxVersion="1" minVersion="1">creates an

index for a BAM file using samtools index</description>

11 <!-- ##### optional ##### -->

12 <!-- website of the dependencies used in this module -

->

13

<website>https://www.htslib.org/doc/samtools.html</website>

14 <!-- short description and PubmedID for the methods

section of a manuscript -->

15 <paperDescription>Samtools (%SOFTWARE_VERSION%) was

used to index the BAM files [Li H, Handsaker B, Wysoker A,

Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, and

1000 Genome Project Data Processing Subgroup, The Sequence

alignment/map (SAM) format and SAMtools, Bioinformatics (2009)

25(16) 2078-9].</paperDescription>

16 <PMID>19505943</PMID>

17 <!-- external dependencies required for that module --

>

18 <dependencies maxVersion="1"

minVersion="1">samtools</dependencies>

19 <dependencies maxVersion="1" minVersion="1">GNU Core

Utilities</dependencies>

20 </info>

21 <!-- ##### optional ##### -->

22 <!-- github usernames of users who should be able to

commit changes to that module -->

Page 47 of 57

23 <maintainer>

24 <username>klugem</username>

25 </maintainer>

26 <parameter>

27 <!-- mandatory fields per parameter: name, type,

description -->

28 <!-- optional fields per parameter: restrictions,

default, minOccurs, maxOccurs, minVersion, maxVersion -->

29 <param maxOccurs="1" minOccurs="1" name="bam"

type="file path" restrictions="absolute">

30 <description>path to the BAM file</description>

31 </param>

32 <param default="true" maxOccurs="1" minOccurs="0"

name="link" type="boolean">

33 <description>creates a link called NAME.bam.bai

because some tool expect the index under that name; use --

nolink to disable it</description>

34 </param>

35 </parameter>

36 <return>

37 <!-- mandatory fields per return variable: name, type,

description -->

38 <!-- optional fields per return variable: minVersion,

maxVersion -->

39 <var name="BAMFile" type="string">

40 <description>path to the BAM file for which the

index was created</description>

41 </var>

42 </return>

43 </documentation>

Example 26 shows the XML documentation file for the indexBam module. The tag
<paperDescription> (15), which is a child of <info>, allows to define the
description used during report generation (see 6.3). This description can also contain
references to parameters of the task (%param_name%) or the software version
(%SOFTWARE_VERSION%).

An XML template for documenting a new module can be generated based on the XSD
module file using the docuTemplateExtractor.jar (see 6.1). Hence, only some
information must be updated or added manually.

5.9 Other matters
Exit codes: The module developer must ensure that a command does only exit with exit
status 0 if the command was executed sucessfully. File core_lib/exitCodes.sh
contains some exit codes which names are also included in mail notifications if they are
used. Custom exit codes can be easily added.

Error messages: Watchdog can detect by default error messages in standard out and

Page 48 of 57

standard error streams if they begin with [ERROR]. The errors are only stored if standard
out and error files are saved to disk using the <streams> tag. If an error was detected
but the exit code was 0 the command will also fail.

Module test: A script named test_nameOfModule.sh can also be part of the module.
It is automatically called, if the user calls helper_scripts/moduleTest.sh. Also the
module folder might contain some test data in the folder test_data. For simple test
cases the bash function testExitCode can be used to test, if an input leads to the
expected output.

Page 49 of 57

6 New features in Watchdog 2.0
In the following the new command-line tools (available in the jars/ subfolder of the
Watchdog installation directory) are described in more detail. All tools can be executed
using java -jar path/to/jar/name.jar -options. The available parameter
and flags can be listed using java -jar path/to/jar/name.jar -help.

Information on module versioning can be found in section 5.6. The newly implemented
execution wrappers are described in 4.4 and requirements modules must fulfil to be
supported by the Conda package manager in 5.7. The graphical user interface for
module creation (moduleMaker.jar) has its own documentation.

6.1 Documentation template extractor
The docuTemplateExtractor command-line tool can be used to extract parameter
and return value information from XSD module files. The program then creates an XML
documentation template file for each module in the corresponding module folder. By
default existing XML documentation files of modules are not overwritten. This can be
disabled with the -overwrite flag. Using the -authors, -maintainer or -
categories parameter, the same author, maintainer or categories can be included in
all created template files.

Example call:
java -jar docuTemplateExtractor.jar -moduleFolder

/path/to/watchog/modules

Moreover, custom extractor plugins can be implemented to extract additional information
like default parameters or descriptions. Currently, parameter extractors for the python
argparse and the Bash shflags library are available. Additional custom extractors
can be added by implementing the Java Extractor interface of the
de.lmu.ifi.bio.watchdog.docu.extractor package. Afterwards a compiled
class file must be added to docuTemplateExtractor, which can be edited with any
ZIP editor. The tool will automatically detected all classes implementing the Extractor
interface.

Information on the module XML documentation format itself can be found in section 5.8.

6.2 Module reference book generator
The module reference book can be created from the XML documentation files using the
refBookGenerator command-line tool.

One ore more path to the parent folder(s) of modules that should be included in the
module reference book must be provided using the -moduleFolder parameter.
Moreover, a path to a folder, in which the module reference book should be stored, must
be specified using the -outputFolder parameter.

https://github.com/watchdog-wms/moduleMaker

Page 50 of 57

Example call:
java -jar refBookGenerator.jar -moduleFolder

/path/to/watchog/modules -moduleFolder /tmp/customModules -

outputFolder /tmp/refBook

6.3 Report generator
A report of the executed steps of a workflow can be automatically created using the
reportGenerator command-line tool. In order to generate a report, these three
parameters are required:

-resume: path to watchdog status log file (alias resume file) from a previous
Watchdog run
-xml: path to the XML workflow file (required for loading the correct module folders)
-outputFile: path to an output file in which the resulting report is stored as text

Example call:
java -jar reportGenerator.jar -xml /path/to/wf1.xml -resume

/path/to/wf1_2019_11_07_11_48_26.watchdog.resume -outputFile

/tmp/report.txt

Additional parameters exist to enable or supress the output of some information or to
modify the output format. The available parameters can be listed using the -help flag.

6.4 Module and workflow validator
The module (moduleValidator) and workflow (workflowValidator) validators can
be used to verify the integrity of modules or workflows respectively.

Both tools require as input the name of a check to perform (parameter -check) and a
folder to apply the check onto (parameter -folder). Please note that only one module
or workflow can be located in the folder. Names of checks that can be performed can be
listed using the -list flag.

Example call:
java -jar moduleValidator.jar -check XSD_VALIDATION -folder

/path/to/watchog/modules/sleep

Additional information on the function of the applied checks can be found online at
watchdog-wms-modules and watchdog-wms-workflows.

6.5 Module and workflow repositories
Watchdog 2.0 now provides two repositories on Github under the watchdog-wms
organization that are dedicated for sharing modules and workflows, respectively, by
other users.

https://github.com/watchdog-wms/watchdog-wms-modules/blob/master/CONTRIBUTING.md#automatic-tests-on-pull-requests
https://github.com/watchdog-wms/watchdog-wms-workflows/blob/master/CONTRIBUTING.md#automatic-tests-on-pull-requests
https://github.com/watchdog-wms/
https://github.com/watchdog-wms/watchdog-wms-modules
https://github.com/watchdog-wms/watchdog-wms-workflows

Page 51 of 57

6.6 New execution modes
Two additional execution modes were implemented to provide more comfort and
flexibility in workflow execution.

The resume mode allows restarting execution of a workflow by (re-)running only tasks
that previously did not run (successfully) or were added or modified compared to the
original execution. With Watchdog 2.0 each execution of a workflow creates a *.resume
file that contains information on successfully finished tasks. With that file the -resume
parameter of the Watchdog scheduler can be used to resume the execution of an
aborted or modified workflow.

Example call:
./watchdog.sh -xml /path/to/wf1.xml -resume

/path/to/wf1_2019_11_07_11_48_26.watchdog.resume

The second mode allows detaching the scheduler from workflow execution without
aborting tasks running on a computer cluster and reattaching to execution at a later time
and/or a different computer. A detach can be requested by pressing CTRL+C during
workflow execution with the command-line version. The GUI provides a button to request
a detach. A successful detach results in an *.attach file, which can be used to reattach to
workflow execution with the new -attachInfo parameter of the Watchdog scheduler.

Example call:
./watchdog.sh -xml /path/to/wf1.xml -attachInfo

/path/to/wf1_2019_11_07_11_48_26.watchdog.attach

6.7 Software version logging
Watchdog 2.0 now implements a general approach for reporting versions of third-party
software used in a module in the log file. For this purpose, a new attribute
(versionQueryParameter) in the module XSD file can be used to define the flag for
version printing of third-party software (see 5.3). During workflow execution, after a task
or subtask has been completed successfully on a particular computer, the program call
defined in the corresponding module is invoked with the version flag on the same
computer to retrieve the installed third-party software version. This software version is
then reported for the task/subtask in the log file and can also be used during report
generation (see 5.8 and 6.3).

Page 52 of 57

7 Extend Watchdog's functionality
In the following sections two different ways to extend Watchdog's functionality are
described.

Virtual File Systems that can be used within task actions (see 7.1)
XML Plugins that add new <?Executor> and <?ProcessBlock> elements (see
7.2)

7.1 Virtual file systems for task actions
With the help of task actions, file system operations can be performed before and after
tasks (see 4.9). By default, virtual file systems based on the protocols File, HTTP,
HTTPS, FTP, FTPS and SFTP as well as the main memory (RAM) are supported. These
virtual file systems are provided by the Commons Virtual File System project of the
Apache Software Foundation.

In order to add a new virtual file system, a class that implements the VFSRegister
interface can be addded to the jar-file. The class will be automatically loaded by
Watchdog and the new virtual file system will be useable without other modifications.
The following four methods must be implemented for the interface:

getFileProvider - must return an instance of the FileProvider interface as
defined in the Commons Virtual File System project
getURLSchemes - returns the url schemes that should be used in combination with
that FileProvider (e.g. ftp)
getMimeTypes - sets schemes that should be used for specific mimetypes
getExtensions - sets schemes that should be used for specific file extension

The class SimpleVFSRegister can be extended if an instance of the FileProvider
class can be created without arguments. Then only the name of the FileProvider
class and the URL schemes that should be used must be defined. Example 27 shows
how the virtual FTP file system is integrated in Watchdog by using the
FtpsFileProvider class of the Commons Virtual File System project.

Example 27: Simple implementation of the VFSRegister interface

 1 package de.lmu.ifi.bio.watchdog.task.actions.vfs.impl;

 2

 3 public class FTPSVFSRegister extends SimpleVFSRegister {

 4

 5 private static final String CLASS_NAME =

"org.apache.commons.vfs2.provider.ftps.FtpsFileProvider";

 6 private static final String[] SCHEME = new String[]

{"ftps"};

 7

 8 public FTPSVFSRegister() throws Exception {

Page 53 of 57

 9 super(CLASS_NAME, SCHEME);

10 }

11 }

7.2 XML Plugins
Watchdog provides a flexible plugin system that allows extending Watchdog by
additional types of executors, process blocks, and execution wrappers without modifying
the original Java classes. Essentially, this means creating a new XML element for use in
Watchdog workflows as well as implementing additional Java classes that provide the
functionality for this element. In brief, you have to do the following to use the plugin
system:

create an XSD file describing the new element and its parent element for use in
Watchdog workflows
Extend a few abstract classes
Add class files for the new classes to the Watchdog jar-file and copy the new XSD
file to a sub-directory of the Watchdog installation directory

In the Watchdog command-line version, all non-abstract classes in the Watchdog jar-file
that extend the XMLParserPlugin abstract class are loaded dynamically during
workflow execution. Currently, this is restricted to XML parsers for the generic type
ProcessBlock, ExecutorInfo, and ExecutionWrapper. The XML parser for a new
XML element provides the functionality to parse this element in a workflow (i.e. a new
executor, process block type, or execution wrapper) and to create a new object
representing the corresponding element type. Here, the four most important functions of
the XMLParserPlugin abstract class that have to be implemented are:

getNameOfParseableTag: returns the name of the element the class can parse
getNameOfParentTag: returns the name of the parent element of this element
getXSDDefinition: returns the path to the XSD file describing this element
(relative to the xsd sub-directory of the Watchdog directory)
parseElement: implements the actual parsing process.

The last function creates an object of a class representing the new element. This class
has to implement the interfaces XMLDataStore and XMLPlugin, for instance by
extending one of the abstract classes ProcessBlock, ExecutorInfo,
ExecutionWrapper, or one of their subclasses.
For use in the Workflow designer GUI of Watchdog, two additional requirements have to
be met:

An FXML file has to be provided describing how the attributes of the new element
type are represented graphically. FXML is an XML-based markup language for
describing the layout of a user interface in a JavaFX application.
Classes extending PluginView and PluginViewController have to be
implemented for testing whether the input is valid and for loading and saving data to
and from XML.

Page 54 of 57

All executors, process blocks, and execution wrapper integrated in Watchdog are using
this plugin system. Hence, examples how to implement a new XML element can be
found in the package de.lmu.ifi.bio.watchdog.xmlParser.plugins of the
Java source code.

https://github.com/klugem/watchdog/tree/master/java_source/de/lmu/ifi/bio/watchdog/xmlParser/plugins

Page 55 of 57

8 Docker
In order to run a Docker image, Docker must be installed and configured correctly as
descibed here.

8.1 Install the Watchdog Docker image
A Watchdog image for Docker can be obtained from hub.docker.com. The image is
rebuild automatically by the Bioconda project once a new version is released on
Bioconda.

You can download the latest version of the image with docker pull

klugem/watchdog-wms. Within the Docker image the environment variable
WATCHDOG_HOME is set automatically to the installation directory of Watchdog (required
for the watchdogBase attribute). The -useEnvBase flag of the command line version
can be used to override the watchdogBase attribute of the XML workflow with the value
stored in WATCHDOG_HOME. Moreover, the installation directory of Watchdog is mounted
under /watchdog within the Docker image.

8.2 Sharing of files
In order to exchange files with the host system, the -v or -mount option of Docker can be
used. These option can be used multiple times.

docker run -v

source_folder_or_file_on_host:destination_folder_or_file[:ro]

image command

More information can be found in the documentation of Docker.

8.3 Port forwarding
In order to use the build-in webserver of Watchdog, the port used by the webserver must
be forwarded to the host running the Docker container.

The command docker run -p 8090:8080 image command maps the container
port 8080 (TCP) to the port 8090 (TCP) on the Docker host. More information can be
found in the documentation of Docker.

8.4 How to use the Docker Watchdog image
The examples within the Docker image are automatically configured when
{%Nwatchdog-cmd%N} is started the first time and are stored in
/watchdog/examples. The command

docker run -h localhost -p 8080:8080 klugem/watchdog-wms

https://docs.docker.com/
https://hub.docker.com/r/klugem/watchdog-wms/
https://bioconda.github.io/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/config/containers/container-networking/#published-ports

Page 56 of 57

watchdog-cmd -useEnvBase -x /watchdog/examples/

example_basic_sleep.xml

executes the example described in 3.2 and forwards the webserver port to the host port
8080.

Alternatively, it is possible to run a workflow that is stored on the host system as
described in 8.2. Ensure that all files used in the workflow are made accessible within
the Docker image.

To start the workflow designer GUI, run docker in interactive mode and allow it to connect
to the local X server. A unix socket located in /tmp/.X11-unix is used to
communicate with the X-server. Moreover, it might be required to allow the container to
access the display using xhost + local:. The command allows all local processes to
connect to the X server.

docker run -e DISPLAY=$DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix -

it klugem/watchdog-wms /bin/bash

Then you can use watchdog-gui to start the workflow designer.

8.5 Use Docker in modules
A Docker image can also be used in a module. The module bowtie2Docker
implements an example module that uses the Docker image of Bowtie 2 that is provided
by Bioconda and hosted on quay.io. The Docker image will be automatically downloaded
if it is not found locally.

Make sure that the Docker daemon is installed and running before you test this example.

Example 28: Example usage of the Bowtie 2 Docker module

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <watchdog xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:noNamespaceSchemaLocation="watchdog.xsd"

watchdogBase="{%INSTALL%}" isTemplate="true">

 3

 4 <settings>

 5 <constants>

 6 <const name="BASE">

{%INSTALL%}/modules/bowtie2Docker/example_data</const>

 7 </constants>

 8 </settings>

 9

10 <tasks mail="{%MAIL%}">

11 <bowtie2DockerTask id="1"

name="bowtie2_in_docker">

12 <streams>

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://bioconda.github.io/
https://quay.io/repository/biocontainers/bowtie2

Page 57 of 57

13

<stdout>/tmp/bowtie2.docker.test.out</stdout>

14

<stderr>/tmp/bowtie2.docker.test.err</stderr>

15 </streams>

16 <parameter>

17

<genome>${BASE}/index/lambda_virus</genome>

18

<reads>${BASE}/reads/reads_1.fq</reads>

19

<reads>${BASE}/reads/reads_1.fq</reads>

20

<outfile>/tmp/bowtie2.docker.test.sam</outfile>

21 </parameter>

22 </bowtie2DockerTask>

23 </tasks>

24 </watchdog>

Example 28 shows how the bowtie2Docker module can be used with the provided
example data. The test data that is shipped with Bowtie 2 is stored in the folder
example_data of the module (6). Log files are written to
/tmp/bowtie2.docker.test.[out|err] (13, 14) while the mapped reads are
stored in SAM format in /tmp/bowtie2.docker.test.sam (20).

