systemPipeR Workflow for Ribo-Seq and polyRibo-Seq Experiments

Piyada Juntawong, Jeremie Bazin, Maureen Hummel, Julia Bailey-Serres and Thomas Girke
Email contact: thomas.girke@ucr.edu

December 7, 2015

Contents

1 Introduction
1.1 Experimental design L e e

2 Load workflow environment
2.1 Load packages and sampledata.
2.2 Experiment definition provided by targets file L Lo

3 Read preprocessing
3.1 Quality filtering and adaptor trimming L
3.2 FASTQ quality report

4 Alignments
4.1 Read mapping with Bowtie2/Tophat2
4.2 Read and alignment stats e
4.3 Create symbolic links for viewing BAM files in IGV

5 Read distribution across genomic features
5.1 Obtain feature types L
5.2 Count and plot reads of any length
5.3 Count and plot reads of specific lengths

6 Adding custom features to workflow
6.1 Predicting uORFs in 5" UTR regions
6.2 Adding custom features to other feature types
6.3 Predicting SORFs in intergenic regions L

7 Genomic read coverage along transripts or CDSs
7.1 Binned CDS coverage to compare many transcripts Lo
7.2 Coverage upstream and downstream of start and stopcodons L.
7.3 Combined coverage for both binned CDS and start/stop codons
7.4 Nucleotide level coverage along entire transcripts/CDSs

8 Read quantification per annotation range
8.1 Read counting with summarizeOverlaps in parallel mode using multiple cores
8.2 Sample-wise correlation analysis

9 Analysis of differentially expressed genes with edgeR
9.1 GO term enrichment analysis of DEGs
9.1.1 Obtain gene-to-GO mMappings e
9.1.2 Batch GO term enrichment analysis

systemPipeR Ribo-Seq Workflow 1 Introduction

9.1.3 Plot batch GO term results 15
10 Differential ribosome loading analysis (translational efficiency) 16
11 Clustering and heat maps 17
12 Version Information 18
13 Funding 19
14 References 19

1 Introduction

Ribo-Seq and polyRibo-Seq are a specific form of RNA-Seq gene expression experiments utilizing mRNA subpopulations
directly bound to ribosomes. Compared to standard RNA-Seq, their readout of gene expression provides a better approx-
imation of downstream protein abundance profiles due to their close association with translational processes. The most
important difference among the two is that polyRibo-Seq utilizes polyribosomal RNA for sequencing, whereas Ribo-Seq
is a footprinting approach restricted to sequencing RNA fragments protected by ribosomes (Ingolia et al., 2009; Aspden
et al., 2014; Juntawong et al., 2015).

The workflow presented in this vignette contains most of the data analysis steps described by Juntawong et al. (2014)
including functionalities useful for processing both polyRibo-Seq and Ribo-Seq experiments. To improve re-usability and
adapt to recent changes of software versions (e.g. R, Bioconductor and short read aligners), the code has been optimized
accordingly. Thus, the results obtained with the updated workflow are expected to be similar but not necessarily identical
with the published results described in the original paper.

Relevant analysis steps of this workflow include read preprocessing, read alignments against a reference genome, counting
of reads overlapping with a wide range of genomic features (e.g. CDSs, UTRs, uORFs, rRNAs, etc.), differential gene
expression and differential ribosome binding analyses, as well as a variety of genome-wide summary plots for visualizing
RNA expression trends. Functions are provided for evaluating the quality of Ribo-seq data, for identifying novel expressed
regions in the genomes, and for gaining insights into gene regulation at the post-transcriptional and translational levels.
For example, the functions genFeatures and featuretypeCounts can be used to quantify the expression output for
all feature types included in a genome annotation (e.g. genes, introns, exons, miRNAs, intergenic regions, etc.). To
determine the approximate read length of ribosome footprints in Ribo-Seq experiments, these feature type counts can be
obtained and plotted for specific read lengths separately. Typically, the most abundant read length obtained for translated
features corresponds to the approximate footprint length occupied by the ribosomes of a given organism group. Based on
the results from several Ribo-Seq studies, these ribosome footprints are typically ~30 nucleotides long (Ingolia et al., 2011,
2009; Juntawong et al., 2014). However, their length can vary by several nucleotides depending upon the optimization
of the RNA digestion step and various factors associated with translational regulation. For quality control purposes of
Ribo-Seq experiments it is also useful to monitor the abundance of reads mapping to rRNA genes due to the high rRNA
content of ribosomes. This information can be generated with the featuretypeCounts function described above.

Coverage trends along transcripts summarized for any number of transcripts can be obtained and plotted with the
functions featureCoverage and plotfeatureCoverage, respectively. Their results allow monitoring of the phasing
of ribosome movements along triplets of coding sequences. Commonly, high quality data will display here for the first
nucleotide of each codon the highest depth of coverage computed for the 5 ends of the aligned reads.

Ribo-seq data can also be used to evaluate various aspects of translational control due to ribosome occupancy in upstream
open reading frames (uUORFs). The latter are frequently present in (or near) 5' UTRs of transcripts. For this, the function
predORFs can be used to identify ORFs in the nucleotide sequences of transcripts or their subcomponents such as UTR
regions. After scaling the resulting ORF coordinates back to the corresponding genome locations using scaleRanges,
one can use these novel features (e.g. uORFs) for expression analysis routines similar to those employed for pre-existing
annotations, such as the exonic regions of genes. For instance, in Ribo-Seq experiments one can use this approach to
systematically identify all transcripts occupied by ribosomes in their uUORF regions. The binding of ribosomes to uORF

systemPipeR Ribo-Seq Workflow 2 Load workflow environment

regions may indicate a regulatory role in the translation of the downstream main ORFs and/or translation of the uORFs
into functionally relevant peptides.

1.1 Experimental design

Typically, users want to specify here all information relevant for the analysis of their NGS study. This includes detailed
descriptions of FASTQ files, experimental design, reference genome, gene annotations, etc.

2 Load workflow environment

2.1 Load packages and sample data

The systemPipeR package needs to be loaded to perform the analysis steps shown in this report (Girke, 2014). The
package allows users to run the entire analysis workflow interactively or with a single command while also generating the
corresponding analysis report. For details see systemPipeR’s main vignette.

library(systemPipeR)

Load workflow environment with sample data into your current working directory. The sample data are described here.

library(systemPipeRdata)
genWorkenvir (workflow="ribseq")
setwd("riboseq")

In the workflow environments generated by genWorkenvir all data inputs are stored in a data/ directory and all analysis
results will be written to a separate results/ directory, while the systemPipeRIBOseq.Rnw script and the targets file
are expected to be located in the parent directory. The R session is expected to run from this parent directory. Additional
parameter files are stored under param/.

To work with real data, users want to organize their own data similarly and substitute all test data for their own data.
To rerun an established workflow on new data, the initial targets file along with the corresponding FASTQ files are
usually the only inputs the user needs to provide.

If applicable users can load custom functions not provided by systemPipeR. Skip this step if this is not the case.

source ("systemPipeRIBOseq_Fct.R")

2.2 Experiment definition provided by targets file

The targets file defines all FASTQ files and sample comparisons of the analysis workflow.

targetspath <- system.file("extdata", "targets.txt", package="systemPipeR")
targets <- read.delim(targetspath, comment.char = "#")[,1:4]

targets

FileName SampleName Factor Samplelong
1 ./data/SRR446027_1.fastq M1A M1 Mock.1h.A
2 ./data/SRR446028_1.fastq M1B M1 Mock.1h.B
3 ./data/SRR446029_1.fastq A1A Al Avr.1h.A
4 ./data/SRR446030_1.fastq A1B Al Avr.1h.B
5 ./data/SRR446031_1.fastq V1A Vi Vir.1h.A
6 ./data/SRR446032_1.fastq ViB Vi Vir.1h.B
7 ./data/SRR446033_1.fastq M6A M6 Mock.6h.A
8 ./data/SRR446034_1.fastq M6B M6 Mock.6h.B

http://www.bioconductor.org/packages/devel/bioc/vignettes/systemPipeR/inst/doc/systemPipeR.html
http://www.bioconductor.org/packages/devel/bioc/vignettes/systemPipeR/inst/doc/systemPipeR.html#load-sample-data-and-workflow-templates

systemPipeR Ribo-Seq Workflow 3 Read preprocessing

9 ./data/SRR446035_1.fastq A6A A6 Avr.6h.A
10 ./data/SRR446036_1.fastq A6B A6 Avr.6h.B
11 ./data/SRR446037_1.fastq V6A V6 Vir.6h.A
12 ./data/SRR446038_1.fastq V6B V6 Vir.6h.B
13 ./data/SRR446039_1.fastq M12A M12 Mock.12h.A
14 ./data/SRR446040_1.fastq M12B M12 Mock.12h.B
15 ./data/SRR446041_1.fastq A12A A12 Avr.12h.A
16 ./data/SRR446042_1.fastq A12B A12 Avr.12h.B
17 ./data/SRR446043_1.fastq V12A Vi2 Vir.12h.A
18 ./data/SRR446044_1.fastq V12B Vi2 Vir.12h.B

3 Read preprocessing

3.1 Quality filtering and adaptor trimming

The following custom function trims adaptors hierarchically from the longest to the shortest match of the right end of the
reads. If internalmatch=TRUE then internal matches will trigger the same behavior. The argument minpatternlength
defines the shortest adaptor match to consider in this iterative process. In addition, the function removes reads containing
Ns or homopolymer regions. More detailed information on read preprocessing is provided in systemPipeR’s main vignette.

args <- systemArgs(sysma="param/trim.param", mytargets="targets.txt")

fctpath <- system.file("extdata", "custom_Fct.R", package="systemPipeR")

source (fctpath)

iterTrim <- ".iterTrimbatchl(fq, pattern='ACACGTCT', internalmatch=FALSE, minpatternlength=6,
Nnumber=1, polyhomo=50, minreadlength=16, maxreadlength=100)"

preprocessReads (args=args, Fct=iterTrim, batchsize=100000, overwrite=TRUE, compress=TRUE)

writeTargetsout (x=args, file="targets_trim.txt", overwrite=TRUE)

3.2 FASTQ quality report

The following seeFastq and seeFastqPlot functions generate and plot a series of useful quality statistics for a set of
FASTQ files including per cycle quality box plots, base proportions, base-level quality trends, relative k-mer diversity,
length and occurrence distribution of reads, number of reads above quality cutoffs and mean quality distribution. The
results are written to a PDF file named fastqReport.pdf.

args <- systemArgs(sysma="param/tophat.param", mytargets="targets_trim.txt")
fqlist <- seeFastq(fastq=infilel(args), batchsize=100000, klength=8)

pdf ("./results/fastqReport.pdf", height=18, width=4*length(fqlist))
seeFastqPlot (fqlist)

dev.off ()

systemPipeR Ribo-Seq Workflow 4 Alignments

T T T T T T T T T T T T T ey -y .y
ﬂﬂﬂ“ &!ﬁﬂ Hﬂﬂﬂ:Eﬁﬁﬁz“ﬂﬂﬁzﬁﬂ&ﬁéﬂ“ﬂﬂkﬂﬂﬁu ﬂ“ﬂ“ ﬂuﬂ“ ﬂuﬂ“ ﬂﬂﬂﬂ "ﬂ“ﬂfﬁﬂﬂﬂznﬂuﬁlﬂﬂﬂﬂéﬂuﬂﬁ ﬂﬂ"ﬂ
\\\\\\\W\N\N\\%N\\\\

‘ ‘ ‘ ‘ ‘E ‘§ ‘5 |g |: ‘g ‘g ‘

M ok N ol b ko n

il ’II
: L] L]
f

Figure 1: QC report for 18 FASTQ files.

4 Alignments

4.1 Read mapping with Bowtie2/Tophat?2

The NGS reads of this project will be aligned against the reference genome sequence using Bowtie2/TopHat2 (Kim
et al., 2013; Langmead and Salzberg, 2012). The parameter settings of the aligner are defined in the tophat .param file.

args <- systemArgs(sysma="param/tophat.param", mytargets="targets.txt")
sysargs(args) [1] # Command-line parameters for first FASTQ file

Submission of alignment jobs to compute cluster, here using 72 CPU cores (18 gsub processes each with 4 CPU cores).

moduleload(modules (args))

system("bowtie2-build ./data/tairl0.fasta ./data/tairl0.fasta")

resources <- list(walltime="20:00:00", nodes=pasteO("1l:ppn=", cores(args)), memory="10gb")

reg <- clusterRun(args, conffile=".BatchJobs.R", template="torque.tmpl", Njobs=18, runid="01",
resourcelist=resources)

waitForJobs(reg)

Check whether all BAM files have been created
file.exists(outpaths(args))

4.2 Read and alignment stats

The following provides an overview of the number of reads in each sample and how many of them aligned to the reference.

read_statsDF <- alignStats(args=args)
write.table(read_statsDF, "results/alignStats.xls", row.names=FALSE, quote=FALSE, sep="\t")

read.table(system.file("extdata", "alignStats.xls", package="systemPipeR"), header=TRUE) [1:4,]

FileName Nreads2x Nalign Perc_Aligned Nalign_ Primary Perc_Aligned_Primary

1 M1A 192918 177961 92.24697 177961 92.24697
M1B 197484 159378 80.70426 159378 80.70426
3 A1A 189870 176055 92.72397 176055 92.72397

systemPipeR Ribo-Seq Workflow 5 Read distribution across genomic features
4 A1B 188854 147768 78.24457 147768 78.24457

4.3 Create symbolic links for viewing BAM files in IGV

The symLink2bam function creates symbolic links to view the BAM alignment files in a genome browser such as IGV.
The corresponding URLs are written to a file with a path specified under urlfile, here |GVurl.txt.
symLink2bam(sysargs=args, htmldir=c("~/.html/", "somedir/"),
urlbase="http://biocluster.ucr.edu/ tgirke/",
urlfile="./results/IGVurl.txt")

5 Read distribution across genomic features

The genFeatures function generates a variety of feature types from TxDb objects using utilities provided by the Ge-
nomicFeatures package.

5.1 Obtain feature types

The first step is the generation of the feature type ranges based on annotations provided by a GFF file that can be
transformed into a TxDb object. This includes ranges for mRNAs, exons, introns, UTRs, CDSs, miRNAs, rRNAs, tRNAs,
promoter and intergenic regions. In addition, any number of custom annotations can be included in this routine.

library(GenomicFeatures)

file <- system.file("extdata/annotation", "tairl0.gff", package="systemPipeRdata")

txdb <- makeTxDbFromGFF(file=file, format="gff3", organism="Arabidopsis")

feat <- genFeatures(txdb, featuretype="all", reduce_ranges=TRUE, upstream=1000, downstream=0,
verbose=TRUE)

5.2 Count and plot reads of any length

The featuretypeCounts function counts how many reads in short read alignment files (BAM format) overlap with
entire annotation categories. This utility is useful for analyzing the distribution of the read mappings across feature
types, e.g. coding versus non-coding genes. By default the read counts are reported for the sense and antisense strand of
each feature type separately. To minimize memory consumption, the BAM files are processed in a stream using utilities
from the Rsamtools and GenomicAlignment packages. The counts can be reported for each read length separately
or as a single value for reads of any length. Subsequently, the counting results can be plotted with the associated
plotfeaturetypeCounts function.

The following generates and plots feature counts for any read length.

library(ggplot2); library(grid)
fc <- featuretypeCounts(bfl=BamFileList (outpaths(args), yieldSize=50000), grl=feat,
singleEnd=TRUE, readlength=NULL, type="data.frame")
p <- plotfeaturetypeCounts(x=fc, graphicsfile="results/featureCounts.pdf", graphicsformat="pdf",
scales="fixed", anyreadlength=TRUE, scale_length_val=NULL)

systemPipeR Ribo-Seq Workflow 5 Read distribution across genomic features

cds_red
~exon_red
fiveUTR red
intergenic
intron_red
MRNAred
NcRNAred
promoter_red
rRNA"red
tRNAred
threeUTR red

N Ie; pripe 1°II
5 = s
> w >

cds_red

. exon_red
fiveUTR red
intergénic
intron_red
MRNAred
NcRNAred
promoter_rea
rRNA"red
tRNAred
threeUTR red

Feature

cds_red
~exon_red
fiveUTR red
intergenic
intron_red
MRNAred
NncRNAred
promoter_red
rRNA"red
tRNA"red
threeUTR red

- m - m .Antisense
| |

Al12B V12A V12B

cds_red

. exon_red
fiveUTR red
intergenic
intron_red
MRNA"red
NncRNAred
promoter_red
rRNA"red
tRNA"red
threeUTR red

|
1 1 1 1 1 1 1 1
O A OO N A A O
® ® ® ® D ® ® ® o
+ + + + + + + + +
O O O OO O O o o o
S O & 1o & & 1o G a O

Counts normalized per 1e+06 reads

Figure 2: Read distribution plot across annotation features for any read length.

5.3 Count and plot reads of specific lengths

To determine the approximate read length of ribosome footprints in Ribo-Seq experiments, one can generate and plot
the feature counts for specific read lengths separately. Typically, the most abundant read length obtained for translated
features corresponds to the approximate footprint length occupied by the ribosomes.

systemPipeR Ribo-Seq Workflow 6 Adding custom features to workflow

fc2 <- featuretypeCounts(bfl=BamFileList(outpaths(args), yieldSize=50000), grl=feat,
singleEnd=TRUE, readlength=c(74:76,99:102), type="data.frame")

p2 <- plotfeaturetypeCounts(x=fc2, graphicsfile="results/featureCounts2.pdf", graphicsformat="pdf",

scales="fixed", anyreadlength=FALSE, scale_length_val=NULL)

Figure 3: Read distribution plot across annotation features for specific read lengths.

6 Adding custom features to workflow

6.1 Predicting uORFs in 5° UTR regions

The function predORF can be used to identify open reading frames (ORFs) and coding sequences (CDSs) in DNA
sequences provided as DNAString or DNAStringSet objects. The setting mode=’"0RF’ returns continuous reading frames
that begin with a start codon and end with a stop codon, while mode=’CDS’ returns continuous reading frames that do
not need to begin or end with start or stop codons, respectively. Non-canonical start and stop condons are supported by
allowing the user to provide any custom set of triplets under the startcodon and stopcodon arguments (i.e. non-ATG
start codons). The argument n defines the maximum number of ORFs to return for each input sequence (e.g. n=1 returns
only the longest ORF). It also supports the identification of overlapping and nested ORFs. Alternatively, one can return all
non-overlapping ORFs including the longest ORF for each input sequence with n="all" and longest_disjoint=TRUE.

library(systemPipeRdata); library(GenomicFeatures); library(rtracklayer)

gff <- system.file("extdata/annotation", "tairlO.gff", package="systemPipeRdata")

txdb <- makeTxDbFromGFF(file=gff, format="gff3", organism="Arabidopsis")

futr <- fiveUTRsByTranscript(txdb, use.names=TRUE)

genome <- system.file("extdata/annotation", "tair1l0.fasta", package="systemPipeRdata")
dna <- extractTranscriptSeqs(FaFile(genome), futr)

uorf <- predORF(dna, n="all", mode="orf", longest_disjoint=TRUE, strand="sense"

To use the predicted ORF ranges for expression analysis given genome alignments as input, it is necessary to scale them
to the corresponding genome coordinates. The function scaleRanges does this by transforming the mappings of spliced
features (query ranges) to their corresponding genome coordinates (subject ranges). The method accounts for introns in
the subject ranges that are absent in the query ranges. The above uORFs predicted in the provided 5" UTRs sequences
using predORF are a typical use case for this application. These query ranges are given relative to the 5' UTR sequences
and scaleRanges will convert them to the corresponding genome coordinates. The resulting GRangesList object (here
grl_scaled) can be directly used for read counting as described in Section 8.

grl_scaled <- scaleRanges(subject=futr, query=uorf, type="uORF", verbose=TRUE)
export.gff3(unlist(grl_scaled), "uorf.gff")

To confirm the correctness of the obtained uORF ranges, one can parse their corresponding DNA sequences from the
reference genome with the getSeq function and then translate them with the translate function into proteins. Typically,
the returned protein sequences should start with a M (corresponding to start codon) and end with a * (corresponding to
stop codon). The following example does this for a single uUORF containing three exons.

systemPipeR Ribo-Seq Workflow 7 Genomic read coverage along transripts or CDSs
translate(unlist(getSeq(FaFile(genome), grl_scaled[[7]])))

6.2 Adding custom features to other feature types

If required custom feature ranges can be added to the standard features generated in Section 5. The following does this
for the uORF ranges predicted in Subsection 6.1.

feat <- genFeatures(txdb, featuretype="all", reduce_ranges=FALSE)
feat <- c(feat, GRangesList("uORF"=unlist(grl_scaled)))

6.3 Predicting sORFs in intergenic regions

The following identifies continuous ORFs in intergenic regions. Note, predORF can only identify continuous ORFs in
query sequences. The function does not identify and remove introns prior to the ORF prediction.

feat <- genFeatures(txdb, featuretype="intergenic", reduce_ranges=TRUE)
intergenic <- feat$intergenic

strand(intergenic) <- "+"

dna <- getSeq(FaFile(genome), intergenic)

names(dna) <- mcols(intergenic)$feature_by

sorf <- predORF(dna, n="all", mode="orf", longest_disjoint=TRUE, strand="both")
sorf <- sorf[width(sorf) > 60] # Remove sORFs below length cutoff, here 60bp
intergenic <- split(intergenic, mcols(intergenic)$feature_by)
grl_scaled_intergenic <- scaleRanges(subject=intergenic, query=sorf, type="sORF", verbose=TRUE)
export.gff3(unlist(grl_scaled_intergenic), "sorf.gff")
translate(getSeq(FaFile(genome), unlist(grl_scaled_intergenic)))

7 Genomic read coverage along transripts or CDSs

The featureCoverage function computes the read coverage along single and multi component features based on
genomic alignments. The coverage segments of component features are spliced to continuous ranges, such as exons
to transcripts or CDSs to ORFs. The results can be obtained with single nucleotide resolution (e.g. around start and
stop codons) or as mean coverage of relative bin sizes, such as 100 bins for each feature. The latter allows comparisons
of coverage trends among transcripts of variable length. Additionally, the results can be obtained for single or many
features (e.g. any number of transcripts) at once. Visualization of the coverage results is facilitated by the downstream
plotfeatureCoverage function.

7.1 Binned CDS coverage to compare many transcripts

grl <- cdsBy(txdb, "tx", use.names=TRUE)

fcov <- featureCoverage(bfl=BamFileList(outpaths(args)[1:2]), grl=grl[1:4], resizereads=NULL,
readlengthrange=NULL, Nbins=20, method=mean, fixedmatrix=FALSE,
resizefeatures=TRUE, upstream=20, downstream=20,
outfile="results/featureCoverage.xls", overwrite=TRUE)

7.2 Coverage upstream and downstream of start and stop codons

systemPipeR Ribo-Seq Workflow 7 Genomic

fcov <- featureCoverage(bfl=BamFileList(outpaths(args)[1:4]), gr
readlengthrange=NULL, Nbins=NULL, metho
resizefeatures=TRUE, upstream=20, downs
outfile="results/featureCoverage.xls",

plotfeatureCoverage(covMA=fcov, method=mean, scales="fixed", ext

read coverage along transripts or CDSs

1=grl[1:12], resizereads=NULL,
d=mean, fixedmatrix=TRUE,
tream=20,

overwrite=TRUE)

endylim=2, scale_count_val=10"6)

7.3 Combined coverage for both binned CDS and start/stop codons

library(ggplot2); library(grid)

fcov <- featureCoverage(bfl=BamFileList (outpaths(args)[1:2]), gr
readlengthrange=NULL, Nbins=20, method=
resizefeatures=TRUE, upstream=20, downs
outfile="results/featureCoverage.xls",

pdf ("./results/featurePlot.pdf", height=12, width=24)

plotfeatureCoverage (covMA=fcov, method=mean, scales="fixed", ext

dev.off ()

Start of 12 features CDS of 12 features

o D,---_-.--------.-...-

M8 M1B

60- 60~

AA

0,|||||||||||||||IIIIIIIII||||||||||IIIIIII IIIIIIIIIIllIIIIIIII
A1B

a0- a0-
o IIII I 04

-2619181716151413121+10-9-8-7

40-

AA

Coverage normalized per 1e+06 reads

Coverage normalized per 1e+06 reads

2-10 12345678 91011121314151617181920 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Position Position

swand [l sense [l Anisense Stand [sense [l i

Figure 4. Feature coverage plot with single nucleotide resolution around start
between them.

1=grl[1:4], resizereads=NULL,
mean, fixedmatrix=TRUE,
tream=20,

overwrite=TRUE)

endylim=2, scale_count_val=10"6)

Stop of 12 features
MIA

B 1L LT ————

M8

AA

Coverage normalized per 1e+06 reads

||IIII|||||||IIIIIlllllllllllllllllllllll
AlB

o IIII

~2615181716151413121+10-9-8-7-6-5-4-3- z 10 z 2345678 91011121314151517181920

stand [sense [l aniense

and stop codons and binned coverage

7.4 Nucleotide level coverage along entire transcripts/CDSs

fcov <- featureCoverage(bfl=BamFileList (outpaths(args)[1:2]), grl=grl[1:4], resizereads=NULL,
readlengthrange=NULL, Nbins=NULL, method=mean, fixedmatrix=FALSE,
resizefeatures=TRUE, upstream=20, downstream=20)

plotfeatureCoverage (covMA=fcov, method=mean, scales="fixed", scale_count_val=1076)

10

systemPipeR Ribo-Seq Workflow 8 Read quantification per annotation range

8 Read quantification per annotation range

8.1 Read counting with summarizeQverlaps in parallel mode using multiple cores

Reads overlapping with annotation ranges of interest are counted for each sample using the summarizeOverlaps function
(Lawrence et al., 2013). The read counting is preformed for exonic gene regions in a non-strand-specific manner while
ignoring overlaps among different genes. Subsequently, the expression count values are normalized by reads per kp
per million mapped reads (RPKM). The raw read count table (countDFeByg.xls) and the correspoding RPKM table
(rpkmDFeByg.xls) are written to separate files in the results directory of this project. Parallelization is achieved with
the BiocParallel package, here using 8 CPU cores.

library("GenomicFeatures"); library(BiocParallel)
txdb <- loadDb("./data/tair10.sqlite")
eByg <- exonsBy(txdb, by=c("gene"))
bfl <- BamFileList(outpaths(args), yieldSize=50000, index=character())
multicoreParam <- MulticoreParam(workers=8); register(multicoreParam); registered()
counteByg <- bplapply(bfl, function(x) summarizeOverlaps(eByg, x, mode="Union",
ignore.strand=TRUE,
inter.feature=FALSE,
singleEnd=TRUE))
countDFeByg <- sapply(seq(along=counteByg), function(x) assays(counteBygl[[x]])$counts)
rownames (countDFeByg) <- names(rowRanges(counteByg[[1]])); colnames(countDFeByg) <- names(bfl)
rpkmDFeByg <- apply(countDFeByg, 2, function(x) returnRPKM(counts=x, ranges=eByg))
write.table(countDFeByg, "results/countDFeByg.xls", col.names=NA, quote=FALSE, sep="\t")
write.table (rpkmDFeByg, "results/rpkmDFeByg.x1ls", col.names=NA, quote=FALSE, sep="\t")

Sample of data slice of count table

read.delim("results/countDFeByg.x1s", row.names=1, check.names=FALSE)[1:4,1:5]

Sample of data slice of RPKM table
read.delim("results/rpkmDFeByg.x1ls", row.names=1, check.names=FALSE) [1:4,1:4]

Note, for most statistical differential expression or abundance analysis methods, such as edgeR or DESeq?2, the raw count
values should be used as input. The usage of RPKM values should be restricted to specialty applications required by
some users, e.g. manually comparing the expression levels among different genes or features.

8.2 Sample-wise correlation analysis

The following computes the sample-wise Spearman correlation coefficients from the rlog transformed expression values
generated with the DESeq2 package. After transformation to a distance matrix, hierarchical clustering is performed with
the hclust function and the result is plotted as a dendrogram (sample_tree.pdf).

library(DESeq2, quietly=TRUE); library(ape, warn.conflicts=FALSE)
countDF <- as.matrix(read.table("./results/countDFeByg.x1ls"))
colData <- data.frame(row.names=targetsin(args)$SampleName, condition=targetsin(args)$Factor)
dds <- DESegDataSetFromMatrix(countData = countDF, colData = colData, design = ~ condition)
d <- cor(assay(rlog(dds)), method="spearman")
hc <- hclust(dist(1-d))
pdf ("results/sample_tree.pdf")
plot.phylo(as.phylo(hc), type="p", edge.col="blue", edge.width=2, show.node.label=TRUE,
no .margin=TRUE)
dev.off ()

11

systemPipeR Ribo-Seq Workflow 9 Analysis of differentially expressed genes with edgeR

V6A
—_...
V6B
V12A
1 .
AL2A

S —
6A

Figure 5: Correlation dendrogram of samples.

9 Analysis of differentially expressed genes with edgeR

The analysis of differentially expressed genes (DEGs) is performed with the glm method from the edgeR package (Robinson
et al., 2010). The sample comparisons used by this analysis are defined in the header lines of the targets file starting
with <CMP>.

library(edgeR)

countDF <- read.delim("results/countDFeByg.x1ls", row.names=1, check.names=FALSE)

targets <- read.delim("targets.txt", comment="#")

cmp <- readComp(file="targets.txt", format="matrix", delim="-")

edgeDF <- run_edgeR(countDF=countDF, targets=targets, cmp=cmp[[1]], independent=FALSE, mdsplot="")

Add custom functional descriptions. Skip this step if desc.x1s is not available.

desc <- read.delim("data/desc.xls")

desc <- desc[!duplicated(desc[,1]),]

descv <- as.character(desc[,2]); names(descv) <- as.character(descl[,1])

edgeDF <- data.frame(edgeDF, Desc=descv[rownames(edgeDF)], check.names=FALSE)
write.table(edgeDF, "./results/edgeRglm_allcomp.xls", quote=FALSE, sep="\t", col.names = NA)

Filter and plot DEG results for up and down regulated genes. The definition of "up’ and "down’ is given in the corresponding
help file. To open it, type 7filterDEGs in the R console.

edgeDF <- read.delim("results/edgeRglm_allcomp.xls", row.names=1, check.names=FALSE)
pdf ("results/DEGcounts.pdf")

DEG_list <- filterDEGs(degDF=edgeDF, filter=c(Fold=2, FDR=1))

dev.off ()

12

systemPipeR Ribo-Seq Workflow 9 Analysis of differentially expressed genes with edgeR

write.table(DEG_list$Summary, "./results/DEGcounts.xls", quote=FALSE, sep="\t", row.names=FALSE)
DEG Counts (Fold: 2 & FDR: 10%)

M6-V6 -

M6-A6 -

M12-V12 -

M12-A12 -

Type
Down

W

M1-V1-

Comparisons

M1-Al-

AB-V6 -

Al2-V12 -

Al-V1-

2 3
Counts

I

' '
0 1

Figure 6: Up and down regulated DEGs with FDR of 1%.

The function overLapper can compute Venn intersects for large numbers of sample sets (up to 20 or more) and vennPlot
can plot 2-5 way Venn diagrams. A useful feature is the possiblity to combine the counts from several Venn comparisons
with the same number of sample sets in a single Venn diagram (here for 4 up and down DEG sets).

vennsetup <- overLapper(DEG_list$Up[6:9], type="vennsets")

vennsetdown <- overLapper(DEG_list$Down[6:9], type="vennsets")

pdf ("results/vennplot.pdf")

vennPlot (1ist(vennsetup, vennsetdown), mymain="", mysub="", colmode=2, ccol=c("blue", "red"))
dev.off ()

13

systemPipeR Ribo-Seq Workflow 9 Analysis of differentially expressed genes with edgeR

M12-A12 M12-V12

A6-V6 Al2-V12

Figure 7: Venn Diagram for 4 Up and Down DEG Sets.

9.1 GO term enrichment analysis of DEGs
9.1.1 Obtain gene-to-GO mappings

The following shows how to obtain gene-to-GO mappings from biomaRt (here for A. thaliana) and how to organize them
for the downstream GO term enrichment analysis. Alternatively, the gene-to-GO mappings can be obtained for many
organisms from Bioconductor’'s *.db genome annotation packages or GO annotation files provided by various genome
databases. For each annotation this relatively slow preprocessing step needs to be performed only once. Subsequently,
the preprocessed data can be loaded with the load function as shown in the next subsection.

library("biomaRt")

listMarts() # To choose BioMart database

m <- useMart ("ENSEMBL_MART_PLANT"); listDatasets(m)

m <- useMart ("ENSEMBL_MART_PLANT", dataset="athaliana_eg_gene")

listAttributes(m) # Choose data types you want to download

go <- getBM(attributes=c("go_accession", "tair_locus", "go_namespace_1003"), mart=m)
go <- golgol,3]1!="",]1; gol,3] <- as.character(gol[,3])

14

systemPipeR Ribo-Seq Workflow 9 Analysis of differentially expressed genes with edgeR

golgol,3]=="molecular_function", 3] <- "F"

gol[go[,3]=="biological_process", 3] <- "P"

golgo[,3]=="cellular_component", 3] <- "C"

gol[1:4,]

dir.create("./data/G0O")

write.table(go, "data/GO/GOannotationsBiomart_mod.txt", quote=FALSE, row.names=FALSE,
col.names=FALSE, sep="\t")

catdb <- makeCATdb(myfile="data/GO/GOannotationsBiomart_mod.txt", 1lib=NULL, org="",

colno=c(1,2,3), idconv=NULL)
save(catdb, file="data/GO/catdb.RData")

9.1.2 Batch GO term enrichment analysis

Apply the enrichment analysis to the DEG sets obtained the above differential expression analysis. Note, in the following
example the FDR filter is set here to an unreasonably high value, simply because of the small size of the toy data set
used in this vignette. Batch enrichment analysis of many gene sets is performed with the GOCluster_Report function.
When method="all", it returns all GO terms passing the p-value cutoff specified under the cutoff arguments. When
method="slim", it returns only the GO terms specified under the myslimv argument. The given example shows how a
GO slim vector for a specific organism can be obtained from BioMart.

load("data/GO/catdb.RData")

DEG_list <- filterDEGs(degDF=edgeDF, filter=c(Fold=2, FDR=50), plot=FALSE)

up_down <- DEG_list$UporDown; names(up_down) <- paste(names(up_down), "_up_down", sep="")

up <- DEG_list$Up; names(up) <- paste(names(up), "_up", sep="")

down <- DEG_list$Down; names(down) <- paste(names(down), "_down", sep="")

DEGlist <- c(up_down, up, down)

DEGlist <- DEGlist[sapply(DEGlist, length) > 0]

BatchResult <- GOCluster_Report(catdb=catdb, setlist=DEGlist, method="all", id_type="gene",
CLSZ=2, cutoff=0.9, gocats=c("MF", "BP", "CC"),
recordSpecGO=NULL)

library("biomaRt"); m <- useMart("ENSEMBL_MART_PLANT", dataset="athaliana_eg_gene")

goslimvec <- as.character(getBM(attributes=c("goslim_goa_accession"), mart=m)[,1])

BatchResultslim <- GOCluster_Report(catdb=catdb, setlist=DEGlist, method="slim", id_type="gene",

myslimv=goslimvec, CLSZ=10, cutoff=0.01,
gocats=c("MF", "BP", "CC"), recordSpecGO=NULL)

9.1.3 Plot batch GO term results

The data.frame generated by GOCluster Report can be plotted with the goBarplot function. Because of the variable
size of the sample sets, it may not always be desirable to show the results from different DEG sets in the same bar plot.
Plotting single sample sets is achieved by subsetting the input data frame as shown in the first line of the following
example.

gos <- BatchResultslim[grep("M6-V6_up_down", BatchResultslim$CLID),]

gos <- BatchResultslim

pdf ("GOslimbarplotMF.pdf", height=8, width=10); goBarplot(gos, gocat="MF"); dev.off()
goBarplot(gos, gocat="BP")

goBarplot(gos, gocat="CC")

15

systemPipeR Ribo-Seq Workflow 10 Differential ribosome loading analysis (translational efficiency)

Molecular Function
no GO assignment - [————————

unfolded protein binding -
histone binding -
small conjugating protein binding -
protein binding, bridging -
enzyme regulator activity -
enzyme binding -
rRNA binding - =
ATPase activity - mm—
ligase activity - ==
isomerase activity -
hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds -
hydrolase activity, acting on glycosyl bonds -
phosphatase activity -
transferase activity, transferring alkyl or aryl (other than methyl) groups -
transferase activity, transferring glycosyl groups -
transferase activity, transferring acyl groups -
kinase activity -
protein transporter activity -
peptidase activity -
methyltransferase activity -
translation factor activity, nucleic acid binding -
transcription factor binding -
cytoskeletal protein binding -
structural molecule activity -
signal transducer activity -
GTPase activity -
structural constituent of ribosome -
mMRNA binding -
molecular_function -
protein binding transcription factor activity -
RNA binding -
transmembrane transporter activity -
ion binding -
lyase activity -
lipid binding -
nuclease activity -
nucleotidyltransferase activity -
helicase activity -
nucleic acid binding transcription factor activity -
oxidoreductase activity -
DNA binding -

Sample

. M6-V6_up_down
. A6-V6_up_down
B M12-A12_up_down
I v6-ve_up

L A6-V6_up

. M12-A12_down

GO Term

Kl h ,.,...

o
[=

1
10 15
Gene Count

Figure 8: GO Slim Barplot for MF Ontology.

10 Differential ribosome loading analysis (translational efficiency)

Combinded with mRNA-Seq data, Ribo-Seq or polyRibo-Seq experiments can be used to study changes in translational
efficiencies of genes and/or transcripts for different treatments. For test purposes the following generates a small test data
set from the sample data used in this vignette, where two types of RNA samples (assays) are considered: polyribosomal
mRNA (Ribo) and total mRNA (mRNA). In addition, there are two treatments (conditions): M1 and Al.

library(DESeq2)

targetspath <- system.file("extdata", "targetsPE.txt", package="systemPipeR")
parampath <- system.file("extdata", "tophat.param", package="systemPipeR")
countDFeBygpath <- system.file("extdata", "countDFeByg.xls", package="systemPipeR")

16

systemPipeR Ribo-Seq Workflow 11 Clustering and heat maps

args <- suppressWarnings(systemArgs(sysma=parampath, mytargets=targetspath))

countDFeByg <- read.delim(countDFeBygpath, row.names=1)

coldata <- DataFrame(assay=factor(rep(c("Ribo","mRNA"), each=4)),
condition=factor(rep(as.character(targetsin(args)$Factor[1:4]), 2)),
row.names=as.character(targetsin(args)$SampleName) [1:8])

coldata

DataFrame with 8 rows and 2 columns
assay condition
<factor> <factor>

M1A Ribo M1
M1B Ribo M1
A1A Ribo Al
A1B Ribo Al
V1A mRNA M1
V1B mRNA M1
M6A mRNA Al
M6B mRNA Al

Differences in translational efficiencies can be calculated by ratios of ratios for the two conditions:
(Ribo-Al1/mRNA_A1)/(Ribo-M1/mRNA_M1).

The latter can be modeled with the DESeq2 package using the design '~ assay + condition + assay : condition', where
the interaction term 'assay : condition’ represents the ratio of ratios. Using the likelihood ratio test of DESeq2, which
removes the interaction term in the reduced model, one can test whether the translational efficiency (ribosome loading)
is different in condition A1 than in M1.

dds <- DESegDataSetFromMatrix(countData=as.matrix(countDFeByg[,rownames(coldata)]),
colData = coldata,

design = ~ assay + condition + assay:condition)
model.matriz(~ assay + condition + assay:condition, coldata) # Corresponding design matriz
dds <- DESeq(dds, test="LRT", reduced = ~ assay + condition)

res <- DESeq2::results(dds)
head(res[order(res$padj),],4)

log2 fold change (MLE): assaymRNA.conditionM1

LRT p-value: '" assay + condition + assay:condition' vs '™ assay + condition'
DataFrame with 4 rows and 6 columns

baseMean log2FoldChange 1fcSE stat pvalue padj

<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
AT5G01040 94.03820 5.824473 1.1672672 26.65816 2.428232e-07 2.476797e-05
AT5G01015 25.22693 -5.406915 1.1854319 19.72508 8.941996e-06 4.560418e-04
AT5G01100 540.71442 3.610910 0.8283077 18.02230 2.183328e-05 7.423315e-04
AT2G01021 9227 .94454 -4.863877 1.3224702 12.17604 4.840722e-04 9.875074e-03

write.table(res, file="transleff.zls", quote=FALSE, col.names = NA, sep="\t")

11 Clustering and heat maps

The following example performs hierarchical clustering on the rlog transformed expression matrix subsetted by the DEGs
identified in the above differential expression analysis. It uses a Pearson correlation-based distance measure and complete
linkage for cluster joining.

17

systemPipeR Ribo-Seq Workflow 12 Version Information

library (pheatmap)

geneids <- unique(as.character(unlist(DEG_list[[1]1)))

y <- assay(rlog(dds)) [geneids,]

pdf ("heatmapl.pdf")

pheatmap(y, scale="row", clustering_distance_rows="correlation",
clustering_distance_cols="correlation")

dev.off ()

L 5

2
AT1G01080 I

1
AT1G01060

AT3G01140 -1

.AT4GOOO40 I 2

ATCG00490

——

ATCG00280

AT5G01100

AT1G01010

AT1G01020

AT1G01030

YIN
9N
YoV
a9v
a1v
VIA
aTA
VIN
aTin
Vv
aetv
VZIA
acTA
YIA
g9/
VZiv
VZIN
acTn

Figure 9: Heat map with hierarchical clustering dendrograms of DEGs.

12 Version Information

toLatex(sessionInfo())

e R version 3.2.2 (2015-08-14), x86_64-pc-linux-gnu

e Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

e Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils

e Other packages: Biobase 2.30.0, BiocGenerics 0.16.1, BiocParallel 1.4.1, BiocStyle 1.8.0, Biostrings 2.38.2,
DBI 0.3.1, DESeq2 1.10.0, GenomelnfoDb 1.6.1, GenomicAlignments 1.6.1, GenomicRanges 1.22.1,
IRanges 2.4.5, RSQLite 1.0.0, Rcpp 0.12.2, ReppArmadillo 0.6.300.2.0, Rsamtools 1.22.0, S4Vectors 0.8.4,

18

systemPipeR Ribo-Seq Workflow 14 References

ShortRead 1.28.0, SummarizedExperiment 1.0.1, XVector 0.10.0, ape 3.4, ggplot2 1.0.1, knitr 1.11,
systemPipeR 1.4.7

e Loaded via a namespace (and not attached): AnnotationDbi 1.32.1, AnnotationForge 1.12.1, BBmisc 1.9,
BatchJobs 1.6, Category 2.36.0, Formula 1.2-1, GO.db 3.2.2, GOstats 2.36.0, GSEABase 1.32.0,
GenomicFeatures 1.22.6, Hmisc 3.17-0, MASS 7.3-45, Matrix 1.2-3, RBGL 1.46.0, RColorBrewer 1.1-2,
RCurl 1.95-4.7, XML 3.98-1.3, acepack 1.3-3.3, annotate 1.48.0, base64enc 0.1-3, biomaRt 2.26.1, bitops 1.0-6,
brew 1.0-6, checkmate 1.6.3, cluster 2.0.3, codetools 0.2-14, colorspace 1.2-6, digest 0.6.8, edgeR 3.12.0,
evaluate 0.8, fail 1.3, foreign 0.8-66, formatR 1.2.1, futile.logger 1.4.1, futile.options 1.0.0, genefilter 1.52.0,
geneplotter 1.48.0, graph 1.48.0, grid 3.2.2, gridExtra 2.0.0, gtable 0.1.2, highr 0.5.1, htmltools 0.2.6,
hwriter 1.3.2, labeling 0.3, lambda.r 1.1.7, lattice 0.20-33, latticeExtra 0.6-26, limma 3.26.3, locfit 1.5-9.1,
magrittr 1.5, munsell 0.4.2, nlme 3.1-122, nnet 7.3-11, pheatmap 1.0.7, plyr 1.8.3, proto 0.3-10, reshape2 1.4.1,
rjson 0.2.15, rmarkdown 0.8.1, rpart 4.1-10, rtracklayer 1.30.1, scales 0.3.0, sendmailR 1.2-1, splines 3.2.2,
stringi 1.0-1, stringr 1.0.0, survival 2.38-3, tools 3.2.2, xtable 1.8-0, yaml 2.1.13, zlibbioc 1.16.0

13 Funding

This research was funded by National Science Foundation Grants 10S-0750811 and MCB-1021969, and a Marie Curie
European Economic Community Fellowship PIOF-GA-2012-327954.

14 References

Julie L Aspden, Ying Chen Eyre-Walker, Rose J Phillips, Unum Amin, Muhammad Ali S Mumtaz, Michele Brocard, and
Juan-Pablo Couso. Extensive translation of small open reading frames revealed by Poly-Ribo-Seq. Elife, 3:e03528,
21 August 2014. ISSN 2050-084X. doi: 10.7554/eLife.03528. URL http://dx.doi.org/10.7554 /el ife.03528.

Thomas Girke. systemPipeR: NGS workflow and report generation environment, 28 June 2014. URL https://github.
com/tgirke /systemPipeR.

N T Ingolia, S Ghaemmaghami, J R Newman, and J S Weissman. Genome-wide analysis in vivo of translation with
nucleotide resolution using ribosome profiling. Science, 324(5924):218-223, April 2009. ISSN 0036-8075. doi: 10.
1016/j.ymeth.2009.03.016. URL http://dx.doi.org/10.1016/j.ymeth.2009.03.016.

N T Ingolia, L F Lareau, and J S Weissman. Ribosome profiling of mouse embryonic stem cells reveals the complexity and
dynamics of mammalian proteomes. Cell, 147(4):789-802, 11 November 2011. ISSN 0092-8674, 1097-4172;0092-8674.
doi: 10.1016/j.cell.2011.10.002. URL http://www.ncbi.nlm.nih.gov/pubmed/22056041.

Piyada Juntawong, Thomas Girke, Jérémie Bazin, and Julia Bailey-Serres. Translational dynamics revealed by genome-
wide profiling of ribosome footprints in arabidopsis. Proc. Natl. Acad. Sci. U. S. A., 111(1):E203-12, 7 January 2014.
ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1317811111. URL http://dx.doi.org/10.1073/pnas.1317811111.

Piyada Juntawong, Maureen Hummel, Jeremie Bazin, and Julia Bailey-Serres. Ribosome profiling: a tool for quantitative
evaluation of dynamics in mRNA translation. Methods Mol. Biol., 1284:139-173, 2015. ISSN 1064-3745, 1940-6029.
doi: 10.1007/978-1-4939-2444-8_7. URL http://dx.doi.org/10.1007 /978-1-4939-2444-8_7.

Daehwan Kim, Geo Pertea, Cole Trapnell, Harold Pimentel, Ryan Kelley, and Steven L Salzberg. TopHat2: accurate
alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol., 14(4):R36, 25 April
2013. ISSN 1465-6906. doi: 10.1186/gb-2013-14-4-r36. URL http://dx.doi.org/10.1186/gb-2013-14-4-r36.

Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with bowtie 2. Nat. Methods, 9(4):357-359, April
2012. ISSN 1548-7091. doi: 10.1038/nmeth.1923. URL http://dx.doi.org/10.1038 /nmeth.1923.

Michael Lawrence, Wolfgang Huber, Hervé Pages, Patrick Aboyoun, Marc Carlson, Robert Gentleman, Martin T Morgan,
and Vincent J Carey. Software for computing and annotating genomic ranges. PLoS Comput. Biol., 9(8):e1003118,
8 August 2013. ISSN 1553-734X. doi: 10.1371/journal.pcbi.1003118. URL http://dx.doi.org/10.1371 /journal.pcbi.
1003118.

19

http://dx.doi.org/10.7554/eLife.03528
https://github.com/tgirke/systemPipeR
https://github.com/tgirke/systemPipeR
http://dx.doi.org/10.1016/j.ymeth.2009.03.016
http://www.ncbi.nlm.nih.gov/pubmed/22056041
http://dx.doi.org/10.1073/pnas.1317811111
http://dx.doi.org/10.1007/978-1-4939-2444-8_7
http://dx.doi.org/10.1186/gb-2013-14-4-r36
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1371/journal.pcbi.1003118
http://dx.doi.org/10.1371/journal.pcbi.1003118

systemPipeR Ribo-Seq Workflow 14 References

M D Robinson, D J McCarthy, and G K Smyth. edger: a bioconductor package for differential expression analysis of digital
gene expression data. Bioinformatics, 26(1):139-140, January 2010. ISSN 1367-4803. doi: 10.1093/bioinformatics/
btp616. URL http://dx.doi.org/10.1093/bioinformatics/btp616.

20

http://dx.doi.org/10.1093/bioinformatics/btp616

	1 Introduction
	1.1 Experimental design

	2 Load workflow environment
	2.1 Load packages and sample data
	2.2 Experiment definition provided by targets file

	3 Read preprocessing
	3.1 Quality filtering and adaptor trimming
	3.2 FASTQ quality report

	4 Alignments
	4.1 Read mapping with Bowtie2/Tophat2
	4.2 Read and alignment stats
	4.3 Create symbolic links for viewing BAM files in IGV

	5 Read distribution across genomic features
	5.1 Obtain feature types
	5.2 Count and plot reads of any length
	5.3 Count and plot reads of specific lengths

	6 Adding custom features to workflow
	6.1 Predicting uORFs in 5' UTR regions
	6.2 Adding custom features to other feature types
	6.3 Predicting sORFs in intergenic regions

	7 Genomic read coverage along transripts or CDSs
	7.1 Binned CDS coverage to compare many transcripts
	7.2 Coverage upstream and downstream of start and stop codons
	7.3 Combined coverage for both binned CDS and start/stop codons
	7.4 Nucleotide level coverage along entire transcripts/CDSs

	8 Read quantification per annotation range
	8.1 Read counting with summarizeOverlaps in parallel mode using multiple cores
	8.2 Sample-wise correlation analysis

	9 Analysis of differentially expressed genes with edgeR
	9.1 GO term enrichment analysis of DEGs
	9.1.1 Obtain gene-to-GO mappings
	9.1.2 Batch GO term enrichment analysis
	9.1.3 Plot batch GO term results

	10 Differential ribosome loading analysis (translational efficiency)
	11 Clustering and heat maps
	12 Version Information
	13 Funding
	14 References

