
OrganismDbi: A meta framework for Annotation

Packages

Marc Carlson

October 13, 2015

OrganismDbi is a software package that helps tie together different an-
notation resources. It is expected that users may have previously made seen
packages like org.Hs.eg.db and TxDb.Hsapiens.UCSC.hg19.knownGene. Pack-
ages like these two are very different and contain very different kinds of
information, but are still about the same organism: Homo sapiens. The Or-
ganismDbi package allows us to combine resources like these together into a
single package resource, which can represent ALL of these resources at the
same time. An example of this is the homo.sapiens package, which combines
access to the two resources above along with others.

This is made possible because the packages that are represented by
homo.sapiens are related to each other via foreign keys.

GENE ID

PLATFORM
PKGS

GENE ID

ONTO ID’S

ORG
PKGS

GENE ID

ONTO ID

TRANSCRIPT
PKGS

SYSTEM
BIOLOGY

(GO, KEGG)

GENE ID

HOMOLOGY
PKGS

Figure 1: Relationships between Annotation packages

1

1 Getting started with OrganismDbi

Usage of a package like this has been deliberately kept very simple. The
methods supported are the same ones that work for all the packages based
on AnnotationDb objects. The methods that can be applied to these new
packages are columns, keys, keytypes and select.

So to learn which kinds of data can be retrieved from a package like this
we would simply load the package and then call the columns method.

> library(Homo.sapiens)

> columns(Homo.sapiens)

[1] "ACCNUM" "ALIAS" "CDSCHROM" "CDSEND" "CDSID"

[6] "CDSNAME" "CDSSTART" "CDSSTRAND" "DEFINITION" "ENSEMBL"

[11] "ENSEMBLPROT" "ENSEMBLTRANS" "ENTREZID" "ENZYME" "EVIDENCE"

[16] "EVIDENCEALL" "EXONCHROM" "EXONEND" "EXONID" "EXONNAME"

[21] "EXONRANK" "EXONSTART" "EXONSTRAND" "GENEID" "GENENAME"

[26] "GO" "GOALL" "GOID" "IPI" "MAP"

[31] "OMIM" "ONTOLOGY" "ONTOLOGYALL" "PATH" "PFAM"

[36] "PMID" "PROSITE" "REFSEQ" "SYMBOL" "TERM"

[41] "TXCHROM" "TXEND" "TXID" "TXNAME" "TXSTART"

[46] "TXSTRAND" "TXTYPE" "UCSCKG" "UNIGENE" "UNIPROT"

To learn which of those kinds of data can be used as keys to extract data,
we use the keytypes method.

> keytypes(Homo.sapiens)

[1] "ACCNUM" "ALIAS" "CDSID" "CDSNAME" "DEFINITION"

[6] "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS" "ENTREZID" "ENZYME"

[11] "EVIDENCE" "EVIDENCEALL" "EXONID" "EXONNAME" "GENEID"

[16] "GENENAME" "GO" "GOALL" "GOID" "IPI"

[21] "MAP" "OMIM" "ONTOLOGY" "ONTOLOGYALL" "PATH"

[26] "PFAM" "PMID" "PROSITE" "REFSEQ" "SYMBOL"

[31] "TERM" "TXID" "TXNAME" "UCSCKG" "UNIGENE"

[36] "UNIPROT"

To extract specific keys, we need to use the keys method, and also
provide it a legitimate keytype:

> head(keys(Homo.sapiens, keytype="ENTREZID"))

2

[1] "1" "2" "3" "9" "10" "11"

And to extract data, we can use the select method. The select method
depends on the values from the previous three methods to specify what it
will extract. Here is an example that will extract, UCSC transcript names,
and gene symbols using Entrez Gene IDs as keys.

> k <- head(keys(Homo.sapiens, keytype="ENTREZID"),n=3)

> select(Homo.sapiens, keys=k, columns=c("TXNAME","SYMBOL"), keytype="ENTREZID")

ENTREZID SYMBOL TXNAME

1 1 A1BG uc002qsd.4

2 1 A1BG uc002qsf.2

3 2 A2M uc001qvk.1

4 2 A2M uc009zgk.1

5 3 A2MP1 uc021qum.1

In Addition to select, some of the more popular range based meth-
ods have also been updated to work with an AnnotationDb object. So for
example you could extract transcript information like this:

> transcripts(Homo.sapiens, columns=c("TXNAME","SYMBOL"))

GRanges object with 82960 ranges and 2 metadata columns:

seqnames ranges strand | TXNAME

<Rle> <IRanges> <Rle> | <CharacterList>

[1] chr1 [11874, 14409] + | uc001aaa.3

[2] chr1 [11874, 14409] + | uc010nxq.1

[3] chr1 [11874, 14409] + | uc010nxr.1

[4] chr1 [69091, 70008] + | uc001aal.1

[5] chr1 [321084, 321115] + | uc001aaq.2

...

[82956] chrUn_gl000237 [1, 2686] - | uc011mgu.1

[82957] chrUn_gl000241 [20433, 36875] - | uc011mgv.2

[82958] chrUn_gl000243 [11501, 11530] + | uc011mgw.1

[82959] chrUn_gl000243 [13608, 13637] + | uc022brq.1

[82960] chrUn_gl000247 [5787, 5816] - | uc022brr.1

SYMBOL

<CharacterList>

[1] DDX11L1

[2] DDX11L1

3

[3] DDX11L1

[4] OR4F5

[5] NA

... ...

[82956] NA

[82957] NA

[82958] NA

[82959] NA

[82960] NA

seqinfo: 93 sequences (1 circular) from hg19 genome

And the GRanges object that would be returned would have the infor-
mation that you specified in the columns argument. You could also have
used the exons or cds methods in this way.

The transcriptsBy,exonsBy and cdsBy methods are also supported.
For example:

> transcriptsBy(Homo.sapiens, by="gene", columns=c("TXNAME","SYMBOL"))

GRangesList object of length 23459:

$1

GRanges object with 2 ranges and 3 metadata columns:

seqnames ranges strand | tx_name TXNAME

<Rle> <IRanges> <Rle> | <character> <CharacterList>

[1] chr19 [58858172, 58864865] - | uc002qsd.4 uc002qsd.4

[2] chr19 [58859832, 58874214] - | uc002qsf.2 uc002qsf.2

SYMBOL

<CharacterList>

[1] A1BG

[2] A1BG

$10

GRanges object with 1 range and 3 metadata columns:

seqnames ranges strand | tx_name TXNAME SYMBOL

[1] chr8 [18248755, 18258723] + | uc003wyw.1 uc003wyw.1 NAT2

$100

GRanges object with 1 range and 3 metadata columns:

seqnames ranges strand | tx_name TXNAME SYMBOL

4

[1] chr20 [43248163, 43280376] - | uc002xmj.3 uc002xmj.3 ADA

...

<23456 more elements>

seqinfo: 93 sequences (1 circular) from hg19 genome

2 Making your own OrganismDbi packages

So in the preceding section you can see that using an OrganismDbi package
behaves very similarly to how you might use a TxDb or an OrgDb package.
The same methods are defined, and the behave similarly except that they
now have access to much more data than before. But before you make your
own OrganismDbi package you need to understand that there are few logical
limitations for what can be included in this kind of package.

� The 1st limitation is that all the annotation resources in question must
have implemented the four methods described in the preceding section
(columns, keys, keytypes and select).

� The 2nd limitation is that you cannot have more than one example
of each field that can be retrieved from each type of package that is
included. So basically, all values returned by columns must be unique
across ALL of the supporting packages.

� The 3rd limitation is that you cannot have more than one example of
each object type represented. So you cannot have two org packages
since that would introduce two OrgDb objects.

� And the 4th limitation is that you cannot have cycles in the graph.
What this means is that there will be a graph that represents the
relationships between the different object types in your package, and
this graph must not present more than one pathway between any two
nodes/objects. This limitation means that you can choose one foreign
key relationship to connect any two packages in your graph.

With these limitations in mind, lets set up an example. Lets show how
we could make Homo.sapiens, such that it allowed access to org.Hs.eg.db,
TxDb.Hsapiens.UCSC.hg19.knownGene and GO.db.

The 1st thing that we need to do is set up a list that expresses the way
that these different packages relate to each other. To do this, we make a

5

list that contains short two element long character vectors. Each char-
acter vector represents one relationship between a pair of packages. The
names of the vectors are the package names and the values are the for-
eign keys. Please note that the foreign key values in these vectors are the
same strings that are returned by the columns method for the individual
packages. Here is an example that shows how GO.db, org.Hs.eg.db and
TxDb.Hsapiens.UCSC.hg19.knownGene all relate to each other.

> gd <- list(join1 = c(GO.db="GOID", org.Hs.eg.db="GO"),

+ join2 = c(org.Hs.eg.db="ENTREZID",

+ TxDb.Hsapiens.UCSC.hg19.knownGene="GENEID"))

So this data.frame indicates both which packages are connected to each
other, and also what these connections are using for foreign keys.

Once this is finished, we just have to call the makeOrganismPackage func-
tion to finish the task.

> destination <- tempfile()

> dir.create(destination)

> makeOrganismPackage(pkgname = "Homo.sapiens",

+ graphData = gd,

+ organism = "Homo sapiens",

+ version = "1.0.0",

+ maintainer = "Package Maintainer<maintainer@somewhere.org>",

+ author = "Some Body",

+ destDir = destination,

+ license = "Artistic-2.0")

makeOrganismPackage will then generate a lightweight package that you
can install. This package will not contain all the data that it refers to, but
will instead depend on the packages that were referred to in the data.frame.
Because the end result will be a package that treats all the data mapped
together as a single source, the user is encouraged to take extra care to
ensure that the different packages used are from the same build etc.

6

	Getting started with OrganismDbi
	Making your own OrganismDbi packages

