
AnnotationDbi: Introduction To Bioconductor Annotation Packages

Marc Carlson

December 8, 2015

GENE ID 

PLATFORM 
PKGS 

GENE ID 

ONTO ID’S 

ORG 
PKGS 

GENE ID 

ONTO ID 

TRANSCRIPT 
PKGS 

SYSTEM 
BIOLOGY 

(GO, KEGG) 

GENE ID 

HOMOLOGY 
PKGS 

Figure 1: Annotation Packages: the big picture

Bioconductor provides extensive annotation resources. These can be gene centric, or genome centric. Anno-
tations can be provided in packages curated by Bioconductor, or obtained from web-based resources. This
vignette is primarily concerned with describing the annotation resources that are available as packages. More
advanced users who wish to learn about how to make new annotation packages should see the vignette titled
”Creating select Interfaces for custom Annotation resources” from the AnnotationForge package.

Gene centric AnnotationDbi packages include:

• Organism level: e.g. org.Mm.eg.db.
• Platform level: e.g. hgu133plus2.db, hgu133plus2.probes, hgu133plus2.cdf.
• Homology level: e.g. hom.Dm.inp.db.
• System-biology level: GO.db

Genome centric GenomicFeatures packages include

• Transcriptome level: e.g. TxDb.Hsapiens.UCSC.hg19.knownGene
• Generic genome features: Can generate via GenomicFeatures

One web-based resource accesses biomart, via the biomaRt package:

1

http://www.biomart.org/


AnnotationDbi: Introduction To Bioconductor Annotation Packages 2

• Query web-based ‘biomart’ resource for genes, sequence, SNPs, and etc.

The most popular annotation packages have been modified so that they can make use of a new set of methods
to more easily access their contents. These four methods are named: columns, keytypes, keys and select.
And they are described in this vignette. They can currently be used with all chip, organism, and TxDb packages
along with the popular GO.db package.

For the older less popular packages, there are still conventient ways to retrieve the data. The How to use
bimaps from the ”.db” annotation packages vignette in the AnnotationDbi package is a key reference for
learnign about how to use bimap objects.

Finally, all of the ‘.db’ (and most other Bioconductor annotation packages) are updated every 6 months
corresponding to each release of Bioconductor . Exceptions are made for packages where the actual resources
that the packages are based on have not themselves been updated.

0.1 AnnotationDb objects and the select method

As previously mentioned, a new set of methods have been added that allow a simpler way of extracting
identifier based annotations. All the annotation packages that support these new methods expose an object
named exactly the same as the package itself. These objects are collectively called AnntoationDb objects
for the class that they all inherit from. The more specific classes (the ones that you will actually see in the
wild) have names like OrgDb, ChipDb or TxDb objects. These names correspond to the kind of package (and
underlying schema) being represented. The methods that can be applied to all of these objects are columns,
keys, keytypes and select.

In addition, another accessor has recently been added which allows extraction of one column at at time.
the mapIds method allows users to extract data into either a named character vector, a list or even a Sim-
pleCharacterList. This method should work with all the different kinds of AnntoationDb objects described
below.

0.2 ChipDb objects and the select method

An extremely common kind of Annotation package is the so called platform based or chip based package type.
This package is intended to make the manufacturer labels for a series of probes or probesets to a wide range
of gene-based features. A package of this kind will load an ChipDb object. Below is a set of examples to show
how you might use the standard 4 methods to interact with an object of this type.

First we need to load the package:

library(hgu95av2.db)

If we list the contents of this package, we can see that one of the many things loaded is an object named after
the package ”hgu95av2.db”:

ls("package:hgu95av2.db")

## [1] "hgu95av2" "hgu95av2.db" "hgu95av2ACCNUM"

## [4] "hgu95av2ALIAS2PROBE" "hgu95av2CHR" "hgu95av2CHRLENGTHS"

## [7] "hgu95av2CHRLOC" "hgu95av2CHRLOCEND" "hgu95av2ENSEMBL"

## [10] "hgu95av2ENSEMBL2PROBE" "hgu95av2ENTREZID" "hgu95av2ENZYME"



AnnotationDbi: Introduction To Bioconductor Annotation Packages 3

## [13] "hgu95av2ENZYME2PROBE" "hgu95av2GENENAME" "hgu95av2GO"

## [16] "hgu95av2GO2ALLPROBES" "hgu95av2GO2PROBE" "hgu95av2MAP"

## [19] "hgu95av2MAPCOUNTS" "hgu95av2OMIM" "hgu95av2ORGANISM"

## [22] "hgu95av2ORGPKG" "hgu95av2PATH" "hgu95av2PATH2PROBE"

## [25] "hgu95av2PFAM" "hgu95av2PMID" "hgu95av2PMID2PROBE"

## [28] "hgu95av2PROSITE" "hgu95av2REFSEQ" "hgu95av2SYMBOL"

## [31] "hgu95av2UNIGENE" "hgu95av2UNIPROT" "hgu95av2_dbInfo"

## [34] "hgu95av2_dbconn" "hgu95av2_dbfile" "hgu95av2_dbschema"

We can look at this object to learn more about it:

hgu95av2.db

## ChipDb object:

## | DBSCHEMAVERSION: 2.1

## | Db type: ChipDb

## | Supporting package: AnnotationDbi

## | DBSCHEMA: HUMANCHIP_DB

## | ORGANISM: Homo sapiens

## | SPECIES: Human

## | MANUFACTURER: Affymetrix

## | CHIPNAME: Human Genome U95 Set

## | MANUFACTURERURL: http://www.affymetrix.com/support/technical/byproduct.affx?product=hgu95

## | EGSOURCEDATE: 2015-Sep27

## | EGSOURCENAME: Entrez Gene

## | EGSOURCEURL: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA

## | CENTRALID: ENTREZID

## | TAXID: 9606

## | GOSOURCENAME: Gene Ontology

## | GOSOURCEURL: ftp://ftp.geneontology.org/pub/go/godatabase/archive/latest-lite/

## | GOSOURCEDATE: 20150919

## | GOEGSOURCEDATE: 2015-Sep27

## | GOEGSOURCENAME: Entrez Gene

## | GOEGSOURCEURL: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA

## | KEGGSOURCENAME: KEGG GENOME

## | KEGGSOURCEURL: ftp://ftp.genome.jp/pub/kegg/genomes

## | KEGGSOURCEDATE: 2011-Mar15

## | GPSOURCENAME: UCSC Genome Bioinformatics (Homo sapiens)

## | GPSOURCEURL: ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19

## | GPSOURCEDATE: 2010-Mar22

## | ENSOURCEDATE: 2015-Jul16

## | ENSOURCENAME: Ensembl

## | ENSOURCEURL: ftp://ftp.ensembl.org/pub/current_fasta

## | UPSOURCENAME: Uniprot

## | UPSOURCEURL: http://www.uniprot.org/

## | UPSOURCEDATE: Thu Oct 1 23:31:58 2015

##

## Please see: help(’select’) for usage information



AnnotationDbi: Introduction To Bioconductor Annotation Packages 4

If we want to know what kinds of data are retriveable via select, then we should use the columns method
like this:

columns(hgu95av2.db)

## [1] "ACCNUM" "ALIAS" "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS"

## [6] "ENTREZID" "ENZYME" "EVIDENCE" "EVIDENCEALL" "GENENAME"

## [11] "GO" "GOALL" "IPI" "MAP" "OMIM"

## [16] "ONTOLOGY" "ONTOLOGYALL" "PATH" "PFAM" "PMID"

## [21] "PROBEID" "PROSITE" "REFSEQ" "SYMBOL" "UCSCKG"

## [26] "UNIGENE" "UNIPROT"

If we are further curious to know more about those values for columns, we can consult the help pages. Asking
about any of these values will pull up a manual page describing the different fields and what they mean.

help("SYMBOL")

If we are curious about what kinds of fields we could potentiall use as keys to query the database, we can use
the keytypes method. In a perfect world, this method will return values very similar to what was returned by
columns, but in reality, some kinds of values make poor keys and so this list is often shorter.

keytypes(hgu95av2.db)

## [1] "ACCNUM" "ALIAS" "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS"

## [6] "ENTREZID" "ENZYME" "EVIDENCE" "EVIDENCEALL" "GENENAME"

## [11] "GO" "GOALL" "IPI" "MAP" "OMIM"

## [16] "ONTOLOGY" "ONTOLOGYALL" "PATH" "PFAM" "PMID"

## [21] "PROBEID" "PROSITE" "REFSEQ" "SYMBOL" "UCSCKG"

## [26] "UNIGENE" "UNIPROT"

If we want to extract some sample keys of a particular type, we can use the keys method.

head(keys(hgu95av2.db, keytype="SYMBOL"))

## [1] "A1BG" "A2M" "A2MP1" "NAT1" "NAT2" "NATP"

And finally, if we have some keys, we can use select to extract them. By simply using appropriate argument
values with select we can specify what keys we want to look up values for (keys), what we want returned back
(columns) and the type of keys that we are passing in (keytype)

#1st get some example keys

k <- head(keys(hgu95av2.db,keytype="PROBEID"))

# then call select

select(hgu95av2.db, keys=k, columns=c("SYMBOL","GENENAME"), keytype="PROBEID")

## ’select()’ returned 1:1 mapping between keys and columns

## PROBEID SYMBOL GENENAME

## 1 1000_at MAPK3 mitogen-activated protein kinase 3

## 2 1001_at TIE1 tyrosine kinase with immunoglobulin-like and EGF-like domains 1

## 3 1002_f_at CYP2C19 cytochrome P450, family 2, subfamily C, polypeptide 19

## 4 1003_s_at CXCR5 chemokine (C-X-C motif) receptor 5

## 5 1004_at CXCR5 chemokine (C-X-C motif) receptor 5

## 6 1005_at DUSP1 dual specificity phosphatase 1



AnnotationDbi: Introduction To Bioconductor Annotation Packages 5

And as you can see, when you call the code above, select will try to return a data.frame with all the things
you asked for matched up to each other.

Finally if you wanted to extract only one column of data you could instead use the mapIds method like this:

#1st get some example keys

k <- head(keys(hgu95av2.db,keytype="PROBEID"))

# then call mapIds

mapIds(hgu95av2.db, keys=k, column=c("GENENAME"), keytype="PROBEID")

## 1000_at

## "mitogen-activated protein kinase 3"

## 1001_at

## "tyrosine kinase with immunoglobulin-like and EGF-like domains 1"

## 1002_f_at

## "cytochrome P450, family 2, subfamily C, polypeptide 19"

## 1003_s_at

## "chemokine (C-X-C motif) receptor 5"

## 1004_at

## "chemokine (C-X-C motif) receptor 5"

## 1005_at

## "dual specificity phosphatase 1"

0.3 OrgDb objects and the select method

An organism level package (an ‘org’ package) uses a central gene identifier (e.g. Entrez Gene id) and contains
mappings between this identifier and other kinds of identifiers (e.g. GenBank or Uniprot accession number,
RefSeq id, etc.). The name of an org package is always of the form org.¡Ab¿.¡id¿.db (e.g. org.Sc.sgd.db)
where ¡Ab¿ is a 2-letter abbreviation of the organism (e.g. Sc for Saccharomyces cerevisiae) and ¡id¿ is an
abbreviation (in lower-case) describing the type of central identifier (e.g. sgd for gene identifiers assigned by
the Saccharomyces Genome Database, or eg for Entrez Gene ids).

Just as the chip packages load a ChipDb object, the org packages will load a OrgDb object. The following
exercise should acquaint you with the use of these methods in the context of an organism package.

Exercise 1
Display the OrgDb object for the org.Hs.eg.db package.

Use the columns method to discover which sorts of annotations can be extracted from it. Is this the same as
the result from the keytypes method? Use the keytypes method to find out.

Finally, use the keys method to extract UNIPROT identifiers and then pass those keys in to the select

method in such a way that you extract the gene symbol and KEGG pathway information for each. Use the
help system as needed to learn which values to pass in to columns in order to achieve this.

Solution:

library(org.Hs.eg.db)

columns(org.Hs.eg.db)

## [1] "ACCNUM" "ALIAS" "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS"

http://bioconductor.org/packages/release/bioc/html/org.Hs.eg.db.html


AnnotationDbi: Introduction To Bioconductor Annotation Packages 6

## [6] "ENTREZID" "ENZYME" "EVIDENCE" "EVIDENCEALL" "GENENAME"

## [11] "GO" "GOALL" "IPI" "MAP" "OMIM"

## [16] "ONTOLOGY" "ONTOLOGYALL" "PATH" "PFAM" "PMID"

## [21] "PROSITE" "REFSEQ" "SYMBOL" "UCSCKG" "UNIGENE"

## [26] "UNIPROT"

help("SYMBOL") ## for explanation of these columns and keytypes values

keytypes(org.Hs.eg.db)

## [1] "ACCNUM" "ALIAS" "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS"

## [6] "ENTREZID" "ENZYME" "EVIDENCE" "EVIDENCEALL" "GENENAME"

## [11] "GO" "GOALL" "IPI" "MAP" "OMIM"

## [16] "ONTOLOGY" "ONTOLOGYALL" "PATH" "PFAM" "PMID"

## [21] "PROSITE" "REFSEQ" "SYMBOL" "UCSCKG" "UNIGENE"

## [26] "UNIPROT"

uniKeys <- head(keys(org.Hs.eg.db, keytype="UNIPROT"))

cols <- c("SYMBOL", "PATH")

select(org.Hs.eg.db, keys=uniKeys, columns=cols, keytype="UNIPROT")

## ’select()’ returned 1:many mapping between keys and columns

## UNIPROT SYMBOL PATH

## 1 P04217 A1BG <NA>

## 2 V9HWD8 A1BG <NA>

## 3 P01023 A2M 04610

## 4 P18440 NAT1 00232

## 5 P18440 NAT1 00983

## 6 P18440 NAT1 01100

## 7 Q400J6 NAT1 00232

## 8 Q400J6 NAT1 00983

## 9 Q400J6 NAT1 01100

## 10 F5H5R8 NAT1 00232

## 11 F5H5R8 NAT1 00983

## 12 F5H5R8 NAT1 01100

So how could you use select to annotate your results? This next exercise should hlep you to understand how
that should generally work.

Exercise 2
Please run the following code snippet (which will load a fake data result that I have provided for the purposes
of illustration):

load(system.file("extdata", "resultTable.Rda", package="AnnotationDbi"))

head(resultTable)

## logConc logFC LR.statistic PValue FDR

## 100418920 -9.639471 -4.679498 378.0732 3.269307e-84 2.613484e-80

## 100419779 -10.638865 -4.264830 291.1028 2.859424e-65 1.142912e-61

## 100271867 -11.448981 -4.009603 222.3653 2.757135e-50 7.346846e-47



AnnotationDbi: Introduction To Bioconductor Annotation Packages 7

## 100287169 -11.026699 -3.486593 206.7771 6.934967e-47 1.385953e-43

## 100287735 -11.036862 3.064980 204.1235 2.630432e-46 4.205535e-43

## 100421986 -12.276297 -4.695736 190.5368 2.427556e-43 3.234314e-40

The rownames of this table happen to provide entrez gene identifiers for each row (for human). Find the gene
symbol and gene name for each of the rows in resultTable and then use the merge method to attach those
annotations to it.

Solution:

annots <- select(org.Hs.eg.db, keys=rownames(resultTable),

columns=c("SYMBOL","GENENAME"), keytype="ENTREZID")

## ’select()’ returned 1:1 mapping between keys and columns

resultTable <- merge(resultTable, annots, by.x=0, by.y="ENTREZID")

head(resultTable)

## Row.names logConc logFC LR.statistic PValue FDR SYMBOL

## 1 100127888 -10.57050 2.758937 182.8937 1.131473e-41 1.130624e-38 SLCO4A1-AS1

## 2 100131223 -12.37808 -4.654318 179.2331 7.126423e-41 6.329847e-38 LOC100131223

## 3 100271381 -12.06340 3.511937 188.4824 6.817155e-43 7.785191e-40 RPS28P8

## 4 100271867 -11.44898 -4.009603 222.3653 2.757135e-50 7.346846e-47 MPVQTL1

## 5 100287169 -11.02670 -3.486593 206.7771 6.934967e-47 1.385953e-43 <NA>

## 6 100287735 -11.03686 3.064980 204.1235 2.630432e-46 4.205535e-43 TTTY13B

## GENENAME

## 1 SLCO4A1 antisense RNA 1

## 2 ADP-ribosylation factor-like 8B pseudogene

## 3 ribosomal protein S28 pseudogene 8

## 4 Mean platelet volume QTL1

## 5 <NA>

## 6 testis-specific transcript, Y-linked 13B

0.4 Using select with GO.db

When you load the GO.db package, a GODb object is also loaded. This allows you to use the columns, keys,
keytypes and select methods on the contents of the GO ontology. So if for example, you had a few GO
IDs and wanted to know more about it, you could do it like this:

library(GO.db)

GOIDs <- c("GO:0042254","GO:0044183")

select(GO.db, keys=GOIDs, columns="DEFINITION", keytype="GOID")

## ’select()’ returned 1:1 mapping between keys and columns

## GOID

## 1 GO:0042254

## 2 GO:0044183

## DEFINITION



AnnotationDbi: Introduction To Bioconductor Annotation Packages 8

## 1 A cellular process that results in the biosynthesis of constituent macromolecules, assembly, and arrangement of constituent parts of ribosome subunits; includes transport to the sites of protein synthesis.

## 2 Interacting selectively and non-covalently with any protein or protein complex (a complex of two or more proteins that may include other nonprotein molecules) that contributes to the process of protein folding.

0.5 Using select with TxDb packages

A TxDb package (a ’TxDb’ package) connects a set of genomic coordinates to various transcript oriented
features. The package can also contain Identifiers to features such as genes and transcripts, and the internal
schema describes the relationships between these different elements. All TxDb containing packages follow a
specific naming scheme that tells where the data came from as well as which build of the genome it comes
from.

Exercise 3
Display the TxDb object for the TxDb.Hsapiens.UCSC.hg19.knownGene package.

As before, use the columns and keytypes methods to discover which sorts of annotations can be extracted
from it.

Use the keys method to extract just a few gene identifiers and then pass those keys in to the select method
in such a way that you extract the transcript ids and transcript starts for each.

Solution:

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

## Loading required package: GenomicFeatures

## Loading required package: GenomeInfoDb

## Loading required package: GenomicRanges

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

txdb

## TxDb object:

## # Db type: TxDb

## # Supporting package: GenomicFeatures

## # Data source: UCSC

## # Genome: hg19

## # Organism: Homo sapiens

## # Taxonomy ID: 9606

## # UCSC Table: knownGene

## # Resource URL: http://genome.ucsc.edu/

## # Type of Gene ID: Entrez Gene ID

## # Full dataset: yes

## # miRBase build ID: GRCh37

## # transcript_nrow: 82960

## # exon_nrow: 289969

## # cds_nrow: 237533

## # Db created by: GenomicFeatures package from Bioconductor

## # Creation time: 2015-10-07 18:11:28 +0000 (Wed, 07 Oct 2015)

## # GenomicFeatures version at creation time: 1.21.30

## # RSQLite version at creation time: 1.0.0

http://bioconductor.org/packages/release/bioc/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html


AnnotationDbi: Introduction To Bioconductor Annotation Packages 9

## # DBSCHEMAVERSION: 1.1

columns(txdb)

## [1] "CDSCHROM" "CDSEND" "CDSID" "CDSNAME" "CDSSTART" "CDSSTRAND"

## [7] "EXONCHROM" "EXONEND" "EXONID" "EXONNAME" "EXONRANK" "EXONSTART"

## [13] "EXONSTRAND" "GENEID" "TXCHROM" "TXEND" "TXID" "TXNAME"

## [19] "TXSTART" "TXSTRAND" "TXTYPE"

keytypes(txdb)

## [1] "CDSID" "CDSNAME" "EXONID" "EXONNAME" "GENEID" "TXID" "TXNAME"

keys <- head(keys(txdb, keytype="GENEID"))

cols <- c("TXID", "TXSTART")

select(txdb, keys=keys, columns=cols, keytype="GENEID")

## ’select()’ returned 1:many mapping between keys and columns

## GENEID TXID TXSTART

## 1 1 70455 58858172

## 2 1 70456 58859832

## 3 10 31944 18248755

## 4 100 72132 43248163

## 5 1000 65378 25530930

## 6 1000 65379 25530930

## 7 10000 7895 243651535

## 8 10000 7896 243663021

## 9 10000 7897 243663021

## 10 100008586 75890 49217763

As is widely known, in addition to providing access via the select method, TxDb objects also provide access
via the more familiar transcripts, exons, cds, transcriptsBy, exonsBy and cdsBy methods. For those
who do not yet know about these other methods, more can be learned by seeing the vignette called: Making
and Utilizing TxDb Objects in the GenomicFeatures package.

The version number of R and packages loaded for generating the vignette were:

## R version 3.2.2 (2015-08-14)

## Platform: x86_64-pc-linux-gnu (64-bit)

## Running under: Ubuntu 14.04.3 LTS

##

## locale:

## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8

## [4] LC_COLLATE=C LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C

## [10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

## attached base packages:

## [1] parallel stats4 stats graphics grDevices utils datasets methods

## [9] base



AnnotationDbi: Introduction To Bioconductor Annotation Packages 10

##

## other attached packages:

## [1] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2 GenomicFeatures_1.22.6

## [3] GenomicRanges_1.22.1 GenomeInfoDb_1.6.1

## [5] GO.db_3.2.2 hgu95av2.db_3.2.2

## [7] AnnotationForge_1.12.1 org.Hs.eg.db_3.2.3

## [9] RSQLite_1.0.0 DBI_0.3.1

## [11] AnnotationDbi_1.32.2 IRanges_2.4.5

## [13] S4Vectors_0.8.4 Biobase_2.30.0

## [15] BiocGenerics_0.16.1 knitr_1.11

##

## loaded via a namespace (and not attached):

## [1] XVector_0.10.0 magrittr_1.5 GenomicAlignments_1.6.1

## [4] zlibbioc_1.16.0 BiocParallel_1.4.1 stringr_1.0.0

## [7] highr_0.5.1 tools_3.2.2 SummarizedExperiment_1.0.1

## [10] lambda.r_1.1.7 futile.logger_1.4.1 rtracklayer_1.30.1

## [13] formatR_1.2.1 futile.options_1.0.0 bitops_1.0-6

## [16] RCurl_1.95-4.7 biomaRt_2.26.1 evaluate_0.8

## [19] stringi_1.0-1 Rsamtools_1.22.0 Biostrings_2.38.2

## [22] XML_3.98-1.3 BiocStyle_1.8.0


	0.1 AnnotationDb objects and the select method
	0.2 ChipDb objects and the select method
	0.3 OrgDb objects and the select method
	0.4 Using select with GO.db
	0.5 Using select with TxDb packages

