

Meraculous-2D Assembler Manual

Lawrence Berkeley National Lab
Genomics Division
DOE Joint Genome Institute
Walnut Creek, CA

Revision 2.2.4

Contents

1. Before you begin

1.1. Capabilities and limitations
1.2. Operating system requirements
1.3. Hardware considerations
1.4. Internal job execution and control
1.5. Availability and Getting help

2. Installation

2.1. Software dependencies
2.2. Installation procedure
2.3. Test run

3. Running Meraculous

3.1. Workflow steps and stages
3.2. Input data preparation
3.3. Run configuration
3.4. Executing the run
3.5. Working in stages

4. Evaluating output and Troubleshooting

4.1. Key output files
4.2. Logs and error handling
4.3. Run evaluation script
4.4. Troubleshooting tips

5. Technical Notes

5.1. Diploid assembly

6. Citing and feedback

Meraculous-2D (referred to from here on as simply Meraculous) is a whole genome assembler for
Next Generation Sequencing data geared to eukaryotic genomes. It is a hybrid k-mer/read-based
assembler that capitalizes on the high accuracy of Illumina sequence by eschewing an explicit error
correction step which we argue to be redundant with the assembly process. Meraculous achieves
high performance with large datasets by utilizing lightweight data structures and multi-threaded
parallelization, allowing assembling human-sized genomes on commodity clusters in reasonable
time. The process pipeline implements a highly transparent and portable model of job control and

monitoring where different assembly stages can be executed and re-executed separately or in unison
on a wide variety of architectures

1. BEFORE YOU BEGIN

1.1 Capabilities and limitations

 Currently Meraculous works with Illumina data only. It relies on
Illumina naming conventions and Phred-like sequence quality scores.
Long-read/low-depth sequencing platforms are not supported at this
time.

 An overall mean depth of read coverage of at least 30x is strongly
recommended. Low-coverage datasets will likely result in a highly
fragmented assembly or an aborted process altogether.

 Meraculous doesn’t perform any explicit coverage optimization (e.g.
down-sampling) of input reads. In most circumstances, excessive
coverage will not affect assembly quality, but in large assemblies it can
lead to longer run times and potential memory overruns. Therefore,
we recommend keeping the average depth of read coverage below
100x.

 If your input sequence data has been pre-trimmed or filtered, please
make sure that all reads still have their pairs and that the minimum
length doesn’t fall below the kmer size you’ve chosen for this dataset.

 Although it is capable of assembling small bacterial genomes, this
assembler may not be the most efficient choice for bacterial projects.

 Meraculous relies heavily on distributed and threaded computing and
will perform best on a multi-core server or on a cluster with high
bandwidth inter-node communication. For more on this, see sections
'Operating System requirements' and 'Hardware considerations'

Meraculous performs the assembly by first traversing a subgraph of the k-mer (deBruijn) graph of
oligonucleotides with unique high quality extensions and building a set of high-confidence contigs
(called UUtigs from here on) where each k-mer is represented only once and no further unique
extension is possible. If running in diploid mode, Meraculous identifies "bubbles" in the contig graph
and merges qualifying bubble-contigs into longer contiguous units we call "diplotigs" (i.e., they
contain diploid/heterozygous sequence). Then, the order and orientation (a.k.a. “ono”) of UUtigs or
diplotigs is determined and gaps are closed using linkage information derived from mapping paired
reads back to the UUtigs (or diplotigs).

While there are numerous factors that can affect the accuracy and performance of this process, the
following are of utmost importance:

Depth of coverage distribution

Meraculous relies on the coverage profile at several key points in the process. Optimal assembly is
possible only when the depth profile of the genome can be clearly distinguished from any low-
frequency noise or contamination. The depth distribution is also used to distinguish haplotype
variants from homozygous regions and repeats during various assembly stages.

Library composition

For increased contiguity and layout correctness, sequence data from a long-range paired-end or
mate-pair (also known as ‘jumping’) library should be included, with its mean insert size well over the
size of the largest repetitive elements in the genome. Since repeat composition can often be
complex and unknown ahead of time, it is recommended that a balanced mix of several libraries of
different insert sizes is used. Artifacts in such libraries (chimeras, insert-less pairs, untrimmed
adapter, etc.) or non-Poisson insert size distribution can result in highly fragmented assembly.
However, there are options a user can set to mitigate those effects, and it is crucial that those
options are set correctly. See section 'Run configuration' for more details.

Ploidy

Polymorphisms in diploid genomes lead to additional ambiguities and conflicts in the assembly graph
traversal and need to be handled appropriately by selecting one of two diploid assembly modes. The
choice largely depends on the expected polymorphism rate relative to the chosen k-mer size k.
Genomes with relatively infrequent variants (rate < 1/k) are best assembled by identifying “bubbles”
in the assembly graph and selecting a single path through each bubble and taking the alternative

paths out of the picture (until they can be re-introduced for haplotype phasing step much later in the
process). This is accomplished by selecting diploid mode 1.
On the other hand, a genome that’s highly polymorphic (rate > 1/k) is best assembled in a way that
keeps both haplotypes intact. For this, diploid mode 2 must be switched on. It often makes sense to
try both modes and then evaluate the output to see which one is better suited for the data set. For
more on this see section ‘Diploid Assembly’.

Repeat content

Like most de-novo assemblers, Meraculous attempts to resolve ambiguities caused by repeats using
paired-end linkage and distance information. Because repeating elements can take complex shapes
and/or can be confounded by variants in diploid genomes, many repeats may remain unresolved as
Meraculous will not make ambiguous joins. Identical repeat copies may "collapse" into what then
looks like a unique contig that "falls out" of the scaffold, thus adding to the total number of scaffolds
and contigs. During gap closure, some of these repeats will be recovered if a repeat-induced gap can
be fully traversed by "kmer-walking".

Read data quality

Meraculous avoids an explicit error correction step instead relying on k-mer coverage and base
quality scores (e.g. low quality extensions of k-mers are ignored during the graph building stage). K-
mers containing sequencing errors are expected to occur at a much lower frequency than true
genomic k-mers and can therefore be eliminated using the depth cutoff. High errors rates in the
sequence, however, can still hinder the assembly (especially in diploid mode) and/or increase the
memory requirements since a greater number of unique k-mers would result from sequencing error.

k-mer size

If the chosen k-mer size is too short for the genome then there will be too many non-unique k-mers.
If it's too long then any given k-mer will be more likely to include a sequencing error. Both situations
hinder assembly, so it's important to arrive at a “sweet spot" in the middle. There are 3rd party
tools available for auto-determining the optimal k-mer size from actual sequencing data (e.g.

kmergenie) . Alternatively, we advise to start with 3-4 pilot runs with different k-mer sizes, stopping
after the meraculous_mercount stage and reviewing the k-mer frequency histogram (mercount.png,
see 'Key_output_files' for an example). As a rule of thumb, aim for the largest k that yields the main
haploid peak at least ~30X, and a distinct through to the left of it that’s at most 1/10 of the peak
height.

Insert size distribution and library bias

http://kmergenie.bx.psu.edu/

Meraculous uses user-defined estimated average insert size and standard deviation values to set
various cutoffs during the calculation of the actual assembly-based insert size distribution. Therefore,
it's important that these estimates are close to reality.

1.2 Operating system requirements

Meraculous can run on any 64-bit Linux system. This release was developed and tested on Debian
6.0.7 Linux, kernel 2.6.32-5-amd64.

Meraculous can execute distributed/parallel jobs on either a single multi-core system or on a cluster.
In the latter case, the cluster array job submission is executed via a wrapper script cluster_submit.sh.
Depending on your site's cluster configuration, this script may need to be modified by your sysadmin
to ensure proper functionality, or even substituted by your own wrapper. This release was tested
with a Linux cluster running Univa Grid Engine 8.1.4. At the minimum, the current implementation
requires that your cluster scheduler accepts qsub, qstat, and qacct commands for submitting
and monitoring of the jobs.

1.3 Hardware considerations

Disk space and memory requirements depend on many factors, but the following guidelines are a
good estimate.

Disk space

This will differ dramatically depending on the cleanup policy chosen. For details on the different
cleanup options see section ‘Executing the run ’.

Total input sequence
(Gbp)

cleanup_level 0 cleanup_level 1 cleanup_level 2

450 (Human) 6.9 TB 2.9 TB 39 GB

13 (N.sebacea) 67 GB 49 GB 200 MB

1.2 (E.coli) 13 GB 7.6 GB 42 MB

Memory

Where possible, memory usage is optimized by partitioning the input data into blocks that can fit
under smaller memory caps. However, for larger genomes like H.sapiens, the memory-limiting step
is often UUtig generation where all the building blocks must be kept in memory at once.

Genome Size (Gbp) Total sequence earmarked
for contiging (Gbp)

Memory required (GB)

3.1 (H.sapiens) 290 109

0.7 (S.bicolor) 63 18

0.05 (N.fluitans) 10 3.7

0.005 (E.coli) 0.7 0.2

Multi-threading

Many Meraculous components run as threads on multiple cores of a single computer, while others
are single-threaded. To take advantage of multi-threading users must specify how many cores are
available (parameters local_num_procs and cluster_slots_per_task). Keep in mind
that while multi-threading greatly improves run times it has no effect on the memory usage since the
size of the input data chunk is independent of the threading level chosen.

1.4 Internal job execution and control

When following the progress of the run or reviewing the log files, it is important to understand how
the Meraculous components get executed on the system. Meraculous makes heavy use of
distributed task arrays for parallel execution. First, the data is sub-divided into chunks of smaller size.
Then a "command set" containing all the chunks is submitted for execution either locally or on the
cluster as task arrays. Meraculous waits for the local system or the cluster scheduler software to
signal that all the parallel tasks have been completed successfully before continuing. In the event of
failure, users can opt to automatically retry the failed tasks. If there are still failed tasks the program
terminates. After examining the error logs and making corrections to the data or the settings, user
can resume the assembly from the point where it was terminated (see section ‘ Working in Stages ’).
While this will re-form the command set from scratch, only those tasks that haven't successfully
completed will actually get re-executed.

 1.5 Availability and getting help

Meraculous source code along with a small test dataset is available from
http://sourceforge.net/projects/meraculous20.

Questions can be addressed to Eugene Goltsman at egoltsman@lbl.gov
If you’re running into problems with installation, please include the capture of the screen output of
install.sh. If there are errors during Meraculous execution that you don’t understand, please send
your config file and the log/meraculous.log file from your run.

2. INSTALLATION

2.1 Software dependencies

At the time of the installation the following software should be installed on your system:

cmake >= 2.8

GCC g++ >= 4.8

libgd >= 2.0

GNU make 3.81

Boost C++ library >= 1.57.0

Perl (>= 5.10)

Log4perl.pm (>= 1.31)

gnuplot (>= 3.7)

qqacct (optional but highly recommended for Grid Engine cluster environments:
http://portal.nersc.gov/dna/plant/assembly/meraculous2/extras/qqacct)

http://sourceforge.net/projects/meraculous20
mailto:egoltsman@lbl.gov
http://search.cpan.org/~mschilli/Log-Log4perl-1.44/lib/Log/Log4perl.pm
http://portal.nersc.gov/dna/plant/assembly/meraculous2/extras/qqacct

2.2 Installation procedure

After you have downloaded and unpacked the source distribution, install the software using the
installer script:

 install.sh <installation directory>

..or step by step:

 mkdir build

 cd build

 cmake -DCMAKE_INSTALL_PREFIX=<installation directory*> ..

 [Note: The installation directory should be different from the build directory. Omitting the -DCMAKE_INSTALL_PREFIX
option altogether will install the package into system default locations (/usr/local/bin, etc..)]

 make

 make install

Note: If you're planning to run Meraculous in a cluster environment, additional
configuration may be required. This documentation assumes that a Grid Engine-
type cluster system is in place and can, at the minimum, accept commands
qstat, qsub, and qacct, and has the $SGE_ROOT
variable set to the root directory of the cluster control software. To test if this is
the case, type "qstat" on the command line. There should be no errors (the
result may be blank, that is ok). Note, however, that even with SGE-like
systems, additional changes to the cluster_submit.sh wrapper may be
needed on the part of the user.

2.3 Test run

The distribution archive contains a small validation dataset to help you confirm that the software has
been installed properly. The dataset is meant to be kept its original location, and the validation run
should be executed directly from that location. To perform the run, do the following:

 cd <install_dir>/etc/meraculous/test/pipeline

 bash <install_dir>/bin/run_meraculous.sh -c meraculous.config

The run should take no more than 5-10 minutes. When the run completes you will see a new run
directory named run_[date]_[time]. Inside that directory, open the file log/meraculous.log, it should
end with the following:

 meraculous.pl main:: 840> ran to completion successfully

If you don't see this then something went wrong. The meraculous.log file will have the most detailed
record of everything that happened during the run, and it is the first file you should examine when
troubleshooting. See section ' Troubleshooting tips ' for more details.

3. RUNNING MERACULOUS

3.1 Workflow steps and stages

The Meraculous pipeline is executed in stages which can be run and re-run individually or all at once.
Each stage is followed by a cleanup of intermediate files. The level of agressiveness of this cleanup is
controlled by the -cleanup_level command line option (for more on this see section ' Executing the
run '). Before starting your first assembly, we strongly recommend to familiarize yourself with what
happens during each stage, what the key outputs are, and how to monitor the process, which means
reading on beyond this chapter, to the end of the document.

meraculous_import

 Creates links to the original input sequence files and names these links in a standard format.

 Validates the format and the pairing schema (dual-file or interleaved) of the input sequence files
and auto-detects the quality encoding offset (Phred+33 or Phred+64). For more on the types of
input data supported, see section ‘Input Data Preparation’.

 Divides the input into chunks to allow for parallel processing in the future. This takes two forms.
One is at the read level, and for that we simply split the sequence files into chunks of ~500 mb of
total sequence. (Note that it is these chunks that will be used from here on and *not* the
original files you provided in the config file.) The second type is at the k-mer level. Here we use a
sampling of the reads to estimate k-mer frequency rates in the dataset, and based on that define
prefix blocks to group k-mers in a load-balanced fashion. Because processing the total k-mer
space of the dataset is memory-intensive, this load balancing is needed to ensure that the data
structures for storing the k-mers require similar amounts of memory. The number of blocks is set
by the user in the config file (for more on this see section ‘Input Data Preparation’).

 Generates a human-readable summary of the input dataset extrapolated from a sub-sampling of
the reads.

meraculous_mercount

 Counts k-mer frequencies across all libraries that are earmarked for contig generation in the
config file, producing a set of .mercount files.

 Builds the k-mer frequency histogram which is used to determine the mininum depth cutoff.
Users should review this histogram (mercount.png) as it can be helpful in identifying features and
abnormalities in the dataset, such as contamination or low quality data.

meraculous_mergraph

 For each k-mer that satisfies the minimum depth cutoff Meraculous counts all possible single
nucleotide extensions of that k-mer (subject to minimum depth and minimum quality cutoffs)
and records them in .mergraph files which now provide the basis for the initial contig assembly.

meraculous_ufx

 Classifies each k-mer in the graph as either unique (U), fork (F), or terminal (X), based on the

possible single-base extensions of the k-mer in either direction. The main output is a .UFX file.

meraculous_contigs

 Loads the UFX information into memory-efficient data structures and builds the initial set of
contigs known as UUtigs. A UUtig is built from a tiling path of 'U' mers overlapping by k-1 bp, and
terminates on either end when the next extension candidate kmer is either an 'F' type an 'X' type
kmer.

 Generates various statistics for the user to review (UUtigs.fa.stats). These can be useful
to detect problems in contig formation. For example, a lack of long contigs and/or contig sizes
failing to add up to the expected genome size may indicate insufficient depth of usable k-mers. If
this coincides with a bi-modal k-mer depth distribution (see stage meraculous_mercount), then
this suggests contamination in the dataset.

[Note: In a diploid genome, the total length of all contigs at this stage should be larger than the
expected genome size because of the presence of haplotype variant UUtigs]

meraculous_bubble

 Builds depth and size statistics for the UUtigs, which will later be used in selecting contigs for
scaffolding.

For diploid assemblies, interrogates ends of UUtigs to detect bubbles in the graph caused by diploidy
and then orders and transforms qualifying UUtigs into a new type of contigs called "haplotigs".
Internally, these haplotigs are further categorized as either "diplotigs" or "isotigs". Diplotigs are
haplotigs that represent a single haplotype-specific path through a polymorphic region of the
genome and are always paired with their alternative haplotype “sister”, e.g., diplotig99_p1 |
diplotig99_p2. All other contigs are termed isotigs. These represent homozygous regions as
well regions of polymorphism which didn’t clearly manifest themselves as bubbles. The latter are
expected to be of half the depth compared to the rest of the non-repeat isotigs, and based on this
characteristic will be subject to special treatment later on. For more on diploid-aware assembly, see
section ‘Diploid assembly’.

Important !

Once this stage has completed, we recommend pausing and reviewing the status of the current
assembly. Examine the files mercount.png, kha.png, UUtigs.fa, and confirm that the
results make sense (see section ‘Key output files’ on how to interpret these). Based on what you see
you may wish to adjust your parameters or even rerun some stages before continuing. For example,
an unusually high number of contigs in UUtigs.fa and a large low-depth peak in mercount.png
may mean that your min_depth_cutoff parameter should be raised and everything restarted from
meraculous_mergraph.

For diploid assemblies, you should examine the file haplotigs.depth.hist.png and verify that
there are two distinct peaks, one at roughly half depth of the other. At this point you may want to
check your bubble_depth_threshold parameter and adjust it to a value corresponding to the local
minimum between the two peaks (if you had originally set it to 0 Meraculous will attempt to auto-
detect this threshold).

meraculous_merblast

 Generates depth- and size-filtered contigs to be used from here on. If running with
diploid_mode 1, all half-depth isotigs are filtered out based on the bubble_depth_threshold value
(these sequences will be recovered later, during gap closure).

 Maps reads from libraries earmarked for scaffolding (i.e. having the lib_seq parameter’s
scaffRound setting set to non-zero) to the contigs, creating blastMap*.merged files

meraculous_ono

 Uses mapped read coordinates to "splint" gaps, i.e., link two or more contigs into a scaffold if a
single read aligns to the contigs' respective 5' and 3' ends.

[Note: Only libraries earmarked for gap closure by the user are used in splinting. To minimize
the effect of chimeras and other library prep artifacts, we strongly recommend using only short
insert paired-end Illumina libraries for this purpose.]

 For each library earmarked for scaffolding, determines the actual observed insert size average
and std. dev. It is, therefore, crucial that the contigs/scaffolds at this stage are long enough to
support enough read pairs mapping to them to result in a reliable insert size distribution.

 Then, using this information, for each set of libraries (as defined by the user with the lib_seq
parameter’s scaffRound setting) linkage between contigs is established and scaffolds are built.
This process is then iterated for the next ono set, bootstrapping from the scaffolds from the
previous round.

[Note: If running in diploid_mode 1, the scaffolding is initially performed using combined
linkage info from alternative variant diplotigs, i.e., both variants contribute read pairs to the
same link as if they were one and the same contig. Then, using haplotype-specific read mapping
info, phased variant paths are determined and the scaffold content is corrected in a haplotype
consistent manner. As a result, one variant path (typically one with the higher overall depth) will
be preserved in a multi-contig scaffold while the individual alternative variants are represented as
unlinked, singleton scaffolds. A list of these singleton alternative variant scaffolds is also saved.
For more on diploid-aware assembly, see section ‘Diploid assembly’.]

meraculous_gap_closure

 Based on read pairs mapping to neighboring contigs in a scaffold, a gap size model is generated.
Then the scaffold and the gap size information is used to locate the reads suitable for "walking"
across the gaps. The actual sequence is drawn from the original fastq files in the form of k-mers.

Meraculous closes the gaps only if enough consistent and high quality sequence exists to bridge it
entirely. Currently, no partial extensions of contigs into the gaps are made.

[Note: when running in diploid_mode 1, if a gap represents a polymorphic region that had been
actively removed earlier (i.e., a half-depth isotig), Meraculous will attempt to walk across it using
reads from the more abundant allele].

 The final sequence files (final.scaffolds.fa) are built from the scaffolds and the gap closing info,
and any scaffolds under 1kb are filtered out. This is considered the final assembly result. When
running in diploid_mode 1, this file contains only one set of variant contigs/scaffolds, while in
diploid_mode 2 both haplomes are represented.

meraculous_final_results

 Generates a brief summary report on the final assembly. For a more in-depth report users should
run the standalone script evaluate_meraculous_run.sh

3.2 Input data preparation

Meraculous supports the following types in input data:

 Illumina-style sequence in fastq format is the only fully supported input data type at this
moment. Using Perl regular expression notation, the supported fastq header formats are:

Illumina versions pre-1.8:

/^@\S+\:\d+\:\d+\:\d+\:\d+\#?[ACTGN0]*)/[12]\s*\S*$/

Example: @071112_SLXA-EAS1_s_4:1:1:672:654/1

Illumina versions 1.8 and higher:

/^@\S+\:\d+\:\d+\:\d+\:\d+\s+[12]\:[YN]\:\d+\:[ACTGN0]*$/

Example: @HISEQ03:379:C2WP8ACXX:7:1101:1465:2056 2:N:0:ACTTGA

 For paired libraries, read pairs can be either interleaved within a single file or be split into
separate files, e.g. SRA000271.fastq.1 & SRA000271.fastq.2. In the latter case, the reads
must be in the same order in both files and in one-to-one correspondence. [Note: If your
input has been filtered in such a way that some reads have their pairs missing, you will
need to edit the files and add dummy reads to take place of the missing pairs]

 All sequence files belonging to a single library should be definable by a single wildcard
expression, e.g. SRA0*fastq* (two wildcards are required if reads 1 and 2 are in separate
files, e.g. “SRA*fastq1,SRA*fastq2”) For more on specifying the inputs see section 'Run
configuration'.

 Both Phred+33 and Phred+64 quality encoding schemas are supported. You can have a mix of
libraries encoded with either schema, but each individual library must be of one common
encoding scheme throughout.

 Both uncompressed and compressed (gzip) fastq files are supported.

 All reads should be at least k-mer size + 1 in length. The upper limit is currently 500 bp

 All reads should be free of adapter or barcode sequence as Meraculous does no explicit
trimming or error-correction of the sequence. [Note: since low quality data is "naturally"
filtered out by Meraculous based on k-mer depth, low complexity sequence, if present in
large amounts, will tend to escape this filter]

 Meraculous is optimized for assembly of haploid and diploid genomes only. Running on
polyploid or metagenomic datasets and interpreting results can be non-trivial.

3.3 Run configuration

The configuration file contains the parameters guiding the entire assembly process and must be
passed to the program with the -c <file> argument.

The format of the configuration file is one parameter followed by one or more values. Spaces or tabs
can be used as field separators.

 [Note: an additional optional configuration file named .meraculous.conf can be placed in your user
home directory and can contain default parameters that are not likely to change for your assembly
jobs, e.g. cluster_queue, cluster_slots_per_task, etc. If there is any redundancy in the parameters in
the two files, the run-specific config file takes precedence.]

Core assembly parameters:
The values of these parameters should be set once, at the onset of the run. It's not advisable to
change them at subsequent resume/restart attempts.

lib_seq A multi-argument parameter defining various properties of the input datasets.

Normally, for every sequencing library, a separate lib_seq parameter line should
be given. The following are the mandatory arguments that must be given as
values-only on a single line, in the exact order they’re listed here, separated by
one or more spaces or tabs. None can be omitted.

[wildcard] - a bash-style expression (typically a full path) defining the
sequence files for a single library. If fwd and rev read pairs are in
separate files, then two wildcards should be provided, separated by a comma,
without spaces. (See section 'Input data preparation' for more on input data
requirements.)

[name] - name of the library
(caps, numbers)

[insertAvg] - estimated average insert size in bp

[insertSdev] - estimated std deviation of insert size in bp

[avgReadLn] - estimated average read length in bp

[hasInnieArtifact] - Whether or not a significant fraction of read pairs is in non-
dominant orientation, e.g. "innies" in an "outie" library or vice versa.
(0=false, 1=true)

[isRevComped] - Whether or not the read pairs are in the "outie" orientation,
i.e <-- -->.
(0=false, 1=true)

[useForContiging]- Whether or not to use this libray for initial contig
generation. Our recommendation is to use only Paired End (a.k.a. Fragment)
libraries for this purpose.
(0=false, 1=true)

 [scaffRound] - Assigns the library to a scaffolding round. Libraries of the
same type and similar insert size should be grouped into the same round for the
sake of performance. To completely exclude a library from being used in
scaffolding, set this to 0.

(positive integers, can be non-consecutive)

[useForGapClosing] - Whether or not to use this library for gap closing. It’s best
to use the same libraries that were used for contig generation for this purpose.
(0=false, 1=true)

[5p_wiggleRoom] - During linkage analysis and gap closure, allow reads from
this library to have an unaligned 5' end up to this many bp. This option is for
cases when a library is known to contain untrimmed adapter sequence.
(positive integer, 0 for default behavior [5 bp])

[downsampleRate] – Use a random subset of all reads (along with pairs)
belonging to the library. The value specifies the sampling rate.

Example 1: two sets of files - one with fwd reads and the other with reverse
reads

lib_seq /path/fastq*.0,/path/fastq*.1 ECO1 200 20 36 0 0 1 1 1 0 0

Example 2: one set of files, all with fwd/rev reads interleaved and up to 20 bp
of 5' adapter present

lib_seq /path/to/fastq ECO2 200 20 100 0 0 0 1 0 20 0

genome_size Approximate genome size in Gb. Used in estimating depth of read coverage.

(positive integer or float)

mer_size The k-mer size to use in meraculous. Must be an odd integer less than the size
of the smallest read in the dataset. The optimal k-mer size depends on the
quality of the sequence data (error-free read length) and on the genome's
repeat content. Picking a k-mer size that's too small means a given sequence
will have a lower likelihood of being unique. Too large, and you're increasing
the likelihood that the sequence will contain an error, which will cause it to be
thrown out entirely by the low-depth filter.

There are a number of 3rd party tools available that help you pick the best k-mer
size (e.g. kmergenie), or you can calibrate your own rough estimate by running
several assemblies with varying k, stopping after the meraculous_mercount
stage and examining the mercount.png and kha.png files.

min_depth_cutoff K-mers less frequent than this cutoff will get excluded from assembly. When
assembling you data for the first time, to determine this cutoff, run
meraculous.pl through stage ‘meraculous_mercount’, then look at the k-mer
frequency histogram file (mercount.png) and look for a high count (y), low
frequency (x) peak that's distinct from the main frequency distribution. This
peak represents erroneous k-mers which are best to keep out of the assembly.
Set min_depth_cutoff to the low point to the right of the low frequency

http://kmergenie.bx.psu.edu/

peak and resume the assembly.
To auto-detect, set it to 0
(default = 0)

num_prefix_blocks Memory usage is optimized by breaking down the DNA search space by
prefix, partitioning the k-mers into load-balanced blocks so that each can be
processed separately and require similar amount of resources. The greater this
number, the less RAM per process. The downside is that greater and greater
fraction of run-time will be due to fixed costs like I/O of reading the input,
scheduling, etc., so you get less efficiency. Note that only those libraries that
will be used in UUtig generation (and therefore turned into k-mer structures)
should be considered here.

For example, if you have a large genome but want to run on a relatively small
server you should set num_prefix_blocks high. This will result in the k-mers
being chopped up in more chunks, each small enough to fit into memory when
processed separately. If on this server there aren’t enough nodes to process all
the blocks at once, tasks will simply wait in the queue for their turn.

Note: Memory footprint is roughly proportional to the size of the input dataset,
i.e., the total sequence used for contiging, but will vary with k-mer size,
sequence quality, genome size, and repeat content. The following examples
can be used as rough guidelines for estimating the desired number of blocks:

of blocks Peak memory during k-mer counting (GB)*

 H.sapiens
(290 Gbp
total seq
data)

S.bicolor -
highX (63
Gbp total seq
data)

S.bicolor-
lowX (14 Gbp
total seq
data)

N.fluitans (10
Gbp total seq
data)

1 276 139 23 8

4 133 42 7 3

16 24 9 2 0.6

32 12 4 1 0.3

 * Unlike k-mer counting, the UUtig assembly stage cannot be partitioned this
way and thus has fixed memory requirements which can be the limiting factor
for large genomes. For more, see section ‘Hardware considerations’

Optional assembly parameters

diploid_mode Specifies ways to handle diploidy.

0 - haploid assembly; variant/bubble detection is turned off.
1 – diploid with low polymorphism rate (< 1 per k bp); The general
aim is to suppress variability and to consistently reproduce a single
haplotype. Simplifies assembly graph by “squashing” variant-induced

“bubbles” during scaffolding while keeping all variants at the contig
level.
2 – diploid with high polymorphism rate; Relies on significant
sequence divergence to reproduce both haplotypes. Simplifies
assembly graph by maintaining two alternative “haplo-paths” .

Related parameters: bubble_depth_threshold

no_strict_haplotypes

See ‘ Technical Notes/Diploid assembly’ for more info.

Triploid or higher ploidy genomes are not supported at this point.
(default = 0)

bubble_depth_threshold Valid only with diploid_mode 1 & 2.
After bubble resolution, some fraction of the bubble-free contigs
(termed isotigs) still contains haplotype variants that couldn't be
recognized/resolved. In the contig depth distribution at that stage (see
file haplotigs.depth.hist) these contigs form a second peak at roughly
1/2 the depth of the main, non-polymorphic depth peak. This cutoff
sets the depth threshold that will help distinguish these variant isotigs
from non-variant ones. It should be set to the through between the
two peaks.
To auto-detect, set it to 0
(default = 0)

no_strict_haplotypes Valid only with diploid_mode 1 & 2
Lifts the requirement that all haplotype variants within a single diplotig
are phased via common clone linkage. Turning this parameter on may
help increase the final scaffold/contig N50, but at the expense of more
frequent haplotype crossover. Running in diploid_mode 1 with this
parameter enabled would effectively mimic the behavior of older
versions of Meraculous (v.2.0.5 in particular).
(0|1; default=0)

mergraph_depth_pct_cutoff For meta-genomic assemblies only.
K-mer extension candidates' counts (i.e. depth) are evaluated as
percentages of all candidates' counts combined. This has the effect of
normalizing the minimum depth requirement to the organism’s
abundance in the sample. If used, it’s best to keep this value close to
your data set’s expected sequencing error rate multiplied by the k-mer
size (i.e. the probability of having an erroneous kmer). With higher
values you increase the risk of throwing out legitimate variants and/or
repeat boundaries. Note that min_depth_cutoff is still valid and serves
as the hard "floor".
(float; range: 0.0 – 1.0)

no_read_validation Set to 1 to skip validation of input fastq reads' headers, sequence, and
q-scores. This will speed up the processing of reads in stage
meraculous_import. We recommend using this option only when re-
running with a previously validated dataset.
(0|1; default=0)

fallback_on_est_insert_size If the program can't determine the actual assembly-based insert size
average for a library, this option will allow it to continue using the initial
estimates provided by user (see lib_seq). Use this parameter as the
last resort only!
(0|1; default=0)

gap_close_aggressive Close gaps more aggressively, accepting closures that might violate the
estimated gap size.
(0|1; default=0)

gap_close_rpt_depth_ratio If the average k-mer depth of a given scaffold exceeds the overall modal
peak depth for all scaffolds by more than this factor the scaffold is
assumed to be a collapsed repeat and is excluded from consideration
during meraculous_gap_closure. Raise this cutoff if you know the
depth distribution in your dataset to be highly irregular, e.g. it's a
metagenome or the like.
(default = 2.0)

Resource utilization parameters

local_num_procs Valid only when ‘use_cluster’ is off.

Number of processors to occupy simultaneously when running
jobs locally. This should normally equal the number of available
cpus. For non-threaded processes this sets the maximum number
of processes executed in parallel. For threaded processes this
sets the number of threads.
(default = 1)

num_procs_<stage> Can be used to override ‘local_num_procs’ on a per-stage basis

local_max_memory Set a memory limit (GB) for local processes. Where possible,
data will be partitioned to fit under this limit.

local_max_retries Number of retries before failure for local jobs

use_cluster Specifies whether to use a cluster for job submissions. Requires
an SGE-like cluster system to be configured and ready to accept

scheduling and monitoring commands like qsub, qacct, and qstat.

cluster_num_nodes Number of available cluster nodes (can be approximate). This is
used for partitioning the data into appropriately sized chunks to
be processed in parallel. Combined with parameters
'cluster_ram_request' and 'cluster_slots_per_task', it can be used
to control the granularity of job sets.
(default =1 The default setting means data will not be
partitioned if it can fit under the memory limit set by
cluster_ram_request !!!)

cluster_slots_per_task Number of slots (cores) to allocate for multi-threaded tasks when
submitting to the cluster. Threaded tasks will spin off this many
threads each. For non-threaded tasks this option is ignored.
Typically, you would set this to the number of cores on the
smallest available node. If the nodes are shared and are heavily
used, you may want to refrain from occupying all the CPUs on
them.

cluster_ram_request Amount of memory (GB) to request per task on the cluster.
If you request too much your process will have few available
nodes to use, too little and your process will get killed by the
cluster scheduler if it exceeds this limit.

cluster_ram_<stage> Can be used to override the above cluster_ram_request on a per-
stage basis.

cluster_walltime Walltime limit for cluster tasks. Must be specified as hh:mm:ss

cluster_walltime_<stage> Can be used to override the above cluster_walltime limit on a per-
stage basis

cluster_max_retries Number of retries before failure for cluster jobs

cluster_project Name of project to which cluster jobs will be assigned.
(This is needed only when your cluster uses project-based
allocation schema)

cluster_queue Name of queue to which cluster jobs will be assigned.

3.4 Executing the run

An assembly run that includes all stages, with intermediate data cleaned up at the end, is executed as
follows:

run_meraculous.sh -c <config file>

This will generate a run directory named run_<date>_<time>. Inside the run directory, files
log/info.log, log/error.log, and log/meraculous.log contain the detailed record of
the assembly process. One way to monitor a running assembly is to watch the info.log or
meraculous.log files "live" with 'tail -f'. See section ‘Logs’ for more on these files.

Other command line options:

-dir <>

-label <>
For new assembly runs, -dir lets you name your output run folder,
while –label will attach the specified string as a prefix to the default
name.
For resuming or restarting an existing run, you're required to provide
the run folder with the -dir option.

-archive When restarting a stage from the beginning, save any existing stage
directories under the subdirectory old/

-debug Record all commands and additional troubleshooting information in the
file logs/meraculous.log (Currently on by default)

-cleanup_level

<0|1|2>
Determines how aggressively the pipeline should clean up intermediate
data after each stage. The possible arguments are:

0 - Do not delete any intermediate outputs. This will provide the
ability to go back and examine full stage outputs or restart from any
stage at any point in the future. The flip side is that with this option, the
disk space footprint may be several times the size of the input dataset.

1 (default) - Delete files that are not used in any of the subsequent
stages and that are generally not informative to the user. You will still be
able to rerun any stage individually.

2 - Delete as much as possible, as soon as possible. With this option
you will not be able to rerun the stages individually once they have
completed. The use of this option should be reserved to cases where

disk space is tight and when you're confident that parts of the assembly
will not need to be rerun.

-restart Restart a previously failed run from the last successful stage

-resume Similar to -restart, but but preserves any partial results from successfully
completed processes within the stage

-step Execute one stage and stop

-start <stage> Re-run starting with this stage (requires –resume or –restart)

-stop <stage> Stop after this stage

Invalid combinations:

-restart with -resume
-start without -restart/resume
-archive without -restart

See more about -restart and -resume options in section ‘Working in stages’.

3.5 Working in stages

A Meraculous run consists of stages that can be executed and re-executed separately or as a set.
Each stage reloads the parameters from the main user-specified config file. It also loads parameters
from local parameter files created by preceding stages and writes local parameters for subsequent
stages to use.

Note: Users are free to change the parameters in the config file between restart/resume attempts,
however, the following parameters are considered "set in stone" and cannot be changed, removed,
or added after the onset on the run:

 mer_size
 num_prefix_blocks
 local_num_procs
 cluster_slots_per_task

Upon successful completion a checkpoint file is created inside the checkpoints/ directory, which
signals to Meraculous.pl that the stage has been completed, and the next time the pipeline is
executed that stage will be skipped.

If for some reason the run exits in the middle of a stage, the user has an option to resume from
where the previous attempt left off (presumably after making necessary corrections). Various
milestones in the stage's progress are marked by "resume checkpoints" (not to be confused with
checkpoint files described above). Once the pipeline determines the stage it needs to execute, it will
jump to the specified resume checkpoint inside that stage, if one exists. Use the
-resume option to enable this behavior.

If, instead of resuming, you wish to rerun an entire stage from the beginning or rerun starting with a
certain stage, use the -restart option combined with -start [stage] and -stop [stage] to specify
which stage to start and end the run with. The –restart option will cause the deletion of all
previously completed stages from the '-start' stage and onward. If you wish to save those, use the -
archive option, and they will be moved to a newly created old/
subdirectory in your run.

If you wish to step through the stages, stopping after each one, use -step option

Note: The ability to resume the assembly process from a middle point is the main reason why
Meraculous writes a large amount of intermediate data to disk. Setting -cleanup_level to 0 will cause
many of these files to be deleted as soon as they're used and thus prohibits the
'restart' behavior while 'resume' should still be possible.

4. EVALUATING RESULTS & TOUBLESHOOTING

4.1 Key output files

 meraculous_final_results/SUMMARY.txt: Brief summary of assembly inputs and resuts
(for creating a more detailed report see Run evaluation script)

 meraculous_final_results/final.scaffolds.fa: The final set of scaffolds over 1 kb
in total length in Fasta format. Gaps between contigs are filled with stretches of Ns whose
number corresponds to the estimated gap size.
Note: If you ran with diploid_mode set to 2, this set of scaffolds will include any alternative
variant contigs as well.

 meraculous_merblast/contigs.fa: The initial set of UUtigs (or haplotigs if diploid)
that were used as input to the scaffolding stages. The total size of the contigs in this file should
be fairly close to the estimated genome size, with the remainder assumed to be in gaps that are
to be spanned and filled in later stages. The file is in Fasta format; run the included
fasta_stats program on this file to get a breakdown on contig size distribution.

Main genome contig total: 3190345

Main genome contig sequence total: 2691.5 MB (-> 0.0% gap)

Main genome contig N/L50: 284358/2.5 KB

 Minimum Number Number Total Total Scaffold

Scaffold of of Scaffold Contig Contig

 Length Scaffolds Contigs Length Length Coverage

-------- --------- ------- ----------- ----------- --------

 All 3,190,345 3,190,345 2,691,458,526 2,691,458,526 100.00%

 1 kb 713,602 713,602 2,037,767,767 2,037,767,767 100.00%

 2.5 kb 290,691 290,691 1,361,689,624 1,361,689,624 100.00%

 5 kb 89,217 89,217 661,837,734 661,837,734 100.00%

 10 kb 11,367 11,367 143,937,099 143,937,099 100.00%

 25 kb 47 47 1,298,589 1,298,589 100.00%

 50 kb 0 0 0 0 0.00%

 meraculous_mercount/mercount.png: Histogram of k-mer abundance across the entire
dataset used for contig generation. This can be useful for identifying various anomalies and
trends with the dataset. Normally you should be able to identify the single peak corresponding
to unique genomic k-mers (two peaks if diploid), a low-depth peak for the erroneous k-mer
population, and additional high-depth peaks for k-mers representing genomic repeats. The
histogram plot can also be useful when evaluating the chosen k-mer size. The optimal k is usually
the largest k that still allows to identify and cleanly separate the low-depth peak.

 meraculous_mercount/kha.png: This plot shows the cumulative fraction of all k-mers in
the dataset as a function of k-mer depth, which can be useful in identifying distinct k-mer
“populations”, e.g. repeats, polymorphic regions, contamination.

 meraculous_bubble/haplotigs.depth.hist.png: (For diploid assemblies only)

This plot shows the distribution of contigs’ weighted kmer depth after bubble detection, with
isotigs and diplotigs plotted separately. It can help greatly when troubleshooting scaffolding
issues since it reveals how well polymorphisms are being identified and treated. It can also help
verify the selected bubble_depth_threshold value. For instance, a very low diplotigs peak
completely overlapping a high isotigs peak would signal poor detectability of bubbles as a likely
consequence of a very high polymorphism rate. On the other hand, a low diplotits peak

alongside of a high isotigs peak at twice the depth suggests low polymorphism rate. As long as
you can identify the diplotigs peak at ½ the depth of the main isotigs peak, set
bubble_depth_threshold at the midpoint between them (around 17 in the example below).

 meraculous_ono/*.srf: Scaffold reference files from each scaffolding round. The
last digit in the file name specifies the scaffolding round; the first digit specifies the minimum
number of links cutoff used to form the scaffolds. These files allow mapping of the original
contigs to the current scaffolds.

4.2 Logs

The log files are critical for both monitoring the run progress and troubleshooing the results. You will
find youself looking at these files a lot, so it pays to get familiar with them early.

info.log - This is a concise record of the run, designed to inform a non-expert user of the
key events during the run and raise a basic "Errors encountered" flag in case of a run failure. During
a run, a good practice is watch this file in real time
(e.g. 'tail -f run_abc/log/info.log)

meraculous.log - This is the most complete and verbose record of the process, designed
for troubleshooting a failed run and is generally geared to a more expert user. In addition to the
general messages from info.log, it records all commands the pipeline executes as local system calls,

parallel job sets, resource usage and timing statistics. It will also capture all errors thrown by the
Meraculous pipeline with information on which component threw the error.

*.err files - Errors from standalone programs executed by the pipeline will normally be
captured in that program's standard error file. These files are always named and placed according to
the program’s intended output file and are specified as part of the command record in the
meraculous.log file. For example, if Meraculous starts a oNo4.pl process which is meant to output a
file p3.2.srf, then the standard error will be captured in the file p3.2.srf.err in the same directory.
See more on this in section ‘Troubleshooting tips’.

4.3 Run evaluation script

The bash script evaluate_meraculous_run.sh collects various stats from the current run
including any restart/resume attempts, and could be very useful in troubleshooting and
understanding what happened at the different assembly stages (see below). We encourage users to
run this script after the entire run is finished. It does not get executed automatically.

4.4 Troubleshooting tips

Errors and abnormal termination

When a run aborts prematurely, the error that caused the exit appears at the end of the
meraculous.log and error.log files, e.g.

2014/03/18 13:31:12 meraculous.pl main::run_meraculous_gap_closure 2705> No fastq files

found for library ECO

2014/03/18 13:31:12 meraculous.pl main:: 711> Stage meraculous_gap_closure failed (0.001786

seconds)

2014/03/18 13:31:12 meraculous.pl main:: 771> ERRORS ENCOUNTERED!

2014/03/18 13:31:12 meraculous.pl main:: 775> Total run time: 0.832589 seconds.

Often, in order not to overload the logs with repetitive error messages, the core executables write
errors and other troubleshooting info to stderr which gets captured by the pipeline into

corresponding .err files inside the stage directories. If meraculous.log doesn't provide enough
information about the root cause of the early exit, look for the last command that was attempted
and see where the stderr was redirected to. Then review the messages in that file. For example,
meraculous.log may have the following entry:

2014/03/26 12:08:49 M_Job_Set.pm M_Job_Set::run_job_set_local 765> Local command returned a

non-zero exit status! Check stderr outputs for more clues!

 Return value (65280) Command (perl gapPlacer.pl -b

../meraculous_merblast/blastMap.ECO.f0.merged -m 19 -i 215:10 -s

../meraculous_ono/ROUND_1/p7.1.srf

 -f ../meraculous_merblast/ECO.fastq.info.0 -c ../meraculous_merblast/contigs.fa -F 10 >

gapData.ECO.0 2> gapData.ECO.0.err)

The file gapData.ECO.0.err will contain more info on what went wrong:

$ tail gapData.ECO.0.err

 .

 .

 .

 Total reads placed in gaps = 487780 (aligned) + 1090614 (projected)

 Reading sequence file ../meraculous_import/ECO.fastq.0_00001...

 Couldn't open ../meraculous_import/ECO.fastq.0_00001

When running in cluster mode, the actual submission commands and any submission-related errors
returned are captured in the files linkedScript.template.submit.<date>.err inside the
stage directories. These can be useful in troubleshooting cluster compatibility issues. Submission
commands are formed by the cluster_submit.sh wrapper, and that is typically the script to edit
if one needs to modify the syntax of the submission (this is different from the job monitoring
commands which are issued and logged directly by the pipeline)

$ cat linkedScript.template.submit.20140630-122647.err

 qsub -v MERACULOUS_ROOT -cwd -r n -b n -S /bin/bash -w e -j y -N gapClosure -o run_2014-

06-27_15h58m30s/meraculous_gap_closure/JOB_SET_LOG.gapClosure

 -P plant-assembly.p -l h_rt=00:30:00 -l ram.c=1G -l h_vmem=1G -t 1-1 run_2014-06-

27_15h58m30s/meraculous_gap_closure/linkedScript.template

Problems with assembly results

The primary causes of poor assemblies are usually sequencing library quality and/or settings, depth
of coverage, and sequencing artifacts (e.g. untrimmed adapter). The output of

evaluate_meraculous_run.sh can give clues about the input data. The section MERCOUNTS of
the report, for instance, reports the weighted average depth based on the k-mer count.
If the estimate is below 15x, the assembly quality is likely to suffer.

Total 31-mers (over 3x) : 219691822

Total unique sequeces (over 3x) : 9308288

Weighted average 31-mer depth : 23.6

You should also refer to mercount.png and kha.png files for the actual distribution plots.

If the coverage is sufficient, check how well each library did during scaffolding. The section LIBRARY
MAPPING ANALYSIS can point to a library whose data is getting rejected for a specific reason.

 library total_mapped hits_omitted(rate) total_spans

 ECO1 6383564 6035869(.915) 74585

 ECO2 20522013 734836(.035) 317968

 Read mappings omitted for following reasons:

 library truncated_align singleton minlen

 ECO1 4036475 499394 0

 ECO2 510942 223894 0

5. TECHNICAL NOTES

5.1 Diploid assembly

Meraculous offers two methods for handling allelic variation in diploid assembly. Both methods
begin by identifying distinct diploid variant signatures in the contig graph, termed bubbles. Here we
define a bubble as pairs of UUtigs that share a common unique k-mer extension at both ends. In
other words, at both ends, bubble-UUtigs terminate immediately prior to the start of a homozygous
UUtig. Bubbles are then linked into chains of UUtig-(bubble-UUtig)n which are fused to produce
longer contiguous sequences. We refer to these new sequences as “diplotigs,” which represent
uncontested, heterozygosity-containing stretches of the genome. For every bubble chain, exactly
two phased diplotigs are produced, representing the two allelic haplotypes.

The phasing of the haplotypes is accomplished by relying on common reads or read pairs mapping to
neighboring bubble UUtigs in a multi-bubble chain. The chain is traversed one bubble at a time, and
the corresponding diplotigs are extended if, and only if, the next bubble can be reliably phased with

the current one. Otherwise, the extension process is terminated and a pair of truncated diplotigs is
reported. A new pair is then initiated at the point of termination, and the traversal of the bubble
chain can continue (this restriction is lifted if the parameter no_strict_haplotypes is set to 1). The
result is two sets of diplotigs (named in a pairwise fashion to help identify the alternative variants,
e.g., diplotig99_p1 & diplotig99_p2), representing all the variants in the genome that could be
detected as bubbles in the contig graph.

 The differences between the two diploid modes lie primarily in how the diplotigs are represented
and handled in the scaffolding and gap-closing stages that follow, and the choice between them
ultimately depends on the frequency and the nature of allelic variation in the given genome. By our
definition, UUtigs must terminate when the next k-mer extension is either an X- or and F-type kmer,
meaning a physical coverage gap or a fork. When the polymorphic rate is low with respect to the
chosen kmer size (rate < 1/k), we can expect most variant-containing UUtigs to be short and
terminate at both ends at an F-type kmer which represents the end of a variant region, meaning
most variant regions will manifest themselves as bubbles. However, when the polymorphic rate
increasing above 1/k, variant-containing UUtigs grow progressively larger (due to compounding
effects of multiple alleles) and have a much higher chance of terminating for reasons other than a
variant-induced F-type kmer, i.e., the cause of termination will more likely be a physical gap, a
repeat- or error-induced fork. This ultimately leads to more and more “uncaptured” variants which
would greatly hinder further scaffolding and gap closure. Simply filtering these ‘isotigs’ out by depth
is no longer a viable option since a big portion of the genome can end up in this type of contigs. To
account for this scenario, which is becoming more and more common with increasing read lengths
and quality (and therefore, higher optimal k), the second diploid assembly mode was developed
which actually takes advantage of highly divergent haplotypes. The two modes behave as follows:

Diploid mode 1: Only one contig of each variant diplotig pair is used in scaffolding while the
alternative variant is left as a singleton. This simplifies the assembly graph and leads to greater long-
range contiguity, and is the method to use for most common diploid scenarios. Read mapping
information which is used for scaffolding is generated for both variant diplotigs but is used in an
aggregate fashion when establishing contig linkage, meaning, the bubble is linked as a whole, even
though only one of the variants gets incorporated in a longer scaffold.
After the scaffolds are built, the unincorporated singleton diplotig-sisters can be swapped in to
replace the initially chosen variants as part of the haplotype phasing process which aims to produce
haplotype-consistent scaffolds. Gap closing then proceeds normally, using all mapped reads that are
thought to extend or project into gaps. At the end, in the file final.scaffolds.fa the singleton
alternative variants are removed, i.e., each scaffold is meant to represent a single, phased,
haplotype. The file final.scaffolds.fa.unfiltered contains all variant scaffolds, regardless of
size.

Diploid mode 2: This method can be thought of as the polar opposite of diploid mode 1. When the
polymorphism rate is excessively high, many variants no longer fit the “bubble” model. Instead, it
makes more sense to treat the assembly as two haploid genomes, i.e. preserve and take advantage
of the haplotype differences to gradually build up haplotype-specific scaffolds while identifying and
treating non-variant regions in a way that removes linkage ambiguity. Although we still try to detect

and resolve as many bubbles as possible during the meraculous_bubble stage, here it’s the non-
variant regions that are simpler to detect heuristically since, in a highly polymorphic genome, they
will tend to be smaller in size and display a well-recognizable kmer depth profile. We, therefore,
don’t attempt to actively phase individual variant contigs, leaving that to happen naturally since most
contigs are expected to connect only to contigs of the same haplotype. During gap closing, we avoid
anchoring our walks on reads that mapped to non-variant regions, thus allowing haplotype
consistency to be preserved while bridging gaps. At the end, the file final.scaffolds.fa contains
both haplotypes and, in cases of highly polypmorphic genomes, is expected to be roughly twice the
size of the diploid genome.

When assembling a large diploid genome where variant frequency may be far from uniform, it makes
sense to try both modes. In either case, setting the bubble_depth_threshold parameter (see
section 'Run configuration') appropriately will be a key to improving the assembly. Use the
pipeline’s options -restart and –start meraculous_bubble to retry the assembly in a new diploid
mode (the mode is set in the configuration file).

6. CITING AND FEEDBACK

If you use Meraculous in your research, please cite: []
We would also like to reference back to your publications on our site. Please email the reference,
the name of your lab, department and institution to egoltsman@lbl.gov.

We welcome your comments and bug reports. Please send them along with the meraculous.log file
to egoltsman@lbl.gov.

mailto:egoltsman@lbl.gov
mailto:egoltsman@lbl.gov

