Python YAML package documentation
Release 0.15.34

Anthon van der Neut

Dec 03, 2017

Contents

10

Overview

Installing
2.1 Optional requiremMents v v i e e e e e e e e e e e e e e e e e e e

Basic Usage
3.1 Moreexamples e e e e e e e e e

Dumping Python classes

Details
5.1 Indentation of block sequences L. e
5.2 Positioning ‘:’ in top level mappings, prefixing > oo oL

Examples
6.1 Outputof dump () @Sastring i v i e e e e e e e e e e e

Departure from previous API

Tl Loading o v o e e e e e e e e e e e
7.2 Dumping o e e e e e e e e e e e e e e e
7.3 Transparentusage of newandold APL L oo

Reason for API change

Differences with PyYAML

9.1 Defaulting to YAML 1.2 Support o i i e e e e e e e e e
9.2 PY2/PY3reinte@rationo e e e e e e e e e e e e
0.3 FIXES e
0.4 TeSting i e e e e e
0.5 APL . .

Contributing

10.1 Documentation e e e e e e e e e e e e e e e e e
10.2 Code e e e
10.3 Generated files L e e e e e e e
10.4 Vulnerabilities e e e e e e

11
11
12

17
20

23
24
24
24

27

29
29
29
30
30
30

Python YAML package documentation, Release 0.15.34

BitBucket | PyPI

Contents:

Contents 1

https://bitbucket.org/ruamel/yaml
https://pypi.python.org/pypi/ruamel.yaml/

Python YAML package documentation, Release 0.15.34

2 Contents

cHAPTER 1

Overview

ruamel.yaml isa YAML 1.2 loader/dumper package for Python. It is a derivative of Kirill Simonov’s PyYAML
3.11.

ruamel . yaml supports YAML 1.2 and has round-trip loaders and dumpers that preserves, among others:
* comments
* block style and key ordering are kept, so you can diff the round-tripped source
* flow style sequences (‘a: b, c, d”) (based on request and test by Anthony Sottile)
e anchor names that are hand-crafted (i.e. not of the form*‘idNNN*)
» merges in dictionaries are preserved

This preservation is normally not broken unless you severely alter the structure of a component (delete a key in a
dict, remove list entries). Reassigning values or replacing list items, etc., is fine.

For the specific 1.2 differences see Defaulting to YAML 1.2 support

Although individual indentation of lines is not preserved, you can specify separate indentation levels for mappings
and sequences (counting for sequences does not include the dash for a sequence element) and specific offset of
block sequence dashes within that indentation.

Although ruamel.yaml still allows most of the PyYAML way of doing things, adding features required a dif-
ferent API then the transient nature of PyYYAML’s Loader and Dumper. Starting with ruamel . yaml version
0.15.0 this new API gets introduced. Old ways that get in the way will be removed, after first generating warnings
on use, then generating an error. In general a warning in version 0.N.x will become an error in 0.N+1.0

Many of the bugs filed against PyYAML, but that were never acted upon, have been fixed in ruamel . yaml

https://bitbucket.org/xi/pyyaml
https://bitbucket.org/xi/pyyaml
http://www.yaml.org/spec/1.2/spec.html
http://yaml.org/type/merge.html

Python YAML package documentation, Release 0.15.34

4 Chapter 1. Overview

CHAPTER 2

Installing

Make sure you have a recent version of pip and setuptools installed. The later needs environment marker
support (setuptools>=20.6.8) and that is e.g. bundled with Python 3.4.6 but not with 3.4.4. It is probably
best to do:

’pip install -U pip setuptools wheel

in your environment (virtualenv, (Docker) container, etc) before installing ruamel . yaml.

ruamel . yaml itself should be installed from PyPI using:

’pip install ruamel.yaml

If you want to process jinja2/YAML templates (which are not valid YAML with the default jinja2 markers), do
pip install ruamel.yaml[jinja2] (you might need to quote the last argument because of the [])

There also is a commandline utility yaml available after installing:

’pip install ruamel.yaml.cmd

that allows for round-trip testing/re-indenting and conversion of YAML files (JSON,INLHTML tables)

2.1 Optional requirements

If you have the the header files for your Python executables installed then you can use the (non-roundtrip), but
faster, C loader and emitter.

On Debian systems you should use:

’sudo apt-get install python3-dev

you can leave out python3-dev if you don’t use python3

For CentOS (7) based systems you should do:

’sudo yum install python-devel

https://pypi.python.org/pypi

Python YAML package documentation, Release 0.15.34

6 Chapter 2. Installing

CHAPTER 3

Basic Usage

This is the new (0.15+) interface for ‘‘ruamel.yaml*’, it is still in the process of being fleshed out. Please pin your
dependency to ruamel . yaml<0. 15 for production software.

You load a YAML document using:

from ruamel.yaml import YAML

yaml=YAML (typ="safe') # default, if not specfied, is 'rt' (round-trip)
yaml.load (doc)

in this doc can be a file pointer (i.e. an object that has the . read () method, a string or a pathlib.Path ().
typ="'safe"' accomplishes the same as what safe_load () did before: loading of a document without re-
solving unknow tags. Provide pure=True to enforce using the pure Python implementation (faster C libraries
will be used when possible/available)

Dumping works in the same way:

from ruamel.yaml import YAML

yaml=YAML ()
yaml.default_flow_style = False
yaml.dump ({'a': [1, 21}, s)

in this s can be a file pointer (i.e. an object that has the .write () method, or a pathlib.Path (). If you
want to display your output, just stream to sys . stdout.

If you need to transform a string representation of the output provide a function that takes a string as input and
returns one:

def tr(s):
return s.replace('\n', '<\n'") # such output is not valid YAML!

yaml.dump (data, sys.stdout, transform=tr)

Python YAML package documentation, Release 0.15.34

3.1 More examples

Using the C based SafeLoader (at this time is inherited from libyaml/PyYAML and e.g. loads 0052 as well as
052 load as integer 42):

from ruamel.yaml import YAML

yaml=YAML (typ="safe")
yaml.load("""a:\n b: 2\n Cc: 3\nuuu)

Using the Python based SafeLoader (YAML 1.2 support, 052 loads as 52):

from ruamel.yaml import YAML

yaml=YAML (typ="safe", pure=True)
yaml.load("""a:\n b: 2\n c: 3\n""")

8 Chapter 3. Basic Usage

cHAPTER 4

Dumping Python classes

Only yaml = YAML (typ='unsafe') loads and dumps Python objects out-of-the-box. And since it loads
any Python object, this can be unsafe.

If you have instances of some class(es) that you want to dump or load, it is easy to allow the YAML instance to
that explicitly. You can either registering the class with the YAML instance or decorate the class.

Registering is done with YAML . register_class ():

import sys
import ruamel.yaml

class User (object):
def _ init__ (self, name, age):
self.name = name
self.age = age

yaml = ruamel.yaml.YAML ()
yaml.register_class (User)
yvaml.dump ([User ('Anthon', 18)], sys.stdout)

which gives as output:

- !User
age: 18
name: Anthon

The tag ! User originates from the name of the class.

You can specify a different tag by adding the attribute yaml_tag, and explicitly specify dump and/or load
classmethods which have to be called from_yaml resp. from_yaml:

import sys
import ruamel.yaml

class User:
yaml_tag = u'l!user'

Python YAML package documentation, Release 0.15.34

def _ _init__ (self, name, age):
self.name = name
self.age = age
@classmethod

def to_yaml (cls, representer, node):
return representer.represent_scalar(cls.yaml_tag,
u'{.name}—-{.age}'.format (node, node))

@classmethod
def from_yaml (cls, constructor, node):
return cls (xnode.value.split('-"))

yaml = ruamel.yaml.YAML ()
yaml.register_class (User)
yaml.dump ([User ('Anthon', 18)], sys.stdout)

which gives as output:

- l!user Anthon-18

When using the decorator, which takes the YAML () instance as a parameter, the yam1l = YAML () line needs to
be moved up in the file:

import sys
from ruamel.yaml import YAML, yaml_object

yaml = YAML ()
@yaml_object (yaml)

class User:
yaml_tag = u'luser'

def _ _init__ (self, name, age):
self.name = name
self.age = age
@classmethod

def to_yaml (cls, representer, node):
return representer.represent_scalar(cls.yaml_tag,
u'{.name}—-{.age}'.format (node, node))

@classmethod
def from_yaml (cls, constructor, node):
return cls (xnode.value.split('—"))

yaml.dump ([User ('Anthon', 18)], sys.stdout)

The yaml_tag, from_yaml and to_yaml work in the same way as when using . register_class ().

10 Chapter 4. Dumping Python classes

CHAPTER B

Details

support for simple lists as mapping keys by transforming these to tuples

! 'omap generates ordereddict (C) on Python 2, collections.OrderedDict on Python 3, and ! ! omap is
generated for these types.

Tests whether the C yaml library is installed as well as the header files. That library doesn’t generate
CommentTokens, so it cannot be used to do round trip editing on comments. It can be used to speed up
normal processing (so you don’t need to install ruamel.yaml and PyYaml). See the section Optional
requirements.

Basic support for multiline strings with preserved newlines and chomping (“|°, “|+’, ‘|-). As this
subclasses the string type the information is lost on reassignment. (This might be changed in the future so
that the preservation/folding/chomping is part of the parent container, like comments).

anchors names that are hand-crafted (not of the form*‘idNNN*‘) are preserved
merges in dictionaries are preserved
adding/replacing comments on block-style sequences and mappings with smart column positioning

collection objects (when read in via RoundTripParser) have an 1c property that contains line and column
info 1lc.line and 1c.col. Individual positions for mappings and sequences can also be retrieved (1c.
key('a'),lc.value('a') resp. lc.item(3))

preservation of whitelines after block scalars. Contributed by Sam Thursfield.

In the following examples it is assumed you have done something like::

from ruamel.yaml import YAML

yaml

= YAML ()

if not explicitly specified.

5.1 Indentation of block sequences

Although ruamel.yaml doesn’t preserve individual indentations of block sequence items, it does properly dump:

(-
N o

11

http://yaml.org/type/merge.html

Python YAML package documentation, Release 0.15.34

back to:
X

- b: 1
- 2

if you specify yaml.indent (sequence=4) (indentation is counted to the beginning of the sequence ele-
ment).

PyYAML (and older versions of ruamel.yaml) gives you non-indented scalars (when specifying de-
fault_flow_style=False):

You can use mapping=4 to also have the mappings values indented. The dump also observes an additional
of fset=2 setting that can be used to push the dash inwards, within the space defined by sequence.

The above example with the often seen yaml.indent (mapping=2, sequence=4, offset=2) inden-
tation:

X3

- b: 1
2

The defaults are as if you specified yaml . indent (mapping=2, sequence=2, offset=0).

If the of fset equals sequence, there is not enough room for the dash and the space that has to follow it. In
that case the element itself would normally be pushed to the next line (and older versions of ruamel.yaml did so).
But this is prevented from happening. However the indent level is what is used for calculating the cumulative
indent for deeper levels and specifying sequence=3 resp. of fset=2, might give correct, but counter intuitive
results.

It is best to always have sequence >= offset + 2 but thisis not enforced. Depending on your structure,
not following this advice might lead to invalid output.

5.1.1 Inconsistently indented YAML

If your input is inconsistently indented, such indentation cannot be preserverd. The first round-trip will make it
consistent/normalize it. Here are some inconsistently indented YAML examples.

b indented 3, c indented 4 positions:

a:

Top level sequence is indented 2 without offset, the other sequence 4 (with offset 2):

- key:
- foo
- bar

5.2 Positioning ‘’ in top level mappings, prefixing “:’

If you want your toplevel mappings to look like:

12 Chapter 5. Details

Python YAML package documentation, Release 0.15.34

library version: 1
comment]
this is just a first try

then set yaml.top_level_colon_align = True (and yaml.indent = 4). True causes calculation
based on the longest key, but you can also explicitly set a number.

If you want an extra space between a mapping key and the colon specify yaml.prefix_colon = ' ':

- https://myurl/abc.tar.xz : 23445
~ extra space here
- https://myurl/def.tar.xz : 944

If you combine prefix_colon with top_level colon_align, the top level mapping doesn’t get the
extra prefix. If you want that anyway, specify yaml.top_level_colon_align = 12 where 12 has to be
an integer that is one more than length of the widest key.

5.2.1 Document version support

In YAML a document version can be explicitly set by using:

$YAML 1.x

before the document start (at the top or before a ———). For ruamel.yaml x has to be 1 or 2. If no explicit
version is set version 1.2 is assumed (which has been released in 2009).

The 1.2 version does not support:
* sexagesimals like 12:34:56
* octals that start with 0 only: like 012 for number 10 (0012 is supported by YAML 1.2)
* Unquoted Yes and On as alternatives for True and No and Off for False.

If you cannot change your YAML files and you need them to load as 1.1 you can load with yaml .version =
(1, 1), orthe equivalent (version can be a tuple, list or string) yaml .version = "1.1"

If you cannot change your code, stick with ruamel.yaml==0.10.23 and let me know if it would help to be able to
set an environment variable.

This does not affect dump as ruamel.yaml never emitted sexagesimals, nor octal numbers, and emitted booleans
always as true resp. false

5.2.2 Round trip including comments

The major motivation for this fork is the round-trip capability for comments. The integration of the sources was
just an initial step to make this easier.

adding/replacing comments

Starting with version 0.8, you can add/replace comments on block style collections (mappings/sequences resuting
in Python dict/list). The basic for for this is:

from _ future import print_function

import sys
import ruamel.yaml

yaml = ruamel.yaml.YAML () # defaults to round-trip

inp — nn n\

5.2. Positioning ‘:’ in top level mappings, prefixing ‘-’ 13

http://www.yaml.org/spec/1.2/spec.html

Python YAML package documentation, Release 0.15.34

abc:

- a # comment 1
Xyz:

a: 1 # comment 2

b: 2

c: 3

d: 4

e: 5

f: 6 # comment 3
mnon
data = yaml.load (inp)
datal['abc'].append('b")
data['abc'].yaml_add_eol_comment ('comment 4', 1) # takes column of comment 1
data['xyz'].yaml_add_eol_comment ('comment 5', 'c') # takes column of comment 2
datal['xyz'].yaml_add_eol_comment ('comment 6', 'e') # takes column of comment 3
data['xyz'].yaml_add_eol_comment ('comment 7', 'd', column=20)

yaml.dump (data, sys.stdout)

Resulting in:

abc:
- a # comment 1
- b # comment
XYZ:
a: 1 # comment 2
b: 2
c: 3 # comment 5
d: 4 # comment 7
e: 5 # comment 6
f: 6 # comment 3

If the comment doesn’t start with ‘#’, this will be added. The key is the element index for list, the actual key for
dictionaries. As can be seen from the example, the column to choose for a comment is derived from the previous,
next or preceding comment column (picking the first one found).

5.2.3 Config file formats

There are only a few configuration file formats that are easily readable and editable: JSON, INI/ConfigParser,
YAML (XML is to cluttered to be called easily readable).

Unfortunately JSON doesn’t support comments, and although there are some solutions with pre-processed filtering
of comments, there are no libraries that support round trip updating of such commented files.

INI files support comments, and the excellent ConfigObj library by Foord and Larosa even supports round trip
editing with comment preservation, nesting of sections and limited lists (within a value). Retrieval of particular
value format is explicit (and extensible).

YAML has basic mapping and sequence structures as well as support for ordered mappings and sets. It sup-
ports scalars various types including dates and datetimes (missing in JSON). YAML has comments, but these are
normally thrown away.

Block structured YAML is a clean and very human readable format. By extending the Python YAML parser to
support round trip preservation of comments, it makes YAML a very good choice for configuration files that are
human readable and editable while at the same time interpretable and modifiable by a program.

5.2.4 Extending

There are normally six files involved when extending the roundtrip capabilities: the reader, parser, composer and
constructor to go from YAML to Python and the resolver, representer, serializer and emitter to go the other way.

14 Chapter 5. Details

http://www.json.org/
http://www.voidspace.org.uk/python/configobj.html

Python YAML package documentation, Release 0.15.34

Extending involves keeping extra data around for the next process step, eventuallly resulting in a different Python
object (subclass or alternative), that should behave like the original, but on the way from Python to YAML gener-
ates the original (or at least something much closer).

5.2.5 Smartening

When you use round-tripping, then the complex data you get are already subclasses of the built-in types. So you
can patch in extra methods or override existing ones. Some methods are already included and you can do:

yaml_str — nn n\
a:

f: 196

data = yaml.load(yaml_str)

assert data.mlget(['a', 1, 'd', 'f£'], list_ok=True) == 196

5.2. Positioning ‘:’ in top level mappings, prefixing ‘-’ 15

Python YAML package documentation, Release 0.15.34

16 Chapter 5. Details

CHAPTER O

Examples

Basic round trip of parsing YAML to Python objects, modifying and generating YAML.:

import sys
from ruamel.yaml import YAML

inp = """\
example
name:
details
family: Smith # very common
given: Alice # one of the siblings
yaml = YAML ()
code = yaml.load (inp)
code['name'] ['given'] = 'Bob'

yaml.dump (code, sys.stdout)

Resulting in:

example

name:

details

family: Smith # very common

given: Bob # one of the siblings
with the old API:

from _ future import print_function

import sys
import ruamel.yaml

inp = """\
example
name:
details
family: Smith # very common

17

Python YAML package documentation, Release 0.15.34

given: Alice # one of the siblings
code = ruamel.yaml.load(inp, ruamel.yaml.RoundTripLoader)
code['name'] ['given'] = 'Bob'

ruamel.yaml.dump (code, sys.stdout, Dumper=ruamel.yaml.RoundTripDumper)

the last statement can be done less efficient in time and memory with
leaving out the end='' would cause a double newline at the end
print (ruamel.yaml.dump (code, Dumper=ruamel.yaml.RoundTripDumper), end="'")

Resulting in

example

name:
details
family: Smith # very common
given: Bob # one of the siblings

YAML handcrafted anchors and references as well as key merging are preserved. The merged keys can transpar-
ently be accessed using [] and .get ():

from ruamel.yaml import YAML

inp = """\

- &CENTER {x: 1, y: 2}
&LEFT {x: 0, y: 2}

- &BIG {r: 10}

&SMALL {r: 1}

All the following maps are equal:
Explicit keys
- x: 1

y: 2

r: 10

label: center/big
Merge one map
- <<: xCENTER
r: 10
label: center/big
Merge multiple maps
- <<: [+CENTER, =*BIG]
label: center/big
Override
- <<: [%BIG, +*LEFT, #*SMALL]
x: 1
label: center/big

nwn

yaml = YAML ()
data = yaml.load (inp)
assert datal[7]['y'] == 2

The CommentedMap, which is the dict like construct one gets when round-trip loading, supports insertion of
a key into a particular position, while optionally adding a comment:

import sys
from ruamel.yaml import YAML

yaml_str —] "ll\
first_name: Art

18 Chapter 6. Examples

Python YAML package documentation, Release 0.15.34

occupation: Architect # This is an occupation comment
about: Art Vandelay is a fictional character that George invents...

yaml = YAML ()

data = yaml.load(yaml_str)

data.insert (1, 'last name', 'Vandelay', comment="new key")
yvaml.dump (data, sys.stdout)

gives:

first_name: Art

last name: Vandelay # new key

occupation: Architect # This is an occupation comment

about: Art Vandelay is a fictional character that George invents...

Please note that the comment is aligned with that of its neighbour (if available).

The above was inspired by a question posted by demux on StackOverflow.

By default ruamel.yaml indents with two positions in block style, for both mappings and sequences. For
sequences the indent is counted to the beginning of the scalar, with the dash taking the first position of the indented
“space”.

The following program with three dumps:

import sys
from ruamel.yaml import YAML

data = {1: {1: [{1: 1, 2: 2}, {1: 1, 2: 2}1, 2: 2}, 2: 42}

yaml YAML ()

yaml.explicit_start = True
yaml.dump (data, sys.stdout)
yaml.indent (sequence=4, offset=2)
yaml.dump (data, sys.stdout)

def sequence_indent_four(s):
this will fail on direclty nested lists: {1; [[2, 3], 4]}
levels = []
ret_val = "'
for line in s.splitlines (True) :
ls = line.lstrip()
indent = len(line) - len(ls)
if ls.startswith('- "):
if not levels or indent > levels[-1]:
levels.append (indent)
elif levels:
if indent < levels[-1]:
levels = levels[:-1]
same —-> do nothing
else:
if levels:
if indent <= levels[-1]:
while levels and indent <= levels|[-1]:
levels = levels[:-1]
ret_val += "' ' % len(levels) + line
return ret_val

yaml = YAML ()

19

http://stackoverflow.com/a/36970608/1307905

Python YAML package documentation, Release 0.15.34

yaml.explicit_start = True
yaml .dump (data, sys.stdout, transform=sequence_indent_four)

gives as output:

1:

N =N
N RN

N RN

N =N
N RN

The transform example was inspired by a question posted by *nowox* on StackOverflow.

6.1 Output of dump () as a string

The single most abused “feature” of the old API is not providing the (second) stream parameter to one of the
dump () variants, in order to get a monolithic string representation of the stream back.

Apart from being memory inefficient and slow, quite often people using this did not realiase that
print (round_trip_dump (dict (a=1, b=2))) gets you an extra, empty, line afterb: 2.

The real quesiton is why is this functionality, which is seldom really necessary, is available in the old API (and
in PyYYAML) in the first place. One explanation you get by looking at what someone would need to do to make
this available if it weren’t there already. Apart from subclassing the Serializer and providing a new dump
method,which would ten or so lines, another hundred lines, essentially the whole dumper . py file, would need
to be copied and to make use of this serializer.

The fact is that one should normally be doing round_trip_dump (dict (a=1, b=2)), sys.stdout)
and do away with 90% of the cases for returning the string, and that all post-processing YAML, before writing to
stream, can be handled by using the t rans form= parameter of dump, being able to handle most of the rest. But
it is also much easier in the new API to provide that YAML output as a string if you really need to have it (or think
you do):

import sys
from ruamel.yaml import YAML
from ruamel.yaml.compat import StringIO

20 Chapter 6. Examples

https://stackoverflow.com/q/44388701/1307905

Python YAML package documentation, Release 0.15.34

class MyYAML (YAML) :
def dump(self, data, stream=None, xxkw) :
inefficient = False
if stream is None:
inefficient = True
stream = StringIO()
YAML.dump (self, data, stream, =*xkw)
if inefficient:
return stream.getvalue()

yaml = MyYAML () # or typ='safe'/'unsafe' etc

with about one tenth of the lines needed for the old interface, you can once more do:

print (yaml.dump (dict (a=1, b=2)))

instead of:

yaml.dump ((dict (a=1, b=2)), sys.stdout)
print () # or sys.stdout.write('\n')

6.1. Output of dump () as a string

21

Python YAML package documentation, Release 0.15.34

22

Chapter 6. Examples

CHAPTER /

Departure from previous API

With version 0.15.0 ruamel. yaml starts to depart from the previous (PyYAML) way of loading and dumping.
During a transition period the original 1oad () and dump () in its various formats will still be supported, but this
is not guaranteed to be so with the transition to 1.0.

At the latest with 1.0, but possible earlier transition error and warning messages will be issued, so any packages
depending on ruamel.yaml should pin the version with which they are testing.

Up to 0.15.0, the loaders (load (), safe_load (), round_trip_load(), load_all, etc.) took, apart
from the input stream, a version argument to allow downgrading to YAML 1.1, sometimes needed for docu-
ments without directive. When round-tripping, there was an option to preserve quotes.

Up to 0.15.0, the dumpers (dump (), safe_dump, round_trip_dump (), dump_all (), etc.) had a
plethora of arguments, some inhereted from Py YAML, some added in ruamel.yaml. The only required argu-
ment is the data to be dumped. If the stream argument is not provided to the dumper, then a string representation
is build up in memory and returned to the caller.

Starting with 0.15.0 1oad () and dump () are methods on a YAML instance and only take the stream, resp. the
data and stram argument. All other parameters are set on the instance of YAML before calling 1oad () or dump ()

Before 0.15.0:

from pathlib import Path
from ruamel import yaml

data = yaml.safe_load("abc: 1")
out = Path('/tmp/out.yaml")
with out.open('w') as fp:
yaml.safe_dump (data, fp, default_flow_style=False)

after:

from pathlib import Path
from ruamel.yaml import YAML

yaml = YAML (typ='"safe')
yaml.default_flow_style = False
data = yaml.load("abc: 1")

out = Path('/tmp/out.yaml")
yaml.dump (data, out)

23

Python YAML package documentation, Release 0.15.34

If you previously used a keyword argument explicit_start=True younow do yaml.explicit_start
= True before calling dump (). The Loader and Dumper keyword arguments are not supported that
way. You can provide the typ keyword to rt (default), safe, unsafe or base (for round-trip load/dump,
safe_load/dump, load/dump resp. using the BaseLoader / BaseDumper. More fine-control is possible by setting
the attributes .Parser, .Constructor, .Emitter, etc., to the class of the type to create for that stage
(typically a subclass of an existing class implementing that).

The default loader (t is a direct derivative of the safe loader, without the methods to construct arbitrary Python ob-
jects that make the unsafe loader unsafe, but with the changes needed for round-trip preservation of comments,
etc.. For trusted Python classes a constructor can of course be added to the round-trip or safe-loader, but this has
to be done explicitly (add_constructor).

All data is dumped (not just for round-trip-mode) with .allow_unicode = True

You can of course have multiple YAML instances active at the same time, with different load and/or dump be-
haviour.

Initially only the typical operations are supported, but in principle all functionality of the old interface will be
available via YAML instances (if you are using something that isn’t let me know).

7.1 Loading

7.1.1 Duplicate keys
In JSON mapping keys should be unique, in YAML they must be unique. PyYAML never enforced this although
the YAML 1.1 specification already required this.

In the new API (starting 0.15.1) duplicate keys in mappings are no longer allowed by default. To allow duplicate
keys in mappings:

yaml = ruamel.yaml.YAML ()
yaml.allow_duplicate_keys = True
yaml.load (stream)

In the old API this is a warning starting with 0.15.2 and an error in 0.16.0.

7.2 Dumping

7.2.1 Controls

On your YAML () instance you can set attributes e.g with:

yaml = YAML (typ='safe', pure=True)
yaml.allow_unicode = False

available attributes include:

unicode_supplementary Defaults to True if Python’s Unicode size is larger than 2 bytes. Set to False
to enforce output of the form \U0O001£601 (ignored if allow_unicodeis False)

7.3 Transparent usage of new and old API

If you have multiple packages depending on ruamel . yaml, or install your utility together with other packages
not under your control, then fixing your install_ requires might not be so easy.

24 Chapter 7. Departure from previous API

Python YAML package documentation, Release 0.15.34

Depending on your usage you might be able to “version” your usage to be compatible with both the old and the
new. The following are some examples all assuming from ruamel import yaml somewhere at the top of
your file and some istream and ostream apropriately opened for reading resp. writing.

Loading and dumping using the SafeLoader:

if ruamel.yaml.version_info < (0, 15):
data = yaml.safe_load(istream)
yaml.safe_dump (data, ostream)
else:
yml = ruamel.yaml.YAML (typ='safe', pure=True) # 'safe' load and dump
data = yml.load(istream)
yml.dump (data, ostream)

Loading with the CSafeLoader, dumping with RoundTripLoader. You need two YAML instances, but each
of them can be re-used:

if ruamel.yaml.version_info < (0, 15):

data = yaml.load(istream, Loader=yaml.CSafelLoader)

yaml.round_trip_dump (data, ostream, width=1000, explicit_start=True)
else:

yml = ruamel.yaml.YAML (typ="'safe')

data = yml.load (istream)

ymlo = ruamel.yaml.YAML () # or yaml.YAML (typ='rt')

ymlo.width = 1000

ymlo.explicit_start = True

ymlo.dump (data, ostream)

Loading and dumping from pathlib.Path instances using the round-trip-loader:

in myyaml.py
if ruamel.yaml.version_info < (0, 15):
class MyYAML (yaml.YAML) :
def _ init_ (self):
yaml .YAML._ _init__ (self)
self.preserve_quotes = True
self.indent (mapping=4, sequence=4, offset=2)
in your code
try:
from myyaml import MyYAML
except (ModuleNotFoundError, ImportError):
if ruamel.yaml.version_info >= (0, 15):
raise

some pathlib.Path

from pathlib import Path
inf = Path('/tmp/in.yaml")
outf = Path('/tmp/out.yaml')

if ruamel.yaml.version_info < (0, 15):
with inf.open() as ifp:
data = yaml.round_trip_load(ifp, preserve_quotes=True)
with outf.open('w') as ofp:
yaml.round_trip_dump (data, ofp, indent=4, block_seqg_indent=2)
else:
yml = MyYAML ()
no need for with statement when using pathlib.Path instances
data = yml.load (inf)
yml.dump (data, outf)

7.3. Transparent usage of nhew and old API 25

Python YAML package documentation, Release 0.15.34

26

Chapter 7. Departure from previous API

CHAPTER 8

Reason for APl change

ruamel.yaml inherited the way of doing things from Py YAML. In particular when calling the function 1oad ()
or dump () atemporary instances of Loader () resp. Dumper () were created that were discarded on termina-
tion of the function.

This way of doing things leads to several problems:

it is virtually impossible to return information to the caller apart from the constructed data structure. E.g. if
you would get a YAML document version number from a directive, there is no way to let the caller know
apart from handing back special data structures. The same problem exists when trying to do on the fly
analysis of a document for indentation width.

these instances were composites of the various load/dump steps and if you wanted to enhance one of the
steps, you needed e.g. subclass the emitter and make a new composite (dumper) as well, providing all of
the parameters (i.e. copy paste)

Alternatives, like making a class that returned a Dumpe r when called and sets attributes before doing so, is
cumbersome for day-to-day use.

many routines (like add_representer ()) have a direct global impact on all of the following calls to
dump () and those are difficult if not impossible to turn back. This forces the need to subclass Loaders
and Dumpers, a long time problem in PyYYAML as some attributes were not deep_copied although a
bug-report (and fix) had been available a long time.

If you want to set an attribute, e.g. to control whether literal block style scalars are allowed to have trailing
spaces on a line instead of being dumped as double quoted scalars, you have to change the dump () family
of routines, all of the Dumpers () as well as the actual functionality change in emitter.Emitter ().
The functionality change takes changing 4 (four!) lines in one file, and being able to enable that another
50+ line changes (non-contiguous) in 3 more files resulting in diff that is far over 200 lines long.

replacing libyaml with something that doesn’t both support 0052 and 052 for the integer 42 (instead of
52 as per YAML 1.2) is difficult

With ruamel.yaml>=0.15.0 the various steps “know” about the YAML instance and can pick up setting, as
well as report back information via that instance. Representers, etc., are added to a reusable instance and different
YAML instances can co-exists.

This change eases development and helps prevent regressions.

27

Python YAML package documentation, Release 0.15.34

28

Chapter 8. Reason for API change

CHAPTER 9

Differences with PyYAML

If I have seen further, it 1is by standing on the shoulders of giants.
Isaac Newton (1676)

ruamel . yaml is a derivative of Kirill Simonov’s PyYAML 3.11 and would not exist without that excellent base
to start from.

The following a summary of the major differences with PyYAML 3.11

9.1 Defaulting to YAML 1.2 support

PyYAML supports the YAML 1.1 standard, ruamel.yaml supports YAML 1.2 as released in 2009.
* YAML 1.2 dropped support for several features unquoted Yes, No, On, Of £

* YAML 1.2 no longer accepts strings that start with a 0 and solely consist of number characters as octal, you
need to specify such strings with 0o [0—7] + (zero + lower-case o for octal + one or more octal characters).

* YAML 1.2 no longer supports sexagesimals, so the string scalar 12 : 34 : 56 doesn’t need quoting.
* \/ escape for JSON compatibility
* correct parsing of floating point scalars with exponentials

unless the YAML document is loaded with an explicit version==1.1 or the document starts with:

% YAML 1.1

, ruamel . yaml will load the document as version 1.2.

9.2 PY2/PY3 reintegration

ruamel.yaml re-integrates the Python 2 and 3 sources, running on Python 2.7 (CPython, PyPy), 3.3, 3.4, 3.5
and 3.6 (support for 2.6 has been dropped mid 2016). It is more easy to extend and maintain as only a miniscule
part of the code is Python version specific.

29

https://bitbucket.org/xi/pyyaml
http://www.yaml.org/spec/1.1/spec.html
http://www.yaml.org/spec/1.2/spec.html
https://en.wikipedia.org/wiki/Sexagesimal

Python YAML package documentation, Release 0.15.34

9.3 Fixes

e ruamel.yaml follows the indent keyword argument on scalars when dumping.

e ruamel.yaml allows : in plain scalars, as long as these are not followed by a space (as per the specifica-
tion)

9.4 Testing

ruamel .yaml is tested using tox and py.test. In addition to new tests, the original PyYAML test framework is
called from within t ox runs.

Before versions are pushed to PyPI, t ox is invoked, and has to pass, on all supported Python versions, on PyPI as
well as flake8/pep8

9.5 API

Starting with 0.15 the API for using ruamel . yaml has diverged allowing easier addition of new features.

30 Chapter 9. Differences with PyYAML

https://pypi.python.org/pypi/tox
http://pytest.org/latest/

cHAaPTER 10

Contributing

Any contribution to ruamel.yaml is welcome, be it in the form of an email, a question on stackoverflow (I'll
get notified of that when you tag it with ruamel . yaml), an issue or pull-request (PR) on bitbucket.

Contributing via stackoverflow is, for most, easiest to make. When I answer your question there and the answer
warrants an extension to the documentation or code, I will include it in a documnetation update and/or future
(normally the next) release of ruamel.yaml.

Please don’t post support questions as an issue on Bitbucket.

10.1 Documentation

The documentation for ruamel.yaml is in YAML, more specifically in ryd (/rt/, pronounced like the verb
“write”). This is reStructuredText mixed with Python, each in separate YAML documents within a single file. If
you know a bit of YAML, Python and reStructuredText it will be clear how that works.

If you want to contribute to the documentation, you can sent me a clear description of the needed changes, e.g.
as a unified diff. If the changes encompass multiple documents in a . ryd file, it is best to install ryd (use a
virtualenv!), clone the ruamel . yaml repository on Bitbucket, edit documentation, run ryd:

ryd ——pdf 'xx/x.ryd’

(quoting might not be necessary depending on your shell), and once the PDF(s) look acceptable, submit a pull-
request.

ryd will check your file for single backquotes (my most common mistake going back and forth between reStruc-
turedText and other mark up).

If you contribute example programs, note that ryd will automatically run you program (so it should be correct)
and can include the output of the program in the resulting . rst (and PDF) file.

10.2 Code

Code changes are welcome as well, but anything beyond a minor change should be tested (t ox/pytest), checked
for typing conformance (mypy) and pass pep8 conformance (f1ake8).

31

https://pypi.python.org/pypi/ryd

Python YAML package documentation, Release 0.15.34

In my experience it is best to use two virtualenv environments, one with the latest Python from the 2.7 series,
the other with 3.5 or 3.6. In the site-packages directory of each virtualenv make a soft link to the ruamel directory
of your (cloned and checked out) copy of the repository. Do not under any circumstances run pip install
-e . or python setup.py —e . it will not work (at least not until these commands are fixed to support
packages with namespaces).

You can install tox, pytest, mypy and £1ake8 in the Python3 virtualenv, orina virtualenv of their
own. If all of these commands pass without warning/error, you can create your pull-request.

10.2.1 Flake

My ~/.config/flakes file:

[flake8]

show-source = True
max—line-length = 95
ignore = F405

The suppress of F405 is necessary to allow from xxx import =, whichIhave notremoved in all places (yet).

First make sure your checked out source passes £1lake8 without test (it should). Then make your changes pass
without any warnings/errors.

10.2.2 Tox/pytest

Whether you add something or fix some bug with your code changes, first add one or more tests that fail in the
unmodified source when running tox. Once that is in place add your code, which should have as a result that
your added test(s) no longer fail, and neither should any other existing tests.

10.2.3 Typing/mypy

If you add methods or functions to ruamel . yaml, you will need to add Python 2.7 compatible typing informa-
tion in order for mypy to pass without error.

I run mypy from the directory where the (link to) ruamel directory is using:

’mypy —-—-py2 —-strict --follow-imports silent ruamel/yaml/«*.py

This should give no errors or warnings

10.3 Generated files

I use a minimal environment when developing, void of most artifacts needed for packaging, testing etc. These
artifact files are generated, just before committing to Bitbucket and pushing to PyPI, with nuances coming from
the _package_data information in __init__ .py. Including changes in these files will automatically be
reverted, even assuming your PR is accepted as is.

Consider the following files read-only (if you think changes need to made these, contact me):

setup.py
tox.ini
LICENSE
_ryd/conf.py
-ryd/Makefile

32 Chapter 10. Contributing

Python YAML package documentation, Release 0.15.34

10.4 Vulnerabilities

If you find a vulnerability in ruamel.yaml (e.g. that would show the safe and rt loader are not safe due to
a bug in the software)), please contact me directly via email, or by leaving a comment on StackOverflow (below
any of my posts), without going into the details of the vulnerability. After contact is estabilished I will work to
eliminate the vulnerability in a timely fashion. After the vulnerability is removed, and affected parties notified to
allow them to update versions, the vulnerability will be published, and your role in finding/resolving this properly
attributed.

10.4. Vulnerabilities 33

https://yaml.readthedocs.org/en/stable
https://bestpractices.coreinfrastructure.org/projects/1128

	Overview
	Installing
	Optional requirements

	Basic Usage
	More examples

	Dumping Python classes
	Details
	Indentation of block sequences
	Positioning ‘:’ in top level mappings, prefixing ‘:’

	Examples
	Output of dump() as a string

	Departure from previous API
	Loading
	Dumping
	Transparent usage of new and old API

	Reason for API change
	Differences with PyYAML
	Defaulting to YAML 1.2 support
	PY2/PY3 reintegration
	Fixes
	Testing
	API

	Contributing
	Documentation
	Code
	Generated files
	Vulnerabilities

