
variancePartition:
Quantifying and interpreting drivers
of variation in multilevel gene
expression experiments

Gabriel Hoffman
Pamela Sklar Division of Psychiatric Genomics
Icahn Institute for Genomics and Multiscale Biology
Department of Genetics and Genomic Sciences
Icahn School of Medicine at Mount Sinai

October 29, 2019

Abstract

Gene expression datasets are complicated and have multiple sources of biological
and technical variation. These datasets have recently become more complex as
it is now feasible to assay gene expression from the same individual in multiple
tissues or at multiple time points. The variancePartition package implements a
statistical method to quantify the contribution of multiple sources of variation
and decouple within/between-individual variation. In addition, variancePartition
produces results at the gene-level to identity genes that follow or deviate from
the genome-wide trend.

variancePartition version: 1.16.0

http://bioconductor.org/packages/variancePartition


Vignette for variancePartition

Contents

1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Running an analysis. . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Standard application . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Saving plot to file . . . . . . . . . . . . . . . . . . . . 8

2.2 Plot expression stratified by other variables . . . . . . . . 10

2.3 Intuition about the backend . . . . . . . . . . . . . . . . . 10

3 Interpretation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Should a variable be modeled as fixed or random ef-
fect? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Which variables should be included? . . . . . . . . . . . . 14
3.2.1 Assess correlation between all pairs of variables . . . 15

4 Advanced analysis . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Extracting additional information from model fits . . . . . 16

4.2 Removing batch effects before fitting model . . . . . . . . 17

4.3 Variation within multiple subsets of the data . . . . . . . . 19

4.4 Detecting problems caused by collinearity of variables . 20

4.5 Including weights computed separately . . . . . . . . . . 21

4.6 Including interaction terms . . . . . . . . . . . . . . . . . . 21

5 Applying variancePartition to RNA-seq expression
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1 Gene-level counts. . . . . . . . . . . . . . . . . . . . . . . 23
5.1.1 limma/voom . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.2 DESeq2 . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Isoform quantification. . . . . . . . . . . . . . . . . . . . . 25
5.2.1 tximport . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.2 ballgown . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Comparison with other methods on simulated data . 28

2



Vignette for variancePartition

7 Statistical details . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.1 Implementation in R . . . . . . . . . . . . . . . . . . . . . 32

7.2 Interpretation of percent variance explained. . . . . . . . 32

7.3 Variation with multiple subsets of the data . . . . . . . . . 34

7.4 Relationship between variancePartition and differential
expression . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.5 Modelling error in gene expression measurements . . . . 36

8 Frequently asked questions. . . . . . . . . . . . . . . . . . 37

8.1 Warnings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8.2 Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.2.1 Errors: Problems removing samples with NA/NaN/Inf

values. . . . . . . . . . . . . . . . . . . . . . . . . . 39

3



Vignette for variancePartition

1 Overview

The variancePartition package provides a general framework for understanding
drivers of variation in gene expression in experiments with complex designs. A
typical application would consider a dataset of gene expression from individuals
sampled in multiple tissues or multiple time points where the goal is to under-
stand variation within versus between individuals and tissues. variancePartition
use a linear mixed model to partition the variance attributable to multiple vari-
ables in the data. The analysis is built on top of the lme4 package [1], and
some basic knowledge about linear mixed models will give you some intuition
about the behavior of variancePartition [2, 3]

1.1 Inputs

There are three components to an analysis:
1) Gene expression data: In general, this is a matrix of normalized gene

expression values with genes as rows and experiments as columns.

– Count-based quantification: featureCounts [4], HTSeq [5]
Counts mapping to each gene can be normalized using counts per
million (CPM), reads per kilobase per million (RPKM) or fragments
per kilobase per million (FPKM). These count results can be pro-
cessed with limma/voom [6] to model the precision of each observa-
tion or DESeq2 [7].

– Isoform quantification: kallisto [8], sailfish [9], salmon [10], RSEM
[11], cufflinks [12]
These perform isoform-level quantification using reads that map to
multiple transcripts. Quantification values can be read directly into
R , or processed with ballgown [13] or tximport [14].

– Microarray data: any standard normalization such as rma in the oligo
[15] package can be used.

2) Meta-data about each experiment: A data.frame with information
about each experiment such as patient ID, tissue, sex, disease state, time
point, batch, etc.

4



Vignette for variancePartition

2) Formula indicating which meta-data variables to consider: An R
formula such as
∼ Age + (1|Individual) + (1|Tissue) + (1|Batch) indicating which
meta-data variables should be used in the analysis.

variancePartition will assess the contribution of each meta-data variable to vari-
ation in gene expression and can report the intra-class correlation for each vari-
able.

5



Vignette for variancePartition

2 Running an analysis

A typical analysis with variancePartition is only a few lines of R code, assuming
the expression data has already been normalized. Normalization is a separate
topic, and I address it briefly in Section 5.
The simulated dataset included as an example contains measurements of 200
genes from 100 samples. These samples include assays from 3 tissues across 25
individuals processed in 4 batches. The individuals range in age from 36 to 73.
A typical variancePartition analysis will assess the contribution of each aspect of
the study design (i.e. individual, tissue, batch, age) to the expression variation
of each gene. The analysis will prioritize these axes of variation based on a
genome-wide summary and give results at the gene-level to identity genes that
follow or deviate from this genome-wide trend. The results can be visualized
using custom plots and can be used for downstream analysis.

2.1 Standard application

# load library

library('variancePartition')

# load simulated data:

# geneExpr: matrix of gene expression values

# info: information/metadata about each sample

data(varPartData)

# Specify variables to consider

# Age is continuous so model it as a fixed effect

# Individual and Tissue are both categorical,

# so model them as random effects

# Note the syntax used to specify random effects

form <- ~ Age + (1|Individual) + (1|Tissue) + (1|Batch)

# Fit model and extract results

# 1) fit linear mixed model on gene expression

# If categorical variables are specified,

# a linear mixed model is used

# If all variables are modeled as fixed effects,

# a linear model is used

# each entry in results is a regression model fit on a single gene

# 2) extract variance fractions from each model fit

6



Vignette for variancePartition

# for each gene, returns fraction of variation attributable

# to each variable

# Interpretation: the variance explained by each variables

# after correcting for all other variables

# Note that geneExpr can either be a matrix,

# and EList output by voom() in the limma package,

# or an ExpressionSet

varPart <- fitExtractVarPartModel( geneExpr, form, info )

# sort variables (i.e. columns) by median fraction

# of variance explained

vp <- sortCols( varPart )

# Figure 1a

# Bar plot of variance fractions for the first 10 genes

plotPercentBars( vp[1:10,] )

#

# Figure 1b

# violin plot of contribution of each variable to total variance

plotVarPart( vp )

variancePartition includes a number of custom plots to visualize the results.
Since variancePartition attributes the fraction of total variation attributable to
each aspect of the study design, these fractions naturally sum to 1. plotPer

centBars plots the partitioning results for a subset of genes (Figure 1a), and
plotVarPart shows a genome-wide violin plot of the distribution of variance
explained by each variable across all genes (Figure 1b). (Note that these plots
show results in terms of percentage of variance explained, while the results are
stored in terms of the fraction.)
The core functions of variancePartition work seemlessly with gene expression
data stored as a matrix, data.frame, EList from limma or ExpressionSet

from Biobase. fitExtractVarPartModel() returns an object that stores the
variance fractions for each gene and each variable in the formula specified.
These fractions can be accessed just like a data.frame:

# Access first entries

head(varPart)

## Batch Individual Tissue Age Residuals

## gene1 0.000158 0.890 0.0247 4.53e-05 0.0847

## gene2 0.000000 0.806 0.1009 3.34e-04 0.0926

## gene3 0.002423 0.890 0.0356 1.47e-03 0.0704

7



Vignette for variancePartition

## gene4 0.000000 0.769 0.1253 1.01e-03 0.1048

## gene5 0.000000 0.700 0.2091 3.87e-05 0.0912

## gene6 0.002347 0.722 0.1679 2.72e-03 0.1049

# Access first entries for Individual

head(varPart$Individual)

## [1] 0.890 0.806 0.890 0.769 0.700 0.722

# sort genes based on variance explained by Individual

head(varPart[order(varPart$Individual, decreasing=TRUE),])

## Batch Individual Tissue Age Residuals

## gene43 0.00000 0.914 1.17e-02 3.78e-04 0.0735

## gene174 0.00000 0.911 9.72e-03 2.01e-03 0.0770

## gene111 0.00000 0.907 8.39e-03 9.74e-04 0.0839

## gene127 0.00000 0.904 1.38e-02 5.08e-04 0.0821

## gene151 0.00608 0.903 1.43e-10 1.35e-05 0.0910

## gene91 0.00000 0.900 1.41e-02 1.11e-06 0.0856

2.1.1 Saving plot to file

In order to save the plot to a file, use the ggsave function:

(a)

gene10

gene9

gene8

gene7

gene6

gene5

gene4

gene3

gene2

gene1

100806040200
Variance explained (%)

Individual

Tissue

Age

Batch

Residuals

(b)

●

●

●

●

●
●

●

●

●

●●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●

●●●

0

25

50

75

100

Individual
Tissue Age

Batch
Residuals

V
ar

ia
nc

e 
ex

pl
ai

ne
d 

(%
)

Figure 1: variancePartition example on simulated data

8



Vignette for variancePartition

fig <- plotVarPart( vp )

ggsave(file, fig)

9



Vignette for variancePartition

2.2 Plot expression stratified by other variables

variancePartition also includes plotting functions to visualize the variation across
a variable of interest. plotStratify plots the expression of a gene stratified by
the specified variable. In the example dataset, users can plot a gene expression
trait stratified by Tissue (Figure 2a) or Individual (Figure 2b).

# get gene with the highest variation across Tissues

# create data.frame with expression of gene i and Tissue

# type for each sample

i <- which.max( varPart$Tissue )

GE <- data.frame( Expression = geneExpr[i,], Tissue = info$Tissue)

# Figure 2a

# plot expression stratified by Tissue

plotStratify( Expression ~ Tissue, GE, main=rownames(geneExpr)[i])

#

# get gene with the highest variation across Individuals

# create data.frame with expression of gene i and Tissue

# type for each sample

i <- which.max( varPart$Individual )

GE <- data.frame( Expression = geneExpr[i,],

Individual = info$Individual)

# Figure 2b

# plot expression stratified by Tissue

label <- paste("Individual:", format(varPart$Individual[i]*100,

digits=3), "%")

main <- rownames(geneExpr)[i]

plotStratify( Expression ~ Individual, GE, colorBy=NULL,

text=label, main=main)

For gene141, variation across tissues explains 52.9% of variance in gene expres-
sion. For gene43, variation across Individuals explains 91.4% of variance in gene
expression.

2.3 Intuition about the backend

At the heart of variancePartition, a regression model is fit for each gene
separately and summary statistics are extracted and reported to the user for
visualization and downstream analysis. For a single model fit, calcVarPart

10



Vignette for variancePartition

(a) Tissue

●

●

0

5

10

Tissue

E
xp

re
ss

io
n

Tissue

A

B

C

gene141

(b) Individual

●

●

●

●

●

●

●Individual: 91.4 %

5

10

Individual

E
xp

re
ss

io
n

gene43

Figure 2: Plot gene expression stratified by a) Tissue and b) Individual

computes the fraction of variance explained by each variable. calcVarPart is
defined by this package, and computes these statistics from either a fixed effects
model fit with lm or a linear mixed model fit with lmer. fitExtractVarPart

loops over each gene, fits the regression model and returns the variance fractions
reported by calcVarPart.
Fitting the regression model and extracting variance statistics can also be done
directly:

library('lme4')

# fit regression model for the first gene

form_test <- geneExpr[1,] ~ Age + (1|Individual) + (1|Tissue)

fit <- lmer(form_test, info, REML=FALSE )

# extract variance statistics

calcVarPart(fit)

## Individual Tissue Age Residuals

## 8.90e-01 2.47e-02 4.35e-05 8.50e-02

11



Vignette for variancePartition

3 Interpretation

variancePartition fits a linear (mixed) model thats jointly considers the contri-
bution of all specified variables on the expression of each gene. It uses a multiple
regression model so that the effect of each variable is assessed while correcting
for all others. Therefore, fitting the model with each variable separately will
give very different results from the considering all variables jointly. I have found
joint analysis the best option in most cases.
The results of variancePartition give insight into the expression data at multiple
levels. Moreover, a single statistic often has multiple equivalent interpretations
while only one is relevant to the biological question. Analysis of the example
data in Figure 1 gives some strong interpretations.
Considering the median across all genes,

1) variation across individuals explains a median of 81.5% of the variation in
expression, after correcting for tissue, batch and age

2) variation across tissues explains a median of 8.2% of the variation in
expression, after correcting for other the variables

3) variation across batches is negligible after correcting for variation due to
other variables

4) the effect of age is negligible after correcting for other variables
5) correcting for individual, tissue, batch and age leaves a median of 9.3%

of the total variance in expression.
These statistics also have a natural interpretation in terms of the intra-class
correlation (ICC), the correlation between observations made from samples in
the same group.
Considering the median across across all genes and all experiments,

1) the ICC for individual is 81.5%.
2) the ICC for tissue is 8.2%.
3) two randomly selected gene measurements from same individual, but re-

gardless of tissue, batch or age, have a correlation of 81.5%.
4) two randomly selected gene measurements from same tissue, but regard-

less of individual, batch or age, have a correlation of 8.2%.
5) two randomly selected gene measurements from the same individual and

same tissue, but regardless of batch and age, have an correlation of 81.5%
+ 8.2% = 89.7%.

12



Vignette for variancePartition

Note that that the ICC here is interpreted as the ICC after correcting for all
other variables in the model.
These conclusions are based on the genome-wide median across all genes, but
the same type of statements can be made at the gene-level. Moreover, care
must be taken in the interpretation of nested variables. For example, Age is
nested within Individual since the multiple samples from each individual are
taken at the same age. Thus the effect of Age removes some variation from
being explained by Individual. This often arises when considering variation
across individuals and across sexes: any cross-sex variation is a component
of the cross-individual variation. So the total variation across individuals is
the sum of the fraction of variance explained by Sex and Individual. This
nesting/summing of effects is common for variables that are properties of the
individual rather than the sample. For example, sex and ethnicity are always
properties of the individual. Variables like age and disease state can be properties
of the individual, but could also vary in time-course or longitudinal experiments.
The the interpretation depends on the experimental design.
The real power of variancePartition is to identify specific genes that follow or
deviate from the genome-wide trend. The gene-level statistics can be used to
identify a subset of genes that are enriched for specific biological functions. For
example, we can ask if the 500 genes with the highest variation in expression
across tissues (i.e. the long tail for tissue in Figure 1a) are enriched for genes
known to have high tissue-specificity.

3.1 Should a variable be modeled as fixed or random
effect?

Categorical variables should (almost) always be modeled as a random effect.
The difference between modeling a categorical variable as a fixed versus random
effect is minimal when the sample size is large compared to the number of
categories (i.e. levels). So variables like disease status, sex or time point will
not be sensitive to modeling as a fixed versus random effect. However, variables
with many categories like Individual must be modeled as a random effect in
order to obtain statistically valid results. So to be on the safe side, categorical
variable should be modeled as a random effect.
variancePartition fits two types of models:

1) linear mixed model where all categorical variables are modeled as random
effects and all continuous variables are fixed effects. The function lmer

from lme4 is used to fit this model.

13



Vignette for variancePartition

2) fixed effected model, where all variables are modeled as fixed effects. The
function lm is used to fit this model.

3.2 Which variables should be included?

In my experience, it is useful to include all variables in the first analysis and then
drop variables that have minimal effect. However, like all multiple regression
methods, variancePartition will divide the contribution over multiple variables
that are strongly correlated. So, for example, including both sex and height in
the model will show sex having a smaller contribution to variation gene expres-
sion than if height were omitted, since there variables are strongly correlated.
This is a simple example, but should give some intuition about a common issue
that arises in analyses with variancePartition.
variancePartition can naturally assess the contribution of both individual and
sex in a dataset. As expected, genes for which sex explains a large fraction of
variation are located on chrX and chrY. If the goal is to interpret the impact
of sex, then there is no issue. But recall the issue with correlated variables and
note that individual is correlated with sex, because each individual is only one
sex regardless of how many samples are taken from a individual. It follows that
including sex in the model reduces the apparent contribution of individual to
gene expression. In other words, the ICC for individual will be different if sex is
included in the model.
In general, including variables in the model that do not vary within individual will
reduce the apparent contribution of individual as estimated by variancePartition.
For example, sex and ethnicity never vary between multiple samples from the
same individual and will always reduce the apparent contribution of individual.
However, disease state and age may or may not vary depending on the study
design.
In biological datasets technical variability (i.e. batch effects) can often reduce
the apparent biological signal. In RNA-seq analysis, it is common for the the
impact of this technical variability to be removed before downstream analysis.
Instead of including these batch variable in the variancePartition analysis, it is
simple to complete the expression residuals with the batch effects removed and
then feeds these residuals to variancePartition. This will increase the fraction of
variation explained by biological variables since technical variability is reduced.

14



Vignette for variancePartition

3.2.1 Assess correlation between all pairs of variables

Evaluating the correlation between variables in a important part in interpreting
variancePartition results. When comparing two continuous variables, Pearson
correlation is widely used. But variancePartition includes categorical variables in
the model as well. In order to accommodate the correlation between a contin-
uous and a categorical variable, or two categorical variables we used canonical
correlation analysis.
Canonical Correlation Analysis (CCA) is similar to correlation between two vec-
tors, except that CCA can accommodate matricies as well. For a pair of vari-
ables, canCorPairs assesses the degree to which they co-vary and contain the
same information. Variables in the formula can be a continuous variable or a
discrete variable expanded to a matrix (which is done in the backend of a re-
gression model). For a pair of variables, canCorPairs uses CCA to compute the
correlation between these variables and returns the pairwise correlation matrix.
Statistically, let rho be the array of correlation values returned by the standard
R function cancor to compute CCA. canCorPairs returns rho / sum(rho) which
is the fraction of the maximum possible correlation. Note that CCA returns
correlations values between 0 and 1

form <- ~ Individual + Tissue + Batch + Age + Height

# Compute Canonical Correlation Analysis (CCA)

# between all pairs of variables

# returns absolute correlation value

C = canCorPairs( form, info)

# Plot correlation matrix

plotCorrMatrix( C )

15



Vignette for variancePartition

Figure 3: Assess correlation between all pairs of variables

A
ge

H
ei

gh
t

B
at

ch

T
is

su
e

In
di

vi
du

al

Age

Height

Batch

Tissue

Individual

0 0.5 1

correlation

4 Advanced analysis

4.1 Extracting additional information from model fits

Advanced users may want to perform the model fit and extract results in sep-
arate steps in order to examine the fit of the model for each gene. Thus the
work of fitExtractVarPart can be divided into two steps: 1) fit the regression
model, and 2) extracting variance statistics.

form <- ~ Age + (1|Individual) + (1|Tissue) + (1|Batch)

# Fit model

results <- fitVarPartModel( geneExpr, form, info )

# Extract results

varPart <- extractVarPart( results )

Note that storing the model fits can use a lot of memory (∼10Gb with 20K
genes and 1000 experiments). I do not recommend unless you have a specific
need for storing the entire model fit.
Instead, fitVarPartModel can extract any desired information using any func-
tion that accepts the model fit from lm/lmer. The results are stored in a list

and can be used for downstream analysis.

16



Vignette for variancePartition

# Fit model and run summary() function on each model fit

vpSummaries <- fitVarPartModel( geneExpr, form, info, fxn=summary )

# Show results of summary() for the first gene

vpSummaries[[1]]

## Linear mixed model fit by maximum likelihood ['lmerMod']

## Formula: expr ~ Age + (1 | Individual) + (1 | Tissue) + (1 | Batch)

## Data: data2

## Weights: gene14643$weights

## Control: control

##

## AIC BIC logLik deviance df.resid

## 397 413 -193 385 94

##

## Scaled residuals:

## Min 1Q Median 3Q Max

## -2.0580 -0.5865 0.0147 0.6603 1.9708

##

## Random effects:

## Groups Name Variance Std.Dev.

## Individual (Intercept) 10.82431 3.2900

## Batch (Intercept) 0.00192 0.0438

## Tissue (Intercept) 0.30008 0.5478

## Residual 1.02993 1.0149

## Number of obs: 100, groups: Individual, 25; Batch, 4; Tissue, 3

##

## Fixed effects:

## Estimate Std. Error t value

## (Intercept) -10.60242 1.09494 -9.68

## Age 0.00318 0.01610 0.20

##

## Correlation of Fixed Effects:

## (Intr)

## Age -0.739

4.2 Removing batch effects before fitting model

Gene expression studies often have substantial batch effects, and variancePar-
tition can be used to understand the magnitude of the effects. However, we
often want to focus on biological variables (i.e. individual, tissue, disease, sex)

17



Vignette for variancePartition

after removing the effect of technical variables. Depending on the size of the
batch effect, I have found it useful to correct for the batch effect first and then
perform a variancePartition analysis afterward. Subtracting this batch effect
can reduce the total variation in the data, so that the contribution of other
variables become clearer.
Standard analysis:

form <- ~ (1|Tissue) + (1|Individual) + (1|Batch) + Age

varPart <- fitExtractVarPartModel( geneExpr, form, info )

Analysis on residuals:

library('limma')

# subtract out effect of Batch

fit <- lmFit( geneExpr, model.matrix(~ Batch, info))

res <- residuals( fit, geneExpr)

# fit model on residuals

form <- ~ (1|Tissue) + (1|Individual) + Age

varPartResid <- fitExtractVarPartModel( res, form, info )

Remove batch effect with linear mixed model

# subtract out effect of Batch with linear mixed model

modelFit <- fitVarPartModel( geneExpr, ~ (1|Batch), info )

res <- residuals( modelFit )

# fit model on residuals

form <- ~ (1|Tissue) + (1|Individual) + Age

varPartResid <- fitExtractVarPartModel( res, form, info )

If the two-step process requires too much memory, the residuals can be com-
puted more efficiently. Here, run the residuals function inside the call to
fitVarPartModel to avoid storing the large intermediate results.

# extract residuals directly without storing intermediate results

residList <- fitVarPartModel( geneExpr, ~ (1|Batch), info,

fxn=residuals )

# convert list to matrix

residMatrix = do.call(rbind, residList)

18



Vignette for variancePartition

4.3 Variation within multiple subsets of the data

So far, we have focused on interpreting one variable at a time. But the linear
mixed model behind variancePartition is a very powerful framework for analyzing
variation at multiple levels. We can easily extend the previous analysis of the
contribution of individual and tissue on variation in gene expression to examine
the contribution of individual within each tissue. This analysis is as easy as
specifying a new formula and rerunning variancePartition. Note that is analysis
will only work when there are replicates for at least some individuals within each
tissue in order to assess cross-individual variance with in a tissue.

# specify formula to model within/between individual variance

# separately for each tissue

# Note that including +0 ensures each tissue is modeled explicitly

# Otherwise, the first tissue would be used as baseline

form <- ~ (Tissue+0|Individual) + Age + (1|Tissue) + (1|Batch)

# fit model and extract variance percents

varPart <- fitExtractVarPartModel( geneExpr, form, info, showWarnings=FALSE )

# violin plot

plotVarPart( sortCols(varPart), label.angle=60 )

Figure 4: Variation across individuals within each tissue

●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●●●●●●●●●●●●●● ●●●
●
●●●●●●●●●●●●●●●●●●

●●●●●●●

0

25

50

75

100

Ti
ss

ue
B/

In
di

vi
du

al
Ti

ss
ue

C
/In

di
vi

du
al

Ti
ss

ue
A/

In
di

vi
du

al
Ti

ss
ue Ag
e

Ba
tc

h
R

es
id

ua
ls

V
ar

ia
nc

e 
ex

pl
ai

ne
d 

(%
)

This analysis corresponds to a varying coefficient model, where the correlation
between individuals varies for each tissue [2]. Since the variation across individ-
uals is modeled within each tissue, the total variation explained does not sum

19



Vignette for variancePartition

to 1 as it does for standard application of variancePartition. So interpretation
as intra-class does not strictly apply and use of plotPercentBars is no longer
applicable. Yet the variables in the study design are still ranked in terms of
their genome-wide contribution to expression variation, and results can still be
analyzed at the gene level. See Section 7.3 for statistical details.

4.4 Detecting problems caused by collinearity of vari-
ables

Including variables that are highly correlated can produce misleading results
and overestimate the contribution of variables modeled as fixed effects. This
is usually not an issue, but can arise when statistically redundant variables are
included in the model. In this case, the model is “degenerate” or “computa-
tionally singular” and parameter estimates from this model are not meaningful.
Dropping one or more of the covariates will fix this problem.

A check of collinearity is built into fitVarPartModel and fitExtractVarPart

Model, so the user will be warned if this is an issue.

Alternatively, the user can use the colinearityScore function to evaluate
whether this is an issue for a single model fit:

form <- ~ (1|Individual) + (1|Tissue) + Age + Height

# fit model

res <- fitVarPartModel( geneExpr[1:4,], form, info )

# evaluate the collinearity score on the first model fit

# this reports the correlation matrix between coefficient estimates

# for fixed effects

# the collinearity score is the maximum absolute correlation value

# If the collinearity score > .99 then the variance partition

# estimates may be problematic

# In that case, a least one variable should be omitted

colinearityScore( res[[1]] )

## [1] 0.777

## attr(,"vcor")

## (Intercept) Age Height

## (Intercept) 1.000 -0.4191 -0.7774

## Age -0.419 1.0000 -0.0575

20



Vignette for variancePartition

## Height -0.777 -0.0575 1.0000

4.5 Including weights computed separately

variancePartition automatically used precision weights computed by voom, but
the user can also specify custom weights using the weightsMatrix argument.

form <- ~ (1|Individual) + (1|Tissue) + Age + Height

# Specify custom weights

# In this example the weights are simulated from a

# uniform distribution and are not meaningful.

weights <- matrix(runif(length(geneExpr)), nrow=nrow(geneExpr))

# Specify custom weights

res <- fitExtractVarPartModel( geneExpr[1:4,], form, info,

weightsMatrix=weights[1:4,] )

In addition, setting the useWeights=FALSE will suppress usage of the weights
in all cases, i.e. when the weights are specified manually or implicitly with the
results of voom.

4.6 Including interaction terms

Typical analysis assumes that the effect of each variable on gene expression
does not depend on other variables in the model. Sometimes this assumption
is too strict, and we want to model an interaction effect whereby the effect of
Batch depends on Tissue. This can be done easly by specifying an interaction
term, (1|Batch:Tissue). Since Batch has 4 categories and Tissue has 3,
this interaction term implicity models a new 3*4 = 12 category variable in the
analysis. This new interaction term will absorb some of the variance from the
Batch and Tissue term, so an interaction model should always include the two
constituent variables.
Here we fit an interaction model, but we observe that interaction between Batch

and Tissue does not explain much expression variation.

form <- ~ (1|Individual) + Age + Height + (1|Tissue) + (1|Batch) +

(1|Batch:Tissue)

21



Vignette for variancePartition

# fit model

vpInteraction <- fitExtractVarPartModel( geneExpr, form, info )

plotVarPart( sortCols( vpInteraction ) )

Figure 5: Fit interaction term

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●
●●●●
●
●●●●
●●●●●●●●●●●●●●●●
●●●● ●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●
●
●●●

●●●

0

25

50

75

100

Individual
Tissue Age

Height

Batch:Tissue
Batch

Residuals

V
ar

ia
nc

e 
ex

pl
ai

ne
d 

(%
)

22



Vignette for variancePartition

5 Applying variancePartition to RNA-seq ex-
pression data

variancePartition works with gene expression data that has already been pro-
cessed and normalized as for differential expression analysis.

5.1 Gene-level counts

featureCounts [4] and HTSeq [5] report the number of reads mapping to each
gene (or exon). These results are easily read into R . limma/voom and DESeq2
are widely used for differential expression analysis of gene- and exon-level counts
and can be used to process data before analysis with variancePartition. This
section addresses processing and normalization of gene-level counts, but the
analysis is the same for exon-level counts.

5.1.1 limma/voom

Read RNA-seq counts into R , normalize for library size within and between
experiments with TMM [16], estimate precision weights with limma/voom.

library('limma')

library('edgeR')

# identify genes that pass expression cutoff

isexpr <- rowSums(cpm(geneCounts)>1) >= 0.5 * ncol(geneCounts)

# create data structure with only expressed genes

gExpr <- DGEList(counts=geneCounts[isexpr,])

# Perform TMM normalization

gExpr <- calcNormFactors(gExpr)

# Specify variables to be included in the voom() estimates of

# uncertainty.

# Recommend including variables with a small number of categories

# that explain a substantial amount of variation

design <- model.matrix( ~ Batch, info)

# Estimate precision weights for each gene and sample

23



Vignette for variancePartition

# This models uncertainty in expression measurements

vobjGenes <- voom(gExpr, design )

# Define formula

form <- ~ (1|Individual) + (1|Tissue) + (1|Batch) + Age

# variancePartition seamlessly deals with the result of voom()

# by default, it seamlessly models the precision weights

# This can be turned off with useWeights=FALSE

varPart <- fitExtractVarPartModel( vobjGenes, form, info )

5.1.2 DESeq2

Process and normalize the gene-level counts before running variancePartition
analysis.

library('DESeq2')

# create DESeq2 object from gene-level counts and metadata

dds <- DESeqDataSetFromMatrix(countData = geneCounts,

colData = info,

design = ~ 1)

# Estimate library size correction scaling factors

dds <- estimateSizeFactors(dds)

# identify genes that pass expression cutoff

isexpr <- rowSums(fpm(dds)>1) >= 0.5 * ncol(dds)

# compute log2 Fragments Per Million

# Alternatively, fpkm(), vst() or rlog() could be used

quantLog <- log2( fpm( dds )[isexpr,] + 1)

# Define formula

form <- ~ (1|Individual) + (1|Tissue) + (1|Batch) + Age

# Run variancePartition analysis

varPart <- fitExtractVarPartModel( quantLog, form, info)

Note that DESeq2 does not compute precision weights like limma/voom, so they
are not used in this version of the analysis.

24



Vignette for variancePartition

5.2 Isoform quantification

Other software performs isoform-level quantification using reads that map to
multiple transcripts. These include kallisto [8], sailfish [9], salmon [10],
RSEM [11] and cufflinks [12].

5.2.1 tximport

Quantifications from kallisto, salmon, sailfish and RSEM can be read into R
and processed with the Bioconductor package tximport. The gene- or transcript-
level quantifications can be used directly in variancePartition.

library('tximportData')

library('tximport')

library('readr')

# Get data from folder where tximportData is installed

dir <- system.file("extdata", package = "tximportData")

samples <- read.table(file.path(dir, "samples.txt"), header = TRUE)

files <- file.path(dir, "kallisto", samples$run, "abundance.tsv")

names(files) <- paste0("sample", 1:6)

tx2gene <- read.csv(file.path(dir, "tx2gene.csv"))

# reads results from kallisto

txi <- tximport(files, type = "kallisto", tx2gene = tx2gene,

countsFromAbundance = "lengthScaledTPM")

# define metadata (usually read from external source)

info_tximport <- data.frame( Sample = sprintf("sample%d", 1:6),

Disease=c("case", "control")[c(rep(1, 3), rep(2, 3) )] )

# Extract counts from kallisto

y <- DGEList( txi$counts )

# compute library size normalization

y <- calcNormFactors(y)

# apply voom to estimate precision weights

design <- model.matrix( ~ Disease, data = info_tximport)

vobj <- voom(y, design)

25



Vignette for variancePartition

# define formula

form <- ~ (1|Disease)

# Run variancePartition analysis (on only 10 genes)

varPart_tx <- fitExtractVarPartModel( vobj[1:10,], form,

info_tximport)

Code to process results from sailfish, salmon, RSEM is very similar.

See tutorial at http://bioconductor.org/packages/release/bioc/vignettes/tximport/
inst/doc/tximport.html for more details.

5.2.2 ballgown

Quantifications from Cufflinks/Tablemaker and RSEM can be processed and
read into R with the Bioconductor package ballgown.

library('ballgown')

# Get data from folder where ballgown is installed

data_directory <- system.file('extdata', package='ballgown')

# Load results of Cufflinks/Tablemaker

bg <- ballgown(dataDir=data_directory, samplePattern='sample',

meas='all')

# extract gene-level FPKM quantification

# Expression can be convert to log2-scale if desired

gene_expression <- gexpr(bg)

# extract transcript-level FPKM quantification

# Expression can be convert to log2-scale if desired

transcript_fpkm <- texpr(bg, 'FPKM')

# define metadata (usually read from external source)

info_ballgown <- data.frame( Sample = sprintf("sample%02d", 1:20),

Batch = rep(letters[1:4], 5),

Disease=c("case", "control")[c(rep(1, 10), rep(2, 10) )] )

# define formula

form <- ~ (1|Batch) + (1|Disease)

26

http://bioconductor.org/packages/release/bioc/vignettes/tximport/inst/doc/tximport.html
http://bioconductor.org/packages/release/bioc/vignettes/tximport/inst/doc/tximport.html


Vignette for variancePartition

# Run variancePartition analysis

# Gene-level analysis

varPart_gene <- fitExtractVarPartModel( gene_expression, form,

info_ballgown)

# Transcript-level analysis

varPart_transcript <- fitExtractVarPartModel( transcript_fpkm, form,

info_ballgown)

Note that ballgownrsem can be used for a similar analysis of RSEM results.

See tutorial at http://bioconductor.org/packages/release/bioc/vignettes/ballgown/
inst/doc/ballgown.html for more details.

27

http://bioconductor.org/packages/release/bioc/vignettes/ballgown/inst/doc/ballgown.html
http://bioconductor.org/packages/release/bioc/vignettes/ballgown/inst/doc/ballgown.html


Vignette for variancePartition

6 Comparison with other methods on simu-
lated data

Characterizing drivers of variation in gene expression data has typically relied on
principal components analysis (PCA) and hierarchical clustering. Here I apply
these methods to two simulated datasets to demonstrate the additional insight
from an analysis with variancePartition. Each simulated dataset comprises 60
experiments from 10 individuals and 3 tissues with 2 biological replicates. In
the first dataset, tissue is the major driver of variation in gene expression(Figure
6). In the second dataset, individual is the major driver of variation in gene
expression (Figures 7).
Analysis of simulated data illustrates that PCA identifies the major driver of
variation when tissue is dominant and there are only 3 categories. But the results
are less clear when individual is dominant because there are now 10 categories.
Meanwhile, hierarchical clustering identifies the major driver of variation in both
cases, but does not give insight into the second leading contributor.
Analysis with variancePartition has a number of advantages over these standard
methods:

• variancePartition provides a natural interpretation of multiple variables
• figures from PCA/hierarchical clustering allow easy interpretation of

only one variable

• variancePartition quantifies the contribution of each variable
• PCA/hierarchical clustering give only a visual representation

• variancePartition interprets contribution of each variable to each gene
individually for downstream analysis

• PCA/hierarchical clustering produces genome-wide summary and
does not allow gene-level interpretation

• variancePartition can assess contribution of one variable (i.e. Individual)
separately in subset of the data defined by another variable (i.e. Tissue)

28



Vignette for variancePartition

Figure 6: Similarity within Tissue is dominant

(a) PCA - colored by Tissue

●●
●● ●

●
●●

●
●

●
● ●

●

●

●● ●
●

●

●●

●

●
●

●

●● ●

●
●

● ●
●

●●

●

●●

●

●●
●

●
●
●

●

●
●

●
●
●

●●

●●

●
●

●

●

−10 0 10 20

−
20

−
10

0
10

20

PC1

P
C

2
(b) PCA - colored by Individual

●●
●● ●

●
●●

●
●

●
● ●

●

●

●● ●
●

●

●●

●

●
●

●

●● ●

●
●

● ●
●

●●

●

●●

●

●●
●

●
●
●

●

●
●

●
●
●

●●

●●

●
●

●

●

−10 0 10 20

−
20

−
10

0
10

20

PC1
P

C
2

(c) hclust - colored by Tissue

s29
s39
s24
s34
s27
s37
s22
s32
s30
s40
s23
s33
s26
s36
s28
s38
s25
s35
s21
s31
s43
s53
s42
s52
s44
s54
s46
s56
s50
s60
s45
s55
s49
s59
s41
s51
s47
s57
s48
s58
s3
s13
s1
s11
s2
s12
s10
s20
s4
s14
s7
s17
s6
s16
s9
s19
s5
s15
s8
s18

Tissue

A
B
C

(d) hclust - colored by Individual

s29
s39
s24
s34
s27
s37
s22
s32
s30
s40
s23
s33
s26
s36
s28
s38
s25
s35
s21
s31
s43
s53
s42
s52
s44
s54
s46
s56
s50
s60
s45
s55
s49
s59
s41
s51
s47
s57
s48
s58
s3
s13
s1
s11
s2
s12
s10
s20
s4
s14
s7
s17
s6
s16
s9
s19
s5
s15
s8
s18

Individual

1
2
3
4
5
6
7
8
9
10

(e) variancePartition

●●●●●

0

25

50

75

100

Individual
Tissue

Residuals

V
ar

ia
nc

e 
ex

pl
ai

ne
d 

(%
)

(f) variancePartition - within Tissue

●●●

0

25

50

75

100

Ti
ss

ue
A/

In
di

vi
du

al
Ti

ss
ue

B/
In

di
vi

du
al

Ti
ss

ue
C

/In
di

vi
du

al

Ti
ss

ue

R
es

id
ua

ls

V
ar

ia
nc

e 
ex

pl
ai

ne
d 

(%
)

29



Vignette for variancePartition

Figure 7: Similarity within Individual is dominant

(a) PCA - colored by Tissue

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−15 −10 −5 0 5 10 15 20

−
15

−
10

−
5

0
5

10
15

20

PC1

P
C

2
(b) PCA - colored by Individual

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−15 −10 −5 0 5 10 15 20

−
15

−
10

−
5

0
5

10
15

20

PC1
P

C
2

(c) hclust - colored by Tissue

s27
s37
s47
s57
s7
s17
s44
s54
s24
s34
s4
s14
s30
s40
s10
s20
s50
s60
s42
s52
s22
s32
s2
s12
s8
s18
s28
s38
s48
s58
s23
s33
s43
s53
s3
s13
s5
s15
s25
s35
s45
s55
s21
s31
s1
s11
s41
s51
s29
s39
s49
s59
s9
s19
s46
s56
s26
s36
s6
s16

Tissue

A
B
C

(d) hclust - colored by Individual

s27
s37
s47
s57
s7
s17
s44
s54
s24
s34
s4
s14
s30
s40
s10
s20
s50
s60
s42
s52
s22
s32
s2
s12
s8
s18
s28
s38
s48
s58
s23
s33
s43
s53
s3
s13
s5
s15
s25
s35
s45
s55
s21
s31
s1
s11
s41
s51
s29
s39
s49
s59
s9
s19
s46
s56
s26
s36
s6
s16

Individual

1
2
3
4
5
6
7
8
9
10

(e) variancePartition

●

●

●

●
●

●●●●

0

25

50

75

100

Individual
Tissue

Residuals

V
ar

ia
nc

e 
ex

pl
ai

ne
d 

(%
)

(f) variancePartition - within Tissue

●
●

●
● ●

●

●
●

●
●
●

●
●●

0

25

50

75

100

Ti
ss

ue
A/

In
di

vi
du

al
Ti

ss
ue

B/
In

di
vi

du
al

Ti
ss

ue
C

/In
di

vi
du

al

Ti
ss

ue

R
es

id
ua

ls

V
ar

ia
nc

e 
ex

pl
ai

ne
d 

(%
)

30



Vignette for variancePartition

7 Statistical details

A variancePartition analysis evaluates the linear (mixed) model

y =
∑
j

Xjβj +
∑
k

Zkαk + ε 1

αk ∼ N (0, σ2
αk
) 2

ε ∼ N (0, σ2
ε) 3

where y is the expression of a single gene across all samples, Xj is the matrix of
jth fixed effect with coefficients βj, Zk is the matrix corresponding to the kth
random effect with coefficients αk drawn from a normal distribution with vari-
ance σ2

αk
. The noise term, ε, is drawn from a normal distribution with variance

σ2
ε . Parameters are estimated with maximum likelihood, rather than REML, so

that fixed effect coefficients, βj, are explicitly estimated.

I use the term “linear (mixed) model” here since variancePartition works seam-
lessly when a fixed effects model (i.e. linear model) is specified.

Variance terms for the fixed effects are computed using the post hoc calcu-
lation

σ̂2
βj

= var(Xjβ̂j). 4

For a fixed effects model, this corresponds to the sum of squares for each com-
ponent of the model.

For a standard application of the linear mixed model, where the effect of each
variable is additive, the fraction of variance explained by the jth fixed effect is

σ̂2
βj∑

j σ̂
2
βj
+
∑

k σ̂
2
αk

+ σ̂2
ε

, 5

by the kth random effect is

σ̂2
αk∑

j σ̂
2
βj
+
∑

k σ̂
2
αk

+ σ̂2
ε

, 6

and the residual variance is

σ̂2
ε∑

j σ̂
2
βj
+
∑

k σ̂
2
αk

+ σ̂2
ε

. 7

31



Vignette for variancePartition

7.1 Implementation in R

An R formula is used to define the terms in the fixed and random effects, and
fitVarPartModel fits the specified model for each gene separately. If random
effects are specified, lmer from lme4 is used behind the scenes to fit the model,
while lm is used if there are only fixed effects. fitVarPartModel returns a list
of the model fits, and extractVarPart returns the variance partition statistics
for each model in the list. fitExtractVarPartModel combines the actions of
fitVarPartModel and extractVarPart into one function call. calcVarPart is
called behind the scenes to compute variance fractions for both fixed and mixed
effects models, but the user can also call this function directly on a model fit
with lm/lmer.

7.2 Interpretation of percent variance explained

The percent variance explained can be interpreted as the intra-class correlation
(ICC) when a special case of Equation 1 is used. Consider the simplest example
of the ith sample from the kth individual

yi,k = µ+ Zαi,k + ei,k 8

with only an intercept term, one random effect corresponding to individual,
and an error term. In this case ICC corresponds to the correlation between two
samples from the same individual. This value is equal to the fraction of variance
explained by individual. For example, consider the correlation between samples
from the same individual:

ICC = cor(y1,k, y2,k) 9

= cor(µ+ Zα1,k + e1,k, µ+ Zα2,k + e2,k) 10

=
cov(µ+ Zα1,k + e1,k, µ+ Zα2,k + e2,k)√
var(µ+ Zα1,k + e1,k)var(µ+ Zα2,k + e2,k)

11

=
cov(Zα1,k, Zα2,k)

σ2
α + σ2

ε

12

=
σ2
α

σ2
α + σ2

ε

13

32



Vignette for variancePartition

The correlation between samples from different individuals is:

= cor(y1,1, y1,2) 14

= cor(µ+ Zα1,1 + e1,1, µ+ Zα1,2 + e1,2) 15

=
cov(Zα1,1, Zα1,2)

σ2
α + σ2

ε

16

=
0

σ2
α + σ2

ε

17

= 0 18

This interpretation in terms of fraction of variation explained (FVE) naturally
generalizes to multiple variance components. Consider two sources of variation,
individual and cell type with variances σ2

id and σ2
cell, respectively. Applying a

generalization of the the previous derivation, two samples are correlated accord-
ing to:

Individual cell type variance Interpretation Correlation value

same different σ2
id

σ2
id+σ

2
cell+σ

2
ε

FVE by individual ICCindividual

different same σ2
cell

σ2
id+σ

2
cell+σ

2
ε

FVE by cell type ICCcell

same same σ2
id+σ

2
cell

σ2
id+σ

2
cell+σ

2
ε

sum of FVE by individual & cell type ICCindividual,cell

different different 0
σ2
id+σ

2
cell+σ

2
ε

sample are independent

Notice that the correlation between samples from the same individual and same
cell type corresponds to the sum of the fraction explained by individual + frac-
tion explained by cell type. This defines ICC for individual and tissue, as well
as the combined ICC and relates these values to FVE.

In order to illustrate how this FVE and ICC relate to the correlation between
samples in multilevel datasets, consider a simple example of 5 samples from 2
individuals and 2 tissues:

33



Vignette for variancePartition

Sample Individual Cell type

a 1 T-Cell

b 1 T-Cell

c 1 monocyte

d 2 T-Cell

e 2 monocyte

Modeling the separate effects of individual and tissue gives the following covari-
ance structure between samples when a linear mixed model is used:

a b c d e



a σ2
id + σ2

cell + σ2
ε

b σ2
id + σ2

cell σ2
id + σ2

cell + σ2
ε

cov(y) = c σ2
id σ2

id σ2
id + σ2

cell + σ2
ε

d σ2
cell σ2

cell 0 σ2
id + σ2

cell + σ2
ε

e 0 0 σ2
cell σ2

id σ2
id + σ2

cell + σ2
ε

The covariance matrix is symmetric so that blank entries take the value on the
opposite side of the diagonal. The covariance can be converted to correlation
by dividing by σ2

id + σ2
cell + σ2

ε , and this gives the results from above. This
example generalizes to any number of variance components [2].

7.3 Variation with multiple subsets of the data

The linear mixed model underlying variancePartition allows the effect of one
variable to depend on the value of another variable. Statistically, this is called a
varying coefficient model [2, 3]. This model arises in variancePartition analysis
when the variation explained by individual depends on tissue or cell type.

A given sample is only from one cell type, so this analysis asks a question
about a subset of the data. The the data is implicitly divided into subsets
base on cell type and variation explained by individual is evaluated within each
subset. The data is not actually divided onto subset, but the statistical model

34



Vignette for variancePartition

essentially examples samples with each cell type. This subsetting means that
the variance fractions do not sum to 1.

Consider a concrete example with variation from across individual and cell types
(T-cells and monocytes) with data from the ith sample from the kth individual,
sex of s and cell type c. Modeling the variation across individuals within cell
type corresponds to

yi,k,s,c = µ+ Z(sex)αi,s + Z(Tcell|id)αi,k,c + Z(monocyte|id)αi,k,c + ei,k,s,c 19

with corresponding variance components:

Variance component Interpretation

σ2
sex variance across sex (which is the same for all cell types)

σ2
(Tcell|id) variance across individuals within T-cells

σ2
(monocyte|id) variance across individuals within monocytes

σ2
ε residual variance

Since the dataset is now divided into multiple subsets, direct interpretation of
the fraction of variation explained (FVE) as intra-class correlation does not ap-
ply. Instead, we compute a “pseudo-FVE" by approximating the total variance
attributable to cell type by using a weighted average of the within cell type
variances weighted by the sample size within each cell type. Thus the values of
pseudo-FVE do not have the simple interpretation as in the standard applica-
tion of variancePartition, but allows ranking of variables based on genome-wide
contribution to variance and analysis of gene-level results.

7.4 Relationship between variancePartition and differ-
ential expression

Differential expression (DE) is widely used to identify gene which show differ-
ence is expression between two subsets of the data (i.e. case versus controls).
For a single gene, DE analysis measures the difference in mean expression be-
tween the two subsets. (Since expression is usually analyzed on a log scale, DE
results are usually shown in terms of log fold changes between the two subsets
). In Figure 8, consider two simulated examples of a gene whose expression
differs between males and females. The mean expression in males is 0 and the

35



Vignette for variancePartition

mean expression in females is 2 in both cases. Therefore, the fold change is 2
in both cases.

However, the fraction of expression variation explained by sex is very different in
these two examples. In example A, there is very little variation within each sex,
so that variation between sexes is very high at 91.1%. Conversely, example B
shows high variation within sexes, so that variation between sexes is only 17.8%.

The fact that the fold change or the fraction of variation is significantly different
from 0 indicates differential expression between the two sexes. Yet these two
statistics have different interpretations. The fold change from DE analysis tests
a difference in means between two sexes. The fraction of variation explained
compares the variation explained by sex to the total variation.

Thus the fraction of variation explained reported by variancePartition reflects
as different aspect of the data not captured by DE analysis.

Figure 8: Compare variancePartition and differential expression

(a) Example A

●

●

●
●

●

●

fold change: 1.98
% variance of expression: 91.1 %

−5

0

5

Sex

ex
pr

es
si

on

Sex

F

M

(b) Example B

●

●

●

●

fold change: 1.95
% variance of expression: 17.8 %

−5

0

5

Sex

ex
pr

es
si

on

Sex

F

M

7.5 Modelling error in gene expression measurements

Uncertainty in the measurement of gene expression can be modeled with pre-
cision weights and tests of differentially expression using voom in limma model
this uncertainty directly with a heteroskedastic linear regression [6]. varian-
cePartition can use these precision weights in a heteroskedastic linear mixed
model implemented in lme4 [1]. These precision weights are used seamlessly by
calling fitVarPartModel or fitExtractVarPartModel on the output of voom.
Otherwise the user can specify the weights with the weightsMatrix parameter.

36



Vignette for variancePartition

8 Frequently asked questions

Note that many warnings and errors can be overridden by specifying
suppressWarnings=TRUE for dream() and showWarnings=FALSE for
fitExtractVarPartModel() and fitVarPartModel().
Interpreting warnings and errors from fitVarPartModel and fitExtractVarPart
Model:

8.1 Warnings

• No Intercept term was specified in the formula:

The results will not behave as expected and may be very wrong!!

An intercept (i.e. mean term) must be specified order for the results to be sta-
tistically valid. Otherwise, the variance percentages will be very overestimated.

• Categorical variables modeled as fixed effect:

The results will not behave as expected and may be very wrong!!

If a linear mixed model is used, all categorical variables must be modeled as a
random effect. Alternatively, a fixed effect model can be used by modeling all
variables as fixed.

• Cannot have more than one varying coefficient term:

The results will not behave as expected and may be very wrong!!

Only one varying coefficient term can be specified. For example, the formula
∼(Tissue+0|Individual) + (Batch+0|Individual) contains two varying co-
efficient terms and the results from this analysis are not easily interpretable.
Only a formula with one term like (Tissue+0|Individual) is allowed.

• executing %dopar% sequentially: no parallel backend registered

These functions are optimized to run in parallel using doParallel/doMC. This
warning indicates that a parallelization was not enabled. This is not a problem,
but analysis will take more time.

37



Vignette for variancePartition

8.2 Errors

• Colinear score > .99: Covariates in the formula are so strongly

correlated that the parameter estimates from this model are not

meaningful. Dropping one or more of the covariates will fix this

problem

• Error in asMethod(object) : not a positive definite matrix

• In vcov.merMod(fit) : Computed variance-covariance matrix prob

lem:

not a positive definite matrix; returning NA matrix

• fixed-effect model matrix is rank deficient so dropping 26 columns

/ coefficients

Including variables that are highly correlated can produce misleading results (see
Section ??). In this case, parameter estimates from this model are not mean-
ingful. Dropping one or more of the covariates will fix this problem.

• Error in checkNlevels(reTrms$flist, n = n, control) :

number of levels of each grouping factor must be < number of ob

servations

This arises when using a varying coefficient model that examines the effect of
one variable inside subsets of the data defined by another: ∼(A+0|B). See
Section 4.3. There must be enough observations of each level of the variable B
with each level of variable A. Consider an example with samples from multiple
tissues from a set of individual where we are interested in the variation across
individuals within each tissue using the formula: ∼ (Tissue+0|Individual).
This analysis will only work if there are multiple samples from the same individ-
ual in at least one tissue. If all tissues only have one sample per individual, the
analysis will fail and variancePartition will give this error.

• Problem with varying coefficient model in formula: should have

form (A+0|B)

When analyzing the variation of one variable inside another (Section 4.3), the
formula most be specified as (Tissue+0|Individual). This error occurs when
the formula contains (Tissue|Individual) instead.

• fatal error in wrapper code

38



Vignette for variancePartition

• Error in mcfork() : unable to fork, possible reason: Cannot al

locate memory

• Error: cannot allocate buffer

This error occurs when fitVarPartModel uses too many threads and takes up
too much memory. The easiest solution is to use fitExtractVarPartModel

instead. Occasionally there is an issue in the parallel backend that is out of my
control. Using fewer threads or restarting R will solve the problem.

8.2.1 Errors: Problems removing samples with NA/NaN/Inf values

variancePartition fits a regression model for each gene and drops samples that
have NA/NaN/Inf values in each model fit. This is generally seamless but can
cause an issue when a variable specified in the formula no longer varies within
the subset of samples that are retained. Consider an example with variables
for sex and age where age is NA for all males samples. Dropping samples with
invalid values for variables included in the formula will retain only female sam-
ples. This will cause variancePartition to throw an error because there is now
no variation in sex in the retained subset of the data. This can be resolved by
removing either age or sex from the formula.

This situtation is indicated by the following errors
• Error: grouping factors must have > 1 sampled level

• Error: Invalid grouping factor specification, Individual

• Error in ‘contrasts<-‘(‘*tmp*‘, value = contr.funs[1 + isOF[nn]]):

contrasts can be applied only to factors with 2 or more levels

• Error in checkNlevels(reTrms$flist, n = n, control):

grouping factors must have > 1 sampled level

Session Info

• R version 3.6.1 (2019-07-05), x86_64-pc-linux-gnu
• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,

LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

39



Vignette for variancePartition

• Running under: Ubuntu 18.04.3 LTS

• Matrix products: default
• BLAS: /home/biocbuild/bbs-3.10-bioc/R/lib/libRblas.so
• LAPACK: /home/biocbuild/bbs-3.10-bioc/R/lib/libRlapack.so
• Base packages: base, datasets, grDevices, graphics, methods, parallel,

stats, stats4, utils
• Other packages: Biobase 2.46.0, BiocGenerics 0.32.0,

BiocParallel 1.20.0, DESeq2 1.26.0, DelayedArray 0.12.0,
GenomeInfoDb 1.22.0, GenomicRanges 1.38.0, IRanges 2.20.0,
Matrix 1.2-17, S4Vectors 0.24.0, SummarizedExperiment 1.16.0,
ballgown 2.18.0, dendextend 1.12.0, edgeR 3.28.0, foreach 1.4.7,
ggplot2 3.2.1, knitr 1.25, limma 3.42.0, lme4 1.1-21, matrixStats 0.55.0,
pander 0.6.3, r2glmm 0.1.2, scales 1.0.0, variancePartition 1.16.0

• Loaded via a namespace (and not attached): AnnotationDbi 1.48.0,
BiocManager 1.30.9, BiocStyle 2.14.0, Biostrings 2.54.0, DBI 1.0.0,
Formula 1.2-3, GenomeInfoDbData 1.2.2, GenomicAlignments 1.22.0,
Hmisc 4.2-0, KernSmooth 2.23-16, MASS 7.3-51.4, R6 2.4.0,
RColorBrewer 1.1-2, RCurl 1.95-4.12, RSQLite 2.1.2, Rcpp 1.0.2,
Rsamtools 2.2.0, XML 3.98-1.20, XVector 0.26.0, acepack 1.4.1,
annotate 1.64.0, assertthat 0.2.1, backports 1.1.5, base64enc 0.1-3,
bit 1.1-14, bit64 0.9-7, bitops 1.0-6, blob 1.2.0, boot 1.3-23,
caTools 1.17.1.2, checkmate 1.9.4, cluster 2.1.0, codetools 0.2-16,
colorRamps 2.3, colorspace 1.4-1, compiler 3.6.1, crayon 1.3.4,
data.table 1.12.6, digest 0.6.22, doParallel 1.0.15, dplyr 0.8.3,
evaluate 0.14, foreign 0.8-72, gdata 2.18.0, genefilter 1.68.0,
geneplotter 1.64.0, glue 1.3.1, gplots 3.0.1.1, grid 3.6.1, gridExtra 2.3,
gtable 0.3.0, gtools 3.8.1, highr 0.8, hms 0.5.1, htmlTable 1.13.2,
htmltools 0.4.0, htmlwidgets 1.5.1, iterators 1.0.12, labeling 0.3,
lattice 0.20-38, latticeExtra 0.6-28, lazyeval 0.2.2, lmerTest 3.1-0,
locfit 1.5-9.1, magrittr 1.5, memoise 1.1.0, mgcv 1.8-30, minqa 1.2.4,
munsell 0.5.0, nlme 3.1-141, nloptr 1.2.1, nnet 7.3-12,
numDeriv 2016.8-1.1, pbkrtest 0.4-7, pillar 1.4.2, pkgconfig 2.0.3,
plyr 1.8.4, prettyunits 1.0.2, progress 1.2.2, purrr 0.3.3, reshape2 1.4.3,
rlang 0.4.1, rmarkdown 1.16, rpart 4.1-15, rstudioapi 0.10,
rtracklayer 1.46.0, snow 0.4-3, splines 3.6.1, statmod 1.4.32,
stringi 1.4.3, stringr 1.4.0, survival 2.44-1.1, sva 3.34.0, tibble 2.1.3,
tidyselect 0.2.5, tools 3.6.1, vctrs 0.2.0, viridis 0.5.1, viridisLite 0.3.0,
withr 2.1.2, xfun 0.10, xtable 1.8-4, yaml 2.2.0, zeallot 0.1.0,
zlibbioc 1.32.0

40



Vignette for variancePartition

References

[1] D. Bates, M. Machler, B. Bolker, and S. Walker. Fitting Linear
Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1),
2015. doi:10.18637/jss.v067.i01.

[2] J. C. Pinheiro and D. M. Bates. Mixed-Effects Models in S and S-Plus.
Springer, New York, 2000.

[3] A. Galecki and T. Burzykowski. Linear Mixed Effects Modeling using R.
Springer, 2013.

[4] Yang Liao, Gordon K. Smyth, and Wei Shi. FeatureCounts: An efficient
general purpose program for assigning sequence reads to genomic
features. Bioinformatics, 30(7):923–930, 2014.
doi:10.1093/bioinformatics/btt656.

[5] Simon Anders, Paul Theodor Pyl, and Wolfgang Huber. HTSeq-A
Python framework to work with high-throughput sequencing data.
Bioinformatics, 31(2):166–169, 2015.
doi:10.1093/bioinformatics/btu638.

[6] C. W. Law, Y. Chen, W. Shi, and G. K. Smyth. Voom: precision weights
unlock linear model analysis tools for RNA-seq read counts. Genome
Biology, 15(2):R29, 2014. doi:10.1186/gb-2014-15-2-r29.

[7] Michael I. Love, Wolfgang Huber, and Simon Anders. Moderated
estimation of fold change and dispersion for RNA-seq data with DESeq2.
Genome Biology, 15(12):550, 2014. doi:10.1186/s13059-014-0550-8.

[8] Nicolas L Bray, Harold Pimentel, Páll Melsted, and Lior Pachter.
Near-optimal probabilistic RNA-seq quantification. Nature
Biotechnology, 34:525–527, 2016. doi:10.1038/nbt.3519.

[9] Rob Patro, Stephen M Mount, and Carl Kingsford. Sailfish enables
alignment-free isoform quantification from RNA-seq reads using
lightweight algorithms. Nature Biotechnology, 32(5):462–464, apr 2014.
doi:10.1038/nbt.2862.

[10] Rob Patro, Geet Duggal, and Carl Kingsford. Accurate, fast, and
model-aware transcript expression quantification with Salmon. bioarxiv,
2015. doi:10.1101/021592.

[11] Bo Li and Colin N Dewey. RSEM: accurate transcript quantification from
RNA-Seq data with or without a reference genome. BMC Bioinformatics,
12(1):323, jan 2011. doi:10.1186/1471-2105-12-323.

41

http://dx.doi.org/10.18637/jss.v067.i01
http://dx.doi.org/10.1093/bioinformatics/btt656
http://dx.doi.org/10.1093/bioinformatics/btu638
http://dx.doi.org/10.1186/gb-2014-15-2-r29
http://dx.doi.org/10.1186/s13059-014-0550-8
http://dx.doi.org/10.1038/nbt.3519
http://dx.doi.org/10.1038/nbt.2862
http://dx.doi.org/10.1101/021592
http://dx.doi.org/10.1186/1471-2105-12-323


Vignette for variancePartition

[12] Cole Trapnell, Brian a Williams, Geo Pertea, Ali Mortazavi, Gordon
Kwan, Marijke J van Baren, Steven L Salzberg, Barbara J Wold, and Lior
Pachter. Transcript assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoform switching during cell differentiation.
Nature Biotechnology, 28(5):511–515, may 2010.
doi:10.1038/nbt.1621.

[13] Alyssa C Frazee, Geo Pertea, Andrew E Jaffe, Ben Langmead, Steven L
Salzberg, and Jeffrey T Leek. Ballgown bridges the gap between
transcriptome assembly and expression analysis. Nature Biotechnology,
33(3):243–246, 2015. doi:10.1038/nbt.3172.

[14] Charlotte Soneson, Michael I. Love, and Mark D. Robinson. Differential
analyses for RNA-seq: transcript-level estimates improve gene-level
inferences. F1000Research, 4(0):1521, 2015.
doi:10.12688/f1000research.7563.2.

[15] Benilton S Carvalho and Rafael A Irizarry. A framework for
oligonucleotide microarray preprocessing. Bioinformatics, 26(19):2363–7,
2010. doi:10.1093/bioinformatics/btq431.

[16] M. D. Robinson and A. Oshlack. A scaling normalization method for
differential expression analysis of RNA-seq data. Genome Biology,
11(3):R25, 2010. doi:10.1186/gb-2010-11-3-r25.

42

http://dx.doi.org/10.1038/nbt.1621
http://dx.doi.org/10.1038/nbt.3172
http://dx.doi.org/10.12688/f1000research.7563.2
http://dx.doi.org/10.1093/bioinformatics/btq431
http://dx.doi.org/10.1186/gb-2010-11-3-r25

	1 Overview
	1.1 Inputs

	2 Running an analysis
	2.1 Standard application
	2.1.1 Saving plot to file

	2.2 Plot expression stratified by other variables
	2.3 Intuition about the backend

	3 Interpretation
	3.1 Should a variable be modeled as fixed or random effect?
	3.2 Which variables should be included?
	3.2.1 Assess correlation between all pairs of variables


	4 Advanced analysis
	4.1 Extracting additional information from model fits
	4.2 Removing batch effects before fitting model
	4.3 Variation within multiple subsets of the data
	4.4 Detecting problems caused by collinearity of variables
	4.5 Including weights computed separately
	4.6 Including interaction terms

	5 Applying variancePartition to RNA-seq expression data
	5.1 Gene-level counts
	5.1.1 limma/voom
	5.1.2 DESeq2

	5.2 Isoform quantification
	5.2.1 tximport
	5.2.2 ballgown


	6 Comparison with other methods on simulated data
	7 Statistical details
	7.1 Implementation in R
	7.2 Interpretation of percent variance explained
	7.3 Variation with multiple subsets of the data
	7.4 Relationship between variancePartition and differential expression
	7.5 Modelling error in gene expression measurements

	8 Frequently asked questions
	8.1 Warnings
	8.2 Errors
	8.2.1 Errors: Problems removing samples with NA/NaN/Inf values



