Using the SRAdb Package to Query the Sequence Read
Archive

Jack Zhu*and Sean Davis'

Genetics Branch, Center for Cancer Research,
National Cancer Institute,
National Institutes of Health

October 13, 2015

1 Introduction

High throughput sequencing technologies have very rapidly become standard tools in biology.
The data that these machines generate are large, extremely rich. As such, the Sequence
Read Archives (SRA) have been set up at NCBI in the United States, EMBL in Europe,
and DDBJ in Japan to capture these data in public repositories in much the same spirit as
MIAME-compliant microarray databases like NCBI GEO and EBI ArrayExpress.

Accessing data in SRA requires finding it first. This R package provides a convenient and
powerful framework to do just that. In addition, SRAdb features functionality to determine
availability of sequence files and to download files of interest.

SRA currently store aligned reads or other processed data that relies on alignment to a ref-
erence genome. Please refer to the SRA handbook (http://www.ncbi.nlm.nih.gov/books/NBK47537/)
for details. NCBI GEO also often contain aligned reads for sequencing experiments and the
SRAdb package can help to provide links to these data as well. In combination with the
GEOmetadb and GEOquery packages, these data are also, then, accessible.

2 Getting Started

Since SRA is a continuously growing repository, the SRAdb SQLite file is updated regularly.
The first step, then, is to get the SRAdb SQLite file from the online location. The download
and uncompress steps are done automatically with a single command, getSRAdbFile.

*zhujack@mail.nih.gov
tsdavis2@mail.nih.gov

RUN (SRR/ERR/DRR) STUDY (SRP/ERP/DRP)
* results * center

= data files * study_type

.. * description

* experiment_acc L

* submission_acc * submission_acc

v v

Submission (SRA/ERA/DRA)
* metadata package
» data objects

t t

EXPERIMENT (SRX/ERX/DRX) —— SRS/ERS/DRS
* experiment P_E (SRS/ERS/DRS)
iy stanon il

* libra .

. sequr:ncer E * description

. :::-;udy_ac{; * submission_acc

= sample_acc

* submission_acc

Figure 1: A graphical representation (sometimes called an Entity-Relationship Diagram) of
the relationships between the main tables in the SRAdb package.

> library(SRAdb)
> sqlfile <- 'SRAmetadb.sqlite'’
> if(!file.exists('SRAmetadb.sqlite')) sqlfile <<- getSRAdbFile()

The default storage location is in the current working directory and the default filename
is “SRAmetadb.sqlite”; it is best to leave the name unchanged unless there is a pressing
reason to change it. Note: the above downloading and uncompressing steps could take quite
a fews moments due to file size, depdending on your network bandwidth. If interested, it
can be timed using the following commands:

> timeStart <- proc.time()
> sqlfile <- getSRAdbFile()
> proc.time() - timeStart

Since this SQLite file is of key importance in SRAdb, it is perhaps of some interest to
know some details about the file itself.

> file.info('SRAmetadb.sqlite')

size isdir mode
SRAmetadb.sqlite 13433397248 FALSE 644
mtime
SRAmetadb.sqlite 2015-10-13 21:35:57
ctime
SRAmetadb.sqlite 2015-10-13 21:35:57
atime wuid gid
SRAmetadb.sqlite 2015-10-13 21:35:58 1001 1001
uname grname
SRAmetadb.sqlite biocbuild biocbuild

Then, create a connection for later queries. The standard DBI functionality as imple-
mented in RSQLite function dbConnect makes the connection to the database. The dbDis-
connect function disconnects the connection.

> sra_con <- dbConnect (SQLite(),sqlfile)
For further details, at this time see help(’ SRAdb-package’).

3 Using the SRAdb package

3.1 Interacting with the database

The functionality covered in this section is covered in much more detail in the DBI and
RSQLite package documentation. We cover enough here only to be useful. The dbListTables
function lists all the tables in the SQLite database handled by the connection object sra_con
created in the previous section. A simplified illustration of the relationship between the SRA
main data types is shown in the Figure 1.

> sra_tables <- dbListTables(sra_con)
> sra_tables

[1] "col_desc" "experiment"
[3] "fastq" "metalnfo"

[5] "run" "sample"

[7] "sra" "sra_ft"

[9] "sra_ft_content" ‘"sra_ft_segdir"

[11] "sra_ft_segments" "study"
[13] "submission"

There is also the dbListFields function that can list database fields associated with a
table.

> dbListFields(sra_con, "study")

[1] "study_ID" "study_alias"

[3] "study_accession" "study_title"

[5] "study_type" "study_abstract"

[7] "broker_name" "center_name"

[9] "center_project_name" "study_description"
[11] "related_studies" "primary_study"
[13] "sra_link" "study_url_link"
[156] "xref_link" "study_entrez_link"
[17] "ddbj_link" "ena_link"
[19] "study_attribute" "submission_accession"

[21] "sradb_updated"

Sometimes it is useful to get the actual SQL schema associated with a table. Here, we
get the table schema for the study table:

> dbGetQuery (sra_con, 'PRAGMA TABLE_INFO(study)')

cid name type notnull
study_ID REAL
study_alias TEXT
study_accession TEXT
study_title TEXT
study_type TEXT
study_abstract TEXT
broker_name TEXT
center_name TEXT
center_project_name TEXT
study_description TEXT

O 00 N O O W N =
© 00 NO O WN = O
O O O O O O O o oo

[
o

11 10 related_studies TEXT 0

12 11 primary_study TEXT 0

13 12 sra_link TEXT 0

14 13 study_url_link TEXT 0

15 14 xref_link TEXT 0

16 15 study_entrez_link TEXT 0

17 16 ddbj_link TEXT 0

18 17 ena_link TEXT 0

19 18 study_attribute TEXT 0

20 19 submission_accession TEXT 0

21 20 sradb_updated TEXT 0
dflt_value pk

1 <NA> 0

2 <NA> O

3 <NA> O

4 <NA> O

5 <NA> O

6 <NA> O

7 <NA> 0

8 <NA> O

9 <NA> O

10 <NA> O

11 <NA> O

12 <NA> O

13 <NA> O

14 <NA> O

15 <NA> O

16 <NA> O

17 <NA> O

18 <NA> O

19 <NA> O

20 <NA> O

21 <NA> O

The table "col_desc” contains information of filed name, type, descritption and default
values:

> colDesc <- colDescriptions(sra_con=sra_con)[1:5,]
> colDesc[, 1:4]

col_desc_ID table_name field_name
1 1 submission ID
2 2 submission accession
3 3 submission alias

5

type
1 int
2 varchar
3 varchar
4 text
5 text

4 submission submission_comment

5 submission

files

3.2 Writing SQL queries and getting results

Select 3 records from the study table and show the first 5 columns:

> rs <- dbGetQuery(sra_con, "select * from study limit 3")

>rs[, 1:3]

study_ID study_alias study_accession

N

1
2
3

DRP000001
DRP000002
DRP0O00003

DRP000001
DRP0O00002
DRP0O00003

Get the SRA study accessions and titles from SRA study that study_type contains “Tran-
scriptome”. The “%” sign is used in combination with the “like” operator to do a “wildcard”
search for the term “Transcriptome” with any number of characters after it.

> rs <- dbGetQuery(sra_con, paste("select study_accession,

+ study_title from study where",
+ "study_description like 'Transcriptomej,'",sep=" "))
>rsl[1:3,]

study_accession

1 ERP000233

2 ERP000350

3 ERP000527

1 Identification of the expression profile of Staphylococcus aureus grown in the presenc
2

3 Transcriptome Analysis of the

Of course, we can combine programming and data access. A simple sapply example
shows how to query each of the tables for number of records.

> getTableCounts <- function(tableName,conn) {
+ sql <- sprintf("select count(*) from Js",tableName)

+ return(dbGetQuery(conn,sql) [1,1])

+ }

> do.call(rbind,sapply(sra_tables[c(2,4,5,11,12)],

+ getTableCounts, sra_con, simplify=FALSE))
[,1]

experiment 1306646

metalnfo 2

run 1695522

sra_ft_segments 395083

study 59141

Get some high-level statistics could be to helpful to get overall idea about what data are
availble in the SRA database. List all study types and number of studies contained for each
of the type:

> rs <- dbGetQuery(sra_con, paste("SELECT study_type AS StudyType,

+ count(*) AS Number FROM “study”~ GROUP BY study_type order
+ by Number DESC ", sep=""))
> rs

StudyType Number

1 Whole Genome Sequencing 26930
2 Other 15485
3 Transcriptome Analysis 7737
4 Metagenomics 4591
5 <NA> 2615
6 Epigenetics 824
7 Population Genomics 692
8 Exome Sequencing 148
9 Cancer Genomics 76
10 Pooled Clone Sequencing 31
11 Synthetic Genomics 9
12 RNASeq 3

List all Instrument Models and number of experiments for each of the Instrument Models:

> rs <- dbGetQuery(sra_con, paste("SELECT instrument_model AS

+ 'Instrument Model', count(*) AS Experiments FROM "experiment
+ GROUP BY instrument_model order by Experiments DESC", sep=""))
> rs

Instrument Model
1 I1lumina HiSeq 2000

7

O 00 N O O W N

DO D D W WWWWWWWWWNNNMNMNMNMNMNMNNMNNMNNMNNERERRRERRRERRRPRRPR P
W NEFE,E O OO NOD OO P WNEOOOONOO P WNEFE OO NOD OhdWNN - O

I1lumina MiSeq

454 GS FLX Titanium

<NA>

I1lumina Genome Analyzer II
I1lumina HiSeq 2500
Illumina Genome Analyzer IIx
unspecified

454 GS FLX

I1lumina Genome Analyzer
454 GS Junior

AB SOLiD 4 System

Ion Torrent PGM

I1lumina HiSeq 1000

PacBio RS II

454 GS FLX+

PacBio RS

Helicos HeliScope

454 GS

Complete Genomics

AB SOLiD System 3.0

AB 5500x1 Genetic Analyzer
I1lumina HiSeq 1500

AB 5500 Genetic Analyzer
NextSeq 500

I1lumina HiScanSQ

454 GS 20

Ion Torrent Proton

AB SOLiD System 2.0

AB SOLiD System

AB 3730xL Genetic Analyzer
HiSeq X Ten

AB SOLiD 3 Plus System

AB SOLiD 4hq System

AB 5500x1-W Genetic Analysis System
MinION

AB 3130xL Genetic Analyzer
Illumina NextSeq 500
I1lumina HiSeq 4000

454 GS FLX

AB 3500xL Genetic Analyzer
I1lumina HiSeq 3000

AB 3730 Genetic Analyzer

44
45
46

O 00 N O O W N -

W W WWWWWWNNNNNNNMNNNNREEPRERPR,RRERERPRRRPR PR P2
~NOoO O WONNEPE OOV NP WNE, OOV NOOk WNE= O

Experiments
685640
112310

87614
81220
76208
64127
45770
32976
27511
17020
12335
9923
7024
6449
6049
5289
4029
3813
3225
3059
2429
2279
2091
1754
1657
1319
900
695
464
413
282
194
179
158
93

55

27

AB SOLiD PI System

AB 310 Genetic Analyzer
AB 3500 Genetic Analyzer
NextSeq 550

38 22
39 12
40 10
41
42
43
44
45
46
47

R~ 2, N OO O

List all types of library strategies and number of runs for each of them:

> rs <- dbGetQuery(sra_con, paste("SELECT library_strategy AS

+ 'Library Strategy', count(*) AS Runs FROM ~“experiment’
+ GROUP BY library_strategy order by Runs DESC", sep=""))
> rs

Library Strategy Runs

1 WGS 423860
2 AMPLICON 214389
3 RNA-Seq 179277
4 WXS 172744
5 OTHER 90225
6 <NA> 81220
7 POOLCLONE 44307
8 ChIP-Seq 40949
9 SELEX 14875
10 Bisulfite-Seq 7884
11 WGA 6450
12 miRNA-Seq 6399
13 CLONE 6179
14 EST 3341
15 VALIDATION 3272
16 DNase-Hypersensitivity 1361
17 MeDIP-Seq 1336
18 FL-cDNA 1329
19 MNase-Seq 1060
20 ncRNA-Seq 1050
21 Tn-Seq 1010
22 MRE-Seq 948
23 RAD-Seq 912
24 MBD-Seq 743
25 RIP-Seq 633

10

26
27
28
29
30
31
32
33

3.

WCS 386
CTS 154

FAIRE-seq 127
Targeted-Capture 121
CLONEEND 52

ChIA-PET 26

FINISHING 20
Synthetic-Long-Read 7

3 Conversion of SRA entity types

Large-scale consumers of SRA data might want to convert SRA entity type from one to
others, e.g. finding all experiment accessions (SRX, ERX or DRX) and run accessions (SRR,
ERR or DRR) associated with "SRP001007” and "SRP000931”. Function sraConvert does
the conversion with a very fast mapping between entity types.

>

Covert "SRP001007” and "SRP000931” to other possible types in the SRAmetadb.sqlite:

conversion <- sraConvert(c('SRP001007','SRP000931'), sra_con = sra_con)
conversion[1:3,]

study submission sample experiment
SRP000931 SRA009053 SRS003462 SRX006133
SRP000931 SRA009053 SRS003458 SRX006127
SRP000931 SRA009053 SRS003453 SRX006130
run
SRR018267
SRR018261
SRR018264

Check what SRA types and how many entities for each type:

apply(conversion, 2, unique)

$study

1

] "SRP000931" "SRP001007"

$submission
[1] "SRA0O09053" "SRA009276"

$s
[

ample
1] "SRS003462" "SRS003458" "SRS003453"

[4] "SRS003454" "SRS003460" "SRS003461"
[7] "SRS003457" "SRS003459" "SRS003463"

[1

0] "SRS003455" "SRS003456" "SRS003464"

11

[13] "SRS004650"
$experiment
[1] "SRX006133" "SRX006127" "SRX006130"
[4] "SRX006123" "SRX006131" "SRX006132"
[7] "SRX006126" "SRX006128" "SRX006134"
[10] "SRX006122" "SRX006124" "SRX006125"
[13] "SRX006135" "SRX006129" "SRX007396"
$run
[1] "SRR018267" "SRR018261" "SRR018264"
[4] "SRR018257" "SRR018265" "SRR018266"
[7] "SRR018260" "SRR018262" "SRR018268"
[10] "SRR018256" "SRR018258" "SRR018259"
[13] "SRR018269" "SRR018263" "SRR020740"
[16] "SRR020739"

3.4 Full text search

Searching by regular table and field specific SQL commands can be very powerful and if
you are familiar with SQL language and the table structure. If not, SQLite has a very
handy module called Full text search (fts3), which allow users to do Google like search with
terms and operators. The function getSRA does Full text search against all fields in a fts3
table with terms constructed with the Standard Query Syntax and Enhanced Query Syntax.
Please see http://www.sqlite.org/fts3.html for detail.

Find all run and study combined records in which any given fields has "breast” and
"cancer” words, including "breast” and "cancer” are not next to each other:

> rs <- getSRA(search_terms = "breast cancer",

+ out_types = c('run’, 'study'), sra_con)
> dim(rs)
[1] 12425 23

> rs <- getSRA(search_terms = "breast cancer",

+ out_types = c("submission", "study", "sample",
+ "experiment", "run"), sra_con)

> # get counts for some information interested

> apply(rs[, c('run', 'sample', 'study_type', 'platform’,
+ 'instrument_model')], 2, function(x)

+ {length(unique (x))})

run
12425

sample
8630

12

study_type platform

9 6
instrument_model
24

If you only want SRA records containing exact phrase of "breast cancer”, in which "breast”
and "cancer” do not have other characters between other than a space:

> rs <- getSRA (search_terms ='"breast cancer"'’,
+ out_types=c('run’, 'study'), sra_con)
> dim(rs)

[1] 10691 23

Find all sample records containing words of either "MCF7” or "MCF-7":

> rs <- getSRA(search_terms ='MCF7 OR "MCF-7"',

+ out_types = c('sample'), sra_con)
> dim(rs)
[1] 2260 10

Find all submissions by GEO:

> rs <- getSRA(search_terms ='submission_center: GEO',

+ out_types = c('submission'), sra_con)
> dim(rs)
[1] 9232 6

Find study records containing a word beginning with 'Carcino’:

> rs <- getSRA(search_terms ='Carcino*',
+ out_types = c('study'), sra_con=sra_con)
> dim(rs)

[1] 523 12

13

3.5 Download SRA data files
List ftp addresses of the fastq files associated with "SRX000122":

>

rs = listSRAfile(c("SRX000122"), sra_con, fileType = 'sra')

The above function does not check file availability, size and date of the sra data files on

the server, but the function getSRAinfo does this, which is good to know if you are preparing
to download them:

>
>

N

W N -

rs = getSRAinfo (c("SRX000122"), sra_con, sralype = "sra")
rs[1:3,]
ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/sra/SRX/SRX000/SRX000122/

ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/sra/SRX/SRX000/SRX000122/
ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/sra/SRX/SRX000/SRX000122/
experiment study sample run
SRX000122 SRP0O00098 SRS000290 SRR000648
SRX000122 SRP000098 SRS000290 SRR000649
SRX000122 SRP000098 SRS000290 SRR0O00650
size(KB) date
281 Jan 19 2012
130940 Jan 19 2012
844 Jan 19 2012

Next you might want to download sra data files from the ftp site. The getSRAfile function

will download all available sra data files associated with "SRR000648” and "SRR000657” from
the NCBI SRA ftp site to the current directory:

>

1
2

1
2

getSRAfile(c("SRR000648", "SRRO00657"), sra_con, fileType = 'sra')

run study sample experiment
SRR000648 SRP000098 SRS000290 SRX000122
SRRO00657 SRP000098 SRS000290 SRX000122

ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/sra/SRX/SRX000/SRX000122/
ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/sra/SRX/SRX000/SRX000122/

Then downloaded sra data files can be easily converted into fastq files using fastq-dump

in SRA Toolkit (http://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software):

>

system ("fastq-dump SRR000648.lite.sra")

Or directly download fastq files from EBI using ftp protocol:

> getFASTQinfo(c("SRR000648", "SRRO00657"), sra_con, srcType = 'ftp')
> getSRAfile(c("SRR000648", "SRRO00657"), sra_con, fileType = 'fastq')

14

3.6 Download SRA data files using fasp protocol

Curretly both NCBI and EBI supports fasp protocol for downloading SRA data files, which
has several advantages over ftp protocol, including high-speed transfering large files over long
distance. Please check EBI or NCBI web site or Aspera (http://www.asperasoft.com/) for
details. SRAdb has indcluded two wraper functions for using ascp command line program
(fasp protocol) to download SRA data files frm either the NCBI or EBI, which is included
in in Aspera Connect software. But, due to complexity of installaton of the software and
options within it, the funcitons develpped here ask users to supply main ascp comands.
Download fastq files from EBI ftp siteusing fasp protocol:

List fasp addresses for associated fastq files:

listSRAfile (c("SRX000122"), sra_con, fileType = 'fastq', srcType='fasp')
get fasp addresses for associated fastq files:

getFASTQRinfo(c("SRX000122"), sra_con, srcType = 'fasp')

download fastq files using fasp protocol:

the following ascpCMD needs to be constructed according custom
system configuration

common ascp installation in a Linux system:

ascpCMD <- 'ascp -QT -1 300m -1
/usr/local/aspera/connect/etc/asperaweb_id_dsa.putty'

common ascpCMD for a Mac 0OS X system:

ascpCMD <- "'/Applications/Aspera Connect.app/Contents/

Resources/ascp' -QT -1 300m -i '/Applications/

Aspera Connect.app/Contents/Resources/asperaweb_id_dsa.putty'"

getSRAfile(c("SRX000122"), sra_con, fileType = 'fastq’,
srcType = 'fasp', ascpCMD = ascpCMD)

+ VVVVVYV+YVVVVVYVYVVYV

Download sra files from NCBI using fasp protocol:

List fasp addresses of sra files associated with "SRX000122"
listSRAfile(c("SRX000122"), sra_con, fileType = 'sra', srcType='fasp')
download sra files using fasp protocol

getSRAfile(c("SRX000122"), sra_con, fileType = 'sra',

srcType = 'fasp', ascpCMD = ascpCMD)

+ V Vv VvV

The downloading messege will show signigicant faster downloading speed than the ftp
protocol:

»SRR000658.sra 100Completed: 159492K bytes transferred in 5 seconds (249247K bits/sec),
in 1 file. ...~

15

4 Interactive views of sequence data

Working with sequence data is often best done interactively in a genome browser, a task
not easily done from R itself. We have found the Integrative Genomics Viewer (IGV) a
high-performance visualization tool for interactive exploration of large, integrated datasets,
increasing usefully for visualizing sequence alignments. In SRAdb, functions startIGV,
10ad2IGV and load2newIGV provide convenient functionality for R to interact with IGV.
Note that for some OS, these functions might not work or work well.

Launch IGV with 2 GB maximum usable memory support:

> startIGV("mm")

IGV offers a remort control port that allows R to communicate with IGV. The current
command set is fairly limited, but it does allow for some IGV operations to be performed in
the R console. To utilize this functionality, be sure that IGV is set to allow communication via
the “enable port” option in IGV preferences. To load BAM files to IGV and then manipulate
the window:

> exampleBams = file.path(system.file('extdata',package='SRAdb'),
+ dir(system.file('extdata',package='SRAdb'),pattern='bam$'))

> sock <- IGVsocket ()

> IGVgenome (sock, 'hgl8')

> IGVload(sock, exampleBams)

> IGVgoto(sock, 'chr1:1-1000')

> IGVsnapshot (sock)

5 Graphic view of SRA entities

Due to the nature of SRA data and its design, sometimes it is hard to get a whole picture of
the relationship between a set of SRA entities. Functions of entityGraph and sraGraph in
this package generate graphNEL objects with edgemode=’directed’ from input data.frame
or directly from search terms, and then the plot function can easily draw a diagram.

Create a graphNEL object directly from full text search results of terms 'primary thyroid
cell line’

> library(SRAdb)

> library(Rgraphviz)
> g <- sraGraph('primary thyroid cell line', sra_con)

> attrs <- getDefaultAttrs(list(node=list(

+ fillcolor='lightblue', shape='ellipse')))

> plot(g, attrs=attrs)

> ## similiar search as the above, returned much larger data.frame and graph is too cl
> g <- sraGraph('Ewing Sarcoma', sra_con)

> plot(g)

>

16

SRA029265

SRFO05396

SR ROSEET3 SRA0GEET2 SRX053E74

SRR0S4745 SRR094744 SRR094746

H——06
OENUESS
P—D—0

Figure 2: A graphical representation of the relationships between the SRA entities.

17

Please see the Figure 2 for an example diagram.
It’s considered good practise to explicitely disconnect from the database once we are done
with it:

> dbDisconnect (sra_con)

[1] TRUE

6 Example use case

This sesection will use the functionalities in the SRAdb package to explore data from the
1000 genomes project. Mainly,

1. Get some statistics of meta data and data files from the 1000 genomes project using
the SRAdb 2. Download data files 3. Load bam files into the IGV from R 4. Create some
snapshoots programmtically from R

library (SRAdb)

setwd ('1000g")

if(! file.exists('SRAmetadb.sqlite')) {
sqlfile <- getSRAdbFile()

} else {
sqlfile <- 'SRAmetadb.sqlite'’

}

sra_con <- dbConnect (SQLite(),sqlfile)

get all related accessions

rs <- getSRA(search_terms = '"1000 Genomes Project'',
sra_con=sra_con, acc_only=TRUE)

dim(rs)

head(rs)

get counts for each data types

apply(rs, 2, function(x) {length(unique(x))})

VVVV+VVYV+ + + + V VYV

After you decided what data from the 1000 Genomes, you would like to download data
files from the SRA. But, it might be helpful to know file size before downloading them:

> runs <- tail(rs$run)
> fs <- getSRAinfo(runs, sra_con, sraType = '"sra")

Now you can download the files through ftp protocol:
> getSRAfile(runs, sra_con, fileType ='sra', srcType = "ftp")

Or, you can download them through fasp protocol:

18

VvV Vv

+ Vv

ascpCMD <- "'/Applications/Aspera Connect.app/Contents/Resources/ascp' -QT -1 300m -
sra_files = getSRAfile(runs, sra_con, fileType ='sra', srcType = "fasp", ascpCMD =

Next you might want to convert the downloaded sra files into fastq files:

for(fq in basename(sra_files$fasp)) {
system ("fastq-dump SRRO00648.lite.sra")
}

... to be compeleted.

sessionlnfo
e R version 3.2.2 (2015-08-14), x86_64-pc-1linux-gnu

e Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

e Base packages: base, datasets, grDevices, graphics, methods, stats, utils

e Other packages: DBI 0.3.1, RCurl 1.95-4.7, RSQLite 1.0.0, SRAdb 1.28.0,
bitops 1.0-6, graph 1.48.0

e Loaded via a namespace (and not attached): Biobase 2.30.0, BiocGenerics 0.16.0,
GEOquery 2.36.0, XML 3.98-1.3, parallel 3.2.2, stats4 3.2.2, tools 3.2.2

19

	Introduction
	Getting Started
	Using the SRAdb package
	Interacting with the database
	Writing SQL queries and getting results
	Conversion of SRA entity types
	Full text search
	Download SRA data files
	Download SRA data files using fasp protocol

	Interactive views of sequence data
	Graphic view of SRA entities
	Example use case
	sessionInfo

