Svhip software for retrainable identification of
conserved genes in multiple genome alignments

Christopher Klapproth

01.08.2022

Contents
1 Introductionl 3
2 Installationl 3
[3 Running tests| 4
[4 Basic usage] 4
(4.1 Training Data generation|. 6
[4.1.1 Examplel oo 7
4.1.2 Hexamer models 10
[4.1.5 Arguments|. o 11
4.2 Combination of generated feature files 13
[4.2.1 Arguments|. 13
4.3 Model training| oL 15
[4.3.1 Examplel o oL 16
[4.3.2 Arguments|. L 16
44 Model evaluationl L. 19
[4.4.1 Examplel oo 19
[4.4.2 Arguments|. 19
4.5 Feature calculation of genome alignments/. 20
[4.5.1 Examplel 20
[4.5.2 Arguments|. 21
4.6 Predictionlo 22

[4.6.1 Examplel
[4.6.2 Arguments|.
(4.7 Concluding remarks|.

1 Introduction

Svhip is a software developed in Python 3.8 for analysis of multiple genome
alignments in MAF format for the identification of conserved functional gene
sites. It provides options for the search for both protein coding sequences
(CDS) as well as the identification of evolutionary conserved secondary struc-
tures, hinting at functional non-coding sequences. A core feature of Svhip is
the possibility to freely retrain the classifier to account for different genomic
contexts, usually done by providing preselected training examples in the form
of ClustalW-alignments. Some of it’s features directly build on the RNAz
framework (https://www.tbi.univie.ac.at /software/RNAz/#download) for the
identification of secondary structure sites of high conservation, with the core
difference being the unchangeability of the underlying RNAz model and it’s
lack of support for the identification of coding sequences.

2 Installation

In terms of external requirements, Svhip will require a working perl instal-
lation and the installation of the software ClustalW2. All needed python

libraries are contained in the included conda environment and we suggest
using it for the installation of these dependencies. We suggest installation
using conda and a new environment:

$ conda create --name svhip_env python=3.9

which will generate a new conda environment using python version 3.9.
Switch to the new environment:

$ conda activate svhip_env

Then we install Svhip from the bioconda channel using;:

$ conda install -c bioconda svhip

This should download and install all required files. We will verify the
installation in the next step.

From inside this environment, programs associated with the Svhip frame-
work can be safely executed without interfering with other user-specified li-
braries installed on the machine. To test functionality of the framework itself,
proceed to the following section.

3 Running tests

To test the installation and the conda environment, you can call the internal
test by typing

$ svhip check

In case of successful installation, this should produce the following output
to the screen:
TEST 1 / 5: SUCCESS
TEST 2 / 5: SUCCESS
TEST 3 / 5: SUCCESS
TEST 4 / 5: SUCCESS
TEST 5 / 5: SUCCESS
Program ran for 17.77 seconds.

This means that all individual subroutines work as intended in a simple
test scenario. In the following section we will now take a look at usage of
individual program parts.

4 Basic usage
To run Svhip, simply type:

$ svhip

which will bring up the help menu. Svhip supports different modes of
operation corresponding to it’s different uses from initial training data gen-
eration, to calculation of features in alignment windows to final prediction.
These are generally called from the command line as follows

$ svhip [PROGRAM] [OPTIONS]

where PROGRAM refers to the name of the subprogram to be called.
--help statements are available for each of these. All these subprograms are
listed as follows and will be explained in more detail below:

data
combine
training
evaluate
features
predict

4.1 Training Data generation

The data generation program, called in the simplest case using

$ svhip data -i [INPUTFILE] -o [OUTPUT FOLDER]

serves to preprocess either Clustal W alignments or collections of sequences
in Fasta files and calculates vectors of features used in further classifier train-
ing or evaluation. Abstracted, the sequence of taken steps is as follows:
Sequences are realigned (if not already aligned) using the ClustalW2 instal-
lation located on the users machine. Then, using the (integrated) rnazSe-
lectSeqs.pl script of the RNAz framework, subset of sequences optimized for
average pairwise identity is selected (Default: up to 100). If less sequences
than the maximum specified with the --num-sequences parameter are in
the alignment and none of them surpass the identity threshold specified with
the --max-id parameter, all are retained.

This alignment is then sliced in overlapping windows of sub-alignments
with between 2 and 12 sequences in each per default. Usually multiple of
these alignment windows are generated per number of sequences. Once these
are generated, a feature vector consisting of Structural conservation index,
z-score of Minimum free energy (MFE), Shannon-entropy, alignment-wide
Hexamer score and Codon conservation score is calculated and written to
output as a tab-delimited table .tsv file.

A special feature of Svhip is the possibility to automatically generate a
fitting negative training set based on the input data. This is achieved using ei-
ther the rnazRandomizeAln.pl tool or the SISSIz software for dinucleotide-
controlled null models. For the latter, an installation of SISSIz 0.1.1 must
be present on the users machine. The negative set generation is initiated
using

$ svhip data -i [INPUTFILE] -o [OUTPUT FOLDER] --generate-control

True .

Should the more sophisticated SISSIz based simulation of control data be
used, deactivate the default shuffling with

$ svhip data -i [INPUTFILE] -o [OUTPUT FOLDER] --generate-control

True --shuffle-control False .

Otherwise an own negative training set can also be supplied with the -N,
--negative parameter.

In principal the process is equal for the generation of training data based
on alignments of coding sequences. However, note that in this case the flag
(-p) for identification as protein coding has to be set with

$ svhip data -i [INPUTFILE] -o [OUTPUT FOLDER] -p CDS.

Equivalent to this, training data can also be specifically designated as
non-coding with

$ svhip data -i [INPUTFILE] -o [OUTPUT FOLDER] -p ncRNA..

This is however not necessary for most cases, as a structurally conserved
ncRNA type set is assumed by default. Note further that automatic gener-
ation of negative training sets in a coding context is supported in principal,
but might lead to unexpected behavior in certain cases, as native signals
might not be disrupted evenly.

4.1.1 Example

In the installation included is the /Example folder, containing an alignment
of 45 highly conserved tRNA sequences as derived from the Rfam data base.
To test the basic functionality of Svhip, simply navigate to the installation
folder and type

$ svhip data -i Example/tRNAtest.fa -o tRNAtest -

which will generate an output folder containing several graphical evalua-
tions, a subfolder Example/tRNA _test_windows containing sliced alignment
windows and the tRNA _test_trainingdata.tsv which contains calculated fea-
ture vectors. Opening and studying it will reveal that it only contains exam-
ples directly generated from the supplied input file, thus, lacking a control
set, not being useful for a real classification problem. The generated file
should look something like the following Figure

We can let Svhip generate a negative training set for us by typing instead

$ svhip data -i Example/tRNA test.fa -o tRNA test --generate-control True

File Ed

Figure 1: Output file after running the data generation command on an
example alignment of highly conserved tRNA sequences.

This process will take a little longer. Looking at the output file again we
can now see that there are feature vectors labeled as either ncRNA or OTHER,
the latter here referring to training instances simulating an unspecific (i.e. for
example intergenic) genomic background. Figure [2]shows how the generated
vectors for the generated control could look like.

In this context, the automatically generated graphical evaluations which
serve to illustrate distribution of features between classes become more in-
teresting (see Figure [3)).

File Edit

Figure 2: Output file containing automatically generated negative training
instances created with the data generation subprogram on an example align-

ment of highly conserved tRNA sequences.

1.254 E E o
oo @™
1.00 4 Q1 e
— 0.75 1 1
O
(2]
0.50 4 B B
0.254 B B
0.00 4 1 e »
T T T T T T T T
w 01 2 7 7
e D
=
5 71))
o Class
<
2 -]
] g, ® RNA
4 o OTHER
-3 .-z B .
L
-4 T T T T T T
> 1.0 & 4
e K
>
‘5 0.8 :.0 b b
c £
2 0.6 N B
=4 o
s .
wn 0.4 B .
. .
L L
T T T T T T T T
0.0 0.5 1.0 -4 -2 0 0.5 1.0
SCI z-score of MFE Shannon-entropy

Figure 3: Features as calculated from generated alignment windows of a sam-
ple of aligned tRNA sequences. As can be seen there is strong differentiation
between the native alignments and the generated control set.

9

Another point of note here is the integrated filtering mechanic for se-
lection of only statistically significant alignment windows. Based on native
alignment windows, randomized alignments are generated and their pair-wise
tree edit distances used as an approximation of secondary structure differ-
ence. From the average tree edit distance of these alignments is a distribution
approximated, which is used as a filter to only select statistically significant
alignment windows for feature calculation. An example of these distributions
and their overlap can be reviewed in Figure [l Should this property not be
desired for some reason, it can be turned off with

$ svhip data -i Example/tRNA test.fa -o tRNA test --no-structural-filter True

50
40

30
class
control
input

count

20
10

0 1|
30 40 50 60 70
tree edit distance
Figure 4: Distributions of average pair-wise tree edit distances of secondary
structure representations in native alignment windows sliced from an align-

ment of tRNA sequences and the corresponding control set.

4.1.2 Hexamer models

For the calculation of the alignment-wide hexamer score a heuristic is em-
ployed that builds on a preexisting model assigning each possible 6-mer of
nucleotides a corresponding frequency in a coding and non-coding context. If
not otherwise specified, a general model based on Human training data will
be employed. As genomic contexts differ in their distribution of hexamers, a
customized Hexamer model should be provided in other cases:

10

$ svhip data -i [INPUT] -0 [OUTPUT] -H [HEXAMER MODEL FILE]

In principal these models are tab-delimited files of 4096 lines that contain
one possible hexamer per line followed by an empirical probability to find this
constellation in a coding (first) or non-coding environment. Given a genome
and a known .gtf annotation file with coding regions clearly marked as CDS,
this model can be recalibrated using the create_hexamer_model.py script. For
further reference see also the CPAT software, employing this property in a
single-sequence context [CITE].

4.1.3 Arguments

Usage:
svhip data [options]

Options:
--version show program’s version number and exit
-h, —-help show this help message and exit

-1 IN_FILE, --input=IN_FILE
The input directory or file (Required).

-0 OUT_FILE, --outfile=0UT_FILE
Name for the output directory (Required).

-N NEGATIVE, --negative=NEGATIVE

Should a specific negative data set be supplied for
data generation? If this field is EMPTY it will be
auto-generated based on the data at hand (This will be
the desired option for most uses).

-d MAX_ID, --max-id=MAX_ID
During data preprocessing, sequences above identity

threshold (in percent) will be removed. Default: 95.

-n N_SEQS, --num-sequences=N_SEQS
Number of sequences input alignments will be optimized

11

towards. Default: 100.

-1 WINDOW_LENGTH, --window-length=WINDOW_LENGTH
Length of overlapping windows that alignments will be
sliced into. Default: 120.

-s SLIDE, --slide=SLIDE
Controls the step size during alignment slicing and
thereby the overlap of each window.

-w N_WINDOWS, --windows=N_WINDOWS
The number of times the alignment should be fully
sliced in windows - for variation.

-g GENERATE_CONTROL, --generate-control=GENERATE_CONTROL
Flag to determine if a negative set should be auto-
generated (Default: False).

—-c SHUFFLE_CONTROL, --shuffle-control=SHUFFLE_CONTROL
Use the column-based shuffling approach provided by
the RNAz framework instead of SISSIz (Default: False).

-p POS_LABEL, --positive-label=P0S_LABEL

The label that should be assigned to the feature
vectors generated from the (non-control) input data.
Can be CDS (for protein coding sequences) or ncRNA.
(Default: ncRNA).

-H HEXAMER_MODEL, --hexamer-model=HEXAMER_MODEL
The Location of the statistical Hexamer model to use.
An example file is included with the download as
Human_hexamer.tsv, which will be used as a fallback.

-S STRUCTURE_FILTER, --no-structural-filter=STRUCTURE_FILTER

Set this flag to True if no filtering of alignment
windows for statistical significance of structure

12

4.2 Combination of generated feature files

The Svhip combine command may be used to unite several independently
generated files containing feature vectors. This small subprogram mostly
serves for quick testing of different data selection approaches. Usage is simply

typing

$ svhip combine -i [DIRECTORY] -o [OUTPUT] --prefix [PREFIX]

where the -o argument denotes simply the name or path to the combined
output .tsv file. Note that for this subprogram the otherwise mandatory -i
input argument is not needed and if none is provided, the current working
directory will be scanned. Otherwise it should point to a directory containing
all the previously generated files one wishes to include in the combination.
The -p, --prefix argument serves to indicate a mandatory prefix that all
files have to share before they are included, this can be used to sort out
generated feature files from different origins, for example. As an example, if
Test is passed to the ——prefix argument, only files starting their name with
Test will be included.

4.2.1 Arguments

Usage:
svhip combine [options]

Options:
--version show program’s version number and exit
-h, --help show this help message and exit

-1 IN_FILE, --input=IN_FILE
The input directory or file (Required).

-o OUT_FILE, --outfile=0UT_FILE
Name for the output directory (Required).

-p PREFIX, —-prefix=PREFIX

Prefix for selection of files to combine. For example,
if set to TEST, only valid feature vector containing

13

files with the prefix TEST will be added.

14

4.3 Model training

Having a file of training data in .tsv format as generated in the previous
step, training a new model is in principal as simple as typing out

$ svhip training -i [INPUT] -o [OUTPUT].

There are however here a few things to consider. The first aspect is the
ability of Svhip to harness the sklearn library to generate different kinds of
models, namely Random Forest (RF), Logistic Regression (LR) and Support
Vector Machine Models (SVM), with the latter being the default case. In
our tests there seems to be no model type that excels on all different kinds of
input data, which is why we leave the decision up to the expertise of the end
user. It should be noted that in terms of evaluation and prediction purposes
all of them are treated equally. Selecting a different type of model can be
done with

$ svhip training -i [INPUT] -o [OUTPUT] -M RF

to for example select the Random Forest classifier using the -M parameter.

The second core aspect is the integrated option for optimization of hyper-
parameters either by grid search or by a random walk approach. By default,
optimization will be turned on within a reasonable range of base parameters,
that are fully customizable. However, which parameters can be selected per
optimizer is dependent on the model in use. The SVM classifier type, em-
ploying the Cost and gamma parameters, comes with the option to set the
following parameters

$ svhip training -i [INPUT] -o [OUTPUT] --low-c 1 --high-c
1000 --low-gamma 1 --high-gamma 1000 --hyperparameter-steps 10

which indicates the usage of min values 1 and max values 1000 (indicated
by the —-min parameters) for both hyperparameters. Furthermore, we decide
on trying up to 10 values for each (indicated by the —~hyperparameter-steps
argument) which will be spread out linearly, thus creating a search grid of
100 value pairs in case a grid search is used. Instead of a linear succession
of values, a log scale can also be defined by setting the --logscale flag to
True.

15

4.3.1 Example

Using the training data file based on tRNA as generated in the previous
section to train an SVM classifier with hyperparameter optimization can be
achieved with:

$ svhip training -i tRNA test trainingdata.tsv -o tRNA model -
--model SVM —-optimize-hyperparameters True .

This will write both a tRNA_model.model file as well as corresponding
parameters file containing the values used in normalization of parameters.
The model file can then be used in further steps for prediction purposes,
or can be first evaluated against a known data set as described in the next
section.

4.3.2 Arguments

Usage:
svhip training [options]

Options:
--version show program’s version number and exit
-h, —-help show this help message and exit

-i IN_FILE, --input=IN_FILE
The input directory or file (Required).

-o OUT_FILE, --outfile=0UT_FILE
Name for the output directory (Required).

-3 STRUCTURE, --structure=STRUCTURE

Flag determining if only secondary structure
conservation features should be considered. If True,
protein coding features will be included (Default:
False).

-M ML, --model=ML The model type to be trained. You can choose LR

(Logistic regression), SVM (Support vector machine) or
RF (Random Forest). (Default: SVM)

16

--optimize-hyperparameters=0PTIMIZE
Select if a parameter optimization should be performed
for the ML model. Default is on.

—-—optimizer=0PTIMIZER

Select the optimizer for hyperparameter search. Search
will be conducted with 5-fold crossvalidation and
either of ’gridsearch’ (default, more precise) or
’randomwalk’ (faster).

-—low-c=LOW_C SVM hyperparameter search: Lowest value of the cost
(C) parameter to optimize. Does nothing if no SVM
classifier is used.

-—high-c=HIGH_C SVM hyperparameter search: Highest value of the cost
(C) parameter to optimize. Does nothing if no SVM
classifier is used.

-—low-gamma=LOW_G SVM hyperparameter search: Lowest value of the gamma
parameter to optimize. Does nothing if no SVM
classifier is used.

-—high-gamma=HIGH_G SVM hyperparameter search: Highest value of the gamma
parameter to optimize. Does nothing if no SVM
classifier is used.

—-—hyperparameter-steps=GRID_STEPS
Number of values to try out for EACH hyperparameter.
Values will be evenly spaced. Default: 10

——logscale=LOGSCALE Flag that decides if a logarithmic scale should be
used for the hyperparameter grid. If set, a log base

can be set with --logbase.

--logbase=LOGBASE The logarithmic base if a log scale is used in
hyperparameter search. Default: 10.

17

--min-trees=LOW_ESTIMATORS

Random Forest hyperparameter search: Minimum number of
trees before optimization. Does nothing if no RF
classifier is used.

--max-trees=HIGH_ESTIMATORS

Random hyperparameter search: Maximum number of trees
before optimization. Does nothing if no RF classifier
is used.

--min-samples-split=LOW_SPLIT

Random Forest hyperparameter search: Minimum number of
samples for splitting an internal node in the forest.
Does nothing if no RF classifier is used.

--max-samples-split=HIGH_SPLIT

Random hyperparameter search: Maximum number of
samples for splitting an internal node in the forest.
Does nothing if no RF classifier is used.

--min-samples-leaf=LOW_LEAF

Random Forest hyperparameter search: Minimum number of
samples for splitting a leaf node in the forest. Does
nothing if no RF classifier is used.

--max-samples-leaf=HIGH_LEAF

Random hyperparameter search: Maximum number of
samples for splitting a leaf node in the forest. Does
nothing if no RF classifier is used.

18

4.4 Model evaluation

This subprogram allows for the evaluation of a generated model file by ana-
lyzing accuracy, recall rates and the tradeoff between False positive rate and
True positive rate as visualized by a ROC curve.

4.4.1 Example

Usage with the above generated model on the already generated training set
would be initiated as follows:

$ svhip evaluate -M tRNA model.model -0 evaluation test -i -
tRNA test trainingdata.tsv .

The -M parameter here serves to indicate the path to the model to be
evaluated. Notice that in most cases evaluating the trained model with the
training data used to generate this model is not the best option and is only
done here for illustrative purposes.

4.4.2 Arguments

Usage:
svhip evaluate [options]

Options:
--version show program’s version number and exit
-h, --help show this help message and exit

-1 IN_FILE, --input=IN_FILE
The input directory or file (Required).

-o OUT_FILE, --outfile=QUT_FILE
Name for the output directory (Required).

—--model-path=MODEL_PATH

If running a model test, this is the path of the model to
evaluate. The data set to use should be handed over

with -i, --input.

19

4.5 Feature calculation of genome alignments

This program calculates the sets of features for MAF genomic alignments cut
in overlapping windows using rnazWindows.pl or a similar tool. It’s basic
usage is called as follows:

$ svhip.py features -i [ALIGNMENTS] -o [OUTPUT FILE] .

Two things are worth considering here. First, the Hexamer score fea-
ture calculated from the alignments here is obviously just as dependent on
the provided background distribution of 6-mers as for the training data con-
struction. Thus, also here it is advisable to provide a Hexamer model file,
using the -H parameter:

$ svhip.py features -i [ALIGNMENTS] -o [OUTPUT FILE] -H [HEXAMER
MODEL]

The second aspect is the reading direction in which the genome is sup-
posed to be analyzed. By default, features will be calculated for exactly the
aligned sequences present in the supplied input file. However, in many cases
functional genes may as well be encoded by the reverse complement strand.
If the reverse direction should be calculated as well, we will also have to set
the corresponding flag -R, --reverse to True:

$ svhip.py features -i [ALIGNMENTS] -o [OUTPUT FILE] -R True.

Another property of note for this subprogram is that it automatically
attempts to read out genome information from the provided file if possible. If
the MAF file contains information regarding genomic coordinates, i.e. start,
end and length of the sequence, these will be reflected in the output file as
well, along with reading directions.

4.5.1 Example

We can employ the following command to test this subprogram on the MAF
file provided in the /Example folder. It contains alignment windows from
chromosome 1 of an alignment of plant genomes with Arabidopsis thaliana.

$ svhip.py features -i Example/Arabidopsis_1.maf -o Arabidopsis_1.tsv
-R True .

20

This will calculate features for prediction for each of these alignment
windows in both forward and reverse direction. The output file should look
something like in Figure [5]

Figure 5: Output file after running the features command on a set of MAF
genomic alignments, prepared for prediction with a trained classifier.

4.5.2 Arguments

Usage:
svhip features [options]

Options:
--version show program’s version number and exit
-h, --help show this help message and exit

-1 IN_FILE, --input=IN_FILE
The input directory or file (Required).

-o OUT_FILE, --outfile=QUT_FILE
Name for the output directory (Required).

-R REVERSE, --reverse=REVERSE
Also scan the reverse complement when calculating
features.

-H HEXAMER_MODEL, --hexamer-model=HEXAMER_MODEL
The Location of the statistical Hexamer model to use.
An example file is included with the download as
Human_hexamer.tsv, which will be used as a fallback.

21

4.6 Prediction

For the prediction process, two components are needed. First, a trained
model is required to classify previously calculated feature vectors into cat-
egories (ncRNA, CDS or OTHER). Secondly, a .tsv file with the feature
vectors from input alignments for classification as generated in the previous
section is needed. Prediction is initiated using the following command:

$ svhip predict -i [FILE WITH FEATURE VECTORS] -o [OUTPUT FILE]
--model-path [MODEL FILE] --column-label [NAME] .

A few notes on the structure of this command: --model-path should
point to the exact path to a previously trained model. --column-label
refers to the name of the column in the output file in which the classification
results will be stored. So, if we enter ”Predictions”, the output .tsv will
contain a column named ”Predictions” with all the assigned labels.

4.6.1 Example

Putting it all together, we can predict the calculated feature vectors from
the previous section with the simple model we trained on the tRNA data.
For this, we type out:

$ svhip predict -i Arabidopsis 1.tsv -o Arabidopsis 1.svhip -
--model-path tRNA model.model ——column-label Prediction .

Take alook at the resulting file. It should contain all th information
previously contained in the Arabidopsis_1.tsv plus the ”Prediction” column.
This column should contain many OTHER predictions and one particular
window (in both directions) being classified as ncRNA, as seen in Figure [6]

22

Figure 6: Output of the prediction subroutine, assigning classification la-
bels to previously calculated feature vectors. The last window from position
309.270 to 309.361 is indeed overlapping with the annotation of a tRNA gene
in the AraPort11 annotation.

Indeed, this particular window was added containing an alignment of
plant tRNA genes. Although these were not represented in the training set
in particular, the high level of secondary structure conservation indicates the
presence of some biological function to be annotated here.

4.6.2 Arguments

Usage:
svhip predict [options]

Options:
--version show program’s version number and exit
-h, --help show this help message and exit

-1 IN_FILE, --input=IN_FILE
The input directory or file (Required).

-o OUT_FILE, --outfile=QUT_FILE
Name for the output directory (Required).

-M MODEL_PATH, --model-path=MODEL_PATH

If running a model prediction

(predict), this is the path of the model to
evaluate. The data set to use should be handed over
with -i, --input.

23

—-—column-1abel=PREDICTION_LABEL
Column name for the prediction in the output.

—--structure=NCRNA Set to True if only features for conservation of

secondary structure should be used. Depends on type of
model.

24

4.7 Concluding remarks

The Svhip software provides a simple and reproducable way to train and uti-
lize classifiers for the identification of evolutionarily conserved protein coding
and non-coding genes in screens of multiple genome alignments. We illustrate
here only the basic functionality of the tool, demonstrating a simple use case
with merely one training example. In practice, it is advisable to construct and
evaluate diverse training sets incorporating many different examples of well-
conserved and established RNAs before attempting a genome-wide screen for
the purpose of de novo discovery of functional genes.

We further remark that in any case it is advisable to cross-compare results
provided by the Svhip framework with predictions ad evaluations provided
by other methods, such as mapping predicted genetic loci to transcriptome
libraries with the goal of identifying actual expression of predicted genes.
Furthermore, we acknowledge that while conservation on evolutionary time
scales is undeniably an important aspect in mapping out potential biological
function, there are just as undeniably biologically active nucleotide chains
that show no such conservation at all. Thus, the approach outlined here will
remain blind to these.

25

List of Figures

(1

Output file after running the data generation command on an

example alignment ot highly conserved tRNA sequences. | . . .

[2

Output file containing automatically generated negative train-

ing instances created with the data generation subprogram on

an example alignment of highly conserved tRNA sequences. | .

Features as calculated from generated alignment windows of

a sample of aligned tRNA sequences. As can be seen there is

strong differentiation between the native alignments and the

generated controlset. | L

Distributions of average pair-wise tree edit distances of sec-

ondary structure representations in native alignment windows

sliced from an alignment of tRNA sequences and the corre-

sponding control set.| 0000000

Output file atter running the features command on a set

of MAF' genomic alignments, prepared for prediction with a

trained classifier. | L

Output of the prediction subroutine, assigning classification

labels to previously calculated feature vectors. The last win-

dow trom position 309.270 to 309.361 is indeed overlapping

with the annotation of a tRNA gene in the AraPortll anno-

tation.o

26

	Introduction
	Installation
	Running tests
	Basic usage
	Training Data generation
	Example
	Hexamer models
	Arguments

	Combination of generated feature files
	Arguments

	Model training
	Example
	Arguments

	Model evaluation
	Example
	Arguments

	Feature calculation of genome alignments
	Example
	Arguments

	Prediction
	Example
	Arguments

	Concluding remarks

