Using the SIMLR package

Bo Wang', Daniele Ramazzotti*, Luca De Sano®, Junjie
Zhu*, Emma Pierson', and Serafim Batzoglou'

!Department of Computer Science, Stanford University, Stanford, CA , USA

2Department of Pathology, Stanford University, Stanford, CA , USA

3Dipartimento di Informatica Sistemistica e Comunicazione, Universita degli Studi Milano
Bicocca, Milano, ltaly

“Department of Electrical Engineering, Stanford University, Stanford, CA, USA

October 30, 2017

Overview. Single-cell RNA-seq technologies enable high throughput gene expression
measurement of individual cells, and allow the discovery of heterogeneity within
cell populations. Measurement of cell-to-cell gene expression similarity is critical
to identification, visualization and analysis of cell populations. However, single-cell
data introduce challenges to conventional measures of gene expression similarity
because of the high level of noise, outliers and dropouts. We develop a novel
similarity-learning framework, SIMLR (Single-cell Interpretation via Multi-kernel
LeaRning), which learns an appropriate distance metric from the data for dimension
reduction, clustering and visualization. SIMLR is capable of separating known
subpopulations more accurately in single-cell data sets than do existing dimension
reduction methods. Additionally, SIMLR demonstrates high sensitivity and accuracy
on high-throughput peripheral blood mononuclear cells (PBMC) data sets generated
by the GemCode single-cell technology from 10x Genomics.

In this vignette, we give an overview of the package by presenting some of its main
functions.

http://bioconductor.org/packages/SIMLR
http://bioconductor.org/packages/SIMLR
http://bioconductor.org/packages/SIMLR
http://bioconductor.org/packages/SIMLR

Using the S/IMLR package

Contents
1 Changelog. 2
2 Algorithms and useful links 2
3 Using SIMLR 2
4 sessionInfo(). 12

1 Changelog

1.0.0 implements SIMLR and SIMLR feature ranking algorithms.
1.0.2 implements SIMLR large scale algorithms.

2 Algorithms and useful links

Acronym | Extended name Reference
SIMLR Single-cell Interpretation via Multi-kernel | Paper
LeaRning

3 Using SIMLR

We first load the data provided as an example in the package. The dataset BuettnerFlorian
is used for an example of the standard SIMLR, while the dataset ZeiselAmit is used for an
example of SIMLR large scale.

library (SIMLR)
data(BuettnerFlorian)
data(ZeiselAmit)

The external R package igraph is required for the computation of the normalized mutual
information to assess the results of the clustering.

library(igraph)

We now run SIMLR as an example on an input dataset from Buettner, Florian, et al. "Compu-
tational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden
subpopulations of cells." Nature biotechnology 33.2 (2015): 155-160. For this dataset we
have a ground true of 3 cell populations, i.e., clusters.

http://bioconductor.org/packages/SIMLR
http://biorxiv.org/content/early/2016/06/09/052225

Using the SIMLR package

set.seed(11111)
example = SIMLR(X = BuettnerFlorian$in_X, c = BuettnerFlorian$n_clust, cores.ratio = 0)

Computing the multiple Kernels.
Performing network diffiusion.
Iteration: 1

Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration: 11
Performing t-SNE.

O 00O NO U1 b WN

=
(o)

Epoch: Iteration # 100 error is: 0.1326426

Epoch: Iteration # 200 error is: 0.08721104
Epoch: Iteration # 300 error is: 0.05808032
Epoch: Iteration # 400 error is: 0.05713627
Epoch: Iteration # 500 error is: 0.0570977

Epoch: Iteration # 600 error is: 0.0570602

Epoch: Iteration # 700 error is: 0.05702496
Epoch: Iteration # 800 error is: 0.05699161
Epoch: Iteration # 900 error is: 0.05696026
Epoch: Iteration # 1000 error is: 0.05693017

Performing Kmeans.
Performing t-SNE.

Epoch: Iteration # 100 error is: 11.21592
Epoch: Iteration # 200 error is: 0.6659411
Epoch: Iteration # 300 error is: 0.5755609
Epoch: Iteration # 400 error is: 0.3986313
Epoch: Iteration # 500 error is: 0.4913843
Epoch: Iteration # 600 error is: 0.3970208
Epoch: Iteration # 700 error is: 0.3979712
Epoch: Iteration # 800 error is: 0.3530334
Epoch: Iteration # 900 error is: 0.3026329
Epoch: Iteration # 1000 error is: 0.2887195

We now compute the normalized mutual information between the inferred clusters by SIMLR
and the true ones. This measure with values in [0,1], allows us to assess the performance of
the clustering with higher values reflecting better performance.

nmi_1 = compare(BuettnerFlorian$true_labs[,1], example$y$cluster, method="nmi")
nmi_1

[1] 0.888298

As a further understanding of the results, we now visualize the cell populations in a plot.

http://bioconductor.org/packages/SIMLR

Using the S/IMLR package

plot(exampleg$ydata,
col = c(topo.colors(BuettnerFlorian$n_clust))[BuettnerFlorian$true_labs[,1]],
xlab = "SIMLR component 1",
ylab = "SIMLR component 2",
pch = 20,
main="SIMILR 2D visualization for BuettnerFlorian")

SIMILR 2D visualization for BuettnerFlorian

2 .
::' g:?,
N
=
c
2
s © 7
Q.
€
o
o
g
= 3
%) |
o
S |
7

SIMLR component 1

Figure 1: Visualization of the 3 cell populations retrieved by SIMLR on the dataset by Florian, et al

We also run SIMLR feature ranking on the same inputs to get a rank of the key genes with
the related pvalues.

set.seed(11111)
ranks = SIMLR Feature Ranking(A=BuettnerFlorian$results$S,X=BuettnerFlorian$in_X)

head (ranks$pval)

[1] 2.201015e-125 2.531379e-90 5.632172e-77 6.719501e-76 4.444251e-72
[6] 8.822900e-69

head(ranks$aggR)

[1] 5701 1689 7549 57 2653 8081

We finally show an example for SIMLR large scale on an input dataset being a reduced version
of the dataset provided in Buettner, Zeisel, Amit, et al. "Cell types in the mouse cortex and
hippocampus revealed by single-cell RNA-seq." Science 347.6226 (2015): 1138-1142. For
this dataset we have a ground true of 9 cell populations, i.e., clusters.

set.seed(11111)
example_large_scale = SIMLR Large Scale(X = ZeiselAmit$in_X, c = ZeiselAmit$n_clust, kk = 10)

Performing fast PCA.

Performing k-nearest neighbour search.

Computing the multiple Kernels.

Performing the iterative procedure 5 times.

http://bioconductor.org/packages/SIMLR

Using the SIMLR package

Iteration:
Iteration:
Iteration:
Iteration:
Iteration: 5

Performing Kmeans.

Performing t-SNE.

The main loop will be now performed with a maximum of 300 iterations.
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration
Performing iteration

A W N =

O 0o NO UL b WN B

A DA D PHA W W WWWWWWWWNNNNNNNNNNRAERRFRERERFRERERFRERFRERF &
W N HFHF O WOWOWNO U PM~AWNRFEHOOOWLONOUPRAWNREOOOOLONOURAWNREO -

http://bioconductor.org/packages/SIMLR

Using the SIMLR package

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
H##
##
##
##
##
##
##
##
##
##
##
##
##

Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing

iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration

44 .
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
U2
78
74.
75.
76.
77
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.

http://bioconductor.org/packages/SIMLR

Using the SIMLR package

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
H##
##
##
##
##
##
##
##
##
##
##
##
##

Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing

iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration

95.

96.

97.

98.

99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
3L2,,
113.
114.
115.
116.
3Lz
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144,
145.

http://bioconductor.org/packages/SIMLR

Using the SIMLR package

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
H##
##
##
##
##
##
##
##
##
##
##
##
##

Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing

iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration

146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.

http://bioconductor.org/packages/SIMLR

Using the SIMLR package

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
H##
##
##
##
##
##
##
##
##
##
##
##
##

Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing

iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration

197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
223
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244,
245,
246.
247.

http://bioconductor.org/packages/SIMLR

Using the SIMLR package

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
H##
##
##
##
##
##
##
##
##
##
##
##
##

Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing

iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration

248.
249,
250.
251.
252.
253.
254,
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.

10

http://bioconductor.org/packages/SIMLR

Using the S/IMLR package

Performing iteration 299.
Performing iteration 300.

We compute the normalized mutual information between the inferred clusters by SIMLR large
scale and the true ones.

nmi_2 = compare(ZeiselAmit$true_labs[,1], example_large_scaleycluster, method="nmi")
nmi_2

[1] 0.04158302

As a further understanding of the results, also in this case we visualize the cell populations
in a plot.

plot(example_large_scale$ydata,
col = c(topo.colors(ZeiselAmit$n_clust))[ZeiselAmit$true_labs[,1]],
xlab = "SIMLR component 1",
ylab = "SIMLR component 2",
pch = 20,
main="SIMILR 2D visualization for ZeiselAmit")

SIMILR 2D visualization for ZeiselAmit

Aaad
. :A e ge & .
d . o tee o
S . v o iy
.
R ol JretTN
as®
* . .
S 6 S S S VS
5 ‘et SR
c » 2000 L0
o e Bt .)
Q. $ -
g o - A Lo
5 o' v
Tet s Je e 4
RS K Y R T
s 1 o L .; . :v ° *
Iy 1} e
... e L
o _ og ee®e * ..
K o
5 v.-!:t*....
rli — &
T T T T I
-10 -5 0 5 10

SIMLR component 1

Figure 2: Visualization of the 9 cell populations retrieved by SIMLR large scale on the dataset by
Zeisel, Amit, et al

Now, as a final example, we also provide the results of two heuristics (see the original SIMLR
paper) to estimate the number of clusters from data.

set.seed(53900)

NUMC = 2:5
res_example = SIMLR Estimate_Number_of_Clusters(BuettnerFlorian$in_X,
NUMC = NUMC,

cores.ratio = 0)

Best number of clusters, K1 heuristic:

11

http://bioconductor.org/packages/SIMLR

Using the S/IMLR package

NUMC[which.min(res_example$Kl)]

[1] 2

K2 heuristic:
NUMC[which.min(res_example$K2)]

[1] 2

Results of the two heuristics:
res_example

$K1

[1] -63.04223 -19.49278 -23.77182 13.30109
##

$K2

[1] -94.56335 -25.99037 -29.71477 15.96130

4 sessionInfo()

= R version 3.4.2 (2017-09-28), x86_64-pc-linux-gnu

= Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8
LC_IDENTIFICATION=C

= Running under: Ubuntu 16.04.3 LTS

= Matrix products: default

= BLAS: /home/biocbuild/bbs-3.6-bioc/R/1ib/1ibRblas.so

= LAPACK: /home/biocbuild/bbs-3.6-bioc/R/1lib/1ibRlapack.so

= Base packages: base, datasets, grDevices, graphics, methods, stats, utils
= Other packages: SIMLR 1.4.0, igraph 1.1.2, knitr 1.17

= Loaded via a namespace (and not attached): BiocStyle 2.6.0, Matrix 1.2-11,
RSpectra 0.12-0, Rcpp 0.12.13, RcppAnnoy 0.0.10, backports 1.1.1, codetools 0.2-15,
compiler 3.4.2, digest 0.6.12, evaluate 0.10.1, grid 3.4.2, highr 0.6, htmltools 0.3.6,
lattice 0.20-35, magrittr 1.5, parallel 3.4.2, pkgconfig 2.0.1, pracma 2.0.7,
quadprog 1.5-5, rmarkdown 1.6, rprojroot 1.2, stringi 1.1.5, stringr 1.2.0, tools 3.4.2,
yaml 2.1.14

12

http://bioconductor.org/packages/SIMLR

	1 Changelog
	2 Algorithms and useful links
	3 Using SIMLR
	4 sessionInfo()

