Watchdoy

1 Introduction
2 Install and Configure Watchdog
2.1 Requirements
2.2 Installation
2.3 JAR Files
2.4 E-Mail Server Configuration
2.5 SSH Configuration
2.6 DRMAA Cluster Configuration
3 Watchdog Overview
3.1 Modules
3.2 Basic XML structure
4 Detailed XML format explanation
4.1 Process blocks
4.2 Dependencies
4.3 Execution environments
4.4 Global constants
4.5 Environment variables
4.6 Mail notification
4.7 Standard streams and working_directory
4.8 Task actions
4.9 Simple calculations
4.10 Multiple module search folders
4.11 Custom success and error checker
5 Creating_custom modules
5.1 Input parameter definition
5.2 Output parameter definition
5.3 Binary call command and other settings
5.4 Assign a name to the new module
5.5 Putting it all together
5.6 Module versions
5.7 Documentation of modules
5.8 Other matters
6 New features in Watchdog 2.0
6.1 Documentation template extractor
6.2 Module reference book generator
6.3 Report generator
6.4 Module and workflow validator
6.5 New execution modes
6.6 Software version logging
7 Extend Watchdog's functionality
7.1 Virtual file systems for task actions
7.2 XML Plugins

Page 1 of 50

http://www.how-to-draw-funny-cartoons.com/free-images-ebooks.html

8 Docker
8.1 Install the Watchdog Docker image
8.2 Sharing of files
8.3 Port forwarding
8.4 How to use the Docker Watchdog_image
8.5 Use Docker in modules

Page 2 of 50

1 Introduction

Here, we present Watchdog, a WMS for the automated and distributed analysis of large-
scale experimental data. Watchdog is implemented in Java and is thus platform-
independent.

Main features include:

straightforward processing of replicate data

support for distributed computer systems

remote storage support

customizable error detection

manual intervention into workflow execution

a GUI for workflow construction using pre-defined modules

a helper script for creating new module definitions

no restriction to specific programming languages

provides a flexible plugin system for extending without modifying the original sources

New features in Watchdog 2.0:

[new] execution: executed only altered or unfinshed tasks

[new] execution: detach from workflow execution and attach later on
[new] execution: custom before and after command script

[new] graphical user interface for module creation

[new] documentation: documentation format for modules

[new] documentation: generation of module reference book

[new] documentation: documentation template generator

[new] reporting: introduced module versions

[new] reporting: retrieval of third-party software versions

[new] reporting: basic workflow execution reporting

[new] sharing: community platform for sharing of modules and workflows

Page 3 of 50

2 Install and Configure Watchdog

2.1 Requirements

Watchdog is platform independent as it is written in Java and requires JRE (Java Runtime
Environment) 11 or higher (the GUI is build on JavaFX that is not part of any JRE builds).
Most Watchdog modules require a Unix based system and were tested on SUSE Linux.
They might not run without any changes on other Unix systems or Windows but users can
define custom modules that are compatible with their installed software and operating
system. Each of the modules might require additional software to be installed. These
requirements can be checked for the modules that are delivered with Watchdog with the
help of helper scripts/dependencyTest.sh as described below.

2.2 Installation

The installation of Watchdog is very easy. After downloading, extract the provided archive
into a folder of your choice (either using tar xfvz watchdog.tar.gz OF unzip
watchdog.zip depending on which archive you downloaded). The folder must be
accessible for remote or cluster executors if you plan to use some. Alternatively Watchdog
can be installed automatically via conda using conda install -c bioconda
watchdog-wms. In that case the binaries are named watchdog-cmd and watchdog-
gui while the rest of the files is located in S$S{PREFIX}/share/watchdog-
wms—5{VERSION}. If you want to use Watchdog with Docker, read section 8.

Modules previously delivered with Watchdog are now located at the community github
repository watchdog-wms/watchdog-wms-modules. Thus, as a next step you should
download Watchdog modules from the community github repository and extract them into
the modules/ folder of the Watchdog directory. Alternatively, you can run
modules/downloadCommunityModules . sh from the Watchdog directory.

In the next few lines the content of each folder is explained:

» core_lib: some core functions that can be used in bash module scripts

« documentation: contains Watchdog's documentation in HTML- and PDF-format
» examples: contains the examples that are also presented in the documentation
 helper_scripts: scripts for generating new modules, configure the examples or testing
of all modules

jars: runnable JAR-files that are build from Watchdog's source code
java_external_lib: external libraries

java_source: Watchdog's source code

modules: module folder that is used by default in workflows

test_data: contains some test data that is used by multiple modules

tmp: is used for Watchdog's temporary files

webserver_data: data which is accessed by the internal webserver

xsd: definition of the module and workflow in xsd format

Page 4 of 50

https://github.com/watchdog-wms/watchdog-wms-modules
https://github.com/watchdog-wms/watchdog-wms-modules

The script helper scripts/dependencyTest.sh can be used to test if software
required by modules using a wrapper bash script is available via the PATH variable. For
this purpose, software requirements have to be provided in the sUSED TOOLS variable of
the bash script. In addition, availability of R and perl packages that are used in scripts are
checked. During workflow execution availability of required software is also checked.

In order to test if all modules that provide tests work as expected on your system you can
run helper scripts/moduleTest.sh. If you want to test the examples which are
discussed in this manual, you can configure them by running:

helper scripts/configureExamples.sh -1
/path/to/install/folder/of/watchdog [-m your@mail-adress.com] (mail
attribute (-m) is optional, see 2.4 for E-mail server configuration)

Afterwards the configured examples will be located in
/path/to/install/folder/of/watchdog/examples/ and can be executed (from
the watchdog installation directory) using the following command: . /watchdog.sh -x
examples/filename.xml or alternatively java -jar jars/watchdog.jar -x
examples/filename.xml

For instance: ./watchdog. sh -x
examples/workflowl basic information extraction.xml

If you want to use the workflow designer (GUI), you can start it by using (from the
watchdog installation directory): . /workflowDesigner. sh or alternatively java -jar
jars/WatchdogDesigner. jar

2.3 JAR Files

These runnable JAR-files (except moduleCreator.jar) are shipped together with Watchdog
in the jars/ subdirectory of the Watchdog installation folder.

 watchdog. jar: command-line tool that executes Watchdog workflows

e watchdogDesigner.jar: graphical user interface for workflow design and
execution

« moduleMaker. jar: provides a graphical user interface for module creation

e docuTemplateExtractor. jar: generates templates for module documentation

e refBookGenerator. jar: creates a module reference book based on a set of
modules

e« reportGenerator. jar: basic reporting of steps performed during execution of a
workflow

e moduleValidator. jar: command-line tool that can be used to verify integrity of
modules

e workflowValidator. jar: command-line tool that can be used to verify integrity
of workflows

More information on how to use these programmes can be found in the manual in section
6. Please note that the ModuleCreator is not shipped with Watchdog but can be

Page 5 of 50

obtained by running helper scripts/downloadModuleMaker.sh located in the
Watchdog installation directory. See watchdog-wms/moduleMaker for more information.

2.4 E-Mail Server Configuration

As Watchdog will send e-mails it needs a working mail configuration. If you don't want
Watchdog to send e-mails, simply don't use the mail attribute of the <tasks> tag. In that
case the content of the mails with be printed to the standard output stream.

By default a server listening on SMTP port 25 is expected that accepts mails without
authentication. In order to use another configuration the parameter -mailcConfig of
Watchdog can be used. It expects a tab-separated file that contains information on how to
connect to the mail server using the SMTP protocol. If the mail server expects some
authentication we strongly suggest to use a mail account that was explicitely created for
the use with Watchdog as the password is stored unencrypted.

Example 1: Example mail config for a gmail account

mail.smtp.auth true

mail.smtp.host smtp.googlemail.com
mail.smtp.port 587

mail.smtp.user johns watchdoglgmail.com
mail.smtp.pw ro9x741 (klsab
mail.smtp.from johns watchdoglgmail.com
mail.smtp.starttls.enable true

N oy Ok W N

Example 1 shows a configuration for a gmail account. More information about the
variables that can be used can be found here. An template mail config file that can be
edited can be found in examples/mail config once the examples are configured as
described above.

2.5 SSH Configuration

Watchdog supports execution of tasks via ssh on remote hosts. In order to use that
feature a private ssh key must be provided. It is strongly recommended that the private
key is protected by a passphrase. In that case the passphrase must be entered after
Watchdog was started and will be hold encrypted in memory until the passphrase is
needed.

A key pair that can be used for ssh authentification can be generated using the tool ssh-
keygen that is part of openssh. If you need further information you can find many online
tutorials that explain how to use a private key for ssh authentication. E.g. How To Set Up
SSH Keys and SSH/OpenSSH/Keys

2.6 DRMAA Cluster Configuration

Page 6 of 50

https://github.com/watchdog-wms/moduleMaker/blob/master/README.md
https://javamail.java.net/nonav/docs/api/com/sun/mail/smtp/package-summary.html
https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys--2
https://help.ubuntu.com/community/SSH/OpenSSH/Keys

Watchdog supports cluster solutions which provide a DRMAA java binding. By default it is
bundled with a DRMAA binding for the sun grid engine (SGE 6.1).

The following environment variables must be set correctly in order to communicate with
the SGE:

« SGE_ROQOT: path to the installation folder of the SGE
« LD LIBRARY_PATH: path to the library path of the SGE; in most cases it will be
$SGE ROOT/1ib/1x24-amd64 or SSGE ROOT/1ib/1x24-x86

Basically there are two ways to change the default cluster extension in order to use
another DRMAA solution than the SGE:

» dynamically by adding arguments to the jar invocation:
1. set class name of DRMAA Sessionfactory via -
Dorg.ggf.drmaa.SessionFactory=classname
2. add DRMAA java binding to class path via -cp
/path/to/drmaalmplementation. jar
« permanently by changing Watchdog's jar file:
1. jar files can be opened and edited with every tool that supports zip files
2. replace name of DRMAA Sessionfactory stored in /META-
INF/services/org.ggf.drmaa.SessionFactory

3. add class files of the DRMAA java binding to Watchdog's jar file

Probably further settings are needed which depend on the used DRMAA library.
Alternatively, binary-based executors can be used, which are currently implemented for

SLURM and SGE. The required control binaries must be accessible via the SPATH
variable.

Page 7 of 50

3 Watchdog Overview

3.1 Modules

Modules represent re-usable components that perform certain tasks, e.g. compression of
files or creating histograms. Watchdog is delivered with a set of predefined modules.
Additionally the user has the possibility to define own modules as described in section 5.
The modules are stored in the modules directory located in the root folder of the
Watchdog installation. Each module is stored in its own folder and consists at least of an
XSD file with the name of the module. The XSD file contains a definition of the parameters
which can be set in the XML format and the tools which are executed in the background
when the module is used.

Example 2: XSD definition of the sleep module

1

2 <x:schema xmlns:x="http://www.w3.0rg/2001/XMLSchema"
xmlns:vce="http://www.w3.0rg/2007/XMLSchema-versioning"
vc:minVersion="1.1" xmlns:xerces="http://xerces.apache.org">

4 <!-- definition of the task parameters -->

5 <x:complexType name="sleepTaskParameterType'>

6 <x:all>

7 <x:element name="wait" type="paramWait sleep"
minOccurs="1" maxOccurs="1" />

8 </x:all>

9 </x:complexType>

10

11

12

13 <!-- make task definition availible via substitution
group —->

14 <x:element name="sleepTask" type="sleepTaskType"
substitutionGroup="abstractTask" />

15

16 <!-- module specific parameter types -->

17 <x:complexType name="paramWait sleep">

18 <x:simpleContent>

19 <x:restriction base="paramString">
20 <x:assertion test="matches ($Svalue,
"(${[A-Za-z_]+1H) 1 (S(.H)) I ([[({](S[A-Za-z_]+(,s*){0,1}){0,1}([0-
914+ (,S*){0,11){0,1}[1)}1)") or matches (Svalue, '""[0-9]+[smhd]
{0,1}$")" xerces:message="Parameter with name '{S$tag}' must match
[0-9]+[smhd] {0,1}." />
21 </x:restriction>
22 </x:simpleContent>
23 </x:complexType>

Page 8 of 50

24
25 </x:schema>

Example 2 shows parts of the XSD definition of a module which are important to know for
the user. At the beginning parameters and flags which are accepted by the module are
defined in an element named sicepTaskParameterType (5-9). In this case only one
parameter named wait is defined that must occur exactly once (7). The type of the
parameter is specified at the bottom of the example (17-23). In this case the parameter is
a string that must match a regex pattern, which first accepts numbers followed by a letter
as optional suffix (19-21). Additionally values that are placeholders for constants or
variables are allowed by the first matches () function whereby the user must take care
that the replaced value is valid with regard to the second part of the specification (20).

The attribute name of the element in line 14 defines how the module can be referenced in
the XML file. In this example the module can be called using the name siecepTask.

3.2 Basic XML structure

Tasks which should be executed by Watchdog must be defined in an XML file. In the
following the structure of the XML file is presented. The expression <?Task> is used to
refer to a task which is not further specified. In general this syntax is used if some
attributes are valid for all classes that inherit from that class type. Within the following
examples these variables are user-specific and contain therefore no concrete values:

{%INSTALL%} - path to the root installation directory of Watchdog
{%MAIL%} - email adress of the user
{%EXAMPLE_DATA%} - path to the folder in which the example data is located

You already have configured your examples by caling the script
helper scripts/configureExamples.sh as described in 2.

Example 3: Most basic XML input for Watchdog

1

2 <watchdog xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:noNamespaceSchemal.ocation="watchdog.xsd"
watchdogBase="{%$INSTALLS}" isTemplate="true">

3
4 <!-- begin task block and use that mail to inform the
user on success or failure -->
5 <tasks mail="{%MAIL%}">
6
7 <!-- definition a simple sleep task -->
8 <sleepTask 1id="1" name="sleep">
9 <parameter>
10 <wait>30s</wait>
11 </parameter>
12 </sleepTask>

Page 9 of 50

13
14

Example 3 shows a most basic XML file that contains only a single task named sleep.
Every XML file that should be parsed by Watchdog must contain a <watchdog> element
as root element (2). The attribute watchdogBase of it must refer to the folder in which
Watchdog was installed. The attribute isTemplate prevents Watchdog from executing
workflows that contain variables that must be set by the user and is removed
automatically by the configure script. Afterwards as childs of <tasks> the tasks which
should be executed must be defined (5). Each task must contain an id and name attribute
(8). With the <parameter> element, values can be assigned to the parameters of the
task, which have to be specified in the XSD file of the module. Flags are activated by
using <flagName>true</flagName> or <flagName>1</flagName> while parameters

</tasks>

</watchdog>

can be set with <paramName>va] ue</paramName> (10).

Table 1: Attributes in the context of Watchdog

element attribute type function
<watchdog> | watchdogBase |string path to the install path of watchdog
<watchdog> | isTemplate boolean sgi;lﬁﬁ-ts Watchdog from executing unconfigured workflow templates;
. false
<tasks> [mail] string mail which is used for notification; if not set, the content of the mails with
be printed to the standard output stream; default: not set
<tasks> [projectName] |string |name of the complete process; default: not set
. . numeric id of the task; if not set all id's will be automatically generated;
<?Task> [id] integer
default: not set
<?Task> name string | name of the task
<?Task> [processBlock] |string processBlock as source of varying parameters (see 4.1)
<?Task> [executor] string | execution environment on which the task is executed (see 4.3)
<?Task> [environment] |string |use globally defined environment variables (see 4.5)
<?Task> [maxRunning] |integer |maximal number of simultaneously running tasks; default: not restricted
notification of the user via mail on success; enabled: release complete
<?Task> [notify] enum |[task at once when all subtasks are finished; subtask: release every
subtask separately; default: disabied (see 4.6)
does not schedule tasks which depend on this task until manually
<?Task> [checkpoint] |enum released by thg user, enabled: release complete task at once when all
subtasks are finished; subtask: release every subtask separately; default:
disabled
allows the user to modify the parameters before the task is scheduled;
<?Task> [confirmParam] |enum |enabled: task will not be scheduled until the user checks the parameter;
default: disabied
. . version of the module that should be used for that task; default: 1 (see
<?Task> [version] integer 5.6)
<?Task> [posX] integer |x coordinate for display in GUI; default: not set
<?Task> [posY] integer |y coordinate for display in GUI; default: not set

In the following sections the structure of the XML format is described in greater detail.

Page 10 of 50

4 Detailed XML format explanation

In the following sections the complete range of functions of Watchdog's XML format is
explained. The following elements must be defined as child elements of the <settings>
element before the <tasks> element begins and are valid within the complete XML file:

» <processBlock> - process a task with varying parameters (see 4.1)

» <executors> - define different executor environments (see 4.3)

» <constants> - defines constants that substitute placeholders (see 4.4)
» <environments> - define or update environment variables (see 4.5)

» <modules> - define multiple module include directories (see 4.10)

Apart from the <parameter> element, the following elements are allowed in <?Task>
elements:

» <environment> - define or update environment variables (see 4.5)

» <dependencies> - define dependencies between tasks (see 4.2)

« <streams> - define location of standard streams and set a working directory (see
4.7)

» <checkers> - usage of custom success or error checkers (see 4.11)

» <actions> - define task actions that are performed before or after tasks execution
(see 4.8)

4.1 Process blocks

Watchdog is able to process multiple tasks of the same type, which differ only in some
parameter values, without the need to define all of these tasks separately. This function is
referred to as process blocks while the tasks created by an process block are called
subtasks of the task. There are four different possibilities to define process blocks as
childs of the <processBlock> element:

» <processSequence> - argument is numeric

» <processFolder> - argument is a path to a file

» <processInput> - multiple arguments obtained from dependencies

« <processTable> - multiple arguments stored in a tab-separated file with names of
variables stored in the first line

When the <processBlock> attribute of a task is set the argument of the process folder
or sequence is substituted at run time within <parameter>, <streams>, <checkers>,
<actions> and <environment> elements in the following manner:

» <processSequence> - [[/{}/() -> number

» <processFolder> - {} -> absolute path to the file

» <processFolder> - () -> absolute path to the parent folder of the file

e <processFolder> - [] -> name of the file

» <processFolder> - [n]/{n} -> n suffixes of the filename are truncated using . as
separator

Page 11 of 50

» <processFolder> - (n) -> n suffixes of the parent folder are truncated using / as
separator

e <processFolder> - ([{n,sep}]) -> suffixes of the value are truncated using sep as
separator (might also be a regex)

» <processTable> - ([{sCOL NAME}]) -> value stored in the column named
SCOL NAME

e <processTable> - ([{$COL NAME,n,sep}]) -> value stored in the column named
$CcoL NAME but with suffix truncation as described above

e <processInput> - ([{SRET NAME}]) -> return value of a dependency with the name
SRET NAME

e <processInput> - ([{SRET NAME,n,sep}]) -> return value of a dependency with the
name sRET NAME but with suffix truncation as described above

If a task depends on two tasks, which return variables with the same name, the return
value of the task with the smaller id will be overwritten. Deviating from this, return values
from separate dependencies will overwrite the ones from global dependencies if both use
the same name for a variable.

Example 4: Definition of different process blocks

1

2 <watchdog xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:noNamespaceSchemalocation="watchdog.xsd"
watchdogBase="{%$INSTALLS}" isTemplate="true">

3

4 <settings>

5 <!-- definition of different process blocks -->

6 <processBlock>

7 <processSequence name="qualities" start="1"
end="9" step="2" />

8 <processFolder name="specialFiles" folder="
{SEXAMPLE DATA%}/spec/" pattern="*.spec" />

9 <baseFolder folder="{%EXAMPLE DATA%}/">
10 <processFolder name="txtFiles"
folder="txt/" pattern="*.txt" />
11 <processFolder name="txtFiles"
folder="other txt/" pattern="*.txt" append="true" maxDepth="1" />
12 <processFolder name="gzFilesg"

folder="txt zipped/" pattern="*.gz" disableExistenceCheck="true"
/>

13 <processTable name="sleepTable"
table="processTable.input.txt" />

14 </baseFolder>

15 </processBlock>

16 </settings>

17

18 <tasks mail="{%SMAIL%}">

19 <!-- compress all files with *.txt ending in
/some/base/folder/TXT -->

20 <gzipTask id="1" name="compress files"

Page 12 of 50

processBlock="txtFiles" checkpoint="enabled">

21 <parameter>

22 <input>{}</input>

23 <output>

{SEXAMPLE DATA%}/txt zipped/[1l].gz</output>

24 </parameter>

25 </gzipTask>

26

277 <!-- test quality wvalues 1,3,5,7 and 9 -->
28 <gzipTask 1d="2" name="quality test"
processBlock="qualities" checkpoint="subtask">

29 <dependencies>

30 <depends>1</depends>

31 </dependencies>

32 <parameter>

33 <input>
{%EXAMPLE_DATA%}/txt/txtFilel.txt</input>

34 <output>

{$EXAMPLE DATA%}/qualityTest/txtFilel g[].gz</output>
35 <quality>[]</quality>

36 </parameter>

37 <environment>

38 <var name="QUALITY">{}</var>
39 </environment>

40 </gzipTask>

41

42 <!-- sleep tasks which are created based on a
process table —-->

43 <sleepTask 1d="3" name="table sleep"
processBlock="sleepTable">

44 <dependencies>

45 <depends>2</depends>

46 </dependencies>

47 <streams>

48 <stdout>{S0OUT, 1l}</stdout>
49 </streams>

50 <parameter>

51 <wait>{SDURATION}</wait>

52 </parameter>

53 <environment>

54 <var name="IMPORTANT ID RAW">
[$IMPORTANT_ID]</var>

55 <var
name="IMPORTANT_ID_CALC">$([$IMPORTANT_ID]*3)</Var>
56 </environment>

57 </sleepTask>

58 </tasks>

59 </watchdog>

Page 13 of 50

Example 4 shows three different ways how process blocks can be specified. First a
<processSequence> named qualities is defined that creates the
numbers 1,3,5,7 and 9 (7). In the next line a <processFolder> is defined that will
process all files stored in {2EXAMPLE DATA%}/spec that end with .spec (8). The
syntax which must be used in the pattern attribute is the same as in bash. If a
<processFolder> is a child element of a <baseFolder>, the folder attribute of the
<processFolder> will be prefixed with the folder attribute of the <baseFolder>
(9-14). The attribute disableExistenceCheck that is enabled for the
<processFolder> with the name gzFiles causes Watchdog not to force the existence
of the folder when it is started (12).

The task with id 1 will compress all . txt files in the folders {$EXAMPLE DATA%}/txt
and { SEXAMPLE DATA%}/other txt and store them in
{ SEXAMPLE DATA%}/txt zipped (20-25). Whereas, the task with id 2 will compress a
file with different quality values (28-40). The compressed files will be stored with
txtFilel g as prefix and the used quality as suffix in
{ EXAMPLE DATA%}/qualityTest (34). Additionally, an environment variable with the
name QUALITY is set which also contains the set quality (38). The sleep task at the end
of the example shows how the colums of a <processTable> can be used as
input (43-57). If the variable is of numeric type it can also be used within simple
calculations which are presented in 4.9 (55).

Table 2: Attributes in the context of process blocks

element attribute type function
<?ProcessBlock> |name string |is used as reference in the processBlock attribute of a task
<?Task> processBlock string |name of a <?ProcessBlock> element
if set to true, two or more process blocks of the same type can be
<?ProcessBlock> | [append] boolean | merged; supported by processSequence and ProcessFolder;
default: raise
<processSequence> |start double [inclusive start of the numeric series
<processSequence> | [step] double r71umber that is added until the value is greater than end; default:
<processSequence> | end double |[break condition, might be inclusive
<processFolder> |folder integer |absolute or relative to a <baseFolder> path to a folder
<processFolder> |pattern string pattern selecting files that should be substituted; syntax as in
bash
. . files matching that pattern will be ignored; syntax as in bash;
<processFolder> | [ignore] string
default: not set
[disable i . . .
<processFolder> . boolean | folder must not exist when Watchdog is started; default: raise
ExistenceCheck]
a positive integer will cause that naxpepth levels of subdirectories
<processFolder> | [maxDepth] integer |are traversed while by default only the parent folder is processed;
default: o
<baseFolders folder string absolute path whl_ch is used as prefix before the path of the
<processFolder> is added
<baseFolders [maxDepth] integer see description of <processFolder> [maxDelpth], if both are set,
the value of the <processFolder> element is set; default: o
<processTable> table string path _to a tab-separated file with header; the column names must
consist out of [A-Za-z_]
[disable 2
<processTable> Exi boolean |table file must not exist when Watchdog is started; default: raise
xistenceCheck]

Page 14 of 50

element attribute type function
<processTable> [compareName] column gzrpneenfﬂhearfcsizg'ucljig iﬁssgn:?)l(;?;nl?:ée names of separate
<processInput> cep string separator which is used to join multiple values of global
dependencies together; default: :
<processInput> [compareName] |string name of return value that should be used to compare names of
separate dependencies; default: name of precursor node

4.2 Dependencies

By default all tasks specified in the XML document are independent from each other. That
implies that all tasks are scheduled at the same time if no other constraints exist. It is
possible to define dependencies between tasks using the <depends> element that
expects as value the id or name of an already defined task. The element must be a child
of a <dependencies> element. Without any arguments the task will not be scheduled
until all (sub)tasks of the dependencies have finished successfully. By setting the
separate argument to true a subtask can depend only on the corresponding subtask
the task depends on. This option is only meaningful if both tasks are process block tasks
and work on the same input set or a transformed version of it.

Example 5: Definition of dependencies

1

2 <watchdog xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:noNamespaceSchemalocation="watchdog.xsd"
watchdogBase="{%$INSTALLS}" isTemplate="true">

3

~J O U1

8

<settings>
<!-- definition of two process folders -->
<processBlock>
<baseFolder folder="{%EXAMPLE DATA%}/">
<processFolder name="txtFiles"

folder="txt/" pattern="*.txt" />

9

<processFolder name="gzFiles"

folder="txt zipped/" pattern="*.gz" disableExistenceCheck="true"

/>
10
11
12
13
14
15
16
17
18
19
20
21
22

</baseFolder>
</processBlock>
</settings>

<tasks mail="{%SMAIL%}">

<!-- definition a simple sleep task —-->
<sleepTask id="1" name="sleep">
<parameter>
<wait>30s</wait>
</parameter>
</sleepTask>
<!-- compress all files with *.txt ending in

/some/base/folder/TXT —-->

Page 15 of 50

23 <gzipTask id="2" name="compress"
processBlock="txtFiles">

24 <parameter>

25 <input>{}</input>

26 <output>

{SEXAMPLE DATA%}/txt zipped/[1l].gz</output>

27 </parameter>

28 <!-- dependency definition -->

29 <dependencies>

30 <depends>1</depends>

31 </dependencies>

32 </gzipTask>

33

34 <!-- decompress all files with *.gz ending in
/some/base/folder/TXT ZIPPED -->

35 <gzipTask 1d="3" name="decompress"
processBlock="gzFiles">

36 <parameter>

37 <input>{}</input>

38 <output>

{$EXAMPLE DATA%}/txt decompressed/[1l].txt</output>

39 <decompress>true</decompress>
40 </parameter>

41 <!-- dependency definition -->

42 <dependencies>

43 <depends separate="true" prefixName="
[1]">2</depends>

44 </dependencies>

45 </gzipTask>

46 </tasks>

47 </watchdog>

In example 5 a compress task with id 2 is defined which depends on the before defined
sleep task (23-32). Additionally, a task, which will decompress the compressed files
immediately after the compression is finished, is defined (35-45). In order to achieve this
behavior the separate attribute is set to true (43). Because the . txt ending of the
original flename was cropped and a .gz ending was added, only the first part of the
filename is considered as specified in the prerixName attribute (26,43).

Table 3: Attributes in the context of dependencies

element attribute type function
<dependencies> parent of <depends> elements and child of <?Task>
<depends> integer |already defined task id on which the task should depend on
<depends> [separate] | boolean if set to true each subtask depends only on its corresponding subtask;

default: raise

if set to true a executor in slave mode will wait until all tasks with that id,
<depends> [keep4slave] | boolean |which are running on that slave, are finished; only valid for separate
dependencies; default: raise

Page 16 of 50

element attribute type function

only meaningful if separate is set to true; defines in which manner the
variables of the two process blocks must be equal to each other:
[)/[0]: complete variables of the subtasks are compared

<depends> (prefixiane] | [[0-9F [n]: it is checked if the variable of a subtask begins with the prefix of the
finished subtask this task depends on; the first » parts are taken was
prefix whereby '." is used as separator; default: /;

<depends> [sep] string |separator which is used together with prefixName; default: .

4.3 Execution environments

By default the tasks are executed one after the other locally on the host which runs
Watchdog. It is possible to define different execution environments using the
<executors> element. Possible environments:

» <local> - task is executed on the local host

o <remote> - task is executed on a remote host using ssh

» <cluster> - task is executed on a computer cluster using DRMAA

» <sge> - task is executed on a SGE computer cluster using control binaries

» <slurm> - task is executed on a SLURM computer cluster using control binaries

Example 6: Definition of different execution environments

1

2 <watchdog xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:noNamespaceSchemal.ocation="watchdog.xsd"
watchdogBase="{$INSTALLS}" isTemplate="true">

3

4 <settings>

5 <!-- examples of different execution environments
-—>

6 <executors>

7 <local name="localhost" maxRunning="2" />

8 <sge name="defaultCluster" default="true"
memory="1G" beforeScripts="ulimitMemory.sh" queue="short.g" />

9 <sge name="highPerformanceCluster" slots="4"
memory="3G" maxRunning="4" queue="short.q" />
10 <remote name="superComputer"

user="mustermann" host="superComputer"
privateKey="/path/to/private/auth/key" port="22"
disableStrictHostCheck="false" />

11 </executors>

12 </settings>

13

14 <tasks mail="{SMAILS}">

15 <!-- execute this task on the localhost -->
16 <sleepTask i1d="1" name="sleep"
executor="localhost">

17 <parameter>

18 <wait>30s</wait>

Page 17 of 50

19 </parameter>
20 </sleepTask>

21 </tasks>

22 </watchdog>

In example 6 four different execution environments are defined as childs of the
<executors> element (6-11). Tasks scheduled on first executor will run on the host on
which Watchdog was started (7).

The executor with the name defaultCluster is used by default and runs on the
short.qg queue of the computer cluster (8). Before the actual module command is
executed on that executor, the commands stored in the before script ulimitMemory.sh
are executed. If a relative path is given, the script must be located in
core lib/executor scripts. In this example the script will enforce that the
requested memory is not exceeded using the u1imit command.

The next executor is reserved for high performance tasks because it reserves 4 slots on
the cluster with each slot consuming three gigabyte of main memory (9). In order not to
occupy the complete computing power the attribute maxRunning is set to four which
means that a maximum of four tasks will run simultaneously on that execution
environment.

In line 10 an example for a remote executor is given which executes tasks via ssh using a
host named superComputer

Afterwards the same sleep task is defined as in the first example and will run on the local

executor (16). The other executors can be tested once you adapted them to your local
infrastructure (see 2.5 and 2.6).

Table 4: Attributes in the context of execution environments

element attribute type function
<?
name string |is used as reference in the executor attribute of a task
Executor>
<?Task> |executor string |name of a <?Executor> element

<? environment with that name is used as default environment;

Executor> [environment] strlng default: not set

<? defines which execution environment is taken as default;
[default] boolean

Executor> default: raise

<? . . number of tasks that can run at the same time; default: not
[maxRunning] |nteger .

Executor> restricted

<2 [workingDiz] string working directory to which the executor switches before task

Executor> eXGCUﬁOﬂ;defaU”:/usr/local/storage/

activates slave mode for that executor which means that tasks
[stickToHost] boolean |that depend on each other are executed on the same execution
host; default: raise

<?
Executor>

number of tasks that can run at the same time on a slave if
stickToHost is enabled; default: 1

<?

Executors | [MaxSlaveRunning] integer

Page 18 of 50

element attribute type function
<? . path to java binary which is used for slave mode execution;
Executor> [pathToJaval strlng default: /usr/bi n/java
< shebang, which is used if a temporary script is build that defines
Executor> | [Shebang] string | environment variables or before/after script commands; default:
#!/bin/bash
<« path to a script containing commands that are executed before
Executors | [Peforescripts] string thg actual module command; multiple scripts can be provided by
using ":' as separator; default: not set
- path to a script containing commands that are executed after
Executors | [2ftersScripts] string | the actual module command; multiple scripts can be provided by
using "' as separator; default: not set
<remote> |user string | name of the user on the remote host system
name of the host which should be used for execution; multiple
<remote> |host string | hostnames must be separated by ';' - in that case the
maxRunning argument is applied on each host separately
<remote> |privatekey string path the to private ssh auth key; should be protected by a
passphrase!
<remote> | [port] integer |port which is used for the ssh connection; default: 22
<remote> | [disableStrictHostCheck] | boolean disables the validation of the public key of the host; not
recommended!; default: raise
. additional parameters that are directly passed to the DRMAA
<cluster> | [customParameters] strlng . .
system without further processing; default: not set
<sge> [slots] integer numbe.r of cores which are reserved on the computer cluster;
default: 1
<sge> [memozy] string memor.y’per slot suffixed with M (megabyte) or G (gigabyte);
default: 3000
. queue on which the tasks should run on the computer cluster;
<sge> faueue] string default: not set
<sge> [disableDefault] boolean | default parameters are ignored; default: raise
<sge> [customParameters] strin additional parameters that are directly passed to the SGE
g 9 system without further processing; default: not set
<slurm> |cluster string | cluster to communicate with; default: not set
. number of cores which are reserved on the computer cluster;
<slurm> [cpul integer .
default: 1
<slurm> | [memory] string memory per slot suffixed with M (megabyte) or G (gigabyte);
default: 3000m
s . partition of the cluster on which the job should be executed;
<slurm> [partition] strlng
default: not set
<slurm> |[timelimit] string | maximum time the task will require to complete; default: 0-12:0
<slurm> | [disableDefault] boolean | default parameters are ignored; default: raise
<slurm> | [customParameters] string additional parameters that are directly passed to the SLURM

4.4 Global constants

A constant can be defined globally using the <const> elements which must be a child of
a <constants> element. The parent element itself must be a child of the <settings>
environment. Every <const> element must own a unique name which is set with the
name attribute. The value of the constant is stored between the opening and closing
element tag. s{NAME OF CONSTANT} is substituted with the corresponding constant in
every attribute or text content. Only the watchdogBase attribute of <watchdog>, the
default attribute of <?Executor> and the <id> attribute of <?Task> and within

system without further processing; default: not set

Page 19 of 50

<depends> elements can not be substituted.

Currently, there are two pre-defined constants. The first is named s/TMP} and is
substituted within <?Task> tags with the working directory of the executor that will
execute the task. The second is named ${wr PARENT} and is replaced with the parent
folder containing the XML workflow file.

Example 7: Definition and use of global constants

1

2 <watchdog xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:noNamespaceSchemal.ocation="watchdog.xsd"
watchdogBase="{%$INSTALLS}" isTemplate="true">

3
4 <settings>
5 <!-- definition of a constant named WAIT TIME -->
6 <constants>
7 <const name="WAIT TIME">30s</const>
8 <const name="FILE NAME">sleep</const>
9 <const name="LOG BASE">/tmp</const>
10 </constants>
11 </settings>
12
13 <tasks mail="{%MAIL%}">
14
15 <!-- definition a simple sleep task with constant
replacement -->
16 <sleepTask 1d="1" name="sleep test">
17 <streams>
18
<stdout>${LOG_BASE}/${FILE_NAME}.Out</stdout>
19 </streams>
20 <parameter>
21 <wait>${WAIT TIME}</wait>
22 </parameter>
23 </sleepTask>
24 </tasks>

25 </watchdog>

In example 7 three constants are defined (6-10). The constant named ${WAIT TIME} is
used as wait time in the sleep task (21). The other two constants are used to construct the
standard output file path (18).

Table 5: Attributes in the context of global constants

element

attribute

type

function

<constants>

parent of <const> elements and child of <settings>

Page 20 of 50

element [attribute| type function

name of the variable that is replaced with s/name; in attributes and text content;
<const> name string [only chars out of [A-Za-z_] are allowed as first character followed by [A-Za-z_0-9]
in the name; apart from a few exceptions it is allowed everywhere

<const> string | replacement value

4.5 Environment variables

Some tools expect specific environment variables to be set correctly. For example the
PATH variable is important because executable programs are located only in directories
defined by that variable. The environment variables which are set on the host running
Watchdog can be simply inherited. With help of the <var> element new variables can be
defined or updated. The name of the variable must be defined with the name attribute
while the value is stored between the opening and closing element tag. The parent
element of each <var> element must be a <environment> element which also owns a
name attribute. This name attribute is used to link the environment with a task using the
environment attribute all tasks possess. It is also possible to define environment
variables locally within task definitions. If local and global variables with the same name
are set, the local ones override the global variables.

The following environment variables are set by Watchdog by default:

« IS_WATCHDOG_JOB: if module was executed by Watchdog this value is set to 1

« WATCHDOG_CORES: number of reserved cores if task runs on a cluster
environment

« WATCHDOG_MEMORY: number of total reserved memory in megabyte if task runs
on a cluster environment

Example 8: Definition of environment variables

1

2 <watchdog xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:noNamespaceSchemalLocation="watchdog.xsd"
watchdogBase="{$INSTALL%}" isTemplate="true">

3
4 <settings>
5 <!-- definition of a environment -->
6 <environments>
7 <environment name="pathEnv">
8 <var name="PATH"
update="true">~/software/bin</var>
9 </environment>
10 </environments>
11 </settings>
12
13 <!-- begin task block and use that mail to inform the
user on success or failure —-->
14 <tasks mail="{%MAILS}">
15

Page 21 of 50

16 <!-- definition of a simple sleep task using

custom environment variables -->

17 <envTask 1d="1" name="env" environment="pathEnv'">
18 <streams>

19 <stdout>/tmp/env.test</stdout>

20 </streams>

21

22 <!-— definition of a local environment with
two variables -->

23 <environment>

24 <var name="SHELL">/bin/sh</var>

25 <var name="TEST" update="true"
sep="@">separator test</var>

26 </environment>

27 </envTask>

28 </tasks>

29 </watchdog>

In example 8 an environment named pathEnv is defined in which the variable PATH is
updated (8). The entry ~/software/bin is added at the beginning of the PATH variable
and after the default seperator character the previous value is kept. The environment
attribute of the env task is set to the name of the previously defined environment (17).
Additionally two local environment variables are defined (23-26). The first one replaces
the default shell with /bin/sh while the second one updates a variable called TEST
using an alternative separator.

Table 6: Attributes in the context of environment variables

element attribute type function

<environment> | name string |is used as reference in the environment attribute of a task

copies all environment variables which are set on the host
running Watchdog; set variables are not deleted on the remote
system; bash functions which names are ending with () are not
copied as this might cause problems; default: raise

uses a external command to set the variables; is necessary to
update variables on remote or cluster executors and might also
be necessary to set environment variables on remote hosts
because of ssh security policies; default: ¢ rue

custom command to set a environment variable; snave; and
<environment> | [exportCommand] string (svarLue) are substituted and must be part of the command;
default: export (sname)="{SvALUE}"

<environment> | [copyLocalValue] boolean

<environment> | [useExternalExport] | boolean

<?Task> environment string |name of a <environment> element
<var> string | value of the environment variable
<var> name string |name of the environment variable
if t rue the value is added at the beginning of the variable and the
<var> [update] boolean | old values comes afterwards separated with the value stored in

the sep attribute; default: raise

separator which is used when the value of the variable should be
updated; default: :

copies the environment variables with the name name which is set
on the host running Watchdog; default: rai1se

<var> [sep] string

<var> [copyLocalValue] boolean

Page 22 of 50

4.6 Mail notification

By default Watchdog informs the user only when an error occurs during the execution of a
task or if an error was detected afterwards. But these behaviour can be changed using
the notify attribute of tasks.

Example 9: Different mail notification options

1

2 <watchdog xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:noNamespaceSchemalLocation="watchdog.xsd"
watchdogBase="{$INSTALL%}" isTemplate="true">

3
4 <settings>
5 <!-- definition of different process blocks -->
6 <processBlock>
7 <processSequence name="sleepTime" start="5"
end="15" step="5" />
8 </processBlock>
9 </settings>
10
11 <!-- begin task block and use that mail to inform the
user on success or failure -->
12 <tasks mail="{%SMAIL%}">
13 <!-- definition a simple sleep task —-->
14 <sleepTask id="1" name="sleep simple"
notify="enabled">
15 <parameter>
16 <wait>10s</wait>
17 </parameter>
18 </sleepTask>
19
20 <!-- definition of process sequence sleep tasks --
>
21 <sleepTask 1id="2" name="sleep process sequence"
notify="subtask" processBlock="sleepTime">
22 <parameter>
23 <wait>[]s</wait>
24 </parameter>
25 </sleepTask>
26 </tasks>

27 </watchdog>

In example 9 different notification options are presented. The first defined task is the
simple sleep task from the previous examples for which the notify attribute is set to
enabled (14). Once the task is finished a mail will be sent to the address the user
specified in the mail attribute of the <tasks> element (12). The second defined task is
based on a process block named sieepTime and causes Watchdog to inform the user
as soon as a subtask is finished because the notify attribute is set to subtask (7, 21).

Page 23 of 50

Table 7: Attributes in the context of mail notification

element attribute type function
<tasks> |mail string | mail adress which is used for notification
enabled: inform when complete task was executed
<?Task> |notify enum |subtask: inform when a subtask was executed
disabled: notification only in case of an error
<?Task> |processBlock string |reference to a process block when notify is set to subtask

4.7 Standard streams and working directory
By default the stdout and stderr stream of the tool which is executed by watchdog is not

saved. This can be changed by setting a path via the <stdout> or <stderr> element. It

is also possible to use a file as input via the <stdin> element. Additionally, a working

directory can be set by using the <workingDir> element. When this is done also relative
path for <stdout>, <stderr> and <stdin> are allowed. Other than usual, the
elements must occour in the same order as they are listed in the following:
<workingDir>, <stdout>, <stderr> and <stdin> (but each of them is optional)

Example 10: Definition of standard streams and working directory

1

2 <watchdog xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:noNamespaceSchemalocation="watchdog.xsd"
watchdogBase="{%INSTALLS%}" isTemplate="true">

3
4 <!-- begin task block and use that mail to inform the
user on success or failure -->
5 <tasks mail="{%SMAIL%}">
6
7 <!-- definition a simple sleep task -->
8 <sleepTask id="1" name="sleep">
9 <parameter>
10 <wait>30s</wait>
11 </parameter>
12 <!-- definition of a standard output location
and switch of the working directory -->
13 <streams>
14 <workingDir>/tmp/</workingDir>
15 <stdout>
{%EXAMPLE_DATA%}/sleepTest.out</stdout>
16 <stderr
append="true">sleepTest.err</stderr>
17 </streams>
18 </sleepTask>
19 </tasks>

20 </watchdog>

Page 24 of 50

In example 10 the working directory is set to /tmp (14). Afterwards, the standard output
of the sleep task is written to the file { SEXAMPLE DATA%}/sleepTest.out (15). The
standard error stream is appended at the end of a file named /tmp/sleepTest.err
(16).

Table 8: Attributes in the context of standard streams_and_working_directory

element attribute type function
saves used resources to .res if standard output stream is
<streams> boolean .
saved to a file; default: raise
L . sets a custom working directory before the tool is
<workingDir> string
executed; default: /usr/local/storage
<stdout> string | writes standard output stream into file; default not saved
<stderr> string writes standard error stream into file; default not saved
<stdin> string |file is used as standard input; default: not set
<stdin> [disableExistenceCheck] | boolean f’i‘Iew must not exist when Watchdog is started; default:
ralse
<stdout>/<stderr> | [append] boolean | appends the stream at the end of the file; default: raise

4.8 Task actions

Additional operations can be executed before and after the actual task is executed.
Currently a set of IO operations are implemented that can be used to roll out data the task
depends on or to clean up once the task is finished. This feature is especically usefull
when Watchdog is running in slave mode (see 4.3) in order to reduce load for the shared
file system as some files might be requirements for different tasks. Hence, these files
would have to be transfered multiple times from the shared file system to the host
executing the task.

Moreover, files stored on remote files systems can be up- or downloaded by Watchdog.
By default, virtual file systems based on the protocols File, HTTP, HTTPS, FTP, FTPS and
SFTP as well as the main memory (RAM) are supported. These virtual file systems are
provided by the Commons Virtual File System project of the Apache Software Foundation.
Examples for valid URIs of these file systems can be can be found here. However, any file
system with an implementation of the Fi leProvider can also be included by the user
as described in 7.1.

Task actions are defined in an <actions> tag as child of <?Task>. Slave mode is
automatically activated if a task action is used. Currently six different |0 operations are
implemented:

« <createFile> - creates an empty file

» <createFolder> - create an empty folder

» <copyFile> - copies a file

» <copyFolder> - copies a folder (with content)

e <deleteFile> - deletes a file

» <deleteFolder> - deletes a folder (with content)

The event after which the task actions are executed must be defined using the time
attribute each <actions> tag owns. The following arguments are available:

Page 25 of 50

https://commons.apache.org/proper/commons-vfs/filesystems.html

» beforeTask - before the task is executed

» afterTask - after the task is executed

« onSuccess - When the task was successfully executed

« onFailure - when task execution failed

» beforeTerminate - before Watchdog or a slave terminates itself

Example 11: Definition of task actions

1

2 <watchdog xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:noNamespaceSchemalocation="watchdog.xsd"
watchdogBase="{%$INSTALLS%}" isTemplate="true">

3

4 <tasks mail="{%SMAIL%}">

5 <gzipTask id="1" name="gzip task">

6 <parameter>

7 <!-- path to a file that does not exist
yet —-->

8
<input>/tmp/watchdog file to compress.tmp</input>

9 </parameter>

10 <!-- action that copies a to the input
location —-->

11 <actions time="beforeTask">

12 <copyFile file="

{%INSTALL%}examples/example_task_actions.xml"
destination="/tmp/watchdog file to compress.tmp" override="true"

/>

13 </actions>
14 </gzipTask>
15 </tasks>

16 </watchdog>

In example 11 a file name /tmp/watchdog file to compress.tmp is compressed
using gzip (5-14). Before the compress task is executed, the task action defined within the
<actions> tag is executed because the time attribute is set to beforeTask (11-13).

The task action copies the file stored in
{8INSTALL%}/examples/example task actions.xml to

/tmp/watchdog file to compress.tmp (12).

Table 9: Attributes in the context of actions

element attribute type function

defines when the task action block is executed; beforeTask:
before the task is executed; afterTask: after the task is
executed; onSuccess: when the task was successfully
executed; onFailure: when task execution failed;
beforeTerminate: before Watchdog or a slave terminates
itself

<actions> time enum

Page 26 of 50

supported: +,

element attribute type function

<actions> [uncoupleFromExecutor] | boolean if enabled, task actions are executed on the host running
Watchdog instead of the execution host; default: raise

<createFile> [file string |path to the file that should be created

<createFile> | [override] boolean |defines if an existing file should be overwritten; default: raise

<createFile> | [createParent] boolean define_s if the parent directories should be created if
nonexistent; default: true

<createFolders | folder string pat_h to the folder that should be created and will be empty if
action succeeds

<createFolder> | [override] boolean | defines if an existing folder should be deleted; default: ra1se

<createFolder> | [createparent] boolean define_s if the parent directories should be created if
nonexistent; default: true

<copyFile> file string | path to the file that should be copied

<copyFile> destination string | path to the destination of the new file

<copyFile> [override] boolean | defines if an existing file should be overwritten; default: raise

<copyFile> [deleteSource] boolean geletes the source file after the copy operation; default:

atse

<copyFile> [createparent] boolean define_s if the parent directories should be created if
nonexistent; default: true

<copyFolder> |folder string path to the folder that should be copied

<copyFolder> |destination string | path to the destination folder

<copyFolder> | [pattern] string pattern sel_ectmg files that should be copied in that folder;
syntax as in bash

<copyFolder> [override] boolean | defines if an existing folder should be deleted; default: raise

<copyFolder> | [deleteSource] boolean C!e[etes the source folder after the copy operation; default:
ralse
defines if the parent directories should be created if

<copyFolder> [createParent] boolean .
nonexistent; default: true

<deleteFile> |[file string | path to the file that should be deleted

<deleteFolder> | folder string | path to the folder that should be deleted

<deleteFolder> | [pattern] string pattern selecting files that should be deleted in that folder;

4.9 Simple calculations

syntax as in bash

Within a <?Task> element simple calculations can be preformed using the S (expr)
construct whereby expr must be a numerical equation. The following operators are
, %, 1, ™, 2 and 3. Additional the brackets () are provided. Moreover in case
of a <processSequence> i is replaced by the current value of the process sequence. In
the more general case of a <processBlock> x is substituted by an increasing number
starting at 1. The result of all calculations is rounded to five decimal places or converted
to an integer if it is one.

Example 12: Definition of simple calculations

1

2 <watchdog xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:noNamespaceSchemalocation="watchdog.xsd"
watchdogBase="{$INSTALL%}" isTemplate="true">

3
4

<settings>

Page 27 of 50

<!-- definition of two process blocks -->
<processBlock>
<processSequence name="sleepTime" start="1"
d="5" step="1.5" />
<processFolder name="txtFiles" folder="
EXAMPLE DATA%} /txt/" pattern="*.txt" />

e

{

O o0 0 3 J o U

</processBlock>
10 </settings>
11
12 <tasks mail="{3MAILS}">
13 <!-- sleep task with a simple calculation -->
14 <sleepTask id="1" name="sleep"
processBlock="sleepTime">
15 <parameter>
16 <wait>$ ((i+1)"2-1)s</wait>
17 </parameter>
18 </sleepTask>
19
20 <!-- compress txt files and write log files to
() /log/* —=>
21 <gzipTask 1id="2" name="quality test"
processBlock="txtFiles">
22 <streams>
23 <stdout>()/log/$ (x) .out</stdout>
24 </streams>
25 <parameter>
26 <input>{}</input>
27 <output>{}.gz</output>
28 <quality>3</quality>
29 </parameter>
30 </gzipTask>
31 </tasks>

32 </watchdog>

In example 12 the usage of the s (expr) construct is shown. The wait time for the sleep

task is calculated based on the input numbers of the <processSequence> (7, 16). In the
second gzip task the number of the subtask is used to name the standard output

files (23).

4.10 Multiple module search folders

By default Watchdog tries to locate modules in a folder named modules/ stored in the
installation directory of Watchdog. By using the <modules> element as child of

<settings>, additional folders can be added.

Example 13: Definition of multiple module include folders

Page 28 of 50

1

2 <watchdog xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:noNamespaceSchemalocation="watchdog.xsd"
watchdogBase="{$INSTALL%}" isTemplate="true">

3
4 <settings>
5 <!-- TODO: modify one of these folders
{$INSTALL% }myCustomFolder/ or -->
6 <!--— /home/TODO/additionalModules/ to match a
folder that contains the 'sleep' module -->
7 <modules defaultFolder="myCustomFolder/">
8
<folder>/home/TODO/additionalModules/</folder>
9 </modules>
10 </settings>
11
12 <!-- begin task block and use that mail to inform the
user on success or failure -->
13 <tasks mail="{%MAILS}">
14 <!-- definition a simple sleep task —-->
15 <sleepTask id="1" name="sleep">
16 <parameter>
17 <wait>30s</wait>
18 </parameter>
19 </sleepTask>
20 </tasks>

21 </watchdog>

In example 13 the default directory is changed to myCustomFolder/ with the
defaultFolder attribute (7). Moreover, in line 8 an additional folder is added to
Watchdog's search path. Watchdog will now try to locate modules in the directories
{$INSTALL%}/myCustomFolder/and /home/additionalModules/. In order to test
that example you must create a new folder, copy the sieep module from Watchdog's
module folder and adapt the path in line 7 or 8 to match that folder.

Table 10: Attributes in the context of module include_folders

element attribute type function

changes the default search folder; an absolute or relative path to
Watchdog's install dir is allowed (must end with /); default: moduies/

<folder> string | adds a new directory to that is used for localization of modules

<modules> | [defaultFolder] |string

4.11 Custom success and error checker

In some cases the exit code of a command is not a reliable indicator whether the
command was executed successfully or not. For example some tools return as exit code
zero regardless of whether the command succeeded or failed. Furthermore, a command
could succeed technically but the desired result is not obtained (e.g. wrong index used for

Page 29 of 50

mapping of RNA-seq data results in a very low mapping rate). In order to handle such
cases the user has the option to implement custom success and error checkers in Java
that are executed by Watchdog once a task has terminated. Two steps must be performed
to use custom checkers: implementation in Java and invocation in the XML workflow.

Interfaces for checkers are stored in the package de.Imu.ifi.bio.watchdog.interfaces.
Basically a function returning a boolean value that indicates whether the task succeeded
or failed must be implemented. The constructor must accept as first argument a object of
the type Task that contains information about the task that was finished. Additional
arguments of type Boolean, Integer, Double or String can be passed via the XML
definition.

Example 14: Load custom checkers

1

2 <watchdog xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:noNamespaceSchemalLocation="watchdog.xsd"
watchdogBase="{$INSTALL%}" isTemplate="true">

3

4 <!-- begin task block and use that mail to inform the
user on success or failure -->

5 <tasks mail="{%SMAIL%}">

6

7 <!-- definition a simple sleep task -->

8 <sleepTask id="1" name="sleep">

9 <parameter>

10 <wait>30s</wait>

11 </parameter>

12 <checkers>

13 <!-- load a success checker with one
additional constructor argument -->

14 <!-- it will check, if the file
{$INSTALL% }examples/mail config exists and is not empty -->
15 <checker classPath="

{%EXAMPLE_DATA%}/OutputFileExistsSuccessChecker.class"
className="de.lmu.ifi.bio.watchdog.successChecker.OutputFileExistss
type="success">

16 <cArg type="string">
{$INSTALL% }examples/mail config</cArg>

17 </checker>

18 </checkers>

19 </sleepTask>

20 </tasks>

21 </watchdog>

Example 14 shows an example of how an success checker can be added to a task by
using the <checkers> element as a child of <?Task> (12-18). In addition to the location

Page 30 of 50

of the compiled Java class and the full class name arguments can be passed to the
constructor of the class. In this example one variable of type string is passed to the
constructor of the success checker using the <cArg> element (16). Once the task is
finished, the checkers are evaluated in the same order as they were added in the XML
workflow. In cases in which simultaneously success and error were detected, the task will
be treated as failed. In this example the success checker will ensure that the file
{$INSTALLS} /examples/mail config exists and is notempty (15-16)

Table 11: Attributes in the context of custom checkers

element | attribute | type function

type of the checker; success: checker should be used as success checker; error:
checker is used as error checker

<checker> | className | string | complete class name including the package the class is located in

<checker> | classPath | string |absolute path to the compiled java class file

type to which the argument should be parsed in java; possible values: boolean,
integer, double and string

<checker> | type enum

<cArg> type enum

Page 31 of 50

5 Creating custom modules

In the following the steps that are needed to create a custom module named
nameOfModule are explained. Basic XSD skills are needed to understand how things
work together. Modules are defined in XSD format and should have the basic structure
showed in example 15. To actually create modules the script
helper scripts/createNewModule.sh can be used and modified by hand as not all
settings can be configured by it.

Example 15: Basic XSD structure

1
2 <x:schema xmlns:x="http://www.w3.0rg/2001/XMLSchema"
xmlns:vce="http://www.w3.0rg/2007/XMLSchema-versioning"

vc:minVersion="1.1" xmlns:xerces="http://xerces.apache.org">
3

4
5
6

</x:schema>

As a first step, a folder with the name nameOfModule must be created in the modules
folder. That folder must contain a file named nameOfModule. xsd which will hold the
actual module definition.

5.1 Input parameter definition
Example 16 shows how input parameters and flags can be defined.

Example 16: Input parameter

1 <!-- definition of the task parameters -->

2 <x:complexType name="nameOfModuleTaskParameterType">

3 <x:all>

4 <x:element name="parameterl"
type="paramAbsoluteFilePath" minOccurs="1" maxOccurs="1" />

5 <x:element name="parameter2" type="paramString"
minOccurs="0" maxOccurs="unbounded" />

6 <x:element name="flagl" type="paramBoolean"
minOccurs="0" maxOccurs="1" />

7 </x:all>

8 </x:complexType>

In line 4 and 5 two parameters are defined while line 6 creates a flag. Using the
minOccurs and maxOccurs attributes it can be specified how often a parameter can be

Page 32 of 50

used. Also parameters can have different types which are enforced during the validation
of the XML workflows. Some pre-defined types are

« paramBoolean (for flags)
e paramString

» paraminteger

» paramDouble

These types accept by default booleans, strings, integers or doubles but also allow all
values that are substituted by Watchdog. Moreover own parameter types can be defined
as showed in example 17.

Example 17: Input parameter

1 <!-- module specific parameter types -->

2 <x:complexType name="paramWait sleep">

3 <x:simpleContent>

4 <x:restriction base="paramString">

5 <x:assertion test="matches (Svalue, '(S$S{[A-Za-
z_ 1+N) 1S H)) T L] (S[A-Za-z_]+(,s*){0,1}){0,1} ([0-9]1+(,S*)
{0,11){0,1}[1)}])") or matches ($value, '"[0-9]+[smhd]{0,1}s$")"

xerces:message="Parameter with name '{S$Stag}' must match [0-9]+
[smhd] {0,1}." />

6 </x:restriction>

7 </x:simpleContent>

8 </x:complexType>

5.2 Output parameter definition

Optionally a module can return output parameters that can be used for the following tasks
as input. Return parameters must be written to a file in the format {%VAR_NAME%} TAB
{%VALUE%}. The name of the file to write into is automatically sent to the module by
Watchdog using the returnFilePathParameter parameter. If you want to change this
default parameter name see 5.3.

Example 18: Output parameter

1 <!-- define output parameters which must be written to a
file -->

2 <x:complexType name="nameOfModuleTaskReturnType">

3 <x:complexContent>

4 <x:extension base="taskReturnType'">

5 <x:all>

6 <x:element name="outputParaml"
type="x:string" />

7 </x:all>

8 </x:extension>

Page 33 of 50

1

Line

9 </x:complexContent>
0 </x:complexType>

6 in example 18 specifies that the module must return a parameter named

outputParaml of type x:string. The module itself must ensure that the parameters
are written physically before the module exits or otherwise Watchdog will terminate itself.
In case of a bash script which is executed, two functions named writerParam2File and

blo

5.3

ckUntilFileIsWrittendefinedin core 1ib/functions.sh can be used.

Binary call command and other settings

Now the command that will be executed can be defined. Example 19 specifies that a
script named nameOfModule.sh that is stored in modules/nameOfModule will be
called.

Example 19: Binary call command

f

1 <!-- set command and other settings —-->

2 <x:complexType name="nameOfModuleTaskOverrideType">

3 <x:complexContent>

4 <x:restriction base="baseAttributeTaskType">

5 <x:attribute name="binName" type="x:string"
ixed="nameOfModule.sh" />

6 </x:restriction>
7 </x:complexContent>
8 </x:complexType>

In addition to that, the following settings can be modified:

binName: name of the command which should be called

preBinCommand: command that is added before the binName; e.g. interpreter
isWatchdogModule: by default the command must be located in
modules/binName; if this parameter is false the command must point to a absolute
binary or be reachable via the PATH environment variable
returnFilePathParameter: name of the parameter that is used to store the
return values

watchdogModuleVersionParameter: name of the parameter that passes the
module version to the called command if a version different to 1 should be used;
default: moduleversion (using the default parameter pasing options defined with
the settings below; use an empty string to disable the passing of the module version)
paramFormat: defines how names of parameters are prefixed; (do not print
parameter name, - or --); default: —-

spacingFormat: defines how names of parameters and values are spaced; default:
blank

quoteFormat: defines how values are quoted; default: singlie quoting

Page 34 of 50

» separateFormat: defines the separator string between multiple occurrences of the
same parameter; default: ,

e versionQueryParameter. parameter of the binName command used to query
software versions of third-party software; is called on the executor after task
execution and stored together with the used parameters in a log file; default: not set

The last three arguments can also be used for each parameter separately.

5.4 Assign a name to the new module

Finally, a name must be assigned to the module. This can simply be done by creating a
element with the attribute name of type nameOfModuleType and substitutionGroup
set to abstractTask. Example 20 shows the needed line for the example module.
Afterwards the type of the task is defined (5-15). If no output parameters are used line 10
can be omitted.

Example 20: Assign a name to the module

1 <!-- make task definition availible wvia substitution group -
->

2 <x:element name="nameOfModuleTask" type="nameOfModuleType"
substitutionGroup="abstractTask" />

3

4 <!-- definition of final task -->

5 <x:complexType name="nameOfModuleTaskType">

6 <x:complexContent>

7 <x:extension base="nameOfModuleTaskOverrideType">
8 <x:all>

9 <x:element name="parameter"

type="nameOfModuleTaskParameterType" minOccurs="1" maxOccurs="1"

/>

10 <x:element name="return"
type="nameOfModuleTaskReturnType" minOccurs="0" maxOccurs="0" />
11 <x:group ref="defaultTaskElements" />
12 </x:all>

13 </x:extension>

14 </x:complexContent>

15 </x:complexType>

5.5 Putting it all together

Example 21 shows the definition of the complete module.

Example 21: Putting it all together

2 <x:schema xmlns:x="http://www.w3.0rg/2001/XMLSchema"

Page 35 of 50

xmlns:ve="http://www.w3.0rg/2007/XMLSchema-versioning"
vc:minVersion="1.1" xmlns:xerces="http://xerces.apache.org">
3

4 <!-- definition of the task parameters -->
5 <x:complexType name="nameOfModuleTaskParameterType">
6 <x:all>
7 <x:element name="parameterl"
type="paramAbsoluteFilePath" minOccurs="1" maxOccurs="1" />
8 <x:element name="parameter2"
type="paramString" minOccurs="0" maxOccurs="unbounded" />
9 <x:element name="flagl" type="paramBoolean"
minOccurs="0" maxOccurs="1" />
10 </x:all>
11 </x:complexType>
12
13 <!-- define output parameters which must be written to
a file -->
14 <x:complexType name="nameOfModuleTaskReturnType">
15 <x:complexContent>
16 <x:extension base="taskReturnType">
17 <x:all>
18 <x:element name="outputParaml"
type="x:string" />
19 </x:all>
20 </x:extension>
21 </x:complexContent>
22 </x:complexType>
23
24 <!-- set command and other settings -->
25 <x:complexType name="nameOfModuleTaskOverrideType'">
26 <x:complexContent>
277 <x:restriction base="baseAttributeTaskType">
28 <x:attribute name="binName"
type="x:string" fixed="nameOfModule.sh" />
29 </x:restriction>
30 </x:complexContent>
31 </x:complexType>
32
33 <!-- make task definition availible wvia substitution
group —-->
34 <x:element name="nameOfModuleTask"

type="nameOfModuleTaskType" substitutionGroup="abstractTask" />
35

36 <!-- definition of final task -->

37 <x:complexType name="nameOfModuleTaskType">

38 <x:complexContent>

39 <x:extension
base="nameOfModuleTaskOverrideType">

40 <x:all>

41 <x:element name="parameter"

type="nameOfModuleTaskParameterType" minOccurs="1" maxOccurs="1"

/>

Page 36 of 50

42 <x:element name="return"
type="nameOfModuleTaskReturnType" minOccurs="0" maxOccurs="0" />

43 <x:group ref="defaultTaskElements"
/>

44 </x:all>

45 </x:extension>

46 </x:complexContent>

47 </x:complexType>

48

49 </x:schema>

5.6 Module versions

As parameters of the command that is called by the module might change over time, it is
possible to define different versions of the same module. The version that should be used
during XML validation and workflow execution can be set using the version attribute
each <?Task> tag owns. By default version 1 of each module is used. Be aware that only
one version of the same module can be used within a workflow.

In order to avoid duplication of the complete XSD file, the minimum and maximum
supported module version can be defined for each tag within the XSD file using the
minVersion and maxVersion attributes. If a tag is not part of a particular version, it is
removed with all its childs from the XSD file that is generated dynamically at runtime for
that module version. By using these two attributes the input parameter, the return
parameter, the called command and more can be changed for different module version.
Example 22 shows a part of the featureCounts module. Among other things a
parameter needs to be renamed to support the most recent binary of reaturecCounts
(11-12).

Example 22: Rename of parameters

1

2 <x:schema xmlns:x="http://www.w3.0rg/2001/XMLSchema"
xmlns:vc="http://www.w3.0rg/2007/XMLSchema-versioning"
vc:minVersion="1.1" xmlns:xerces="http://xerces.apache.org">

3

4 <!-- definition of the task parameters -->

5 <x:complexType name="featureCountsTaskParameterType">

6 <x:all>

7 <!-- attributes common to all versions —-->

8

9
10 <!-- attributes that differ between versions
-—>
11 <x:element name="minOverlap"
type="paramInteger" minOccurs="0" maxOccurs="1" maxVersion="1" />
12 <x:element name="minReadOverlap"

type="paramInteger" minOccurs="0" maxOccurs="1" minVersion="2" />

Page 37 of 50

13 ce
14 </x:all>

15 </x:complexType>
16

17 </x:schema>

Example 23 shows how a module script can be made version dependent using bash
functions that are delivered with Watchdog. First, the bash variable
${MODULE VERSION PARAMETER NAME} is set to the complete name of the parameter
that is used to pass the module version (e.g. —-moduleVersion) (3). After sourcing of
includeBasics.sh the module version is automatically stored in the
${MODULE VERSION} variable. This information can be used to alter the parameters and
the behavior of the script as an alternative to duplication if differences between module
versions are only minor (15,18).

Example 23: Version dependent bash script

1 #!/bin/bash

2 SCRIPT_FOLDER=$(cd "$(dirname "${BASH_SOURCE[O]}")" &6
pwd)
3 MODULE VERSION PARAMETER NAME="--moduleVersion"
4 source $SCRIPT FOLDER/../../core lib/includeBasics.sh $@
5
6
7 # define parameters
8 # params used in any version of the module
9 DEFINE string 'annotation' '' 'feature annotation in GTF or
SAF format' 'a'
10 DEFINE string 'input' '' 'index bam file which should be
used for counting' 'i'
11 DEFINE string 'output' '' 'path to output file' 'o'
12
13
14 # params only available in module version 1
15 if [${MODULE_VERSION} -eq 1]; then
16 DEFINE string 'minOverlap' 'l' '[optional] minimum

number of overlapped bases required to assign a read to a
feature; also negative values are allowed' 'm'

17 # params only available in module version 2
18 elif [S${MODULE VERSION} -eq 2]; then
19 DEFINE string 'minReadOverlap' 'l' '[optional] minimum

number of overlapped bases required to assign a read to a
feature; also negative values are allowed' 'm'

20

21 fi

22 DEFINE integer 'moduleVersion' 'l' '[optional] version of
the module that should be used' ''

23 DEFINE boolean 'debug' 'false' '[optional] prints out debug

Page 38 of 50

messages.' "'
24

5.7 Documentation of modules

Modules can be documented using an XML format that is defined by an XSD schema.
Such an XML module documentation file consists of the main sections <info>,
<parameter> and <return>. The first section is mandatory while the other two are
optional (e.g. for modules that do not require any parameter or do not return variables).

Example 24: XML module documentation format

1 <?xml version="1.0" encoding="UTF-8"?>
2 <documentation xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:noNamespaceSchemalLocation="documentation.xsd">

3 <!-- mandatory fields: author, category, updated,
description -->

4 <info>

5 <!-- forename lastname -->

6 <author>Michael Kluge</author>

7 <!-- day the module was updated the last time -->

8 <updated>2019-03-13</updated>

9 <category>Sequencing</category>

10 <description maxVersion="1" minVersion="1">creates an
index for a BAM file using samtools index</description>

11 <!—— ##### optional ##### -—>

12 <!-- website of the dependencies used in this module -->
13
<website>https://www.htslib.org/doc/samtools.html</website>

14 <!-- short description and PubmedID for the methods
section of a manuscript -->

15 <paperDescription>Samtools (%SOFTWARE VERSION%) was used

to index the BAM files [Li H, Handsaker B, Wysoker A, Fennell T,
Ruan J, Homer N, Marth G, Abecasis G, Durbin R, and 1000 Genome
Project Data Processing Subgroup, The Sequence alignment/map
(SAM) format and SAMtools, Bioinformatics (2009) 25(1e6) 2078-9].
</paperDescription>

16 <PMID>19505943</PMID>

17 <!-- external dependencies required for that module -->
18 <dependencies maxVersion="1"
minVersion="1">samtools</dependencies>

19 <dependencies maxVersion="1" minVersion="1">GNU Core
Utilities</dependencies>

20 </info>

21 <!—— ##### optional ##### --—>

22 <!-- github usernames of users who should be able to
commit changes to that module -->

23 <maintainer>

24 <username>klugem</username>

Page 39 of 50

25 </maintainer>

26 <parameter>

277 <!-- mandatory fields per parameter: name, type,
description —-->

28 <!-- optional fields per parameter: restrictions,
default, minOccurs, maxOccurs, minVersion, maxVersion —-->
29 <param maxOccurs="1" minOccurs="1" name="bam" type="file
path" restrictions="absolute">

30 <description>path to the BAM file</description>
31 </param>

32 <param default="true" maxOccurs="1" minOccurs="0"
name="1ink" type="boolean">

33 <description>creates a link called NAME.bam.bai

because some tool expect the index under that name; use --nolink
to disable it</description>

34 </param>

35 </parameter>

36 <return>

37 <!-- mandatory fields per return variable: name, type,
description -->

38 <!-- optional fields per return variable: minVersion,
maxVersion -->

39 <var name="BAMFile" type="string">

40 <description>path to the BAM file for which the index
was created</description>

41 </var>

42 </return>

43 </documentation>

Example 24 shows the XML documentation file for the indexBam module. The tag
<paperDescription> (15), which is a child of <info>, allows to define the description
used during report generation (see 6.3). This description can also contain references to
parameters of the task (8param name?) or the software version
(8SOFTWARE VERSIONS$).

An XML template for documenting a new module can be generated based on the XSD
module file using the docuTemplateExtractor. jar (see 6.1). Hence, only some
information must be updated or added manually.

5.8 Other matters

Exit codes: The module developer must ensure that a command does only exit with exit
status O if the command was executed sucessfully. File core 1ib/exitCodes.sh
contains some exit codes which names are also included in mail notifications if they are
used. Custom exit codes can be easily added.

Error messages: Watchdog can detect by default error messages in standard out and
standard error streams if they begin with [ERROR]. The errors are only stored if standard

Page 40 of 50

out and error files are saved to disk using the <streams> tag. If an error was detected
but the exit code was 0 the command will also fail.

Module test: A script named test nameOfModule. sh can also be part of the module.
It is automatically called, if the user calls helper scripts/moduleTest.sh. Also the
module folder might contain some test data in the folder test data. For simple test
cases the bash function testExitCode can be used to test, if an input leads to the
expected output.

Page 41 of 50

6 New features in Watchdog 2.0

In the following the new command-line tools (available in the jars/ subfolder of the
Watchdog installation directory) are described in more detail. All tools can be executed
using java -jar path/to/jar/name.jar -options. The available parameter and
flags can be listed using java -jar path/to/jar/name.jar -help.

Information on module versioning can be found in section 5.6. The documentation of the
graphical user interface for module creation (moduleMaker.jar) has its own
documentation.

6.1 Documentation template extractor

The docuTemplateExtractor command-line tool can be used to extract parameter
and return value information from XSD module files. The program then creates an XML
documentation template file for each module in the corresponding module folder. By
default existing XML documentation files of modules are not overwritten. This can be
disabled with the -overwrite flag. Using the -authors, -maintainer or -
categories parameter, the same author, maintainer or categories can be included in all
created template files.

Example call:
java -jar docuTemplateExtractor. jar -moduleFolder
/path/to/watchog/modules

Moreover, custom extractor plugins can be implemented to extract additional information
like default parameters or descriptions. Currently, parameter extractors for the python
argparse and the Bash shflags library are available. Additional custom extractors can
be added by implementing the Java Extractor interface of the
de.lmu.ifi.bio.watchdog.docu.extractor package. Afterwards a compiled
class file must be added to docuTemplateExtractor, which can be edited with any
ZIP editor. The tool will automatically detected all classes implementing the Extractor
interface.

Information on the module XML documentation format itself can be found in section 5.7.

6.2 Module reference book generator

The module reference book can be created from the XML documentation files using the
refBookGenerator command-line tool.

One ore more path to the parent folder(s) of modules that should be included in the
module reference book must be provided using the -moduleFrolder parameter.
Moreover, a path to a folder, in which the module reference book should be stored, must
be specified using the -outputFolder parameter.

Page 42 of 50

https://github.com/watchdog-wms/moduleMaker

Example call:

java -jar refBookGenerator. jar -moduleFolder
/path/to/watchog/modules -moduleFolder /tmp/customModules -
outputFolder /tmp/refBook

6.3 Report generator

A report of the executed steps of a workflow can be automatically created using the
reportGenerator command-line tool. In order to generate a report, these three
parameters are required:

» -resume: path to watchdog status log file (alias resume file) from a previous
Watchdog run

« -xml: path to the XML workflow file (required for loading the correct module folders)

» -outputFile: path to an output file in which the resulting report is stored as text

Example call:
java -jar reportGenerator.jar -xml /path/to/wfl.xml -resume
/path/to/wfl 2019 11 07 11 48 26.watchdog.resume -outputFile

/tmp/report. txt

Additional parameters exist to enable or supress the output of some information or to
modify the output format. The available parameters can be listed using the -he 1p flag.

6.4 Module and workflow validator

The module (moduleValidator) and workflow (workflowValidator) validators can
be used to verify the integrity of modules or workflows respectively.

Both tools require as input the name of a check to perform (parameter -check) and a
folder to apply the check onto (parameter -ro1der). Please note that only one module or
workflow can be located in the folder. Names of checks that can be performed can be
listed using the -1ist flag.

Example call:
java -jar moduleValidator.jar -check XSD VALIDATION -folder
/path/to/watchog/modules/sleep

Additional information on the function of the applied checks can be found online at
watchdog-wms-modules and watchdog-wms-workflows.

6.5 New execution modes

Two additional execution modes were implemented to provide more comfort and flexibility
in workflow execution.

The resume mode allows restarting execution of a workflow by (re-)running only tasks that
previously did not run (successfully) or were added or modified compared to the original

Page 43 of 50

https://github.com/watchdog-wms/watchdog-wms-modules/blob/master/CONTRIBUTING.md#automatic-tests-on-pull-requests
https://github.com/watchdog-wms/watchdog-wms-workflows/blob/master/CONTRIBUTING.md#automatic-tests-on-pull-requests

execution. With Watchdog 2.0 each execution of a workflow creates a *.resume file that
contains information on successfully finished tasks. With that file the —resume parameter
of the Watchdog scheduler can be used to resume the execution of an aborted or
modified workflow.

Example call:
./watchdog. sh -xml /path/to/wfl.xml -resume
/path/to/wfl 2019 11 07 11 48 26.watchdog.resume

The second mode allows detaching the scheduler from workflow execution without
aborting tasks running on a computer cluster and reattaching to execution at a later time
and/or a different computer. A detach can be requested by pressing CTRL+C during
workflow execution with the command-line version. The GUI provides a button to request
a detach. A successful detach results in an *.attach file, which can be used to reattach to
workflow execution with the new -attachnfo parameter of the Watchdog scheduler.

Example call:
./watchdog. sh -xml /path/to/wfl.xml -attachInfo
/path/to/wfl 2019 11 07 11 48 26.watchdog.attach

6.6 Software version logging

Watchdog 2.0 now implements a general approach for reporting versions of third-party
software used in a module in the log file. For this purpose, a new attribute
(versionQueryParameter) in the module XSD file can be used to define the flag for
version printing of third-party software (see 5.3). During workflow execution, after a task or
subtask has been completed successfully on a particular computer, the program call
defined in the corresponding module is invoked with the version flag on the same
computer to retrieve the installed third-party software version. This software version is
then reported for the task/subtask in the log file and can also be used during report
generation (see 5.7 and 6.3).

Page 44 of 50

7 Extend Watchdog's functionality

In the following sections two different ways to extend Watchdog's functionality are
described.

 Virtual File Systems that can be used within task actions (see 7.1)
o« XML Plugins that add new <?Executor> and <?ProcessBlock> elements (see
7.2)

7.1 Virtual file systems for task actions

With the help of task actions, file system operations can be performed before and after
tasks (see 4.8). By default, virtual file systems based on the protocols File, HTTP, HTTPS,
FTP, FTPS and SFTP as well as the main memory (RAM) are supported. These virtual file
systems are provided by the Commons Virtual File System project of the Apache
Software Foundation.

In order to add a new virtual file system, a class that implements the VFSRegister
interface can be addded to the jar-file. The class will be automatically loaded by
Watchdog and the new virtual file system will be useable without other modifications. The
following four methods must be implemented for the interface:

e getFileProvider - must return an instance of the FileProvider interface as
defined in the Commons Virtual File System project

e getURLSchemes - returns the url schemes that should be used in combination with
that FilepProvider (e.9. ftp)

» getMimeTypes - sets schemes that should be used for specific mimetypes

» getExtensions - sets schemes that should be used for specific file extension

The class simpleVFSRegister can be extended if an instance of the FileProvider
class can be created without arguments. Then only the name of the Fi IeProvider class
and the URL schemes that should be used must be defined. Example 25 shows how the
virtual FTP file system is integrated in Watchdog by using the rFtpsFilepProvider class
of the Commons Virtual File System project.

Example 25: Simple implementation of the VFSRegister interface

1 package de.lmu.ifi.bio.watchdog.task.actions.vfs.impl;

2

3 public class FTPSVFSRegister extends SimpleVFSRegister ({

4

5 private static final String CLASS NAME =
"org.apache.commons.vfs2.provider.ftps.FtpsFileProvider";

6 private static final String[] SCHEME = new String|]
{"ftpS" },.

7

8 public FTPSVFSRegister () throws Exception

Page 45 of 50

9 super (CLASS NAME, SCHEME) ;
10 }
11 }

7.2 XML Plugins

Watchdog provides a flexible plugin system that allows extending Watchdog by additional
types of executors and process blocks without modifying the original Java classes.
Essentially, this means creating a new XML element for use in Watchdog workflows as
well as implementing additional Java classes that provide the functionality for this
element. In brief, you have to do the following to use the plugin system:

« create an XSD file describing the new element and its parent element for use in
Watchdog workflows

« Extend a few abstract classes

» Add class files for the new classes to the Watchdog jar-file and copy the new XSD file
to a sub-directory of the Watchdog installation directory

In the Watchdog command-line version, all non-abstract classes in the Watchdog jar-file
that extend the xMLParserPlugin abstract class are loaded dynamically during
workflow execution. Currently, this is restricted to XML parsers for the generic type
ProcessBlock or ExecutorInfo. The XML parser for a new XML element provides
the functionality to parse this element in a workflow (i.e. a new executor or process block
type) and to create a new object representing the corresponding element type. Here, the
four most important functions of the xMr.rParserPlugin abstract class that have to be
implemented are:

» getNameOfParseableTag: returns the name of the element the class can parse

» getNameOfParentTag: returns the name of the parent element of this element

e getXSDDefinition: returns the path to the XSD file describing this element
(relative to the xsd sub-directory of the Watchdog directory)

e parseFElement:implements the actual parsing process.

The last function creates an object of a class representing the new element. This class
has to implement the interfaces xMLDataStore and XMLPIlugin, for instance by
extending one of the abstract classes ProcessBlock or ExecutorInfo or one of their
subclasses.

For use in the Workflow designer GUI of Watchdog, two additional requirements have to
be met:

« An FXML file has to be provided describing how the attributes of the new element
type are represented graphically. FXML is an XML-based markup language for
describing the layout of a user interface in a JavaFX application.

o Classes extending PluginView and PluginViewController have to be
implemented for testing whether the input is valid and for loading and saving data to
and from XML.

Page 46 of 50

All executors and process blocks integrated in Watchdog are using this plugin system.
Hence, examples how to implement a new XML element can be found in the package
de.lmu.ifi.bio.watchdog.xmlParser.plugins of the Java source code.

Page 47 of 50

https://github.com/klugem/watchdog/tree/master/java_source/de/lmu/ifi/bio/watchdog/xmlParser/plugins

8 Docker

In order to run a Docker image, Docker must be installed and configured correctly as
descibed here.

8.1 Install the Watchdog Docker image

A Watchdog image for Docker can be obtained from hub.docker.com. The image is
rebuild automatically by the Bioconda project once a new version is released on
Bioconda.

You can download the Ilatest version of the image with docker pull
klugem/watchdog-wms. Within the Docker image the environment variable
WATCHDOG HOME is set automatically to the installation directory of Watchdog (required
for the watchdogBase attribute). The -useEnvBase flag of the command line version
can be used to override the watchdogBase attribute of the XML workflow with the value
stored in WATCHDOG HOME. Moreover, the installation directory of Watchdog is mounted
under /watchdog within the Docker image.

8.2 Sharing of files

In order to exchange files with the host system, the -v or -mount option of Docker can be
used. These option can be used multiple times.

docker run -V
source folder or file on host:destination folder or file[:ro]
image command

More information can be found in the documentation of Docker.

8.3 Port forwarding

In order to use the build-in webserver of Watchdog, the port used by the webserver must
be forwarded to the host running the Docker container.

The command docker run -p 8090:8080 image command maps the container port
8080 (TCP) to the port 8090 (TCP) on the Docker host. More information can be found in
the documentation of Docker.

8.4 How to use the Docker Watchdog image

The examples within the Docker image are automatically configured when {%Nwatchdog-
cmd%N} is started the first time and are stored in /watchdog/examples. The command

docker run -h localhost -p 8080:8080 klugem/watchdog-wms watchdog-
cmd -useEnvBase -x /watchdog/examples/example basic sleep.xml

Page 48 of 50

https://docs.docker.com/
https://hub.docker.com/r/klugem/watchdog-wms/
https://bioconda.github.io/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/config/containers/container-networking/#published-ports

executes the example described in 3.2 and forwards the webserver port to the host port
8080.

Alternatively, it is possible to run a workflow that is stored on the host system as described
in 8.2. Ensure that all files used in the workflow are made accessible within the Docker
image.

8.5 Use Docker in modules

A Docker image can also be used in a module. The module bowtie2Docker implements
an example module that uses the Docker image of Bowtie 2 that is provided by Bioconda
and hosted on quay.io. The Docker image will be automatically downloaded if it is not
found locally.

Make sure that the Docker daemon is installed and running before you test this example.
Example 26: Example usage of the Bowtie 2 Docker module

1

2 <watchdog xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:noNamespaceSchemal.ocation="watchdog.xsd"
watchdogBase="{$INSTALLS}" isTemplate="true">

3
4 <settings>
5 <constants>
6 <const name="BASE">
{$INSTALL%}/modules/bowtie2Docker/example data</const>
7 </constants>
8 </settings>
9
10 <tasks mail="{%MAILS}">
11 <bowtie2DockerTask id="1"
name="bowtie2 in docker">
12 <streams>
13
<stdout>/tmp/bowtie2.docker.test.out</stdout>
14
<stderr>/tmp/bowtie2.docker.test.err</stderr>
15 </streams>
16 <parameter>
17
<genome>$ {BASE}/index/lambda virus</genome>
18 <reads>${BASE}/reads/reads 1l.fg</reads>
19 <reads>${BASE}/reads/reads 1.fg</reads>
20
<outfile>/tmp/bowtie2.docker.test.sam</outfile>
21 </parameter>
22 </bowtie2DockerTask>

Page 49 of 50

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://bioconda.github.io/
https://quay.io/repository/biocontainers/bowtie2

23 </tasks>
24 </watchdog>

Example 26 shows how the bowtie2?Docker module can be used with the provided
example data. The test data that is shipped with Bowtie 2 is stored in the folder
example data of the module (6). Log files are written to
/tmp/bowtie2.docker.test. [out]|err] (13, 14) while the mapped reads are stored
in SAM format in /tmp/bowtie2.docker. test.sam (20).

Page 50 of 50

