ExCluster package: Robust detection of differentially
spliced genes in RNA-seq data

R. Matthew Tanner, William L. Stanford, and Theodore J. Perkins
2 October 2018

Contents

1 Introduction 1
2 Quick ExCluster analysis pipeline 2
3 Detailed ExCluster pipeline explanation 3
4 Custom bamFiles variable assignment 8
5 Running ExCluster ”toy dataset” examples 8
6 Formatting ExCluster results as a GRanges object 11
7 Authors 11

1 Introduction

This vignette will detail the basic usage of the ExCluster package, both quickly and step-
by-step. IMPORTANT NOTE: ExCluster will not function with a Windows operating
system, and will only install on linux and MacOSX machines. Unfortunately, this package
requires Rsubread, which is not availble for Windows.

Before proteins may be produced from genes in our DNA, those genes are first tran-
scribed into pre-messenger RNA (pre-mRNA). This pre-mRNA contains introns and ex-
ons, from which introns must be removed to produce mature mRNA; this process is called
mRNA splicing. However, not all exons need be combined in the mature mRNA — some
exons may be spliced out in different combinations. This process is known as alterna-
tive splicing, and it allows a single gene encode multiple protein coding transcripts, with

roughly 20,000 protein coding genes producing nearly 200,000 protein coding transcripts.

Different cell types within a given organism may express different levels of mRNA tran-
scripts, and may even express entirely different mRNA transcripts. When two different
biological conditions, such as two cell types or two tissues, display differential transcript
expression patterns, the genes encoding those transcripts are said to be differentially
spliced. Indeed, differential regulation of mRNA splicing plays crucial roles in biology,
such as regulating organism development, specifying tissue identity, and maintaining cell
homeostasis. Aberrant regulation of mRNA splicing has also been observed in many
cancers. Thus, having the proper tools to detect differentially spliced genes in RNA-seq
datasets is crucial to studying these facets of biology with high-throughput RNA-seq data.

The ExCluster package allows users to detect differentially spliced genes between two
conditions of RNA-seq data, and also allows for the visualization of differential exon
expression within significantly differentially spliced genes. FExCluster requires at least
two biological replicates per condition, and requires exactly two conditions per analysis.
ExCluster has been designed to more rebustly detect differentially spliced genes than
do previous established differential splicing tools. ExCluster also more accurately tunes
statistics, to reduce the number of false positives when using the typical 0.05 FDR cutoff.

2 Quick ExCluster analysis pipeline

This section assumes some familiarity with R and programming in general, and has much
less explanation. If you are confused, please read the detailed step-by-step guide for a
basic ExCluster analysis. Also, you can refer to the ExCluster manual, which contains
details on ExCluster functions and their inputs.

To start, we run GFF_convert on our GTF file, saving the GFF file, both of which
require file paths to be set to variables:

> library(ExCluster)

> GTF_file <- "/path/to/file.gtf"

> GFF_file <- "/path/to/file.ExClust.gff

> GFF <- GFF_convert(GTF.File=GTF_file, GFF.File=GFF_file)

We now have our GFF annotation data frame written out, and stored in the 'GFF’
variable. We can now count reads per BAM file — but the described process requires only
your BAM files of interest in the bamDir and sub-directories. We also name bam files
with sampleNames. Then we run processCounts:

> bamDir <- "/path/to/bamDir/"
> bamFiles <- list.files(bamDir,full.names=TRUE, recursive=TRUE,

pattern="*.bam")

> sampleNames <- c("hESC_condl_repl", "hESC_condl_rep2", "hESC_condl_rep3",
"iPSC_cond2_repl", "iPSC_cond2_rep2", "iPSC_cond2_rep3")

> normCounts <- processCounts(bam.Files=bamFiles, sample.Names=sampleNames,
annot.GFF=GFF, paired.Reads=TRUE)

Note: if you are counting paired-end reads, we use paired.Reads=TRUE. If some or
all of your samples are single-end, use paired.Reads=FALSE (default if unset is FALSE).
processCounts counts reads per exon bin from each BAM file and normalizes them for
library size differences — we assign this output to the normCounts variable.

Now we can set up to run ExCluster, which requires condition numbers, and we should
give it an outDir and fileName to write files to. We also want to plot our significant re-
sults, so we use plot.Results=TRUE. We do all of this as follows:

condNums <- c¢(1,1,1,2,2,2)

outDir <- "/path/to/ExClustResults/"

fileName <- "hESC_vs_iPSC_ExClust_Results"

ExClustResults <- ExCluster(exon.Counts=normCounts, cond.Nums=condNums,
annot.GFF=GFF, out.Dir=outDir, result.Filename=fileName,
combine.Exons=TRUE, plot.Results=TRUE)

vV V V V

This will run for several hours, and will output the results to the ExClustResults vari-
able, as well as write those same results to outDir/hESC_vs_iPSC_ExClust_Results.txt.
Additionally, all significantly differentially expressed genes will have their exon bin log2FC
means and variances plotted in a sub-folder of outDir.

The only additional note is the combine.Exons=TRUE argument. Some exons are
co-expressed always within a given gene, and can therefore be combined into a ’super-
exon’. This increases the power of ExCluster and reduces computation time greatly.
However, it may miss aberrant splicing events. If you suspect abberant splicing, you can
use combine.Exons=FALSE (also FALSE by default if unset), and run the longer mult-
hour ExCluster analysis.

This concludes the quick run explanation.

3 Detailed ExCluster pipeline explanation

This Vignette assumes that you have successfully installed ExCluster in R, using Biocon-
ductor. If you have not yet installed ExCluster with Bioconductor, please try to run the
following:

> chooseCRANmirror ()
> install.packages("BiocManager")
> BiocManager: :install("ExCluster")

Please note that BiocManager (and ExCluster) will require R 3.5.1 or newer. If you
have trouble downloading the BiocManger package, try selecting a different mirror or con-
tact Bioconductor. If only ExCluster has issues, please contact the package maintainer.
Please also remember that ExCluster will not install properly on Windows, as it relies on
the Rsubread package.

With ExCluster installed, we must now load the R package as follows:
> library(ExCluster)

The next step in the ExCluster pipeline is to take a GTF genome annotation file, and
flatten it into a GFF file, containing non-overlapping exon bins. This is done using the
function GFF_convert. GTF files may be obtained from sources such as Ensembl, GEN-
CODE, RefSeq, and UCSC. We strongly recommend using GENCODE GTTF files, as they
were used to test and develop ExCluster. Within the Stanford and Perkins labs, we have
generally had more successful bioinformatics analyses with GENCODE annotations.

Before we run GFF_convert, we must specify the GTF file location, and we should also
specify a GFF file location to write the output to. Saving GFF files is not necessary, as
the GFF annotations can be carried through the pipeline if conducted in a single session.
However, saving GFF files is good practice, incase data needs to be re-analyzed later on.
Once a GFF file has been created, it may be re-used in future analyses.

We therefore set up variables to run the GFF_convert function as follows:

> GTF_file <- "/path/to/file.gff"
> GFF_file <- "/path/to/file.ExClust.gff

Experienced programmers and R users will understand what the above placeholder
filepaths mean. If you are confused about the above example, I will use a more spe-
cific example: My username on MacOS is 'matanner’, and my GFF file is called ’gen-
code.v23.annotation.gff’. The full path to my GTF file is:

/Users/matanner/Documents/gencode.v23.annotation.gtf

Now that our GTF_file and GFF_file variables are correctly set, we can run GFF_convert:

> GFF <- GFF_convert(GTF.File=GTF_file, GFF.File=GFF_file)

Once this last command is run, it will both assign the GFF annotation data frame to
the GFF variable, and write out your GFF data frame to the GFF_file location. If you
do not wish to write out GFF files, simply do not specify the GFF.File argument, which
by default does not write out data.

We can now move forward and set up our exon bin read counting with the process-
Counts function. For this we need BAM files with two different conditions, and at least
two biological replicates per condition. If you are new to analyzing RNA-seq data, and you
only have raw fastq files, you will need to align your fastq files to obtain BAM files. This
can be done with many programs, such as TopHat2, HISAT2, STAR, and BWA, among
others. We recommend HISAT2 as an aligner, as ExCluster was tested with HISAT?2
output — although HISAT2 only writes SAM files, which must be converted to BAM files
with SAMtools.

Assuming you have your RNA-seq data aligned and in BAM file format, it is helpful
if the exact BAM files you want to analyze are in a single folder (different sub-folders
are okay). The most important point for this example is to have only your bam files of
interest in your bamDir and its sub-folders. Assuming this is the case, we specify our
BAM file paths into the bamFiles’ variable, as follows:

> bamDir <- "/path/to/bamDir/"

> bamFiles <- list.files(bamDir, full.names=TRUE, recursive=TRUE,
pattern="*.bam")

> print(bamFiles)

The last command should list your bamFiles if the process worked correctly. You
should see exactly your BAM file paths of interest. If you have too many BAM files, or
are missing BAM files, you may need to manually specify the paths in your bamFiles ar-
ray. Please consult section 4 (after this section) for alternate ways to specify the bamFiles
variable. If you see no BAM file paths printed out, you need to re-check and ensure you
provided the exactly correct path to the folder containing your BAM files (folder and file
paths are case sensitive).

With your BAMfiles correctly specified, we must now assign sample names to each
bam file, in precise order. Sometimes BAM files will be named ’accepted_hits.bam’, such
as outputs from TopHat2. For this reason we specify exactly what we want each sample
(BAM file) to be called in the exon bin count table. We specify sample names in the
sampleNames variable. These names should not contain spaces — instead of spaces, use
underscores _ . It also helps to name your samples by condition name and number, and
replicate number. For example, if we are comparing human embryonic stem cells (hESCs)
to induced pluripotent stem cells (iPSCs), and we have 3 replicates per condition, we can
name our samples as follows:

> sampleNames <- c("hESC_condl_repl", "hESC_condl_rep2",
"hESC_condl_rep3", "iPSC_cond2_repl", "iPSC_cond2_rep2",
"iPSC_cond2_rep3")

This naming convention is helpful, because it clearly indicates both the name of the
condition, and which condition is which number (which determines the direction of exon
fold changes). It also unambiguously identifies replicates. Again, we must verify that this
order of sample names matches the order of the bamFiles array, or we will have improperly
named samples and thus an improper analysis.

With our setup complete, we can now run the processCounts function — let us assume
we are counting paired-end read data, so we also specify paired.Reads=TRUE:

> normCounts <- processCounts(bam.Files=bamFiles,
sample.Names=sampleNames, annot.GFF=GFF, paired.Reads=TRUE)

Again, you will notice that we specified the paired.Reads=TRUE argument, which is
important when conducting ExCluster analyses on paired-end data. Unfortunately, Ex-
Cluster cannot currently accomodate mixed sample types. In other words, if some of your
BAM files are paired-end, and some are single-end, we cannot specify different counting
types. If some or all of your samples are single-end, you can set the paired.Reads=FALSE
argument. This is OK, as processCounts also normalizes library sizes, which should factor
out much of the library size differences between the paired-end and single-end data.

The result of the above R command should give you a library size normalized exon
bin count matrix, which is stored in the normCounts variable. To check this data frame,
you should use ncols() and nrows() and have a number of columns equal to your number
of BAM files, and roughly 500-600 thousand rows for human data. You should also sum
your columns with apply(), and see millions of reads per column. These checks can be
checked as follows:

> ncols(normCounts)
> nrows (normCounts)
> apply(normCounts,2,sum)

Assuming your normCounts read count data frame has counted properly, you may now
proceed with the main function of this package, ExCluster! As before, we must set up
some variables before we run our function. We must assign unique condition identifiers
to the condNums variable, which correspond in exact order to your condition 1 and con-
dition 2 samples in normCounts and bamFiles. For example, if your first 3 samples are
condition 1, and your last 3 samples are condition 2, you could set up condNums as follows:

> condNums <- ¢(1,1,1,2,2,2)

If you have alternating samples in your normCounts data frame, you would use the
following command:

> condNums <- c¢(1,2,1,2,1,2)

If you have more than two conditions, please only run ExCluster with 2 conditions
at once. To compare multiple conditions, you will have to run ExCluster several times.
Once you have ensured the correct columns in normCounts have been given the correct
condition numbers in condNums, we must specify a directory and file name to write out
our ExCluster results. Writing out results is not absolutely necessary, but it is strongly
advised. The ExCluster function can take hours to run, and therefore failing to save data
could result in data loss, and the need to re-run the multi-hour analysis again. We specify
an output folder and file name as follows:

> outDir <- "/Users/username/path/to/ExClustResults/"
> fileName <- "hESC_vs_iPSC_ExClust_Results"

Note, when you specify the fileName variable string, you need not include the file
extension. By default, ExCluster will add ’.txt’ as a file extension, and write a tab de-
limited file. We can now run the ExCluster function as follows, assigning the ExCluster
results to the ExClustResults variable:

> ExClustResults <- ExCluster(exon.Counts=normCounts, cond.Nums=condNums,
annot.GFF=GFF, out.Dir=outDir, result.Filename=fileName,
combine.Exons=TRUE, plot.Results=TRUE)

You will notice that we specified two extra parameters: combine.Exons and plot.Results.
Both arguments must be set as logical TRUE or FALSE values. Anything else will likely
throw an error, and ExCluster may fail. If they are not set when running ExCluster,
both combine.Exons and plot.Resuts default to FALSE.

Very briefly, some exons are always co-expressed together in transcripts. These exons
can therefore be combined into ’super-exons’, based on GFF transcript definitions. This
increases the read depth of these exons and reduces their variance, giving more powerful
statistical resolution. It also decreases the number of exons bins analyzed per gene, which
greatly cuts down on computation time. HOWEVER, this may cause aberrant splicing
events to become missed. If you suspect aberrant splicing may occur in your biological
paradigm, MAKE SURE combine.Exons=FALSE! However, if you are conducting a stan-
dard analysis where no aberrant splicing should occur, combine.Exons=TRUE will result

in greater power and faster computation completion.

The plotExonlog2FC function may be called from within ExCluster to save extra
lines of commands to the pipeline — this is done by setting plot.Results=TRUE. Here,
all genes equal to or less than an FDR cutoff will be called significant, and plotted in a
sub-folder of the ExCluster results directory (outDir). By default the FDR.cutoff = 0.05,
however you may specify as low as FDR.cutoff=0.01 and as high as FDR.cutoff=0.2 as
an extra argument when running ExCluster. You may also run plotExonlog2FC on its
own. See the manual for more details.

This concludes the step-by-step, detailed explanation of the ExCluster pipeline.

4 Custom bamFiles variable assignment

Assuming that you cannot have all of your BAM files exclusively within a given folder,
you can manually set your bamkFiles array by entering the paths to your BAM files one
by one. This is done as follows:

> bamFiles <- c("/path/to/condl_repl.bam",
"/path/to/condl_rep2.bam",
"/path/to/condl_rep3.bam",
"/path/to/cond2_repl.bam",
"/path/to/cond2_rep2.bam",
"/path/to/cond2_rep3.bam")

Just as a reminder, if my username is ‘'matanner’ on a Mac OS system, the full path to my
first BAM file might be ”/Users/matanner/Documents/iPSC_RNAseq/hESC_cond1_rep2.bam

In this way, you must specify the exact filepath of each BAM file, and ensure that file
path is valid. Although slow, this method offers greater control over your analysis.

5 Running ExCluster ”toy dataset” examples

The ExCluster package contains a small dataset for 3 genes, with 4 BAM files split evenly
between two conditions. This toy dataset also includes sub-sampled GTF and GFF files,
as well as various ExCluster results objects. If you are having trouble executing ExClus-
ter functions, or simply wish to test the functionality of the package, you may use the
following examples to test each function:

First we test the GFF_convert function, which takes a GTF file input and flattens it
into a GFF3 file. We run the code as follows:

V VVVVYVVYyV

s —_——_———— — — — — — — — — — — — — —
——————— — — — — — — — — — — — —

—_—_— - —— — — — — — X
—_———— — — — — — =]

library (ExCluster)

load the sub-sampled GTF file path from the ExCluster package

GTF_file <- system.file("extdata","sub_gen.v23.gtf", package = "ExCluster")

now run GTF_file without assigning a GFF_file to write out, assigning the results to the GFF object
GFF <- GFF_convert (GTF.File=GTF_file)

Next we can run the processCounts function on the small BAM file dataset as follows:

specify the path to the ExCluster package

ExClust_Path <- system.file(package="ExCluster")

now find the bam files within that folder

bamFiles <- list.files(ExClust_Path,recursive=TRUE,pattern="+.bam",full.names=TRUE)

assign sample names (only 2 replicates per condition in this example)

sampleNames <- c("iPSC_condl_repl1","iPSC_condl_rep2","iPSC_cond2_repl","iPSC_cond2_rep2")

now run processCounts, with paired.Reads=TRUE because we are counting paired-end data

normCounts <- processCounts(bam.Files=bamFiles, sample.Names=sampleNames, annot.GFF=GFF, paired.Reads=TRUE)

2N B B NN /N N
G 0 T D B /N L
| N e e T L I B2/ W N B B
) D NN e /N
s========= |_____ /NS NN/ N\ /
Rsubread 1.32.0
featureCounts setting \\
I'l
Input files : 4 BAM files Il
P iPSC_batchl_20_condl_repl.bam |
P iPSC_batchl_20_condl_rep2.bam Il
P iPSC_batchl_20_cond2_repl.bam Il
P iPSC_batchl_20_cond2_rep2.bam Il
Il
Annotation : R data.frame Il
Dir for temp files : /tmp/RtmpeOOgYa Il
Threads : 1 Il
Level : meta-feature level Il
Paired-end : yes |
Multimapping reads : counted Il
Multi-overlapping reads : counted Il
Min overlapping bases : 1 |
Il
Chimeric reads : counted I'l
Both ends mapped : not required Il
Il
http://subread.sourceforge.net/ //
Running

Load annotation file .Rsubread_UserProvidedAnnotation_pid32569 ...
Features : 23
Meta-features : 23
Chromosomes/contigs : 1

Process BAM file iPSC_batchl_20_condl_repl.bam...
Paired-end reads are included.
Assign alignments (paired-end) to features...

—_———————— —— ~
—_——— - - ——— ==

WARNING: reads from the same pair were found not adjacent to each

other in the input (due to read sorting by location or
reporting of multi-mapping read pairs).

Pairing up the read pairs.

Total alignments : 920
Successfully assigned alignments : 542 (58.9%)
Running time : 0.00 minutes

Process BAM file iPSC_batchl_20_condl_rep2.bam...
Paired-end reads are included.
Assign alignments (paired-end) to features...

WARNING: reads from the same pair were found not adjacent to each
other in the input (due to read sorting by location or
reporting of multi-mapping read pairs).

Pairing up the read pairs.

Total alignments : 619
Successfully assigned alignments : 299 (48.3%)
Running time : 0.00 minutes

Process BAM file iPSC_batchl_20_cond2_repl.bam...
Paired-end reads are included.
Assign alignments (paired-end) to features...

WARNING: reads from the same pair were found not adjacent to each
other in the input (due to read sorting by location or
reporting of multi-mapping read pairs).

Pairing up the read pairs.

Total alignments : 960
Successfully assigned alignments : 386 (40.2%)
Running time : 0.00 minutes

Process BAM file iPSC_batchl_20_cond2_rep2.bam...
Paired-end reads are included.
Assign alignments (paired-end) to features...

WARNING: reads from the same pair were found not adjacent to each
other in the input (due to read sorting by location or
reporting of multi-mapping read pairs).

Pairing up the read pairs.
Total alignments : 920

Successfully assigned alignments : 342 (37.2%)
Running time : 0.00 minutes

e —
~N—— — — — — — — —— — — — — — — —————— — =
~—_— — — — —— — — — =

Y —— e

http://subread.sourceforge.net/

The main function of the package, ExCluster, can be tested with the following code:
> # assign condition numbers to your samples (we have 4 samples, 2 replicates per condition)
> condNums <- c¢(1,1,2,2)
> # now we run ExCluster, assigning its output to the ExClustResults variable
> # we are not writing out the ExClustResults table, nor are we plotting exons
> # we also use combine.Exons=FALSE to discover one 'significant' gene for example plot purposes
> ExClust_Results <- ExCluster (exon.Counts=normCounts, cond.Nums=condNums,annot.GFF=GFF, combine.Exons=FALSE)

10

We can test the exon log2FC plotting function plotExonlog2FC as follows:

now we must specify a directory to write images to

here we use tempdir, but you may substitute another folder path if you wish
outDir <- paste(tempdir(),"/Images/",sep="")

now we can run our exon log2FC plotting function

> plotExonlog2FC(results.Data=ExClust_Results, out.Dir=outDir, plot.Type="PNG")

>
>
>
>

6 Formatting ExCluster results as a GRanges object

In addition to the above methods, users may also use GTF files imported by rtracklayer
in conjuction with the rtracklayerGTFtoGFF function, to produce GFF flattened files.
This function calls the GFF_convert function from within itself, and must be given the
results of an rtracklayer import() function.

Users may convert the results ExCluster to a GRanges objects, as said results con-
tain genomic coordinates for each exon bin. This may allow for easier manipulation of
these datastructures outside of the standard ExCluster pipeline described in this vignette.
Please note that the plotExonlog2FC function does not accept GRanges objects, instead
expecting data in the format previously described in this vignette.

Converting ExCluster results to GRanges format can be done as follows:

> GRanges.ExClustResults <- GRangesFromExClustResults(results.ExClust=ExClust_Results)

7 Authors

R. Matthew Tanner, William L. Stanford, and Theodore J. Perkins
CMM Department, Faculty of Medicine, University of Ottawa
Ottawa Hospital Research Institute

501 Smyth Box 511, Ottawa ON K1H 8L6

Canada

11

