c

org.bdgenomics.adam.ds.sequence

ParquetUnboundSequenceDataset

case class ParquetUnboundSequenceDataset extends SequenceDataset with Product with Serializable

Linear Supertypes
Serializable, Serializable, Product, Equals, SequenceDataset, MultisampleGenomicDataset[Sequence, Sequence, SequenceDataset], AvroGenomicDataset[Sequence, Sequence, SequenceDataset], GenomicDataset[Sequence, Sequence, SequenceDataset], Logging, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. ParquetUnboundSequenceDataset
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. SequenceDataset
  7. MultisampleGenomicDataset
  8. AvroGenomicDataset
  9. GenomicDataset
  10. Logging
  11. AnyRef
  12. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. def addReference(referenceToAdd: SequenceRecord): SequenceDataset

    Appends metadata for a single reference sequence to the current genomic dataset.

    Appends metadata for a single reference sequence to the current genomic dataset.

    referenceToAdd

    The reference sequence to add.

    returns

    Returns a new GenomicDataset with this reference sequence appended.

    Definition Classes
    GenomicDataset
  5. def addReferences(referencesToAdd: SequenceDictionary): SequenceDataset

    Appends reference sequence metadata to the current genomic dataset.

    Appends reference sequence metadata to the current genomic dataset.

    referencesToAdd

    The new reference sequences to append.

    returns

    Returns a new GenomicDataset with the reference sequences appended.

    Definition Classes
    GenomicDataset
  6. def addSample(sampleToAdd: Sample): SequenceDataset

    Adds a single sample to the current genomic dataset.

    Adds a single sample to the current genomic dataset.

    sampleToAdd

    A single sample to add.

    returns

    Returns a new genomic dataset with this sample added.

    Definition Classes
    MultisampleGenomicDataset
  7. def addSamples(samplesToAdd: Iterable[Sample]): SequenceDataset

    Adds samples to the current genomic dataset.

    Adds samples to the current genomic dataset.

    samplesToAdd

    Zero or more samples to add.

    returns

    Returns a new genomic dataset with samples added.

    Definition Classes
    MultisampleGenomicDataset
  8. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  9. def broadcast()(implicit tTag: ClassTag[Sequence]): GenomicBroadcast[Sequence, Sequence, SequenceDataset]
    Definition Classes
    GenomicDataset
  10. def broadcastRegionJoin[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z])(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], txTag: ClassTag[(Sequence, X)], uyTag: scala.reflect.api.JavaUniverse.TypeTag[(Sequence, Y)]): GenericGenomicDataset[(Sequence, X), (Sequence, Y)]

    Performs a broadcast inner join between this genomic dataset and another genomic dataset.

    Performs a broadcast inner join between this genomic dataset and another genomic dataset.

    In a broadcast join, the left genomic dataset (this genomic dataset) is collected to the driver, and broadcast to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other genomic dataset are dropped.

    genomicDataset

    The right genomic dataset in the join.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicDataset
    See also

    broadcastRegionJoinAgainst

  11. def broadcastRegionJoin[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Long)(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], txTag: ClassTag[(Sequence, X)], uyTag: scala.reflect.api.JavaUniverse.TypeTag[(Sequence, Y)]): GenericGenomicDataset[(Sequence, X), (Sequence, Y)]

    Performs a broadcast inner join between this genomic dataset and another genomic dataset.

    Performs a broadcast inner join between this genomic dataset and another genomic dataset.

    In a broadcast join, the left genomic dataset (this genomic dataset) is collected to the driver, and broadcast to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other genomic dataset are dropped.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicDataset
    See also

    broadcastRegionJoinAgainst

  12. def broadcastRegionJoin[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Integer): GenericGenomicDataset[(Sequence, X), (Sequence, Y)]

    (Java-specific) Performs a broadcast inner join between this genomic dataset and another genomic dataset.

    (Java-specific) Performs a broadcast inner join between this genomic dataset and another genomic dataset.

    In a broadcast join, the left genomic dataset (this genomic dataset) is collected to the driver, and broadcast to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other genomic dataset are dropped.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicDataset
  13. def broadcastRegionJoin[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Double): GenericGenomicDataset[(Sequence, X), (Sequence, Y)]

    (R-specific) Performs a broadcast inner join between this genomic dataset and another genomic dataset.

    (R-specific) Performs a broadcast inner join between this genomic dataset and another genomic dataset.

    In a broadcast join, the left genomic dataset (this genomic dataset) is collected to the driver, and broadcast to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other genomic dataset are dropped.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicDataset
  14. def broadcastRegionJoinAgainst[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](broadcast: GenomicBroadcast[X, Y, Z])(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], uyTag: scala.reflect.api.JavaUniverse.TypeTag[(Y, Sequence)]): GenericGenomicDataset[(X, Sequence), (Y, Sequence)]

    Performs a broadcast inner join between this genomic dataset and data that has been broadcast.

    Performs a broadcast inner join between this genomic dataset and data that has been broadcast.

    In a broadcast join, the left side of the join (broadcastTree) is broadcast to to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other genomic dataset are dropped. As compared to broadcastRegionJoin, this function allows the broadcast object to be reused across multiple joins.

    broadcast

    The data on the left side of the join.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicDataset
    Note

    This function differs from other region joins as it treats the calling genomic dataset as the right side of the join, and not the left.

    See also

    broadcastRegionJoin

  15. def broadcastRegionJoinAgainstAndGroupByRight[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](broadcast: GenomicBroadcast[X, Y, Z])(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], syuTag: scala.reflect.api.JavaUniverse.TypeTag[(Seq[Y], Sequence)]): GenericGenomicDataset[(Iterable[X], Sequence), (Seq[Y], Sequence)]

    Performs a broadcast inner join between this genomic dataset and another genomic dataset.

    Performs a broadcast inner join between this genomic dataset and another genomic dataset.

    In a broadcast join, the left side of the join (broadcastTree) is broadcast to to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other genomic dataset are dropped. As compared to broadcastRegionJoin, this function allows the broadcast object to be reused across multiple joins.

    broadcast

    The data on the left side of the join.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicDataset
    Note

    This function differs from other region joins as it treats the calling genomic dataset as the right side of the join, and not the left.

    See also

    broadcastRegionJoinAndGroupByRight

  16. def broadcastRegionJoinAndGroupByRight[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z])(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], itxTag: ClassTag[(Iterable[Sequence], X)], iuyTag: scala.reflect.api.JavaUniverse.TypeTag[(Seq[Sequence], Y)]): GenericGenomicDataset[(Iterable[Sequence], X), (Seq[Sequence], Y)]

    Performs a broadcast inner join between this genomic dataset and another genomic dataset.

    Performs a broadcast inner join between this genomic dataset and another genomic dataset.

    In a broadcast join, the left genomic dataset (this genomic dataset) is collected to the driver, and broadcast to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other genomic dataset are dropped.

    genomicDataset

    The right genomic dataset in the join.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicDataset
    See also

    broadcastRegionJoinAgainstAndGroupByRight

  17. def broadcastRegionJoinAndGroupByRight[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Long)(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], itxTag: ClassTag[(Iterable[Sequence], X)], iuyTag: scala.reflect.api.JavaUniverse.TypeTag[(Seq[Sequence], Y)]): GenericGenomicDataset[(Iterable[Sequence], X), (Seq[Sequence], Y)]

    Performs a broadcast inner join between this genomic dataset and another genomic dataset.

    Performs a broadcast inner join between this genomic dataset and another genomic dataset.

    In a broadcast join, the left genomic dataset (this genomic dataset) is collected to the driver, and broadcast to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other genomic dataset are dropped.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicDataset
    See also

    broadcastRegionJoinAgainstAndGroupByRight

  18. def broadcastRegionJoinAndGroupByRight[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Integer): GenericGenomicDataset[(Iterable[Sequence], X), (Seq[Sequence], Y)]

    (Java-specific) Performs a broadcast inner join between this genomic dataset and another genomic dataset.

    (Java-specific) Performs a broadcast inner join between this genomic dataset and another genomic dataset.

    In a broadcast join, the left genomic dataset (this genomic dataset) is collected to the driver, and broadcast to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other genomic dataset are dropped.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicDataset
    See also

    broadcastRegionJoinAgainstAndGroupByRight

  19. def broadcastRegionJoinAndGroupByRight[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Double): GenericGenomicDataset[(Iterable[Sequence], X), (Seq[Sequence], Y)]

    (R-specific) Performs a broadcast inner join between this genomic dataset and another genomic dataset.

    (R-specific) Performs a broadcast inner join between this genomic dataset and another genomic dataset.

    In a broadcast join, the left genomic dataset (this genomic dataset) is collected to the driver, and broadcast to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other genomic dataset are dropped.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicDataset
    See also

    broadcastRegionJoinAgainstAndGroupByRight

  20. def buildTree(rdd: RDD[(ReferenceRegion, Sequence)])(implicit tTag: ClassTag[Sequence]): IntervalArray[ReferenceRegion, Sequence]
    Attributes
    protected
    Definition Classes
    SequenceDatasetGenomicDataset
  21. def cache(): SequenceDataset

    Caches underlying RDD in memory.

    Caches underlying RDD in memory.

    returns

    Cached GenomicDataset.

    Definition Classes
    GenomicDataset
  22. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native() @HotSpotIntrinsicCandidate()
  23. def countKmers(kmerLength: Integer): JavaRDD[(String, Long)]

    (Java-specific) Cuts sequences into _k_-mers, and then counts the number of occurrences of each _k_-mer.

    (Java-specific) Cuts sequences into _k_-mers, and then counts the number of occurrences of each _k_-mer.

    kmerLength

    The value of _k_ to use for cutting _k_-mers.

    returns

    Returns an JavaRDD containing k-mer/count pairs.

    Definition Classes
    SequenceDataset
  24. def countKmers(kmerLength: Int): RDD[(String, Long)]

    (Scala-specific) Cuts sequences into _k_-mers, and then counts the number of occurrences of each _k_-mer.

    (Scala-specific) Cuts sequences into _k_-mers, and then counts the number of occurrences of each _k_-mer.

    kmerLength

    The value of _k_ to use for cutting _k_-mers.

    returns

    Returns an RDD containing k-mer/count pairs.

    Definition Classes
    SequenceDataset
  25. def countKmersAsDataset(kmerLength: Int): Dataset[(String, Long)]

    Cuts sequences into _k_-mers, and then counts the number of occurrences of each _k_-mer as a Dataset.

    Cuts sequences into _k_-mers, and then counts the number of occurrences of each _k_-mer as a Dataset.

    kmerLength

    The value of _k_ to use for cutting _k_-mers.

    returns

    Returns a Dataset containing k-mer/count pairs.

    Definition Classes
    SequenceDataset
  26. def createReferences(): SequenceDataset

    Replace the references for this SequenceDataset with those created from the sequences in this SequenceDataset.

    Replace the references for this SequenceDataset with those created from the sequences in this SequenceDataset.

    returns

    Returns a new SequenceDataset with the references replaced.

    Definition Classes
    SequenceDataset
  27. lazy val dataset: Dataset[Sequence]

    These data as a Spark SQL Dataset.

    These data as a Spark SQL Dataset.

    Definition Classes
    ParquetUnboundSequenceDatasetGenomicDataset
  28. def debug(mkr: Marker, msg: ⇒ Any, t: ⇒ Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  29. def debug(msg: ⇒ Any, t: ⇒ Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  30. def debug(msg: ⇒ Any): Unit
    Attributes
    protected
    Definition Classes
    Logging
  31. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  32. def error(mkr: Marker, msg: ⇒ Any, t: ⇒ Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  33. def error(msg: ⇒ Any, t: ⇒ Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  34. def error(msg: ⇒ Any): Unit
    Attributes
    protected
    Definition Classes
    Logging
  35. def filterByOverlappingRegion(query: ReferenceRegion): SequenceDataset

    Runs a filter that selects data in the underlying RDD that overlaps a single genomic region.

    Runs a filter that selects data in the underlying RDD that overlaps a single genomic region.

    query

    The region to query for.

    returns

    Returns a new GenomicDataset containing only data that overlaps the query region.

    Definition Classes
    GenomicDataset
  36. def filterByOverlappingRegions(querys: Iterable[ReferenceRegion]): SequenceDataset

    (Java-specific) Runs a filter that selects data in the underlying RDD that overlaps several genomic regions.

    (Java-specific) Runs a filter that selects data in the underlying RDD that overlaps several genomic regions.

    querys

    The regions to query for.

    returns

    Returns a new GenomicDataset containing only data that overlaps the querys region.

    Definition Classes
    GenomicDataset
  37. def filterByOverlappingRegions(querys: Iterable[ReferenceRegion]): SequenceDataset

    (Scala-specific) Runs a filter that selects data in the underlying RDD that overlaps several genomic regions.

    (Scala-specific) Runs a filter that selects data in the underlying RDD that overlaps several genomic regions.

    querys

    The regions to query for.

    returns

    Returns a new GenomicDataset containing only data that overlaps the querys region.

    Definition Classes
    GenomicDataset
  38. def filterToSample(sampleId: String): SequenceDataset

    Filter this SequenceDataset by sample to those that match the specified sample.

    Filter this SequenceDataset by sample to those that match the specified sample.

    sampleId

    Sample to filter by. return SequenceDataset filtered by sample.

    Definition Classes
    ParquetUnboundSequenceDatasetSequenceDataset
  39. def filterToSamples(sampleIds: Seq[String]): SequenceDataset

    (Scala-specific) Filter this SequenceDataset by sample to those that match the specified samples.

    (Scala-specific) Filter this SequenceDataset by sample to those that match the specified samples.

    sampleIds

    Sequence of samples to filter by. return SequenceDataset filtered by one or more samples.

    Definition Classes
    ParquetUnboundSequenceDatasetSequenceDataset
  40. def filterToSamples(sampleIds: List[String]): SequenceDataset

    (Java-specific) Filter this SequenceDataset by sample to those that match the specified samples.

    (Java-specific) Filter this SequenceDataset by sample to those that match the specified samples.

    sampleIds

    List of samples to filter by. return SequenceDataset filtered by one or more samples.

    Definition Classes
    SequenceDataset
  41. def flattenRddByRegions(): RDD[(ReferenceRegion, Sequence)]
    Attributes
    protected
    Definition Classes
    GenomicDataset
  42. def fullOuterShuffleRegionJoin[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z])(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], otoxTag: ClassTag[(Option[Sequence], Option[X])], ouoyTag: scala.reflect.api.JavaUniverse.TypeTag[(Option[Sequence], Option[Y])]): GenericGenomicDataset[(Option[Sequence], Option[X]), (Option[Sequence], Option[Y])]

    Performs a sort-merge full outer join between this genomic dataset and another genomic dataset.

    Performs a sort-merge full outer join between this genomic dataset and another genomic dataset.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is a full outer join, if a value from either genomic dataset does not overlap any values in the other genomic dataset, it will be paired with a None in the product of the join.

    genomicDataset

    The right genomic dataset in the join.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, and values that did not overlap will be paired with a None.

    Definition Classes
    GenomicDataset
  43. def fullOuterShuffleRegionJoin[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Long)(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], otoxTag: ClassTag[(Option[Sequence], Option[X])], ouoyTag: scala.reflect.api.JavaUniverse.TypeTag[(Option[Sequence], Option[Y])]): GenericGenomicDataset[(Option[Sequence], Option[X]), (Option[Sequence], Option[Y])]

    Performs a sort-merge full outer join between this genomic dataset and another genomic dataset.

    Performs a sort-merge full outer join between this genomic dataset and another genomic dataset.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is a full outer join, if a value from either genomic dataset does not overlap any values in the other genomic dataset, it will be paired with a None in the product of the join.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, and values that did not overlap will be paired with a None.

    Definition Classes
    GenomicDataset
  44. def fullOuterShuffleRegionJoin[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Integer): GenericGenomicDataset[(Option[Sequence], Option[X]), (Option[Sequence], Option[Y])]

    (Python-specific) Performs a sort-merge full outer join between this genomic dataset and another genomic dataset.

    (Python-specific) Performs a sort-merge full outer join between this genomic dataset and another genomic dataset.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is a full outer join, if a value from either genomic dataset does not overlap any values in the other genomic dataset, it will be paired with a None in the product of the join.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, and values that did not overlap will be paired with a None.

    Definition Classes
    GenomicDataset
  45. def fullOuterShuffleRegionJoin[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Double): GenericGenomicDataset[(Option[Sequence], Option[X]), (Option[Sequence], Option[Y])]

    (R-specific) Performs a sort-merge full outer join between this genomic dataset and another genomic dataset.

    (R-specific) Performs a sort-merge full outer join between this genomic dataset and another genomic dataset.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is a full outer join, if a value from either genomic dataset does not overlap any values in the other genomic dataset, it will be paired with a None in the product of the join.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, and values that did not overlap will be paired with a None.

    Definition Classes
    GenomicDataset
  46. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  47. def getReferenceRegions(sequence: Sequence): Seq[ReferenceRegion]

    sequence

    Sequence to extract a region from.

    returns

    Returns a reference region that covers the entirety of the sequence.

    Attributes
    protected
    Definition Classes
    SequenceDatasetGenomicDataset
  48. def info(mkr: Marker, msg: ⇒ Any, t: ⇒ Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  49. def info(msg: ⇒ Any, t: ⇒ Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  50. def info(msg: ⇒ Any): Unit
    Attributes
    protected
    Definition Classes
    Logging
  51. def isDebugEnabled: Boolean
    Attributes
    protected
    Definition Classes
    Logging
  52. def isErrorEnabled: Boolean
    Attributes
    protected
    Definition Classes
    Logging
  53. def isInfoEnabled: Boolean
    Attributes
    protected
    Definition Classes
    Logging
  54. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  55. def isSorted: Boolean
    Definition Classes
    GenomicDataset
  56. def isTraceEnabled: Boolean
    Attributes
    protected
    Definition Classes
    Logging
  57. def isWarnEnabled: Boolean
    Attributes
    protected
    Definition Classes
    Logging
  58. lazy val jrdd: JavaRDD[Sequence]

    The underlying RDD of genomic data, as a JavaRDD.

    The underlying RDD of genomic data, as a JavaRDD.

    Definition Classes
    GenomicDataset
  59. def leftOuterShuffleRegionJoin[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z])(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], toxTag: ClassTag[(Sequence, Option[X])], uoyTag: scala.reflect.api.JavaUniverse.TypeTag[(Sequence, Option[Y])]): GenericGenomicDataset[(Sequence, Option[X]), (Sequence, Option[Y])]

    Performs a sort-merge left outer join between this genomic dataset and another genomic dataset.

    Performs a sort-merge left outer join between this genomic dataset and another genomic dataset.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is a left outer join, all values in the right genomic dataset that do not overlap a value from the left genomic dataset are dropped. If a value from the left genomic dataset does not overlap any values in the right genomic dataset, it will be paired with a None in the product of the join.

    genomicDataset

    The right genomic dataset in the join.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the left genomic dataset that did not overlap a key in the right genomic dataset.

    Definition Classes
    GenomicDataset
  60. def leftOuterShuffleRegionJoin[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Long)(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], toxTag: ClassTag[(Sequence, Option[X])], uoyTag: scala.reflect.api.JavaUniverse.TypeTag[(Sequence, Option[Y])]): GenericGenomicDataset[(Sequence, Option[X]), (Sequence, Option[Y])]

    Performs a sort-merge left outer join between this genomic dataset and another genomic dataset.

    Performs a sort-merge left outer join between this genomic dataset and another genomic dataset.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is a left outer join, all values in the right genomic dataset that do not overlap a value from the left genomic dataset are dropped. If a value from the left genomic dataset does not overlap any values in the right genomic dataset, it will be paired with a None in the product of the join.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the left genomic dataset that did not overlap a key in the right genomic dataset.

    Definition Classes
    GenomicDataset
  61. def leftOuterShuffleRegionJoin[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Integer): GenericGenomicDataset[(Sequence, Option[X]), (Sequence, Option[Y])]

    (Java-specific) Performs a sort-merge left outer join between this genomic dataset and another genomic dataset.

    (Java-specific) Performs a sort-merge left outer join between this genomic dataset and another genomic dataset.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is a left outer join, all values in the right genomic dataset that do not overlap a value from the left genomic dataset are dropped. If a value from the left genomic dataset does not overlap any values in the right genomic dataset, it will be paired with a None in the product of the join.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the left genomic dataset that did not overlap a key in the right genomic dataset.

    Definition Classes
    GenomicDataset
  62. def leftOuterShuffleRegionJoin[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Double): GenericGenomicDataset[(Sequence, Option[X]), (Sequence, Option[Y])]

    (R-specific) Performs a sort-merge left outer join between this genomic dataset and another genomic dataset.

    (R-specific) Performs a sort-merge left outer join between this genomic dataset and another genomic dataset.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is a left outer join, all values in the right genomic dataset that do not overlap a value from the left genomic dataset are dropped. If a value from the left genomic dataset does not overlap any values in the right genomic dataset, it will be paired with a None in the product of the join.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the left genomic dataset that did not overlap a key in the right genomic dataset.

    Definition Classes
    GenomicDataset
  63. def leftOuterShuffleRegionJoinAndGroupByLeft[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z])(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], toxTag: ClassTag[(Sequence, Iterable[X])], uiyTag: scala.reflect.api.JavaUniverse.TypeTag[(Sequence, Seq[Y])]): GenericGenomicDataset[(Sequence, Iterable[X]), (Sequence, Seq[Y])]

    Performs a sort-merge left outer join between this genomic dataset and another genomic dataset, followed by a groupBy on the left value.

    Performs a sort-merge left outer join between this genomic dataset and another genomic dataset, followed by a groupBy on the left value.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is a left outer join, all values in the right genomic dataset that do not overlap a value from the left genomic dataset are dropped. If a value from the left genomic dataset does not overlap any values in the right genomic dataset, it will be paired with an empty Iterable in the product of the join.

    genomicDataset

    The right genomic dataset in the join.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the left genomic dataset that did not overlap a key in the right genomic dataset.

    Definition Classes
    GenomicDataset
  64. def leftOuterShuffleRegionJoinAndGroupByLeft[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Long)(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], toxTag: ClassTag[(Sequence, Iterable[X])], uiyTag: scala.reflect.api.JavaUniverse.TypeTag[(Sequence, Seq[Y])]): GenericGenomicDataset[(Sequence, Iterable[X]), (Sequence, Seq[Y])]

    Performs a sort-merge left outer join between this genomic dataset and another genomic dataset, followed by a groupBy on the left value.

    Performs a sort-merge left outer join between this genomic dataset and another genomic dataset, followed by a groupBy on the left value.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is a left outer join, all values in the right genomic dataset that do not overlap a value from the left genomic dataset are dropped. If a value from the left genomic dataset does not overlap any values in the right genomic dataset, it will be paired with an empty Iterable in the product of the join.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the left genomic dataset that did not overlap a key in the right genomic dataset.

    Definition Classes
    GenomicDataset
  65. def leftOuterShuffleRegionJoinAndGroupByLeft[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Integer): GenericGenomicDataset[(Sequence, Iterable[X]), (Sequence, Seq[Y])]

    (Java-specific) Performs a sort-merge left outer join between this genomic dataset and another genomic dataset, followed by a groupBy on the left value.

    (Java-specific) Performs a sort-merge left outer join between this genomic dataset and another genomic dataset, followed by a groupBy on the left value.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is a left outer join, all values in the right genomic dataset that do not overlap a value from the left genomic dataset are dropped. If a value from the left genomic dataset does not overlap any values in the right genomic dataset, it will be paired with an empty Iterable in the product of the join.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the left genomic dataset that did not overlap a key in the right genomic dataset.

    Definition Classes
    GenomicDataset
  66. def leftOuterShuffleRegionJoinAndGroupByLeft[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Double): GenericGenomicDataset[(Sequence, Iterable[X]), (Sequence, Seq[Y])]

    (R-specific) Performs a sort-merge left outer join between this genomic dataset and another genomic dataset, followed by a groupBy on the left value.

    (R-specific) Performs a sort-merge left outer join between this genomic dataset and another genomic dataset, followed by a groupBy on the left value.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is a left outer join, all values in the right genomic dataset that do not overlap a value from the left genomic dataset are dropped. If a value from the left genomic dataset does not overlap any values in the right genomic dataset, it will be paired with an empty Iterable in the product of the join.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the left genomic dataset that did not overlap a key in the right genomic dataset.

    Definition Classes
    GenomicDataset
  67. def logger: Logger
    Attributes
    protected
    Definition Classes
    Logging
  68. def loggerName: String
    Attributes
    protected
    Definition Classes
    Logging
  69. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  70. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  71. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  72. lazy val optPartitionMap: Option[Array[Option[(ReferenceRegion, ReferenceRegion)]]]
    Attributes
    protected
    Definition Classes
    ParquetUnboundSequenceDatasetGenomicDataset
  73. def persist(sl: StorageLevel): SequenceDataset

    Persists underlying RDD in memory or disk.

    Persists underlying RDD in memory or disk.

    sl

    new StorageLevel

    returns

    Persisted GenomicDataset.

    Definition Classes
    GenomicDataset
  74. def pipe[X, Y <: Product, Z <: GenomicDataset[X, Y, Z], W <: InFormatter[Sequence, Sequence, SequenceDataset, W]](cmd: List[String], files: List[String], environment: Map[String, String], flankSize: Integer, tFormatter: Class[W], xFormatter: OutFormatter[X], convFn: Function2[SequenceDataset, RDD[X], Z]): Z

    (Java/Python-specific) Pipes genomic data to a subprocess that runs in parallel using Spark.

    (Java/Python-specific) Pipes genomic data to a subprocess that runs in parallel using Spark.

    X

    The type of the record created by the piped command.

    Y

    A GenomicDataset containing X's.

    cmd

    Command to run.

    files

    Files to make locally available to the commands being run. Default is empty.

    environment

    A map containing environment variable/value pairs to set in the environment for the newly created process. Default is empty.

    flankSize

    Number of bases to flank each command invocation by.

    tFormatter

    Class of formatter for data going into pipe command.

    xFormatter

    Formatter for data coming out of the pipe command.

    convFn

    The conversion function used to build the final genomic dataset.

    returns

    Returns a new GenomicDataset of type Y.

    Definition Classes
    GenomicDataset
  75. def pipe[X, Y <: Product, Z <: GenomicDataset[X, Y, Z], W <: InFormatter[Sequence, Sequence, SequenceDataset, W]](cmd: Seq[Any], files: Seq[Any], environment: Map[Any, Any], flankSize: Double, tFormatter: Class[W], xFormatter: OutFormatter[X], convFn: Function2[SequenceDataset, RDD[X], Z]): Z

    (R-specific) Pipes genomic data to a subprocess that runs in parallel using Spark.

    (R-specific) Pipes genomic data to a subprocess that runs in parallel using Spark.

    X

    The type of the record created by the piped command.

    Y

    A GenomicDataset containing X's.

    cmd

    Command to run.

    files

    Files to make locally available to the commands being run. Default is empty.

    environment

    A map containing environment variable/value pairs to set in the environment for the newly created process. Default is empty.

    flankSize

    Number of bases to flank each command invocation by.

    tFormatter

    Class of formatter for data going into pipe command.

    xFormatter

    Formatter for data coming out of the pipe command.

    convFn

    The conversion function used to build the final genomic dataset.

    returns

    Returns a new GenomicDataset of type Y.

    Definition Classes
    GenomicDataset
  76. def pipe[X, Y <: Product, Z <: GenomicDataset[X, Y, Z], W <: InFormatter[Sequence, Sequence, SequenceDataset, W]](cmd: Seq[String], files: Seq[String] = Seq.empty, environment: Map[String, String] = Map.empty, flankSize: Int = 0, optTimeout: Option[Int] = None)(implicit tFormatterCompanion: InFormatterCompanion[Sequence, Sequence, SequenceDataset, W], xFormatter: OutFormatter[X], convFn: (SequenceDataset, RDD[X]) ⇒ Z, tManifest: ClassTag[Sequence], xManifest: ClassTag[X]): Z

    (Scala-specific) Pipes genomic data to a subprocess that runs in parallel using Spark.

    (Scala-specific) Pipes genomic data to a subprocess that runs in parallel using Spark.

    Files are substituted in to the command with a $x syntax. E.g., to invoke a command that uses the first file from the files Seq, use $0. To access the path to the directory where the files are copied, use $root.

    Pipes require the presence of an InFormatterCompanion and an OutFormatter as implicit values. The InFormatterCompanion should be a singleton whose apply method builds an InFormatter given a specific type of GenomicDataset. The implicit InFormatterCompanion yields an InFormatter which is used to format the input to the pipe, and the implicit OutFormatter is used to parse the output from the pipe.

    X

    The type of the record created by the piped command.

    Y

    A GenomicDataset containing X's.

    cmd

    Command to run.

    files

    Files to make locally available to the commands being run. Default is empty.

    environment

    A map containing environment variable/value pairs to set in the environment for the newly created process. Default is empty.

    flankSize

    Number of bases to flank each command invocation by.

    optTimeout

    An optional parameter specifying how long to let a single partition run for, in seconds. If the partition times out, the partial results will be returned, and no exception will be logged. The partition will log that the command timed out.

    returns

    Returns a new GenomicDataset of type Y.

    Definition Classes
    GenomicDataset
  77. val productFn: (Sequence) ⇒ Sequence
    Attributes
    protected
    Definition Classes
    SequenceDatasetGenomicDataset
  78. lazy val rdd: RDD[Sequence]

    The RDD of genomic data that we are wrapping.

    The RDD of genomic data that we are wrapping.

    Definition Classes
    ParquetUnboundSequenceDatasetGenomicDataset
  79. val references: SequenceDictionary

    The sequence dictionary describing the reference assembly this dataset is aligned to.

    The sequence dictionary describing the reference assembly this dataset is aligned to.

    Definition Classes
    ParquetUnboundSequenceDatasetGenomicDataset
  80. def replaceRdd(newRdd: RDD[Sequence], newPartitionMap: Option[Array[Option[(ReferenceRegion, ReferenceRegion)]]] = None): SequenceDataset

    newRdd

    The RDD to replace the underlying RDD with.

    newPartitionMap

    New partition map, if any.

    returns

    Returns a new SequenceRDD with the underlying RDD replaced.

    Attributes
    protected
    Definition Classes
    SequenceDatasetGenomicDataset
  81. def replaceReferences(newReferences: SequenceDictionary): SequenceDataset

    Replaces the reference sequence dictionary attached to a GenomicDataset.

    Replaces the reference sequence dictionary attached to a GenomicDataset.

    newReferences

    The new reference sequence dictionary to attach.

    returns

    Returns a new GenomicDataset with the reference sequences replaced.

    Definition Classes
    ParquetUnboundSequenceDatasetGenomicDataset
  82. def replaceSamples(newSamples: Iterable[Sample]): SequenceDataset

    Replaces the sample metadata attached to the genomic dataset.

    Replaces the sample metadata attached to the genomic dataset.

    newSamples

    The new sample metadata to attach.

    returns

    A GenomicDataset with new sample metadata.

    Definition Classes
    ParquetUnboundSequenceDatasetMultisampleGenomicDataset
  83. def rightOuterBroadcastRegionJoin[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z])(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], otxTag: ClassTag[(Option[Sequence], X)], ouyTag: scala.reflect.api.JavaUniverse.TypeTag[(Option[Sequence], Y)]): GenericGenomicDataset[(Option[Sequence], X), (Option[Sequence], Y)]

    Performs a broadcast right outer join between this genomic dataset and another genomic dataset.

    Performs a broadcast right outer join between this genomic dataset and another genomic dataset.

    In a broadcast join, the left genomic dataset (this genomic dataset) is collected to the driver, and broadcast to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is a right outer join, all values in the left genomic dataset that do not overlap a value from the right genomic dataset are dropped. If a value from the right genomic dataset does not overlap any values in the left genomic dataset, it will be paired with a None in the product of the join.

    genomicDataset

    The right genomic dataset in the join.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the right genomic dataset that did not overlap a key in the left genomic dataset.

    Definition Classes
    GenomicDataset
    See also

    rightOuterBroadcastRegionJoin

  84. def rightOuterBroadcastRegionJoin[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Long)(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], otxTag: ClassTag[(Option[Sequence], X)], ouyTag: scala.reflect.api.JavaUniverse.TypeTag[(Option[Sequence], Y)]): GenericGenomicDataset[(Option[Sequence], X), (Option[Sequence], Y)]

    Performs a broadcast right outer join between this genomic dataset and another genomic dataset.

    Performs a broadcast right outer join between this genomic dataset and another genomic dataset.

    In a broadcast join, the left genomic dataset (this genomic dataset) is collected to the driver, and broadcast to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is a right outer join, all values in the left genomic dataset that do not overlap a value from the right genomic dataset are dropped. If a value from the right genomic dataset does not overlap any values in the left genomic dataset, it will be paired with a None in the product of the join.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the right genomic dataset that did not overlap a key in the left genomic dataset.

    Definition Classes
    GenomicDataset
    See also

    rightOuterBroadcastRegionJoin

  85. def rightOuterBroadcastRegionJoin[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Integer): GenericGenomicDataset[(Option[Sequence], X), (Option[Sequence], Y)]

    (Java-specific) Performs a broadcast right outer join between this genomic dataset and another genomic dataset.

    (Java-specific) Performs a broadcast right outer join between this genomic dataset and another genomic dataset.

    In a broadcast join, the left genomic dataset (this genomic dataset) is collected to the driver, and broadcast to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is a right outer join, all values in the left genomic dataset that do not overlap a value from the right genomic dataset are dropped. If a value from the right genomic dataset does not overlap any values in the left genomic dataset, it will be paired with a None in the product of the join.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the right genomic dataset that did not overlap a key in the left genomic dataset.

    Definition Classes
    GenomicDataset
  86. def rightOuterBroadcastRegionJoin[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Double): GenericGenomicDataset[(Option[Sequence], X), (Option[Sequence], Y)]

    (R-specific) Performs a broadcast right outer join between this genomic dataset and another genomic dataset.

    (R-specific) Performs a broadcast right outer join between this genomic dataset and another genomic dataset.

    In a broadcast join, the left genomic dataset (this genomic dataset) is collected to the driver, and broadcast to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is a right outer join, all values in the left genomic dataset that do not overlap a value from the right genomic dataset are dropped. If a value from the right genomic dataset does not overlap any values in the left genomic dataset, it will be paired with a None in the product of the join.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the right genomic dataset that did not overlap a key in the left genomic dataset.

    Definition Classes
    GenomicDataset
  87. def rightOuterBroadcastRegionJoinAgainst[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](broadcast: GenomicBroadcast[X, Y, Z])(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], oyuTag: scala.reflect.api.JavaUniverse.TypeTag[(Option[Y], Sequence)]): GenericGenomicDataset[(Option[X], Sequence), (Option[Y], Sequence)]

    Performs a broadcast right outer join between this genomic dataset and data that has been broadcast.

    Performs a broadcast right outer join between this genomic dataset and data that has been broadcast.

    In a broadcast join, the left side of the join (broadcastTree) is broadcast to to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is a right outer join, all values in the left table that do not overlap a value from the right genomic dataset are dropped. If a value from the right genomic dataset does not overlap any values in the left table, it will be paired with a None in the product of the join. As compared to broadcastRegionJoin, this function allows the broadcast object to be reused across multiple joins.

    broadcast

    The data on the left side of the join.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicDataset
    Note

    This function differs from other region joins as it treats the calling genomic dataset as the right side of the join, and not the left.

    See also

    rightOuterBroadcastRegionJoin

  88. def rightOuterBroadcastRegionJoinAgainstAndGroupByRight[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](broadcast: GenomicBroadcast[X, Y, Z])(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], syuTag: scala.reflect.api.JavaUniverse.TypeTag[(Seq[Y], Sequence)]): GenericGenomicDataset[(Iterable[X], Sequence), (Seq[Y], Sequence)]

    Performs a broadcast right outer join between this genomic dataset and another genomic dataset.

    Performs a broadcast right outer join between this genomic dataset and another genomic dataset.

    In a broadcast join, the left side of the join (broadcastTree) is broadcast to to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is a right outer join, all values in the left table that do not overlap a value from the right genomic dataset are dropped. If a value from the right genomic dataset does not overlap any values in the left table, it will be paired with a None in the product of the join. As compared to broadcastRegionJoin, this function allows the broadcast object to be reused across multiple joins.

    broadcast

    The data on the left side of the join.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicDataset
    Note

    This function differs from other region joins as it treats the calling genomic dataset as the right side of the join, and not the left.

    See also

    rightOuterBroadcastRegionJoinAndGroupByRight

  89. def rightOuterBroadcastRegionJoinAndGroupByRight[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z])(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], itxTag: ClassTag[(Iterable[Sequence], X)], iuyTag: scala.reflect.api.JavaUniverse.TypeTag[(Seq[Sequence], Y)]): GenericGenomicDataset[(Iterable[Sequence], X), (Seq[Sequence], Y)]

    Performs a broadcast right outer join between this genomic dataset and another genomic dataset.

    Performs a broadcast right outer join between this genomic dataset and another genomic dataset.

    In a broadcast join, the left side of the join (broadcastTree) is broadcast to to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is a right outer join, all values in the left genomic dataset that do not overlap a value from the right genomic dataset are dropped. If a value from the right genomic dataset does not overlap any values in the left genomic dataset, it will be paired with a None in the product of the join.

    genomicDataset

    The right genomic dataset in the join.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the right genomic dataset that did not overlap a key in the left genomic dataset.

    Definition Classes
    GenomicDataset
    See also

    rightOuterBroadcastRegionJoinAgainstAndGroupByRight

  90. def rightOuterBroadcastRegionJoinAndGroupByRight[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Long)(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], itxTag: ClassTag[(Iterable[Sequence], X)], iuyTag: scala.reflect.api.JavaUniverse.TypeTag[(Seq[Sequence], Y)]): GenericGenomicDataset[(Iterable[Sequence], X), (Seq[Sequence], Y)]

    Performs a broadcast right outer join between this genomic dataset and another genomic dataset.

    Performs a broadcast right outer join between this genomic dataset and another genomic dataset.

    In a broadcast join, the left side of the join (broadcastTree) is broadcast to to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is a right outer join, all values in the left genomic dataset that do not overlap a value from the right genomic dataset are dropped. If a value from the right genomic dataset does not overlap any values in the left genomic dataset, it will be paired with a None in the product of the join.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the right genomic dataset that did not overlap a key in the left genomic dataset.

    Definition Classes
    GenomicDataset
    See also

    rightOuterBroadcastRegionJoinAgainstAndGroupByRight

  91. def rightOuterBroadcastRegionJoinAndGroupByRight[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Integer): GenericGenomicDataset[(Iterable[Sequence], X), (Seq[Sequence], Y)]

    (Java-specific) Performs a broadcast right outer join between this genomic dataset and another genomic dataset.

    (Java-specific) Performs a broadcast right outer join between this genomic dataset and another genomic dataset.

    In a broadcast join, the left side of the join (broadcastTree) is broadcast to to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is a right outer join, all values in the left genomic dataset that do not overlap a value from the right genomic dataset are dropped. If a value from the right genomic dataset does not overlap any values in the left genomic dataset, it will be paired with a None in the product of the join.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the right genomic dataset that did not overlap a key in the left genomic dataset.

    Definition Classes
    GenomicDataset
    See also

    rightOuterBroadcastRegionJoinAgainstAndGroupByRight

  92. def rightOuterBroadcastRegionJoinAndGroupByRight[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Double): GenericGenomicDataset[(Iterable[Sequence], X), (Seq[Sequence], Y)]

    (R-specific) Performs a broadcast right outer join between this genomic dataset and another genomic dataset.

    (R-specific) Performs a broadcast right outer join between this genomic dataset and another genomic dataset.

    In a broadcast join, the left side of the join (broadcastTree) is broadcast to to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is a right outer join, all values in the left genomic dataset that do not overlap a value from the right genomic dataset are dropped. If a value from the right genomic dataset does not overlap any values in the left genomic dataset, it will be paired with a None in the product of the join.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the right genomic dataset that did not overlap a key in the left genomic dataset.

    Definition Classes
    GenomicDataset
    See also

    rightOuterBroadcastRegionJoinAgainstAndGroupByRight

  93. def rightOuterShuffleRegionJoin[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z])(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], otxTag: ClassTag[(Option[Sequence], X)], ouyTag: scala.reflect.api.JavaUniverse.TypeTag[(Option[Sequence], Y)]): GenericGenomicDataset[(Option[Sequence], X), (Option[Sequence], Y)]

    Performs a sort-merge right outer join between this genomic dataset and another genomic dataset.

    Performs a sort-merge right outer join between this genomic dataset and another genomic dataset.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is a right outer join, all values in the left genomic dataset that do not overlap a value from the right genomic dataset are dropped. If a value from the right genomic dataset does not overlap any values in the left genomic dataset, it will be paired with a None in the product of the join.

    genomicDataset

    The right genomic dataset in the join.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the right genomic dataset that did not overlap a key in the left genomic dataset.

    Definition Classes
    GenomicDataset
  94. def rightOuterShuffleRegionJoin[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Long)(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], otxTag: ClassTag[(Option[Sequence], X)], ouyTag: scala.reflect.api.JavaUniverse.TypeTag[(Option[Sequence], Y)]): GenericGenomicDataset[(Option[Sequence], X), (Option[Sequence], Y)]

    Performs a sort-merge right outer join between this genomic dataset and another genomic dataset.

    Performs a sort-merge right outer join between this genomic dataset and another genomic dataset.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is a right outer join, all values in the left genomic dataset that do not overlap a value from the right genomic dataset are dropped. If a value from the right genomic dataset does not overlap any values in the left genomic dataset, it will be paired with a None in the product of the join.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the right genomic dataset that did not overlap a key in the left genomic dataset.

    Definition Classes
    GenomicDataset
  95. def rightOuterShuffleRegionJoin[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Integer): GenericGenomicDataset[(Option[Sequence], X), (Option[Sequence], Y)]

    (Java-specific) Performs a sort-merge right outer join between this genomic dataset and another genomic dataset.

    (Java-specific) Performs a sort-merge right outer join between this genomic dataset and another genomic dataset.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is a right outer join, all values in the left genomic dataset that do not overlap a value from the right genomic dataset are dropped. If a value from the right genomic dataset does not overlap any values in the left genomic dataset, it will be paired with a None in the product of the join.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the right genomic dataset that did not overlap a key in the left genomic dataset.

    Definition Classes
    GenomicDataset
  96. def rightOuterShuffleRegionJoin[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Double): GenericGenomicDataset[(Option[Sequence], X), (Option[Sequence], Y)]

    (R-specific) Performs a sort-merge right outer join between this genomic dataset and another genomic dataset.

    (R-specific) Performs a sort-merge right outer join between this genomic dataset and another genomic dataset.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is a right outer join, all values in the left genomic dataset that do not overlap a value from the right genomic dataset are dropped. If a value from the right genomic dataset does not overlap any values in the left genomic dataset, it will be paired with a None in the product of the join.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the right genomic dataset that did not overlap a key in the left genomic dataset.

    Definition Classes
    GenomicDataset
  97. def rightOuterShuffleRegionJoinAndGroupByLeft[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z])(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], otixTag: ClassTag[(Option[Sequence], Iterable[X])], otsyTag: scala.reflect.api.JavaUniverse.TypeTag[(Option[Sequence], Seq[Y])]): GenericGenomicDataset[(Option[Sequence], Iterable[X]), (Option[Sequence], Seq[Y])]

    Performs a sort-merge right outer join between this genomic dataset and another genomic dataset, followed by a groupBy on the left value, if not null.

    Performs a sort-merge right outer join between this genomic dataset and another genomic dataset, followed by a groupBy on the left value, if not null.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. In the same operation, we group all values by the left item in the genomic dataset. Since this is a right outer join, all values from the right genomic dataset who did not overlap a value from the left genomic dataset are placed into a length-1 Iterable with a None key.

    genomicDataset

    The right genomic dataset in the join.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, grouped together by the value they overlapped in the left genomic dataset, and all values from the right genomic dataset that did not overlap an item in the left genomic dataset.

    Definition Classes
    GenomicDataset
  98. def rightOuterShuffleRegionJoinAndGroupByLeft[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Long)(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], otixTag: ClassTag[(Option[Sequence], Iterable[X])], ousyTag: scala.reflect.api.JavaUniverse.TypeTag[(Option[Sequence], Seq[Y])]): GenericGenomicDataset[(Option[Sequence], Iterable[X]), (Option[Sequence], Seq[Y])]

    Performs a sort-merge right outer join between this genomic dataset and another genomic dataset, followed by a groupBy on the left value, if not null.

    Performs a sort-merge right outer join between this genomic dataset and another genomic dataset, followed by a groupBy on the left value, if not null.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. In the same operation, we group all values by the left item in the genomic dataset. Since this is a right outer join, all values from the right genomic dataset who did not overlap a value from the left genomic dataset are placed into a length-1 Iterable with a None key.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, grouped together by the value they overlapped in the left genomic dataset, and all values from the right genomic dataset that did not overlap an item in the left genomic dataset.

    Definition Classes
    GenomicDataset
  99. def rightOuterShuffleRegionJoinAndGroupByLeft[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Integer): GenericGenomicDataset[(Option[Sequence], Iterable[X]), (Option[Sequence], Seq[Y])]

    (Java-specific) Performs a sort-merge right outer join between this genomic dataset and another genomic dataset, followed by a groupBy on the left value, if not null.

    (Java-specific) Performs a sort-merge right outer join between this genomic dataset and another genomic dataset, followed by a groupBy on the left value, if not null.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. In the same operation, we group all values by the left item in the genomic dataset. Since this is a right outer join, all values from the right genomic dataset who did not overlap a value from the left genomic dataset are placed into a length-1 Iterable with a None key.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, grouped together by the value they overlapped in the left genomic dataset, and all values from the right genomic dataset that did not overlap an item in the left genomic dataset.

    Definition Classes
    GenomicDataset
  100. def rightOuterShuffleRegionJoinAndGroupByLeft[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Double): GenericGenomicDataset[(Option[Sequence], Iterable[X]), (Option[Sequence], Seq[Y])]

    (R-specific) Performs a sort-merge right outer join between this genomic dataset and another genomic dataset, followed by a groupBy on the left value, if not null.

    (R-specific) Performs a sort-merge right outer join between this genomic dataset and another genomic dataset, followed by a groupBy on the left value, if not null.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. In the same operation, we group all values by the left item in the genomic dataset. Since this is a right outer join, all values from the right genomic dataset who did not overlap a value from the left genomic dataset are placed into a length-1 Iterable with a None key.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, grouped together by the value they overlapped in the left genomic dataset, and all values from the right genomic dataset that did not overlap an item in the left genomic dataset.

    Definition Classes
    GenomicDataset
  101. val samples: Seq[Sample]

    The samples who have data contained in this GenomicDataset.

    The samples who have data contained in this GenomicDataset.

    Definition Classes
    ParquetUnboundSequenceDatasetMultisampleGenomicDataset
  102. def save(filePath: String, asSingleFile: Boolean, disableFastConcat: Boolean): Unit

    Save sequences as Parquet or FASTA.

    Save sequences as Parquet or FASTA.

    If filename ends in .fa or .fasta, saves as FASTA. If not, saves fragments to Parquet. Defaults to 60 character line length, if saving to FASTA.

    filePath

    Path to save files to.

    asSingleFile

    If true, saves output as a single file.

    disableFastConcat

    If asSingleFile is true, disables the use of the parallel file merging engine.

    Definition Classes
    SequenceDataset
  103. def saveAsFasta(filePath: String, asSingleFile: Boolean = false, disableFastConcat: Boolean = false, lineWidth: Int = 60): Unit

    Save sequences in FASTA format.

    Save sequences in FASTA format.

    filePath

    Path to save files to.

    asSingleFile

    If true, saves output as a single file.

    disableFastConcat

    If asSingleFile is true, disables the use of the parallel file merging engine.

    lineWidth

    Hard wrap FASTA formatted sequence at line width, default 60.

    Definition Classes
    SequenceDataset
  104. def saveAsParquet(pathName: String): Unit

    Saves this genomic dataset to disk as a Parquet file.

    Saves this genomic dataset to disk as a Parquet file.

    pathName

    Path to save the file at.

    Definition Classes
    AvroGenomicDataset
  105. def saveAsParquet(pathName: String, blockSize: Integer, pageSize: Integer, compressionCodec: CompressionCodecName, disableDictionaryEncoding: Boolean): Unit

    (Java-specific) Saves this genomic dataset to disk as a Parquet file.

    (Java-specific) Saves this genomic dataset to disk as a Parquet file.

    pathName

    Path to save the file at.

    blockSize

    The size in bytes of blocks to write.

    pageSize

    The size in bytes of pages to write.

    compressionCodec

    The compression codec to apply to pages.

    disableDictionaryEncoding

    If false, dictionary encoding is used. If true, delta encoding is used.

    Definition Classes
    AvroGenomicDataset
  106. def saveAsParquet(pathName: String, blockSize: Int = 128 * 1024 * 1024, pageSize: Int = 1 * 1024 * 1024, compressionCodec: CompressionCodecName = CompressionCodecName.GZIP, disableDictionaryEncoding: Boolean = false): Unit

    Saves this genomic dataset to disk as a Parquet file.

    Saves this genomic dataset to disk as a Parquet file.

    pathName

    Path to save the file at.

    blockSize

    Size per block.

    pageSize

    Size per page.

    compressionCodec

    Name of the compression codec to use.

    disableDictionaryEncoding

    Whether or not to disable bit-packing. Default is false.

    Definition Classes
    AvroGenomicDatasetGenomicDataset
  107. def saveAsParquet(args: SaveArgs): Unit

    Saves a genomic dataset to Parquet.

    Saves a genomic dataset to Parquet.

    args

    The output format configuration to use when saving the data.

    Definition Classes
    GenomicDataset
  108. def saveAsPartitionedParquet(pathName: String, compressionCodec: CompressionCodecName = CompressionCodecName.GZIP, partitionSize: Int = 1000000): Unit

    Saves this RDD to disk in range binned partitioned Parquet format.

    Saves this RDD to disk in range binned partitioned Parquet format.

    pathName

    The path to save the partitioned Parquet file to.

    compressionCodec

    Name of the compression codec to use.

    partitionSize

    Size of partitions used when writing Parquet, in base pairs (bp). Defaults to 1,000,000 bp.

    Definition Classes
    GenomicDataset
  109. def saveAvro[U <: SpecificRecordBase](pathName: String, sc: SparkContext, schema: Schema, avro: Seq[U])(implicit tUag: ClassTag[U]): Unit

    Saves Avro data to a Hadoop file system.

    Saves Avro data to a Hadoop file system.

    This method uses a SparkContext to identify our underlying file system, which we then save to.

    Frustratingly enough, although all records generated by the Avro IDL compiler have a static SCHEMA$ field, this field does not belong to the SpecificRecordBase abstract class, or the SpecificRecord interface. As such, we must force the user to pass in the schema.

    U

    The type of the specific record we are saving.

    pathName

    Path to save records to.

    sc

    SparkContext used for identifying underlying file system.

    schema

    Schema of records we are saving.

    avro

    Seq of records we are saving.

    Attributes
    protected
    Definition Classes
    GenomicDataset
  110. def saveMetadata(pathName: String): Unit

    Called in saveAsParquet after saving genomic dataset to Parquet to save metadata.

    Called in saveAsParquet after saving genomic dataset to Parquet to save metadata.

    Writes any necessary metadata to disk. If not overridden, writes the sequence dictionary to disk as Avro.

    pathName

    The filepath to the file where we will save the Metadata.

    Attributes
    protected
    Definition Classes
    SequenceDatasetAvroGenomicDatasetGenomicDataset
  111. def savePartitionMap(pathName: String): Unit

    Save the partition map to disk.

    Save the partition map to disk. This is done by adding the partition map to the schema.

    pathName

    The filepath where we will save the partition map.

    Attributes
    protected
    Definition Classes
    AvroGenomicDataset
  112. def saveRddAsParquet(pathName: String, blockSize: Int = 128 * 1024 * 1024, pageSize: Int = 1 * 1024 * 1024, compressionCodec: CompressionCodecName = CompressionCodecName.GZIP, disableDictionaryEncoding: Boolean = false, optSchema: Option[Schema] = None): Unit

    Saves a genomic dataset of Avro data to Parquet.

    Saves a genomic dataset of Avro data to Parquet.

    pathName

    The path to save the file to.

    blockSize

    The size in bytes of blocks to write. Defaults to 128 * 1024 * 1024.

    pageSize

    The size in bytes of pages to write. Defaults to 1 * 1024 * 1024.

    compressionCodec

    The compression codec to apply to pages. Defaults to CompressionCodecName.GZIP.

    disableDictionaryEncoding

    If false, dictionary encoding is used. If true, delta encoding is used. Defaults to false.

    optSchema

    The optional schema to set. Defaults to None.

    Attributes
    protected
    Definition Classes
    AvroGenomicDataset
  113. def saveRddAsParquet(args: SaveArgs): Unit
    Attributes
    protected
    Definition Classes
    AvroGenomicDataset
  114. def saveReferences(pathName: String): Unit

    Save the reference sequence dictionary to disk.

    Save the reference sequence dictionary to disk.

    pathName

    The path to save the reference sequence dictionary to.

    Attributes
    protected
    Definition Classes
    GenomicDataset
  115. def saveSamples(pathName: String): Unit

    Save the samples to disk.

    Save the samples to disk.

    pathName

    The path to save samples to.

    Attributes
    protected
    Definition Classes
    MultisampleGenomicDataset
  116. def shuffleRegionJoin[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z])(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], txTag: ClassTag[(Sequence, X)], uyTag: scala.reflect.api.JavaUniverse.TypeTag[(Sequence, Y)]): GenericGenomicDataset[(Sequence, X), (Sequence, Y)]

    Performs a sort-merge inner join between this genomic dataset and another genomic dataset.

    Performs a sort-merge inner join between this genomic dataset and another genomic dataset.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other genomic dataset are dropped.

    genomicDataset

    The right genomic dataset in the join.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicDataset
  117. def shuffleRegionJoin[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Long)(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], txTag: ClassTag[(Sequence, X)], uyTag: scala.reflect.api.JavaUniverse.TypeTag[(Sequence, Y)]): GenericGenomicDataset[(Sequence, X), (Sequence, Y)]

    Performs a sort-merge inner join between this genomic dataset and another genomic dataset.

    Performs a sort-merge inner join between this genomic dataset and another genomic dataset.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other genomic dataset are dropped.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicDataset
  118. def shuffleRegionJoin[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Integer): GenericGenomicDataset[(Sequence, X), (Sequence, Y)]

    (Java-specific) Performs a sort-merge inner join between this genomic dataset and another genomic dataset.

    (Java-specific) Performs a sort-merge inner join between this genomic dataset and another genomic dataset.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other genomic dataset are dropped.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicDataset
  119. def shuffleRegionJoin[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Double): GenericGenomicDataset[(Sequence, X), (Sequence, Y)]

    (R-specific) Performs a sort-merge inner join between this genomic dataset and another genomic dataset.

    (R-specific) Performs a sort-merge inner join between this genomic dataset and another genomic dataset.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other genomic dataset are dropped.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicDataset
  120. def shuffleRegionJoinAndGroupByLeft[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z])(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], tixTag: ClassTag[(Sequence, Iterable[X])], uiyTag: scala.reflect.api.JavaUniverse.TypeTag[(Sequence, Seq[Y])]): GenericGenomicDataset[(Sequence, Iterable[X]), (Sequence, Seq[Y])]

    Performs a sort-merge inner join between this genomic dataset and another genomic dataset, followed by a groupBy on the left value.

    Performs a sort-merge inner join between this genomic dataset and another genomic dataset, followed by a groupBy on the left value.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other genomic dataset are dropped. In the same operation, we group all values by the left item in the genomic dataset.

    genomicDataset

    The right genomic dataset in the join.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, grouped together by the value they overlapped in the left genomic dataset.

    Definition Classes
    GenomicDataset
  121. def shuffleRegionJoinAndGroupByLeft[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Long)(implicit tTag: ClassTag[Sequence], xTag: ClassTag[X], tixTag: ClassTag[(Sequence, Iterable[X])], uiyTag: scala.reflect.api.JavaUniverse.TypeTag[(Sequence, Seq[Y])]): GenericGenomicDataset[(Sequence, Iterable[X]), (Sequence, Seq[Y])]

    Performs a sort-merge inner join between this genomic dataset and another genomic dataset, followed by a groupBy on the left value.

    Performs a sort-merge inner join between this genomic dataset and another genomic dataset, followed by a groupBy on the left value.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other genomic dataset are dropped. In the same operation, we group all values by the left item in the genomic dataset.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, grouped together by the value they overlapped in the left genomic dataset.

    Definition Classes
    GenomicDataset
  122. def shuffleRegionJoinAndGroupByLeft[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Integer): GenericGenomicDataset[(Sequence, Iterable[X]), (Sequence, Seq[Y])]

    (Java-specific) Performs a sort-merge inner join between this genomic dataset and another genomic dataset, followed by a groupBy on the left value.

    (Java-specific) Performs a sort-merge inner join between this genomic dataset and another genomic dataset, followed by a groupBy on the left value.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. In the same operation, we group all values by the left item in the genomic dataset.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, grouped together by the value they overlapped in the left genomic dataset.

    Definition Classes
    GenomicDataset
  123. def shuffleRegionJoinAndGroupByLeft[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](genomicDataset: GenomicDataset[X, Y, Z], flankSize: Double): GenericGenomicDataset[(Sequence, Iterable[X]), (Sequence, Seq[Y])]

    (R-specific) Performs a sort-merge inner join between this genomic dataset and another genomic dataset, followed by a groupBy on the left value.

    (R-specific) Performs a sort-merge inner join between this genomic dataset and another genomic dataset, followed by a groupBy on the left value.

    In a sort-merge join, both genomic datasets are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. In the same operation, we group all values by the left item in the genomic dataset.

    genomicDataset

    The right genomic dataset in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic dataset containing all pairs of keys that overlapped in the genomic coordinate space, grouped together by the value they overlapped in the left genomic dataset.

    Definition Classes
    GenomicDataset
  124. def slice(regions: Iterable[ReferenceRegion]): SliceDataset

    Slice the sequences in this genomic dataset overlapping the specified regions.

    Slice the sequences in this genomic dataset overlapping the specified regions.

    regions

    Regions to overlap.

    returns

    Returns a new SliceDataset from the sequences in this genomic dataset sliced to overlap the specified regions.

    Definition Classes
    SequenceDataset
  125. def slice(region: ReferenceRegion): SliceDataset

    Slice the sequences in this genomic dataset overlapping the specified region.

    Slice the sequences in this genomic dataset overlapping the specified region.

    region

    Region to overlap.

    returns

    Returns a new SliceDataset from the sequences in this genomic dataset sliced to overlap the specified region.

    Definition Classes
    SequenceDataset
  126. def slice(maximumLength: Long): SliceDataset

    Slice the sequences in this genomic dataset to the specified maximum length.

    Slice the sequences in this genomic dataset to the specified maximum length.

    maximumLength

    Maximum length.

    returns

    Returns a new SliceDataset from the sequences in this genomic dataset sliced to the specified maximum length.

    Definition Classes
    SequenceDataset
  127. def sort(partitions: Int = rdd.partitions.length, stringency: ValidationStringency = ValidationStringency.STRICT)(implicit tTag: ClassTag[Sequence]): SequenceDataset

    Sorts our genome aligned data by reference positions, with references ordered by index.

    Sorts our genome aligned data by reference positions, with references ordered by index.

    partitions

    The number of partitions for the new genomic dataset.

    stringency

    The level of ValidationStringency to enforce.

    returns

    Returns a new genomic dataset containing sorted data.

    Definition Classes
    GenomicDataset
    Note

    Uses ValidationStringency to handle unaligned or where objects align to multiple positions.

    See also

    sortLexicographically

  128. def sort(): SequenceDataset

    Sorts our genome aligned data by reference positions, with references ordered by index.

    Sorts our genome aligned data by reference positions, with references ordered by index.

    returns

    Returns a new genomic dataset containing sorted data.

    Definition Classes
    GenomicDataset
    See also

    sortLexicographically

  129. def sortLexicographically(partitions: Int = rdd.partitions.length, storePartitionMap: Boolean = false, storageLevel: StorageLevel = StorageLevel.MEMORY_ONLY, stringency: ValidationStringency = ValidationStringency.STRICT)(implicit tTag: ClassTag[Sequence]): SequenceDataset

    Sorts our genome aligned data by reference positions, with references ordered lexicographically.

    Sorts our genome aligned data by reference positions, with references ordered lexicographically.

    partitions

    The number of partitions for the new genomic dataset.

    storePartitionMap

    A Boolean flag to determine whether to store the partition bounds from the resulting genomic dataset.

    storageLevel

    The level at which to persist the resulting genomic dataset.

    stringency

    The level of ValidationStringency to enforce.

    returns

    Returns a new genomic dataset containing sorted data.

    Definition Classes
    GenomicDataset
    Note

    Uses ValidationStringency to handle data that is unaligned or where objects align to multiple positions.

    See also

    sort

  130. def sortLexicographically(): SequenceDataset

    Sorts our genome aligned data by reference positions, with references ordered lexicographically.

    Sorts our genome aligned data by reference positions, with references ordered lexicographically.

    returns

    Returns a new genomic dataset containing sorted data.

    Definition Classes
    GenomicDataset
    See also

    sort

  131. lazy val spark: SparkSession
    Definition Classes
    GenomicDataset
    Annotations
    @transient()
  132. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  133. def toDF(): DataFrame

    returns

    These data as a Spark SQL DataFrame.

    Definition Classes
    GenomicDataset
  134. def toReads: ReadDataset

    Convert this genomic dataset of sequences into reads.

    Convert this genomic dataset of sequences into reads.

    returns

    Returns a new ReadRDD converted from this genomic dataset of sequences.

    Definition Classes
    SequenceDataset
  135. def toSlices: SliceDataset

    Convert this genomic dataset of sequences into slices.

    Convert this genomic dataset of sequences into slices.

    returns

    Returns a new SliceDataset converted from this genomic dataset of sequences.

    Definition Classes
    SequenceDataset
  136. def toString(): String
    Definition Classes
    MultisampleGenomicDatasetGenomicDataset → AnyRef → Any
  137. def trace(mkr: Marker, msg: ⇒ Any, t: ⇒ Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  138. def trace(msg: ⇒ Any, t: ⇒ Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  139. def trace(msg: ⇒ Any): Unit
    Attributes
    protected
    Definition Classes
    Logging
  140. def transform(tFn: Function[JavaRDD[Sequence], JavaRDD[Sequence]]): SequenceDataset

    (Java-specific) Applies a function that transforms the underlying RDD into a new RDD.

    (Java-specific) Applies a function that transforms the underlying RDD into a new RDD.

    tFn

    A function that transforms the underlying RDD.

    returns

    A new genomic dataset where the RDD of genomic data has been replaced, but the metadata (sequence dictionary, and etc) are copied without modification.

    Definition Classes
    GenomicDataset
  141. def transform(tFn: (RDD[Sequence]) ⇒ RDD[Sequence]): SequenceDataset

    (Scala-specific) Applies a function that transforms the underlying RDD into a new RDD.

    (Scala-specific) Applies a function that transforms the underlying RDD into a new RDD.

    tFn

    A function that transforms the underlying RDD.

    returns

    A new genomic dataset where the RDD of genomic data has been replaced, but the metadata (sequence dictionary, and etc) are copied without modification.

    Definition Classes
    GenomicDataset
  142. def transformDataFrame(tFn: Function[DataFrame, DataFrame]): SequenceDataset

    (Java-specific) Applies a function that transforms the underlying DataFrame into a new DataFrame using the Spark SQL API.

    (Java-specific) Applies a function that transforms the underlying DataFrame into a new DataFrame using the Spark SQL API.

    tFn

    A function that transforms the underlying DataFrame as a DataFrame.

    returns

    A new genomic dataset where the DataFrame of genomic data has been replaced, but the metadata (sequence dictionary, and etc) are copied without modification.

    Definition Classes
    GenomicDataset
  143. def transformDataFrame(tFn: (DataFrame) ⇒ DataFrame)(implicit uTag: scala.reflect.api.JavaUniverse.TypeTag[Sequence]): SequenceDataset

    (Scala-specific) Applies a function that transforms the underlying DataFrame into a new DataFrame using the Spark SQL API.

    (Scala-specific) Applies a function that transforms the underlying DataFrame into a new DataFrame using the Spark SQL API.

    tFn

    A function that transforms the underlying data as a DataFrame.

    returns

    A new genomic dataset where the DataFrame of genomic data has been replaced, but the metadata (sequence dictionary, and etc) are copied without modification.

    Definition Classes
    GenomicDataset
  144. def transformDataset(tFn: Function[Dataset[Sequence], Dataset[Sequence]]): SequenceDataset

    (Java-specific) Applies a function that transforms the underlying Dataset into a new Dataset using the Spark SQL API.

    (Java-specific) Applies a function that transforms the underlying Dataset into a new Dataset using the Spark SQL API.

    tFn

    A function that transforms the underlying Dataset as a Dataset.

    returns

    A new genomic dataset where the Dataset of genomic data has been replaced, but the metadata (sequence dictionary, and etc) are copied without modification.

    Definition Classes
    SequenceDatasetGenomicDataset
  145. def transformDataset(tFn: (Dataset[Sequence]) ⇒ Dataset[Sequence]): SequenceDataset

    (Scala-specific) Applies a function that transforms the underlying Dataset into a new Dataset using the Spark SQL API.

    (Scala-specific) Applies a function that transforms the underlying Dataset into a new Dataset using the Spark SQL API.

    tFn

    A function that transforms the underlying Dataset as a Dataset.

    returns

    A new genomic dataset where the Dataset of genomic data has been replaced, but the metadata (sequence dictionary, and etc) are copied without modification.

    Definition Classes
    SequenceDatasetGenomicDataset
  146. def transmute[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](tFn: Function[JavaRDD[Sequence], JavaRDD[X]], convFn: Function2[SequenceDataset, RDD[X], Z]): Z

    (Java-specific) Applies a function that transmutes the underlying RDD into a new RDD of a different type.

    (Java-specific) Applies a function that transmutes the underlying RDD into a new RDD of a different type.

    tFn

    A function that transforms the underlying RDD.

    convFn

    The conversion function used to build the final RDD.

    returns

    A new genomid dataset where the RDD of genomic data has been replaced, but the metadata (sequence dictionary, and etc) are copied without modification.

    Definition Classes
    GenomicDataset
  147. def transmute[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](tFn: (RDD[Sequence]) ⇒ RDD[X])(implicit convFn: (SequenceDataset, RDD[X]) ⇒ Z): Z

    (Scala-specific) Applies a function that transmutes the underlying RDD into a new RDD of a different type.

    (Scala-specific) Applies a function that transmutes the underlying RDD into a new RDD of a different type.

    tFn

    A function that transforms the underlying RDD.

    returns

    A new genomic dataset where the RDD of genomic data has been replaced, but the metadata (sequence dictionary, and etc) are copied without modification.

    Definition Classes
    GenomicDataset
  148. def transmuteDataFrame[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](tFn: Function[DataFrame, DataFrame], convFn: GenomicDatasetConversion[Sequence, Sequence, SequenceDataset, X, Y, Z]): Z

    (Java-specific) Applies a function that transmutes the underlying DataFrame into a new DataFrame of a different type.

    (Java-specific) Applies a function that transmutes the underlying DataFrame into a new DataFrame of a different type.

    tFn

    A function that transforms the underlying DataFrame.

    returns

    A new genomic dataset where the DataFrame of genomic data has been replaced, but the metadata (sequence dictionary, and etc) are copied without modification.

    Definition Classes
    GenomicDataset
  149. def transmuteDataFrame[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](tFn: (DataFrame) ⇒ DataFrame)(implicit yTag: scala.reflect.api.JavaUniverse.TypeTag[Y], convFn: (SequenceDataset, Dataset[Y]) ⇒ Z): Z

    (Java-specific) Applies a function that transmutes the underlying DataFrame into a new DataFrame of a different type.

    (Java-specific) Applies a function that transmutes the underlying DataFrame into a new DataFrame of a different type.

    tFn

    A function that transforms the underlying DataFrame.

    returns

    A new genomic dataset where the DataFrame of genomic data has been replaced, but the metadata (sequence dictionary, and etc) are copied without modification.

    Definition Classes
    GenomicDataset
  150. def transmuteDataset[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](tFn: Function[Dataset[Sequence], Dataset[Y]], convFn: GenomicDatasetConversion[Sequence, Sequence, SequenceDataset, X, Y, Z]): Z

    (Java-specific) Applies a function that transmutes the underlying Dataset into a new Dataset of a different type.

    (Java-specific) Applies a function that transmutes the underlying Dataset into a new Dataset of a different type.

    tFn

    A function that transforms the underlying Dataset.

    returns

    A new genomic dataset where the Dataset of genomic data has been replaced, but the metadata (sequence dictionary, and etc) are copied without modification.

    Definition Classes
    GenomicDataset
  151. def transmuteDataset[X, Y <: Product, Z <: GenomicDataset[X, Y, Z]](tFn: (Dataset[Sequence]) ⇒ Dataset[Y])(implicit yTag: scala.reflect.api.JavaUniverse.TypeTag[Y], convFn: (SequenceDataset, Dataset[Y]) ⇒ Z): Z

    (Scala-specific) Applies a function that transmutes the underlying Dataset into a new Dataset of a different type.

    (Scala-specific) Applies a function that transmutes the underlying Dataset into a new Dataset of a different type.

    tFn

    A function that transforms the underlying Dataset.

    returns

    A new genomic dataset where the Dataset of genomic data has been replaced, but the metadata (sequence dictionary, and etc) are copied without modification.

    Definition Classes
    GenomicDataset
  152. val uTag: scala.reflect.api.JavaUniverse.TypeTag[Sequence]
    Definition Classes
    SequenceDatasetGenomicDataset
  153. def union(datasets: SequenceDataset*): SequenceDataset

    (Scala-specific) Unions together multiple genomic datasets.

    (Scala-specific) Unions together multiple genomic datasets.

    datasets

    Genomic datasets to union with this genomic dataset.

    Definition Classes
    SequenceDatasetGenomicDataset
  154. def union(datasets: List[SequenceDataset]): SequenceDataset

    (Java-specific) Unions together multiple genomic datasets.

    (Java-specific) Unions together multiple genomic datasets.

    datasets

    Genomic datasets to union with this genomic dataset.

    Definition Classes
    GenomicDataset
  155. def unpersist(): SequenceDataset

    Unpersists underlying RDD from memory or disk.

    Unpersists underlying RDD from memory or disk.

    returns

    Uncached GenomicDataset.

    Definition Classes
    GenomicDataset
  156. val unproductFn: (Sequence) ⇒ Sequence
    Attributes
    protected
    Definition Classes
    SequenceDatasetGenomicDataset
  157. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  158. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  159. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  160. def warn(mkr: Marker, msg: ⇒ Any, t: ⇒ Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  161. def warn(msg: ⇒ Any, t: ⇒ Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  162. def warn(msg: ⇒ Any): Unit
    Attributes
    protected
    Definition Classes
    Logging
  163. def writePartitionedParquetFlag(pathName: String, partitionSize: Int): Unit

    Save partition size into the partitioned Parquet flag file.

    Save partition size into the partitioned Parquet flag file.

    pathName

    Path to save the file at.

    partitionSize

    Partition bin size, in base pairs, used in Hive-style partitioning.

    Definition Classes
    AvroGenomicDatasetGenomicDataset
  164. def writeTextRdd[T](rdd: RDD[T], outputPath: String, asSingleFile: Boolean, disableFastConcat: Boolean, optHeaderPath: Option[String] = None): Unit

    Writes an RDD to disk as text and optionally merges.

    Writes an RDD to disk as text and optionally merges.

    rdd

    RDD to save.

    outputPath

    Output path to save text files to.

    asSingleFile

    If true, combines all partition shards.

    disableFastConcat

    If asSingleFile is true, disables the use of the parallel file merging engine.

    optHeaderPath

    If provided, the header file to include.

    Attributes
    protected
    Definition Classes
    GenomicDataset

Deprecated Value Members

  1. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] ) @Deprecated
    Deprecated

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from SequenceDataset

Inherited from AvroGenomicDataset[Sequence, Sequence, SequenceDataset]

Inherited from GenomicDataset[Sequence, Sequence, SequenceDataset]

Inherited from Logging

Inherited from AnyRef

Inherited from Any

Ungrouped