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Abstract

This is the vignette of the Bioconductor compliant package OrderedList . We describe the
methods and functions to explore the similarity between two lists of ordered genes.
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Chapter 1

Introduction

The methods of package OrderedList provide a comparison of comparisons. Say, we com-

pare two gene expression studies. Both are comparisons of two states. Preferably, one state

relates to a good outcome or prognosis and the other one relates to a bad outcome. For

each study separately, we might conduct a two-sample test per gene to discover differen-

tially expressed genes. Although each single study might not necessarily reveal significant

changes, we observe considerable overlap in the top-ranking genes. Hence, we wish to

compare the results of the two comparisons.

We assign a similarity score to a comparison of two ranked (ordered) gene lists. The

similarity score is based on the number of overlapping genes in the top ranks. For each

rank, the size of overlap is computed. The final score is in principle a weighted sum of

these values, with more weight put on the top ranks. In the following chapter, we briefly

review the methods introduced in Yang et al. (2006) [5].
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Chapter 2

Methods

2.1 Similarity score

Data sets. We start with the analysis of two gene expression studies A and B. We

assume that the two studies were either measured on the same platform or that the two sets

of probes can be mapped onto each other such that the ith probe of study A corresponds

to the ith probe of study B. Both studies comprise the same number of probes.

In each study, the samples divide into at least two distinct classes and we have to choose

which two classes are to be compared. Within each study, a gene-wise test on the difference

of class means is conducted. Appropriate tests are for example the common t-test or just

the log ratio test, that is difference of means. In any case, a large positive test score

corresponds to up-regulation and a large negative value to down-regulation. The genes

within each study are sorted according to their test scores. Top ranks correspond to highly

up-regulated genes and bottom ranks to highly down-regulated genes. These two rankings

are the first stage of our analysis: the ordered gene lists GA and GB.

Computing the overlap. For each rank n, n = 1, . . . ,#genes, we count the number of

genes that appear in both ordered lists up to position n. Table 2.1 provides an artificial

example for the top 10 ranks. The values On(GA, GB) denote the size of the overlap at

position n.

Preliminary similarity score. The ingredients of the preliminary version of the weighted

similarity score are the total overlap and the weights. The total overlap of position n is

defined as the overlap of up-regulated genes On(GA, GB) as in Table 2.1 plus the over-

lap of down-regulated genes On(f(GA), f(GB)), where f(·) refers to the flipped list with

down-regulated genes on top. The total overlap An at position n is given as:

An = On(G1, G2) +On(f(G1), f(G2)). (2.1)

3



CHAPTER 2. METHODS 4

Table 2.1: Overlap On(GA, GB) of two ordered lists GA and GB for the first
10 ranks. The entries of GA and GB are randomly chosen Affymetrix probe
IDs.

Rank n GA GB On(GA, GB)

1 1771 at 761 at 0
2 32344 at 32623 at 0
3 222 at 1771 at 1
4 32623 at 8993 at 2
5 32793 at 31569 at 2
6 1124 at 1124 at 3
7 31569 at 2371 at 4
8 32648 at 312 at 4
9 31636 at 222 at 5
10 31355 at 9921 at 5

The weights wα are chosen to decay exponentially with rank n:

wα = exp{−αn}. (2.2)

The parameter α is needed to tune the weights: a smaller α puts more weight on genes

further down the list. We shall see later how to choose an appropriate α. The similarity

score S′
α is defined as the sum over all weighted overlaps:

S′
α(GA, GB) =

#genes∑
n=1

exp{−αn}An. (2.3)

As the weights decrease towards zero for large n, the summation usually stops before

reaching rank n = #genes.

Final similarity score. The definition of the final version of similarity score Sα(GA, GB)

needs a second parameter besides α:

Sα(GA, GB) = max
{
β S′

α (GA, GB), (1− β)S′
α (GA, f(GB))

}
, (2.4)

with β ∈ {0.5, 1}. Parameter β is set by the user:

– β = 1: The class labels of the two studies match. That is, the first class label of study

A has the same interpretation as the first class label of study B. The same principle

applies for the second class labels. For example, both studies might compare a good

to a bad prognosis group. Likewise, both might investigate the same cancer sub-

types. Here orientation of the ordered lists is similar: genes on top are up-regulated,

genes at the bottom are down-regulated.
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– β = 0.5: The class labels do not match. For example, study A compares different

outcomes while study B compares different tissues. Now, the orientation of the

two lists is not clear. Thus we take into account both the similarity of the originally

ordered lists as well as the similarity of one list to the other list in flipped orientation.

2.2 Tuning α

Choosing a value for parameter α has two effects: it defines the weighing scheme for each

rank but also how many ranks are taken into account, that is how far down the lists we

evaluate the overlap. Each choice will yield a different similarity score, yet we do not

know whether the score deviates substantially from a score based on random lists. Thus

we propose a simple tuning procedure: we evaluate the distribution of observed scores and

random scores to decide which choice of α leads to reliable scores. To this end, we go back

to the original expression data of the two underlying studies. The distribution of observed

scores is derived by drawing sub-samples of samples within each class of each study. In the

current implementation, we draw 80% sub-samples and then repeat the whole comparison,

that is we derive rankings based on the sub-sampled data for each study and re-compute

the similarity score. Similarly, the random scores are derived by randomly shuffling the

samples within each study. We repeat this procedure B times for each choice of α. Thus,

for each α we receive the distributions of B observed and B random scores. We evaluate

the separability of the two score disributions by applying the pAUC-score [3]. The pAUC-

score evaluates the overlap of two distributions. A high score relates to good separation.

Hence we choose α such that is provides us with observed scores that separate clearly from

random scores. The significance is evaluated by computing an empirical p-value for the

median observed score based on the set of random scores.

2.3 Comparing lists without expression data

We provide a function for comparing only two ranked lists of (gene) identifiers, for which

the underlying gene expression data is not at hand. The scoring method is essentially the

same. However, we cannot simulate a distribution of observed scores as the sub-sampling

of the expression data is not possible. Thus, we cannot find an optimal α. At least we can

compute random scores by comparing one list to the randomly shuffled second list. Based

on the random scores, an empirical p-value is computed for the observed score. One might

then choose an α leading to a significant similarity.

Note a second peculiarity when comparing two lists only. When gene expression data is at

hand, the genes are ranked from the most up-regulated to the most down-regulated genes

and we have to compute the overlap within the top ranks (up-regulated) and within the
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bottom ranks(down-regulated). We call this strategy two-sided. However, when comparing

lists, we might have a ranking with highly induced genes on top and not induced genes at

the lower end. The induced genes are either up- or down-regulated. In this case we only

want to compare the top of the lists in order to find significant overlap of induced genes.

This is particularly important for experimental contexts, where only top genes in the lists

are interesting for biological reasons. We call this strategy one-sided. In Chapter 4 we

introduce a function working on two lists, for which one-sided or two-sided comparisons

can be selected.



Chapter 3

Comparing Two Expression
Studies

3.1 prepareData: Combining two studies into one expression
set

prepareData(eset1, eset2, mapping = NULL)

The function prepares a collection of two expression sets of class ExpressionSet and/or

Affy batches of class AffyBatch to be passed on to the main function OrderedList. For

each data set, one has to specify the variable in the corresponding phenodata from which

the grouping into two distinct classes is done. The data sets are then merged into one

’ExpressionSet’ together with the rearranged phenodata. If the studies were done on

different platforms but a subset of genes can be mapped from one chip to the other, this

information can be provided via the ’mapping’ argument.

Please note that both data sets have to be pre-processed beforehand, either together or

independently of each other. The preprocessed gene expression values have to be on an

additive scale, that is logarithmic or log-like scale.

The two inputs eset1 and eset2 are named lists with five elements:

– data: Object of class ExpressionSet or AffyBatch.

– name: Character string with comparison label.

– var: Character string with phenodata variable. Based on this variable, the samples

for the two-sample testing will be extracted.

– out: Vector of two character strings with the levels of var that define the two clinical
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CHAPTER 3. COMPARING TWO EXPRESSION STUDIES 8

classes. The order of the two levels must be identical for all studies. Ideally, the first

entry corresponds to the “bad” and the second one to the “good” outcome level.

– paired: Logical - TRUE if samples are paired (e.g. two measurements per patients)

or FALSE if all samples are independent of each other. If data are paired, the paired

samples need to be in (whatever) successive order. Thus, the first sample of one

condition must match to the first sample of the second condition and so on.

The optional argument mapping is a data frame containing one named vector for each

study. The vectors are comprised of probe IDs that fit to the rownames of the correspond-

ing expression set. For each study, the IDs are ordered identically. For example, the kth

row of mapping provides the label of the kth gene in each single study. If all studies were

done on the same chip, no mapping is needed (default).

We illustrate the use of function prepareData with an application on the exemplary data

sets stored in data(OL.data). The data contains a list with three elements: breast,

prostate and map. The first two are expression sets of class ExpressionSet taken from the

breast cancer study of Huang et al. (2003) [2] and the prostate cancer study of Singh et

al. (2002) [4]. Both data sets were preprocessed as described in Yang et al. (2006) [5] and

contain only a random subsample of the original probes. We further removed unneeded

samples from both studies. The labels of the breast expression set were extended with

’B’ to create two data sets where the probe IDs differ but can be mapped onto each other.

The mapping is stored in the data frame map, which consists of the two probe ID vectors.

For illustration, we combine the two studies pretending that we need a mapping. The first

outcome of both studies relate to bad prognosis, that is “Recurrence vs. N on-Recurrence”

for the prostate cancer study and “high risk vs. low risk of relapse” for the breast cancer

study.

> library(OrderedList)

> data(OL.data)

> OL.data$breast

ExpressionSet (storageMode: lockedEnvironment)

assayData: 1000 features, 30 samples

element names: exprs

protocolData: none

phenoData

sampleNames: 00291004 00291087 ... 00291352 (30 total)

varLabels: Extension Risk Recurrence

varMetadata: labelDescription



CHAPTER 3. COMPARING TWO EXPRESSION STUDIES 9

featureData: none

experimentData: use 'experimentData(object)'

Annotation:

> OL.data$prostate

ExpressionSet (storageMode: lockedEnvironment)

assayData: 1000 features, 21 samples

element names: exprs

protocolData: none

phenoData

sampleNames: T24__tumor T01__tumor ... T23__tumor (21 total)

varLabels: sample outcome class

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

Annotation:

> OL.data$map[1:5,]

prostate breast

1 1414_at 1414_at_B

2 1796_s_at 1796_s_at_B

3 1131_at 1131_at_B

4 1316_at 1316_at_B

5 1624_at 1624_at_B

> A <- prepareData(

+ eset1=list(data=OL.data$prostate,name="prostate",var="outcome",out=c("Rec","NRec"),paired=FALSE),

+ eset2=list(data=OL.data$breast,name="breast",var="Risk",out=c("high","low"),paired=FALSE),

+ mapping=OL.data$map

+ )

> A

ExpressionSet (storageMode: lockedEnvironment)

assayData: 1000 features, 51 samples

element names: exprs

protocolData: none

phenoData
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sampleNames: T59__tumor.1 T26__tumor.1 ... 00291352.2 (51 total)

varLabels: outcome dataset class paired

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

Annotation:

3.2 OrderedList: Detecting similarities of two expression
studies

OrderedList(eset, B = 1000, test = "z", beta = 1, percent = 0.95, ver-

bose = TRUE, alpha = NULL, min.weight = 1e-5)

Function OrderedList aims for the comparison of comparisons: given two combined ex-

pression studies the function produces a gene ranking for each study and quantifies the

overlap by computing the weighted similarity scores as introduced in Chapter 2. The final

list of overlapping genes consists of those probes that contribute a certain percentage to

the overall similarity score.

The input arguments are:

– eset: Expression set containing the two studies of interest.

– B: Number of internal sub-samples needed to optimize α.

– test: String, one of "fc" (log ratio = log fold change), "t" (t-test with equal

variances) or "z" (t-test with regularized variances). The z-statistic is implemented

as described in Efron et al. (2001) [1].

– beta: Either 1 or 0.5. In a comparison where the class labels of the studies match, we

set beta=1. For example, in each single study the first class relates to bad prognosis

while the second class relates to good prognosis. If a matching is not possible, we

set beta=0.5. For example, we compare a study with good/bad prognosis classes to

a study, in which the classes are two types of cancer tissues.

– percent: The final list of overlapping genes consists of those probes that contribute

a certain percentage to the overall similarity score. Default is percent=0.95. To

get the full list of genes, set percent=1.

– verbose: Logical value for message printing.
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– alpha: A vector of weighting parameters. If set to NULL (the default), parameters

are computed such that the top 100 to the top 2500 ranks receive weights above

min.weight.

– min.weight: The minimal weight to be taken into account while computing scores.

We apply function OrderedList with default values to our combined data set. The result

is an object of class OrderedList for which print and plot function exist. For the result see

Figures 3.1 to 3.3. The sorted list of overlapping genes is stored in $intersect.

> x <- OrderedList(A, empirical=TRUE)

Simulating score distributions...

0%.......:.........:.........:.........:......100%

Random: -------------------------------------------------- please wait...

Observed: --------------------------------------------------

Computing empirical confidence intervals...

Top: --------------------------------------------------

Bottom: --------------------------------------------------

> x

Similarity of Ordered Gene Lists

Comparison : breast~prostate

Number of genes : 1000

Test statistic : z

Number of subsamples: 1000

beta = 1 -> corresponding labels could be matched in different studies

--------------------------------------

Optimal regularization parameter: alpha = 0.05756463

Lists are more alike in direct order

Weighted overlap score: 85.06307

Significance of similarity: p-value = 0.07592408

Number of genes contributing 95 % to similarity score: 40

> x$intersect[1:5]

[1] "1036_at/1036_at_B" "103_at/103_at_B" "1060_g_at/1060_g_at_B"

[4] "1081_at/1081_at_B" "1091_at/1091_at_B"
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Figure 3.1: plot(x,"pauc"): Option "pauc" selects the plot of pAUC-
scores, based on which the optimal α is chosen. The pAUC-score measure the
separability between the two distributions of observed and random similarity
scores. The similarity scores depend on α and thus α is chosen where the
pAUC-scores are maximal. The optimal α is marked by a vertical line.

Calling OrderedList with the empirical option set to true, causes OrderedList to com-

pute empirical bounds for expected overlaps shown in Figure 3.3. By default, this is

switched off and underestimated bounds deduced from a hypergeometric distribution are

drawn.
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Figure 3.2: plot(x,"scores"): Shown are kernel density estimates of the
two score distributions underlying the pAUC-score for optimal α. The red
curve correspondence to simulated observed scores and the black curve to
simulated random scores. The vertical red line denotes the actually observed
similarity score. The bottom rugs mark the simulated values. The two distri-
butions got the highest pAUC-score of separability and thus provide the best
signal-to-noise separation.
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Figure 3.3: plot(x,"overlap"): Displayed are the numbers of overlapping
genes in the two gene lists. The overlap size is drawn as a step function
over the respective ranks. Top ranks correspond to up-regulated and bottom
ranks to down-regulated genes. In addition, the expected overlap and 95%
confidence intervals derived empirically from the subsampling are shown.



Chapter 4

Comparing Two Ordered Lists

4.1 compareLists: Detecting similarities of two ordered gene
lists

compareLists(ID.List1, ID.List2, mapping = NULL, two.sided = TRUE, B =

1000, alphas = NULL, min.weight = 1e-5, invar.q = 0.5)

The two lists received as arguments are matched against each other according to the given

mapping. The comparison is performed from both ends by default. Permutations of lists

are used to generate random scores and compute empirical p-values. The evaluation is

also performed for the case the lists should be reversed.

The input arguments are:

– ID.List1: First ordered list of identifiers to be compared.

– ID.List2: Second ordered list to be compared, must have the same length as

ID.List1.

– mapping: Maps identifiers between the two lists. This is a matrix with two columns.

All items in ID.List1 must match to exactly one entry of column 1 of the mapping,

each element in ID.List2 must match exactly one element in column 2 of the map-

ping. If mapping is NULL, the two lists are expected to contain the same identifiers

and there must be a one-to-one relationship between the two.

– two.sided: Whether the score is to be computed considering both ends of the list,

or just the top members.

– B: The number of permutations used to estimate empirical p-values.

15
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– alphas: A set of α candidates to be evaluated. If set to NULL, alphas are determined

such that reasonable maximal ranks to be considered result.

– min.weight: The minimal weight to be considered.

– invar.q: The fraction of list elements expected to be invariant.

Although compareLists is not limited to the use with lists deduced from whole-genome

gene expression data, the following aspect is inspired by this application. In whole-genome

gene expression data, a large fraction of genes is expected to be invariant in most biolog-

ically reasonable comparisons. This hipothesis is for instance used in noramlization of

microarray data. In gene lists ordered according to differential expression invariant genes

always end up in the middle of the lists. Therefore, they do not influence the similarity

score as we define it for the OrderedList package. In order to account for this effect when

generating random scores, we exclude the fraction of invariant genes determined by in-

var.q from the shuffling for the generation of the similarity score’s null distribution. The

default value of 50% for invar.q is a underestimate typically used in normalization. It

may be reconsidered from case to case.

For illustration, we generate two lists from the gene IDs stored in OL.data$map. We

pretend the lists were already ordered. For the second list, we shuffle within the first 500

ranks and within the last 500 ranks to get some overlap.

> list1 <- as.character(OL.data$map$prostate)

> list2 <- c(sample(list1[1:500]),sample(list1[501:1000]))

> y <- compareLists(list1,list2)

Simulating random scores...

0%.......:.........:.........:.........:......100%

--------------------------------------------------

> y

List comparison

Assessing similarity of : top and bottom ranks

Length of lists : 1000

Quantile of invariant genes : 0.5

Number of random samples : 1000

--------------------------------------

Genes Scores p.values Rev.Scores Rev.p.values

0.115 100 5.309273 0.415 0.000000 1
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0.077 150 19.378223 0.362 0.000000 1

0.058 200 46.868944 0.318 0.000000 1

0.038 300 156.868022 0.273 0.000000 1

0.029 400 363.772505 0.241 0.000000 1

0.023 500 696.441527 0.257 0.000000 1

0.015 750 2269.000391 0.304 7.062765 1

The returned object of class listComparison can be explored by a plot function providing

a series of overlap plots similar to Figure 3.3 and a series of random score distributions

similar to Figure 3.2. The print function returns the table above summarizing the results.

Now we might want to choose a specific α possibly leading to a significant score and

extract the resulting set of intersecting list identifiers. This is done by applying function

getOverlap:

getOverlap(x, max.rank = 100, percent = 0.95)

The inputs are:

– x: An object of class listComparison.

– max.rank: The maximum rank to be considered.

– percent: The final list of overlapping genes consists of those probes that contribute

a certain percentage to the overall similarity score. Default is percent=0.95. To

get the full list of genes, set percent=1.

Note that we have two results per α: the similarity score for the comparison of the originally

ordered lists and the reversed score for the comparison of one original to one reversed list.

Function getOverlap chooses the direction with the higher similarity score. In our example

above, the direct comparison is clearly the right choice. Following the example, we set the

number of genes to 100 and extract the overlapping IDs. In the first 100 top ranks and

the first 100 bottom ranks we find a set of 177 overlapping IDs. The result object is of

class listComparisonOverlap, for which again print and plot functions exist, see Figures

4.1 and 4.2.

> z <- getOverlap(y)

> z

List comparison

Assessing similarity of : top and bottom ranks

Length of lists : 1000

Number of random samples : 1000
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Figure 4.1: plot(z): Displayed are the numbers of overlapping genes in
the two gene lists. The overlap size is drawn as a step function over the
respective ranks. Top ranks correspond to up-regulated and bottom ranks to
down-regulated genes. In addition, the expected overlap and 95% confidence
intervals derived from a hypergeometric distribution are shown.

----------------------------------------------------------

Lists are more alike in direct order

Chosen regularization parameter : alpha = 0.029 ( 400 genes)

Weighted overlap score : 363.7725

Significance of similarity : p-value = 0.241

Score percentage for common entries : 95

Entries contributing score percentage : 177

> z$intersect[1:5]

[1] "1004_at" "1012_at" "1017_at" "1019_g_at" "1021_at"
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Figure 4.2: plot(z,"scores"): Shown are kernel density estimates of the
distribution of random similarity scores. The observed score is marked by the
vertical line.
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