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1 Introduction

Controlling technical variability in metabolite abundance, or normalization, is a critical step in the analysis and interpretation
of non-targeted gas-chromatography/mass-spectrometry (GC/MS) data. In large scale metabolomics studies requiring sample
processing in many analytic batches, technical artifacts due to batch and run-order within batch are common. In these cases,
repeated assays of a set of control samples may be used to estimate and account for these artifacts. The metabomxtr package
implements a mixture model normalization approach via the function mixnorm for studies implementing this quality control
measure. Based on control sample variability, mixnorm allows for per-metabolite modeling of both batch and run-order effects,
while allowing for bach specific thresholds of metabolite detectability.

2 Sample Mixture Model Normalization
The following commands demonstrate typical usage of mixnorm. First, load the package.

>  library(metabomxtr)

Next, load euMetabData, a sample data frame containing metabolite data for a total of 40 mother-baby pairs of Northern
European ancestry. A total of 3 blood samples are included for each pair: mother fasting, mother 1-hour, and newborn
cord blood. Mother samples were obtained during an oral glucose tolerance test (OGTT) at 28 weeks gestation, and baby
samples were collected at birth. Sample types are indicated by row names, with ‘mf’ and ‘ml’ indicating maternal fasting
and 1-hour samples, respectively, and ‘bc’ indicating baby samples. Note that while euMetabData is a data frame, mixnorm
also accommodates metabolite data in matrix and ExpressionSet objects.

> data(euMetabData)
> class(euMetabData)

[1] "data.frame"

> dim(euMetabData)
[1] 120 6

> head(euMetabData)

batch pheno betahydroxybutyrate pyruvic_acid malonic_acid aspartic_acid

MBP1_mf 1 MOM 20.14544 18.47593 15.52949 17.27488
MBP1_m1l 1 MOM 19.30312 18.55794 16.89087 14.42220
MBP1_bc 1 BABY 22.83122 17.79843 14.77859 NA
MBP2_mf 1 MOM 20.55216 17.46991 NA NA
MBP2_m1 1 MOM 19.76286 18.21836 16.13184 NA
MBP2_bc 1 BABY 21.62902 16.05125 14.58549 NA



Also load euMetabCData, a data frame containing GC/MS data from separate mom and baby control pools. Control pool
aliquots were run at the beginning, middle and end of each batch with placement indicated by -1, -2 and -3 appended to the
sample name, respectively.

> data(euMetabCData)
> class(euMetabCData)

[1] "data.frame"

> dim(euMetabCData)
[1] 30 6

> head(euMetabCData)

batch pheno betahydroxybutyrate pyruvic_acid malonic_acid aspartic_acid

B-01-1 1 BABY 23.03775 17.38712 16.40161 NA
B-01-2 1 BABY 22.96725 17.16013 15.17785 NA
B-01-3 1 BABY 23.02668 17.15702 15.30278 NA
B-02-1 2 BABY 22.60945 15.55872 15.76774 NA
B-02-2 2 BABY 22.94031 15.62062 16.16459 12.98353
B-02-3 2 BABY 23.25504 16.12824 15.98942 NA

Pyruvic acid and malonic acid are included in both example data sets. We’ll assume they are of analytical interest, and
a define a character vector of the corresponding column names.

> ynames<-c('pyruvic_acid', 'malonic_acid')

Now we’ll plot metabolite abundances from the control data set. In the absence of technical variability, we would expect
to see constant mean abundance across batches for each metabolite. Also indicated in the plots are batch specific thresholds
of metabolite detectability, based on experimental evidence not available here.
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Both mother and baby control samples show considerable variability within and across batches, including one instance
where abundance fell below the detectable threshold. To account for these technical artifacts, we will use mixture model
normalization implemented in the function mixnorm. This function takes as required arguments a character vector of target
metabolite column names, the name of the variable corresponding to analytic batch in the input data objects, a data
object (data frame, matrix, or ExpressionSet) with quality control data, a data object with experimental data, and a
numeric value corresponding to outlier criteria. More specifically, this numeric value indicates the maximum number of
standard deviations from the mean metabolite abundance an observation may be and still be considered non-outlying. Any
observations falling outside this threshold will not be used in estimating batch effects and other technical artifacts. In our
experience, 2 standard deviations usually performs well, and the argument therefore defaults to 2. In the example data sets,
the variable corresponding to analytic batch is ’batch’, the target metabolite columns are 'pyruvic_acid’ and ’'malonic_acid’
(specified previously), the control data set is euMetabCData, and the experimental data set is euMetabData. By default,
mixnorm implements a mixture model with batch as the only covariate. For this analysis, we also want to account for sample
phenotype (mother vs. baby), and can do this by specifying a mixture model formula including both batch and phenotype.
Note that mixnorm will not run if mixture model covariates are missing values. Additionally, we will specify the experimentally
determined thresholds of metabolite detectability in optional argument batchTvals. If not specified, the default detectable
batch threshold is set to the minimum observed metabolite abundance for that batch, across all metabolites of analytic
interest. Note this may result in obtaining different results for the same metabolite depending on the other metabolites
entered as part of argument ynames. Most often, this manifests when running mixnorm on a subset of the full metabolite
group. In these cases, the user needs to manually calculate the minimum observed metabolite abundance across all metabolites
of interest for each batch, and enter that vector for batchTvals. Because of this, in general, we recommend running mixnorm
on the full set of metabolites of interest.

> #execute normalization

> euMetabNorm <- mixnorm(ynames, batch="batch", mxtrModel="pheno+batch|pheno+batch,

+ batchTvals=c(10.76,11.51,11.36,10.31,11.90), cData=euMetabCData,
+ data=euMetabData, qc.sd.outliers=2)

The output of mixnorm is a list of four data frames. The first, normParamsZ, contains parameter estimates for the variables
included in the mixture model for each metabolite specified. All estimates except for the intercept are subtracted from the
raw metabolite values to produce the normalized data.

> euMetabNorm$normParamsZ

zInt z_phenoMOM z_batch2 z_batch3 z_batch4 z_batchb
pyruvic_acid 16.99942  2.290157 -0.7162666 -0.2801026 -0.8823561 0.1029673
malonic_acid 15.72895  0.184694 0.3834681 0.8148275 0.9723654 0.5622411

The second element of the output list, ct1Norm, contains normalized values for the control samples.
> head (euMetabNorm$ctlNorm)

pyruvic_acid malonic_acid

B-01-1 17.38712 16.40161
B-01-2 17.16013 15.17785
B-01-3 17.15702 15.30278
B-02-1 16.27499 15.38428
B-02-2 16.33689 15.78112
B-02-3 16.84450 15.60595

The third element of the output list, obsNorm, contains normalized values for the experimental samples. Note that when
metabolite abundance falls below the detectable threshold, indicated by missing metabolite values, values will remain missing
in the normalized data set.

> head (euMetabNorm$obsNorm)

pyruvic_acid malonic_acid

MBP1_mf 16.18577 15.34480
MBP1_m1l 16.26779 16.70618
MBP1_bc 17.79843 14.77859
MBP2_mf 15.17976 NA
MBP2_m1 15.92820 15.94714

MBP2_bc 16.05125 14.58549



The fourth element of the output list, conv, contains information on whether models converged (indicated by a zero in

the conv column) and whether effects for predictor variables could not be estimated.

>

1
2

head (euMetabNorm$conv)

.id conv
pyruvic_acid 0
malonic_acid 0

After normalization, the function metabplot can be used to assess how mixture model normalization performed. The

function takes as arguments a metabolite column name (which must be present in all input data frames), a character indicating
the name of the batch variable, and data frames of raw (non-normalized) experimental data, raw quality control data,
normalized experimental data, and normalized quality control data. Optionally, the user can also specify a character indicating
a variable to be used to group and color observations in plots. Last, the function requires numeric outlier thresholds for both
the raw quality control data and the normalized experimental data. As with mixnorm, both arguments indicate the maximum
number of standard deviations from the mean metabolite abundance considered to be non-outlying. For the argument
indicating the quality control sample threshold (cont.outlier.sd.thresh), the same value used for qc.sd.outliers in
mixnorm should be input and the argument defaults to 2. These points will be indicated in the plots as "Excluded Outliers”
and are the observations that were not used in estimating batch effects. The argument indicating the normalized experimental
data threshold defaults to 4. These points will appear in the normalized experimental data plot as "Potential Outliers”. These
observations may represent true outlying metabolite levels after control of technical variability, and the user may want to
exclude these from downstream analysis (if using mxtrmod to analyze data, these points can be automatically excluded by
specifying the argument remove.outlier.sd). In the example plots, following normalization, mean metabolite abundance
values are much more stable across batches in the control samples. In the experimental data, mean abundances are more
variable, even after normalization. This is expected, as characteristics of biological interest are not expected to be uniform
across batches, and normalization aims to preserve this true biological variability.

vV VvV + + V

plot.list<-lapply(ynames, metabplot, batch="batch", raw.obs.data=euMetabData, raw.cont.data=euMetabCData,
norm.obs.data=euMetabNorm$obsNorm, norm.cont.data=euMetabNorm$ctlNorm,
color.var="pheno", cont.outlier.sd.thresh=2, norm.outlier.sd.thresh=4)
#just show plot for one of the metabolites
plot.list[[2]]
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3 Function Options

3.1 Removing Model Corrections

By default, mixnorm subtracts the effects of all variables included in the mixture model from the raw data to produce the
normalized data. However, in certain instances, it may be desirable to include covariates in the mixture model to accurately
estimate batch effects, but not actually remove the effects of those covariates. For instance, in the plots above, mother
samples tended to have higher levels of pyruvic acid than baby samples across batches. We can account for sample type
(mom vs. baby) in estimating batch effects while preserving metabolite variability based on sample type by specifying the
name of the covariate column (or a character vector of names) to optional argument removeCorrection as follows:

> euMetabNormRC <- mixnorm(ynames, batch="batch", mxtrModel="pheno+batch|pheno+batch,
+ batchTvals=c(10.76,11.51,11.36,10.31,11.90), cData=euMetabCData,
+ removeCorrection="pheno",data=euMetabData)

The parameter estimates in normParamsZ will be identical to those had removeCorrection not been specified:
> euMetabNormRC$normParamsZ [rownames (euMetabNormRC$normParamsZ)=="pyruvic_acid", ]

zInt z_phenoMOM z_batch2 z_batch3 z_batch4 z_batchb
pyruvic_acid 16.99942  2.290157 -0.7162666 -0.2801026 -0.8823561 0.1029673

However, the normalized data will not include a location shift for sample type. As seen below, the differences in pyruvic
acid abundance between mother and baby samples are preserved.

> metabplot("pyruvic_acid", batch="batch", raw.obs.data=euMetabData, raw.cont.data=euMetabCData,

+ norm.obs.data=euMetabNormRC$obsNorm, norm.cont.data=euMetabNormRC$ctlNorm,
+ color.var="pheno", cont.outlier.sd.thresh=2, norm.outlier.sd.thresh=4)
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3.2 Changing Outlier Criteria

Users may wish to change outlier criteria when executing normalization. In our experience, with only a small number of
quality control samples per batch, an outlying sample may unduly influence mixture model results, yielding extreme batch
effect estimates and poor normalization results. However, if users wish to not exclude data in estimating technical artifacts,
they may do so by setting the qc.sd.outliers argument in mixnorm to Inf.

> norm.with.outliers <- mixnorm(ynames, batch="batch", mxtrModel="pheno+batch|pheno+batch,
+ batchTvals=c(10.76,11.51,11.36,10.31,11.90), cData=euMetabCData,
+ data=euMetabData, qc.sd.outliers=Inf)

> metabplot("malonic_acid", batch="batch", raw.obs.data=euMetabData, raw.cont.data=euMetabCData,

+ norm.obs.data=norm.with.outliers$obsNorm, norm.cont.data=norm.with.outliers$ctiNorm,
+ color.var="pheno", cont.outlier.sd.thresh=Inf, norm.outlier.sd.thresh=4)
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3.3 Missing Batch Data

Users may encounter situations where quality control data are entirely missing for one or more batches. In these cases, the
batch effect cannot be estimated.

> cData.missing.batch<-euMetabCData

> cData.missing.batch[cData.missing.batch$batch==2, "malonic_acid"]<-NA

> norm.with.missing.batch <- mixnorm(ynames, batch="batch", mxtrModel="pheno+batch|pheno+batch,

+ batchTvals=c(10.76,11.51,11.36,10.31,11.90), cData=cData.missing.batch,
+ data=euMetabData)

These cases can be identified in several ways. First, in the normParamsZ output, the relevant batch effect will appear as
NA.

> norm.with.missing.batch$normParamsZ[rownames (norm.with.missing.batch$normParamsZ)=="malonic_acid", ]

zInt z_phenoMOM z_batch2 =z_batch3 z_batch4 z_batchb
malonic_acid 15.7609 0.1047759 NA 0.8228154 0.980348 0.5702425

Second, in the conv output, the missing batch will be identified in column predictors_missing_levels. Note that if
this column is not present in the conv output, then there were no such instances.

> norm.with.missing.batch$conv

.id conv predictors_missing_levels
1 pyruvic_acid 0 <NA>
2 malonic_acid 0 batch:2

Last, the missing data will be evident in output plots. Importantly, if quality control data are completely absent for
a batch, in the mixnorm output, all non-missing values in the experimental data for that batch will be set to Inf, since
normalization could not be performed for those observations. The missing batch data will therefore be evident in the quality
control plots as well as the normalized experimental data plot.

> metabplot("malonic_acid", batch="batch", raw.obs.data=euMetabData, raw.cont.data=cData.missing.batch,

+ norm.obs.data=norm.with.missing.batch$obsNorm,
+ norm.cont.data=norm.with.missing.batch$ctlNorm, color.var="pheno")
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3.4 Missing Phenotype Data

In the example above, a multi-level factor predictor (batch) had entirely missing metabolite data for one batch, but still
had data present for at least two other batches. Batch effects could therefore be estimated for those with sufficient data.
However, there may be times that categorical mixture model predictors are missing too much metabolite data to be included
in the model at all. For instance, in previous examples, pheno has been used as a predictor. This variable takes on one of two
values and indicates whether a particular sample was obtained from a mother or baby. If quality control metabolite data were
completely missing for either the mothers or the babies, we would be unable to obtain an estimate for the effect of pheno on
metabolite abundance. In these situations, when predictors with completely inestimable effects are included in the mixture
model, mixnorm does not output any data. Note these instances are also identified in the conv output of mixnorm in column
excluded_predictors. Again, if this column is not present in the output, then these types of variables were not present. If
users wish to normalize these metabolites, they must re-run the model excluding the appropriate predictor variable. If doing
so, batchTvals should be manually specified such that batch specific thresholds of detectability match those of the full set
of metabolites.

cData.missing.pheno<-euMetabCData

cData.missing.pheno[cData.missing.pheno$pheno=="BABY", "malonic_acid"]<-NA

norm.missing.pheno <- mixnorm(ynames, batch="batch", mxtrModel="pheno+batch|pheno+batch,
batchTvals=c(10.76,11.51,11.36,10.31,11.90), cData=cData.missing.pheno,
data=euMetabData)

norm.missing.pheno$normParamsZ[rownames (norm.missing. pheno$normParamsZ)=="malonic_acid", ]

vV + + Vv VvV

zInt z_phenoMOM z_batch2 z_batch3 z_batch4 z_batchb
malonic_acid 16.0659 NA 0.3697287 0.5123238 0.1478282 0.7683225

> norm.missing.pheno$conv

.id conv excluded_predictors

1 pyruvic_acid 0 <NA>
2 malonic_acid 0 pheno
>

> metabplot("malonic_acid", batch="batch", raw.obs.data=euMetabData, raw.cont.data=cData.missing.pheno,

+ norm.obs.data=norm.missing.pheno$obsNorm, norm.cont.data=norm.missing.pheno$ctlNorm,
+ color.var="pheno")
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4 Session Information

R version 3.5.1 Patched (2018-07-12 r74967), x86_64-pc-linux-gnu

e Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C, LC_MONETARY=en_US.UTF-8,
LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

e Running under: Ubuntu 16.04.5 LTS

e Matrix products: default

e BLAS: /home/biocbuild/bbs-3.8-bioc/R/1lib/1libRblas.so

e LAPACK: /home/biocbuild/bbs-3.8-bioc/R/1ib/libRlapack.so

e Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, utils

e Other packages: Biobase 2.42.0, BiocGenerics 0.28.0, ggplot2 3.1.0, metabomxtr 1.16.0, plyr 1.8.4, reshape2 1.4.3,
xtable 1.8-3

e Loaded via a namespace (and not attached): BiocParallel 1.16.0, Formula 1.2-3, MASS 7.3-51, Matrix 1.2-14,
R6 2.3.0, Repp 0.12.19, assertthat 0.2.0, bindr 0.1.1, bindrcpp 0.2.2, colorspace 1.3-2, compiler 3.5.1, crayon 1.3.4,
digest 0.6.18, dplyr 0.7.7, glue 1.3.0, grid 3.5.1, gtable 0.2.0, labeling 0.3, lattice 0.20-35, lazyeval 0.2.1, magrittr 1.5,
multtest 2.38.0, munsell 0.5.0, numDeriv 2016.8-1, optimx 2018-7.10, pillar 1.3.0, pkgconfig 2.0.2, purrr 0.2.5,
rlang 0.3.0.1, scales 1.0.0, splines 3.5.1, stats4 3.5.1, stringi 1.2.4, stringr 1.3.1, survival 2.43-1, tibble 1.4.2,
tidyselect 0.2.5, tools 3.5.1, withr 2.1.2
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