AnnotationDbi: Introduction To Bioconductor Annotation Packages

Marc Carlson

December 8, 2015

PLATFORM
PKGS

GENE ID

ORG
PKGS

HOMOLOGY
PKGS

TRANSCRIPT

GENE ID
ONTO ID k PKGS
GENE ID

\

GENE ID

SYSTEM
BIOLOGY
(GO, KEGG)

ONTO ID'S

Figure 1: Annotation Packages: the big picture

Bioconductor provides extensive annotation resources. These can be gene centric, or genome centric. Anno-
tations can be provided in packages curated by Bioconductor, or obtained from web-based resources. This
vignette is primarily concerned with describing the annotation resources that are available as packages. More
advanced users who wish to learn about how to make new annotation packages should see the vignette titled
" Creating select Interfaces for custom Annotation resources” from the AnnotationfForge package.

Gene centric AnnotationDbi packages include:

Organism level: e.g. org.Mm.eg.db.

Platform level: e.g. hgul33plus2.db, hgul33plus2.probes, hgul33plus2.cdf.
Homology level: e.g. hom.Dm.inp.db.

System-biology level: GO.db

Genome centric GenomicFeatures packages include

e Transcriptome level: e.g. TxDb.Hsapiens.UCSC.hg19.knownGene
e Generic genome features: Can generate via GenomicFeatures

One web-based resource accesses biomart, via the biomaRt package:

http://www.biomart.org/

AnnotationDbi: Introduction To Bioconductor Annotation Packages 2

e Query web-based ‘biomart’ resource for genes, sequence, SNPs, and etc.

The most popular annotation packages have been modified so that they can make use of a new set of methods
to more easily access their contents. These four methods are named: columns, keytypes, keys and select.
And they are described in this vignette. They can currently be used with all chip, organism, and TxDb packages
along with the popular GO.db package.

For the older less popular packages, there are still conventient ways to retrieve the data. The How to use
bimaps from the ".db"” annotation packages vignette in the AnnotationDbi package is a key reference for
learnign about how to use bimap objects.

Finally, all of the '.db’ (and most other Bioconductor annotation packages) are updated every 6 months
corresponding to each release of Bioconductor. Exceptions are made for packages where the actual resources
that the packages are based on have not themselves been updated.

0.1 AnnotationDb objects and the select method

As previously mentioned, a new set of methods have been added that allow a simpler way of extracting
identifier based annotations. All the annotation packages that support these new methods expose an object
named exactly the same as the package itself. These objects are collectively called AnntoationDb objects
for the class that they all inherit from. The more specific classes (the ones that you will actually see in the
wild) have names like OrgDb, ChipDb or TxDb objects. These names correspond to the kind of package (and
underlying schema) being represented. The methods that can be applied to all of these objects are columns,
keys, keytypes and select.

In addition, another accessor has recently been added which allows extraction of one column at at time.
the mapIds method allows users to extract data into either a named character vector, a list or even a Sim-
pleCharacterList. This method should work with all the different kinds of AnntoationDb objects described
below.

0.2 ChipDb objects and the select method

An extremely common kind of Annotation package is the so called platform based or chip based package type.
This package is intended to make the manufacturer labels for a series of probes or probesets to a wide range
of gene-based features. A package of this kind will load an ChipDb object. Below is a set of examples to show
how you might use the standard 4 methods to interact with an object of this type.

First we need to load the package:

library (hgu95av2.db)

If we list the contents of this package, we can see that one of the many things loaded is an object named after
the package "hgu95av2.db":

1s("package :hgu95av2.db")

[1] "hgu95av2" "hgu9b5av2.db" "hgu95av2ACCNUM"
[4] "hgu95av2ALIAS2PROBE" "hgu95av2CHR" "hgu95av2CHRLENGTHS"
[7] "hgu95av2CHRLOC" "hgu95av2CHRLOCEND" "hgu95av2ENSEMBL"

[10] "hgu95av2ENSEMBL2PROBE" "hgu95av2ENTREZID" "hgu95av2ENZYME"

AnnotationDbi: Introduction To Bioconductor Annotation Packages 3

[13] "hgu95av2ENZYME2PROBE" "hgu95av2GENENAME" "hgu95av2G0"

[16] "hgu95av2GO2ALLPROBES" "hgu95av2GO2PROBE" "hgu95av2MAP"

[19] "hgu95av2MAPCOUNTS" "hgu95av20MIM" "hgu95av20RGANISM"
[22] "hgu95av20RGPKG" "hgu95av2PATH" "hgu95av2PATH2PROBE"
[25] "hgu95av2PFAM" "hgu95av2PMID" "hgu95av2PMID2PROBE"
[28] "hgu95av2PROSITE" "hgu95av2REFSEQ" "hgu95av2SYMBOL"

[31] "hgu95av2UNIGENE" "hgu95av2UNIPROT" "hgu9bav2_dbInfo"

[34] "hgu95av2_dbconn" "hgu9bav2_dbfile" "hgu9bav2_dbschema"

We can look at this object to learn more about it:
hgu95av2.db

ChipDb object:

DBSCHEMAVERSION: 2.1

| Db type: ChipDb

| Supporting package: AnnotationDbi

| DBSCHEMA: HUMANCHIP_DB

ORGANISM: Homo sapiens

| SPECIES: Human

| MANUFACTURER: Affymetrix

| CHIPNAME: Human Genome U95 Set

| MANUFACTURERURL: http://www.affymetrix.com/support/technical/byproduct.affx?product=hgudb
| EGSOURCEDATE: 2015-Sep27

| EGSOURCENAME: Entrez Gene

| EGSOURCEURL: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA

CENTRALID: ENTREZID

TAXID: 9606

| GOSOURCENAME: Gene Ontology

| GOSOURCEURL: ftp://ftp.geneontology.org/pub/go/godatabase/archive/latest-1lite/

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| GOSOURCEDATE: 20150919
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

GOEGSOURCEDATE: 2015-Sep27

| GOEGSOURCENAME: Entrez Gene

| GOEGSOURCEURL: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA

KEGGSOURCENAME: KEGG GENOME

| KEGGSOURCEURL: ftp://ftp.genome.jp/pub/kegg/genomes

KEGGSOURCEDATE: 2011-Mari1b

| GPSOURCENAME: UCSC Genome Bioinformatics (Homo sapiens)
| GPSOURCEURL: ftp://hgdownload.cse.ucsc.edu/goldenPath/hgl9
GPSOURCEDATE: 2010-Mar22

ENSOURCEDATE: 2015-Julil6

ENSOURCENAME: Ensembl

| ENSOURCEURL: ftp://ftp.ensembl.org/pub/current_fasta
| UPSOURCENAME: Uniprot

| UPSOURCEURL: http://www.uniprot.org/

| UPSOURCEDATE: Thu Oct 1 23:31:58 2015

##

Please see: help(’select’) for usage information

AnnotationDbi: Introduction To Bioconductor Annotation Packages 4

If we want to know what kinds of data are retriveable via select, then we should use the columns method
like this:

columns (hgu95av2.db)

[1] "ACCNUM" "ALTAS" "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS"
[6] "ENTREZID" "ENZYME" "EVIDENCE" "EVIDENCEALL" "GENENAME"

[11] "GO" "GOALL" "IPI" "MAP" "OMIM"

[16] "ONTOLOGY" "ONTOLOGYALL" "PATH" "PFAM" "PMID"

[21] "PROBEID" "PROSITE" "REFSEQ" "SYMBOL" "UCSCKG"

[26] "UNIGENE" "UNIPROT"

If we are further curious to know more about those values for columns, we can consult the help pages. Asking
about any of these values will pull up a manual page describing the different fields and what they mean.

help("SYMBOL")

If we are curious about what kinds of fields we could potentiall use as keys to query the database, we can use
the keytypes method. In a perfect world, this method will return values very similar to what was returned by
columns, but in reality, some kinds of values make poor keys and so this list is often shorter.

keytypes (hgu95av2.db)

[1] "ACCNUM" "ALTIAS" "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS"
[6] "ENTREZID" "ENZYME" "EVIDENCE" "EVIDENCEALL" "GENENAME"

[11] "GO" "GOALL" "IPI" "MAP" "OMIM"

[16] "ONTOLOGY" "ONTOLOGYALL" "PATH" "PFAM" "PMID"

[21] "PROBEID" "PROSITE" "REFSEQ" "SYMBOL" "UCSCKG"

[26] "UNIGENE" "UNIPROT"

If we want to extract some sample keys of a particular type, we can use the keys method.

head (keys (hgu95av2.db, keytype="SYMBOL"))
[1] "A1BG" "A2M" "A2MP1" "NAT1" "NAT2" "NATP"

And finally, if we have some keys, we can use select to extract them. By simply using appropriate argument
values with select we can specify what keys we want to look up values for (keys), what we want returned back
(columns) and the type of keys that we are passing in (keytype)

#1st get some example keys

k <- head(keys(hgu95av2.db,keytype="PROBEID"))

then call select

select (hgu95av2.db, keys=k, columns=c("SYMBOL","GENENAME"), keytype="PROBEID")

’select()’ returned 1:1 mapping between keys and columns

PROBEID SYMBOL GENENAME
1 1000_at MAPK3 mitogen-activated protein kinase 3
2 1001_at TIE1 tyrosine kinase with immunoglobulin-like and EGF-like domains 1
3 1002_f_at CYP2C19 cytochrome P450, family 2, subfamily C, polypeptide 19
4 1003_s_at CXCR5 chemokine (C-X-C motif) receptor 5
5 1004_at CXCR5 chemokine (C-X-C motif) receptor 5
6 1005_at DUSP1 dual specificity phosphatase 1

AnnotationDbi: Introduction To Bioconductor Annotation Packages 5

And as you can see, when you call the code above, select will try to return a data.frame with all the things
you asked for matched up to each other.

Finally if you wanted to extract only one column of data you could instead use the maplds method like this:

k <- head(keys(hgu95av2.db,keytype="PROBEID"))

maplds (hgu95av2.db, keys=k, column=c("GENENAME"), keytype="PROBEID")

1000_at
"mitogen-activated protein kinase 3"
1001_at
"tyrosine kinase with immunoglobulin-like and EGF-like domains 1"
1002_f_at
H#t "cytochrome P450, family 2, subfamily C, polypeptide 19"
#i# 1003_s_at
#i# "chemokine (C-X-C motif) receptor 5"
1004_at
"chemokine (C-X-C motif) receptor 5"
1005_at
"dual specificity phosphatase 1"

0.3 OrgDb objects and the select method

An organism level package (an ‘org’ package) uses a central gene identifier (e.g. Entrez Gene id) and contains
mappings between this identifier and other kinds of identifiers (e.g. GenBank or Uniprot accession number,
RefSeq id, etc.). The name of an org package is always of the form org.jAb;.jid;.db (e.g. org.Sc.sgd.db)
where jAb; is a 2-letter abbreviation of the organism (e.g. Sc for Saccharomyces cerevisiae) and jid; is an
abbreviation (in lower-case) describing the type of central identifier (e.g. sgd for gene identifiers assigned by
the Saccharomyces Genome Database, or eg for Entrez Gene ids).

Just as the chip packages load a ChipDb object, the org packages will load a OrgDb object. The following
exercise should acquaint you with the use of these methods in the context of an organism package.

Exercise 1
Display the OrgDb object for the org.Hs.eg.db package.

Use the columns method to discover which sorts of annotations can be extracted from it. Is this the same as
the result from the keytypes method? Use the keytypes method to find out.

Finally, use the keys method to extract UNIPROT identifiers and then pass those keys in to the select
method in such a way that you extract the gene symbol and KEGG pathway information for each. Use the
help system as needed to learn which values to pass in to columns in order to achieve this.

Solution:

library(org.Hs.eg.db)
columns (org.Hs.eg.db)

[1] "AcCCNUM" "ALTIAS" "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS"

http://bioconductor.org/packages/release/bioc/html/org.Hs.eg.db.html

AnnotationDbi: Introduction To Bioconductor Annotation Packages 6

[6]
[11]
[16]
[21]
[26]

"ENTREZID"

n GD n

"ONTOLOGY"
"PROSITE"
"UNIPROT"

"ENZYME"
"GOALL"
"ONTOLOGYALL"
"REFSEQ"

help("SYMBOL") ## for ezplanation of

keytypes(org.Hs.eg.db)

[1]
[6]
[11]
[16]
[21]
[26]

uniKeys
cols <-

"ACCNUM"

"ENTREZID"

n GD n

"ONTOLOGY"
"PROSITE"
"UNIPROT"

"ALTAS"
"ENZYME"
"GOALL"
"ONTOLOGYALL"
"REFSEQ"

"EVIDENCE"
n IPI n
IIPATHII
"SYMBOL"

these columns

"ENSEMBL"
"EVIDENCE"
"IPI"
"PATH"
"SYMBOL"

"EVIDENCEALL" "GENENAME"

IIMAPH IIOMIM"
IIPFAMII IIPMIDII
"UCSCKG" "UNIGENE"

and keytypes wvalues

"ENSEMBLPROT" "ENSEMBLTRANS"
"EVIDENCEALL" "GENENAME"

IIMAPII IIOMIMH
IIPFAMII IIPMIDH
"UCSCKG" "UNIGENE"

<- head(keys(org.Hs.eg.db, keytype="UNIPROT"))
c("SYMBOL", "PATH")
select(org.Hs.eg.db, keys=uniKeys, columns=cols, keytype="UNIPROT")

’select ()’ returned 1:many mapping between keys and columns

#H#t UNIPROT SYMBOL

##
#H#
##
##
##
##
##
##
##
10
11
12

©O© 00 N O O W N -

pP04217
VOHWD8
P01023
P18440
P18440
P18440
Q400J6
Q400J6
Q400J6
FSH5R8
FS5H5R8
FSH5R8

A1BG
A1BG

A2M
NAT1
NAT1
NAT1
NAT1
NAT1
NAT1
NAT1
NAT1
NAT1

PATH

<NA>

<NA>
04610
00232
00983
01100
00232
00983
01100
00232
00983
01100

So how could you use select to annotate your results? This next exercise should hlep you to understand how
that should generally work.

Exercise 2
Please run the following code snippet (which will load a fake data result that | have provided for the purposes
of illustration):

load(system.file("extdata", "resultTable.Rda", package="AnnotationDbi"))

head(resultTable)
#i# logConc
100418920 -9.639471 -4.679498

100419779 -10.638865 -4.264830
100271867 -11.448981 -4.009603

logFC LR.statistic

PValue FDR

378.0732 3.269307e-84 2.613484e-80
291.1028 2.859424e-65 1.142912e-61
222.3653 2.757135e-50 7.346846e-47

AnnotationDbi: Introduction To Bioconductor Annotation Packages 7

100287169 -11.026699 -3.486593 206.7771 6.934967e-47 1.385953e-43
100287735 -11.036862 3.064980 204.1235 2.630432e-46 4.205535e-43
100421986 -12.276297 -4.695736 190.5368 2.427556e-43 3.234314e-40

The rownames of this table happen to provide entrez gene identifiers for each row (for human). Find the gene
symbol and gene name for each of the rows in resultTable and then use the merge method to attach those
annotations to it.

Solution:

annots <- select(org.Hs.eg.db, keys=rownames(resultTable),
columns=c ("SYMBOL","GENENAME") , keytype="ENTREZID")

’select ()’ returned 1:1 mapping between keys and columns

resultTable <- merge(resultTable, annots, by.x=0, by.y="ENTREZID")
head(resultTable)

Row.names logConc logFC LR.statistic PValue FDR SYMBOL
1 100127888 -10.57050 2.758937 182.8937 1.131473e-41 1.130624e-38 SLC04A1-AS1
2 100131223 -12.37808 -4.654318 179.2331 7.126423e-41 6.329847e-38 L0C100131223
3 100271381 -12.06340 3.511937 188.4824 6.817155e-43 7.785191e-40 RPS28P8
4 100271867 -11.44898 -4.009603 222.3653 2.757135e-50 7.346846e-47 MPVQTL1
5 100287169 -11.02670 -3.486593 206.7771 6.934967e-47 1.385953e-43 <NA>
6 100287735 -11.03686 3.064980 204.1235 2.630432e-46 4.205535e-43 TTTY13B
GENENAME
1 SLCO4A1 antisense RNA 1
2 ADP-ribosylation factor-like 8B pseudogene
3 ribosomal protein S28 pseudogene 8
4 Mean platelet volume QTL1
5 <NA>
6 testis-specific transcript, Y-linked 13B

0.4 Using select with GO.db

When you load the GO.db package, a GODb object is also loaded. This allows you to use the columns, keys,
keytypes and select methods on the contents of the GO ontology. So if for example, you had a few GO
IDs and wanted to know more about it, you could do it like this:

library(GO.db)
GOIDs <- c("GO:0042254","G0:0044183")
select(GO.db, keys=GOIDs, columns="DEFINITION", keytype="GOID")

’select ()’ returned 1:1 mapping between keys and columns

#H#t GOID
1 GO:0042254
2 G0:0044183
##

AnnotationDbi: Introduction To Bioconductor Annotation Packages 8

1 A cellular process that results in the biosynthesis of constituent macromolecules, asse
2 Interacting selectively and non-covalently with any protein or protein complex (a complex of

0.5 Using select with TxDb packages

A TxDb package (a 'TxDb' package) connects a set of genomic coordinates to various transcript oriented
features. The package can also contain ldentifiers to features such as genes and transcripts, and the internal
schema describes the relationships between these different elements. All TxDb containing packages follow a
specific naming scheme that tells where the data came from as well as which build of the genome it comes
from.

Exercise 3
Display the TxDb object for the TxDb.Hsapiens.UCSC.hgl19.knownGene package.

As before, use the columns and keytypes methods to discover which sorts of annotations can be extracted
from it.

Use the keys method to extract just a few gene identifiers and then pass those keys in to the select method
in such a way that you extract the transcript ids and transcript starts for each.

Solution:

library(TxDb.Hsapiens.UCSC.hgl9.knownGene)

Loading required package: GenomicFeatures
Loading required package: GenomelnfoDb
Loading required package: GenomicRanges

txdb <- TxDb.Hsapiens.UCSC.hgl9.knownGene
txdb

TxDb object:

Db type: TxDb

Supporting package: GenomicFeatures

Data source: UCSC

Genome: hgl9

Organism: Homo sapiens

Taxonomy ID: 9606

UCSC Table: knownGene

Resource URL: http://genome.ucsc.edu/

Type of Gene ID: Entrez Gene ID

Full dataset: yes

miRBase build ID: GRCh37

transcript_nrow: 82960

exon_nrow: 289969

cds_nrow: 237533

Db created by: GenomicFeatures package from Bioconductor
Creation time: 2015-10-07 18:11:28 +0000 (Wed, 07 Oct 2015)
GenomicFeatures version at creation time: 1.21.30

RSQLite version at creation time: 1.0.0

http://bioconductor.org/packages/release/bioc/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html

AnnotationDbi: Introduction To Bioconductor Annotation Packages 9

DBSCHEMAVERSION: 1.1

columns (txdb)

[1] "CDSCHROM" "CDSEND" "CDSID" "CDSNAME" "CDSSTART" "CDSSTRAND"
[7] "EXONCHROM" "EXONEND" "EXONID" "EXONNAME" "EXONRANK" "EXONSTART"
[13] "EXONSTRAND" "GENEID" "TXCHROM" "TXEND" "TXID" "TXNAME"

[19] "TXSTART" "TXSTRAND" "TXTYPE"

keytypes (txdb)

[1] "CDSID" "CDSNAME" "EXONID" "EXONNAME" "GENEID" "TXID" "TXNAME"

keys <- head(keys(txdb, keytype="GENEID"))
cols <- c("TXID", "TXSTART")
select (txdb, keys=keys, columns=cols, keytype="GENEID")

’select ()’ returned 1:many mapping between keys and columns

##
##
##
#H#
##
#H#t
##
##
##
##
##

1
2
3
4
5
6
7
8
9

GENEID TXID TXSTART
1 70455 58858172

1 70456 58859832

10 31944 18248755

100 72132 43248163
1000 65378 25530930
1000 65379 25530930
10000 7895 243651535
10000 7896 243663021
10000 7897 243663021

10 100008586 75890 49217763

As is widely known, in addition to providing access via the select method, TxDb objects also provide access
via the more familiar transcripts, exons, cds, transcriptsBy, exonsBy and cdsBy methods. For those
who do not yet know about these other methods, more can be learned by seeing the vignette called: Making
and Utilizing TxDb Objects in the GenomicFeatures package.

The version number of R and packages loaded for generating the vignette were:

R version 3.2.2 (2015-08-14)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 14.04.3 LTS

##
##
##
##
##
##
##
#H#t
##
##
##
##
##

locale:

(1]
[4]
(7]
[10]

LC_CTYPE=en_US.UTF-8
LC_COLLATE=C
LC_PAPER=en_US.UTF-8
LC_TELEPHONE=C

attached base packages:
[1] parallel stats4 stats
[9] base

LC_NUMERIC=C LC_TIME=en_US.UTF-8
LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
LC_NAME=C LC_ADDRESS=C

LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

graphics grDevices utils datasets methods

AnnotationDbi: Introduction To Bioconductor Annotation Packages

##
##
##
#H#t
##
Ht
##
##
##
##
##
##
#H#t
##
#H#t
##
#Ht
##
##
##

other attached packages:
TxDb.Hsapiens.UCSC.hgl9.knownGene_3.2.2 GenomicFeatures_1.22.6

[1]
(3]
(5]
[7]
(9]
[11]
[13]
[15]

GenomicRanges_1.22.1
G0.db_3.2.2
AnnotationForge_1.12.1
RSQLite_1.0.0
AnnotationDbi_1.32.2
S4Vectors_0.8.4
BiocGenerics_0.16.1

GenomeInfoDb_1
hgu95av2.db_3.
org.Hs.eg.db_3
DBI_0.3.1
IRanges_2.4.5
Biobase_2.30.0
knitr_1.11

loaded via a namespace (and not attached):

[1]
[4]
(7]
[10]
[13]
[16]
[19]
[22]

XVector_0.10.0
zlibbioc_1.16.0
highr_0.5.1
lambda.r_1.1.7
formatR_1.2.1
RCurl_1.95-4.7
stringi_1.0-1
XML_3.98-1.3

magrittr_1.5
BiocParallel_1.4.1
tools_3.2.2
futile.logger_1.4.1
futile.options_1.0.0
biomaRt_2.26.1
Rsamtools_1.22.0
BiocStyle_1.8.0

10

.6.1
2.2
0 B0

GenomicAlignments_1.6.1
stringr_1.0.0
SummarizedExperiment_1.0.1
rtracklayer_1.30.1
bitops_1.0-6

evaluate_0.8
Biostrings_2.38.2

	0.1 AnnotationDb objects and the select method
	0.2 ChipDb objects and the select method
	0.3 OrgDb objects and the select method
	0.4 Using select with GO.db
	0.5 Using select with TxDb packages

