imageio Documentation
Release 2.2.0dev

imageio contributors

Jan 19, 2018

Contents

1 Getting started 3
.1 Installing imageio v v i e e e e e e e e e e e e e e e e e e e 3
1.2 Imageiousageexamples L e e 3
1.3 Release notes L i e e e e e e e e e e e 5
2 Reference 13
2.1 Imageio’suser API L e 13
2.2 Imageio formats e e e e e e e 19
2.3 Imageio command line sCripts L e e 23
2.4 TImageio environment variables L. e e e e e e 23
2.5 Imageio standard imagesot e e e e e e e e e e e e e 24
3 Developer documentation 25
3.1 Imageio’sdeveloper API e 25
3.2 Creatingimageio plugins e e 30
Python Module Index 35

imageio Documentation, Release 2.2.0dev

Imageio is a Python library that provides an easy interface to read and write a wide range of image data, including
animated images, volumetric data, and scientific formats. It is cross-platform, runs on Python 2.7 and 3.4+, and is easy
to install.

Main website: http://imageio.github.io

Contents:

Contents 1

http://imageio.github.io

imageio Documentation, Release 2.2.0dev

2 Contents

CHAPTER 1

Getting started

1.1 Installing imageio

Imageio is written in pure Python, so installation is easy. Imageio works on Python 2.7 and 3.4+. It also works on
Pypy. Imageio depends on Numpy and Pillow. For some formats, imageio needs additional libraries/executables (e.g.
ffmpeg), which imageio helps you download and store in a folder in your application data.

To install imageio, use one of the following methods:
e If youarein acondaenv: conda install -c conda-forge imageio
 If you have pip: pip install imageio
¢ Good old python setup.py install

For developers, we provide a simple mechanism to allow importing imageio from the cloned repository. See the file
imageio.proxy.io for details.

1.2 Imageio usage examples

Some of these examples use Visvis to visualize the image data, but one can also use Matplotlib to show the images.

Imageio provides a range of example images, which can be used by using a URI like ' imageio:chelsea.png’.
The images are automatically downloaded if not already present on your system. Therefore most examples below
should just work.

1.2.1 Read an image of a cat

Probably the most important thing you ever need.

import imageio

imageio Documentation, Release 2.2.0dev

im = imageio.imread('imageio:chelsea.png')
print (im. shape)

1.2.2 Read from fancy sources

Imageio can read from filenames, file objects, http, zipfiles and bytes.

import imageio
import visvis as vv

im = imageio.imread('http://upload.wikimedia.org/wikipedia/commons/d/de/Wikipedia_
—Logo_1.0.png'")
vv.imshow (im)

1.2.3 lterate over frames in a movie

import imageio

reader = imageio.get_reader ('imageio:cockatoo.mpd')
for i, im in enumerate (reader) :
print ('Mean of frame is "% (i, im.mean()))

1.2.4 Grab screenshot or image from the clipboard

(Screenshots are supported on Windows and OS X, clipboard on Windows only.)

import imageio

im_screen = imageio.imread('<screen>")
im_clipboard = imageio.imread('<clipboard>")

1.2.5 Grab frames from your webcam

Use the special <videoO> uri to read frames from your webcam (via the ffmpeg plugin). You can replace the zero
with another index in case you have multiple cameras attached.

import imageio
import visvis as vv

reader = imageio.get_reader ('<video0>")
t = vv.imshow (reader.get_next_data(), clim=(0, 255))
for im in reader:

vv.processEvents ()

t.SetData (im)

1.2.6 Convert a movie

Here we take a movie and convert it to gray colors. Of course, you can apply any kind of (image) processing to the
image here ...

4 Chapter 1. Getting started

imageio Documentation, Release 2.2.0dev

import imageio

reader = imageio.get_reader ('imageio:cockatoo.mp4')
fps = reader.get_meta_data () ['fps']
writer = imageio.get_writer ('~/cockatoo_gray.mp4', fps=fps)

for im in reader:
writer.append_data(im[:, :, 1])
writer.close ()

1.2.7 Read medical data (DICOM)

import imageio
dirname = 'path/to/dicom/files’

Read as loose images

ims = imageio.mimread(dirname, 'DICOM")

Read as volume

vol = imageio.volread(dirname, 'DICOM'")

Read multiple volumes (multiple DICOM series)
vols = imageio.mvolread(dirname, 'DICOM'")

1.2.8 Volume data

import imageio
import visvis as vv

vol = imageio.volread('imageio:stent.npz')
vv.volshow (vol)

1.3 Release notes

1.3.1 Version 2.2.0 (25-05-2017)

New format for grabbing screenshots (for Windows and OS X).

Updated the ffmpeg executables that imageio provides.

ffmpeg —-c conda-forge).

Fixes to ffmpeg format in general.

Improve docs and rounding in animated GIF duration.

Fix for setting number of loops in animated GIF.

Fixes for transparent images in Pillow.

New format for grabbing image data from clipboard (Window only).

Multipage Tiff files can now be read using volread () to obtain the image data as one array.

The ffmpeg format can now also use the ffmpeg exe provided by the ffmpeg conda package (conda install

1.3. Release notes

imageio Documentation, Release 2.2.0dev

* Fixes for float indexing that is disallowed in new Numpy (Freeimage plugin).
* Fix for using missing close () on Pillow images.

» Updated version of tiffile plugin.

1.3.2 Version 2.1.2 (02-02-2017)

A bugfix release:
* Fix animated gif writer that was broken in newer Pillow version.

* FFMPEG plugin improvements: more reliable fps detection, can deal with missing FPS, more reliable subpro-
cess termination,

* Mimread allows a few missing frames to better deal with certain video files.
* Allow question marks in url’s.
* Allow Pillow plugin to read remote files by “enabling” seek () and tell ().

 Use invoke to run development tasks instead of custom “make” module.

1.3.3 Version 2.1.1 (24-12-2016)

Minor improvements related to Debian packaging.

1.3.4 Version 2.1 (22-12-2016)

» Standard images now have to be specified using e.g. imageio.imread ('imageio:chelsea.png') to
be more explicit about being a special case and potentially involving a download.

* Improvements and fixes for the ffmpeg plugin (including improved seeking).

* Several tweaks to the tests and setup script to make it pass the Debian build system.

1.3.5 Version 2.0 (10-12-2016)

This release introduces a new plugin based on Pillow, which will take care of the “common formats” like PNG and
JPEG, which was previously the role of the FreeImage plugin. The latter is still available but the FreeImage library is
no longer distributed by default.

* New Pillow plugin to privide the common formats.

¢ Freelmage plugin gets lower priority w.r.t. resolving a format.

* No more automatic downloading of libraries and executable (for FreeImage, FFMPEG and AVBIN plugins).
¢ Pillow plugin comes with a format to read/write animated GIF to supersede the one provided by FreeImage.
 Various improvements/fixes to the ffmpeg plugin.

¢ Fixes and improvements of the DICOM plugin.

* Better support of exr images via FreeImage (by Joel Nises).

» New FEI format (for images produced by the FEI SEM microscope).

6 Chapter 1. Getting started

imageio Documentation, Release 2.2.0dev

1.3.6 Version 1.6 (19-09-2016)

* Got rid of Lena image because it can be regarded offensive and is not (explicitly) publicly licensed.
* Fix issue with ffmpeg reader being slow on particular systems (#152).

* Tiff plugin updated.

* Add Tiff resolution support (Antony Lee).

* Support for 16bit PNG’s (#150, by Organiclrradiation).

* Fixes to ffmpeg plugin (#149, #145, #129).

¢ Fix in using IMAGEIO_FREEIMAGE_LIB (#141, by Radomirs Cirskis)

* Better ffmpeg verbosity and exe detection (#138, #139, by Tim D. Smith).

1.3.7 Version 1.5 (31-01-2016)

» Freeimage conda package (in main channel) is updated and works on all major OS’s.
* Conda install imageio!
* Fix bug where the ffmpeg plugin fails on certain video files (#131).

¢ Fix how dicom uses dcmtk for JPEG compressed files.

1.3.8 Version 1.4 (18-11-2015)

* Various improvements to the ffmpeg plugin.

» New tiffile plugin that should support most scientific formats.

* New simpleITK wrapper plugin.

* New gdal plugin.

* Freeimage plugin can load freeimage lib provided by conda.

* Dicom plugin improved handling of compressed files.

* Most plugins adopt lazy loading to keep imageio lean, fast, and scalable.
* We now build wheels for Pypi.

* Travis also tests Python 3.5.

1.3.9 Version 1.3 (02-07-2015)

This release features several fixes and small improvements, especially to the ffmpeg plugin.
¢ Fix ‘FrameTime’ in first frame of GIF image (#90)
* Fix that writing video could freeze on Windows (#84)
» Fix that ffmpeg process was sometimes not closed correctly (#79)
* Also protect user from clogging the machine for mvolread (#89)
* Better support for platforms other than Win/Linux/OSX (#87)
* Support for reading from webcam on OSX (#83, #85)

1.3. Release notes 7

imageio Documentation, Release 2.2.0dev

* Support for dpx via the ffmpeg plugin (#81)

 Support for wmv via the ffmpeg plugin (#83)

* The ffmpeg plugin allows specifying pixelformat. The new default is more widely supported (#83)
* Allow passing additional arguments to ffmpeg command (#83)

* Quality of ffmpeg output now set via quality param instead of bitrate (#83)

* Imageio now has a few (documented) environment variables to specify the locations of plugin libraries/exes
(thus preventing them from being automatically downloaded.

1.3.10 Version 1.2 (23-02-2015)

Basically a hotfix release. But some new features were introduced.
* Fixed that pip-installing would put README.md and other files in sys.prefix.
* The used ffmpeg exe can be overridden with an environment variable ‘IMAGEIO_FFMPEG_EXE’.
* Relative paths work again.

* FFMPEG plugin moved to correct timeframe when seeking (thanks Zulko)

1.3.11 Version 1.1 (04-02-2015)

Imageio is now a dependency of Moviepy, which exposed a few issues to fix. Imageio is now also available as a
Debian package (thanks Ghislain!). Furher, we tweaked our function names to be cleared and more consistent (the old
names still work).

¢ All Xsave () functions are renamed to Xwrite (). Also read () and save () are now get_reader ()
and get_writer (). The old names are available as aliases (and will be for the foreseable future) for backward
compatibility.

* Protect user from bringing computer in swap-mode by doing e.g. mimread ('hunger games.avi').
* Continuous integration for Windows via Appveyor.

» All imports are relative, so imageio can be used as a subpackage in a larger project.

* FFMPEGQG is the default plugin for reading video (since AVBIN has issues).

* Better handling on NaN and Inf when converting to uint8.

* Provide dist packages that include freeimage lib and a few example images.

 Several changes to ease building into Debian package.

* Fixed segfault when saving gif (thanks levskaya, https://github.com/imageio/imageio/pull/53).

* Don’t fail when userdir is not writable.

* Gif plugin writer has fps param for consistency with avi/mp4 etc.

1.3.12 Version 1.0 (13-11-2014)

In this release we did a lot of work to push imageio to a new level. The code is now properly tested, and we have
several more formats.

The big changes:

8 Chapter 1. Getting started

https://github.com/Zulko/moviepy/
https://github.com/imageio/imageio/pull/53

imageio Documentation, Release 2.2.0dev

Many unit tests were written to cover over 95% of the code base. (the core of imageio has 100% coverage).
Setup continuous integration (CI) using Travis.

Imageio now follows PEPS style guides (and this is tested with CI).

Refactoring of the code base. Resulting in a cleaner namespace.

Many improvements to the documementation.

Plugins:

The FFMPEG format is now well supported. Binaries are provided.

New AVBIN format for more efficient reading of video files.

New NPZ format that can store (a series of) arbitrarily shaped numpy arrays.
New SWF format (shockwave flash) for lossless animated images.

Improvements to the GIF format. The GIF and ANIGIF formats are now merged.

Further:

New simple website to act as a front page (http://imageio.github.io).
Compatibility with Pypy.
We provide a range of standard images that are automatically downloaded.

Binaries (libs and executables) that plugins of imageio uses are now downloaded at runtime, not at build/install
time. This simplifies things a lot.

freeimage plugin now fully functional on pypy
Added utilities for developers (run python make from the repo root).

PNG, JPEG, BMP,GIF and other plugins can now handle float data (pixel values are assumed to be between 0
and 1.

Imageio now expand the user dir when filename start with ‘~/’.

Many improvements and fixes overall.

1.3.13 Version 0.5.1 (23-06-2014)

DICOM reader closes file after reading pixel data (avoid too-many-open-files error)
Support for video data (import and export) via ffmpeg

Read images from usb camera via ffmpeg (experimental)

1.3.14 Version 0.4.1 (26-10-2013)

We moved to github!
Raise error if URI could not be understood.
Small improvement for better error reporting.

FIxes in mvolread and DICOM plugin

1.3. Release notes 9

http://imageio.github.io

imageio Documentation, Release 2.2.0dev

1.3.15 Version 0.4 (27-03-2013)

Some more thorough testing resulted in several fixes and improvements over the last release.

Fixes to reading of meta data in freeimage plugin which could cause errors when reading a file.
Support for reading 4 bpp images.

The color table for index images is now applied to yield an RGBA image.

Basic support for Pypy.

Better __repr___ for the Image class.

1.3.16 Version 0.3.2

Fix in dicom reader (RescaleSlope and Rescalelntercept were not found)

Fixed that progress indicator made things slow

1.3.17 Version 0.3.1

Fix installation/distribution issue.

1.3.18 Version 0.3.0

This was a long haul. Implemented several plugins for animation and volumetric data to give an idea of what sort of
API’s work and which do not.

Refactored for more conventional package layout (but importing without installing still supported)

Put Reader and Writer classes in the namespace of the format. This makes a format a unified whole, and gets
rid of the _get_reader_class and _get_write_class methods (at the cost of some extra indentation).

Refactored Reader and Writer classes to come up with a better API for both users as plugins.

The Request class acts as a smart bridging object. Therefore all plugins can now read from a zipfile, http/ftp,
and bytes. And they don’t have to do a thing.

Implemented specific BMP, JPEG, PNG, GIF, ICON formats.
Implemented animated gif plugin (based on freeimage).

Implemented standalone DICOM plugin.

1.3.19 Version 0.2.3

Fixed issue 2 (fail at instal, introduced when implementing freezing)

1.3.20 Version 0.2.2

Improved documentation.
Worked on distribution.

Freezing should work now.

10

Chapter 1. Getting started

imageio Documentation, Release 2.2.0dev

1.3.21 Version 0.2.1

* Introduction of the imageio.help function.
* Wrote a lot of documentation.

¢ Added example (dummy) plugin.

1.3.22 Version 0.2

* New plugin system implemented after discussions in group.

¢ Access to format information.

1.3.23 Version 0.1

* First version with a preliminary plugin system.

1.3. Release notes 11

imageio Documentation, Release 2.2.0dev

12 Chapter 1. Getting started

CHAPTER 2

Reference

2.1 Imageio’s user API

These functions represent imageio’s main interface for the user. They provide a common API to read and write image
data for a large variety of formats. All read and write functions accept keyword arguments, which are passed on to the
format that does the actual work. To see what keyword arguments are supported by a specific format, use the help ()
function.

Functions for reading:

e imread () -read an image from the specified uri

e mimread () - read a series of images from the specified uri

e volread () -read a volume from the specified uri

* mvolread () -read a series of volumes from the specified uri
Functions for saving:

* imwrite () - write an image to the specified uri

e mimwrite () - write a series of images to the specified uri

e volwrite () - write a volume to the specified uri

e mvolwrite () - write a series of volumes to the specified uri
More control:

For a larger degree of control, imageio provides functions get_ reader () and get_writer (). They respectively
return an Reader and an Writer object, which can be used to read/write data and meta data in a more controlled
manner. This also allows specific scientific formats to be exposed in a way that best suits that file-format.

Supported resource URTI’s:

All functions described here accept a URI to describe the resource to read from or write to. These can be a wide range
of things. (Imageio takes care of handling the URI so that plugins can access the data in an easy way.)

13

imageio Documentation, Release 2.2.0dev

For reading and writing:
e anormal filename, e.g. 'c:\foo\bar.png'
* afilein a zipfile, e.g. 'c:\foo\bar.zip\eggs.png'
* afile object with a read () /write () method.
For reading:
* an http/ftp address, e.g. 'http://example.com/foo.png'
¢ the raw bytes of an image file
* get_reader ("<videoO>") to grab images from a (web) camera.
* imread ("<screen>") to grab a screenshot (on Windows or OS X).
* imread ("<clipboard>") to grab an image from the clipboard (on Windows).

For writing one can also use '<bytes>"' or imageio.RETURN_BYTES to make a write function return the bytes
instead of writing to a file.

imageio.help (name=None)
Print the documentation of the format specified by name, or a list of supported formats if name is omitted.

Parameters name : str

Can be the name of a format, a filename extension, or a full filename. See also the
formats page.

imageio.show_formats ()
Show a nicely formatted list of available formats

imageio.imread (uri, format=None, **kwargs)
Reads an image from the specified file. Returns a numpy array, which comes with a dict of meta data at its
‘meta’ attribute.

Note that the image data is returned as-is, and may not always have a dtype of uint8 (and thus may differ from
what e.g. PIL returns).

Parameters uri : {str, bytes, file}

The resource to load the image from, e.g. a filename, http address or file object, see the
docs for more info.

format : str

The format to use to read the file. By default imageio selects the appropriate for you
based on the filename and its contents.

kwargs : ...

Further keyword arguments are passed to the reader. See help () to see what argu-
ments are available for a particular format.

imageio.imwrite (uri, im, format=None, **kwargs)
Write an image to the specified file.

Parameters uri : {str, file}

The resource to write the image to, e.g. a filename or file object, see the docs for more
info.

14 Chapter 2. Reference

imageio Documentation, Release 2.2.0dev

im : numpy.ndarray
The image data. Must be NxM, NxMx3 or NxMx4.
format : str

The format to use to read the file. By default imageio selects the appropriate for you
based on the filename and its contents.

kwargs : ...

Further keyword arguments are passed to the writer. See help () to see what arguments
are available for a particular format.

imageio.mimread (uri, format=None, memtest=True, **kwargs)

Reads multiple images from the specified file. Returns a list of numpy arrays, each with a dict of meta data at

its ‘meta’ attribute.
Parameters uri : {str, bytes, file}

The resource to load the images from, e.g. a filename, http address or file object, see
the docs for more info.

format : str

The format to use to read the file. By default imageio selects the appropriate for you
based on the filename and its contents.

memtest : bool

If True (default), this function will raise an error if the resulting list of images con-
sumes over 256 MB of memory. This is to protect the system using so much
memory that it needs to resort to swapping, and thereby stall the computer. E.g.
mimread ('hunger_games.avi').

kwargs : ...

Further keyword arguments are passed to the reader. See help () to see what argu-
ments are available for a particular format.

imageio.mimwrite (uri, ims, format=None, **kwargs)
Write multiple images to the specified file.

Parameters uri : {str, file}

The resource to write the images to, e.g. a filename or file object, see the docs for more
info.

ims : sequence of numpy arrays
The image data. Each array must be NxM, NxMx3 or NxMx4.
format : str

The format to use to read the file. By default imageio selects the appropriate for you
based on the filename and its contents.

kwargs : ...

Further keyword arguments are passed to the writer. See he Ip () to see what arguments
are available for a particular format.

2.1. Imageio’s user API

15

imageio Documentation, Release 2.2.0dev

imageio.volread (uri, format=None, **kwargs)
Reads a volume from the specified file. Returns a numpy array, which comes with a dict of meta data at its
‘meta’ attribute.

Parameters uri : {str, bytes, file}

The resource to load the volume from, e.g. a filename, http address or file object, see
the docs for more info.

format : str

The format to use to read the file. By default imageio selects the appropriate for you
based on the filename and its contents.

kwargs : ...

Further keyword arguments are passed to the reader. See help () to see what argu-
ments are available for a particular format.

imageio.volwrite (uri, vol, format=None, **kwargs)
Write a volume to the specified file.

Parameters uri : {str, file}

The resource to write the image to, e.g. a filename or file object, see the docs for more
info.

vol : numpy.ndarray
The image data. Must be NxMxL (or NxMxLxK if each voxel is a tuple).
format : str

The format to use to read the file. By default imageio selects the appropriate for you
based on the filename and its contents.

kwargs : ...

Further keyword arguments are passed to the writer. See help () to see what arguments
are available for a particular format.

imageio.mvolread (uri, format=None, memtest=True, **kwargs)
Reads multiple volumes from the specified file. Returns a list of numpy arrays, each with a dict of meta data at
its ‘meta’ attribute.

Parameters uri : {str, bytes, file}

The resource to load the volumes from, e.g. a filename, http address or file object, see
the docs for more info.

format : str

The format to use to read the file. By default imageio selects the appropriate for you
based on the filename and its contents.

memtest : bool

If True (default), this function will raise an error if the resulting list of images
consumes over 1 GB of memory. This is to protect the system using so much
memory that it needs to resort to swapping, and thereby stall the computer. E.g.
mimread ('hunger_games.avi').

kwargs : ...

16 Chapter 2. Reference

imageio Documentation, Release 2.2.0dev

Further keyword arguments are passed to the reader. See help () to see what argu-
ments are available for a particular format.

imageio.mvolwrite (uri, vols, format=None, **kwargs)
Write multiple volumes to the specified file.

Parameters uri : {str, file}

The resource to write the volumes to, e.g. a filename or file object, see the docs for more
info.

ims : sequence of numpy arrays
The image data. Each array must be NxMxL (or NxMxLxK if each voxel is a tuple).
format : str

The format to use to read the file. By default imageio selects the appropriate for you
based on the filename and its contents.

kwargs : ...

Further keyword arguments are passed to the writer. See he Ip () to see what arguments
are available for a particular format.

imageio.get_reader (uri, format=None, mode="?", **kwargs)
Returns a Reader object which can be used to read data and meta data from the specified file.

Parameters uri : {str, bytes, file}

The resource to load the image from, e.g. a filename, http address or file object, see the
docs for more info.

format : str

The format to use to read the file. By default imageio selects the appropriate for you
based on the filename and its contents.

mode: {Li?, ‘I?, ‘V” 6V” ‘?’}
Used to give the reader a hint on what the user expects (default “?”): “i” for an image,
“I” for multiple images, “v” for a volume, “V”’ for multiple volumes, “?” for don’t care.

kwargs : ...

Further keyword arguments are passed to the reader. See help () to see what argu-
ments are available for a particular format.

imageio.get_writer (uri, format=None, mode="?", **kwargs)
Returns a Writer object which can be used to write data and meta data to the specified file.

Parameters uri : {str, file}

The resource to write the image to, e.g. a filename or file object, see the docs for more
info.

format : str

The format to use to write the file. By default imageio selects the appropriate for you
based on the filename.

mOdeI {‘i’, ‘I,, ‘V’, ‘V,, c?’}

Used to give the writer a hint on what the user expects (default ?’): “i”” for an image,
“I” for multiple images, “v” for a volume, “V” for multiple volumes, “?” for don’t care.

2.1. Imageio’s user API 17

imageio Documentation, Release 2.2.0dev

kwargs : ...

Further keyword arguments are passed to the writer. See he Ip () to see what arguments
are available for a particular format.

class imageio.core.format .Reader (format, request)
The purpose of a reader object is to read data from an image resource, and should be obtained by calling
get_reader ().

A reader can be used as an iterator to read multiple images, and (if the format permits) only reads data from the
file when new data is requested (i.e. streaming). A reader can also be used as a context manager so that it is
automatically closed.

Plugins implement Reader’s for different formats. Though rare, plugins may provide additional functionality
(beyond what is provided by the base reader class).

close ()
Flush and close the reader/writer. This method has no effect if it is already closed.

closed
Whether the reader/writer is closed.

format
The Format object corresponding to the current read/write operation.

get_data (index, **kwargs)
Read image data from the file, using the image index. The returned image has a ‘meta’ attribute with the
meta data.

Some formats may support additional keyword arguments. These are listed in the documentation of those
formats.

get_length ()
Get the number of images in the file. (Note: you can also use len (reader_object).)

The result can be:
* 0 for files that only have meta data
* 1 for singleton images (e.g. in PNG, JPEG, etc.)
* N for image series
* inf for streams (series of unknown length)

get_meta_data (index=None)
Read meta data from the file. using the image index. If the index is omitted or None, return the file’s
(global) meta data.

Note that get_data also provides the meta data for the returned image as an atrribute of that image.

The meta data is a dict, which shape depends on the format. E.g. for JPEG, the dict maps group names
to subdicts and each group is a dict with name-value pairs. The groups represent the different metadata
formats (EXIF, XMP, etc.).

get_next_data (**kwargs)
Read the next image from the series.

Some formats may support additional keyword arguments. These are listed in the documentation of those
formats.

iter_data()
Iterate over all images in the series. (Note: you can also iterate over the reader object.)

18 Chapter 2. Reference

imageio Documentation, Release 2.2.0dev

request
The Request object corresponding to the current read/write operation.

set_image_index (index)
Set the internal pointer such that the next call to get_next_data() returns the image specified by the index

class imageio.core.format.Writer (format, request)

2.2

The purpose of a writer object is to write data to an image resource, and should be obtained by calling
get_writer().

A writer will (if the format permits) write data to the file as soon as new data is provided (i.e. streaming). A
writer can also be used as a context manager so that it is automatically closed.

Plugins implement Writer’s for different formats. Though rare, plugins may provide additional functionality
(beyond what is provided by the base writer class).

append_data (im, meta={})
Append an image (and meta data) to the file. The final meta data that is used consists of the meta data on
the given image (if applicable), updated with the given meta data.

close ()
Flush and close the reader/writer. This method has no effect if it is already closed.

closed
Whether the reader/writer is closed.

format
The Format object corresponding to the current read/write operation.

request
The Request object corresponding to the current read/write operation.

set_meta_data (meta)
Sets the file’s (global) meta data. The meta data is a dict which shape depends on the format. E.g. for
JPEG the dict maps group names to subdicts, and each group is a dict with name-value pairs. The groups
represents the different metadata formats (EXIF, XMP, etc.).

Note that some meta formats may not be supported for writing, and individual fields may be ignored
without warning if they are invalid.

Imageio formats

This page lists all formats currently supported by imageio. Each format can support extra keyword arguments for read-
ing and writing, which can be specified in the call to get_reader (), get_writer (), imread (), imwrite ()
etc. Further, formats are free to provide additional methods on their Reader and Writer objects. These parameters and
extra methods are specified in the documentation for each format.

2.2.1 Single images

TIFF - TIFF format
BMP-PIL - Windows Bitmap
BUFR-PIL - BUFR
CUR-PIL - Windows Cursor
DCX-PIL - Intel DCX

2.2. Imageio formats 19

imageio Documentation, Release 2.2.0dev

DDS-PIL - DirectDraw Surface
DIB-PIL - Windows Bitmap

EPS-PIL - Encapsulated Postscript
FITS-PIL - FITS

FLI-PIL - Autodesk FLI/FLC Animation
FPX-PIL - FlashPix

FTEX-PIL - Texture File Format (IW2:EOC)

GBR-PIL - GIMP brush file

GIF-PIL - Static and animated gif (Pillow)
GRIB-PIL - GRIB

HDF5-PIL - HDF5

ICNS-PIL - Mac OS icns resource
ICO-PIL - Windows Icon

IM-PIL - IFUNC Image Memory
IMT-PIL - IM Tools

IPTC-PIL - IPTC/NAA

JPEG-PIL - JPEG (ISO 10918)
JPEG2000-PIL - JPEG 2000 (ISO 15444)
MCIDAS-PIL - Mcldas area file
MIC-PIL - Microsoft Image Composer
MPO-PIL - MPO (CIPA DC-007)
MSP-PIL - Windows Paint

PCD-PIL - Kodak PhotoCD

PCX-PIL - Paintbrush

PIXAR-PIL - PIXAR raster image
PNG-PIL - Portable network graphics
PPM-PIL - Pbmplus image

PSD-PIL - Adobe Photoshop

SGI-PIL - SGI Image File Format
SPIDER-PIL - Spider 2D image
SUN-PIL - Sun Raster File

TGA-PIL - Targa

TIFF-PIL - TIFF format (Pillow)
WME-PIL - Windows Metafile
XBM-PIL - X11 Bitmap

XPM-PIL - X11 Pixel Map

20

Chapter 2. Reference

imageio Documentation, Release 2.2.0dev

XVTHUMB-PIL - XV thumbnail image

SCREENGRAB - Grab screenshots (Windows and OS X only)
CLIPBOARDGRAB - Grab from clipboard (Windows only)

BMP-FI - Windows or OS/2 Bitmap
CUT-FI - Dr. Halo

DDS-FI - DirectX Surface

EXR-FI - ILM OpenEXR

G3-FI - Raw fax format CCITT G.3
HDR-FI - High Dynamic Range Image
IFF-FI - IFF Interleaved Bitmap

J2K-FI - JPEG-2000 codestream
JNG-FI - JPEG Network Graphics
JP2-FI - JPEG-2000 File Format
JPEG-FI - JPEG - JFIF Compliant
JPEG-XR-FI - JPEG XR image format
KOALA-FI - C64 Koala Graphics
PBM-FI - Portable Bitmap (ASCII)
PBMRAW-FI - Portable Bitmap (RAW)
PCD-FI - Kodak PhotoCD

PCX-FI - Zsoft Paintbrush

PFM-FI - Portable floatmap

PGM-FI - Portable Greymap (ASCII)
PGMRAW-FI - Portable Greymap (RAW)
PICT-FI - Macintosh PICT

PNG-FI - Portable Network Graphics
PPM-FI - Portable Pixelmap (ASCII)
PPMRAW-FI - Portable Pixelmap (RAW)
PSD-FI - Adobe Photoshop

RAS-FI - Sun Raster Image

RAW-FI - RAW camera image

SGI-FI - SGI Image Format
TARGA-FI - Truevision Targa

TIFF-FI - Tagged Image File Format
WBMP-FI - Wireless Bitmap
WEBP-FI - Google WebP image format
XBM-FI - X11 Bitmap Format

2.2,

Imageio formats

21

imageio Documentation, Release 2.2.0dev

XPM-FI - X11 Pixmap Format

ICO-FI - Windows icon

GIF-FI - Static and animated gif (FreeImage)

DICOM - Digital Imaging and Communications in Medicine
NPZ - Numpy’s compressed array format

FEI - FEI-SEM TIFF format

FITS - Flexible Image Transport System (FITS) format

ITK - Insight Segmentation and Registration Toolkit (ITK) format
GDAL - Geospatial Data Abstraction Library

LYTRO-LFR - Lytro Illum Ifr image file

LYTRO-RAW - Lytro Illum raw image file

DUMMY - An example format that does nothing.

2.2.2 Multiple images

TIFF - TIFF format

GIF-PIL - Static and animated gif (Pillow)

ICO-FI - Windows icon

GIF-FI - Static and animated gif (FreeImage)

FFMPEG - Many video formats and cameras (via ffmpeg)
AVBIN - Many video formats (via AvBin, i.e. libav library)
DICOM - Digital Imaging and Communications in Medicine
NPZ - Numpy’s compressed array format

SWF - Shockwave flash

FITS - Flexible Image Transport System (FITS) format

ITK - Insight Segmentation and Registration Toolkit (ITK) format
GDAL - Geospatial Data Abstraction Library

DUMMY - An example format that does nothing.

2.2.3 Single volumes

TIFF - TIFF format

DICOM - Digital Imaging and Communications in Medicine
NPZ - Numpy’s compressed array format

FEI - FEI-SEM TIFF format

FITS - Flexible Image Transport System (FITS) format

ITK - Insight Segmentation and Registration Toolkit (ITK) format
GDAL - Geospatial Data Abstraction Library

22

Chapter 2.

Reference

imageio Documentation, Release 2.2.0dev

2.2.4 Multiple volumes

TIFF - TIFF format

DICOM - Digital Imaging and Communications in Medicine
NPZ - Numpy’s compressed array format

FITS - Flexible Image Transport System (FITS) format

ITK - Insight Segmentation and Registration Toolkit (ITK) format
GDAL - Geospatial Data Abstraction Library

2.3 Imageio command line scripts

This page lists the command line scripts provided by imageio. To see all options for a script, execute it with the
——help option, e.g. imageio_download_bin —--help.

imageio_download_bin: Download binary dependencies for imageio plugins to the users application data
directory. This script accepts the parameter ——package—dir which will download the binaries to the directory
where imageio is installed. This option is useful when freezing an application with imageio. It is supported out-
of-the-box by PylInstaller version>=3.2.2.

imageio_remove_bin: Remove binary dependencies of imageio plugins from all directories managed by
imageio. This script is useful when there is a corrupt binary or when the user prefers the system binary over the
binary provided by imageio.

2.4 Imageio environment variables

This page lists the environment variables that imageio uses. You can set these to control some of imageio’s behavior.
Each operating system has its own way for setting environment variables, but to set a variable for the current Python
process use os.environ['IMAGEIO_VAR_NAME'] = 'value'.

IMAGEIO_NO_INTERNET: If this value is “1”, “yes”, or “true” (case insensitive), makes imageio not use the
internet connection to retrieve files (like libraries or sample data). Some plugins (e.g. freeimage and ffmpeg)
will try to use the system version in this case.

IMAGEIO_FFMPEG_EXE: Set the path to the ffmpeg executable. Set to simply “ffmpeg” to use your system
ffmpeg executable. If not given, will prompt the user to download the ffmpeg exe that imageio provides.

IMAGEIO_AVBIN_LIB: Set the path to the avbin library. If not given, will prompt the user to download the
avbin library that imageio provides.

IMAGEIO_FREEIMAGE_LIB: Setthe path to the freeimage library. If not given, will prompt user to download
the freeimage library.

IMAGEIO_FORMAT_ORDER: Determine format preference. E.g. setting this to "TIFF, -FI" will prefer
the FreeImage plugin over the Pillow plugin, but still prefer TIFF over that. Also see the formats.sort ()
method.

IMAGEIO_USERDIR: Set the path to the default user directory. If not given, imageio will try ~ and if that’s
not available /var/tmp.

23.

Imageio command line scripts 23

imageio Documentation, Release 2.2.0dev

2.5 Imageio standard images

Imageio provides a number of standard images. These include classic 2D images, as well as animated and volumetric
images. To the best of our knowledge, all the listed images are in public domain.

The image names can be loaded by using a special URI, e.g. imread('imageio:astronaut.png'). The
images are automatically downloaded (and cached in your appdata directory).

» newtonscradle.gif: Animated GIF of a newton’s cradle

* cockatoo.mp4: Video file of a cockatoo

e stent.npz: Volumetric image showing a stented abdominal aorta

e astronaut.png: Image of the astronaut Eileen Collins

e camera.png: Classic grayscale image of a photographer

* checkerboard.png: Black and white image of a chekerboard

e chelsea.png: Image of Stefan’s cat

* clock.png: Photo of a clock with motion blur (Stefan van der Walt)

* coffee.png: Image of a cup of coffee (Rachel Michetti)

e coins.png: Image showing greek coins from Pompeii

* horse.png: Image showing the silhouette of a horse (Andreas Preuss)
» hubble_deep_field.png: Photograph taken by Hubble telescope (NASA)
e immunohistochemistry.png: Immunohistochemical (IHC) staining

* moon.png: Image showing a portion of the surface of the moon

* page.png: A scanned page of text

* text.png: A photograph of handdrawn text

» wikkie.png: Image of Almar’s cat

* chelsea.zip: The chelsea.png in a zipfile (for testing)

24 Chapter 2. Reference

https://github.com/imageio/imageio-binaries/raw/master/images/newtonscradle.gif
https://github.com/imageio/imageio-binaries/raw/master/images/cockatoo.mp4
https://github.com/imageio/imageio-binaries/raw/master/images/stent.npz
https://github.com/imageio/imageio-binaries/raw/master/images/astronaut.png
https://github.com/imageio/imageio-binaries/raw/master/images/camera.png
https://github.com/imageio/imageio-binaries/raw/master/images/checkerboard.png
https://github.com/imageio/imageio-binaries/raw/master/images/chelsea.png
https://github.com/imageio/imageio-binaries/raw/master/images/clock.png
https://github.com/imageio/imageio-binaries/raw/master/images/coffee.png
https://github.com/imageio/imageio-binaries/raw/master/images/coins.png
https://github.com/imageio/imageio-binaries/raw/master/images/horse.png
https://github.com/imageio/imageio-binaries/raw/master/images/hubble_deep_field.png
https://github.com/imageio/imageio-binaries/raw/master/images/immunohistochemistry.png
https://github.com/imageio/imageio-binaries/raw/master/images/moon.png
https://github.com/imageio/imageio-binaries/raw/master/images/page.png
https://github.com/imageio/imageio-binaries/raw/master/images/text.png
https://github.com/imageio/imageio-binaries/raw/master/images/wikkie.png
https://github.com/imageio/imageio-binaries/raw/master/images/chelsea.zip

CHAPTER 3

Developer documentation

3.1 Imageio’s developer API

This page lists the developer documentation for imageio. Normal users will generally not need this, except perhaps the
Format class. All these functions and classes are available in the imageio.core namespace. This subpackage
provides the core functionality of imageio (everything but the plugins).

Functions: appdata_dir(), asarray (), get_platform(), get_remote_file (), has_module (),
image_as_uint (), load 1lib (), read _n_bytes (), resource_dirs (), urlopen ()

Classes: BaseProgressIndicator, CannotReadFrameError, Dict, Format, FormatManager,
Image, InternetNotAllowedError, NeedDownloadError, Request, StdoutProgressIndicator

imageio.core.appdata_dir (appname=None, roaming=False)
Get the path to the application directory, where applications are allowed to write user specific files (e.g. config-
urations). For non-user specific data, consider using common_appdata_dir(). If appname is given, a subdir is
appended (and created if necessary). If roaming is True, will prefer a roaming directory (Windows Vista/7).

imageio.core.asarray (a)
Pypy-safe version of np.asarray. Pypy’s np.asarray consumes a lot of memory if the given array is an ndarray
subclass. This function does not.

imageio.core.get_platform()
Get a string that specifies the platform more specific than sys.platform does. The result can be: linux32, linux64,
win32, win64, 0sx32, osx64. Other platforms may be added in the future.

imageio.core.get_remote_file (fname, directory=None, force_download=False, auto=True)
Get a the filename for the local version of a file from the web

Parameters fname : str

The relative filename on the remote data repository to download. These correspond to
pathson https://github.com/imageio/imageio-binaries/.

directory : str | None

25

imageio Documentation, Release 2.2.0dev

The directory where the file will be cached if a download was required to obtain the file.
By default, the appdata directory is used. This is also the first directory that is checked
for a local version of the file. If the directory does not exist, it will be created.

force_download : bool | str

If True, the file will be downloaded even if a local copy exists (and this copy will be
overwritten). Can also be a YYYY-MM-DD date to ensure a file is up-to-date (modified
date of a file on disk, if present, is checked).

auto : bool

Whether to auto-download the file if its not present locally. Default True. If False and a
download is needed, raises NeedDownloadError.

Returns fname : str
The path to the file on the local system.

imageio.core.has_module (module_name)
Check to see if a python module is available.

imageio.core.image_as_uint (im, bitdepth=None)
Convert the given image to uint (default: uint8)

If the dtype already matches the desired format, it is returned as-is. If the image is float, and all values are
between 0 and 1, the values are multiplied by np.power(2.0, bitdepth). In all other situations, the values are
scaled such that the minimum value becomes 0 and the maximum value becomes np.power(2.0, bitdepth)-1
(255 for 8-bit and 65535 for 16-bit).

imageio.core.load_1lib (exact_lib_names, lib_names, lib_dirs=None)
Load a dynamic library.

This function first tries to load the library from the given exact names. When that fails, it tries to find the library
in common locations. It searches for files that start with one of the names given in lib_names (case insensitive).
The search is performed in the given lib_dirs and a set of common library dirs.

Returns (ctypes_library, library_path)

imageio.core.read_n_bytes (file, n)
Read n bytes from the given file, or less if the file has less bytes. Returns zero bytes if the file is closed.

imageio.core.resource_dirs ()
Get a list of directories where imageio resources may be located. The first directory in this list is the “resources”
directory in the package itself. The second directory is the appdata directory (~/.imageio on Linux). The list
further contains the application directory (for frozen apps), and may include additional directories in the future.

imageio.core.urlopen (*args, **kwargs)
Compatibility function for the urlopen function. Raises an RuntimeError if urlopen could not be imported
(which can occur in frozen applications.

class imageio.core.BaseProgressIndicator (name)
A progress indicator helps display the progres of a task to the user. Progress can be pending, running, finished
or failed.

Each task has:
* aname - a short description of what needs to be done.
* an action - the current action in performing the task (e.g. a subtask)
 progress - how far the task is completed

* max - max number of progress units. If 0, the progress is indefinite

26 Chapter 3. Developer documentation

imageio Documentation, Release 2.2.0dev

* unit - the units in which the progress is counted
* status - 0: pending, 1: in progress, 2: finished, 3: failed

This class defines an abstract interface. Subclasses should implement _start, _stop, _up-
date_progress(progressText), _write(message).

fail (message=None)
Stop the progress with a failure, optionally specifying a message.

finish (message=None)
Finish the progress, optionally specifying a message. This will not set the progress to the maximum.

increase_progress (extra_progress)
Increase the progress by a certain amount.

set_progress (progress=0, force=False)
Set the current progress. To avoid unnecessary progress updates this will only have a visual effect if the
time since the last update is > 0.1 seconds, or if force is True.

start (action=", unit=", max=0)
Start the progress. Optionally specify an action, a unit, and a maxium progress value.

status ()
Get the status of the progress - 0: pending, 1: in progress, 2: finished, 3: failed

write (message)
Write a message during progress (such as a warning).

exception imageio.core.CannotReadFrameError

Exception to be used by plugins to indicate that a frame could not be read, even though it should be a valid
index. The length could be inf, or e.g. video sometimes reports a wrong length.

class imageio.core.Dict

A dict in which the keys can be get and set as if they were attributes. Very convenient in combination with
autocompletion.

This Dict still behaves as much as possible as a normal dict, and keys can be anything that are otherwise valid
keys. However, keys that are not valid identifiers or that are names of the dict class (such as ‘items’ and ‘copy’)
cannot be get/set as attributes.

class imageio.core.Format (name, description, extensions=None, modes=None)

Represents an implementation to read/write a particular file format

A format instance is responsible for 1) providing information about a format; 2) determining whether a certain
file can be read/written with this format; 3) providing a reader/writer class.

Generally, imageio will select the right format and use that to read/write an image. A format can also be
explicitly chosen in all read/write functions. Use print (format), or help (format_name) to see its
documentation.

To implement a specific format, one should create a subclass of Format and the Format.Reader and For-
mat.Writer classes. see Creating imageio plugins for details.

Parameters name : str
A short name of this format. Users can select a format using its name.
description : str
A one-line description of the format.

extensions : str | list | None

3.1.

Imageio’s developer API 27

imageio Documentation, Release 2.2.0dev

List of filename extensions that this format supports. If a string is passed it should be
space or comma separated. The extensions are used in the documentation and to allow
users to select a format by file extension. It is not used to determine what format to use
for reading/saving a file.

modes : str

1311
1

A string containing the modes that this format can handle (‘ilvV’), “1” for an image, “I”
for multiple images, “v” for a volume, “V”” for multiple volumes. This attribute is used
in the documentation and to select the formats when reading/saving a file.

can_read (request)
Get whether this format can read data from the specified uri.

can_write (request)
Get whether this format can write data to the speciefed uri.

description
A short description of this format.

doc
The documentation for this format (name + description + docstring).

extensions
A list of file extensions supported by this plugin. These are all lowercase with a leading dot.

get_reader (request)
Return a reader object that can be used to read data and info from the given file. Users are encouraged to
use imageio.get_reader() instead.

get_writer (request)
Return a writer object that can be used to write data and info to the given file. Users are encouraged to use
imageio.get_writer() instead.

modes
A string specifying the modes that this format can handle.

name
The name of this format.

class imageio.core.FormatManager

There is exactly one FormatManager object in imageio: imageio.formats. Its purpose it to keep track of
the registered formats.

The format manager supports getting a format object using indexing (by format name or extension). When used
as an iterator, this object yields all registered format objects.

See also help ().

add_format (format, overwrite=False)
Register a format, so that imageio can use it. If a format with the same name already exists, an error is
raised, unless overwrite is True, in which case the current format is replaced.

get_format_names ()
Get the names of all registered formats.

search_read_ format (request)
Search a format that can read a file according to the given request. Returns None if no appropriate format
was found. (used internally)

search_write_format (request)
Search a format that can write a file according to the given request. Returns None if no appropriate format
was found. (used internally)

28

Chapter 3. Developer documentation

imageio Documentation, Release 2.2.0dev

show ()
Show a nicely formatted list of available formats

sort (namel, name2, name3s, ...)
Sort the formats based on zero or more given names; a format with a name that matches one of the given
names will take precedence over other formats. A match means an equal name, or ending with that name
(though the former counts higher). Case insensitive.

Format preference will match the order of the given names: using sort ('TIFF', '-FI', '-PIL")
would prefer the FreeImage formats over the Pillow formats, but prefer TIFF even more. Each time this is
called, the starting point is the default format order, and calling sort () with no arguments will reset the
order.

Be aware that using the function can affect the behavior of other code that makes use of imageio.
Also see the IMAGEIO_FORMAT_ORDER environment variable.

class imageio.core.Image (array, meta=None)
A subclass of np.ndarray that has a meta attribute. Following scikit-image, we leave this as a normal numpy
array as much as we can.

meta
The dict with the meta data of this image.

exception imageio.core.InternetNotAllowedError
Plugins that need resources can just use get_remote_file(), but should catch this error and silently ignore it.

exception imageio.core.NeedDownloadError
Is raised when a remote file is requested that is not locally available, but which needs to be explicitly downloaded
by the user.

class imageio.core.Request (uri, mode, **kwargs)
Represents a request for reading or saving an image resource. This object wraps information to that re-
quest and acts as an interface for the plugins to several resources; it allows the user to read from file-
names, files, http, zipfiles, raw bytes, etc., but offer a simple interface to the plugins via get_file () and
get_local_filename ().

For each read/write operation a single Request instance is used and passed to the can_read/can_write method of
a format, and subsequently to the Reader/Writer class. This allows rudimentary passing of information between
different formats and between a format and associated reader/writer.

Parameters uri : {str, bytes, file}
The resource to load the image from.

mode : str

[T

The first character is “r” or “w”, indicating a read or write request. The second character
is used to indicate the kind of data: “i”” for an image, “I”” for multiple images, “v” for a
volume, “V” for multiple volumes, “?” for don’t care.

filename
The uri for which reading/saving was requested. This can be a filename, an http address, or other
resource identifier. Do not rely on the filename to obtain the data, but use get_file () or
get_local_filename () instead.

finish ()
For internal use (called when the context of the reader/writer exits). Finishes this request. Close open files
and process results.

firstbytes
The first 256 bytes of the file. These can be used to parse the header to determine the file-format.

3.1. Imageio’s developer API 29

imageio Documentation, Release 2.2.0dev

get_file()
Get a file object for the resource associated with this request. If this is a reading request, the file is in read
mode, otherwise in write mode. This method is not thread safe. Plugins do not need to close the file when
done.

This is the preferred way to read/write the data. But if a format cannot handle file-like objects, they should
use get_local_filename ().

get_local_filename ()
If the filename is an existing file on this filesystem, return that. Otherwise a temporary file is created on
the local file system which can be used by the format to read from or write to.

get_result ()
For internal use. In some situations a write action can have a result (bytes data). That is obtained with this
function.

kwargs
The dict of keyword arguments supplied by the user.

mode
The mode of the request. The first character is “r”” or “w”, indicating a read or write request. The second
character is used to indicate the kind of data: “i” for an image, “I”’ for multiple images, “v” for a volume,
“V” for multiple volumes, “?” for don’t care.

class imageio.core.StdoutProgressIndicator (name)
A progress indicator that shows the progress in stdout. It assumes that the tty can appropriately deal with
backspace characters.

3.2 Creating imageio plugins

Imagio is plugin-based. Every supported format is provided with a plugin. You can write your own plugins to make
imageio support additional formats. And we would be interested in adding such code to the imageio codebase!

3.2.1 What is a plugin

In imageio, a plugin provides one or more Format objects, and corresponding Reader and Writer classes. Each
Format object represents an implementation to read/write a particular file format. Its Reader and Writer classes do the
actual reading/saving.

The reader and writer objects have a request attribute that can be used to obtain information about the read or write
Request, such as user-provided keyword arguments, as well get access to the raw image data.

3.2.2 Registering
Strictly speaking a format can be used stand alone. However, to allow imageio to automatically select it for a specific
file, the format must be registered using imageio.formats.add_format ().

Note that a plugin is not required to be part of the imageio package; as long as a format is registered, imageio can use
it. This makes imageio very easy to extend.

30 Chapter 3. Developer documentation

imageio Documentation, Release 2.2.0dev

3.2.3 What methods to implement

Imageio is designed such that plugins only need to implement a few private methods. The public API is implemented
by the base classes. In effect, the public methods can be given a descent docstring which does not have to be repeated
at the plugins.

For the Format class, the following needs to be implemented/specified:

* The format needs a short name, a description, and a list of file extensions that are common for the file-format in
question. These ase set when instantiation the Format object.

* Use a docstring to provide more detailed information about the format/plugin, such as parameters for reading
and saving that the user can supply via keyword arguments.

e Implement _can_read (request), return a bool. See also the Request class.
e Implement _can_write (request), dito.
For the Format.Reader class:
* Implement _open (x*kwargs) to initialize the reader. Deal with the user-provided keyword arguments here.
* Implement _close () to clean up.

e Implement _get_length () to provide a suitable length based on what the user expects. Can be inf for
streaming data.

* Implement _get_data (index) to return an array and a meta-data dict.

* Implement _get_meta_data (index) to return a meta-data dict. If index is None, it should return the
‘global’ meta-data.

For the Format. Writer class:
e Implement _open (x+kwargs) to initialize the writer. Deal with the user-provided keyword arguments here.
* Implement _close () to clean up.
e Implement _append_data (im, meta) to add data (and meta-data).
e Implement _set_meta_data (meta) to set the global meta-data.

If the plugin requires a binary download from the imageio-binaries repository, implement the download method (see
e.g. the ffmpeg plugin). Make sure that the download directory base name matches the plugin name. Otherwise, the
download and removal command line scripts (see __main__.py) might not work.

3.2.4 Example / template plugin

—#— coding: utf—-8 —#-—
Copyright (c) 2015, imageio contributors
imageio is distributed under the terms of the (new) BSD License.

"o Example plugin. You can use this as a template for your own plugin.

mown

from _ future import absolute_import, print_function, division
import numpy as np

from .. import formats
from ..core import Format

3.2. Creating imageio plugins 31

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

4

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

imageio Documentation, Release 2.2.0dev

class DummyFormat (Format) :

"rr The dummy format is an example format that does nothing.
It will never indicate that it can read or write a file. When
explicitly asked to read, it will simply read the bytes. When
explicitly asked to write, it will raise an error.

This documentation is shown when the user does "~ “help('thisformat') °.

Parameters for reading

Specify arguments in numpy doc style here.

Parameters for saving

Specify arguments in numpy doc style here.

mmn

def _can_read(self, request):

This method is called when the format manager is searching

for a format to read a certain image. Return True 1if this format
can do 1it.

The format manager 1s aware of the extensions and the modes
that each format can handle. It will first ask all formats
that *seemx to be able to read it whether they can. If none
can, it will ask the remaining formats if they can: the
extension might be missing, and this allows formats to provide
functionality for certain extensions, while giving preference
to other plugins.

If a format says it can, it should live up to it. The format
would ideally check the request.firstbytes and look for a
header of some kind.

The request object has:

request.filename: a representation of the source (only for reporting)
request.firstbytes: the first 256 bytes of the file.

request.mode [0] : read or write mode

request.mode[1]: what kind of data the user expects: one of 'iIvV?'

R E R E E E E R R R E R R EE R TR

if request.mode[l] in (self.modes + "?'):
if request.filename.lower () .endswith(self.extensions):
return True

def _can_write(self, request):

This method is called when the format manager is searching
for a format to write a certain image. It will first ask all
formats that #seemx to be able to write it whether they can.
If none can, it will ask the remaining formats 1f they can.

$O¥R W I oW |

Return True 1if the format can do it.

In most cases, this code does suffice:
if request.mode[l] in (self.modes + '?2'"):
if request.filename.lower () .endswith(self.extensions):
return True

32

Chapter 3. Developer documentation

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

imageio Documentation, Release 2.2.0dev

—— reader
class Reader (Format.Reader) :

def _open(self, some_option=False, length=1):
Specify kwargs here. Optionally, the user-specified kwargs
can also be accessed via the request.kwargs object.

data. Use just one:
- Use request.get_file() for a file object (preferred)
- Use request.get_local_ filename () for a file on the system
self._fp = self.request.get_file()
self._length = length # passed as an arg in this case for testing
self. _data = None

#
#
#
The request object provides two ways to get access to the
#
#
#

def _close(self):
Close the reader.
Note that the request object will close self._fp
pass

def _get_length(self):
Return the number of images. Can be np.inf
return self._length

def _get_data(self, index):

Return the data and meta data for the given index
if index >= self._length:

raise IndexError('Image index %1 >
Read all bytes
if self._data is None:

self._data = self._fp.read()
Put in a numpy array
im = np.frombuffer (self._data, 'uint8")
im.shape = len(im), 1
Return array and dummy meta data
return im, {}

oo

i' % (index, self._length))

def _get_meta_data(self, index):
Get the meta data for the given index. If index is None, it
should return the global meta data.
return {} # This format does not support meta data

—— writer
class Writer (Format.Writer) :

def _open(self, flags=0):
Specify kwargs here. Optionally, the user-specified kwargs
can also be accessed via the request.kwargs object.

Use just one:

- Use request.get_file() for a file object (preferred)

- Use request.get_local_filename () for a file on the system
self._fp = self.request.get_file()

#
#
#
The request object provides two ways to write the data.
#
#
#

3.2. Creating imageio plugins 33

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

imageio Documentation, Release 2.2.0dev

def close(self):
Close the reader.
Note that the request object will close self._fp
pass

def _append_data(self, im, meta):
Process the given data and meta data.
raise RuntimeError ('The dummy format cannot write image data.')

def set_meta_data(self, meta):
Process the given meta data (global for all images)
It is not mandatory to support this.
raise RuntimeError ('The dummy format cannot write meta data.')

Register. You register an xinstancex of a Format class. Here specify:
format = DummyFormat ('dummy', # short name
'An example format that does nothing.', # one line descr.
'.foobar .nonexistentext', # 1list of extensions
'iI' # modes, characters in 1IvV
)

formats.add_format (format)

34 Chapter 3. Developer documentation

Python Module Index

|

imageio, ??

imageio.core, 25
imageio.core.functions, 13
imageio.plugins, 30

35

imageio Documentation, Release 2.2.0dev

36

Python Module Index

Index

A

add_format() (imageio.core.FormatManager method), 28
appdata_dir() (in module imageio.core), 25
append_data() (imageio.core.format. Writer method), 19
asarray() (in module imageio.core), 25

B

BaseProgressIndicator (class in imageio.core), 26

C

can_read() (imageio.core.Format method), 28
can_write() (imageio.core.Format method), 28
CannotReadFrameError, 27

close() (imageio.core.format.Reader method), 18
close() (imageio.core.format.Writer method), 19
closed (imageio.core.format.Reader attribute), 18
closed (imageio.core.format. Writer attribute), 19

D

description (imageio.core.Format attribute), 28
Dict (class in imageio.core), 27
doc (imageio.core.Format attribute), 28

E

extensions (imageio.core.Format attribute), 28

F

fail() (imageio.core.BaseProgressIndicator method), 27
filename (imageio.core.Request attribute), 29

finish() (imageio.core.BaseProgressIndicator method), 27
finish() (imageio.core.Request method), 29

firstbytes (imageio.core.Request attribute), 29

Format (class in imageio.core), 27

format (imageio.core.format.Reader attribute), 18

format (imageio.core.format.Writer attribute), 19
FormatManager (class in imageio.core), 28

G

get_data() (imageio.core.format.Reader method), 18

get_file() (imageio.core.Request method), 29

get_format_names() (imageio.core.FormatManager
method), 28

get_length() (imageio.core.format.Reader method), 18

get_local_filename() (imageio.core.Request method), 30

get_meta_data() (imageio.core.format.Reader method),
18

get_next_data() (imageio.core.format.Reader method), 18

get_platform() (in module imageio.core), 25

get_reader() (imageio.core.Format method), 28

get_reader() (in module imageio), 17

get_remote_file() (in module imageio.core), 25

get_result() (imageio.core.Request method), 30

get_writer() (imageio.core.Format method), 28

get_writer() (in module imageio), 17

H

has_module() (in module imageio.core), 26
help() (in module imageio), 14

Image (class in imageio.core), 29

image_as_uint() (in module imageio.core), 26

imageio (module), 1

imageio.core (module), 25

imageio.core.functions (module), 13

imageio.plugins (module), 30

imread() (in module imageio), 14

imwrite() (in module imageio), 14

increase_progress() (imageio.core.BaseProgressIndicator
method), 27

InternetNotAllowedError, 29

iter_data() (imageio.core.format.Reader method), 18

K

kwargs (imageio.core.Request attribute), 30

L

load_lib() (in module imageio.core), 26

37

imageio Documentation, Release 2.2.0dev

M

meta (imageio.core.Image attribute), 29
mimread() (in module imageio), 15
mimwrite() (in module imageio), 15
mode (imageio.core.Request attribute), 30
modes (imageio.core.Format attribute), 28
mvolread() (in module imageio), 16
mvolwrite() (in module imageio), 17

N

name (imageio.core.Format attribute), 28
NeedDownloadError, 29

R

read_n_bytes() (in module imageio.core), 26
Reader (class in imageio.core.format), 18
Request (class in imageio.core), 29

request (imageio.core.format.Reader attribute), 18
request (imageio.core.format. Writer attribute), 19
resource_dirs() (in module imageio.core), 26

S

search_read_format() (imageio.core.FormatManager
method), 28

search_write_format() (imageio.core.FormatManager
method), 28

set_image_index() (imageio.core.format.Reader method),
19

set_meta_data() (imageio.core.format.Writer method), 19

set_progress() (imageio.core.BaseProgressIndicator
method), 27

show() (imageio.core.FormatManager method), 28
show_formats() (in module imageio), 14

sort() (imageio.core.FormatManager method), 29

start() (imageio.core.BaseProgressIndicator method), 27
status() (imageio.core.BaseProgressIndicator method), 27
StdoutProgressIndicator (class in imageio.core), 30

U

urlopen() (in module imageio.core), 26

\Y

volread() (in module imageio), 15
volwrite() (in module imageio), 16

W

write() (imageio.core.BaseProgressIndicator method), 27
Writer (class in imageio.core.format), 19

38

Index

	Getting started
	Installing imageio
	Imageio usage examples
	Release notes

	Reference
	Imageio’s user API
	Imageio formats
	Imageio command line scripts
	Imageio environment variables
	Imageio standard images

	Developer documentation
	Imageio’s developer API
	Creating imageio plugins

	Python Module Index

