
ggbio: visualization toolkits for genomic data

Tengfei Yin1

November 12, 2015

1tengfei.yin@sbgenomics.com

http://bioconductor.org/packages/release/bioc/html/ggbio.html

Contents

1 Getting started 3
1.1 Citation . 3
1.2 Introduction . 3

2 Case study: building your first tracks 4
2.1 Add an ideogram track . 4
2.2 Add a gene model track . 5

2.2.1 Introduction . 5
2.2.2 Make gene model from OrganismDb object . 5
2.2.3 Make gene model from TxDb object . 9
2.2.4 Make gene model from GRangesList object . 10

2.3 Add a reference track . 13
2.3.1 Semantic zoom . 13

2.4 Add an alignment track . 15
2.5 Add a variants track . 19
2.6 Building your tracks . 22

3 Simple navigation 24

4 Overview plots 26
4.1 how to make circular plots . 26

4.1.1 Introduction . 26
4.1.2 Buidling circular plot layer by layer . 26
4.1.3 Complex arragnment of plots . 34

4.2 How to make grandlinear plots . 35
4.2.1 Introduction . 36
4.2.2 Corrdinate genome . 37
4.2.3 Convenient plotGrandLinear function . 38
4.2.4 How to highlight some points? . 40

4.3 How to make stacked karyogram overview plots . 41
4.3.1 Introduction . 41
4.3.2 Create karyogram temlate . 41
4.3.3 Add data on karyogram layout . 43
4.3.4 Add more data using layout karyogram function . 46
4.3.5 More flexible layout of karyogram . 48

5 Link ranges to your data 50

6 Miscellaneous 52
6.1 Themes . 52

6.1.1 Plot theme . 52
6.1.2 Track theme . 58

1

ggbio:visualization toolkits for genomic data 2

7 Session Information 60

Chapter 1

Getting started

1.1 Citation

citation("ggbio")

##

To cite package 'ggbio' in publications use:

##

Tengfei Yin, Dianne Cook and Michael Lawrence (2012): ggbio: an R

package for extending the grammar of graphics for genomic data Genome

Biology 13:R77

##

A BibTeX entry for LaTeX users is

##

@Article{,

title = {ggbio: an R package for extending the grammar of graphics for genomic data},

author = {Tengfei Yin and Dianne Cook and Michael Lawrence},

journal = {Genome Biology},

volume = {13},

number = {8},

pages = {R77},

year = {2012},

publisher = {BioMed Central Ltd},

}

1.2 Introduction

ggbio is a Bioconductor package building on top of ggplot2(), leveraging the rich objects defined by Bioconductor and
its statistical and computational power, it provides a flexible genomic visualization framework, extends the grammar of
graphics into genomic data, try to delivers high quality, highly customizable graphics to the users.

What it features

• autoplot function provides ready-to-use template for Bioconductor objects and different types of data.
• flexible low level components to use grammar of graphics to build you graphics layer by layer.
• layout transformation, so you could generate circular plot, grandlinear plot, stacked overview more easily.
• flexible tracks function to bind any ggplot2(), ggbio based plots.

3

http://bioconductor.org/packages/release/bioc/html/ggbio.html
http://bioconductor.org/packages/release/bioc/html/ggplot2.html
http://bioconductor.org/packages/release/bioc/html/ggplot2.html
http://bioconductor.org/packages/release/bioc/html/ggbio.html

Chapter 2

Case study: building your first tracks

In this chapter, you will learn

• how to add ideogram track.
• How to add gene model track.
• how to add track for bam files to visualize coverage and mismatch summary.
• how to add track for vcf file to visualize the variants.

2.1 Add an ideogram track

Ideogram provides functionality to construct ideogram, check the manual for more flexible methods. We build genome
hg19, hg18, mm10, mm9 inside, so you don’t have download it on the fly. When embed with tracks, ideogram show
zoomed region highlights automatically. xlim has special function here, is too changed highlighted zoomed region on
the ideogram.

library(ggbio)

p.ideo <- Ideogram(genome = "hg19")

p.ideo

chr1

chr1y

library(GenomicRanges)

special highlights instead of zoomin!

p.ideo + xlim(GRanges("chr2", IRanges(1e8, 1e8+10000000)))

4

ggbio:visualization toolkits for genomic data 5

chr2

chr2y

2.2 Add a gene model track

2.2.1 Introduction

Gene model track is one of the most frequently used track in genome browser, it is composed of genetic features CDS,
UTR, introns, exons and non-genetic region. In ggbio we support three methods to make gene model track:

• OrganismDb object: recommended, support gene symbols and other combination of columns as label.
• TxDb object: don’t support gene symbol labeling.
• GRangesList object: flexible, if you don’t have annotation package available for the first two methods, you could

prepare a data set parsed from gtf file, you can simply use it and plot it as gene model track.

2.2.2 Make gene model from OrganismDb object

OrganismDb object has a simpler API to retrieve data from different annotation resources, so we could label our transcripts
in different ways

library(ggbio)

library(Homo.sapiens)

class(Homo.sapiens)

[1] "OrganismDb"

attr(,"package")

[1] "OrganismDbi"

##

data(genesymbol, package = "biovizBase")

wh <- genesymbol[c("BRCA1", "NBR1")]

wh <- range(wh, ignore.strand = TRUE)

p.txdb <- autoplot(Homo.sapiens, which = wh)

p.txdb

http://bioconductor.org/packages/release/bioc/html/ggbio.html

ggbio:visualization toolkits for genomic data 6

NBR2

NBR2

NBR2

NBR2

NBR1

NBR1

NBR1

NBR1

NBR1

NBR1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

41200000 41250000 41300000 41350000

autoplot(Homo.sapiens, which = wh, label.color = "black", color = "brown",

fill = "brown")

ggbio:visualization toolkits for genomic data 7

NBR2

NBR2

NBR2

NBR2

NBR1

NBR1

NBR1

NBR1

NBR1

NBR1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

41200000 41250000 41300000 41350000

To change the intron geometry, use gap.geom to control it, check out geom alignment for more control parameters.

autoplot(Homo.sapiens, which = wh, gap.geom = "chevron")

ggbio:visualization toolkits for genomic data 8

NBR2

NBR2

NBR2

NBR2

NBR1

NBR1

NBR1

NBR1

NBR1

NBR1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

41200000 41250000 41300000 41350000

To collapse all features, use stat ’reduce’

autoplot(Homo.sapiens, which = wh, stat = "reduce")

NBR2 NBR1BRCA1

41200000 41250000 41300000 41350000

Label could be turned off by setting it to FALSE, you could also use expression to make a flexible label combination from
column names.

columns(Homo.sapiens)

[1] "ACCNUM" "ALIAS" "CDSCHROM" "CDSEND" "CDSID"

[6] "CDSNAME" "CDSSTART" "CDSSTRAND" "DEFINITION" "ENSEMBL"

[11] "ENSEMBLPROT" "ENSEMBLTRANS" "ENTREZID" "ENZYME" "EVIDENCE"

[16] "EVIDENCEALL" "EXONCHROM" "EXONEND" "EXONID" "EXONNAME"

[21] "EXONRANK" "EXONSTART" "EXONSTRAND" "GENEID" "GENENAME"

[26] "GO" "GOALL" "GOID" "IPI" "MAP"

[31] "OMIM" "ONTOLOGY" "ONTOLOGYALL" "PATH" "PFAM"

[36] "PMID" "PROSITE" "REFSEQ" "SYMBOL" "TERM"

[41] "TXCHROM" "TXEND" "TXID" "TXNAME" "TXSTART"

ggbio:visualization toolkits for genomic data 9

[46] "TXSTRAND" "TXTYPE" "UCSCKG" "UNIGENE" "UNIPROT"

autoplot(Homo.sapiens, which = wh, columns = c("TXNAME", "GO"), names.expr = "TXNAME::GO")

uc010czd.3::GO:0000407

uc010diz.3::GO:0000407

uc010whu.2::GO:0000407

uc010whv.2::GO:0000407

uc010whw.2::GO:0000407

uc010whx.1::GO:0000407

uc010whl.2::GO:0000151

uc002icp.4::GO:0000151

uc010whm.2::GO:0000151

uc002icu.3::GO:0000151

uc010cyx.3::GO:0000151

uc002icq.3::GO:0000151

uc002ict.3::GO:0000151

uc010whn.2::GO:0000151

uc010who.3::GO:0000151

uc010whp.2::GO:0000151

uc010whq.1::GO:0000151

uc002idc.1::GO:0000151

uc010whr.1::GO:0000151

uc002idd.3::GO:0000151

uc002ide.1::GO:0000151

uc010cyy.1::GO:0000151

uc010whs.1::GO:0000151

uc010cyz.2::GO:0000151

uc010cza.2::GO:0000151

uc010wht.1::GO:0000151

41200000 41250000 41300000 41350000

2.2.3 Make gene model from TxDb object

TxDb doesn’t contain any gene symbol information, so we use tx id as default for label.

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

autoplot(txdb, which = wh)

ggbio:visualization toolkits for genomic data 10

uc002idf.3

uc010czb.2

uc002idg.3

uc002idh.3

uc010czd.3

uc010diz.3

uc010whu.2

uc010whv.2

uc010whw.2

uc010whx.1

uc010whl.2

uc002icp.4

uc010whm.2

uc002icu.3

uc010cyx.3

uc002icq.3

uc002ict.3

uc010whn.2

uc010who.3

uc010whp.2

uc010whq.1

uc002idc.1

uc010whr.1

uc002idd.3

uc002ide.1

uc010cyy.1

uc010whs.1

uc010cyz.2

uc010cza.2

uc010wht.1

uc002idi.1

uc010czc.3

41200000 41250000 41300000 41350000

2.2.4 Make gene model from GRangesList object

Sometimes your gene model is not available as none of OrganismDb or TxDb object, it’s may be stored in a table, you
could simple parse it into a GRangeList object.

• each group indicate one transcripts
• names of group are shown as labels
• this object must has a column contains following key word: cds, exon, intron, and it’s not case senstitive. use type

to map this column. By default, we will try to parse ’type’ column.

Let’s make a sample GRangesList object which contains all information, and fake some labels.

library(biovizBase)

gr.txdb <- crunch(txdb, which = wh)

change column to 'model'

colnames(values(gr.txdb))[4] <- "model"

grl <- split(gr.txdb, gr.txdb$tx_id)

fake some randome names

names(grl) <- sample(LETTERS, size = length(grl), replace = TRUE)

grl

GRangesList object of length 32:

$O

GRanges object with 7 ranges and 4 metadata columns:

seqnames ranges strand | tx_id tx_name gene_id

<Rle> <IRanges> <Rle> | <factor> <factor> <factor>

[1] chr17 [41277600, 41277787] + | 61241 uc002idf.3 10230

ggbio:visualization toolkits for genomic data 11

[2] chr17 [41283225, 41283287] + | 61241 uc002idf.3 10230

[3] chr17 [41284973, 41285154] + | 61241 uc002idf.3 10230

[4] chr17 [41290674, 41292342] + | 61241 uc002idf.3 10230

[5] chr17 [41277788, 41283224] * | 61241 uc002idf.3 10230

[6] chr17 [41283288, 41284972] * | 61241 uc002idf.3 10230

[7] chr17 [41285155, 41290673] * | 61241 uc002idf.3 10230

model

<factor>

[1] exon

[2] exon

[3] exon

[4] exon

[5] gap

[6] gap

[7] gap

##

$C

GRanges object with 3 ranges and 4 metadata columns:

seqnames ranges strand | tx_id tx_name gene_id model

[1] chr17 [41277600, 41277787] + | 61242 uc010czb.2 10230 exon

[2] chr17 [41290674, 41292342] + | 61242 uc010czb.2 10230 exon

[3] chr17 [41277788, 41290673] * | 61242 uc010czb.2 10230 gap

##

$G

GRanges object with 9 ranges and 4 metadata columns:

seqnames ranges strand | tx_id tx_name gene_id model

[1] chr17 [41277600, 41277787] + | 61243 uc002idg.3 10230 exon

[2] chr17 [41283225, 41283287] + | 61243 uc002idg.3 10230 exon

[3] chr17 [41290674, 41290939] + | 61243 uc002idg.3 10230 exon

[4] chr17 [41291833, 41292300] + | 61243 uc002idg.3 10230 exon

[5] chr17 [41296745, 41297125] + | 61243 uc002idg.3 10230 exon

[6] chr17 [41277788, 41283224] * | 61243 uc002idg.3 10230 gap

[7] chr17 [41283288, 41290673] * | 61243 uc002idg.3 10230 gap

[8] chr17 [41290940, 41291832] * | 61243 uc002idg.3 10230 gap

[9] chr17 [41292301, 41296744] * | 61243 uc002idg.3 10230 gap

##

...

<29 more elements>

seqinfo: 1 sequence from hg19 genome

We get our example data ready, it meets all requirements, to make it a gene model track it’s pretty simple to use autoplot,
but don’t forget mapping because we changed our column names, asssume you store you model key words in column
’model’.

autoplot(grl, aes(type = model))

ggbio:visualization toolkits for genomic data 12

O

C

G

A

L

A

Q

P

O

W

U

W

O

Q

N

H

U

Y

U

G

B

U

F

L

X

U

V

V

O

L

E

V

41200000 41250000 41300000 41350000

ggplot() + geom_alignment(grl, type = "model")

ggbio:visualization toolkits for genomic data 13

O

C

G

A

L

Q

P

W

U

N

H

Y

B

F

X

V

E

41200000 41250000 41300000 41350000

2.3 Add a reference track

To add a reference track, we need to load a BSgenome object from the annotation package. You can choose to plot the
sequence as text, rect, segment.

2.3.1 Semantic zoom

Here we introduce semantic zoom in ggbio, for some plots like reference sequence, we use pre-defined zoom level threshold
to automatically assign geom to the track, unless the geom is explicitly specified. In the example below, when your region
is too wide we show text ’zoom in to see text’, when you zoom into different level, it shows you different details. zoom

is a function we will introduce more in chapter 3 when we introduce more about navigation.

You can pass a zoom in factor into zoom function, if it’s over 1 it’s zooming out, if it’s smaller than 1 it’s zooming in.

library(BSgenome.Hsapiens.UCSC.hg19)

bg <- BSgenome.Hsapiens.UCSC.hg19

p.bg <- autoplot(bg, which = wh)

no geom

p.bg

http://bioconductor.org/packages/release/bioc/html/ggbio.html

ggbio:visualization toolkits for genomic data 14

zoom in to show data

41200000 41250000 41300000 41350000

segment

p.bg + zoom(1/100)

41279500 41280000 41280500

seqs

A

C

G

T

rectangle

p.bg + zoom(1/1000)

41279950 41280000 41280050 41280100

seqs

A

C

G

T

text

p.bg + zoom(1/2500)

GCTTGCAGTGAGCCCAGATTGCACCACTGCATTCCAGCCTGGGTGACAGAGGGAGACTCCATCTCAAA

41279990 41280010 41280030

seqs

a

a

a

a

A

C

G

T

To override a zemantic zoom threshold, you simply provide a geom explicitly.

library(BSgenome.Hsapiens.UCSC.hg19)

bg <- BSgenome.Hsapiens.UCSC.hg19

force to use geom 'segment' at this level

autoplot(bg, which = resize(wh, width = width(wh)/2000), geom = "segment")

ggbio:visualization toolkits for genomic data 15

2.4 Add an alignment track

ggbio supports visuaization of alignemnts file stored in bam, autoplot method accepts

• bam file path (indexed)
• BamFile object
• GappedAlignemnt object

It’s simple to just pass a file path to autoplot function, you can stream a chunk of region by providing ’which’ parameter.
Otherwise please use method ’estiamte’ to show overall estiamted coverage.

fl.bam <- system.file("extdata", "wg-brca1.sorted.bam", package = "biovizBase")

wh <- keepSeqlevels(wh, "chr17")

autoplot(fl.bam, which = wh)

0

100

200

300

400

41000000 41100000 41200000 41300000 41400000

C
ov

er
ag

e

geom ’gapped pair’ will show you alignments.

fl.bam <- system.file("extdata", "wg-brca1.sorted.bam", package = "biovizBase")

wh <- keepSeqlevels(wh, "chr17")

autoplot(fl.bam, which = resize(wh, width = width(wh)/10), geom = "gapped.pair")

http://bioconductor.org/packages/release/bioc/html/ggbio.html

ggbio:visualization toolkits for genomic data 16

41 Mb 41.1 Mb 41.2 Mb 41.3 Mb 41.4 Mb

To show mismatch proportion, you have to provide reference sequence, the mismatched proportion is color coded in the
bar chart.

library(BSgenome.Hsapiens.UCSC.hg19)

bg <- BSgenome.Hsapiens.UCSC.hg19

p.mis <- autoplot(fl.bam, bsgenome = bg, which = wh, stat = "mismatch")

p.mis

ggbio:visualization toolkits for genomic data 17

0

50

100

150

200

250

41200000 41240000 41280000 41320000

C
ou

nt
s

read

A

C

G

N

T

To view overall estimated coverage distribution, please use method ’estiamte’. ’which’ parameter also accept characters.
And there is a hidden value called ’..coverage..’ to let you do simple transformation in aes().

autoplot(fl.bam, method = "estimate")

ggbio:visualization toolkits for genomic data 18

chr1 chr2 chr3 chr4 chr5

chr6 chr7 chr8 chr9 chr10

chr11 chr12 chr13 chr14 chr15

chr16 chr17 chr18 chr19 chr20

chr21 chr22 chrX chrY chrM

0
500000

1000000
1500000

0
500000

1000000
1500000

0
500000

1000000
1500000

0
500000

1000000
1500000

0
500000

1000000
1500000

0.0e+005.0e+071.0e+081.5e+082.0e+082.5e+080.0e+005.0e+071.0e+081.5e+082.0e+082.5e+080.0e+005.0e+071.0e+081.5e+082.0e+082.5e+080.0e+005.0e+071.0e+081.5e+082.0e+082.5e+080.0e+005.0e+071.0e+081.5e+082.0e+082.5e+08

C
ov

er
ag

e

autoplot(fl.bam, method = "estimate", which = paste0("chr", 17:18), aes(y = log(..coverage..)))

ggbio:visualization toolkits for genomic data 19

chr17 chr18

12.0

12.5

13.0

13.5

14.0

14.5

0e+002e+074e+076e+078e+070e+002e+074e+076e+078e+07

C
ov

er
ag

e

2.5 Add a variants track

This track is supported by semantic zoom.

To view your variants file, you could

• Import it using package VariantAnntoation as VCF object, then use autoplot

• Convert it into VRanges object and use autoplot.
• Simply provide vcf file path in autoplot().

library(VariantAnnotation)

fl.vcf <- system.file("extdata", "17-1409-CEU-brca1.vcf.bgz", package="biovizBase")

vcf <- readVcf(fl.vcf, "hg19")

vr <- as(vcf[, 1:3], "VRanges")

vr <- renameSeqlevels(vr, value = c("17" = "chr17"))

small region contains data

gr17 <- GRanges("chr17", IRanges(41234400, 41234530))

p.vr <- autoplot(vr, which = wh)

none geom

p.vr

http://bioconductor.org/packages/release/bioc/html/VariantAnntoation.html

ggbio:visualization toolkits for genomic data 20

zoom in to show data

41200000 41250000 41300000 41350000

rect geom

p.vr + xlim(gr17)

ggbio:visualization toolkits for genomic data 21

N
A

06984
N

A
06985

N
A

06986

412344004123442541234450412344754123450041234525

ref

A

C

G

T

text geom

p.vr + xlim(gr17) + zoom()

ggbio:visualization toolkits for genomic data 22

T G

C A

T G

C A

T G

C A

N
A

06984
N

A
06985

N
A

06986

41234440 41234460 41234480

alt

aa
aa
aa
aa

A

C

G

T

You can simply overide geom

autoplot(vr, which = wh, geom = "rect", arrow = FALSE)

2.6 Building your tracks

tks <- tracks(p.ideo, mismatch = p.mis, dbSNP = p.vr, ref = p.bs, gene = p.txdb)

tks <- tracks(fl.bam, fl.vcf, bs, Homo.sapiens) ## default ideo = FALSE, turned on

tks <- tracks(fl.bam, fl.vcf, bs, Homo.sapiens, ideo = TRUE)

tks + xlim(gr17)

gr17 <- GRanges("chr17", IRanges(41234415, 41234569))

tks <- tracks(p.ideo, mismatch = p.mis, dbSNP = p.vr, ref = p.bg, gene = p.txdb,

heights = c(2, 3, 3, 1, 4)) + xlim(gr17) + theme_tracks_sunset()

tks

ggbio:visualization toolkits for genomic data 23

chr17

chr17y

m
is

m
at

ch

0
50

100
150
200
250

C
ou

nt
s

read

A

C

G

N

T

db
S

N
P 1.001.251.501.752.00

1.001.251.501.752.00

1.001.251.501.752.00

N
A

06984
N

A
06985

N
A

06986

ref

A

C

G

T

re
f

seqs

A

C

G

T

ge
ne

41234440 41234480 41234520 41234560

Chapter 3

Simple navigation

We try to provide a simple navigation API for your plot, so you could zoom in and zoom out, or go through view chunks
one by one.

• zoom: put a factor inside and you can zoom in or zoom out
• nextView: switch to next view
• prevView: switch to previous view

Navigation function also works for tracks plot too.

zoom in

tks + zoom()

24

ggbio:visualization toolkits for genomic data 25

chr17

chr17y

m
is

m
at

ch

0
50

100
150
200
250

C
ou

nt
s

read

A

C

G

N

T

db
S

N
P

T G
C A
T G
C A
T G
C A

1.001.251.501.752.00

1.001.251.501.752.00

1.001.251.501.752.00

N
A

06984
N

A
06985

N
A

06986

alt

aa
aa
aa
aa

A

C

G

T

re
f AGGTCCTCAAGGGCAGAAGAGTCACTTATGATGGAAGGGTAGCTGTTAGAAGGCTGGCTCCCATGCTGTTCTAACACA

seqs

a

a

a

a

A

C

G

T

ge
ne

41234470 41234490 41234510 41234530

Try following command yourself.

zoom in with scale

p.txdb + zoom(1/8)

zoom out

p.txdb + zoom(2)

next view page

p.txdb + nextView()

previous view page

p.txdb + prevView()

Don’t forget xlim accept GRanges object (single row), so you could simply prepare a GRanges to store the region of
interests and go through them one by one.

Chapter 4

Overview plots

Overview is a good way to show all events at the same time, give overall summary statiics for the whole genome.

In this chapter, we will introcue three different layouts that are used a lots in genomic data visualization.

4.1 how to make circular plots

4.1.1 Introduction

Circular view is a special layout in ggbio , this idea has been implemented in many different software, for example, the
Circos project. However, we keep the grammar of graphics for users, so mapping varialbes to aesthetics is very easy,
ggbio leverage the data structure defiend in Bioconductor to make this process as simple as possible.

4.1.2 Buidling circular plot layer by layer

Ok, let’s start to process some raw data to the format we want. The data used in this study is from this a paper1. In
this tutorial, We are going to

1. Visualize somatic mutation as segment.
2. Visualize inter,intro-chromosome rearrangement as links.
3. Visualize mutation score as point tracks with grid-background.
4. Add scale and ticks and labels.
5. To arrange multiple plots and legend. create multiple sample comparison.

All the raw data processed and stored in GRanges ready for use, you can simply load the sample data from biovizBase

data("CRC", package = "biovizBase")

layout circle is depreicated, because you have to set up radius and trackWidth manually with this function for creating
circular plot.

We now present the new circle function, it accepts Granges object, and users don’t have to specify radius, track
width, you just add them one by one, it will be automatically created from innter circle to outside, unless you specify
trackWidth and radius manually. To change default radius and trackWidth for all tracks, you simply put them in
ggbio function.

• rule of thumb seqlengths, seqlevels and chromosomes names should be exactly the same.
• to use circle, you have to use ggbio constructor at the beginning instead of ggplot.

1http://www.nature.com/ng/journal/v43/n10/full/ng.936.html

26

http://bioconductor.org/packages/release/bioc/html/ggbio.html
http://bioconductor.org/packages/release/bioc/html/ggbio.html
http://bioconductor.org/packages/release/bioc/html/biovizBase.html

ggbio:visualization toolkits for genomic data 27

You can use autoplot to create single track easily like

head(hg19sub)

GRanges object with 6 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] 1 [1, 249250621] *

[2] 2 [1, 243199373] *

[3] 3 [1, 198022430] *

[4] 4 [1, 191154276] *

[5] 5 [1, 180915260] *

[6] 6 [1, 171115067] *

seqinfo: 22 sequences from hg19 genome

autoplot(hg19sub, layout = "circle", fill = "gray70")

Hoever, the low level circle function leave you more flexibility to build circular plot one by one. Let’s start to add
tracks one by one.

Let’s use the same data to create ideogram, label and scale track, it layouts the circle by the order you created from
inside to outside.

p <- ggbio() + circle(hg19sub, geom = "ideo", fill = "gray70") +

circle(hg19sub, geom = "scale", size = 2) +

circle(hg19sub, geom = "text", aes(label = seqnames), vjust = 0, size = 3)

p

ggbio:visualization toolkits for genomic data 28

0M 50
M

10
0M

15
0M

20
0M

0M
50

M
10

0M
15

0M

20
0M

0M

50M

100M

150M

0M

50M

100M

150M

0M

50M
100M

150M

0M
50M

100M150M0M50M100M

150M

0M50M

100M

0M50M

100M

0M
50M

100M

0M
50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

100M

0M

50M
100M

0M
50M

0M
50M

0M

50
M

0M

50
M 0M

50
M 0M

0M 50
M 1

2

3

4
5

6

7

89
10

11

12

13
14

15
16

17

18
19

20
21 22

To simply override the setting, you can do it globally in ggbio function or individually circle function by specifying
parametters trackWidth and radius, you can also specify the global settin for buffer in between in ggbio like example
below.

p <- ggbio(trackWidth = 10, buffer = 0, radius = 10) + circle(hg19sub, geom = "ideo", fill = "gray70") +

circle(hg19sub, geom = "scale", size = 2) +

circle(hg19sub, geom = "text", aes(label = seqnames), vjust = 0, size = 3)

p

ggbio:visualization toolkits for genomic data 29

0M 50
M

10
0M

15
0M

20
0M

0M
50

M
10

0M
15

0M

20
0M

0M

50M

100M

150M

0M

50M

100M

150M

0M

50M
100M

150M

0M
50M

100M150M0M50M100M

150M

0M50M

100M

0M50M

100M

0M
50M

100M

0M
50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

100M

0M

50M
100M

0M
50M

0M
50M

0M

50
M

0M

50
M 0M

50
M 0M

0M 50
M

1

2

3

4
5

6

7

89
10

11

12

13
14

15
16

17

18
19

20
21 22

Then we add a ”rectangle” track to show somatic mutation, this will looks like vertical segments.

head(mut.gr)

GRanges object with 6 ranges and 10 metadata columns:

seqnames ranges strand | Hugo_Symbol Entrez_Gene_Id

<Rle> <IRanges> <Rle> | <factor> <integer>

[1] 1 [11003085, 11003085] + | TARDBP 23435

[2] 1 [62352395, 62352395] + | INADL 10207

[3] 1 [194960885, 194960885] + | CFH 3075

[4] 2 [10116508, 10116508] - | CYS1 192668

[5] 2 [33617747, 33617747] + | RASGRP3 25780

[6] 2 [73894280, 73894280] + | C2orf78 388960

Center NCBI_Build Strand Variant_Classification Variant_Type

<factor> <integer> <factor> <factor> <factor>

[1] Broad 36 + Missense SNP

[2] Broad 36 + Missense SNP

[3] Broad 36 + Missense SNP

[4] Broad 36 - Missense SNP

[5] Broad 36 + Missense SNP

[6] Broad 36 + Missense SNP

Reference_Allele Tumor_Seq_Allele1 Tumor_Seq_Allele2

<factor> <factor> <factor>

[1] G G A

[2] T T G

[3] G G A

[4] C C T

ggbio:visualization toolkits for genomic data 30

[5] C C T

[6] T T C

seqinfo: 22 sequences from an unspecified genome

p <- ggbio() + circle(mut.gr, geom = "rect", color = "steelblue") +

circle(hg19sub, geom = "ideo", fill = "gray70") +

circle(hg19sub, geom = "scale", size = 2) +

circle(hg19sub, geom = "text", aes(label = seqnames), vjust = 0, size = 3)

p

0M 50
M

10
0M

15
0M

20
0M

0M
50

M
10

0M
15

0M

20
0M

0M

50M

100M

150M

0M

50M

100M

150M

0M

50M
100M

150M

0M
50M

100M150M0M50M100M

150M

0M50M

100M

0M50M

100M

0M
50M

100M

0M
50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

100M
0M

50M

0M
50M

0M

50
M

0M

50
M 0M

50
M 0M

0M 50
M 1

2

3

4
5

6

7

89
10

11

12

13
14

15
16

17

18
19

20
21 22

Next, we need to add some ”links” to show the rearrangement, of course, links can be used to map any kind of association
between two or more different locations to indicate relationships like copies or fusions. To create a suitable structure to
plot, please use another GRanges to represent the end of the links, and stored as elementMetadata for the ”start point”
GRanges. Here we named it as ”to.gr” and will be used later.

head(crc.gr)

GRanges object with 6 ranges and 17 metadata columns:

seqnames ranges strand | individual str1 class

<Rle> <IRanges> <Rle> | <factor> <integer> <factor>

[1] 18 [56258628, 56258628] * | CRC-4 1 long_range

[2] 18 [44496014, 44496014] * | CRC-4 1 long_range

[3] 18 [45023683, 45023683] * | CRC-4 0 long_range

[4] 8 [52186319, 52186319] * | CRC-4 0 deletion

[5] 8 [37328910, 37328910] * | CRC-4 0 inter_chr

[6] 8 [35575394, 35575394] * | CRC-4 0 inter_chr

span tumreads normreads gene1 gene2

ggbio:visualization toolkits for genomic data 31

<numeric> <integer> <integer> <factor> <factor>

[1] 2104165 491 2 MC4R ZCCHC2

[2] 12947165 265 0 KIAA0427 CDH20

[3] 13356670 238 0 DYM ZCCHC2

[4] 268 94 0 PXDNL PXDNL

[5] <NA> 56 0 ZNF703 PAK7

[6] <NA> 53 0 UNC5D RALGAPB

site1

<factor>

[1] IGR: 69Kb before MC4R(-)

[2] Intron of KIAA0427(+): 4Kb after exon 8

[3] Intron of DYM(-): 14Kb after exon 13

[4] IGR: 208Kb before PXDNL(-)

[5] IGR: 344Kb before ZNF703(+)

[6] Intron of UNC5D(+): 3Kb after exon 4

site2

<factor>

[1] Intron of ZCCHC2(+): 222bp before exon 4

[2] IGR: 134Kb before CDH20(+)

[3] Intron of ZCCHC2(+): 854bp before exon 9

[4] IGR: 208Kb before PXDNL(-)

[5] Intron of PAK7(-): 11Kb after exon 4

[6] Intron of RALGAPB(+): 839bp after exon 15

fusion quality score BPresult

<factor> <numeric> <numeric> <integer>

[1] - 1.0000000 491.00000 -1

[2] - 0.9944118 263.51910 1

[3] Protein fusion: in frame (ZCCHC2-DYM) 1.0000000 238.00000 1

[4] - 1.0000000 94.00000 -1

[5] - 0.9740215 54.54521 1

[6] Antisense fusion 1.0000000 53.00000 1

validation_result to.gr rearrangements

<factor> <GRanges> <character>

[1] not_subjected_to_validation 18:*:[58362793, 58362793] intrachromosomal

[2] not_subjected_to_validation 18:*:[57443167, 57443167] intrachromosomal

[3] somatic 18:*:[58380361, 58380361] intrachromosomal

[4] not_subjected_to_validation 8:*:[52186587, 52186587] intrachromosomal

[5] somatic 20:*:[9561906, 9561906] interchromosomal

[6] not_subjected_to_validation 20:*:[36595752, 36595752] interchromosomal

seqinfo: 22 sequences from an unspecified genome

Here in this example, we use ”intrachromosomal” to label rearrangement within the same chromosomes and use ”inter-
chromosomal” to label rearrangement in different chromosomes.

Get subset of links data for only one sample ”CRC1”

gr.crc1 <- crc.gr[values(crc.gr)$individual == "CRC-1"]

Ok, add a ”point” track with grid background for rearrangement data and map ‘y‘ to variable ”score”, map ‘size‘ to
variable ”tumreads”, rescale the size to a proper size range.

manually specify radius

p <- p + circle(gr.crc1, geom = "point", aes(y = score, size = tumreads),

color = "red", grid = TRUE, radius = 30) + scale_size(range = c(1, 2.5))

p

ggbio:visualization toolkits for genomic data 32

0M 50
M

10
0M

15
0M

20
0M

0M
50

M
10

0M
15

0M

20
0M

0M
50M

100M

150M

0M
50M
100M
150M

0M
50M

100M
150M

0M
50M100M150M0M50M100M

150M

0M50M

100M

0M50M
100M

0M
50M

100M
0M

50M
100M

0M
50M

100M

0M
50M

100M

0M
50M
100M
0M
50M
100M

0M
50M

0M
50M

0M

50
M 0M

50
M 0M 50

M

0M 0M 50
M 1

2

3
4

5

6

7

8910
11

12
13

14
15

16
17

18
19

20 21 22

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

tumreads
●

●

●

●

5.0

7.5

10.0

12.5

Finally, let’s add links and map color to rearrangement types. Remember you need to specify ‘linked.to‘ parameter to
the column that contain end point of the data.

specify radius manually

p <- p + circle(gr.crc1, geom = "link", linked.to = "to.gr", aes(color = rearrangements),

radius = 23)

p

ggbio:visualization toolkits for genomic data 33

0M 50
M

10
0M

15
0M

20
0M

0M 50
M

10
0M

15
0M

20
0M

0M
50M
100M

150M

0M
50M
100M
150M

0M
50M

100M150M0M50M100M150M0M50M100M

150M

0M50M
100M

0M50M
100M

0M
50M

100M
0M

50M
100M

0M
50M

100M

0M
50M
100M

0M
50M
100M
0M
50M
100M 0M

50M
0M 50M 0M

50
M 0M 50

M 0M 50
M

0M 0M 50
M 1

2

3
4

5
6

7
8910

11

12
13

14
15

16
17

18
19 20 2122

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

rearrangements

interchromosomal

intrachromosomal

tumreads
●

●

●

●

5.0

7.5

10.0

12.5

All those code could be simply constructed by following code

p <- ggbio() +

circle(gr.crc1, geom = "link", linked.to = "to.gr", aes(color = rearrangements)) +

circle(gr.crc1, geom = "point", aes(y = score, size = tumreads),

color = "red", grid = TRUE) + scale_size(range = c(1, 2.5)) +

circle(mut.gr, geom = "rect", color = "steelblue") +

circle(hg19sub, geom = "ideo", fill = "gray70") +

circle(hg19sub, geom = "scale", size = 2) +

circle(hg19sub, geom = "text", aes(label = seqnames), vjust = 0, size = 3)

p

ggbio:visualization toolkits for genomic data 34

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0M 50
M

10
0M

15
0M

20
0M

0M 50
M

10
0M

15
0M

20
0M

0M
50M
100M

150M

0M
50M
100M
150M

0M
50M

100M150M0M50M100M150M0M50M100M

150M

0M50M
100M

0M50M
100M

0M
50M

100M
0M

50M
100M

0M
50M

100M

0M
50M
100M

0M
50M
100M
0M
50M
100M 0M

50M
0M 50M 0M

50
M 0M 50

M 0M 50
M

0M 0M 50
M 1

2

3
4

5
6

7
8910

11

12
13

14
15

16
17

18
19 20 2122

rearrangements

interchromosomal

intrachromosomal

tumreads
●

●

●

●

5.0

7.5

10.0

12.5

4.1.3 Complex arragnment of plots

In this step, we are going to make multiple sample comparison, this may require some knowledge about package grid
and gridExtra. We will introduce a more easy way to combine your graphics later after this.

We just want 9 single circular plots put together in one page, since we cannot keep too many tracks, we only keep
ideogram and links. Here is one sample.

grl <- split(crc.gr, values(crc.gr)$individual)

need "unit", load grid

library(grid)

crc.lst <- lapply(grl, function(gr.cur){
print(unique(as.character(values(gr.cur)$individual)))

cols <- RColorBrewer::brewer.pal(3, "Set2")[2:1]

names(cols) <- c("interchromosomal", "intrachromosomal")

p <- ggbio() + circle(gr.cur, geom = "link", linked.to = "to.gr",

aes(color = rearrangements)) +

circle(hg19sub, geom = "ideo",

color = "gray70", fill = "gray70") +

scale_color_manual(values = cols) +

labs(title = (unique(values(gr.cur)$individual))) +

theme(plot.margin = unit(rep(0, 4), "lines"))

})

[1] "CRC-1"

[1] "CRC-2"

ggbio:visualization toolkits for genomic data 35

[1] "CRC-3"

[1] "CRC-4"

[1] "CRC-5"

[1] "CRC-6"

[1] "CRC-7"

[1] "CRC-8"

[1] "CRC-9"

We wrap the function in grid level to a more user-friendly high level function, called arrangeGrobByParsingLegend.
You can pass your ggplot2 graphics to this function , specify the legend you want to keep on the right, you can also
specify the column/row numbers. Here we assume all plots we have passed follows the same color scale and have the
same legend, so we only have to keep one legend on the right.

arrangeGrobByParsingLegend(crc.lst, widths = c(4, 1), legend.idx = 1, ncol = 3)

CRC−1 CRC−2 CRC−3

CRC−4 CRC−5 CRC−6

CRC−7 CRC−8 CRC−9

rearrangements

interchromosomal

intrachromosomal

TableGrob (1 x 2) "arrange": 2 grobs

z cells name grob

1 1 (1-1,1-1) arrange gtable[arrange]

2 2 (1-1,2-2) arrange gtable[arrange]

4.2 How to make grandlinear plots

ggbio:visualization toolkits for genomic data 36

4.2.1 Introduction

Let’s use a subset of PLINK output (https://github.com/stephenturner/qqman/blob/master/plink.assoc.txt.gz) as our
example test data.

snp <- read.table(system.file("extdata", "plink.assoc.sub.txt", package = "biovizBase"),

header = TRUE)

require(biovizBase)

gr.snp <- transformDfToGr(snp, seqnames = "CHR", start = "BP", width = 1)

head(gr.snp)

GRanges object with 6 ranges and 10 metadata columns:

seqnames ranges strand | CHR SNP BP

<Rle> <IRanges> <Rle> | <integer> <factor> <integer>

[1] 4 [10794096, 10794099] * | 4 rs9291494 10794096

[2] 14 [55853742, 55853755] * | 14 rs1152481 55853742

[3] 6 [55188853, 55188858] * | 6 rs3134708 55188853

[4] 17 [4146033, 4146049] * | 17 rs2325988 4146033

[5] 19 [46089501, 46089519] * | 19 rs8103444 46089501

[6] 1 [107051695, 107051695] * | 1 rs12072065 107051695

A1 F_A F_U A2 CHISQ P OR

<factor> <numeric> <numeric> <factor> <numeric> <numeric> <numeric>

[1] G 0.3061 0.1341 A 7.5070 0.006147 2.8480

[2] G 0.3542 0.2805 A 1.1030 0.293600 1.4070

[3] C 0.2500 0.2875 A 0.3135 0.575500 0.8261

[4] G 0.2551 0.2317 A 0.1323 0.716100 1.1360

[5] C 0.3980 0.2927 A 2.1750 0.140300 1.5970

[6] 0 0.0000 0.0000 C <NA> <NA> <NA>

seqinfo: 22 sequences from an unspecified genome; no seqlengths

change the seqname order

require(GenomicRanges)

gr.snp <- keepSeqlevels(gr.snp, as.character(1:22))

seqlengths(gr.snp)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

NA

need to assign seqlengths

data(ideoCyto, package = "biovizBase")

seqlengths(gr.snp) <- as.numeric(seqlengths(ideoCyto$hg18)[1:22])

remove missing

gr.snp <- gr.snp[!is.na(gr.snp$P)]

transform pvalue

values(gr.snp)$pvalue <- -log10(values(gr.snp)$P)

head(gr.snp)

GRanges object with 6 ranges and 11 metadata columns:

seqnames ranges strand | CHR SNP BP

<Rle> <IRanges> <Rle> | <integer> <factor> <integer>

[1] 4 [10794096, 10794099] * | 4 rs9291494 10794096

[2] 14 [55853742, 55853755] * | 14 rs1152481 55853742

[3] 6 [55188853, 55188858] * | 6 rs3134708 55188853

[4] 17 [4146033, 4146049] * | 17 rs2325988 4146033

[5] 19 [46089501, 46089519] * | 19 rs8103444 46089501

[6] 9 [81517907, 81517915] * | 9 rs2591 81517907

https://github.com/stephenturner/qqman/blob/master/plink.assoc.txt.gz

ggbio:visualization toolkits for genomic data 37

A1 F_A F_U A2 CHISQ P OR

<factor> <numeric> <numeric> <factor> <numeric> <numeric> <numeric>

[1] G 0.3061 0.13410 A 7.5070 0.006147 2.8480

[2] G 0.3542 0.28050 A 1.1030 0.293600 1.4070

[3] C 0.2500 0.28750 A 0.3135 0.575500 0.8261

[4] G 0.2551 0.23170 A 0.1323 0.716100 1.1360

[5] C 0.3980 0.29270 A 2.1750 0.140300 1.5970

[6] C 0.1042 0.04878 T 1.8720 0.171200 2.2670

pvalue

<numeric>

[1] 2.2113368

[2] 0.5322439

[3] 0.2399547

[4] 0.1450263

[5] 0.8529423

[6] 0.7664962

seqinfo: 22 sequences from an unspecified genome

done

The data is ready, we need to pay attention

• if seqlengths is missing, we use data range, so the chromosome length is not accurate
• use seqlevel to control order of chromosome

4.2.2 Corrdinate genome

In autoplot, argument coord is just used to transform the data, after that, you can use it as common GRanges, all
other geom/stat works for it.

autoplot(gr.snp, geom = "point", coord = "genome", aes(y = pvalue))

ggbio:visualization toolkits for genomic data 38

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

● ●

●

●
●

●

●

● ●

●

●
●

●
●

●
●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●
●

● ●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●
●

●●

● ●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●
●

●●

●

●

●

●●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●●

●

● ●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

● ●
●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●●

●

●●
●●

●●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

● ●●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●● ●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

● ●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●●
●

●

●●
●

●

●●

●

●

●

●

●●

●

●

●
●●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

pv
al

ue

However, we recommend you to use more powerful function plotGrandLinear to generate manhattan plot introduced
in next section.

4.2.3 Convenient plotGrandLinear function

For Manhattan plot, we have a function called plotGrandLinear. aes(y =) is required to indicate the y value, e.g.
p-value.

Color mapping is automatically figured out by ggbio following the rules

• if color present in aes(), like aes(color = seqnames), it will assume it’s mapping to data column called
’seqnames’.

• if color is not wrapped in aes(), then this function will recylcle them to all chromosomes.
• if color is single character representing color, then just use one arbitrary color.

Let’s test some examples for controling colors.

plotGrandLinear(gr.snp, aes(y = pvalue), color = c("#7fc97f", "#fdc086"))

http://bioconductor.org/packages/release/bioc/html/ggbio.html

ggbio:visualization toolkits for genomic data 39

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

● ●

●

●
●

●

●

● ●

●

●
●

●
●

●
●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●
●

● ●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●
●

●●

● ●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●
●

●●

●

●

●

●●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●●

●

● ●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

● ●
●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●●

●

●●
●●

●●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

● ●●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●● ●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

● ●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●●
●

●

●●
●

●

●●

●

●

●

●

●●

●

●

●
●●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516171819202122

pv
al

ue

Let’s add a cutoff line

plotGrandLinear(gr.snp, aes(y = pvalue), color = c("#7fc97f", "#fdc086"),

cutoff = 3, cutoff.color = "blue", cutoff.size = 0.2)

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

● ●

●

●
●

●

●

● ●

●

●
●

●
●

●
●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●
●

● ●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●
●

●●

● ●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●
●

●●

●

●

●

●●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●●

●

● ●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

● ●
●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●●

●

●●
●●

●●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

● ●●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●● ●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

● ●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●●
●

●

●●
●

●

●●

●

●

●

●

●●

●

●

●
●●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516171819202122

pv
al

ue

ggbio:visualization toolkits for genomic data 40

Sometimes you use color to mapping other varibles so you may need a different to separate chromosomes.

plotGrandLinear(gr.snp, aes(y = pvalue, color = OR), spaceline = TRUE, legend = TRUE)

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

● ●

●

●
●

●

●

● ●

●

●
●

●
●

●
●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●
●

● ●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●
●

●●

● ●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●
●

●●

●

●

●

●●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●●

●

● ●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

● ●
●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●●

●

●●
●●

●●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

● ●●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●● ●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

● ●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●●
●

●

●●
●

●

●●

●

●

●

●

●●

●

●

●
●●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13141516171819202122

pv
al

ue

0

3

6

9

12
OR

4.2.4 How to highlight some points?

You can provide a highlight GRanges, and each row highlights a set of overlaped snps, and labeled by rownames or
certain columns, there is more control in the function as parameters, with prefix highlight.*, so you could control color,
label size and color, etc.

gro <- GRanges(c("1", "11"), IRanges(c(100, 2e6), width = 5e7))

names(gro) <- c("group1", "group2")

plotGrandLinear(gr.snp, aes(y = pvalue), highlight.gr = gro)

ggbio:visualization toolkits for genomic data 41

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

● ●

●

●
●

●

●

● ●

●

●
●

●
●

●
●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●
●

● ●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●
●

●●

● ●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●
●

●●

●

●

●

●●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●●

●

● ●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

● ●
●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●●

●

●●
●●

●●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

● ●●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●● ●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

● ●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●●
●

●

●●
●

●

●●

●

●

●

●

●●

●

●

●
●●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●●●

●
●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

group1
group2

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516171819202122

pv
al

ue

4.3 How to make stacked karyogram overview plots

4.3.1 Introduction

A karyotype is the number and appearance of chromosomes in the nucleus of a eukaryotic cell2. It’s one kind of overview
when we want to show distribution of certain events on the genome, for example, binding sites for certain protein, even
compare them across samples as example shows in this section.

GRanges and Seqinfo objects are an ideal container for storing data needed for karyogram plot. Here is the strategy we
used for generating ideogram templates.

• Althouth seqlengths is not required, it’s highly recommended for plotting karyogram. If a GRanges object contains
seqlengths, we know exactly how long each chromosome is, and will use this information to plot genome space,
particularly we plot all levels included in it, NOT JUST data space.

• If a GRanges has no seqlengths, we will issue a warning and try to estimate the chromosome lengths from data
included. This is NOT accurate most time, so please pay attention to what you are going to visualize and make
sure set seqlengths before hand.

4.3.2 Create karyogram temlate

Let’s first introduce how to use autoplot to generate karyogram graphic.

The most easy one is to just plot Seqinfo by using autoplot, if your GRanges object has seqinfo with seqlengths
information. Then you add data layer later.

2http://en.wikipedia.org/wiki/Karyotype

ggbio:visualization toolkits for genomic data 42

data(ideoCyto, package = "biovizBase")

autoplot(seqinfo(ideoCyto$hg19), layout = "karyogram")

chr1
chr2
chr3
chr4
chr5
chr6
chr7
chr8
chr9

chr10
chr11
chr12
chr13
chr14
chr15
chr16
chr17
chr18
chr19
chr20
chr21
chr22
chrX
chrY

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

To show cytoband, your data need to have cytoband information, we stored some data for you, including hg19, hg18,
mm10, mm9.

turn on cytoband if it exists

biovizBase::isIdeogram(ideoCyto$hg19)

[1] TRUE

autoplot(ideoCyto$hg19, layout = "karyogram", cytoband = TRUE)

ggbio:visualization toolkits for genomic data 43

chr1
chr2
chr3
chr4
chr5
chr6
chr7
chr8
chr9

chr10
chr11
chr12
chr13
chr14
chr15
chr16
chr17
chr18
chr19
chr20
chr21
chr22
chrX
chrY

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

gieStain

acen

gneg

gpos100

gpos25

gpos50

gpos75

gvar

stalk

To change order or only show a subset of the karyogram, you have to manipulate seqlevels, please check out manual for
keepSeqlevels, seqlevels in GenomicRanges package for more information. Or you could read the example below.

4.3.3 Add data on karyogram layout

If you have single data set stored as GRanges to show on a karyogram layout, autoplot function is enough for you to
plot the data on it.

We use a default data in package biovizBase, which is a subset of RNA editing set in human. The data involved in
this GRanges is sparse, so we cannot simply use it to make karyogram template, otherwise, the estimated chromosome
lengths will be very rough and inaccurate. So what we need to do first is to add seglength information to this object.

data(darned_hg19_subset500, package = "biovizBase")

dn <- darned_hg19_subset500

library(GenomicRanges)

seqlengths(dn)

chr1 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr2 chr20

NA NA NA NA NA NA NA NA NA NA NA NA NA

chr21 chr22 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chrX

NA NA NA NA NA NA NA NA NA NA

add seqlengths

we have seqlegnths information in another data set

seqlengths(dn) <- seqlengths(ideoCyto$hg19)[names(seqlengths(dn))]

then we change order

dn <- keepSeqlevels(dn, paste0("chr", c(1:22, "X")))

seqlengths(dn)

chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8

249250621 243199373 198022430 191154276 180915260 171115067 159138663 146364022

http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html

ggbio:visualization toolkits for genomic data 44

chr9 chr10 chr11 chr12 chr13 chr14 chr15 chr16

141213431 135534747 135006516 133851895 115169878 107349540 102531392 90354753

chr17 chr18 chr19 chr20 chr21 chr22 chrX

81195210 78077248 59128983 63025520 48129895 51304566 155270560

autoplot(dn, layout = "karyogram")

chr1
chr2
chr3
chr4
chr5
chr6
chr7
chr8
chr9

chr10
chr11
chr12
chr13
chr14
chr15
chr16
chr17
chr18
chr19
chr20
chr21
chr22
chrX

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

Then we take one step further, the power of ggplot2 or ggbio is the flexible multivariate data mapping ability in graphics,
make data exploration much more convenient. In the following example, we are trying to map a categorical variable
’exReg’ to color, this variable is included in the data, and have three levels, ’3’ indicate 3’ utr, ’5’ means 5’ utr and ’C’
means coding region. We have some missing values indicated as NA, in default, it’s going to be shown in gray color,
and keep in mind, since the basic geom(geometric object) is rectangle, and genome space is very large, so change both
color/fill color of the rectangle to specify both border and filled color is necessary to get the data shown as different
color, otherwise if the region is too small, border color is going to override the fill color.

since default is geom rectangle, even though it's looks like segment

we still use both fill/color to map colors

autoplot(dn, layout = "karyogram", aes(color = exReg, fill = exReg))

http://bioconductor.org/packages/release/bioc/html/ggplot2.html
http://bioconductor.org/packages/release/bioc/html/ggbio.html

ggbio:visualization toolkits for genomic data 45

chr1
chr2
chr3
chr4
chr5
chr6
chr7
chr8
chr9

chr10
chr11
chr12
chr13
chr14
chr15
chr16
chr17
chr18
chr19
chr20
chr21
chr22
chrX

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

exReg

3

5

C

Or you can set the missing value to particular color yo u want (NA values is not shown on the legend).

since default is geom rectangle, even though it's looks like segment

we still use both fill/color to map colors

autoplot(dn, layout = "karyogram", aes(color = exReg, fill = exReg), alpha = 0.5) +

scale_color_discrete(na.value = "brown")

ggbio:visualization toolkits for genomic data 46

chr1
chr2
chr3
chr4
chr5
chr6
chr7
chr8
chr9

chr10
chr11
chr12
chr13
chr14
chr15
chr16
chr17
chr18
chr19
chr20
chr21
chr22
chrX

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

exReg

3

5

C

Well, sometimes we have too many values, we want to separate them by groups and show them at diffent height, below
is a hack for that purpose and in next section, we will introduce a more flexible and general way to add data layer by
layer.

Template chromosome y limits is [0, 10], that’s why this hack works

let's remove the NA value

dn.nona <- dn[!is.na(dn$exReg)]

compute levels based on categories

dn.nona$levels <- as.numeric(factor(dn.nona$exReg))

do a trcik show them at different height

p.ylim <- autoplot(dn.nona, layout = "karyogram", aes(color = exReg, fill = exReg,

ymin = (levels - 1) * 10/3,

ymax = levels * 10 /3))

4.3.4 Add more data using layout karyogram function

In this section, a lower level function layout karyogram is going to be introduced. This is convenient API for constructing
karyogram plot and adding more data layer by layer. Function ggplot is just to create blank object to add layer on.

You need to pay attention to

• when you add plots layer by layer, seqnames of different data must be the same to make sure the data are mapped
to the same chromosome. For example, if you name chromosome following schema like chr1 and use just number
1 to name other data, they will be treated as different chromosomes.

• cannot use the same aesthetics mapping multiple time for different data. For example, if you have used aes(color
=), for one data, you cannot use aes(color =) anymore for mapping variables from other add-on data, this is

ggbio:visualization toolkits for genomic data 47

currently not allowed in ggplot2 , even though you expect multiple color legend shows up, this is going to confuse
people which is which. HOWEVER, color or fill without aes() wrap around, is allowed for any track, it’s set
single arbitrary color.

• Default rectangle y range is [0, 10], so when you add on more data layer by layer on existing graphics, you can use
ylim to control how to normalize your data and plot it relative to chromosome space. For example, with default,
chromosome space is plotted between y [0, 10], if you use ylim = c(10 , 20), you will stack data right above
each chromosomes and with equal width. For geom like ’point’, which you need to specify ’y’ value in aes(), we
will add 5% margin on top and at bottom of that track.

Many times we overlay different datas sets, so let’s break down the previous samples into 4 groups and treat them as
different data and build them layer by layer, assign the color by hand. You could use ylim to control where they are
ploted.

prepare the data

dn3 <- dn.nona[dn.nona$exReg == '3']

dn5 <- dn.nona[dn.nona$exReg == '5']

dnC <- dn.nona[dn.nona$exReg == 'C']

dn.na <- dn[is.na(dn$exReg)]

now we have 4 different data sets

autoplot(seqinfo(dn3), layout = "karyogram") +

layout_karyogram(data = dn3, geom = "rect", ylim = c(0, 10/3), color = "#7fc97f") +

layout_karyogram(data = dn5, geom = "rect", ylim = c(10/3, 10/3*2), color = "#beaed4") +

layout_karyogram(data = dnC, geom = "rect", ylim = c(10/3*2, 10), color = "#fdc086") +

layout_karyogram(data = dn.na, geom = "rect", ylim = c(10, 10/3*4), color = "brown")

chr1
chr2
chr3
chr4
chr5
chr6
chr7
chr8
chr9

chr10
chr11
chr12
chr13
chr14
chr15
chr16
chr17
chr18
chr19
chr20
chr21
chr22
chrX

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb
start

What’s more, you could even chagne the geom for those data

http://bioconductor.org/packages/release/bioc/html/ggplot2.html

ggbio:visualization toolkits for genomic data 48

dn$pvalue <- runif(length(dn)) * 10

p <- autoplot(seqinfo(dn)) + layout_karyogram(dn, aes(x = start, y = pvalue),

geom = "point", color = "#fdc086")

p

●● ● ● ●●●
●● ●

●● ●●● ● ● ●
● ●●● ●●● ●●

●
● ●● ●●● ●

●
●●● ● ●● ●●●● ● ●● ●● ●●

●
● ●

●
●● ●●●● ● ● ● ●●

●● ●●
●●

●
●

●●●
●

● ●

●
●● ●

●
● ●●

●● ● ●●
●

●
●

●●
●

●●● ● ●

●
●

●
● ●

●● ●●● ● ●
●

●
●● ●●

● ● ●
●● ●●

●●
●

●● ●
● ●● ●●

●●●
●

●
● ● ●●● ●● ●● ● ●● ●

●●●
● ●● ●●

●● ●
●● ●● ●●● ●

●
●● ● ● ●●

●●
●● ● ●●

● ● ●●● ●●● ●

●●
●

●
●● ● ●● ●●●● ● ●

●●●
● ●

● ●

●
●●

●● ●● ●● ● ●
●●

● ●
●●●

●● ●●

●● ●●● ●
● ● ●● ● ●● ●●

●
● ●● ● ●

● ●● ●●●
● ●

●●● ●● ●● ●
●● ●

● ●● ●
●

●
● ●●●● ●●● ● ●●●●

●
●

●●● ●
●
●

●● ●● ●● ●● ●●

●
●

●
●

●●● ●●●●
● ●●

●●
●●

●
●

●
●

●
●

● ●● ●●●
●

●
●●

●●●
●● ●

●●●
●●● ●●

● ●●

●
● ●●

●● ●● ● ●●● ●
● ● ●●●

●
●

●
●

●
● ●

●
● ●●●

● ●●●● ●

●●●● ●
●● ●● ●

●
●

●
● ● ●●

●● ● ●● ●
●

●●● ●● ●● ●●●
●●

●
● ●

●
●●

● ●●● ●
●

●
● ●● ●

●●
●

●
●●

● ●● ●● ●●● ●● ● ●●● ●●

●●● ●●● ● ●● ●● ●●● ●

chr1
chr2
chr3
chr4
chr5
chr6
chr7
chr8
chr9

chr10
chr11
chr12
chr13
chr14
chr15
chr16
chr17
chr18
chr19
chr20
chr21
chr22
chrX

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb
start

4.3.5 More flexible layout of karyogram

p.ylim + facet_wrap(~seqnames)

ggbio:visualization toolkits for genomic data 49

chr1 chr2 chr3 chr4 chr5

chr6 chr7 chr8 chr9 chr10

chr11 chr12 chr13 chr14 chr15

chr16 chr17 chr18 chr19 chr20

chr21 chr22 chrX

0 Mb50 Mb100 Mb150 Mb200 Mb250 Mb0 Mb50 Mb100 Mb150 Mb200 Mb250 Mb0 Mb50 Mb100 Mb150 Mb200 Mb250 Mb

exReg

3

5

C

Chapter 5

Link ranges to your data

Plot GRanges object structure and linked to a even spaced paralell coordinates plot which represting the data in ele-
menteMetadata.

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

library(ggbio)

data(genesymbol, package = "biovizBase")

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

model <- exonsBy(txdb, by = "tx")

model17 <- subsetByOverlaps(model, genesymbol["RBM17"])

exons <- exons(txdb)

exon17 <- subsetByOverlaps(exons, genesymbol["RBM17"])

reduce to make sure there is no overlap

just for example

exon.new <- reduce(exon17)

suppose

values(exon.new)$sample1 <- rnorm(length(exon.new), 10, 3)

values(exon.new)$sample2 <- rnorm(length(exon.new), 10, 10)

values(exon.new)$score <- rnorm(length(exon.new))

values(exon.new)$significant <- sample(c(TRUE,FALSE), size = length(exon.new),replace = TRUE)

data ready

exon.new

GRanges object with 13 ranges and 4 metadata columns:

seqnames ranges strand | sample1

<Rle> <IRanges> <Rle> | <numeric>

[1] chr10 [6130949, 6131156] + | 6.06378046171679

[2] chr10 [6131309, 6131934] + | 10.7587187062922

[3] chr10 [6139011, 6139151] + | 7.12555191843622

[4] chr10 [6143234, 6143350] + | 10.6470576866251

[5] chr10 [6146894, 6147060] + | 8.65754392466972

...

[9] chr10 [6154173, 6154324] + | 3.69694271330858

[10] chr10 [6155471, 6155544] + | 15.0057552056723

[11] chr10 [6156012, 6156110] + | 11.9406721723772

[12] chr10 [6156126, 6157274] + | 12.3731927162229

[13] chr10 [6157416, 6159422] + | 5.50984413375539

sample2 score significant

<numeric> <numeric> <logical>

[1] 8.71620015469789 0.697084355926021 0

50

ggbio:visualization toolkits for genomic data 51

[2] -7.77200739314207 -0.714373734178726 1

[3] 11.6634880267775 -0.363324894649698 0

[4] 23.2184836660781 -0.835194701703063 0

[5] 10.00268433295 -0.095279467507053 0

...

[9] 4.16162612732921 -1.74480046875126 0

[10] 1.06198837083282 -0.891872287303243 0

[11] -4.63732075749575 -0.966307047695855 0

[12] 10.9648586786644 0.677914356757806 1

[13] 8.92243590107913 0.828126873705773 1

seqinfo: 93 sequences (1 circular) from hg19 genome

Make the plots, you can pass a list of annotation tracks too.

p17 <- autoplot(txdb, genesymbol["RBM17"])

plotRangesLinkedToData(exon.new, stat.y = c("sample1", "sample2"), annotation = list(p17))

0

10

20

va
lu

e

group

sample1

sample2

uc001ijb.3

uc010qav.2

uc001ijc.3

6130000 6140000 6150000 6160000

For more information, check the manual.

Chapter 6

Miscellaneous

Every plot object produced by ggplot2 is essentially a ggplot2 object, so you could use all the tricks you know with
ggplot2 on ggbio plots too, including scales, colors, themes, etc.

6.1 Themes

In ggbio, we developed some more themes to make things easier.

6.1.1 Plot theme

Plot level themes are like any other themes defined in ggplot2 , simply apply it to a plot.

p.txdb

52

http://bioconductor.org/packages/release/bioc/html/ggplot2.html
http://bioconductor.org/packages/release/bioc/html/ggplot2.html
http://bioconductor.org/packages/release/bioc/html/ggplot2.html
http://bioconductor.org/packages/release/bioc/html/ggbio.html
http://bioconductor.org/packages/release/bioc/html/ggbio.html
http://bioconductor.org/packages/release/bioc/html/ggplot2.html

ggbio:visualization toolkits for genomic data 53

NBR2

NBR2

NBR2

NBR2

NBR1

NBR1

NBR1

NBR1

NBR1

NBR1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

41200000 41250000 41300000 41350000

p.txdb + theme_alignment()

ggbio:visualization toolkits for genomic data 54

NBR2

NBR2

NBR2

NBR2

NBR1

NBR1

NBR1

NBR1

NBR1

NBR1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

41200000 41250000 41300000 41350000

p.txdb + theme_clear()

ggbio:visualization toolkits for genomic data 55

NBR2

NBR2

NBR2

NBR2

NBR1

NBR1

NBR1

NBR1

NBR1

NBR1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

41200000 41250000 41300000 41350000

p.txdb + theme_null()

ggbio:visualization toolkits for genomic data 56

NBR2

NBR2

NBR2

NBR2

NBR1

NBR1

NBR1

NBR1

NBR1

NBR1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

BRCA1

When you have multiple chromosomes encoded in seqnames, you could use theme genome to make a ’fake’ linear view
of genome coordinates quickly by applying this theme, because it’s not equal to chromosome lengths, it’s simply

library(GenomicRanges)

set.seed(1)

N <- 100

gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"),

size = N, replace = TRUE),

IRanges(start = sample(1:300, size = N, replace = TRUE),

width = sample(70:75, size = N,replace = TRUE)),

strand = sample(c("+", "-"), size = N, replace = TRUE),

value = rnorm(N, 10, 3), score = rnorm(N, 100, 30),

sample = sample(c("Normal", "Tumor"),

size = N, replace = TRUE),

pair = sample(letters, size = N,

replace = TRUE))

seqlengths(gr) <- c(400, 1000, 500)

autoplot(gr)

ggbio:visualization toolkits for genomic data 57

chr1 chr2 chr3

0 bp100 bp200 bp300 bp0 bp100 bp200 bp300 bp0 bp100 bp200 bp300 bp

autoplot(gr) + theme_genome()

ggbio:visualization toolkits for genomic data 58

chr1 chr2 chr3

6.1.2 Track theme

Track level themes are more complex, it controls whole looking of the tracks, it’s essentially a theme object with some
attributes controlling the tracks appearance.

See how we make a template, you could customize in the same way

theme_tracks_sunset

function (bg = "#fffedb", alpha = 1, ...)

{

res <- theme_clear(grid.x.major = FALSE, ...)

attr(res, "track.plot.color") <- sapply(bg, scales::alpha,

alpha)

attr(res, "track.bg.color") <- bg

attr(res, "label.text.color") <- "white"

attr(res, "label.bg.fill") <- "#a52a2a"

res

}

<environment: namespace:ggbio>

The attributes you could control is basically passed to tracks() constructor, including

ggbio:visualization toolkits for genomic data 59

label.bg.color character
label.bg.fill character

label.text.color character
label.text.cex numeric

track.plot.color characterORNULL
track.bg.color characterORNULL

label.width unit

Table 6.1: tracks attributes

Chapter 7

Session Information

sessionInfo()

R version 3.2.2 (2015-08-14)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 14.04.3 LTS

##

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

attached base packages:

[1] grid stats4 parallel stats graphics grDevices utils

[8] datasets methods base

##

other attached packages:

[1] VariantAnnotation_1.16.3

[2] Rsamtools_1.22.0

[3] SummarizedExperiment_1.0.1

[4] BSgenome.Hsapiens.UCSC.hg19_1.4.0

[5] BSgenome_1.38.0

[6] rtracklayer_1.30.1

[7] Biostrings_2.38.0

[8] XVector_0.10.0

[9] biovizBase_1.18.0

[10] Homo.sapiens_1.3.1

[11] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2

[12] org.Hs.eg.db_3.2.3

[13] GO.db_3.2.2

[14] RSQLite_1.0.0

[15] DBI_0.3.1

[16] OrganismDbi_1.12.0

[17] GenomicFeatures_1.22.4

[18] AnnotationDbi_1.32.0

[19] Biobase_2.30.0

60

ggbio:visualization toolkits for genomic data 61

[20] GenomicRanges_1.22.1

[21] GenomeInfoDb_1.6.1

[22] IRanges_2.4.1

[23] S4Vectors_0.8.2

[24] ggbio_1.18.1

[25] ggplot2_1.0.1

[26] BiocGenerics_0.16.1

[27] knitr_1.11

##

loaded via a namespace (and not attached):

[1] Rcpp_0.12.1 lattice_0.20-33 digest_0.6.8

[4] plyr_1.8.3 futile.options_1.0.0 acepack_1.3-3.3

[7] evaluate_0.8 highr_0.5.1 BiocInstaller_1.20.0

[10] zlibbioc_1.16.0 rpart_4.1-10 labeling_0.3

[13] proto_0.3-10 splines_3.2.2 BiocParallel_1.4.0

[16] stringr_1.0.0 foreign_0.8-66 RCurl_1.95-4.7

[19] biomaRt_2.26.0 munsell_0.4.2 nnet_7.3-11

[22] gridExtra_2.0.0 Hmisc_3.17-0 XML_3.98-1.3

[25] reshape_0.8.5 GenomicAlignments_1.6.1 MASS_7.3-45

[28] bitops_1.0-6 RBGL_1.46.0 GGally_0.5.0

[31] gtable_0.1.2 magrittr_1.5 formatR_1.2.1

[34] scales_0.3.0 graph_1.48.0 stringi_1.0-1

[37] reshape2_1.4.1 latticeExtra_0.6-26 futile.logger_1.4.1

[40] Formula_1.2-1 BiocStyle_1.8.0 lambda.r_1.1.7

[43] RColorBrewer_1.1-2 tools_3.2.2 dichromat_2.0-0

[46] survival_2.38-3 colorspace_1.2-6 cluster_2.0.3

	1 Getting started
	1.1 Citation
	1.2 Introduction

	2 Case study: building your first tracks
	2.1 Add an ideogram track
	2.2 Add a gene model track
	2.2.1 Introduction
	2.2.2 Make gene model from OrganismDb object
	2.2.3 Make gene model from TxDb object
	2.2.4 Make gene model from GRangesList object

	2.3 Add a reference track
	2.3.1 Semantic zoom

	2.4 Add an alignment track
	2.5 Add a variants track
	2.6 Building your tracks

	3 Simple navigation
	4 Overview plots
	4.1 how to make circular plots
	4.1.1 Introduction
	4.1.2 Buidling circular plot layer by layer
	4.1.3 Complex arragnment of plots

	4.2 How to make grandlinear plots
	4.2.1 Introduction
	4.2.2 Corrdinate genome
	4.2.3 Convenient plotGrandLinear function
	4.2.4 How to highlight some points?

	4.3 How to make stacked karyogram overview plots
	4.3.1 Introduction
	4.3.2 Create karyogram temlate
	4.3.3 Add data on karyogram layout
	4.3.4 Add more data using layout_karyogram function
	4.3.5 More flexible layout of karyogram

	5 Link ranges to your data
	6 Miscellaneous
	6.1 Themes
	6.1.1 Plot theme
	6.1.2 Track theme

	7 Session Information

