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This tutorial gives you some of the technical background underlying genphen

that should enable you to understand and use this tool.

1 genphen quantifies genotype-phenotype associations

Genome wide association studies (GWAS) have become an important tool
for understanding the association between genotypes and phenotypes. With
GWAS we try to answer questions such as“what are the genotypes in the hu-
man genome which predispose to a disease?” or “what are the genotypes in
certain strains of mice which confer resistance against a specific virus?”. The
advances in high- throughput sequencing technology (HTSeq) have provided
massive genetic data and thus potentially countless applications for GWAS,
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with genotypes representing single nucleotide polymorphisms (SNPs) or sin-
gle amino acid polymorphisms (SAAPs) identified in a group of individuals,
whereas the phenotype can be any continuous or discrete trait or character-
sitic measured in each individual.

The classical (frequentist) statistical methods for GWAS rely on simple and
often inadequate methods to capture complex and potentially non-linear
genotype- phenotype associations. By quantifying the strength of the asso-
ciation using P-values, the frequentist methods often run into the multiple-
comparison problem, which when countered with a rigorous P-value correc-
tion results in large amounts of false-negatives. Additional disadvantages of
the P-values include the facts that they are difficult to interpret and compare
between studies.

With genphen we provide a hybrid method which reaps the benefits of two
approaches: i) sophisticated statistical learning approaches such as random
forest (RF) and support vector machine (SVM) to capture complex associ-
ations; ii) Bayesian inference using hierarchical models for accurate quan-
tification of the strength of association, whereby the models are robust to
outliers, consistent with the data and automatically deal with the multiple-
hypothesis problem.

Furthermore, genphen provides a set of additional procedures, including a
test for phylogenetic bias (used to discover biases in the data due to the
population structure), procedure for data reduction (used for the removal of
non-informative genotypes and thereby simplifying the otherwiese compu-
tationally costly GWAS), procedure for retrospective power analysis (RPA)
and a set of visualization procedures which enable the user to identify the
most promissing hits in the GWAS. Future updates will include procedures
for data augmentation (to augment small/noisy datasets) and methods for
gene prioritization based on network diffusion algorithms using functional
network data.
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2 Methods

2.1 Input

Two types of data are necessary to perform a genetic association study:

� genotype data (e.g. set of 1,000 SNPs found along the aligned genomes
of 10 individuals), provided in one of three possible input types:

– character vector of length N if only a single SNP/SAAP contain-
ing the genotypes of N individuals is to be analyzed.

– character matrix with dimensions N×M whereby the M columns
represent different SNPs/SAAPs, and the N rows represent the
different individuals.

– AAMultipleAlignment or DNAMultipleAlignment object (pack-
age Biostrings) - if the genotype data is a multiple sequence
alignment, composed of N sequences (individuals).

� phenotype data (experimental measurement made for each individual
such as body mass index, immune response, survival, case-control, etc.)
provided as a vector of length N .

2.2 Association Scores

Between each genotype (SNP/SAAP) and phenotype, genphen computes
several measures of association, each of which is explained in the following
paragraphs.

Classification accuracy (CA) CA measures the degree of accuracy with
which one can classify (predict) the alleles of a SNP from the phenotype.
If there exists a strong association between a particular SNP and the phe-
notype, one should be able to train a statistical model (using RF or SVM)
which accurately classifies the two alleles of that SNP solely from the phe-
notype data (with CA ≈ 1). Otherwise, the model should perform poorly,
with the classification accuracy of the model being approximately similar to
that of simple guessing (CA ≈ 0.5).

To estimate CA, genphen uses RF and SVM in a cross-validation (CV)
mode, computing a distribution of possible CAs for each SNP. During
each iteration of the CV procedure, a subset (e.g. 66%) of the genotype-
phenotype data is selected at random (with replacement) and used to train
a classifier, followed by testing (prediction) based on the remaining data.
To summarize CA, we compute its mean and 95% highest density interval
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(95% HDI), which is defined as the interval that covers 95% of the CA dis-
tribution, with every point inside the interval having higher credibility than
any point outside it. The SNPs with CA ≈ 1, and a narrow HDI have a
strong association with the phenotype.

Cohen’s κ statistic There is one pitfall where the CA estimate can be
misleading, and this is the case when the analyzed SNP is composed of
unevenly represented genetic states (alleles). For instance, the allele A of a
given SNP is found in 90% of the individuals, while the other allele T in only
10%. Such an uneven composition of the alleles can lead to a misleading
CA, i.e. even without learning, the algorithm can produce a high CA ≈ 0.9
by always predicting the dominant label. The Cohen’s κ statistics can be
used to estimate the degree of CA above the expected accuracy (CAexp):

κ = (CA− CAexp)/(1 − CAexp)

The κ statistics is a quality metric, which is to be used together with CA.
Cohen defines the following meaningful κ intervals: [κ<0]: “no agreement”,
[0.0-0.2]: “slight agreement”, [0.2-0.4]: “fair agreement” , [0.4-0.6]: “moderate
agreement”, [0.6-0.8]: “substantial agreement” and [0.8-1.0]: “almost perfect
agreement”. To summarize the Cohen’s κ, we compute its mean and 95%
highest density interval (95% HDI).

Bayesian inference with hierarchical models Given data from two groups
(two allele groups in a SNP), we ask the question of how much one group
differs from the other with respect to the phenotype observed in each group?
We developed the following Bayesian hierarchical generalized linear model
(GLM) to answer this question for i) continuous traits:

Yij ∼ Student-t(ν, αj + βj ∗Xij , σ)

αj ∼ Student-t(να, µα, σα)

βj ∼ Student-t(νβ, µβ, σβ)

ν ∼ Gamma(2.0, 0.1)

σ ∼ Half-Cauchy(0, 1)

µα ∼ Student-t(1, 0, 100)

µβ ∼ Student-t(1, 0, 10)

να ∼ Gamma(2.0, 0.1)

νβ ∼ Gamma(2.0, 0.1)

σα ∼ Half-Cauchy(0, 1)

σβ ∼ Half-Cauchy(0, 1)
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where i and j index the different individuals and SNPs; Y is the phenotype of
each individual; X is the indicator variable for the presence of a given geno-
type in individual i of SNP j; The genotype and phenotype are linked via a
Studen-t noise distribution, whose central tendency is described by the linear
combination of the two parameters α and β which are the inferred intercept
and slope coefficients of the GLM, with standard deviation σ and degrees of
freedom ν. The slope and intercept are each modelled with Student-t distri-
butions with three parameters µ, σ, and ν for the mean, standard deviation
and degrees of freedom, with their vague priors defined by the last six lines
of the above model. The overarching distributions of the mean parameters
of the intercepts and slopes are modelled via Student-t distributions defined
in 6th and 7th line of the above model. The hierarchical structure of the
model makes automatic corrections for the multiple-comparison problem.
The model was implemented in Stan 1.

We also implement a non-hierarchical (univariate) version of the model, in
which the SNPs are treated as independent by assigning individual priors
on their slope and intercept parameters as:

αj ∼ Student-t(1, 0, 100)

βj ∼ Student-t(1, 0, 10)

the last six lines of the above model are therefore excluded from the simpli-
fied univariate model; and ii) dichotomous traits:

Yij ∼ Binomial(αj + βj ∗Xij , Nij)

αj ∼ Student-t(να, µα, σα)

βj ∼ Student-t(νβ, µβ, σβ)

µα ∼ Student-t(1, 0, 100)

µβ ∼ Student-t(1, 0, 10)

να ∼ Gamma(2.0, 0.1)

νβ ∼ Gamma(2.0, 0.1)

σα ∼ Half-Cauchy(0, 1)

σβ ∼ Half-Cauchy(0, 1)

where i and j index the different genotypes and SNPs; Y is the number
of individuals with genotype i having the reference phenotype (e.g. pheno-
type=1); N is the count of all individuals with genotype i; X is the indi-
cator variable for the presence of genotype i in SNP j; The genotype and
phenotype are linked with a Binomial noise distribution whose proportion
parameter is described by the linear combination of the two parameters α

1Stan Development Team. 2017. Stan Modeling Language Users Guide and Reference
Manual, Version 2.17.0. http://mc-stan.org
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and β, which are the inferred intercept and slope coefficients of the GLM.
The slope and intercept are each modelled with a Student-t distribution with
three parameters µ, σ, and ν for the mean, standard deviation and degrees
of freedom, with their vague priors defined by the last six lines of the above
model. The overarching distributions of the mean parameters of the inter-
cepts and slopes are modelled via Student-t distributions defined in 4th and
5th line of the above model. The hierarchical structure of the model auto-
matically makes automatic corrections for the multiple-comparison problem.
The model was implemented in Stan.

We also implement a non-hierarchical (univariate) version of the model, in
which the SNPs are treated as independent by assigning individual priors
on their slope and intercept parameters as:

αj ∼ Student-t(1, 0, 100)

βj ∼ Student-t(1, 0, 10)

the last six lines of the above model are therefore excluded from the simpli-
fied univariate model.

We summarize each association using the mean of its slope coefficient (β)
and 95% (for instance) highest density interval (HDI), which is defined as
the interval that covers a 95% of the posterior distribution, with every point
inside the interval having a higher credibility than any point outside it. Thus
we can define an association as significant if the null-effect, i.e. β = 0 lies
outside the 95% HDI.

Potential scale reduction factor (PSRF), number of effective samples (Neff)
and information about divergences during the MCMC sampling are used to
check for a successful convergence and are presented to the user. Built-in
poterior predictive checks are also run to test the validity of our models.

Bhattacharyya coefficient (BC) The posterior distributions of the infered
parameters of the GLMs introduced above, can be used to perform predic-
tions, i.e. to simulate distributions of phenotype under the different genetic
states of each SNP. The simulated data for each genotype can then be used
to estimate the degree of overlap between the simulated phenotype distri-
butions in two genetic states of the SNPs. We quantified the overlap using
the Bhattacharyya coefficient (BC):

BC(p1, p2) =

∫
x

√
(p1(x) · p2(x))dx

where p1 and p2 are the simulated phenotype distributions in both genetic
states of a SNP. For a complete overlap BC = 1 (i.e. no difference between
the phenotype distributions in the two genetic state), and BC = 0 for no
overlap (significant difference).
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2.3 Retrospective power analysis

Assuming the true effect (e.g. of a SNP) is decently explained by the effect
estimated from the data, retrospective power analysis (contentious idea 2)
(RPA) can be conducted to compute the statistical power of each SNP.
genphen implements the following procedure for RPA:

1. Draw parameter estimates from the posterior probabilities and use
them to generate new data (simulated genotype), with an equal sample
size as the input

2. Analyze the simulated data with the univariate version of the models
introduced in the methods section 2, and summarize each association
according to the mean of the inferred slope coefficient (β) and the
appropriate HDI (e.g. 95% HDI)

3. Repeat steps 1-2 multiple times, after which we estimate the following
statistics for each SNP:

� Power-error - Ratio of RPA iterations in which a statistically
insignificant effect, i.e. slope coefficient with HDI containing the
the null effect. To estimate the power of a SNP: Power = 1 -
Power-error

� Sign-error - Ratio of RPA runs in which the slope coefficient has
a different sign compared to the originally estimated slope

� slope-mean - The mean of the slope coefficients computed during
the RPA

� slope-sd - The standard deviation of the slope coefficients com-
puted during the RPA

2.4 Phylogenetic Bias (B)

To control for potential phylogenetic biases (population structure), we de-
vised the following procedure. First, we use the complete genotype data (all
SNPs) to compute a kinship matrix (N ×N dissimilarity matrix for the N
individuals). Alternatively, the users can provide their own kinship matrix
(e.g. kinship estimated using more accurate phylogenetic methods). For
a group of individuals which belong to a group defined by an alleles of a
given SNP, we next compute their mean kinship distance using the kinship
matrix data. If the individuals in the group are related, the compute mean

2Gelman, Andrew, and John Carlin. ”Beyond power calculations: Assessing type S
(sign) and type M (magnitude) errors.” Perspectives on Psychological Science 9.6 (2014):
641-651.
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kinship distance must be significantly lower than the mean kinship distance
computed from the complete kinship matrix. We define the phylogenetic
bias as:

B = 1 − d̂g/d̂t

where d̂g is the mean kinship distance between the individuals who share the

genotype g; d̂t is the mean kinship distance of the complete kinship matrix.
For a complete phylogenetic bias, B = 1 (d̂g << d̂t), and B = 0 (or slightly
negative) for no bias. This estimate is computed for each SNP and genotype
group within each SNP.

To compute the phylogenetic bias associated with a SNP we compute:

B = 1 −min(d̂g1 , d̂g2)/d̂t

where d̂g1 and d̂g2 represent the mean kinship distance between the indi-

viduals who share the genotype (allele) g1 and g2 or a given SNP; d̂t is the
mean kinship distance in the complete kinship matrix. For a complete phy-
logenetic bias, B = 1 and B = 0 (or slightly negative) for no bias. This
estimate is computed for each SNP and each pair of genotypes.
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3 Case studies

3.1 I: Association between SNPs and a *continuous* phenotype

In the first case study, we show a typical genotype-phenotype analysis,
whereby the genotype is a multiple sequence alignment containing of 120
protein sequences (individuals), each composed of 8 amino acids (positions),
and a continuous phenotype measured for each individual.

> require(genphen)

> require(ggplot2)

> require(knitr)

> require(ggrepel)

> require(reshape)

> require(ape)

> require(xtable)

> options(xtable.floating = FALSE)

> # Set CX14

> Sys.setenv(USE_CXX14 = 1)

> # genotype as matrix (120x154), we will subset part of it:

> data(genotype.saap)

> # phenotype as vector (120 measurements):

> data(phenotype.saap)

Genotype-phenotype data First we show an overview of the distribution
of the phenotype across the genetic states found at each of the 8 studied
positions in the multiple sequence alignment.

> # Format the genotype-phenotype data, such that it can then

> # be visualized with ggplot

> df <- data.frame(genotype.saap[, 82:89],

+ phenotype = phenotype.saap,

+ stringsAsFactors = FALSE)

> df <- melt(data = df, id.vars = "phenotype")

> colnames(df) <- c("phenotype", "site", "genotype")

> df$site <- gsub(pattern = "X", replacement = '', x = df$site)

> df$site <- factor(x = df$site, levels = unique(df$site))

> # Visualization

> g <- ggplot(data = df)+

+ facet_wrap(facets = ~site, nrow = 2, scales = "free_x")+

+ geom_violin(aes(x = genotype, y = phenotype))+

+ ylab(label = "Continuous phenotype")+

+ xlab(label = "Genotypes")+

+ geom_point(aes(x = genotype, y = phenotype, col = genotype),

+ size = 1, shape = 21, position = position_jitterdodge())+

+ scale_color_discrete(name = "genotype")+

+ theme_bw(base_size = 14)+

+ theme(legend.position = "none")

> g
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Important remark: We recommended that the continuous phenotypes are
roughly normally (or T) distributed. While our models are designed to be
robust against outliers, we advise you to perform the data transformations of
skewed phenotypes (e.g. log-transformations) before the analysis. Here the
phenotype has already been log10-transformed and is normally distributed.

Association analysis Next, we perform the genetic association study for
continuous phenotypes with genphen using the following settings:

� hierarchical Bayesian model will be run with 2 MCMC chains com-
posed of 1,500 iterations each, including 500 warmup iterations.

� Random forest was selected as for the statistical learning, which will
be run in a cross-validation mode with 200 iterations.

� All estimates will be reported according to their mean and 95% HDI

� Retrospective power analysis with 5 iterations will be performed.

� The resulting stan object will be returned for debugging.

� Whenever possible, 2 cores will be used.

> # Run genphen

> c.out <- genphen::runGenphen(genotype = genotype.saap[, 82:89],

+ phenotype = phenotype.saap,

+ phenotype.type = "continuous",

+ model.type = "hierarchical",

+ mcmc.chains = 2,

+ mcmc.iterations = 1500,

+ mcmc.warmup = 500,

+ cores = 2,

+ hdi.level = 0.95,

+ stat.learn.method = "rf",

+ cv.iterations = 200,

+ rpa.iterations = 5,

+ with.stan.obj = TRUE)
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Typical way of visualizing the genphen results is with the following plot,
where each point represents a polymorphism (here SAAP) plotted according
to x = classification accuracy (CA), y = slope (β), color = Cohen’s κ. The
most promising SAAPs have CA and κ close to 1, with a non-null β, i.e. β
with 95% HDI that does not overlap with 0 (shown as a dashed line in the
figure). The labels show the SNP numbers (sites in the genotype data) and
the type of the polymorphism (e.g. nucleotide mutation T->A).

> # Get the scores data

> c.score <- c.out$scores

> # Some optional formatting for the SNPs (label = site : genotype1 -> genotype2)

> c.score$label <- paste(c.score$site, ":", c.score$g1,

+ "->", c.score$g0, sep = '')

> # Visualization

> g <- ggplot(data = c.score)+

+ geom_errorbar(aes(x = ca, ymin = beta.L, ymax = beta.H),

+ width = 0.015, col = "darkgray")+

+ geom_point(aes(x = ca, y = beta.mean, fill = kappa), shape = 21, size = 4)+

+ geom_text_repel(aes(x = ca, y = beta.mean, label = label), size = 5)+

+ theme_bw(base_size = 14)+

+ ylab(label = "Slope coefficient (with 95% HDI)")+

+ scale_x_continuous(name = "CA", limits = c(0, 1.05))+

+ geom_hline(yintercept = 0, linetype = "dashed")+

+ theme(legend.position = "top")+

+ scale_fill_distiller(palette = "Spectral", limits = c(-0.2, 1))+

+ guides(fill = guide_colorbar(barwidth = 10, barheight = 1.5))

> g
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The association scores are also shown in the following table:

> # Description:

> # Rounds digits to 2-decimal points, and concatinates the lower and upper

> # limits of the HDI to have a simpler visualization

> getHdiPretty <- function(x, digits = 2) {

+ x[1] <- round(x = x[1], digits = digits)

+ x[2] <- round(x = x[2], digits = digits)

+ return(paste("(", x[1], ", ", x[2], ")", sep = ''))

+ }

> c.score$beta.hdi <- apply(X = c.score[, c("beta.L", "beta.H")],

+ MARGIN = 1, getHdiPretty, digits = 2)

> c.score$ca.hdi <- apply(X = c.score[, c("ca.L", "ca.H")],

+ MARGIN = 1, getHdiPretty, digits = 2)

> c.score$kappa.hdi <- apply(X = c.score[, c("kappa.L", "kappa.H")],

+ MARGIN = 1, getHdiPretty, digits = 2)

> # Print table

> print(xtable(c.score[, c("label", "beta.mean", "beta.hdi", "ca",

+ "ca.hdi", "kappa", "kappa.hdi", "bc"), ],

+ align = rep(x = "c", times = 9, digits = 2)),

+ include.rownames = FALSE, size = "scriptsize")

label beta.mean beta.hdi ca ca.hdi kappa kappa.hdi bc
1:h->k 1.31 (-0.02, 2.66) 0.96 (0.91, 1) 0.00 (0, 0) 0.93
1:h->n 1.68 (0.43, 2.91) 0.96 (0.91, 1) -0.00 (-0.03, 0) 0.90
1:h->q 2.58 (2.03, 3.18) 0.81 (0.73, 0.89) 0.62 (0.44, 0.74) 0.73
1:k->n 0.52 (-1.37, 2.45) (NA, NA) (NA, NA) 0.98
1:q->k -0.57 (-2.07, 0.95) 0.96 (0.93, 1) 0.00 (0, 0) 0.98
1:q->n -0.28 (-1.47, 0.97) 0.93 (0.86, 1) -0.01 (-0.05, 0) 0.99
2:h->q 0.34 (-1.01, 1.61) 0.99 (0.97, 1) 0.00 (0, 0) 0.99
3:a->d -2.10 (-3.24, -0.95) 0.92 (0.75, 1) 0.82 (0.46, 1) 0.82
3:e->a 1.76 (0.99, 2.53) 0.79 (0.68, 0.88) 0.30 (0, 0.55) 0.86
3:e->d -0.36 (-1.32, 0.56) 0.82 (0.72, 0.91) 0.12 (-0.13, 0.44) 0.99
3:e->q 0.63 (-0.32, 1.63) 0.84 (0.75, 0.92) 0.04 (-0.13, 0.29) 0.98
3:q->a 1.04 (-0.09, 2.25) 0.77 (0.55, 0.93) 0.44 (0, 0.84) 0.94
3:q->d -0.67 (-2.05, 0.65) 0.63 (0.33, 0.8) 0.26 (-0.33, 0.6) 0.97
4:a->e 0.14 (-1.24, 1.45) 0.99 (0.95, 1) 0.00 (0, 0) 0.99
5:e->q 0.66 (-0.62, 2) 0.99 (0.95, 1) 0.00 (0, 0) 0.98
6:i->l -0.54 (-1.13, 0.08) 0.59 (0.48, 0.68) 0.10 (-0.15, 0.3) 0.98
6:i->v -0.79 (-1.98, 0.35) 0.78 (0.61, 0.9) 0.09 (-0.23, 0.36) 0.96
6:l->v -0.29 (-1.39, 0.71) 0.88 (0.79, 0.96) 0.17 (-0.11, 0.54) 0.99
7:k->a 1.55 (0.68, 2.48) 0.84 (0.75, 0.9) 0.14 (-0.11, 0.39) 0.89
7:k->q 1.19 (0.49, 1.87) 0.76 (0.65, 0.84) 0.23 (-0.01, 0.48) 0.92
7:k->t 0.68 (-0.51, 1.94) 0.97 (0.93, 1) -0.01 (-0.03, 0) 0.97
7:q->a 0.39 (-0.59, 1.45) 0.70 (0.47, 0.87) 0.31 (-0.21, 0.68) 0.98
7:t->a 0.73 (-0.85, 2.32) 0.71 (0.5, 1) -0.04 (-0.29, 0) 0.97
7:t->q 0.51 (-1.14, 2.21) 0.79 (0.55, 1) -0.04 (-0.15, 0) 0.98
8:p->h -0.49 (-1.61, 0.52) 0.91 (0.84, 0.98) 0.14 (-0.08, 0.49) 0.99

MCMC convergence Next, we want to check the validity our Bayesian in-
ference model by inspecting the genphen output named convergence which
contains information about the markov chain monte carlo (MCMC) simu-
lation done with R package rstan including potential scale reduction factor
(Rhat) and effective sampling size (ESS), as well as information concerning
potential convergence issues such as divergences and tree depth exceeded
warnings. For detailed information about each warning please read Stan
documentation (mc-stan.org/users/documentation/).
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> # Get the convergence output

> c.convergence <- c.out$convergence

> c.convergence$label <- paste(c.convergence$site, ":",

+ c.convergence$g1, "->",

+ c.convergence$g0, sep = '')

> c.convergence$label[c.convergence$site == ''] <- ''

> # Print table

> print(xtable(c.convergence[, c("label", "par", "Rhat", "n_eff")],

+ align = rep(x = "c", times = 5, digits = 2)),

+ include.rownames = FALSE, size = "scriptsize")
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label par Rhat n eff
sigma 1.00 2322.10

nu 1.00 2876.60
mu alpha 1.00 2065.40
mu beta 1.00 1743.82
sd alpha 1.00 1190.31
sd beta 1.00 818.30

nu alpha 1.00 3089.92
nu beta 1.00 2219.21

1:h->q alpha 1.00 2223.69
1:h->q beta 1.00 2295.28
1:h->k alpha 1.00 1580.25
1:h->k beta 1.00 1595.32
1:h->n alpha 1.00 1864.35
1:h->n beta 1.00 1550.52
1:q->k alpha 1.00 1932.65
1:q->k beta 1.00 1890.85
1:q->n alpha 1.00 2063.30
1:q->n beta 1.00 1983.85
1:k->n alpha 1.00 2178.03
1:k->n beta 1.00 2101.71
2:h->q alpha 1.00 1958.43
2:h->q beta 1.00 1989.55
3:e->d alpha 1.00 1812.75
3:e->d beta 1.00 1952.79
3:q->a alpha 1.00 2376.28
3:q->a beta 1.00 2613.77
3:q->d alpha 1.00 2526.01
3:q->d beta 1.00 2136.28
3:a->d alpha 1.00 2009.21
3:a->d beta 1.00 2123.96
3:e->q alpha 1.00 1819.34
3:e->q beta 1.00 1792.12
3:e->a alpha 1.00 1566.82
3:e->a beta 1.00 1677.90
4:a->e alpha 1.00 1493.02
4:a->e beta 1.00 1541.97
5:e->q alpha 1.00 1692.98
5:e->q beta 1.00 1704.71
6:i->l alpha 1.00 2576.61
6:i->l beta 1.00 2342.02
6:i->v alpha 1.00 1949.41
6:i->v beta 1.00 1989.83
6:l->v alpha 1.00 1962.65
6:l->v beta 1.00 1983.70
7:k->t alpha 1.00 1963.29
7:k->t beta 1.00 2108.47
7:k->q alpha 1.00 2120.38
7:k->q beta 1.00 2241.52
7:k->a alpha 1.00 1812.92
7:k->a beta 1.00 1862.27
7:t->q alpha 1.00 2347.15
7:t->q beta 1.00 2852.23
7:t->a alpha 1.00 2500.51
7:t->a beta 1.00 2986.02
7:q->a alpha 1.00 2012.86
7:q->a beta 1.00 2254.11
8:p->h alpha 1.00 1757.54
8:p->h beta 1.00 1893.79
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MCMC sampling issues Please refer to the Stan documentation to under-
stand the content of the stan object (mc-stan.org/users/documentation/).

> # We can visualize the different MCMC properties as follows:

> s1 <- rstan::stan_diag(object = c.out$stan.obj, information = "sample")

> s2 <- rstan::stan_diag(object = c.out$stan.obj, information = "stepsize")

> s3 <- rstan::stan_diag(object = c.out$stan.obj, information = "treedepth")

> s4 <- rstan::stan_diag(object = c.out$stan.obj, information = "divergence")

Posterior predictive checks To test the validity of the Bayesian models,
we perform posterior predictive checks by predicting new data using the
inferred parameters for each SNPs. This is done automatically by genphen.
We can evaluate the goodness of the model by comparing the predicted and
observed data.
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Retrospective power analysis The power of the SNPs having non-significant
effects in the main analysis was not analyzed.

> # Get the RPA output

> c.rpa <- c.out$rpa

> c.rpa$label <- paste(c.rpa$site, ":", c.rpa$g1, "->", c.rpa$g0, sep = '')

> g <- ggplot(data = c.rpa)+

+ geom_text_repel(aes(x = rpa.power.error, y = rpa.sign.error, label = label),

+ arrow = arrow(length = unit(0.02, "npc")), size = 4)+

+ theme_bw(base_size = 14)

> g
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> print(xtable(c.rpa[, c("label", "rpa.power.error", "rpa.sign.error",

+ "rpa.beta.mean", "rpa.beta.sd", "rpa.N")],

+ align = rep(x = "c", times = 7, digits = 2)),

+ include.rownames = FALSE, size = "small")

label rpa.power.error rpa.sign.error rpa.beta.mean rpa.beta.sd rpa.N
1:h->q 0.00 0.00 2.24 0.36 5
1:h->k
1:h->n 0.80 0.00 1.93 0.86 5
1:q->k
1:q->n
1:k->n
2:h->q
3:e->d
3:q->a
3:q->d
3:a->d 0.20 0.00 -2.17 0.76 5
3:e->q
3:e->a 0.00 0.00 1.76 0.27 5
4:a->e
5:e->q
6:i->l
6:i->v
6:l->v
7:k->t
7:k->q 0.40 0.00 0.99 0.62 5
7:k->a 0.40 0.00 1.24 0.55 5
7:t->q
7:t->a
7:q->a
8:p->h

Phylogenetic bias control Next, we compute the phylogenetic bias of each
mutation, shown in the table below:
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> # Compute the phylogenetic bias

> bias <- runPhyloBiasCheck(genotype = genotype.saap,

+ input.kinship.matrix = NULL)

> # Extract kinship matrix

> kinship.matrix <- bias$kinship.matrix

> # Extract the bias associated with mutations of the sites which

> # were included in the association analysis

> mutation.bias <- bias$bias

> # To make site id concordant with data

> mutation.bias$site <- mutation.bias$site - 81

> mutation.bias <- merge(x = c.score, y = mutation.bias,

+ by = c("site", "g1", "g0"))

> # Show the bias table

> print(xtable(mutation.bias[, c("site", "g1", "g0", "bias.g1", "bias.g0")],

+ align = rep(x = "c", times = 6, digits = 2)),

+ include.rownames = FALSE, size = "small")

site g1 g0 bias.g1 bias.g0
1 h k 0.04 1.00
1 h n 0.04 0.43
1 h q 0.04 0.15
1 k n 1.00 0.43
1 q k 0.15 1.00
1 q n 0.15 0.43
2 h q 0.01 1.00
3 a d 0.29 0.43
3 e a 0.04 0.29
3 e d 0.04 0.43
3 e q 0.04 0.19
3 q a 0.19 0.29
3 q d 0.19 0.43
4 a e 0.01 1.00
5 e q 0.00 1.00
6 i l 0.10 0.07
6 i v 0.10 0.86
6 l v 0.07 0.86
7 k a 0.04 0.46
7 k q 0.04 0.09
7 k t 0.04 0.79
7 q a 0.09 0.46
7 t a 0.79 0.46
7 t q 0.79 0.09
8 p h 0.03 0.86

We use the kinship matrix to perform hierarchical clustering, visualizing the
population strcuture and two examples (mutations) with genotype 1 marked
with blue and genotype 2 marked with orange in either case. Individuals not
covered by either genotype are marked with gray color. The shown examples
differ in the degree of phylogenetic bias.

> color.a <- character(length = nrow(genotype.saap))

> color.a[1:length(color.a)] <- "gray"

> color.a[which(genotype.saap[, 82] == "h")] <- "orange"

> color.a[which(genotype.saap[, 82] == "q")] <- "blue"

> color.b <- character(length = nrow(genotype.saap))

> color.b[1:length(color.b)] <- "gray"

> color.b[which(genotype.saap[, 84] == "a")] <- "orange"

> color.b[which(genotype.saap[, 84] == "d")] <- "blue"

> c.hclust <- hclust(as.dist(kinship.matrix), method = "average")

> par(mfrow = c(1, 2), mar = c(0,0,1,0) + 0.1)

> plot(as.phylo(c.hclust), tip.color = color.a, cex = 0.6,
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+ type = "fan", main = "B = 0.15")

> plot(as.phylo(c.hclust), tip.color = color.b, cex = 0.6,

+ type = "fan", main = "B = 0.43")

B = 0.15
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3.2 II: Association between SNP and a *dichotomous* phenotype

In the second case study we show you how to use genphen in case of di-
chotomous phenotypes. Here, the genotype is a single SNP in a study of
51 individuals, while the phenotype is a vector of 51 dichotomous measure-
ments for each individual. First we show an overview of the distribution of
the phenotype in the two genotypes of the studied SNP.

> # Genotype inputs:

> data(genotype.snp)

> # Select a single SNP

> genotype.snp <- genotype.snp[, 10]

> # Generate phenotype inputs:

> dichotomous.phenotype.snp <- c(rbinom(n = 20, size = 1, prob = 0.25),

+ rbinom(n = 31, size = 1, prob = 0.75))

> # Format the genotype-phenotype data, such that it can then

> # be visualized with ggplot

> df <- data.frame(genotype.snp,

+ phenotype = dichotomous.phenotype.snp,

+ stringsAsFactors = FALSE)

> df <- melt(data = df, id.vars = "phenotype")

> colnames(df) <- c("phenotype", "site", "genotype")

> # Visualization

> g <- ggplot(data = df)+

+ geom_point(aes(x = genotype, y = phenotype, col = genotype), size = 1,

+ shape = 21, position = position_jitterdodge(jitter.width = 0.2,

+ jitter.height = 0.1,

+ dodge.width = 0.5))+

+ xlab(label = "Genotypes")+

+ scale_y_continuous(name = "Phenotype", breaks = c(0, 1), labels = c(0, 1))+
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+ theme_bw(base_size = 14)+

+ theme(legend.position = "none")

> g
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Important remark: The dichotomous phenotype can be provided as both
numeric or character vector. The elements of these vectors are then encoded
into two categories (1 and 0). If the user has a preference of how the encoding
has to be done (which category is to be encoded to 1 or 0), the encoding
should be done prior to the analysis.

Association analysis Next, we perform the genetic association study for
dichotomous phenotypes with genphen using the following settings:

� univariate Bayesian model will be run with 2 MCMC chains composed
of 1500 iterations each, including 500 warmup iterations.

� Random forest was selected as for the statistical learning, which will
be run in a cross-validation mode with 500 iterations.

� All estimates will be reported according to their mean and 95% HDI

� No retrospective power analysis.

� No stan object.

� Whenever possible, 2 cores will be used.

> # run genphen

> d.out <- genphen::runGenphen(genotype = genotype.snp,

+ phenotype = dichotomous.phenotype.snp,

+ phenotype.type = "dichotomous",

+ model.type = "univariate",

+ mcmc.chains = 2,

+ mcmc.iterations = 1500,

+ mcmc.warmup = 500,
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+ cores = 2,

+ hdi.level = 0.95,

+ stat.learn.method = "rf",

+ cv.iterations = 200,

+ rpa.iterations = 0,

+ with.stan.obj = FALSE)

Once again we visualize the genphen results is with a plot in which the point
represents the SNP, plotted according to x = classification accuracy (CA),
y = slope (β) with error bars representing the 95% HDI, color = Cohen’s κ.

> # Get scores data

> d.score <- d.out$scores

> # Some optional formatting

> d.score$label<-paste(d.score$site, ":", d.score$g1, "->", d.score$g0, sep = '')

> # Visualization

> g <- ggplot(data = d.score)+

+ geom_errorbar(aes(x = ca, ymin = beta.L, ymax = beta.H),

+ width = 0.015, col = "darkgray")+

+ geom_point(aes(x = ca, y = beta.mean, fill = kappa), shape = 21, size = 4)+

+ geom_text_repel(aes(x = ca, y = beta.mean, label = label), size = 5)+

+ theme_bw(base_size = 14)+

+ ylab(label = "Slope coefficient (with 95% HDI)")+

+ scale_x_continuous(name = "CA", limits = c(0, 1.05))+

+ geom_hline(yintercept = 0, linetype = "dashed")+

+ theme(legend.position = "top")+

+ scale_fill_distiller(palette = "Spectral", limits = c(-0.2, 1))+

+ guides(fill = guide_colorbar(barwidth = 10, barheight = 1.5))

> g
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Posterior predictive checks We again evaluate the goodness of our model
by comparing the predicted and observed data.
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4 Extra Utilities

4.1 Data Reduction

The methods implemented in genphen are statistically superior to the ones
implemented by most classical (frequentist) tools for GWAS. The major
challenge, however, is the substantially increased computational cost when
analyzing the effects of hundreeds of thousands of SNPs. Inspired by the
biological assumption that the major fraction of the studied SNPs are non-
informative (genetic noise) with respect to the selected phenotype, various
data reduction techniques can be implemented to quickly scan the SNP
scpae and discard a substantial portion of the the SNPs deemed clearly
non-informative.

Our data reduction procedure includes the following steps:

1. We use the complete genotype and phenotype data to train a model
using RF, quantifying the association between each SNP and the phe-
notype using the RF’s variable importance measure (impurity).

2. Next, we rank the SNPs according to their their importance. One can
study the distribution of variable importances to get an insight into
the structure of the importances values and potentially detect outlying
patterns.

3. We create a set of ’diagnostic points’, i.e. SNPs with specific ranks in
terms of their importance value, which will next be evaluated with a
the standard genphen approach.

4. By plotting the estimated association scores as a function of the rank
of importance, we can roughly determine the importance rank at which
the SNPs no longer carry any signal of association, and discard that
portian from the data before conducting the main analysis using the
standard genphen method.

Using a case study based on a simulated data of 50,000 SNPs (60 subjects),
we elaborate the typical data reduction steps in more detail.

> # Simulate 50,000 SNPs and 60 phenotypes

> set.seed(seed = 551155)

> g1 <- replicate(n=5*10^4, expr=as.character(rbinom(n=30, size = 1,prob = 0.49)))

> g2 <- replicate(n=5*10^4, expr=as.character(rbinom(n=30, size = 1,prob = 0.51)))

> gen <- rbind(g1, g2)

> phen <- c(rnorm(n = 30, mean = 3, sd = 3), rnorm(n = 30, mean = 5, sd = 3))

We then select a set of 41 ’diagnostic points’ (SNPs) in range 1-50,000 and
run the diagnosis. One can also decide not to analyze any ’diagnostic points’,
in which case only the variable importance will be evaluated and returned.
The typical runtime for the provided dataset (60 × 50, 000) is few minutes.
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> # Set diagnostic points (in range 1-50,000)

> diagnostic.points <- c(seq(from = 0, to = 100, by = 20),

+ seq(from = 200, to = 1000, by = 200),

+ seq(from = 2000, to = 50000, by = 3000))

> diagnostic.points[1] <- 1

> # Run diagnostics

> diag <- genphen::runDiagnostics(genotype = gen,

+ phenotype = phen,

+ phenotype.type = "continuous",

+ rf.trees = 50000,

+ mcmc.chains = 2,

+ mcmc.iterations = 1500,

+ mcmc.warmup = 500,

+ cores = 2,

+ hdi.level = 0.95,

+ diagnostic.points = diagnostic.points)

> # Get diagnosis scores, and mark effects as significant|not-significant

> diag.stats <- diag$scores

> diag.stats$significant <- ifelse(test = diag.stats$beta.L <= 0

+ & diag.stats$beta.H >= 0,

+ yes = FALSE, no = TRUE)

We can evaluate the distribution of importance scores, and include additional
’diagnostic points’ to be analyzed.

> # Visualization

> g <- ggplot(data = diag$importance.scores)+

+ geom_line(aes(x = importance.rank, y = importance))+

+ xlab("Rank")+

+ ylab("Importance")+

+ theme_bw(base_size = 14)+

+ scale_x_continuous(trans = "log10")+

+ annotation_logticks(base = 10, sides = "b")

> g
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By visualizing the estimated slope coefficients of the diagnosed SNPs, we
can observe an enrichment of non-informative (statistically not-significant)
SNPs beyond the rank of 1,000. We can thus narrow down our interval of
interest to the top-ranked 2,500 SNPs, yielding massive data reduction of
95%, while still retaining many SNPs with small effects.

> # Visualization

> g <- ggplot(data = diag.stats)+

+ geom_errorbar(aes(x = diagnostic.points, ymin = beta.L, ymax = beta.H),

+ col = "gray", width = 0.05)+

+ geom_point(aes(x = diagnostic.points, y = beta.mean, col = significant),

+ size = 2)+

+ geom_hline(yintercept = 0, linetype = "dashed", col = "gray")+

+ theme_bw(base_size = 14)+

+ xlab(label = "Rank")+

+ ylab(label = "Slope coefficient (with 95% HDI)")+

+ scale_x_continuous(trans = "log10",

+ breaks = c(1, 10, 100, 10^3, 10^4,5*10^4),

+ labels = c(1, 10, 100, 10^3, 10^4, 5*10^4))+

+ annotation_logticks(sides = "b")+

+ theme(legend.position = "top")

> g
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