
Extending GenomicRanges

Michael Lawrence, Bioconductor Team

Edited: Oct 2014; Compiled: January 5, 2016

Contents

1 Introduction 1

2 The GenomicRanges abstraction 1

3 Formalizing mcols: Extra column slots 2

1 Introduction

The goal of GenomicRanges is to provide general containers for genomic data. The central class, at least from the user
perspective, is GRanges, which formalizes the notion of ranges, while allowing for arbitrary “metadata columns” to be
attached to it. These columns offer the same flexibility as the venerable data.frame and permit users to adapt GRanges
to a wide variety of adhoc use-cases.

The more we encounter a particular problem, the better we understand it. We eventually develop a systematic approach for
solving the most frequently encountered problems, and every systematic approach deserves a systematic implementation.
For example, we might want to formally store genetic variants, with information on alleles and read depths. The
metadata columns, which were so useful during prototyping, are inappropriate for extending the formal semantics of our
data structure: for the sake of data integrity, we need to ensure that the columns are always present and that they meet
certain constraints.

We might also find that our prototype does not scale well to the increased data volume that often occurs when we
advance past the prototype stage. GRanges is meant mostly for prototyping and stores its data in memory as simple R
data structures. We may require something more specialized when the data are large; for example, we might store the
data as a Tabix-indexed file, or in a database.

The GenomicRanges package does not directly solve either of these problems, because there are no general solutions.
However, it is adaptible to specialized use cases.

2 The GenomicRanges abstraction

Unbeknownst to many, most of the GRanges implementation is provided by methods on the GenomicRanges class, the
virtual parent class of GRanges. GenomicRanges methods provide everything except for the actual data storage and
retrieval, which GRanges implements directly using slots. For example, the ranges are retrieved like this:

> library(GenomicRanges)

> selectMethod(ranges, "GRanges")

Method Definition:

1

http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html


Extending GenomicRanges 2

function (x, ...)

{

.local <- function (x, use.mcols = FALSE)

{

if (!isTRUEorFALSE(use.mcols))

stop("'use.mcols' must be TRUE or FALSE")

ans <- x@ranges

if (use.mcols)

mcols(ans) <- mcols(x)

ans

}

.local(x, ...)

}

<environment: namespace:GenomicRanges>

Signatures:

x

target "GRanges"

defined "GRanges"

An alternative implementation is DelegatingGenomicRanges, which stores all of its data in a delegate GenomicRanges
object:

> selectMethod(ranges, "DelegatingGenomicRanges")

Method Definition:

function (x, ...)

ranges(x@delegate, ...)

<environment: namespace:GenomicRanges>

Signatures:

x

target "DelegatingGenomicRanges"

defined "DelegatingGenomicRanges"

This abstraction enables us to pursue more efficient implementations for particular tasks. One example is GNCList, which
is indexed for fast range queries, we expose here:

> getSlots("GNCList")["granges"]

granges

"GRanges"

The MutableRanges package in svn provides other, untested examples.

3 Formalizing mcols: Extra column slots

An orthogonal problem to data storage is adding semantics by the formalization of metadata columns, and we solve it
using the “extra column slot” mechanism. Whenever GenomicRanges needs to operate on its metadata columns, it also
delegates to the internal extraColumnSlotNames generic, methods of which should return a character vector, naming
the slots in the GenomicRanges subclass that correspond to columns (i.e., they have one value per range). It extracts the
slot values and manipulates them as it would a metadata column – except they are now formal slots, with formal types.

An example is the VRanges class in VariantAnnotation. It stores information on the variants by adding these column
slots:

http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/MutableRanges.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html


Extending GenomicRanges 3

> GenomicRanges:::extraColumnSlotNames(VariantAnnotation:::VRanges())

[1] "ref" "alt" "totalDepth"

[4] "refDepth" "altDepth" "sampleNames"

[7] "softFilterMatrix"

Mostly for historical reasons, VRanges extends GRanges. However, since the data storage mechanism and the set of extra
column slots are orthogonal, it is probably best practice to take a composition approach by extending DelegatingGenom-
icRanges.

http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html

	1 Introduction
	2 The GenomicRanges abstraction
	3 Formalizing mcols: Extra column slots

