
Dask.distributed Documentation
Release 1.20.2+48.g5ef9c80

Matthew Rocklin

Jan 25, 2018

Getting Started

1 Motivation 3

2 Architecture 5

3 Contents 7

i

ii

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Dask.distributed is a lightweight library for distributed computing in Python. It extends both the concurrent.
futures and dask APIs to moderate sized clusters.

See the quickstart to get started.

Getting Started 1

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

2 Getting Started

CHAPTER 1

Motivation

Distributed serves to complement the existing PyData analysis stack. In particular it meets the following needs:

• Low latency: Each task suffers about 1ms of overhead. A small computation and network roundtrip can com-
plete in less than 10ms.

• Peer-to-peer data sharing: Workers communicate with each other to share data. This removes central bottle-
necks for data transfer.

• Complex Scheduling: Supports complex workflows (not just map/filter/reduce) which are necessary for so-
phisticated algorithms used in nd-arrays, machine learning, image processing, and statistics.

• Pure Python: Built in Python using well-known technologies. This eases installation, improves efficiency (for
Python users), and simplifies debugging.

• Data Locality: Scheduling algorithms cleverly execute computations where data lives. This minimizes network
traffic and improves efficiency.

• Familiar APIs: Compatible with the concurrent.futures API in the Python standard library. Compatible with
dask API for parallel algorithms

• Easy Setup: As a Pure Python package distributed is pip installable and easy to set up on your own cluster.

3

https://www.python.org/dev/peps/pep-3148/
http://dask.pydata.org/en/latest/

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

4 Chapter 1. Motivation

CHAPTER 2

Architecture

Dask.distributed is a centrally managed, distributed, dynamic task scheduler. The central dask-scheduler process
coordinates the actions of several dask-worker processes spread across multiple machines and the concurrent
requests of several clients.

The scheduler is asynchronous and event driven, simultaneously responding to requests for computation from multiple
clients and tracking the progress of multiple workers. The event-driven and asynchronous nature makes it flexible to
concurrently handle a variety of workloads coming from multiple users at the same time while also handling a fluid
worker population with failures and additions. Workers communicate amongst each other for bulk data transfer over
TCP.

Internally the scheduler tracks all work as a constantly changing directed acyclic graph of tasks. A task is a Python
function operating on Python objects, which can be the results of other tasks. This graph of tasks grows as users submit
more computations, fills out as workers complete tasks, and shrinks as users leave or become disinterested in previous
results.

Users interact by connecting a local Python session to the scheduler and submitting work, either by individual calls
to the simple interface client.submit(function, *args, **kwargs) or by using the large data collec-
tions and parallel algorithms of the parent dask library. The collections in the dask library like dask.array and
dask.dataframe provide easy access to sophisticated algorithms and familiar APIs like NumPy and Pandas, while the
simple client.submit interface provides users with custom control when they want to break out of canned “big
data” abstractions and submit fully custom workloads.

5

http://dask.pydata.org/en/latest/
http://dask.pydata.org/en/latest/array.html
http://dask.pydata.org/en/latest/dataframe.html

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

6 Chapter 2. Architecture

CHAPTER 3

Contents

3.1 Install Dask.Distributed

You can install dask.distributed with conda, with pip, or by installing from source.

3.1.1 Conda

To install the latest version of dask.distributed from the conda-forge repository using conda:

conda install dask distributed -c conda-forge

3.1.2 Pip

Or install distributed with pip:

pip install dask distributed --upgrade

3.1.3 Source

To install distributed from source, clone the repository from github:

git clone https://github.com/dask/distributed.git
cd distributed
python setup.py install

7

https://conda-forge.github.io/
https://www.anaconda.com/downloads
https://github.com/dask/distributed

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.1.4 Notes

Note for Macports users: There is a known issue. with python from macports that makes executables be placed in a
location that is not available by default. A simple solution is to extend the PATH environment variable to the location
where python from macports install the binaries:

$ export PATH=/opt/local/Library/Frameworks/Python.framework/Versions/3.5/bin:$PATH

or

$ export PATH=/opt/local/Library/Frameworks/Python.framework/Versions/2.7/bin:$PATH

3.2 Quickstart

3.2.1 Install

$ pip install dask distributed --upgrade

See installation document for more information.

3.2.2 Setup Dask.distributed the Easy Way

If you create an client without providing an address it will start up a local scheduler and worker for you.

>>> from dask.distributed import Client
>>> client = Client() # set up local cluster on your laptop
>>> client
<Client: scheduler="127.0.0.1:8786" processes=8 cores=8>

3.2.3 Setup Dask.distributed the Hard Way

This allows dask.distributed to use multiple machines as workers.

Set up scheduler and worker processes on your local computer:

$ dask-scheduler
Scheduler started at 127.0.0.1:8786

$ dask-worker 127.0.0.1:8786
$ dask-worker 127.0.0.1:8786
$ dask-worker 127.0.0.1:8786

Note: At least one dask-worker must be running after launching a scheduler.

Launch an Client and point it to the IP/port of the scheduler.

>>> from dask.distributed import Client
>>> client = Client('127.0.0.1:8786')

See setup for advanced use.

8 Chapter 3. Contents

https://trac.macports.org/ticket/50058

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Map and Submit Functions

Use the map and submit methods to launch computations on the cluster. The map/submit functions send the
function and arguments to the remote workers for processing. They return Future objects that refer to remote data
on the cluster. The Future returns immediately while the computations run remotely in the background.

>>> def square(x):
return x ** 2

>>> def neg(x):
return -x

>>> A = client.map(square, range(10))
>>> B = client.map(neg, A)
>>> total = client.submit(sum, B)
>>> total.result()
-285

Gather

The map/submit functions return Future objects, lightweight tokens that refer to results on the cluster. By default
the results of computations stay on the cluster.

>>> total # Function hasn't yet completed
<Future: status: waiting, key: sum-58999c52e0fa35c7d7346c098f5085c7>

>>> total # Function completed, result ready on remote worker
<Future: status: finished, key: sum-58999c52e0fa35c7d7346c098f5085c7>

Gather results to your local machine either with the Future.result method for a single future, or with the
Client.gather method for many futures at once.

>>> total.result() # result for single future
-285
>>> client.gather(A) # gather for many futures
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Restart

When things go wrong, or when you want to reset the cluster state, call the restart method.

>>> client.restart()

See client for advanced use.

3.3 Setup Network

A dask.distributed network consists of one Scheduler node and several Worker nodes. One can set these
up in a variety of ways

3.3. Setup Network 9

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.3.1 Using the Command Line

We launch the dask-scheduler executable in one process and the dask-worker executable in several processes,
possibly on different machines.

Launch dask-scheduler on one node:

$ dask-scheduler
Start scheduler at 192.168.0.1:8786

Then launch dask-worker on the rest of the nodes, providing the address to the node that hosts
dask-scheduler:

$ dask-worker 192.168.0.1:8786
Start worker at: 192.168.0.2:12345
Registered with center at: 192.168.0.1:8786

$ dask-worker 192.168.0.1:8786
Start worker at: 192.168.0.3:12346
Registered with center at: 192.168.0.1:8786

$ dask-worker 192.168.0.1:8786
Start worker at: 192.168.0.4:12347
Registered with center at: 192.168.0.1:8786

There are various mechanisms to deploy these executables on a cluster, ranging from manualy SSH-ing into all of the
nodes to more automated systems like SGE/SLURM/Torque or Yarn/Mesos. Additionally, cluster SSH tools exist to
send the same commands to many machines. One example is tmux-cssh.

Note:

• The scheduler and worker both need to accept TCP connections. By default the scheduler uses port 8786 and
the worker binds to a random open port. If you are behind a firewall then you may have to open particular ports
or tell Dask to use particular ports with the --port and -worker-port keywords. Other ports like 8787,
8788, and 8789 are also useful to keep open for the diagnostic web interfaces.

• More information about relevant ports is available by looking at the help pages with dask-scheduler
--help and dask-worker --help

3.3.2 Using SSH

The convenience script dask-ssh opens several SSH connections to your target computers and initializes the network
accordingly. You can give it a list of hostnames or IP addresses:

$ dask-ssh 192.168.0.1 192.168.0.2 192.168.0.3 192.168.0.4

Or you can use normal UNIX grouping:

$ dask-ssh 192.168.0.{1,2,3,4}

Or you can specify a hostfile that includes a list of hosts:

$ cat hostfile.txt
192.168.0.1
192.168.0.2

10 Chapter 3. Contents

https://github.com/dennishafemann/tmux-cssh

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

192.168.0.3
192.168.0.4

$ dask-ssh --hostfile hostfile.txt

The dask-ssh utility depends on the paramiko:

pip install paramiko

3.3.3 Using a Shared Network File System and a Job Scheduler

Some clusters benefit from a shared network file system (NFS) and can use this to communicate the scheduler location
to the workers:

dask-scheduler --scheduler-file /path/to/scheduler.json

dask-worker --scheduler-file /path/to/scheduler.json
dask-worker --scheduler-file /path/to/scheduler.json

>>> client = Client(scheduler_file='/path/to/scheduler.json')

This can be particularly useful when deploying dask-scheduler and dask-worker processes using a job sched-
uler like SGE/SLURM/Torque/etc.. Here is an example using SGE’s qsub command:

Start a dask-scheduler somewhere and write connection information to file
qsub -b y /path/to/dask-scheduler --scheduler-file /path/to/scheduler.json

Start 100 dask-worker processes in an array job pointing to the same file
qsub -b y -t 1-100 /path/to/dask-worker --scheduler-file /path/to/scheduler.json

Note, the --scheduler-file option is only valuable if your scheduler and workers share a standard POSIX file
system.

3.3.4 Using MPI

You can launch a Dask network using mpirun or mpiexec and the dask-mpi command line executable.

mpirun --np 4 dask-mpi --scheduler-file /path/to/scheduler.json

from dask.distributed import Client
client = Client(scheduler_file='/path/to/scheduler.json')

This depends on the mpi4py library. It only uses MPI to start the Dask cluster, and not for inter-node communication.
You may want to specify a high-bandwidth network interface like infiniband using the --interface keyword

mpirun --np 4 dask-mpi --nthreads 1 \
--interface ib0 \
--scheduler-file /path/to/scheduler.json

3.3.5 Using the Python API

Alternatively you can start up the distributed.scheduler.Scheduler and distributed.worker.
Worker objects within a Python session manually.

3.3. Setup Network 11

http://mpi4py.readthedocs.io/

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Start the Scheduler, provide the listening port (defaults to 8786) and Tornado IOLoop (defaults to IOLoop.
current())

from distributed import Scheduler
from tornado.ioloop import IOLoop
from threading import Thread

loop = IOLoop.current()
t = Thread(target=loop.start, daemon=True)
t.start()

s = Scheduler(loop=loop)
s.start('tcp://:8786') # Listen on TCP port 8786

On other nodes start worker processes that point to the URL of the scheduler.

from distributed import Worker
from tornado.ioloop import IOLoop
from threading import Thread

loop = IOLoop.current()
t = Thread(target=loop.start, daemon=True)
t.start()

w = Worker('tcp://127.0.0.1:8786', loop=loop)
w.start() # choose randomly assigned port

Alternatively, replace Worker with Nanny if you want your workers to be managed in a separate process by a local
nanny process. This allows workers to restart themselves in case of failure, provides some additional monitoring, and
is useful when coordinating many workers that should live in different processes to avoid the GIL.

3.3.6 Using LocalCluster

You can do the work above easily using LocalCluster.

from distributed import LocalCluster
c = LocalCluster(processes=False)

A scheduler will be available under c.scheduler and a list of workers under c.workers. There is an IOLoop
running in a background thread.

3.3.7 Using Amazon EC2

See the EC2 quickstart for information on the dask-ec2 easy setup script to launch a canned cluster on EC2.

3.3.8 Using Google Cloud

See the dask-kubernetes project to easily launch clusters on Google Kubernetes Engine.

3.3.9 Cluster Resource Managers

Dask.distributed has been deployed on dozens of different cluster resource managers. This section contains links to
some external projects, scripts, and instructions that may serve as useful starting points.

12 Chapter 3. Contents

https://docs.python.org/3/glossary.html#term-gil
https://github.com/dask/dask-kubernetes
https://cloud.google.com/kubernetes-engine/

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Kubernetes

• https://github.com/martindurant/dask-kubernetes

• https://github.com/ogrisel/docker-distributed

• https://github.com/hammerlab/dask-distributed-on-kubernetes/

Marathon

• https://github.com/mrocklin/dask-marathon

DRMAA (SGE, SLURM, Torque, etc..)

• https://github.com/dask/dask-drmaa

• https://github.com/mfouesneau/dasksge

YARN

• https://github.com/dask/dask-yarn

• https://knit.readthedocs.io/en/latest/

3.3.10 Software Environment

The workers and clients should all share the same software environment. That means that they should all have access
to the same libraries and that those libraries should be the same version. Dask generally assumes that it can call a
function on any worker with the same outcome (unless explicitly told otherwise.)

This is typically enforced through external means, such as by having a network file system (NFS) mount for libraries,
by starting the dask-worker processes in equivalent Docker containers, using Conda environments, or through any
of the other means typically employed by cluster administrators.

Windows

Note:

• Running a dask-scheduler on Windows architectures is supported for only a limited number of workers
(roughly 100). This is a detail of the underlying tcp server implementation and is discussed here.

• Running dask-worker processes on Windows is well supported, performant, and without limit.

If you wish to run in a primarily Windows environment, it is recommneded to run a dask-scheduler on a linux
or MacOSX environment, with dask-worker workers on the Windows boxes. This works because the scheduler
environment is de-coupled from that of the workers.

3.3. Setup Network 13

https://github.com/martindurant/dask-kubernetes
https://github.com/ogrisel/docker-distributed
https://github.com/hammerlab/dask-distributed-on-kubernetes/
https://github.com/mrocklin/dask-marathon
https://github.com/dask/dask-drmaa
https://github.com/mfouesneau/dasksge
https://github.com/dask/dask-yarn
https://knit.readthedocs.io/en/latest/
https://www.docker.com/
http://conda.pydata.org/docs/
https://github.com/jfisteus/ztreamy/issues/26

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.3.11 Customizing initialization

Both dask-scheduler and dask-worker support a --preload option that allows custom initialization of each
scheduler/worker respectively. A module or python file passed as a --preload value is guaranteed to be imported
before establishing any connection. A dask_setup(service) function is called if found, with a Scheduler or
Worker instance as the argument. As the service stops, dask_teardown(service) is called if present.

As an example, consider the following file that creates a scheduler plugin and registers it with the scheduler

scheduler-setup.py
from distributed.diagnostics.plugin import SchedulerPlugin

class MyPlugin(SchedulerPlugin):
def add_worker(self, scheduler=None, worker=None, **kwargs):

print("Added a new worker at", worker)

def dask_setup(scheduler):
plugin = MyPlugin()
scheduler.add_plugin(plugin)

We can then run this preload script by referring to its filename (or module name if it is on the path) when we start the
scheduler:

dask-scheduler --preload scheduler-setup.py

3.4 Client

The Client is the primary entry point for users of dask.distributed.

After we setup a cluster, we initialize a Client by pointing it to the address of a Scheduler:

>>> from distributed import Client
>>> client = Client('127.0.0.1:8786')

There are a few different ways to interact with the cluster through the client:

1. The Client satisfies most of the standard concurrent.futures - PEP-3148 interface with .submit, .map func-
tions and Future objects, allowing the immediate and direct submission of tasks.

2. The Client registers itself as the default Dask scheduler, and so runs all dask collections like dask.array, dask.bag,
dask.dataframe and dask.delayed

3. The Client has additional methods for manipulating data remotely. See the full API for a thorough list.

3.4.1 Concurrent.futures

We can submit individual function calls with the client.submitmethod or many function calls with the client.
map method

>>> def inc(x):
return x + 1

>>> x = client.submit(inc, 10)
>>> x
<Future - key: inc-e4853cffcc2f51909cdb69d16dacd1a5>

14 Chapter 3. Contents

https://docs.python.org/3/library/concurrent.futures.html
https://www.python.org/dev/peps/pep-3148/
http://dask.pydata.org/en/latest/
http://dask.pydata.org/en/latest/array.html
http://dask.pydata.org/en/latest/bag.html
http://dask.pydata.org/en/latest/dataframe.html
http://dask.pydata.org/en/latest/delayed.html

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

>>> L = client.map(inc, range(1000))
>>> L
[<Future - key: inc-e4853cffcc2f51909cdb69d16dacd1a5>,
<Future - key: inc-...>,
<Future - key: inc-...>,
<Future - key: inc-...>, ...]

These results live on distributed workers.

We can submit tasks on futures. The function will go to the machine where the futures are stored and run on the result
once it has completed.

>>> y = client.submit(inc, x) # Submit on x, a Future
>>> total = client.submit(sum, L) # Map on L, a list of Futures

We gather back the results using either the Future.resultmethod for single futures or client.gathermethod
for many futures at once.

>>> x.result()
11

>>> client.gather(L)
[1, 2, 3, 4, 5, ...]

But, as always, we want to minimize communicating results back to the local process. It’s often best to leave data on
the cluster and operate on it remotely with functions like submit, map, get and compute. See efficiency for more
information on efficient use of distributed.

3.4.2 Dask

The parent library Dask contains objects like dask.array, dask.dataframe, dask.bag, and dask.delayed, which auto-
matically produce parallel algorithms on larger datasets. All dask collections work smoothly with the distributed
scheduler.

When we create a Client object it registers itself as the default Dask scheduler. All .compute() methods will
automatically start using the distributed system.

client = Client('scheduler:8786')

my_dataframe.sum().compute() # Now uses the distributed system by default

We can stop this behavior by using the set_as_default=False keyword argument when starting the Client.

Dask’s normal .compute() methods are synchronous, meaning that they block the interpreter until they complete.
Dask.distributed allows the new ability of asynchronous computing, we can trigger computations to occur in the
background and persist in memory while we continue doing other work. This is typically handled with the Client.
persist and Client.compute methods which are used for larger and smaller result sets respectively.

>>> df = client.persist(df) # trigger all computations, keep df in memory
>>> type(df)
dask.DataFrame

For more information see the page on Managing Computation.

3.4. Client 15

http://dask.pydata.org/en/latest/
http://dask.pydata.org/en/latest/array.html
http://dask.pydata.org/en/latest/dataframe.html
http://dask.pydata.org/en/latest/bag.html
http://dask.pydata.org/en/latest/delayed.html

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.4.3 Pure Functions by Default

By default we assume that all functions are pure. If this is not the case we should use the pure=False keyword
argument.

The client associates a key to all computations. This key is accessible on the Future object.

>>> from operator import add
>>> x = client.submit(add, 1, 2)
>>> x.key
'add-ebf39f96ad7174656f97097d658f3fa2'

This key should be the same across all computations with the same inputs and across all machines. If we run the
computation above on any computer with the same environment then we should get the exact same key.

The scheduler avoids redundant computations. If the result is already in memory from a previous call then that old
result will be used rather than recomputing it. Calls to submit or map are idempotent in the common case.

While convenient, this feature may be undesired for impure functions, like random. In these cases two calls to the
same function with the same inputs should produce different results. We accomplish this with the pure=False
keyword argument. In this case keys are randomly generated (by uuid4.)

>>> import numpy as np
>>> client.submit(np.random.random, 1000, pure=False).key
'random_sample-fc814a39-ee00-42f3-8b6f-cac65bcb5556'
>>> client.submit(np.random.random, 1000, pure=False).key
'random_sample-a24e7220-a113-47f2-a030-72209439f093'

3.4.4 Tornado Coroutines

If we are operating in an asynchronous environment then the blocking functions listed above become asynchronous
equivalents. You must start your client with the asynchronous=True keyword and yield or await blocking
functions.

@gen.coroutine
def f():

client = yield Client(asynchronous=True)
future = client.submit(func, *args)
result = yield future
return result

If you want to reuse the same client in asynchronous and synchronous environments you can apply the
asynchronous=True keyword at each method call.

client = Client() # normal blocking client

@gen.coroutine
def f():

futures = client.map(func, L)
results = yield client.gather(futures, asynchronous=True)
return results

See the Asynchronous documentation for more information.

16 Chapter 3. Contents

https://toolz.readthedocs.io/en/latest/purity.html

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.4.5 Additional Links

For more information on how to use dask.distributed you may want to look at the following pages:

• Managing Memory

• Managing Computation

• Data Locality

• API

3.5 API

Client

Client([address, loop, timeout, . . .]) Connect to and drive computation on a distributed Dask
cluster

Client.call_stack([futures, keys]) The actively running call stack of all relevant keys
Client.cancel(futures[, asynchronous, force]) Cancel running futures
Client.close([timeout]) Close this client
Client.compute(collections[, sync, . . .]) Compute dask collections on cluster
Client.gather(futures[, errors, maxsize, . . .]) Gather futures from distributed memory
Client.get(dsk, keys[, restrictions, . . .]) Compute dask graph
Client.get_dataset(name, **kwargs) Get named dataset from the scheduler
Client.get_executor(**kwargs) Return a concurrent.futures Executor for submitting tasks

on this Client.
Client.get_metadata(keys[, default]) Get arbitrary metadata from scheduler
Client.get_scheduler_logs([n]) Get logs from scheduler
Client.get_worker_logs([n, workers]) Get logs from workers
Client.has_what([workers]) Which keys are held by which workers
Client.list_datasets(**kwargs) List named datasets available on the scheduler
Client.map(func, *iterables, **kwargs) Map a function on a sequence of arguments
Client.ncores([workers]) The number of threads/cores available on each worker node
Client.persist(collections[, . . .]) Persist dask collections on cluster
Client.publish_dataset(**kwargs) Publish named datasets to scheduler
Client.profile([key, start, stop, workers, . . .]) Collect statistical profiling information about recent work
Client.rebalance([futures, workers]) Rebalance data within network
Client.replicate(futures[, n, workers, . . .]) Set replication of futures within network
Client.restart(**kwargs) Restart the distributed network
Client.run(function, *args, **kwargs) Run a function on all workers outside of task scheduling

system
Client.run_on_scheduler(function, *args, . . .) Run a function on the scheduler process
Client.scatter(data[, workers, broadcast, . . .]) Scatter data into distributed memory
Client.scheduler_info(**kwargs) Basic information about the workers in the cluster
Client.set_metadata(key, value) Set arbitrary metadata in the scheduler
Client.start_ipython_workers([workers, . . .]) Start IPython kernels on workers
Client.start_ipython_scheduler([magic_name,
. . .])

Start IPython kernel on the scheduler

Client.submit(func, *args, **kwargs) Submit a function application to the scheduler
Client.unpublish_dataset(name, **kwargs) Remove named datasets from scheduler
Client.upload_file(filename, **kwargs) Upload local package to workers

Continued on next page

3.5. API 17

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Table 3.1 – continued from previous page
Client.who_has([futures]) The workers storing each future’s data

worker_client(*args, **kwds) Get client for this thread
get_worker() Get the worker currently running this task
get_client([address, timeout]) Get a client while within a task
secede() Have this task secede from the worker’s thread pool
rejoin() Have this thread rejoin the ThreadPoolExecutor
Reschedule Reschedule this task

ReplayExceptionClient.
get_futures_error(future)

Ask the scheduler details of the sub-task of the given failed
future

ReplayExceptionClient.
recreate_error_locally(future)

For a failed calculation, perform the blamed task locally for
debugging.

Future

Future(key[, client, inform, state]) A remotely running computation
Future.add_done_callback(fn) Call callback on future when callback has finished
Future.cancel(**kwargs) Cancel request to run this future
Future.cancelled() Returns True if the future has been cancelled
Future.done() Is the computation complete?
Future.exception([timeout]) Return the exception of a failed task
Future.result([timeout]) Wait until computation completes, gather result to local

process.
Future.traceback([timeout]) Return the traceback of a failed task

Client Coordination

Lock([name, client]) Distributed Centralized Lock
Queue([name, client, maxsize]) Distributed Queue
Variable([name, client, maxsize]) Distributed Global Variable

Other

as_completed([futures, loop, with_results]) Return futures in the order in which they complete
distributed.diagnostics.progress(*futures,
. . .)

Track progress of futures

wait(fs[, timeout, return_when]) Wait until all futures are complete
fire_and_forget(obj) Run tasks at least once, even if we release the futures

3.5.1 Asynchronous methods

Most methods and functions can be used equally well within a blocking or asynchronous environment using Tornado
coroutines. If used within a Tornado IOLoop then you should yield or await otherwise blocking operations appropri-
ately.

You must tell the client that you intend to use it within an asynchronous environment by passing the
asynchronous=True keyword

18 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

blocking
client = Client()
future = client.submit(func, *args) # immediate, no blocking/async difference
result = client.gather(future) # blocking

asynchronous Python 2/3
client = yield Client(asynchronous=True)
future = client.submit(func, *args) # immediate, no blocking/async difference
result = yield client.gather(future) # non-blocking/asynchronous

asynchronous Python 3
client = await Client(asynchronous=True)
future = client.submit(func, *args) # immediate, no blocking/async difference
result = await client.gather(future) # non-blocking/asynchronous

The asynchronous variants must be run within a Tornado coroutine. See the Asynchronous documentation for more
information.

3.5.2 Client

class distributed.client.Client(address=None, loop=None, timeout=5, set_as_default=True,
scheduler_file=None, security=None, asynchronous=False,
name=None, heartbeat_interval=None, **kwargs)

Connect to and drive computation on a distributed Dask cluster

The Client connects users to a dask.distributed compute cluster. It provides an asynchronous user interface
around functions and futures. This class resembles executors in concurrent.futures but also allows
Future objects within submit/map calls.

Parameters address: string, or Cluster

This can be the address of a Scheduler server like a string '127.0.0.1:8786'
or a cluster object like LocalCluster()

timeout: int

Timeout duration for initial connection to the scheduler

set_as_default: bool (True)

Claim this scheduler as the global dask scheduler

scheduler_file: string (optional)

Path to a file with scheduler information if available

security: (optional)

Optional security information

asynchronous: bool (False by default)

Set to True if this client will be used within a Tornado event loop

name: string (optional)

Gives the client a name that will be included in logs generated on the scheduler for
matters relating to this client

heartbeat_interval: int

Time in milliseconds between heartbeats to scheduler

3.5. API 19

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

See also:

distributed.scheduler.Scheduler Internal scheduler

Examples

Provide cluster’s scheduler node address on initialization:

>>> client = Client('127.0.0.1:8786')

Use submit method to send individual computations to the cluster

>>> a = client.submit(add, 1, 2)
>>> b = client.submit(add, 10, 20)

Continue using submit or map on results to build up larger computations

>>> c = client.submit(add, a, b)

Gather results with the gather method.

>>> client.gather(c)
33

asynchronous
Are we running in the event loop?

This is true if the user signaled that we might be when creating the client as in the following:

client = Client(asynchronous=True)

However, we override this expectation if we can definitively tell that we are running from a thread that is
not the event loop. This is common when calling get_client() from within a worker task. Even though the
client was originally created in asynchronous mode we may find ourselves in contexts when it is better to
operate synchronously.

call_stack(futures=None, keys=None)
The actively running call stack of all relevant keys

You can specify data of interest either by providing futures or collections in the futures= keyword or a
list of explicit keys in the keys= keyword. If neither are provided then all call stacks will be returned.

Parameters futures: list (optional)

List of futures, defaults to all data

keys: list (optional)

List of key names, defaults to all data

Examples

>>> df = dd.read_parquet(...).persist()
>>> client.call_stack(df) # call on collections

20 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

>>> client.call_stack() # Or call with no arguments for all activity

cancel(futures, asynchronous=None, force=False)
Cancel running futures

This stops future tasks from being scheduled if they have not yet run and deletes them if they have already
run. After calling, this result and all dependent results will no longer be accessible

Parameters futures: list of Futures

force: boolean (False)

Cancel this future even if other clients desire it

close(timeout=10)
Close this client

Clients will also close automatically when your Python session ends

If you started a client without arguments like Client() then this will also close the local cluster that was
started at the same time.

See also:

Client.restart

compute(collections, sync=False, optimize_graph=True, workers=None, allow_other_workers=False,
resources=None, retries=0, **kwargs)

Compute dask collections on cluster

Parameters collections: iterable of dask objects or single dask object

Collections like dask.array or dataframe or dask.value objects

sync: bool (optional)

Returns Futures if False (default) or concrete values if True

optimize_graph: bool

Whether or not to optimize the underlying graphs

workers: str, list, dict

Which workers can run which parts of the computation If a string a list then the output
collections will run on the listed

workers, but other sub-computations can run anywhere

If a dict then keys should be (tuples of) collections and values should be addresses
or lists.

allow_other_workers: bool, list

If True then all restrictions in workers= are considered loose If a list then only the keys
for the listed collections are loose

retries: int (default to 0)

Number of allowed automatic retries if computing a result fails

**kwargs:

Options to pass to the graph optimize calls

Returns List of Futures if input is a sequence, or a single future otherwise

3.5. API 21

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

See also:

Client.get Normal synchronous dask.get function

Examples

>>> from dask import delayed
>>> from operator import add
>>> x = delayed(add)(1, 2)
>>> y = delayed(add)(x, x)
>>> xx, yy = client.compute([x, y])
>>> xx
<Future: status: finished, key: add-8f6e709446674bad78ea8aeecfee188e>
>>> xx.result()
3
>>> yy.result()
6

Also support single arguments

>>> xx = client.compute(x)

classmethod current()
Return global client if one exists, otherwise raise ValueError

gather(futures, errors=’raise’, maxsize=0, direct=None, asynchronous=None)
Gather futures from distributed memory

Accepts a future, nested container of futures, iterator, or queue. The return type will match the input type.

Parameters futures: Collection of futures

This can be a possibly nested collection of Future objects. Collections can be lists, sets,
iterators, queues or dictionaries

errors: string

Either ‘raise’ or ‘skip’ if we should raise if a future has erred or skip its inclusion in the
output collection

maxsize: int

If the input is a queue then this produces an output queue with a maximum size.

Returns results: a collection of the same type as the input, but now with

gathered results rather than futures

See also:

Client.scatter Send data out to cluster

Examples

>>> from operator import add
>>> c = Client('127.0.0.1:8787')
>>> x = c.submit(add, 1, 2)
>>> c.gather(x)

22 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3
>>> c.gather([x, [x], x]) # support lists and dicts
[3, [3], 3]

>>> seq = c.gather(iter([x, x])) # support iterators
>>> next(seq)
3

get(dsk, keys, restrictions=None, loose_restrictions=None, resources=None, sync=True, asyn-
chronous=None, **kwargs)
Compute dask graph

Parameters dsk: dict

keys: object, or nested lists of objects

restrictions: dict (optional)

A mapping of {key: {set of worker hostnames}} that restricts where jobs can take place

sync: bool (optional)

Returns Futures if False or concrete values if True (default).

See also:

Client.compute Compute asynchronous collections

Examples

>>> from operator import add
>>> c = Client('127.0.0.1:8787')
>>> c.get({'x': (add, 1, 2)}, 'x')
3

get_dataset(name, **kwargs)
Get named dataset from the scheduler

See also:

Client.publish_dataset, Client.list_datasets

get_executor(**kwargs)
Return a concurrent.futures Executor for submitting tasks on this Client.

Parameters **kwargs:

Any submit()- or map()- compatible arguments, such as workers or resources.

Returns An Executor object that’s fully compatible with the concurrent.futures

API.

get_metadata(keys, default=’__no_default__’)
Get arbitrary metadata from scheduler

See set_metadata for the full docstring with examples

See also:

Client.set_metadata

3.5. API 23

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

classmethod get_restrictions(collections, workers, allow_other_workers)
Get restrictions from inputs to compute/persist

get_scheduler_logs(n=None)
Get logs from scheduler

Parameters n: int

Number of logs to retrive. Maxes out at 10000 by default, confiruable in
config.yaml::log-length

Returns Logs in reversed order (newest first)

get_versions(check=False)
Return version info for the scheduler, all workers and myself

Parameters check : boolean, default False

raise ValueError if all required & optional packages do not match

Examples

>>> c.get_versions()

get_worker_logs(n=None, workers=None)
Get logs from workers

Parameters n: int

Number of logs to retrive. Maxes out at 10000 by default, confiruable in
config.yaml::log-length

workers: iterable

List of worker addresses to retrive. Gets all workers by default.

Returns Dictionary mapping worker address to logs.

Logs are returned in reversed order (newest first)

has_what(workers=None, **kwargs)
Which keys are held by which workers

Parameters workers: list (optional)

A list of worker addresses, defaults to all

See also:

Client.who_has, Client.ncores

Examples

>>> x, y, z = c.map(inc, [1, 2, 3])
>>> wait([x, y, z])
>>> c.has_what()
{'192.168.1.141:46784': ['inc-1c8dd6be1c21646c71f76c16d09304ea',

'inc-fd65c238a7ea60f6a01bf4c8a5fcf44b',
'inc-1e297fc27658d7b67b3a758f16bcf47a']}

24 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

list_datasets(**kwargs)
List named datasets available on the scheduler

See also:

Client.publish_dataset, Client.get_dataset

map(func, *iterables, **kwargs)
Map a function on a sequence of arguments

Arguments can be normal objects or Futures

Parameters func: callable

iterables: Iterables, Iterators, or Queues

key: str, list

Prefix for task names if string. Explicit names if list.

pure: bool (defaults to True)

Whether or not the function is pure. Set pure=False for impure functions like np.
random.random.

workers: set, iterable of sets

A set of worker hostnames on which computations may be performed. Leave empty to
default to all workers (common case)

retries: int (default to 0)

Number of allowed automatic retries if a task fails

Returns List, iterator, or Queue of futures, depending on the type of the

inputs.

See also:

Client.submit Submit a single function

Examples

>>> L = client.map(func, sequence)

nbytes(keys=None, summary=True, **kwargs)
The bytes taken up by each key on the cluster

This is as measured by sys.getsizeof which may not accurately reflect the true cost.

Parameters keys: list (optional)

A list of keys, defaults to all keys

summary: boolean, (optional)

Summarize keys into key types

See also:

Client.who_has

3.5. API 25

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Examples

>>> x, y, z = c.map(inc, [1, 2, 3])
>>> c.nbytes(summary=False)
{'inc-1c8dd6be1c21646c71f76c16d09304ea': 28,
'inc-1e297fc27658d7b67b3a758f16bcf47a': 28,
'inc-fd65c238a7ea60f6a01bf4c8a5fcf44b': 28}

>>> c.nbytes(summary=True)
{'inc': 84}

ncores(workers=None, **kwargs)
The number of threads/cores available on each worker node

Parameters workers: list (optional)

A list of workers that we care about specifically. Leave empty to receive information
about all workers.

See also:

Client.who_has, Client.has_what

Examples

>>> c.ncores()
{'192.168.1.141:46784': 8,
'192.167.1.142:47548': 8,
'192.167.1.143:47329': 8,
'192.167.1.144:37297': 8}

normalize_collection(collection)
Replace collection’s tasks by already existing futures if they exist

This normalizes the tasks within a collections task graph against the known futures within the scheduler.
It returns a copy of the collection with a task graph that includes the overlapping futures.

See also:

Client.persist trigger computation of collection’s tasks

Examples

>>> len(x.__dask_graph__()) # x is a dask collection with 100 tasks
100
>>> set(client.futures).intersection(x.__dask_graph__()) # some overlap
→˓exists
10

>>> x = client.normalize_collection(x)
>>> len(x.__dask_graph__()) # smaller computational graph
20

26 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

persist(collections, optimize_graph=True, workers=None, allow_other_workers=None, re-
sources=None, retries=None, **kwargs)

Persist dask collections on cluster

Starts computation of the collection on the cluster in the background. Provides a new dask collection that
is semantically identical to the previous one, but now based off of futures currently in execution.

Parameters collections: sequence or single dask object

Collections like dask.array or dataframe or dask.value objects

optimize_graph: bool

Whether or not to optimize the underlying graphs

workers: str, list, dict

Which workers can run which parts of the computation If a string a list then the output
collections will run on the listed

workers, but other sub-computations can run anywhere

If a dict then keys should be (tuples of) collections and values should be addresses
or lists.

allow_other_workers: bool, list

If True then all restrictions in workers= are considered loose If a list then only the keys
for the listed collections are loose

retries: int (default to 0)

Number of allowed automatic retries if computing a result fails

kwargs:

Options to pass to the graph optimize calls

Returns List of collections, or single collection, depending on type of input.

See also:

Client.compute

Examples

>>> xx = client.persist(x)
>>> xx, yy = client.persist([x, y])

processing(workers=None)
The tasks currently running on each worker

Parameters workers: list (optional)

A list of worker addresses, defaults to all

See also:

Client.stacks, Client.who_has, Client.has_what, Client.ncores

3.5. API 27

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Examples

>>> x, y, z = c.map(inc, [1, 2, 3])
>>> c.processing()
{'192.168.1.141:46784': ['inc-1c8dd6be1c21646c71f76c16d09304ea',

'inc-fd65c238a7ea60f6a01bf4c8a5fcf44b',
'inc-1e297fc27658d7b67b3a758f16bcf47a']}

profile(key=None, start=None, stop=None, workers=None, merge_workers=True)
Collect statistical profiling information about recent work

Parameters key: str

Key prefix to select, this is typically a function name like ‘inc’ Leave as None to collect
all data

start: time

stop: time

workers: list

List of workers to restrict profile information

Examples

>>> client.profile() # call on collections

publish_dataset(**kwargs)
Publish named datasets to scheduler

This stores a named reference to a dask collection or list of futures on the scheduler. These references are
available to other Clients which can download the collection or futures with get_dataset.

Datasets are not immediately computed. You may wish to call Client.persist prior to publishing a
dataset.

Parameters kwargs: dict

named collections to publish on the scheduler

Returns None

See also:

Client.list_datasets, Client.get_dataset, Client.unpublish_dataset,
Client.persist

Examples

Publishing client:

>>> df = dd.read_csv('s3://...')
>>> df = c.persist(df)
>>> c.publish_dataset(my_dataset=df)

Receiving client:

28 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

>>> c.list_datasets()
['my_dataset']
>>> df2 = c.get_dataset('my_dataset')

rebalance(futures=None, workers=None, **kwargs)
Rebalance data within network

Move data between workers to roughly balance memory burden. This either affects a subset of the
keys/workers or the entire network, depending on keyword arguments.

This operation is generally not well tested against normal operation of the scheduler. It it not recommended
to use it while waiting on computations.

Parameters futures: list, optional

A list of futures to balance, defaults all data

workers: list, optional

A list of workers on which to balance, defaults to all workers

replicate(futures, n=None, workers=None, branching_factor=2, **kwargs)
Set replication of futures within network

Copy data onto many workers. This helps to broadcast frequently accessed data and it helps to improve
resilience.

This performs a tree copy of the data throughout the network individually on each piece of data. This
operation blocks until complete. It does not guarantee replication of data to future workers.

Parameters futures: list of futures

Futures we wish to replicate

n: int, optional

Number of processes on the cluster on which to replicate the data. Defaults to all.

workers: list of worker addresses

Workers on which we want to restrict the replication. Defaults to all.

branching_factor: int, optional

The number of workers that can copy data in each generation

See also:

Client.rebalance

Examples

>>> x = c.submit(func, *args)
>>> c.replicate([x]) # send to all workers
>>> c.replicate([x], n=3) # send to three workers
>>> c.replicate([x], workers=['alice', 'bob']) # send to specific
>>> c.replicate([x], n=1, workers=['alice', 'bob']) # send to one of
→˓specific workers
>>> c.replicate([x], n=1) # reduce replications

restart(**kwargs)
Restart the distributed network

3.5. API 29

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

This kills all active work, deletes all data on the network, and restarts the worker processes.

run(function, *args, **kwargs)
Run a function on all workers outside of task scheduling system

This calls a function on all currently known workers immediately, blocks until those results come back,
and returns the results asynchronously as a dictionary keyed by worker address. This method if generally
used for side effects, such and collecting diagnostic information or installing libraries.

If your function takes an input argument named dask_worker then that variable will be populated with
the worker itself.

Parameters function: callable

*args: arguments for remote function

**kwargs: keyword arguments for remote function

workers: list

Workers on which to run the function. Defaults to all known workers.

Examples

>>> c.run(os.getpid)
{'192.168.0.100:9000': 1234,
'192.168.0.101:9000': 4321,
'192.168.0.102:9000': 5555}

Restrict computation to particular workers with the workers= keyword argument.

>>> c.run(os.getpid, workers=['192.168.0.100:9000',
... '192.168.0.101:9000'])
{'192.168.0.100:9000': 1234,
'192.168.0.101:9000': 4321}

>>> def get_status(dask_worker):
... return dask_worker.status

>>> c.run(get_hostname)
{'192.168.0.100:9000': 'running',
'192.168.0.101:9000': 'running}

run_coroutine(function, *args, **kwargs)
Spawn a coroutine on all workers.

This spaws a coroutine on all currently known workers and then waits for the coroutine on each worker.
The coroutines’ results are returned as a dictionary keyed by worker address.

Parameters function: a coroutine function

(typically a function wrapped in gen.coroutine or a Python 3.5+ async function)

*args: arguments for remote function

**kwargs: keyword arguments for remote function

wait: boolean (default True)

Whether to wait for coroutines to end.

30 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

workers: list

Workers on which to run the function. Defaults to all known workers.

run_on_scheduler(function, *args, **kwargs)
Run a function on the scheduler process

This is typically used for live debugging. The function should take a keyword argument
dask_scheduler=, which will be given the scheduler object itself.

See also:

Client.run Run a function on all workers

Client.start_ipython_scheduler Start an IPython session on scheduler

Examples

>>> def get_number_of_tasks(dask_scheduler=None):
... return len(dask_scheduler.tasks)

>>> client.run_on_scheduler(get_number_of_tasks)
100

scatter(data, workers=None, broadcast=False, direct=None, hash=True, maxsize=0, timeout=3,
asynchronous=None)

Scatter data into distributed memory

This moves data from the local client process into the workers of the distributed scheduler. Note that it is
often better to submit jobs to your workers to have them load the data rather than loading data locally and
then scattering it out to them.

Parameters data: list, iterator, dict, Queue, or object

Data to scatter out to workers. Output type matches input type.

workers: list of tuples (optional)

Optionally constrain locations of data. Specify workers as hostname/port pairs, e.g.
('127.0.0.1', 8787).

broadcast: bool (defaults to False)

Whether to send each data element to all workers. By default we round-robin based on
number of cores.

direct: bool (defaults to automatically check)

Send data directly to workers, bypassing the central scheduler This avoids burdening
the scheduler but assumes that the client is able to talk directly with the workers.

maxsize: int (optional)

Maximum size of queue if using queues, 0 implies infinite

hash: bool (optional)

Whether or not to hash data to determine key. If False then this uses a random key

Returns List, dict, iterator, or queue of futures matching the type of input.

See also:

3.5. API 31

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Client.gather Gather data back to local process

Examples

>>> c = Client('127.0.0.1:8787')
>>> c.scatter(1)
<Future: status: finished, key: c0a8a20f903a4915b94db8de3ea63195>

>>> c.scatter([1, 2, 3])
[<Future: status: finished, key: c0a8a20f903a4915b94db8de3ea63195>,
<Future: status: finished, key: 58e78e1b34eb49a68c65b54815d1b158>,
<Future: status: finished, key: d3395e15f605bc35ab1bac6341a285e2>]

>>> c.scatter({'x': 1, 'y': 2, 'z': 3})
{'x': <Future: status: finished, key: x>,
'y': <Future: status: finished, key: y>,
'z': <Future: status: finished, key: z>}

Constrain location of data to subset of workers

>>> c.scatter([1, 2, 3], workers=[('hostname', 8788)])

Handle streaming sequences of data with iterators or queues

>>> seq = c.scatter(iter([1, 2, 3]))
>>> next(seq)
<Future: status: finished, key: c0a8a20f903a4915b94db8de3ea63195>,

Broadcast data to all workers

>>> [future] = c.scatter([element], broadcast=True)

scheduler_info(**kwargs)
Basic information about the workers in the cluster

Examples

>>> c.scheduler_info()
{'id': '2de2b6da-69ee-11e6-ab6a-e82aea155996',
'services': {},
'type': 'Scheduler',
'workers': {'127.0.0.1:40575': {'active': 0,

'last-seen': 1472038237.4845693,
'name': '127.0.0.1:40575',
'services': {},
'stored': 0,
'time-delay': 0.0061032772064208984}}}

set_metadata(key, value)
Set arbitrary metadata in the scheduler

This allows you to store small amounts of data on the central scheduler process for administrative purposes.
Data should be msgpack serializable (ints, strings, lists, dicts)

If the key corresponds to a task then that key will be cleaned up when the task is forgotten by the scheduler.

32 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

If the key is a list then it will be assumed that you want to index into a nested dictionary structure using
those keys. For example if you call the following:

>>> client.set_metadata(['a', 'b', 'c'], 123)

Then this is the same as setting

>>> scheduler.task_metadata['a']['b']['c'] = 123

The lower level dictionaries will be created on demand.

See also:

get_metadata

Examples

>>> client.set_metadata('x', 123)
>>> client.get_metadata('x')
123

>>> client.set_metadata(['x', 'y'], 123)
>>> client.get_metadata('x')
{'y': 123}

>>> client.set_metadata(['x', 'w', 'z'], 456)
>>> client.get_metadata('x')
{'y': 123, 'w': {'z': 456}}

>>> client.get_metadata(['x', 'w'])
{'z': 456}

shutdown(*args, **kwargs)
Deprecated, see close instead

This was deprecated because “shutdown” was sometimes confusingly thought to refer to the cluster rather
than the client

stacks(workers=None)
The task queues on each worker

Parameters workers: list (optional)

A list of worker addresses, defaults to all

See also:

Client.processing, Client.who_has, Client.has_what, Client.ncores

Examples

>>> x, y, z = c.map(inc, [1, 2, 3])
>>> c.stacks()
{'192.168.1.141:46784': ['inc-1c8dd6be1c21646c71f76c16d09304ea',

'inc-fd65c238a7ea60f6a01bf4c8a5fcf44b',
'inc-1e297fc27658d7b67b3a758f16bcf47a']}

3.5. API 33

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

start(**kwargs)
Start scheduler running in separate thread

start_ipython_scheduler(magic_name=’scheduler_if_ipython’, qtconsole=False, qtcon-
sole_args=None)

Start IPython kernel on the scheduler

Parameters magic_name: str or None (optional)

If defined, register IPython magic with this name for executing code on the scheduler.
If not defined, register %scheduler magic if IPython is running.

qtconsole: bool (optional)

If True, launch a Jupyter QtConsole connected to the worker(s).

qtconsole_args: list(str) (optional)

Additional arguments to pass to the qtconsole on startup.

Returns connection_info: dict

connection_info dict containing info necessary to connect Jupyter clients to the sched-
uler.

See also:

Client.start_ipython_workers Start IPython on the workers

Examples

>>> c.start_ipython_scheduler()
>>> %scheduler scheduler.processing
{'127.0.0.1:3595': {'inc-1', 'inc-2'},
'127.0.0.1:53589': {'inc-2', 'add-5'}}

>>> c.start_ipython_scheduler(qtconsole=True)

start_ipython_workers(workers=None, magic_names=False, qtconsole=False, qtcon-
sole_args=None)

Start IPython kernels on workers

Parameters workers: list (optional)

A list of worker addresses, defaults to all

magic_names: str or list(str) (optional)

If defined, register IPython magics with these names for executing code on the workers.
If string has asterix then expand asterix into 0, 1, . . . , n for n workers

qtconsole: bool (optional)

If True, launch a Jupyter QtConsole connected to the worker(s).

qtconsole_args: list(str) (optional)

Additional arguments to pass to the qtconsole on startup.

Returns iter_connection_info: list

List of connection_info dicts containing info necessary to connect Jupyter clients to the
workers.

34 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

See also:

Client.start_ipython_scheduler start ipython on the scheduler

Examples

>>> info = c.start_ipython_workers()
>>> %remote info['192.168.1.101:5752'] worker.data
{'x': 1, 'y': 100}

>>> c.start_ipython_workers('192.168.1.101:5752', magic_names='w')
>>> %w worker.data
{'x': 1, 'y': 100}

>>> c.start_ipython_workers('192.168.1.101:5752', qtconsole=True)

Add asterix * in magic names to add one magic per worker

>>> c.start_ipython_workers(magic_names='w_*')
>>> %w_0 worker.data
{'x': 1, 'y': 100}
>>> %w_1 worker.data
{'z': 5}

submit(func, *args, **kwargs)
Submit a function application to the scheduler

Parameters func: callable

*args:

**kwargs:

pure: bool (defaults to True)

Whether or not the function is pure. Set pure=False for impure functions like np.
random.random.

workers: set, iterable of sets

A set of worker hostnames on which computations may be performed. Leave empty to
default to all workers (common case)

key: str

Unique identifier for the task. Defaults to function-name and hash

allow_other_workers: bool (defaults to False)

Used with workers. Inidicates whether or not the computations may be performed on
workers that are not in the workers set(s).

retries: int (default to 0)

Number of allowed automatic retries if the task fails

Returns Future

See also:

Client.map Submit on many arguments at once

3.5. API 35

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Examples

>>> c = client.submit(add, a, b)

unpublish_dataset(name, **kwargs)
Remove named datasets from scheduler

See also:

Client.publish_dataset

Examples

>>> c.list_datasets()
['my_dataset']
>>> c.unpublish_datasets('my_dataset')
>>> c.list_datasets()
[]

upload_file(filename, **kwargs)
Upload local package to workers

This sends a local file up to all worker nodes. This file is placed into a temporary directory on Python’s
system path so any .py, .pyc, .egg or .zip files will be importable.

Parameters filename: string

Filename of .py, .pyc, .egg or .zip file to send to workers

Examples

>>> client.upload_file('mylibrary.egg')
>>> from mylibrary import myfunc
>>> L = c.map(myfunc, seq)

who_has(futures=None, **kwargs)
The workers storing each future’s data

Parameters futures: list (optional)

A list of futures, defaults to all data

See also:

Client.has_what, Client.ncores

Examples

>>> x, y, z = c.map(inc, [1, 2, 3])
>>> wait([x, y, z])
>>> c.who_has()
{'inc-1c8dd6be1c21646c71f76c16d09304ea': ['192.168.1.141:46784'],
'inc-1e297fc27658d7b67b3a758f16bcf47a': ['192.168.1.141:46784'],
'inc-fd65c238a7ea60f6a01bf4c8a5fcf44b': ['192.168.1.141:46784']}

36 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

>>> c.who_has([x, y])
{'inc-1c8dd6be1c21646c71f76c16d09304ea': ['192.168.1.141:46784'],
'inc-1e297fc27658d7b67b3a758f16bcf47a': ['192.168.1.141:46784']}

class distributed.recreate_exceptions.ReplayExceptionClient(client)
A plugin for the client allowing replay of remote exceptions locally

Adds the following methods (and their async variants)to the given client:

• recreate_error_locally: main user method

• get_futures_error: gets the task, its details and dependencies, responsible for failure of the
given future.

get_futures_error(future)
Ask the scheduler details of the sub-task of the given failed future

When a future evaluates to a status of “error”, i.e., an exception was raised in a task within its graph, we
an get information from the scheduler. This function gets the details of the specific task that raised the
exception and led to the error, but does not fetch data from the cluster or execute the function.

Parameters future : future that failed, having status=="error", typically

after an attempt to gather() shows a stack-stace.

Returns Tuple:

• the function that raised an exception

• argument list (a tuple), may include values and keys

• keyword arguments (a dictionary), may include values and keys

• list of keys that the function requires to be fetched to run

See also:

ReplayExceptionClient.recreate_error_locally

recreate_error_locally(future)
For a failed calculation, perform the blamed task locally for debugging.

This operation should be performed after a future (result of gather, compute, etc) comes back with
a status of “error”, if the stack- trace is not informative enough to diagnose the problem. The specific
task (part of the graph pointing to the future) responsible for the error will be fetched from the scheduler,
together with the values of its inputs. The function will then be executed, so that pdb can be used for
debugging.

Parameters future : future or collection that failed

The same thing as was given to gather, but came back with an exception/stack-trace.
Can also be a (persisted) dask collection containing any errored futures.

Returns Nothing; the function runs and should raise an exception, allowing

the debugger to run.

Examples

>>> future = c.submit(div, 1, 0)
>>> future.status
'error'

3.5. API 37

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

>>> c.recreate_error_locally(future)
ZeroDivisionError: division by zero

If you’re in IPython you might take this opportunity to use pdb

>>> %pdb
Automatic pdb calling has been turned ON

>>> c.recreate_error_locally(future)
ZeroDivisionError: division by zero

1 def div(x, y):
----> 2 return x / y
ipdb>

3.5.3 Future

class distributed.client.Future(key, client=None, inform=True, state=None)
A remotely running computation

A Future is a local proxy to a result running on a remote worker. A user manages future objects in the local
Python process to determine what happens in the larger cluster.

Parameters key: str, or tuple

Key of remote data to which this future refers

client: Client

Client that should own this future. Defaults to _get_global_client()

inform: bool

Do we inform the scheduler that we need an update on this future

See also:

Client Creates futures

Examples

Futures typically emerge from Client computations

>>> my_future = client.submit(add, 1, 2)

We can track the progress and results of a future

>>> my_future
<Future: status: finished, key: add-8f6e709446674bad78ea8aeecfee188e>

We can get the result or the exception and traceback from the future

>>> my_future.result()

add_done_callback(fn)
Call callback on future when callback has finished

38 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

The callback fn should take the future as its only argument. This will be called regardless of if the future
completes successfully, errs, or is cancelled

The callback is executed in a separate thread.

cancel(**kwargs)
Cancel request to run this future

See also:

Client.cancel

cancelled()
Returns True if the future has been cancelled

done()
Is the computation complete?

exception(timeout=None, **kwargs)
Return the exception of a failed task

If timeout seconds are elapsed before returning, a TimeoutError is raised.

See also:

Future.traceback

result(timeout=None)
Wait until computation completes, gather result to local process.

If timeout seconds are elapsed before returning, a TimeoutError is raised.

traceback(timeout=None, **kwargs)
Return the traceback of a failed task

This returns a traceback object. You can inspect this object using the traceback module. Alternatively
if you call future.result() this traceback will accompany the raised exception.

If timeout seconds are elapsed before returning, a TimeoutError is raised.

See also:

Future.exception

Examples

>>> import traceback
>>> tb = future.traceback()
>>> traceback.export_tb(tb)
[...]

3.5.4 Other

distributed.client.as_completed(futures=None, loop=None, with_results=False)
Return futures in the order in which they complete

This returns an iterator that yields the input future objects in the order in which they complete. Calling next
on the iterator will block until the next future completes, irrespective of order.

Additionally, you can also add more futures to this object during computation with the .add method

3.5. API 39

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Examples

>>> x, y, z = client.map(inc, [1, 2, 3])
>>> for future in as_completed([x, y, z]):
... print(future.result())
3
2
4

Add more futures during computation

>>> x, y, z = client.map(inc, [1, 2, 3])
>>> ac = as_completed([x, y, z])
>>> for future in ac:
... print(future.result())
... if random.random() < 0.5:
... ac.add(c.submit(double, future))
4
2
8
3
6
12
24

Optionally wait until the result has been gathered as well

>>> ac = as_completed([x, y, z], with_results=True)
>>> for future, result in ac:
... print(result)
2
4
3

distributed.diagnostics.progress(*futures, **kwargs)
Track progress of futures

This operates differently in the notebook and the console

• Notebook: This returns immediately, leaving an IPython widget on screen

• Console: This blocks until the computation completes

Parameters futures: Futures

A list of futures or keys to track

notebook: bool (optional)

Running in the notebook or not (defaults to guess)

multi: bool (optional)

Track different functions independently (defaults to True)

complete: bool (optional)

Track all keys (True) or only keys that have not yet run (False) (defaults to True)

40 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Notes

In the notebook, the output of progress must be the last statement in the cell. Typically, this means calling
progress at the end of a cell.

Examples

>>> progress(futures)
[##] | 100% Completed | 1.7s

distributed.client.wait(fs, timeout=None, return_when=’ALL_COMPLETED’)
Wait until all futures are complete

Parameters fs: list of futures

timeout: number, optional

Time in seconds after which to raise a gen.TimeoutError

Returns Named tuple of completed, not completed

distributed.worker_client(*args, **kwds)
Get client for this thread

This context manager is intended to be called within functions that we run on workers. When run as a context
manager it delivers a client Client object that can submit other tasks directly from that worker.

Parameters timeout: Number

Timeout after which to err

separate_thread: bool, optional

Whether to run this function outside of the normal thread pool defaults to True

See also:

get_worker, get_client, secede

Examples

>>> def func(x):
... with worker_client() as c: # connect from worker back to scheduler
... a = c.submit(inc, x) # this task can submit more tasks
... b = c.submit(dec, x)
... result = c.gather([a, b]) # and gather results
... return result

>>> future = client.submit(func, 1) # submit func(1) on cluster

distributed.get_worker()
Get the worker currently running this task

See also:

get_client, worker_client

3.5. API 41

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Examples

>>> def f():
... worker = get_worker() # The worker on which this task is running
... return worker.address

>>> future = client.submit(f)
>>> future.result()
'tcp://127.0.0.1:47373'

distributed.get_client(address=None, timeout=3)
Get a client while within a task

This client connects to the same scheduler to which the worker is connected

See also:

get_worker, worker_client, secede

Examples

>>> def f():
... client = get_client()
... futures = client.map(lambda x: x + 1, range(10)) # spawn many tasks
... results = client.gather(futures)
... return sum(results)

>>> future = client.submit(f)
>>> future.result()
55

distributed.secede()
Have this task secede from the worker’s thread pool

This opens up a new scheduling slot and a new thread for a new task. This enables the client to schedule tasks
on this node, which is especially useful while waiting for other jobs to finish (e.g., with client.gather).

See also:

get_client, get_worker

Examples

>>> def mytask(x):
... # do some work
... client = get_client()
... futures = client.map(...) # do some remote work
... secede() # while that work happens, remove ourself from the pool
... return client.gather(futures) # return gathered results

distributed.rejoin()
Have this thread rejoin the ThreadPoolExecutor

This will block until a new slot opens up in the executor. The next thread to finish a task will leave the pool to
allow this one to join.

42 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

See also:

secede leave the thread pool

class distributed.Lock(name=None, client=None)
Distributed Centralized Lock

Parameters name: string

Name of the lock to acquire. Choosing the same name allows two disconnected pro-
cesses to coordinate a lock.

Examples

>>> lock = Lock('x')
>>> lock.acquire(timeout=1)
>>> # do things with protected resource
>>> lock.release()

acquire(timeout=None)
Acquire the lock

Parameters timeout: number

Seconds to wait on the lock in the scheduler. This does not include local coroutine time,
network transfer time, etc..

Returns True or False whether or not it sucessfully acquired the lock

Examples

>>> lock = Lock('x')
>>> lock.acquire(timeout=1)

release()
Release the lock if already acquired

class distributed.Queue(name=None, client=None, maxsize=0)
Distributed Queue

This allows multiple clients to share futures or small bits of data between each other with a multi-producer/multi-
consumer queue. All metadata is sequentialized through the scheduler.

Elements of the Queue must be either Futures or msgpack-encodable data (ints, strings, lists, dicts). All data is
sent through the scheduler so it is wise not to send large objects. To share large objects scatter the data and share
the future instead.

Warning: This object is experimental and has known issues in Python 2

See also:

Variable shared variable between clients

3.5. API 43

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Examples

>>> from dask.distributed import Client, Queue
>>> client = Client()
>>> queue = Queue('x')
>>> future = client.submit(f, x)
>>> queue.put(future)

get(timeout=None, batch=False, **kwargs)
Get data from the queue

Parameters timeout: Number (optional)

Time in seconds to wait before timing out

batch: boolean, int (optional)

If True then return all elements currently waiting in the queue. If an integer than return
that many elements from the queue If False (default) then return one item at a time

put(value, timeout=None, **kwargs)
Put data into the queue

qsize(**kwargs)
Current number of elements in the queue

class distributed.Variable(name=None, client=None, maxsize=0)
Distributed Global Variable

This allows multiple clients to share futures and data between each other with a single mutable variable. All
metadata is sequentialized through the scheduler. Race conditions can occur.

Values must be either Futures or msgpack-encodable data (ints, lists, strings, etc..) All data will be kept and
sent through the scheduler, so it is wise not to send too much. If you want to share a large amount of data then
scatter it and share the future instead.

Warning: This object is experimental and has known issues in Python 2

See also:

Queue shared multi-producer/multi-consumer queue between clients

Examples

>>> from dask.distributed import Client, Variable
>>> client = Client()
>>> x = Variable('x')
>>> x.set(123) # docttest: +SKIP
>>> x.get() # docttest: +SKIP
123
>>> future = client.submit(f, x)
>>> x.set(future)

delete()
Delete this variable

Caution, this affects all clients currently pointing to this variable.

44 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

get(timeout=None, **kwargs)
Get the value of this variable

set(value, **kwargs)
Set the value of this variable

Parameters value: Future or object

Must be either a Future or a msgpack-encodable value

3.5.5 Asyncio Client

3.5.6 Adaptive

class distributed.deploy.Adaptive(scheduler, cluster, interval=1000, startup_cost=1,
scale_factor=2, **kwargs)

Adaptively allocate workers based on scheduler load. A superclass.

Contains logic to dynamically resize a Dask cluster based on current use.

Parameters scheduler: distributed.Scheduler

cluster: object

Must have scale_up and scale_down methods/coroutines

startup_cost : int, default 1

Factor representing how costly it is to start an additional worker. Affects quickly to
adapt to high tasks per worker loads

scale_factor : int, default 2

Factor to scale by when it’s determined additional workers are needed

**kwargs:

Extra parameters to pass to Scheduler.workers_to_close

Notes

Subclasses can override Adaptive.should_scale_up() and Adaptive.should_scale_down()
to control when the cluster should be resized. The default implementation checks if there are too
many tasks per worker or too little memory available (see Adaptive.needs_cpu() and Adaptive.
needs_memory()).

Adaptive.get_scale_up_kwargs() method controls the arguments passed to the cluster’s scale_up
method.

Examples

>>> class MyCluster(object):
... def scale_up(self, n):
... """ Bring worker count up to n """
... def scale_down(self, workers):
... """ Remove worker addresses from cluster """

3.5. API 45

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

get_scale_up_kwargs()
Get the arguments to be passed to self.cluster.scale_up.

See also:

LocalCluster.scale_up

Notes

By default the desired number of total workers is returned (n). Subclasses should ensure that the re-
turn dictionary includes a key- value pair for n, either by implementing it or by calling the parent’s
get_scale_up_kwargs.

needs_cpu()
Check if the cluster is CPU constrained (too many tasks per core)

Notes

Returns True if the occupancy per core is some factor larger than startup_cost.

needs_memory()
Check if the cluster is RAM constrained

Notes

Returns True if the required bytes in distributed memory is some factor larger than the actual distributed
memory available.

should_scale_down()
Determine whether any workers should potentially be removed from the cluster.

Returns scale_down : bool

See also:

Scheduler.workers_to_close

Notes

Adaptive.should_scale_down defaults to dispatching to Adaptive.workers_to_close,
returning True if any workers to close are specified.

should_scale_up()
Determine whether additional workers should be added to the cluster

Returns scale_up : bool

Notes

Additional workers are added whenever

1. There are unrunnable tasks and no workers

2. The cluster is CPU constrained

3. The cluster is RAM constrained

46 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

See also:

needs_cpu, needs_memory

workers_to_close(**kwargs)
Determine which, if any, workers should potentially be removed from the cluster.

Returns workers: [worker_name]

See also:

Scheduler.workers_to_close

Notes

Adaptive.workers_to_close dispatches to Scheduler.workers_to_close(), but may be overridden
in subclasses.

3.6 Frequently Asked Questions

More questions can be found on StackOverflow at http://stackoverflow.com/search?tab=votes&q=dask%20distributed

3.6.1 How do I use external modules?

Use client.upload_file. For more detail, see the API docs and a StackOverflow question “Can I use functions
imported from .py files in Dask/Distributed?” This function supports both standalone file and setuptools’s .egg files
for larger modules.

3.6.2 Too many open file descriptors?

Your operating system imposes a limit to how many open files or open network connections any user can have at once.
Depending on the scale of your cluster the dask-scheduler may run into this limit.

By default most Linux distributions set this limit at 1024 open files/connections and OS-X at 128 or 256. Each worker
adds a few open connections to a running scheduler (somewhere between one and ten, depending on how contentious
things get.)

If you are on a managed cluster you can usually ask whoever manages your cluster to increase this limit. If you
have root access and know what you are doing you can change the limits on Linux by editing /etc/security/
limits.conf. Instructions are here under the heading “User Level FD Limits”: http://www.cyberciti.biz/faq/
linux-increase-the-maximum-number-of-open-files/

3.6.3 Error when running dask-worker about OMP_NUM_THREADS

For more problems with OMP_NUM_THREADS, see http://stackoverflow.com/questions/39422092/
error-with-omp-num-threads-when-using-dask-distributed

3.6. Frequently Asked Questions 47

http://stackoverflow.com/search?tab=votes&q=dask%20distributed
https://distributed.readthedocs.io/en/latest/api.html#distributed.executor.Executor.upload_file
http://stackoverflow.com/questions/39295200/can-i-use-functions-imported-from-py-files-in-dask-distributed
http://stackoverflow.com/questions/39295200/can-i-use-functions-imported-from-py-files-in-dask-distributed
http://www.cyberciti.biz/faq/linux-increase-the-maximum-number-of-open-files/
http://www.cyberciti.biz/faq/linux-increase-the-maximum-number-of-open-files/
http://stackoverflow.com/questions/39422092/error-with-omp-num-threads-when-using-dask-distributed
http://stackoverflow.com/questions/39422092/error-with-omp-num-threads-when-using-dask-distributed

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.6.4 Does Dask handle Data Locality?

Yes, both data locality in memory and data locality on disk.

Often it’s much cheaper to move computations to where data lives. If one of your tasks creates a large array and a
future task computes the sum of that array, you want to be sure that the sum runs on the same worker that has the array
in the first place, otherwise you’ll wait for a long while as the data moves between workers. Needless communication
can easily dominate costs if we’re sloppy.

The Dask Scheduler tracks the location and size of every intermediate value produced by every worker and uses this
information when assigning future tasks to workers. Dask tries to make computations more efficient by minimizing
data movement.

Sometimes your data is on a hard drive or other remote storage that isn’t controlled by Dask. In this case the scheduler
is unaware of exactly where your data lives, so you have to do a bit more work. You can tell Dask to preferentially run
a task on a particular worker or set of workers.

For example Dask developers use this ability to build in data locality when we communicate to data-local stor-
age systems like the Hadoop File System. When users use high-level functions like dask.dataframe.
read_csv('hdfs:///path/to/files.*.csv' Dask talks to the HDFS name node, finds the locations of
all of the blocks of data, and sends that information to the scheduler so that it can make smarter decisions and improve
load times for users.

3.6.5 PermissionError [Errno 13] Permission Denied: ‘/root/.dask‘

This error can be seen when starting distributed through the standard process control tool supervisor and running
as a non-root user. This is caused by supervisor not passing the shell environment variables through to the
subprocess, head to this section of the supervisor documentation to see how to pass the $HOME and $USER variables
through.

3.7 Diagnosing Performance

Understanding the performance of a distributed computation can be difficult. This is due in part to the many compo-
nents of a distributed computer that may impact performance:

1. Compute time

2. Memory bandwidth

3. Network bandwidth

4. Disk bandwidth

5. Scheduler overhead

6. Serialization costs

This difficulty is compounded because the information about these costs is spread among many machines and so there
is no central place to collect data to identify performance issues.

Fortunately, Dask collects a variety of diagnostic information during execution. It does this both to provide perfor-
mance feedback to users, but also for its own internal scheduling decisions. The primary place to observe this feedback
is the diagnostic dashboard. This document describes the various pieces of performance information available and
how to access them.

48 Chapter 3. Contents

http://supervisord.org/subprocess.html#subprocess-environment

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.7.1 Task start and stop times

Workers capture durations associated to tasks. For each task that passes through a worker we record start and stop
times for each of the following:

1. Serialization (gray)

2. Dependency gathering from peers (red)

3. Disk I/O to collect local data (orange)

4. Execution times (colored by task)

The main way to observe these times is with the task stream plot on the scheduler’s /status page where the colors
of the bars correspond to the colors listed above.

Alternatively if you want to do your own diagnostics on every task event you might want to create a Scheduler plugin.
All of this information will be available when a task transitions from processing to memory or erred.

3.7.2 Statistical Profiling

For single-threaded profiling Python users typically depend on the CProfile module in the standard library (Dask
developers recommend the snakeviz tool for single-threaded profiling). Unfortunately the standard CProfile module
does not work with multi-threaded or distributed computations.

To address this Dask implements its own distributed statistical profiler. Every 10ms each worker process checks what
each of its worker threads are doing. It captures the call stack and adds this stack to a counting data structure. This
counting data structure is recorded and cleared every second in order to establish a record of performance over time.

Users typically observe this data through the /profile plot on either the worker or scheduler diagnostic dashboards.
On the scheduler page they observe the total profile aggregated over all workers over all threads. Clicking on any of
the bars in the profile will zoom the user into just that section, as is typical with most profiling tools. There is a timeline
at the bottom of the page to allow users to select different periods in time.

Profiles are also grouped by the task that was being run at the time. You can select a task name from the selection
menu at the top of the page. You can also click on the rectangle corresponding to the task in the main task stream plot
on the /status page.

Users can also query this data directly using the Client.profile function. This will deliver the raw data structure used
to produce these plots.

The 10ms and 1s parameters can be controlled by the profile-interval and profile-cycle-interval
entries in the config.yaml file.

3.7.3 Bandwidth

Dask workers track every incoming and outgoing transfer in the Worker.outgoing_transfer_log and
Worker.incoming_transfer_log attributes including

1. Total bytes transferred

2. Compressed bytes transferred

3. Start/stop times

4. Keys moved

3.7. Diagnosing Performance 49

https://jiffyclub.github.io/snakeviz/
https://en.wikipedia.org/wiki/Profiling_(computer_programming)#Statistical_profilers

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

5. Peer

These are made available to users through the /main page of the Worker’s diagnostic dashboard. You can capture
their state explicitly by running a command on the workers:

client.run(lambda dask_worker: dask_worker.outgoing_transfer_log)
client.run(lambda dask_worker: dask_worker.incoming_transfer_log)

3.7.4 A note about times

Different computers maintain different clocks which may not match perfectly. To address this the Dask scheduler
sends its current time in response to every worker heartbeat. Workers compare their local time against this time to
obtain an estimate of differences. All times recorded in workers take this estimated delay into account. This helps, but
still, imprecise measurements may exist.

All times are intended to be from the scheduler’s perspective.

3.8 Efficiency

Parallel computing done well is responsive and rewarding. However, several speed-bumps can get in the way. This
section describes common ways to ensure performance.

3.8.1 Leave data on the cluster

Wait as long as possible to gather data locally. If you want to ask a question of a large piece of data on the cluster it is
often faster to submit a function onto that data then to bring the data down to your local computer.

For example if we have a numpy array on the cluster and we want to know its shape we might choose one of the
following options:

1. Slow: Gather the numpy array to the local process, access the .shape attribute

2. Fast: Send a lambda function up to the cluster to compute the shape

>>> x = client.submit(np.random.random, (1000, 1000))
>>> type(x)
Future

Slow

>>> x.result().shape() # Slow from lots of data transfer
(1000, 1000)

Fast

>>> client.submit(lambda a: a.shape, x).result() # fast
(1000, 1000)

3.8.2 Use larger tasks

The scheduler adds about one millisecond of overhead per task or Future object. While this may sound fast it’s quite
slow if you run a billion tasks. If your functions run faster than 100ms or so then you might not see any speedup from
using distributed computing.

50 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

A common solution is to batch your input into larger chunks.

Slow

>>> futures = client.map(f, seq)
>>> len(futures) # avoid large numbers of futures
1000000000

Fast

>>> def f_many(chunk):
... return [f(x) for x in chunk]

>>> from toolz import partition_all
>>> chunks = partition_all(1000000, seq) # Collect into groups of size 1000

>>> futures = client.map(f_many, chunks)
>>> len(futures) # Compute on larger pieces of your data at once
1000

3.8.3 Adjust between Threads and Processes

By default a single Worker runs many computations in parallel using as many threads as your compute node has
cores. When using pure Python functions this may not be optimal and you may instead want to run several separate
worker processes on each node, each using one thread. When configuring your cluster you may want to use the options
to the dask-worker executable as follows:

$ dask-worker ip:port --nprocs 8 --nthreads 1

Note that if you’re primarily using NumPy, Pandas, SciPy, Scikit Learn, Numba, or other C/Fortran/LLVM/Cython-
accelerated libraries then this is not an issue for you. Your code is likely optimal for use with multi-threading.

3.8.4 Don’t go distributed

Consider the dask and concurrent.futures modules, which have similar APIs to distributed but operate on a single
machine. It may be that your problem performs well enough on a laptop or large workstation.

Consider accelerating your code through other means than parallelism. Better algorithms, data structures, storage
formats, or just a little bit of C/Fortran/Numba code might be enough to give you the 10x speed boost that you’re
looking for. Parallelism and distributed computing are expensive ways to accelerate your application.

3.9 Limitations

Dask.distributed has limitations. Understanding these can help you to reliably create efficient distributed computations.

3.9.1 Performance

• The central scheduler spends a few hundred microseconds on every task. For optimal performance, task dura-
tions should be greater than 10-100ms.

• Dask can not parallelize within individual tasks. Individual tasks should be a comfortable size so as not to
overwhelm any particular worker.

3.9. Limitations 51

http://dask.pydata.org/en/latest/
https://docs.python.org/3/library/concurrent.futures.html

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

• Dask assigns tasks to workers heuristically. It usually makes the right decision, but non-optimal situations do
occur.

• The workers are just Python processes, and inherit all capabilities and limitations of Python. They do not bound
or limit themselves in any way. In production you may wish to run dask-workers within containers.

3.9.2 Assumptions on Functions and Data

Dask assumes the following about your functions and your data:

• All functions must be serializable either with pickle or cloudpickle. This is usually the case except in fairly
exotic situations. The following should work:

from cloudpickle import dumps, loads
loads(dumps(my_object))

• All data must be serializable either with pickle, cloudpickle, or using Dask’s custom serialization system.

• Dask may run your functions multiple times, such as if a worker holding an intermediate result dies. Any side
effects should be idempotent.

•

3.9.3 Security

As a distributed computing framework, Dask enables the remote execution of arbitrary code. You should only host
dask-workers within networks that you trust. This is standard among distributed computing frameworks, but is worth
repeating.

3.10 Data Locality

Data movement often needlessly limits performance.

This is especially true for analytic computations. Dask.distributed minimizes data movement when possible and
enables the user to take control when necessary. This document describes current scheduling policies and user API
around data locality.

3.10.1 Current Policies

Task Submission

In the common case distributed runs tasks on workers that already hold dependent data. If you have a task f(x) that
requires some data x then that task will very likely be run on the worker that already holds x.

If a task requires data split among multiple workers, then the scheduler chooses to run the task on the worker that
requires the least data transfer to it. The size of each data element is measured by the workers using the sys.
getsizeof function, which depends on the __sizeof__ protocol generally available on most relevant Python
objects.

52 Chapter 3. Contents

https://github.com/cloudpipe/cloudpickle
https://en.wikipedia.org/wiki/Idempotence

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Data Scatter

When a user scatters data from their local process to the distributed network this data is distributed in a round-robin
fashion grouping by number of cores. So for example If we have two workers Alice and Bob, each with two cores
and we scatter out the list range(10) as follows:

futures = client.scatter(range(10))

Then Alice and Bob receive the following data

• Alice: [0, 1, 4, 5, 8, 9]

• Bob: [2, 3, 6, 7]

3.10.2 User Control

Complex algorithms may require more user control.

For example the existence of specialized hardware such as GPUs or database connections may restrict the set of valid
workers for a particular task.

In these cases use the workers= keyword argument to the submit, map, or scatter functions, providing a
hostname, IP address, or alias as follows:

future = client.submit(func, *args, workers=['Alice'])

• Alice: [0, 1, 4, 5, 8, 9, new_result]

• Bob: [2, 3, 6, 7]

Required data will always be moved to these workers, even if the volume of that data is significant. If this restriction is
only a preference and not a strict requirement, then add the allow_other_workers keyword argument to signal
that in extreme cases such as when no valid worker is present, another may be used.

future = client.submit(func, *args, workers=['Alice'],
allow_other_workers=True)

Additionally the scatter function supports a broadcast= keyword argument to enforce that the all data is sent
to all workers rather than round-robined. If new workers arrive they will not automatically receive this data.

futures = client.scatter([1, 2, 3], broadcast=True) # send data to all workers

• Alice: [1, 2, 3]

• Bob: [1, 2, 3]

Valid arguments for workers= include the following:

• A single IP addresses, IP/Port pair, or hostname like the following:

192.168.1.100, 192.168.1.100:8989, alice, alice:8989

• A list or set of the above:

['alice'], ['192.168.1.100', '192.168.1.101:9999']

If only a hostname or IP is given then any worker on that machine will be considered valid. Additionally, you can
provide aliases to workers upon creation.:

3.10. Data Locality 53

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

$ dask-worker scheduler_address:8786 --name worker_1

And then use this name when specifying workers instead.

client.map(func, sequence, workers='worker_1')

3.10.3 Specify workers with Compute/Persist

The workers= keyword in scatter, submit, and map is fairly straightforward, taking either a worker hostname,
host:port pair or a sequence of those as valid inputs:

client.submit(f, x, workers='127.0.0.1')
client.submit(f, x, workers='127.0.0.1:55852')
client.submit(f, x, workers=['192.168.1.101', '192.168.1.100'])

For more complex computations, such as occur with dask collections like dask.dataframe or dask.delayed, we some-
times want to specify that certain parts of the computation run on certain workers while other parts run on other
workers.

x = delayed(f)(1)
y = delayed(f)(2)
z = delayed(g)(x, y)

future = client.compute(z, workers={z: '127.0.0.1',
x: '192.168.0.1'})

Here the values of the dictionary are of the same form as before, a host, a host:port pair, or a list of these. The keys
in this case are either dask collections or tuples of dask collections. All of the final keys of these collections will run
on the specified machines; dependencies can run anywhere unless they are also listed in workers=. We explore this
through a set of examples:

The computation z = f(x, y) runs on the host 127.0.0.1. The other two computations for x and y can run
anywhere.

future = client.compute(z, workers={z: '127.0.0.1'})

The computations for both z and x must run on 127.0.0.1

future = client.compute(z, workers={z: '127.0.0.1',
x: '127.0.0.1'})

Use a tuple to group collections. This is shorthand for the above.

future = client.compute(z, workers={(x, y): '127.0.0.1'})

Recall that all options for workers= in scatter/submit/map hold here as well.

future = client.compute(z, workers={(x, y): ['192.168.1.100', '192.168.1.101:9999']})

Set allow_other_workers=True to make these loose restrictions rather than hard requirements.

future = client.compute(z, workers={(x, y): '127.0.0.1'},
allow_other_workers=True)

54 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Provide a collection to allow_other_workers=[...] to say that the keys for only some of the collections are
loose. In the case below z must run on 127.0.0.1 while x should run on 127.0.0.1 but can run elsewhere if
necessary:

future = client.compute(z, workers={(x, y): '127.0.0.1'},
allow_other_workers=[x])

This works fine with persist and with any dask collection (any object with a .__dask_graph__() method):

df = dd.read_csv('s3://...')
df = client.persist(df, workers={df: ...})

See the efficiency page to learn about best practices.

3.11 Managing Computation

Data and Computation in Dask.distributed are always in one of three states

1. Concrete values in local memory. Example include the integer 1 or a numpy array in the local process.

2. Lazy computations in a dask graph, perhaps stored in a dask.delayed or dask.dataframe object.

3. Running computations or remote data, represented by Future objects pointing to computations currently in
flight.

All three of these forms are important and there are functions that convert between all three states.

3.11.1 Dask Collections to Concrete Values

You can turn any dask collection into a concrete value by calling the .compute() method or dask.compute(..
.) function. This function will block until the computation is finished, going straight from a lazy dask collection to a
concrete value in local memory.

This approach is the most familiar and straightforward, especially for people coming from the standard single-machine
Dask experience or from just normal programming. It is great when you have data already in memory and want to get
small fast results right to your local process.

>>> df = dd.read_csv('s3://...')
>>> df.value.sum().compute()
100000000

However, this approach often breaks down if you try to bring the entire dataset back to local RAM

>>> df.compute()
MemoryError(...)

It also forces you to wait until the computation finishes before handing back control of the interpreter.

3.11.2 Dask Collections to Futures

You can asynchronously submit lazy dask graphs to run on the cluster with the client.compute and client.
persist methods. These functions return Future objects immediately. These futures can then be queried to deter-
mine the state of the computation.

3.11. Managing Computation 55

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

client.compute

The .compute method takes a collection and returns a single future.

>>> df = dd.read_csv('s3://...')
>>> total = client.compute(df.sum()) # Return a single future
>>> total
Future(..., status='pending')

>>> total.result() # Block until finished
100000000

Because this is a single future the result must fit on a single worker machine. Like dask.compute above, the
client.compute method is only appropriate when results are small and should fit in memory. The following
would likely fail:

>>> future = client.compute(df) # Blows up memory

Instead, you should use client.persist

client.persist

The .persist method submits the task graph behind the Dask collection to the scheduler, obtaining Futures for all
of the top-most tasks (for example one Future for each Pandas DataFrame in a Dask DataFrame). It then returns a copy
of the collection pointing to these futures instead of the previous graph. This new collection is semantically equivalent
but now points to actively running data rather than a lazy graph. If you look at the dask graph within the collection
you will see the Future objects directly:

>>> df = dd.read_csv('s3://...')
>>> df.dask # Recipe to compute df in chunks
{('read', 0): (load_s3_bytes, ...),
('parse', 0): (pd.read_csv, ('read', 0)),
('read', 1): (load_s3_bytes, ...),
('parse', 1): (pd.read_csv, ('read', 1)),
...

}

>>> df = client.persist(df) # Start computation
>>> df.dask # Now points to running futures
{('parse', 0): Future(..., status='finished'),
('parse', 1): Future(..., status='pending'),
...

}

The collection is returned immediately and the computation happens in the background on the cluster. Eventually all
of the futures of this collection will be completed at which point further queries on this collection will likely be very
fast.

Typically the workflow is to define a computation with a tool like dask.dataframe or dask.delayed until a
point where you have a nice dataset to work from, then persist that collection to the cluster and then perform many fast
queries off of the resulting collection.

3.11.3 Concrete Values to Futures

We obtain futures through a few different ways. One is the mechanism above, by wrapping Futures within Dask col-
lections. Another is by submitting data or tasks directly to the cluster with client.scatter, client.submit

56 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

or client.map.

futures = client.scatter(args) # Send data
future = client.submit(function, *args, **kwrags) # Send single task
futures = client.map(function, sequence, **kwargs) # Send many tasks

In this case *args or **kwargs can be normal Python objects, like 1 or 'hello', or they can be other Future
objects if you want to link tasks together with dependencies.

Unlike Dask collections like dask.delayed these task submissions happen immediately. The concurrent.futures inter-
face is very similar to dask.delayed except that execution is immediate rather than lazy.

3.11.4 Futures to Concrete Values

You can turn an individual Future into a concrete value in the local process by calling the Future.result()
method. You can convert a collection of futures into concrete values by calling the client.gather method.

>>> future.result()
1

>>> client.gather(futures)
[1, 2, 3, 4, ...]

3.11.5 Futures to Dask Collections

As seen in the Collection to futures section it is common to have currently computing Future objects within Dask
graphs. This lets us build further computations on top of currently running computations. This is most often done with
dask.delayed workflows on custom computations:

>>> x = delayed(sum)(futures)
>>> y = delayed(product)(futures)
>>> future = client.compute(x + y)

Mixing the two forms allow you to build and submit a computation in stages like sum(...) + product(...).
This is often valuable if you want to wait to see the values of certain parts of the computation before determining
how to proceed. Submitting many computations at once allows the scheduler to be slightly more intelligent when
determining what gets run.

If this page interests you then you may also want to check out the doc page on Managing Memory

3.12 Managing Memory

Dask.distributed stores the results of tasks in the distributed memory of the worker nodes. The central scheduler tracks
all data on the cluster and determines when data should be freed. Completed results are usually cleared from memory
as quickly as possible in order to make room for more computation. The result of a task is kept in memory if either of
the following conditions hold:

1. A client holds a future pointing to this task. The data should stay in RAM so that the client can gather the data
on demand.

2. The task is necessary for ongoing computations that are working to produce the final results pointed to by
futures. These tasks will be removed once no ongoing tasks require them.

3.12. Managing Memory 57

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

When users hold Future objects or persisted collections (which contain many such Futures inside their .dask at-
tribute) they pin those results to active memory. When the user deletes futures or collections from their local Python
process the scheduler removes the associated data from distributed RAM. Because of this relationship, distributed
memory reflects the state of local memory. A user may free distributed memory on the cluster by deleting persisted
collections in the local session.

3.12.1 Creating Futures

The following functions produce Futures

Client.submit(func, *args, **kwargs) Submit a function application to the scheduler
Client.map(func, *iterables, **kwargs) Map a function on a sequence of arguments
Client.compute(collections[, sync, . . .]) Compute dask collections on cluster
Client.persist(collections[, . . .]) Persist dask collections on cluster
Client.scatter(data[, workers, broadcast, . . .]) Scatter data into distributed memory

The submit and map methods handle raw Python functions. The compute and persist methods handle Dask
collections like arrays, bags, delayed values, and dataframes. The scatter method sends data directly from the local
process.

3.12.2 Persisting Collections

Calls to Client.compute or Client.persist submit task graphs to the cluster and return Future objects
that point to particular output tasks.

Compute returns a single future per input, persist returns a copy of the collection with each block or partition replaced
by a single future. In short, use persist to keep full collection on the cluster and use compute when you want a
small result as a single future.

Persist is more common and is often used as follows with collections:

>>> # Construct dataframe, no work happens
>>> df = dd.read_csv(...)
>>> df = df[df.x > 0]
>>> df = df.assign(z = df.x + df.y)

>>> # Pin data in distributed ram, this triggers computation
>>> df = client.persist(df)

>>> # continue operating on df

Note for Spark users: this differs from what you’re accustomed to. Persist is an immediate action. However, you’ll get
control back immediately as computation occurs in the background.

In this example we build a computation by parsing CSV data, filtering rows, and then adding a new column. Up until
this point all work is lazy; we’ve just built up a recipe to perform the work as a graph in the df object.

When we call df = client.persist(df) we cut this graph off of the df object, send it up to the scheduler,
receive Future objects in return and create a new dataframe with a very shallow graph that points directly to these
futures. This happens more or less immediately (as long as it takes to serialize and send the graph) and we can continue
working on our new df object while the cluster works to evaluate the graph in the background.

58 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.12.3 Difference with dask.compute

The operations client.persist(df) and client.compute(df) are asynchronous and so differ from the
traditional df.compute() method or dask.compute function, which blocks until a result is available. The .
compute() method does not persist any data on the cluster. The .compute() method also brings the entire result
back to the local machine, so it is unwise to use it on large datasets. However, .compute() is very convenient for
smaller results particularly because it does return concrete results in a way that most other tools expect.

Typically we use asynchronous methods like client.persist to set up large collections and then use df.
compute() for fast analyses.

>>> # df.compute() # This is bad and would likely flood local memory
>>> df = client.persist(df) # This is good and asynchronously pins df
>>> df.x.sum().compute() # This is good because the result is small
>>> future = client.compute(df.x.sum()) # This is also good but less intuitive

3.12.4 Clearing data

We remove data from distributed ram by removing the collection from our local process. Remote data is removed once
all Futures pointing to that data are removed from all client machines.

>>> del df # Deleting local data often deletes remote data

If this is the only copy then this will likely trigger the cluster to delete the data as well.

However if we have multiple copies or other collections based on this one then we’ll have to delete them all.

>>> df2 = df[df.x < 10]
>>> del df # would not delete data, because df2 still tracks the futures

3.12.5 Aggressively Clearing Data

To definitely remove a computation and all computations that depend on it you can always cancel the fu-
tures/collection.

>>> client.cancel(df) # kills df, df2, and every other dependent computation

Alternatively, if you want a clean slate, you can restart the cluster. This clears all state and does a hard restart of all
worker processes. It generally completes in around a second.

>>> client.restart()

3.12.6 Resilience

Results are not intentionally copied unless necessary for computations on other worker nodes. Resilience is achieved
through recomputation by maintaining the provenance of any result. If a worker node goes down the scheduler is able
to recompute all of its results. The complete graph for any desired Future is maintained until no references to that
future exist.

For more information see Resilience.

3.12. Managing Memory 59

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.12.7 Advanced techniques

At first the result of a task is not intentionally copied, but only persists on the node where it was originally computed
or scattered. However result may be copied to another worker node in the course of normal computation if that result
is required by another task that is intended to by run by a different worker. This occurs if a task requires two pieces
of data on different machines (at least one must move) or through work stealing. In these cases it is the policy for the
second machine to maintain its redundant copy of the data. This helps to organically spread around data that is in high
demand.

However, advanced users may want to control the location, replication, and balancing of data more directly throughout
the cluster. They may know ahead of time that certain data should be broadcast throughout the network or that their
data has become particularly imbalanced, or that they want certain pieces of data to live on certain parts of their
network. These considerations are not usually necessary.

Client.rebalance([futures, workers]) Rebalance data within network
Client.replicate(futures[, n, workers, . . .]) Set replication of futures within network
Client.scatter(data[, workers, broadcast, . . .]) Scatter data into distributed memory

3.13 Related Work

Writing the “related work” for a project called “distributed”, is a Sisyphean task. We’ll list a few notable projects that
you’ve probably already heard of down below.

You may also find the dask comparison with spark of interest.

3.13.1 Big Data World

• The venerable Hadoop provides batch processing with the MapReduce programming paradigm. Python users
typically use Hadoop Streaming or MRJob.

• Spark builds on top of HDFS systems with a nicer API and in-memory processing. Python users typically use
PySpark.

• Storm provides streaming computation. Python users typically use streamparse.

This is a woefully inadequate representation of the excellent work blossoming in this space. A variety of projects have
come into this space and rival or complement the projects above. Still, most “Big Data” processing hype probably
centers around the three projects above, or their derivatives.

3.13.2 Python Projects

There are dozens of Python projects for distributed computing. Here we list a few of the more prominent projects that
we see in active use today.

Task scheduling

• Celery: An asynchronous task scheduler, focusing on real-time processing.

• Luigi: A bulk big-data/batch task scheduler, with hooks to a variety of interesting data sources.

60 Chapter 3. Contents

http://dask.pydata.org/en/latest/spark.html
https://hadoop.apache.org/
https://hadoop.apache.org/docs/r1.2.1/streaming.html
https://pythonhosted.org/mrjob/
http://spark.apache.org/docs/latest/api/python/
http://storm.apache.org/
https://streamparse.readthedocs.io/en/latest/index.html
http://www.celeryproject.org/
https://luigi.readthedocs.io/en/latest/

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Ad hoc computation

• IPython Parallel: Allows for stateful remote control of several running ipython sessions.

• Scoop: Implements the concurrent.futures API on distributed workers. Notably allows tasks to spawn more
tasks.

Direct Communication

• MPI4Py: Wraps the Message Passing Interface popular in high performance computing.

• PyZMQ: Wraps ZeroMQ, the gentleman’s socket.

Venerable

There are a couple of older projects that often get mentioned

• Dispy: Embarrassingly parallel function evaluation

• Pyro: Remote objects / RPC

3.13.3 Relationship

In relation to these projects distributed. . .

• Supports data-local computation like Hadoop and Spark

• Uses a task graph with data dependencies abstraction like Luigi

• In support of ad-hoc applications, like IPython Parallel and Scoop

3.13.4 In depth comparison to particular projects

IPython Parallel

Short Description

IPython Parallel is a distributed computing framework from the IPython project. It uses a centralized hub to farm
out jobs to several ipengine processes running on remote workers. It communicates over ZeroMQ sockets and
centralizes communication through the central hub.

IPython parallel has been around for a while and, while not particularly fancy, is quite stable and robust.

IPython Parallel offers parallel map and remote apply functions that route computations to remote workers

>>> view = Client(...)[:]
>>> results = view.map(func, sequence)
>>> result = view.apply(func, *args, **kwargs)
>>> future = view.apply_async(func, *args, **kwargs)

It also provides direct execution of code in the remote process and collection of data from the remote namespace.

>>> view.execute('x = 1 + 2')
>>> view['x']
[3, 3, 3, 3, 3, 3]

3.13. Related Work 61

https://ipyparallel.readthedocs.io/en/latest/
https://github.com/soravux/scoop/
https://docs.python.org/3/library/concurrent.futures.html
http://mpi4py.readthedocs.io/en/stable/
https://github.com/zeromq/pyzmq
http://dispy.sourceforge.net/
https://pythonhosted.org/Pyro4/
https://ipyparallel.readthedocs.io/en/latest/

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Brief Comparison

Distributed and IPython Parallel are similar in that they provide map and apply/submit abstractions over dis-
tributed worker processes running Python. Both manage the remote namespaces of those worker processes.

They are dissimilar in terms of their maturity, how worker nodes communicate to each other, and in the complexity of
algorithms that they enable.

Distributed Advantages

The primary advantages of distributed over IPython Parallel include

1. Peer-to-peer communication between workers

2. Dynamic task scheduling

Distributed workers share data in a peer-to-peer fashion, without having to send intermediate results through a
central bottleneck. This allows distributed to be more effective for more complex algorithms and to manage
larger datasets in a more natural manner. IPython parallel does not provide a mechanism for workers to communicate
with each other, except by using the central node as an intermediary for data transfer or by relying on some other
medium, like a shared file system. Data transfer through the central node can easily become a bottleneck and so
IPython parallel has been mostly helpful in embarrassingly parallel work (the bulk of applications) but has not been
used extensively for more sophisticated algorithms that require non-trivial communication patterns.

The distributed client includes a dynamic task scheduler capable of managing deep data dependencies between tasks.
The IPython parallel docs include a recipe for executing task graphs with data dependencies. This same idea is core to
all of distributed, which uses a dynamic task scheduler for all operations. Notably, distributed.Future
objects can be used within submit/map/get calls before they have completed.

>>> x = client.submit(f, 1) # returns a future
>>> y = client.submit(f, 2) # returns a future
>>> z = client.submit(add, x, y) # consumes futures

The ability to use futures cheaply within submit and map methods enables the construction of very sophisticated
data pipelines with simple code. Additionally, distributed can serve as a full dask task scheduler, enabling support
for distributed arrays, dataframes, machine learning pipelines, and any other application build on dask graphs. The
dynamic task schedulers within distributed are adapted from the dask task schedulers and so are fairly sophisti-
cated/efficient.

IPython Parallel Advantages

IPython Parallel has the following advantages over distributed

1. Maturity: IPython Parallel has been around for a while.

2. Explicit control over the worker processes: IPython parallel allows you to execute arbitrary statements on the
workers, allowing it to serve in system administration tasks.

3. Deployment help: IPython Parallel has mechanisms built-in to aid deployment on SGE, MPI, etc.. Distributed
does not have any such sugar, though is fairly simple to set up by hand.

4. Various other advantages: Over the years IPython parallel has accrued a variety of helpful features like IPython
interaction magics, @parallel decorators, etc..

concurrent.futures

The distributed.Client API is modeled after concurrent.futures and PEP 3184. It has a few notable
differences:

• distributed accepts Future objects within calls to submit/map. When chaining computations, it is
preferable to submit Future objects directly rather than wait on them before submission.

62 Chapter 3. Contents

https://ipython.org/ipython-doc/3/parallel/dag_dependencies.html#dag-dependencies
http://dask.pydata.org/en/latest/
https://docs.python.org/3/library/concurrent.futures.html#module-concurrent.futures
https://www.python.org/dev/peps/pep-3184

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

• The map() method returns Future objects, not concrete results. The map() method returns immediately.

• Despite sharing a similar API, distributed Future objects cannot always be substituted for
concurrent.futures.Future objects, especially when using wait() or as_completed().

• Distributed generally does not support callbacks.

If you need full compatibility with the concurrent.futures.Executor API, use the object returned by the
get_executor() method.

3.14 Resilience

Software fails, Hardware fails, network connections fail, user code fails. This document describes how dask.
distributed responds in the face of these failures and other known bugs.

3.14.1 User code failures

When a function raises an error that error is kept and transmitted to the client on request. Any attempt to gather that
result or any dependent result will raise that exception.

>>> def div(a, b):
... return a / b

>>> x = client.submit(div, 1, 0)
>>> x.result()
ZeroDivisionError: division by zero

>>> y = client.submit(add, x, 10)
>>> y.result() # same error as above
ZeroDivisionError: division by zero

This does not affect the smooth operation of the scheduler or worker in any way.

3.14.2 Closed Network Connections

If the connection to a remote worker unexpectedly closes and the local process appropriately raises an IOError then
the scheduler will reroute all pending computations to other workers.

If the lost worker was the only worker to hold vital results necessary for future computations then those results will be
recomputed by surviving workers. The scheduler maintains a full history of how each result was produced and so is
able to reproduce those same computations on other workers.

This has some fail cases.

1. If results depend on impure functions then you may get a different (although still entirely accurate) result

2. If the worker failed due to a bad function, for example a function that causes a segmentation fault, then that bad
function will repeatedly be called on other workers. This function will be marked as “bad” after it kills a fixed
number of workers (defaults to three).

3. Data scattered out to the workers is not kept in the scheduler (it is often quite large) and so the loss of this data is
irreparable. You may wish to call Client.replicate on the data with a suitable replication factor to ensure
that it remains long-lived or else back the data off of some resilient store, like a file system.

3.14. Resilience 63

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.14.3 Hardware Failures

It is not clear under which circumstances the local process will know that the remote worker has closed the connection.
If the socket does not close cleanly then the system will wait for a timeout, roughly three seconds, before marking the
worker as failed and resuming smooth operation.

3.14.4 Scheduler Failure

The process containing the scheduler might die. There is currently no persistence mechanism to record and recover
the scheduler state.

The workers and clients will all reconnect to the scheduler after it comes back online but records of ongoing compu-
tations will be lost.

3.14.5 Restart and Nanny Processes

The client provides a mechanism to restart all of the workers in the cluster. This is convenient if, during the course
of experimentation, you find your workers in an inconvenient state that makes them unresponsive. The Client.
restart method kills all workers, flushes all scheduler state, and then brings all workers back online, resulting in a
clean cluster.

3.15 Scheduling Policies

This document describes the policies used to select the preference of tasks and to select the preference of workers used
by Dask’s distributed scheduler. For more information on how this these policies are enacted efficiently see Scheduling
State.

3.15.1 Choosing Workers

When a task transitions from waiting to a processing state we decide a suitable worker for that task. If the task has
significant data dependencies or if the workers are under heavy load then this choice of worker can strongly impact
global performance. Currently workers for tasks are determined as follows:

1. If the task has no major dependencies and no restrictions then we find the least occupied worker.

2. Otherwise, if a task has user-provided restrictions (for example it must run on a machine with a GPU) then we
restrict the available pool of workers to just that set, otherwise we consider all workers

3. From among this pool of workers we determine the workers to whom the least amount of data would need to be
transferred.

4. We break ties by choosing the worker that currently has the fewest tasks, counting both those tasks in memory
and those tasks processing currently.

This process is easy to change (and indeed this document may be outdated). We encourage readers to inspect the
decide_worker function in scheduler.py

decide_worker(ts, all_workers, . . .) Decide which worker should take task ts.

64 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.15.2 Choosing Tasks

We often have a choice between running many valid tasks. There are a few competing interests that might motivate
our choice:

1. Run tasks on a first-come-first-served basis for fairness between multiple clients

2. Run tasks that are part of the critical path in an effort to reduce total running time and minimize straggler
workloads

3. Run tasks that allow us to release many dependencies in an effort to keep the memory footprint small

4. Run tasks that are related so that large chunks of work can be completely eliminated before running new chunks
of work

Accomplishing all of these objectives simultaneously is impossible. Optimizing for any of these objectives perfectly
can result in costly overhead. The heuristics with the scheduler do a decent but imperfect job of optimizing for all of
these (they all come up in important workloads) quickly.

Last in, first out

When a worker finishes a task the immediate dependencies of that task get top priority. This encourages a behavior
of finishing ongoing work immediately before starting new work. This often conflicts with the first-come-first-served
objective but often results in shorter total runtimes and significantly reduced memory footprints.

Break ties with children and depth

Often a task has multiple dependencies and we need to break ties between them with some other objective. Breaking
these ties has a surprisingly strong impact on performance and memory footprint.

When a client submits a graph we perform a few linear scans over the graph to determine something like the number
of descendants of each node (not quite, because it’s a DAG rather than a tree, but this is a close proxy). This number
can be used to break ties and helps us to prioritize nodes with longer critical paths and nodes with many children. The
actual algorithms used are somewhat more complex and are described in detail in dask/order.py

Initial Task Placement

When a new large batch of tasks come in and there are many idle workers then we want to give each worker a set
of tasks that are close together/related and unrelated from the tasks given to other workers. This usually avoids inter-
worker communication down the line. The same depth-first-with-child-weights priority given to workers described
above can usually be used to properly segment the leaves of a graph into decently well separated sub-graphs with
relatively low inter-sub-graph connectedness.

First-Come-First-Served, Coarsely

The last-in-first-out behavior used by the workers to minimize memory footprint can distort the task order provided by
the clients. Tasks submitted recently may run sooner than tasks submitted long ago because they happen to be more
convenient given the current data in memory. This behavior can be unfair but improves global runtimes and system
efficiency, sometimes quite significantly.

However, workers inevitably run out of tasks that were related to tasks they were just working on and the last-in-first-
out policy eventually exhausts itself. In these cases workers often pull tasks from the common task pool. The tasks
in this pool are ordered in a first-come-first-served basis and so workers do behave in a fair scheduling manner at a
coarse level if not a fine grained one.

3.15. Scheduling Policies 65

https://github.com/dask/dask/blob/master/dask/order.py

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Dask’s scheduling policies are short-term-efficient and long-term-fair.

Where these decisions are made

The objectives above are mostly followed by small decisions made by the client, scheduler, and workers at various
points in the computation.

1. As we submit a graph from the client to the scheduler we assign a numeric priority to each task of that graph.
This priority focuses on computing deeply before broadly, preferring critical paths, preferring nodes with many
dependencies, etc.. This is the same logic used by the single-machine scheduler and lives in dask/order.py.

2. When the graph reaches the scheduler the scheduler changes each of these numeric priorities into a tuple of
two numbers, the first of which is an increasing counter, the second of which is the client-generated priority
described above. This per-graph counter encourages a first-in-first-out policy between computations. All tasks
from a previous call to compute have a higher priority than all tasks from a subsequent call to compute (or
submit, persist, map, or any operation that generates futures).

3. Whenever a task is ready to run the scheduler assigns it to a worker. The scheduler does not wait based on
priority.

4. However when the worker receives these tasks it considers their priorities when determining which tasks to
prioritize for communication or for computation. The worker maintains a heap of all ready-to-run tasks ordered
by this priority.

3.16 Scheduling State

3.16.1 Overview

The life of a computation with Dask can be described in the following stages:

1. The user authors a graph using some library, perhaps dask.delayed or dask.dataframe or the submit/map
functions on the client. They submit these tasks to the scheduler.

2. The schedulers assimilates these tasks into its graph of all tasks to track, and as their dependencies become
available it asks workers to run each of these tasks in turn.

3. The worker receives information about how to run the task, communicates with its peer workers to collect data
dependencies, and then runs the relevant function on the appropriate data. It reports back to the scheduler that it
has finished, keeping the result stored in the worker where it was computed.

4. The scheduler reports back to the user that the task has completed. If the user desires, it then fetches the data
from the worker through the scheduler.

Most relevant logic is in tracking tasks as they evolve from newly submitted, to waiting for dependencies, to actively
running on some worker, to finished in memory, to garbage collected. Tracking this process, and tracking all effects
that this task has on other tasks that might depend on it, is the majority of the complexity of the dynamic task scheduler.
This section describes the system used to perform this tracking.

For more abstract information about the policies used by the scheduler, see Scheduling Policies.

The scheduler keeps internal state about several kinds of entities:

• Individual tasks known to the scheduler

• Workers connected to the scheduler

• Clients connected to the scheduler

66 Chapter 3. Contents

https://github.com/dask/dask/blob/master/dask/order.py

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Note: Everything listed in this page is an internal detail of how Dask operates. It may change between versions and
you should probably avoid relying on it in user code (including on any APIs explained here).

3.16.2 Task State

Internally, the scheduler moves tasks between a fixed set of states, notably released, waiting, no-worker,
processing, memory, error.

Tasks flow along the following states with the following allowed transitions:

• Released: Known but not actively computing or in memory

• Waiting: On track to be computed, waiting on dependencies to arrive in memory

• No-worker: Ready to be computed, but no appropriate worker exists (for example because of resource restric-
tions, or because no worker is connected at all).

• Processing: Actively being computed by one or more workers

• Memory: In memory on one or more workers

• Erred: Task computation, or one of its dependencies, has encountered an error

• Forgotten (not actually a state): Task is no longer needed by any client or dependent task

In addition to the literal state, though, other information needs to be kept and updated about each task. Individual task
state is stored in an object named TaskState and consists of the following information:

class distributed.scheduler.TaskState(key, run_spec)
A simple object holding information about a task.

key: str
The key is the unique identifier of a task, generally formed from the name of the function, followed by a
hash of the function and arguments, like 'inc-ab31c010444977004d656610d2d421ec'.

prefix: str
The key prefix, used in certain calculations to get an estimate of the task’s duration based on the duration
of other tasks in the same “family” (for example 'inc').

run_spec: object
A specification of how to run the task. The type and meaning of this value is opaque to the scheduler, as it
is only interpreted by the worker to which the task is sent for executing.

As a special case, this attribute may also be None, in which case the task is “pure data” (such as, for
example, a piece of data loaded in the scheduler using Client.scatter()). A “pure data” task cannot
be computed again if its value is lost.

priority: tuple
The priority provides each task with a relative ranking which is used to break ties when many tasks are
being considered for execution.

This ranking is generally a 2-item tuple. The first (and dominant) item corresponds to when it was submit-
ted. Generally, earlier tasks take precedence. The second item is determined by the client, and is a way to
prioritize tasks within a large graph that may be important, such as if they are on the critical path, or good
to run in order to release many dependencies. This is explained further in Scheduling Policy.

state: str
This task’s current state. Valid states include released, waiting, no-worker, processing,
memory, erred and forgotten. If it is forgotten, the task isn’t stored in the tasks dictionary
anymore and will probably disappear soon from memory.

3.16. Scheduling State 67

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

dependencies: {TaskState}
The set of tasks this task depends on for proper execution. Only tasks still alive are listed in this set. If, for
whatever reason, this task also depends on a forgotten task, the has_lost_dependencies flag is set.

A task can only be executed once all its dependencies have already been successfully executed and have
their result stored on at least one worker. This is tracked by progressively draining the waiting_on set.

dependents: {TaskState}
The set of tasks which depend on this task. Only tasks still alive are listed in this set.

This is the reverse mapping of dependencies.

has_lost_dependencies: bool
Whether any of the dependencies of this task has been forgotten. For memory consumption reasons,
forgotten tasks are not kept in memory even though they may have dependent tasks. When a task is
forgotten, therefore, each of its dependents has their has_lost_dependencies attribute set to True.

If has_lost_dependencies is true, this task cannot go into the “processing” state anymore.

waiting_on: {TaskState}
The set of tasks this task is waiting on before it can be executed. This is always a subset of
dependencies. Each time one of the dependencies has finished processing, it is removed from the
waiting_on set.

Once waiting_on becomes empty, this task can move from the “waiting” state to the “processing” state
(unless one of the dependencies errored out, in which case this task is instead marked “erred”).

waiters: {TaskState}
The set of tasks which need this task to remain alive. This is always a subset of dependents. Each time
one of the dependents has finished processing, it is removed from the waiters set.

Once both waiters and who_wants become empty, this task can be released (if it has a non-empty
run_spec) or forgotten (otherwise) by the scheduler, and by any workers in who_has.

Note: Counter-intuitively, waiting_on and waiters are not reverse mappings of each other.

who_wants: {ClientState}
The set of clients who want this task’s result to remain alive. This is the reverse mapping of
ClientState.wants_what.

When a client submits a graph to the scheduler it also specifies which output tasks it desires, such that their
results are not released from memory.

Once a task has finished executing (i.e. moves into the “memory” or “erred” state), the clients in
who_wants are notified.

Once both waiters and who_wants become empty, this task can be released (if it has a non-empty
run_spec) or forgotten (otherwise) by the scheduler, and by any workers in who_has.

who_has: {WorkerState}
The set of workers who have this task’s result in memory. It is non-empty iff the task is in the “memory”
state. There can be more than one worker in this set if, for example, Client.scatter() or Client.
replicate() was used.

This is the reverse mapping of WorkerState.has_what.

processing_on: WorkerState (or None)
If this task is in the “processing” state, which worker is currently processing it. Otherwise this is None.

This attribute is kept in sync with WorkerState.processing.

68 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

retries: int
The number of times this task can automatically be retried in case of failure. If a task fails executing (the
worker returns with an error), its retries attribute is checked. If it is equal to 0, the task is marked
“erred”. If it is greater than 0, the retries attribute is decremented and execution is attempted again.

nbytes: int (or None)
The number of bytes, as determined by sizeof, of the result of a finished task. This number is used for
diagnostics and to help prioritize work.

exception: object
If this task failed executing, the exception object is stored here. Otherwise this is None.

traceback: object
If this task failed executing, the traceback object is stored here. Otherwise this is None.

exception_blame: TaskState (or None)
If this task or one of its dependencies failed executing, the failed task is stored here (possibly itself).
Otherwise this is None.

suspicious: int
The number of times this task has been involved in a worker death.

Some tasks may cause workers to die (such as calling os._exit(0)). When a worker dies, all of
the tasks on that worker are reassigned to others. This combination of behaviors can cause a bad task
to catastrophically destroy all workers on the cluster, one after another. Whenever a worker dies, we
mark each task currently processing on that worker (as recorded by WorkerState.processing) as
suspicious.

If a task is involved in three deaths (or some other fixed constant) then we mark the task as erred.

host_restrictions: {hostnames}
A set of hostnames where this task can be run (or None if empty). Usually this is empty unless the task
has been specifically restricted to only run on certain hosts. A hostname may correspond to one or several
connected workers.

worker_restrictions: {worker addresses}
A set of complete worker addresses where this can be run (or None if empty). Usually this is empty unless
the task has been specifically restricted to only run on certain workers.

Note this is tracking worker addresses, not worker states, since the specific workers may not be connected
at this time.

resource_restrictions: {resource: quantity}
Resources required by this task, such as {'gpu': 1} or {'memory': 1e9} (or None if empty).
These are user-defined names and are matched against the contents of each WorkerState.resources
dictionary.

loose_restrictions: bool
If False, each of host_restrictions, worker_restrictions and
resource_restrictions is a hard constraint: if no worker is available satisfying those re-
strictions, the task cannot go into the “processing” state and will instead go into the “no-worker”
state.

If True, the above restrictions are mere preferences: if no worker is available satisfying those restrictions,
the task can still go into the “processing” state and be sent for execution to another connected worker.

The scheduler keeps track of all the TaskState objects (those not in the “forgotten” state) using several containers:

tasks: {str: TaskState}
A dictionary mapping task keys (usually strings) to TaskState objects. Task keys are how information about

3.16. Scheduling State 69

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

tasks is communicated between the scheduler and clients, or the scheduler and workers; this dictionary is then
used to find the corresponding TaskState object.

unrunnable: {TaskState}
A set of TaskState objects in the “no-worker” state. These tasks already have all their dependencies
satisfied (their waiting_on set is empty), and are waiting for an appropriate worker to join the network
before computing.

3.16.3 Worker State

Each worker’s current state is stored in a WorkerState object. This information is involved in deciding which
worker to run a task on.

class distributed.scheduler.WorkerState(worker, ncores, memory_limit, name=None)
A simple object holding information about a worker.

address
This worker’s unique key. This can be its connected address (such as 'tcp://127.0.0.1:8891') or
an alias (such as 'alice').

processing: {TaskState: cost}
A dictionary of tasks that have been submitted to this worker. Each task state is asssociated with the
expected cost in seconds of running that task, summing both the task’s expected computation time and the
expected communication time of its result.

Multiple tasks may be submitted to a worker in advance and the worker will run them eventually, depending
on its execution resources (but see Work Stealing).

All the tasks here are in the “processing” state.

This attribute is kept in sync with TaskState.processing_on.

has_what: {TaskState}
The set of tasks which currently reside on this worker. All the tasks here are in the “memory” state.

This is the reverse mapping of TaskState.who_has.

nbytes: int
The total memory size, in bytes, used by the tasks this worker holds in memory (i.e. the tasks in this
worker’s has_what).

ncores: int
The number of CPU cores made available on this worker.

resources: {str: Number}
The available resources on this worker like {'gpu': 2}. These are abstract quantities that constrain
certain tasks from running at the same time on this worker.

used_resources: {str: Number}
The sum of each resource used by all tasks allocated to this worker. The numbers in this dictionary can
only be less or equal than those in this worker’s resources.

occupancy: Number
The total expected runtime, in seconds, of all tasks currently processing on this worker. This is the sum of
all the costs in this worker’s processing dictionary.

In addition to individual worker state, the scheduler maintains two containers to help with scheduling tasks:

Scheduler.saturated: {WorkerState}
A set of workers whose computing power (as measured by WorkerState.ncores) is fully exploited by
processing tasks, and whose current occupancy is a lot greater than the average.

70 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Scheduler.idle: {WorkerState}
A set of workers whose computing power is not fully exploited. These workers are assumed to be able to start
computing new tasks immediately.

These two sets are disjoint. Also, some workers may be neither “idle” nor “saturated”. “Idle” workers will be preferred
when deciding a suitable worker to run a new task on. Conversely, “saturated” workers may see their workload
lightened through Work Stealing.

3.16.4 Client State

Information about each individual client is kept in a ClientState object:

class distributed.scheduler.ClientState(client)
A simple object holding information about a client.

client_key: str
A unique identifier for this client. This is generally an opaque string generated by the client itself.

wants_what: {TaskState}
A set of tasks this client wants kept in memory, so that it can download its result when desired. This is the
reverse mapping of TaskState.who_wants.

Tasks are typically removed from this set when the corresponding object in the client’s space (for example
a Future or a Dask collection) gets garbage-collected.

3.16.5 Understanding a Task’s Flow

As seen above, there are numerous pieces of information pertaining to task and worker state, and some of them can be
computed, updated or removed during a task’s transitions.

The table below shows which state variable a task is in, depending on the task’s state. Cells with a check mark (X)
indicate the task key must be present in the given state variable; cells with an question mark (?) indicate the task key
may be present in the given state variable.

3.16. Scheduling State 71

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

State variable Re-
leased

Wait-
ing

No-
worker

Process-
ing

Mem-
ory

Erred

TaskState.dependencies X X X X X X
TaskState.dependents X X X X X X
TaskState.host_restrictions ? ? ? ? ? ?
TaskState.
worker_restrictions

? ? ? ? ? ?

TaskState.
resource_restrictions

? ? ? ? ? ?

TaskState.loose_restrictions ? ? ? ? ? ?
TaskState.waiting_on X X
TaskState.waiters X X
TaskState.processing_on X
WorkerState.processing X
TaskState.who_has X
WorkerState.has_what X
TaskState.nbytes (1) ? ? ? ? X ?
TaskState.exception (2) ?
TaskState.traceback (2) ?
TaskState.exception_blame X
TaskState.retries ? ? ? ? ? ?
TaskState.suspicious_tasks ? ? ? ? ? ?

Notes:

1. TaskState.nbytes: this attribute can be known as long as a task has already been computed, even if it has
been later released.

2. TaskState.exception and TaskState.traceback should be looked up on the TaskState.
exception_blame task.

The table below shows which worker state variables are updated on each task state transition.

Transition Affected worker state
released → waiting occupancy, idle, saturated
waiting → processing occupancy, idle, saturated, used_resources
waiting → memory idle, saturated, nbytes
processing → memory occupancy, idle, saturated, used_resources, nbytes
processing → erred occupancy, idle, saturated, used_resources
processing → released occupancy, idle, saturated, used_resources
memory → released nbytes
memory → forgotten nbytes

Note: Another way of understanding this table is to observe that entering or exiting a specific task state updates a well-
defined set of worker state variables. For example, entering and exiting the “memory” state updates WorkerState.
nbytes.

72 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.16.6 Implementation

Every transition between states is a separate method in the scheduler. These task transition functions are prefixed with
transition and then have the name of the start and finish task state like the following.

def transition_released_waiting(self, key):

def transition_processing_memory(self, key):

def transition_processing_erred(self, key):

These functions each have three effects.

1. They perform the necessary transformations on the scheduler state (the 20 dicts/lists/sets) to move one key
between states.

2. They return a dictionary of recommended {key: state} transitions to enact directly afterwards on other
keys. For example after we transition a key into memory we may find that many waiting keys are now ready to
transition from waiting to a ready state.

3. Optionally they include a set of validation checks that can be turned on for testing.

Rather than call these functions directly we call the central function transition:

def transition(self, key, final_state):
""" Transition key to the suggested state """

This transition function finds the appropriate path from the current to the final state. It also serves as a central point
for logging and diagnostics.

Often we want to enact several transitions at once or want to continually respond to new transitions recommended by
initial transitions until we reach a steady state. For that we use the transitions function (note the plural s).

def transitions(self, recommendations):
recommendations = recommendations.copy()
while recommendations:

key, finish = recommendations.popitem()
new = self.transition(key, finish)
recommendations.update(new)

This function runs transition, takes the recommendations and runs them as well, repeating until no further task-
transitions are recommended.

3.16.7 Stimuli

Transitions occur from stimuli, which are state-changing messages to the scheduler from workers or clients. The
scheduler responds to the following stimuli:

• Workers

– Task finished: A task has completed on a worker and is now in memory

– Task erred: A task ran and erred on a worker

– Task missing data: A task tried to run but was unable to find necessary data on other workers

– Worker added: A new worker was added to the network

– Worker removed: An existing worker left the network

• Clients

3.16. Scheduling State 73

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

– Update graph: The client sends more tasks to the scheduler

– Release keys: The client no longer desires the result of certain keys

Stimuli functions are prepended with the text stimulus, and take a variety of keyword arguments from the message
as in the following examples:

def stimulus_task_finished(self, key=None, worker=None, nbytes=None,
type=None, compute_start=None, compute_stop=None,
transfer_start=None, transfer_stop=None):

def stimulus_task_erred(self, key=None, worker=None,
exception=None, traceback=None)

These functions change some non-essential administrative state and then call transition functions.

Note that there are several other non-state-changing messages that we receive from the workers and clients, such as
messages requesting information about the current state of the scheduler. These are not considered stimuli.

3.16.8 API

class distributed.scheduler.Scheduler(center=None, loop=None, delete_interval=500, syn-
chronize_worker_interval=60000, services=None, al-
lowed_failures=3, extensions=None, validate=False,
scheduler_file=None, security=None, **kwargs)

Dynamic distributed task scheduler

The scheduler tracks the current state of workers, data, and computations. The scheduler listens for events
and responds by controlling workers appropriately. It continuously tries to use the workers to execute an ever
growing dask graph.

All events are handled quickly, in linear time with respect to their input (which is often of constant size) and
generally within a millisecond. To accomplish this the scheduler tracks a lot of state. Every operation maintains
the consistency of this state.

The scheduler communicates with the outside world through Comm objects. It maintains a consistent and valid
view of the world even when listening to several clients at once.

A Scheduler is typically started either with the dask-scheduler executable:

$ dask-scheduler
Scheduler started at 127.0.0.1:8786

Or within a LocalCluster a Client starts up without connection information:

>>> c = Client()
>>> c.cluster.scheduler
Scheduler(...)

Users typically do not interact with the scheduler directly but rather with the client object Client.

State

The scheduler contains the following state variables. Each variable is listed along with what it stores and a brief
description.

• tasks: {task key: TaskState} Tasks currently known to the scheduler

• unrunnable: {TaskState} Tasks in the “no-worker” state

• workers: {worker key: WorkerState} Workers currently connected to the scheduler

74 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

• idle: {WorkerState}: Set of workers that are not fully utilized

• saturated: {WorkerState}: Set of workers that are not over-utilized

• host_info: {hostname: dict}: Information about each worker host

• clients: {client key: ClientState} Workers currently connected to the scheduler

• services: {str: port}: Other services running on this scheduler, like Bokeh

• loop: IOLoop: The running Tornado IOLoop

• client_comms: {client key: Comm} For each client, a Comm object used to receive task requests
and report task status updates.

• worker_comms: {worker key: Comm} For each worker, a Comm object from which we both ac-
cept stimuli and report results

• task_duration: {key-prefix: time} Time we expect certain functions to take, e.g. {'sum':
0.25}

• coroutines: [Futures]: A list of active futures that control operation

add_client(*args, **kwargs)
Add client to network

We listen to all future messages from this Comm.

add_keys(comm=None, worker=None, keys=())
Learn that a worker has certain keys

This should not be used in practice and is mostly here for legacy reasons. However, it is sent by workers
from time to time.

add_plugin(plugin)
Add external plugin to scheduler

See https://distributed.readthedocs.io/en/latest/plugins.html

add_worker(comm=None, address=None, keys=(), ncores=None, name=None, re-
solve_address=True, nbytes=None, now=None, resources=None, host_info=None,
memory_limit=None, **info)

Add a new worker to the cluster

broadcast(*args, **kwargs)
Broadcast message to workers, return all results

cancel_key(key, client, retries=5, force=False)
Cancel a particular key and all dependents

cleanup(*args, **kwargs)
Clean up queues and coroutines, prepare to stop

client_heartbeat(client=None)
Handle heartbeats from Client

client_releases_keys(keys=None, client=None)
Remove keys from client desired list

close(*args, **kwargs)
Send cleanup signal to all coroutines then wait until finished

See also:

Scheduler.cleanup

3.16. Scheduling State 75

https://distributed.readthedocs.io/en/latest/plugins.html

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

close_comms()
Close all active Comms.

close_worker(*args, **kwargs)
Remove a worker from the cluster

This both removes the worker from our local state and also sends a signal to the worker to shut down. This
works regardless of whether or not the worker has a nanny process restarting it

coerce_address(addr, resolve=True)
Coerce possible input addresses to canonical form. resolve can be disabled for testing with fake hostnames.

Handles strings, tuples, or aliases.

coerce_hostname(host)
Coerce the hostname of a worker.

decide_worker(ts)
Decide on a worker for task ts. Return a WorkerState.

feed(*args, **kwargs)
Provides a data Comm to external requester

Caution: this runs arbitrary Python code on the scheduler. This should eventually be phased out. It is
mostly used by diagnostics.

finished(*args, **kwargs)
Wait until all coroutines have ceased

gather(*args, **kwargs)
Collect data in from workers

get_comm_cost(ts, ws)
Get the estimated communication cost (in s.) to compute the task on the given worker.

get_task_duration(ts, default=0.5)
Get the estimated computation cost of the given task (not including any communication cost).

get_versions(comm)
Basic information about ourselves and our cluster

get_worker_service_addr(worker, service_name)
Get the (host, port) address of the named service on the worker. Returns None if the service doesn’t exist.

handle_client(*args, **kwargs)
Listen and respond to messages from clients

This runs once per Client Comm or Queue.

See also:

Scheduler.worker_stream The equivalent function for workers

handle_long_running(key=None, worker=None, compute_duration=None)
A task has seceded from the thread pool

We stop the task from being stolen in the future, and change task duration accounting as if the task has
stopped.

handle_worker(*args, **kwargs)
Listen to responses from a single worker

This is the main loop for scheduler-worker interaction

76 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

See also:

Scheduler.handle_client Equivalent coroutine for clients

identity(comm=None)
Basic information about ourselves and our cluster

rebalance(*args, **kwargs)
Rebalance keys so that each worker stores roughly equal bytes

Policy

This orders the workers by what fraction of bytes of the existing keys they have. It walks down this list
from most-to-least. At each worker it sends the largest results it can find and sends them to the least
occupied worker until either the sender or the recipient are at the average expected load.

reevaluate_occupancy(worker_index=0)
Periodically reassess task duration time

The expected duration of a task can change over time. Unfortunately we don’t have a good constant-time
way to propagate the effects of these changes out to the summaries that they affect, like the total expected
runtime of each of the workers, or what tasks are stealable.

In this coroutine we walk through all of the workers and re-align their estimates with the current state of
tasks. We do this periodically rather than at every transition, and we only do it if the scheduler process
isn’t under load (using psutil.Process.cpu_percent()). This lets us avoid this fringe optimization when we
have better things to think about.

remove_client(client=None)
Remove client from network

remove_plugin(plugin)
Remove external plugin from scheduler

remove_worker(comm=None, address=None, safe=False, close=True)
Remove worker from cluster

We do this when a worker reports that it plans to leave or when it appears to be unresponsive. This may
send its tasks back to a released state.

replicate(*args, **kwargs)
Replicate data throughout cluster

This performs a tree copy of the data throughout the network individually on each piece of data.

Parameters keys: Iterable

list of keys to replicate

n: int

Number of replications we expect to see within the cluster

branching_factor: int, optional

The number of workers that can copy data in each generation. The larger the branching
factor, the more data we copy in a single step, but the more a given worker risks being
swamped by data requests.

See also:

Scheduler.rebalance

3.16. Scheduling State 77

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

report(msg, ts=None, client=None)
Publish updates to all listening Queues and Comms

If the message contains a key then we only send the message to those comms that care about the key.

reschedule(key=None, worker=None)
Reschedule a task

Things may have shifted and this task may now be better suited to run elsewhere

restart(*args, **kwargs)
Restart all workers. Reset local state.

retire_workers(*args, **kwargs)
Gracefully retire workers from cluster

Parameters workers: list (optional)

List of worker IDs to retire. If not provided we call workers_to_close which finds
a good set

remove: bool (defaults to True)

Whether or not to remove the worker metadata immediately or else wait for the worker
to contact us

close_workers: bool (defaults to False)

Whether or not to actually close the worker explicitly from here. Otherwise we expect
some external job scheduler to finish off the worker.

Returns Dictionary mapping worker ID/address to dictionary of information about

that worker for each retired worker.

run_function(stream, function, args=(), kwargs={})
Run a function within this process

See also:

Client.run_on_scheduler

scatter(*args, **kwargs)
Send data out to workers

See also:

Scheduler.broadcast

send_task_to_worker(worker, key)
Send a single computational task to a worker

start(addr_or_port=8786, start_queues=True)
Clear out old state and restart all running coroutines

start_ipython(comm=None)
Start an IPython kernel

Returns Jupyter connection info dictionary.

stimulus_cancel(comm, keys=None, client=None, force=False)
Stop execution on a list of keys

stimulus_missing_data(cause=None, key=None, worker=None, ensure=True, **kwargs)
Mark that certain keys have gone missing. Recover.

78 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

stimulus_task_erred(key=None, worker=None, exception=None, traceback=None, **kwargs)
Mark that a task has erred on a particular worker

stimulus_task_finished(key=None, worker=None, **kwargs)
Mark that a task has finished execution on a particular worker

story(*keys)
Get all transitions that touch one of the input keys

transition(key, finish, *args, **kwargs)
Transition a key from its current state to the finish state

Returns Dictionary of recommendations for future transitions

See also:

Scheduler.transitions transitive version of this function

Examples

>>> self.transition('x', 'waiting')
{'x': 'processing'}

transition_story(*keys)
Get all transitions that touch one of the input keys

transitions(recommendations)
Process transitions until none are left

This includes feedback from previous transitions and continues until we reach a steady state

update_data(comm=None, who_has=None, nbytes=None, client=None)
Learn that new data has entered the network from an external source

See also:

Scheduler.mark_key_in_memory

update_graph(client=None, tasks=None, keys=None, dependencies=None, restrictions=None, pri-
ority=None, loose_restrictions=None, resources=None, submitting_task=None, re-
tries=None)

Add new computations to the internal dask graph

This happens whenever the Client calls submit, map, get, or compute.

valid_workers(ts)
Return set of currently valid workers for key

If all workers are valid then this returns True. This checks tracks the following state:

• worker_restrictions

• host_restrictions

• resource_restrictions

worker_objective(ts, ws)
Objective function to determine which worker should get the task

Minimize expected start time. If a tie then break with data storage.

3.16. Scheduling State 79

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

worker_send(worker, msg)
Send message to worker

This also handles connection failures by adding a callback to remove the worker on the next cycle.

workers_list(workers)
List of qualifying workers

Takes a list of worker addresses or hostnames. Returns a list of all worker addresses that match

workers_to_close(memory_ratio=2, key=None)
Find workers that we can close with low cost

This returns a list of workers that are good candidates to retire. These workers are not running anything
and are storing relatively little data relative to their peers. If all workers are idle then we still maintain
enough workers to have enough RAM to store our data, with a comfortable buffer.

This is for use with systems like distributed.deploy.adaptive.

Parameters memory_factor: Number

Amount of extra space we want to have for our stored data. Defaults two 2, or that we
want to have twice as much memory as we currently have data.

key: Callable(WorkerState)

An optional callable mapping a WorkerState object to a group affiliation. Groups will
be closed together. This is useful when closing workers must be done collectively, such
as by hostname.

Returns to_close: list of worker addresses that are OK to close

Examples

>>> scheduler.workers_to_close()
['tcp://192.168.0.1:1234', 'tcp://192.168.0.2:1234']

Group workers by hostname prior to closing

>>> scheduler.workers_to_close(key=lambda ws: ws.host)
['tcp://192.168.0.1:1234', 'tcp://192.168.0.1:4567']

distributed.scheduler.decide_worker(ts, all_workers, valid_workers, objective)
Decide which worker should take task ts.

We choose the worker that has the data on which ts depends.

If several workers have dependencies then we choose the less-busy worker.

Optionally provide valid_workers of where jobs are allowed to occur (if all workers are allowed to take the task,
pass True instead).

If the task requires data communication because no eligible worker has all the dependencies already, then we
choose to minimize the number of bytes sent between workers. This is determined by calling the objective
function.

80 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.17 Worker

3.17.1 Overview

Workers provide two functions:

1. Compute tasks as directed by the scheduler

2. Store and serve computed results to other workers or clients

Each worker contains a ThreadPool that it uses to evaluate tasks as requested by the scheduler. It stores the results of
these tasks locally and serves them to other workers or clients on demand. If the worker is asked to evaluate a task
for which it does not have all of the necessary data then it will reach out to its peer workers to gather the necessary
dependencies.

A typical conversation between a scheduler and two workers Alice and Bob may look like the following:

Scheduler -> Alice: Compute ``x <- add(1, 2)``!
Alice -> Scheduler: I've computed x and am holding on to it!

Scheduler -> Bob: Compute ``y <- add(x, 10)``!
You will need x. Alice has x.

Bob -> Alice: Please send me x.
Alice -> Bob: Sure. x is 3!
Bob -> Scheduler: I've computed y and am holding on to it!

3.17.2 Storing Data

Data is stored locally in a dictionary in the .data attribute that maps keys to the results of function calls.

>>> worker.data
{'x': 3,
'y': 13,
...
'(df, 0)': pd.DataFrame(...),
...
}

This .data attribute is a MutableMapping that is typically a combination of in-memory and on-disk storage with
an LRU policy to move data between them.

3.17.3 Thread Pool

Each worker sends computations to a thread in a concurrent.futures.ThreadPoolExecutor for computation. These
computations occur in the same process as the Worker communication server so that they can access and share data
efficiently between each other. For the purposes of data locality all threads within a worker are considered the same
worker.

If your computations are mostly numeric in nature (for example NumPy and Pandas computations) and release the
GIL entirely then it is advisable to run dask-worker processes with many threads and one process. This reduces
communication costs and generally simplifies deployment.

If your computations are mostly Python code and don’t release the GIL then it is advisable to run dask-worker
processes with many processes and one thread per core:

3.17. Worker 81

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

$ dask-worker scheduler:8786 --nprocs 8

If your computations are external to Python and long-running and don’t release the GIL then beware that while the
computation is running the worker process will not be able to communicate to other workers or to the scheduler. This
situation should be avoided. If you don’t link in your own custom C/Fortran code then this topic probably doesn’t
apply to you.

3.17.4 Command Line tool

Use the dask-worker command line tool to start an individual worker. Here are the available options:

$ dask-worker --help
Usage: dask-worker [OPTIONS] SCHEDULER

Options:
--worker-port INTEGER Serving worker port, defaults to randomly assigned
--http-port INTEGER Serving http port, defaults to randomly assigned
--nanny-port INTEGER Serving nanny port, defaults to randomly assigned
--port INTEGER Deprecated, see --nanny-port
--host TEXT Serving host. Defaults to an ip address that can

hopefully be visible from the scheduler network.
--nthreads INTEGER Number of threads per process. Defaults to number of

cores
--nprocs INTEGER Number of worker processes. Defaults to one.
--name TEXT Alias
--memory-limit TEXT Number of bytes before spilling data to disk
--no-nanny
--help Show this message and exit.

3.17.5 Internal Scheduling

Internally tasks that come to the scheduler proceed through the following pipeline:

The worker also tracks data dependencies that are required to run the tasks above. These follow through a simpler
pipeline:

As tasks arrive they are prioritized and put into a heap. They are then taken from this heap in turn to have any
remote dependencies collected. For each dependency we select a worker at random that has that data and collect the
dependency from that worker. To improve bandwidth we opportunistically gather other dependencies of other tasks
that are known to be on that worker, up to a maximum of 200MB of data (too little data and bandwidth suffers, too
much data and responsiveness suffers). We use a fixed number of connections (around 10-50) so as to avoid overly-
fragmenting our network bandwidth. After all dependencies for a task are in memory we transition the task to the
ready state and put the task again into a heap of tasks that are ready to run.

We collect from this heap and put the task into a thread from a local thread pool to execute.

Optionally, this task may identify itself as a long-running task (see Tasks launching tasks), at which point it secedes
from the thread pool.

A task either errs or its result is put into memory. In either case a response is sent back to the scheduler.

82 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.17.6 Memory Management

Workers are given a target memory limit to stay under with the command line --memory-limit keyword or the
memory_limit= Python keyword argument.:

$ dask-worker tcp://scheduler:port --memory-limit=auto # total available RAM
$ dask-worker tcp://scheduler:port --memory-limit=4e9 # four gigabytes

Workers use a few different policies to keep memory use beneath this limit:

1. At 60% of memory load (as estimated by sizeof), spill least recently used data to disk

2. At 70% of memory load, spill least recently used data to disk regardless of what is reported by sizeof

3. At 80% of memory load, stop accepting new work on local thread pool

4. At 95% of memory load, terminate and restart the worker

These values can be configured by modifying the ~/.dask/config.yaml file

Fractions of worker memory at which we take action to avoid memory blowup
Set any of the lower three values to False to turn off the behavior entirely
worker-memory-target: 0.60 # target fraction to stay below
worker-memory-spill: 0.70 # fraction at which we spill to disk
worker-memory-pause: 0.80 # fraction at which we pause worker threads
worker-memory-terminate: 0.95 # fraction at which we terminate the worker

Spill data to Disk

Every time the worker finishes a task it estimates the size in bytes that the result costs to keep in memory using the
sizeof function. This function defaults to sys.getsizeof for arbitrary objects which uses the standard Python
__sizeof__ protocol, but also has special-cased implementations for common data types like NumPy arrays and Pandas
dataframes.

When the sum of the number of bytes of the data in memory exceeds 60% of the available threshold the worker will
begin to dump the least recently used data to disk. You can control this location with the --local-directory
keyword.:

$ dask-worker tcp://scheduler:port --memory-limit 4e9 --local-directory /scratch

That data is still available and will be read back from disk when necessary. On the diagnostic dashboard status page
disk I/O will show up in the task stream plot as orange blocks. Additionally the memory plot in the upper left will
become orange and then red.

Monitor process memory load

The approach above can fail for a few reasons

1. Custom objects may not report their memory size accurately

2. User functions may take up more RAM than expected

3. Significant amounts of data may accumulate in network I/O buffers

To address this we periodically monitor the memory of the worker process every 200 ms. If the system reported
memory use is above 70% of the target memory usage then the worker will start dumping unused data to disk, even if
internal sizeof recording hasn’t yet reached the normal 60% limit.

3.17. Worker 83

https://docs.python.org/3/library/sys.html#sys.getsizeof

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Halt worker threads

At 80% load the worker’s thread pool will stop accepting new tasks. This gives time for the write-to-disk functionality
to take effect even in the face of rapidly accumulating data.

Kill Worker

At 95% memory load a worker’s nanny process will terminate it. This is to avoid having our worker job being
terminated by an external job scheduler (like YARN, Mesos, SGE, etc..). After termination the nanny will restart the
worker in a fresh state.

3.17.7 API Documentation

class distributed.worker.Worker(*args, **kwargs)
Worker node in a Dask distributed cluster

Workers perform two functions:

1. Serve data from a local dictionary

2. Perform computation on that data and on data from peers

Workers keep the scheduler informed of their data and use that scheduler to gather data from other workers
when necessary to perform a computation.

You can start a worker with the dask-worker command line application:

$ dask-worker scheduler-ip:port

Use the --help flag to see more options

$ dask-worker –help

The rest of this docstring is about the internal state the the worker uses to manage and track internal computa-
tions.

State

Informational State

These attributes don’t change significantly during execution.

• ncores: int: Number of cores used by this worker process

• executor: concurrent.futures.ThreadPoolExecutor: Executor used to perform computa-
tion

• local_dir: path: Path on local machine to store temporary files

• scheduler: rpc: Location of scheduler. See .ip/.port attributes.

• name: string: Alias

• services: {str: Server}: Auxiliary web servers running on this worker

• service_ports: {str: port}:

• total_connections: int The maximum number of concurrent connections we want to see

• total_comm_nbytes: int

• batched_stream: BatchedSend A batched stream along which we communicate to the scheduler

84 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

• log: [(message)] A structured and queryable log. See Worker.story

Volatile State

This attributes track the progress of tasks that this worker is trying to complete. In the descriptions below a key
is the name of a task that we want to compute and dep is the name of a piece of dependent data that we want to
collect from others.

• data: {key: object}: Dictionary mapping keys to actual values

• task_state: {key: string}: The state of all tasks that the scheduler has asked us to compute. Valid
states include waiting, constrained, exeucuting, memory, erred

• tasks: {key: dict} The function, args, kwargs of a task. We run this when appropriate

• dependencies: {key: {deps}} The data needed by this key to run

• dependents: {dep: {keys}} The keys that use this dependency

• data_needed: deque(keys) The keys whose data we still lack, arranged in a deque

• waiting_for_data: {kep: {deps}} A dynamic verion of dependencies. All dependencies that we
still don’t have for a particular key.

• ready: [keys] Keys that are ready to run. Stored in a LIFO stack

• constrained: [keys] Keys for which we have the data to run, but are waiting on abstract resources like
GPUs. Stored in a FIFO deque

• executing: {keys} Keys that are currently executing

• executed_count: int A number of tasks that this worker has run in its lifetime

• long_running: {keys} A set of keys of tasks that are running and have started their own long-running
clients.

• dep_state: {dep: string}: The state of all dependencies required by our tasks Valid states include
waiting, flight, and memory

• who_has: {dep: {worker}} Workers that we believe have this data

• has_what: {worker: {deps}} The data that we care about that we think a worker has

• pending_data_per_worker: {worker: [dep]} The data on each worker that we still want, priori-
tized as a deque

• in_flight_tasks: {task: worker} All dependencies that are coming to us in current peer-to-peer
connections and the workers from which they are coming.

• in_flight_workers: {worker: {task}} The workers from which we are currently gathering data
and the dependencies we expect from those connections

• comm_bytes: int The total number of bytes in flight

• suspicious_deps: {dep: int} The number of times a dependency has not been where we expected it

• nbytes: {key: int} The size of a particular piece of data

• types: {key: type} The type of a particular piece of data

• threads: {key: int} The ID of the thread on which the task ran

• active_threads: {int: key} The keys currently running on active threads

• exceptions: {key: exception} The exception caused by running a task if it erred

• tracebacks: {key: traceback} The exception caused by running a task if it erred

3.17. Worker 85

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

• startstops: {key: [(str, float, float)]} Log of transfer, load, and compute times for a
task

• priorities: {key: tuple} The priority of a key given by the scheduler. Determines run order.

• durations: {key: float} Expected duration of a task

• resource_restrictions: {key: {str: number}} Abstract resources required to run a task

Parameters scheduler_ip: str

scheduler_port: int

ip: str, optional

ncores: int, optional

loop: tornado.ioloop.IOLoop

local_dir: str, optional

Directory where we place local resources

name: str, optional

heartbeat_interval: int

Milliseconds between heartbeats to scheduler

memory_limit: int, float, string

Number of bytes of memory that this worker should use. Set to zero for no limit. Set to
‘auto’ for 60% of memory use. Use strings or numbers like 5GB or 5e9

memory_target_fraction: float

Fraction of memory to try to stay beneath

memory_spill_fraction: float

Fraction of memory at which we start spilling to disk

memory_pause_fraction: float

Fraction of memory at which we stop running new tasks

executor: concurrent.futures.Executor

resources: dict

Resources that thiw worker has like {'GPU': 2}

See also:

distributed.scheduler.Scheduler, distributed.nanny.Nanny

Examples

Use the command line to start a worker:

$ dask-scheduler
Start scheduler at 127.0.0.1:8786

$ dask-worker 127.0.0.1:8786

86 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Start worker at: 127.0.0.1:1234
Registered with scheduler at: 127.0.0.1:8786

3.18 Work Stealing

Some tasks prefer to run on certain workers. This may be because that worker holds data dependencies of the task or
because the user has expressed a loose desire that the task run in a particular place. Occasionally this results in a few
very busy workers and several idle workers. In this situation the idle workers may choose to steal work from the busy
workers, even if stealing work requires the costly movement of data.

This is a performance optimization and not required for correctness. Work stealing provides robustness in many ad-hoc
cases, but can also backfire when we steal the wrong tasks and reduce performance.

3.18.1 Criteria for stealing

Computation to Communication Ratio

Stealing is profitable when the computation time for a task is much longer than the communication time of the task’s
dependencies.

Bad example

We do not want to steal tasks that require moving a large dependent piece of data across a wire from the victim to the
thief if the computation is fast. We end up spending far more time in communication than just waiting a bit longer and
giving up on parallelism.

[data] = client.scatter([np.arange(1000000000)])
x = client.submit(np.sum, data)

Good example

We do want to steal task tasks that only need to move dependent pieces of data, especially when the computation time
is expensive (here 100 seconds.)

[data] = client.scatter([100])
x = client.submit(sleep, data)

Fortunately we often know both the number of bytes of dependencies (as reported by calling sys.getsizeof on
the workers) and the runtime cost of previously seen functions, which is maintained as an exponentially weighted
moving average.

Saturated Worker Burden

Stealing may be profitable even when the computation-time to communication-time ratio is poor. This occurs when
the saturated workers have a very long backlog of tasks and there are a large number of idle workers. We determine if
it acceptable to steal a task if the last task to be run by the saturated workers would finish more quickly if stolen or if
it remains on the original/victim worker.

The longer the backlog of stealable tasks, and the smaller the number of active workers we have both increase our
willingness to steal. This is balanced against the compute-to-communicate cost ratio.

3.18. Work Stealing 87

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Replicate Popular Data

It is also good long term if stealing causes highly-sought-after data to be replicated on more workers.

Steal from the Rich

We would like to steal tasks from particularly over-burdened workers rather than workers with just a few excess tasks.

Restrictions

If a task has been specifically restricted to run on particular workers (such as is the case when special hardware is
required) then we do not steal.

3.18.2 Choosing tasks to steal

We maintain a list of sets of stealable tasks, ordered into bins by computation-to-communication time ratio. The first
bin contains all tasks with a compute-to-communicate ratio greater than or equal to 8 (considered high enough to
always steal), the next bin with a ratio of 4, the next bin with a ratio of 2, etc.., all the way down to a ratio of 1/256,
which we will never steal.

This data structure provides a somewhat-ordered view of all stealable tasks that we can add to and remove from in
constant time, rather than log(n) as with more traditional data structures, like a heap.

During any stage when we submit tasks to workers we check if there are both idle and saturated workers and if so we
quickly run through this list of sets, selecting tasks from the best buckets first, working our way down to the buckets
of less desirable stealable tasks. We stop either when there are no more stealable tasks, no more idle workers, or when
the quality of the task-to-be-stolen is not high enough given the current backlog.

This approach is fast, optimizes to steal the tasks with the best computation-to-communication cost ratio (up to a factor
of two) and tends to steal from the workers that have the largest backlogs, just by nature that random selection tends
to draw from the largest population.

3.18.3 Transactional Work Stealing

To avoid running the same task twice, Dask implements transactional work stealing. When the scheduler identifies a
task that should be moved it first sends a request to the busy worker. The worker inspects its current state of the task
and sends a response to the scheduler:

1. If the task is not yet running, then the worker cancels the task and informs the scheduler that it can reroute the
ask elsewhere.

2. If the task is already running or complete then the worker tells the scheduler that it should not replicate the task
elsewhere.

This avoids redundant work, and also the duplication of side effects for more exotic tasks. However, concurrent or
repeated execution of the same task is still possible in the event of worker death or a disrupted network connection.

3.19 Adaptive Deployments

It is possible to grow and shrink Dask clusters based on current use. This allows you to run Dask permanently on your
cluster and have it only take up resources when necessary. Dask contains the logic about when to grow and shrink
but relies on external cluster managers to launch and kill dask-worker jobs. This page describes the policies about

88 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

adaptively resizing Dask clusters based on load, how to connect these policies to a particular job scheduler, and an
example implementation.

Dynamically scaling a Dask cluster up and down requires tight integration with an external cluster management system
that can deploy dask-worker jobs throughout the cluster. Several systems are in wide use today, including common
examples like SGE, SLURM, Torque, Condor, LSF, Yarn, Mesos, Marathon, Kubernetes, etc. . . These systems can be
quite different from each other, but all are used to manage distributed services throughout different kinds of clusters.

The large number of relevant systems, the challenges of rigorously testing each, and finite development time precludes
the systematic inclusion of all solutions within the dask/distributed repository. Instead, we include a generic interface
that can be extended by someone with basic understanding of their cluster management tool. We encourage these as
third party modules.

3.19.1 Policies

We control the number of workers based on current load and memory use. The scheduler checks itself periodically to
determine if more or fewer workers are needed.

If there are excess unclaimed tasks, or if the memory of the current workers is more nearing full then the scheduler
tries to increase the number of workers by a fixed factor, defaulting to 2. This causes exponential growth while growth
is useful.

If there are idle workers and if the memory of the current workers is nearing empty then we gracefully retire the idle
workers with the least amount of data in memory. We first move these results to the surviving workers and then remove
the idle workers from the cluster. This shrinks the cluster while gracefully preserving intermediate results, shrinking
the cluster when excess size is not useful.

3.19.2 Adaptive class interface

The distributed.deploy.Adaptive class contains the logic about when to ask for new workers, and when to
close idle ones. This class requires both a scheduler and a cluster object.

The cluster object must support two methods, scale_up(n, **kwargs), which takes in a target number of total
workers for the cluster and scale_down(workers), which takes in a list of addresses to remove from the cluster.
The Adaptive class will call these methods with the correct values at the correct times.

class MyCluster(object):
@gen.coroutine
def scale_up(self, n, **kwargs):

"""
Bring the total count of workers up to ``n``

This function/coroutine should bring the total number of workers up to
the number ``n``.

This can be implemented either as a function or as a Tornado coroutine.
"""
raise NotImplementedError()

@gen.coroutine
def scale_down(self, workers):

"""
Remove ``workers`` from the cluster

Given a list of worker addresses this function should remove those
workers from the cluster. This may require tracking which jobs are

3.19. Adaptive Deployments 89

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

associated to which worker address.

This can be implemented either as a function or as a Tornado coroutine.
"""

from distributed.deploy import Adaptive

scheduler = Scheduler()
cluster = MyCluster()
adapative_cluster = Adaptive(scheduler, cluster)
scheduler.start()

Implementing these scale_up and scale_down functions depends strongly on the cluster management system.
See LocalCluster for an example.

3.19.3 Marathon: an example

We now present an example project that implements this cluster interface backed by the Marathon cluster management
tool on Mesos. Full source code and testing apparatus is available here: http://github.com/mrocklin/dask-marathon

The implementation is small. It uses the Marathon HTTP API through the marathon Python client library. We
reproduce the full body of the implementation below as an example:

from marathon import MarathonClient, MarathonApp
from marathon.models.container import MarathonContainer

class MarathonCluster(object):
def __init__(self, scheduler,

executable='dask-worker',
docker_image='mrocklin/dask-distributed',
marathon_address='http://localhost:8080',
name=None, **kwargs):

self.scheduler = scheduler

Create Marathon App to run dask-worker
args = [executable, scheduler.address,

'--name', '$MESOS_TASK_ID'] # use Mesos task ID as worker name
if 'mem' in kwargs:

args.extend(['--memory-limit',
str(int(kwargs['mem'] * 0.6 * 1e6))])

kwargs['cmd'] = ' '.join(args)
container = MarathonContainer({'image': docker_image})

app = MarathonApp(instances=0, container=container, **kwargs)

Connect and register app
self.client = MarathonClient(marathon_address)
self.app = self.client.create_app(name or 'dask-%s' % uuid.uuid4(), app)

def scale_up(self, instances):
self.marathon_client.scale_app(self.app.id, instances=instances)

def scale_down(self, workers):
for w in workers:

self.marathon_client.kill_task(self.app.id,
self.scheduler.worker_info[w]['name'],
scale=True)

90 Chapter 3. Contents

http://github.com/mrocklin/dask-marathon
https://github.com/thefactory/marathon-python

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.19.4 Subclassing Adaptive

The default behaviors of Adaptive controlling when to scale up or down, and by how much, may not be appropriate
for your cluster manager or workload. For example, you may have tasks that require a worker with more memory than
usual. This means we need to pass through some additional keyword arguments to cluster.scale_up call.

from distributed.deploy import Adaptive

class MyAdaptive(Adaptive):
def get_scale_up_kwargs(self):

kwargs = super(Adaptive, self).get_scale_up_kwargs()
resource_restrictions maps task keys to a dict of restrictions
restrictions = self.scheduler.resource_restrictions.values()
memory_restrictions = [x.get('memory') for x in restrictions

if 'memory' in x]

if memory_restrictions:
kwargs['memory'] = max(memory_restrictions)

return kwargs

So if there are any tasks that are waiting to be run on a worker with enough memory, the kwargs dictionary passed
to cluster.scale_up will include a key and value for 'memory' (your Cluster.scale_up method needs
to be able to support this).

3.20 Asynchronous Operation

Dask.distributed can operate as a fully asynchronous framework and so interoperate with other highly concurrent
applications. Internally Dask is built on top of Tornado coroutines but also has a compatibility layer for asyncio (see
below).

3.20.1 Basic Operation

When starting a client provide the asynchronous=True keyword to tell Dask that you intend to use this client
within an asynchronous context.

client = await Client(asynchronous=True)

Operations that used to block now provide Tornado coroutines on which you can await.

Fast functions that only submit work remain fast and don’t need to be awaited. This includes all functions that submit
work to the cluster, like submit, map, compute, and persist.

future = client.submit(lambda x: x + 1, 10)

You can await futures directly

result = await future

>>> print(result)
11

3.20. Asynchronous Operation 91

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Or you can use the normal client methods. Any operation that waited until it received information from the scheduler
should now be await’ed.

result = await client.gather(future)

If you want to reuse the same client in asynchronous and synchronous environments you can apply the
asynchronous=True keyword at each method call.

client = Client() # normal blocking client

async def f():
futures = client.map(func, L)
results = await client.gather(futures, asynchronous=True)
return results

3.20.2 AsyncIO

If you prefer to use the Asyncio event loop over the Tornado event loop you should use the AioClient.

from distributed.asyncio import AioClient
client = await AioClient()

All other operations remain the same:

future = client.submit(lambda x: x + 1, 10)
result = await future
or
result = await client.gather(future)

3.20.3 Python 2 Compatibility

Everything here works with Python 2 if you replace await with yield. See more extensive comparison in the
example below.

3.20.4 Example

This self-contained example starts an asynchronous client, submits a trivial job, waits on the result, and then shuts
down the client. You can see implementations for Python 2 and 3 and for Asyncio and Tornado.

Python 3 with Tornado

from dask.distributed import Client

async def f():
client = await Client(asynchronous=True)
future = client.submit(lambda x: x + 1, 10)
result = await future
await client.close()
return result

from tornado.ioloop import IOLoop
IOLoop().run_sync(f)

92 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Python 2/3 with Tornado

from dask.distributed import Client
from tornado import gen

@gen.coroutine
def f():

client = yield Client(asynchronous=True)
future = client.submit(lambda x: x + 1, 10)
result = yield future
yield client.close()
raise gen.Result(result)

from tornado.ioloop import IOLoop
IOLoop().run_sync(f)

Python 3 with Asyncio

from distributed.asyncio import AioClient

async def f():
client = await AioClient()
future = client.submit(lambda x: x + 1, 10)
result = await future
await client.close()
return result

from asyncio import get_event_loop
get_event_loop().run_until_complete(f())

3.20.5 Use Cases

Historically this has been used in a few kinds of applications:

1. To integrate Dask into other asynchronous services (such as web backends), supplying a computational engine
similar to Celery, but while still maintaining a high degree of concurrency and not blocking needlessly.

2. For computations that change or update state very rapidly, such as is common in some advanced machine
learning workloads.

3. To develop the internals of Dask’s distributed infrastucture, which is written entirely in this style.

4. For complex control and data structures in advanced applications.

3.21 Configuration

As with any distributed computation system, taking full advantage of Dask distributed sometimes requires configura-
tion. Some options can be passed as API parameters and/or command line options to the various Dask executables.
However, some options can also be entered in the Dask configuration file.

3.21. Configuration 93

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.21.1 User-wide configuration

Dask accepts some configuration options in a configuration file, which by default is a .dask/config.yaml file
located in your home directory. The file path can be overriden using the DASK_CONFIG environment variable. In
order to parse this configuration file, the pyyaml module needs to be installed. If the pyyaml module is not installed,
the configuration file is ignored.

The file is written in the YAML format, which allows for a human-readable hierarchical key-value configuration. All
keys in the configuration file are optional, though Dask will create a default configuration file for you on its first launch.

Here is a synopsis of the configuration file:

logging:
distributed: info
distributed.client: warning
bokeh: critical

Scheduler options
bandwidth: 100000000 # 100 MB/s estimated worker-worker bandwidth
allowed-failures: 3 # number of retries before a task is considered bad
pdb-on-err: False # enter debug mode on scheduling error
transition-log-length: 100000

Worker options
multiprocessing-method: forkserver

Communication options
compression: auto
tcp-timeout: 30 # seconds delay before calling an unresponsive connection dead
default-scheme: tcp
require-encryption: False # whether to require encryption on non-local comms
tls:

ca-file: myca.pem
scheduler:

cert: mycert.pem
key: mykey.pem

worker:
cert: mycert.pem
key: mykey.pem

client:
cert: mycert.pem
key: mykey.pem

#ciphers:
#ECDHE-ECDSA-AES128-GCM-SHA256

Bokeh web dashboard
bokeh-export-tool: False

We will review some of those options hereafter.

Communication options

compression

This key configures the desired compression scheme when transferring data over the network. The default value,
“auto”, applies heuristics to try and select the best compression scheme for each piece of data.

94 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

default-scheme

The communication scheme used by default. You can override the default (“tcp”) here, but it is recommended to use
explicit URIs for the various endpoints instead (for example tls:// if you want to enable TLS communications).

require-encryption

Whether to require that all non-local communications be encrypted. If true, then Dask will refuse establishing any
clear-text communications (for example over TCP without TLS), forcing you to use a secure transport such as TLS.

tcp-timeout

The default “timeout” on TCP sockets. If a remote endpoint is unresponsive (at the TCP layer, not at the distributed
layer) for at least the specified number of seconds, the communication is considered closed. This helps detect endpoints
that have been killed or have disconnected abruptly.

tls

This key configures TLS communications. Several sub-keys are recognized:

• ca-file configures the CA certificate file used to authenticate and authorize all endpoints.

• ciphers restricts allowed ciphers on TLS communications.

Each kind of endpoint has a dedicated endpoint sub-key: scheduler, worker and client. Each endpoint sub-key
also supports several sub-keys:

• cert configures the certificate file for the endpoint.

• key configures the private key file for the endpoint.

Scheduler options

allowed-failures

The number of retries before a “suspicious” task is considered bad. A task is considered “suspicious” if the worker
died while executing it.

bandwidth

The estimated network bandwidth, in bytes per second, from worker to worker. This value is used to estimate the time
it takes to ship data from one node to another, and balance tasks and data accordingly.

Misc options

logging

This key configures the logging settings. There are two possible formats. The simple, recommended format configures
the desired verbosity level for each logger. It also sets default values for several loggers such as distributed unless
explicitly configured.

3.21. Configuration 95

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

A more extended format is possible following the logging module’s Configuration dictionary schema. To enable
this extended format, there must be a version sub-key as mandated by the schema. The extended format does not
set any default values.

Note: Python’s logging module uses a hierarchical logger tree. For example, configuring the logging level for the
distributed logger will also affect its children such as distributed.scheduler, unless explicitly overriden.

logging-file-config

As an alternative to the two logging settings formats discussed above, you can specify a logging config file. Its format
adheres to the logging module’s Configuration file format.

Note: The configuration options logging-file-config and logging are mutually exclusive.

3.22 EC2 Startup Script

First, add your AWS credentials to ~/.aws/credentials like this:

[default]
aws_access_key_id = YOUR_ACCESS_KEY
aws_secret_access_key = YOUR_SECRET_KEY

For other ways to manage or troubleshoot credentials, see the boto3 docs.

Now, you can quickly deploy a scheduler and workers on EC2 using the dask-ec2 quickstart application:

pip install dask-ec2
dask-ec2 up --keyname YOUR-AWS-KEY --keypair ~/.ssh/YOUR-AWS-SSH-KEY.pem

This provisions a cluster on Amazon’s EC2 cloud service, installs Anaconda, and sets up a scheduler and workers. In
then prints out instructions on how to connect to the cluster.

3.22.1 Options

The dask-ec2 startup script comes with the following options for creating a cluster:

$ dask-ec2 up --help
Usage: dask-ec2 up [OPTIONS]

Options:
--keyname TEXT Keyname on EC2 console [required]
--keypair PATH Path to the keypair that matches the keyname

→˓[required]
--name TEXT Tag name on EC2
--region-name TEXT AWS region [default: us-east-1]
--ami TEXT EC2 AMI [default: ami-d05e75b8]
--username TEXT User to SSH to the AMI [default: ubuntu]
--type TEXT EC2 Instance Type [default: m3.2xlarge]
--count INTEGER Number of nodes [default: 4]
--security-group TEXT Security Group Name [default: dask-ec2-default]

96 Chapter 3. Contents

https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/2/library/logging.config.html#logging-config-dictschema
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/2/library/logging.config.html#configuration-file-format
https://boto3.readthedocs.io/en/latest/guide/quickstart.html

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

--volume-type TEXT Root volume type [default: gp2]
--volume-size INTEGER Root volume size (GB) [default: 500]
--file PATH File to save the metadata [default: cluster.yaml]
--provision / --no-provision Provision salt on the nodes [default: True]
--dask / --no-dask Install Dask.Distributed in the cluster [default:

→˓True]
--nprocs INTEGER Number of processes per worker [default: 1]
-h, --help Show this message and exit.

3.22.2 Connect

Connection instructions follow successful completion of the dask-ec2 up command. The involve the following:

dask-ec2 ssh 0 # SSH into head node
ipython # Start IPython console on head node

>>> from distributed import Client
>>> c = Client('127.0.0.1:8786')

This client now has access to all the cores of your cluster.

3.22.3 Destroy

You can destroy your cluster from your local machine with the destroy command:

dask-ec2 destroy

3.23 Local Cluster

For convenience you can start a local cluster from your Python session.

>>> from distributed import Client, LocalCluster
>>> cluster = LocalCluster()
LocalCluster("127.0.0.1:8786", workers=8, ncores=8)
>>> client = Client(cluster)
<Client: scheduler=127.0.0.1:8786 processes=8 cores=8>

You can dynamically scale this cluster up and down:

>>> worker = cluster.add_worker()
>>> cluster.remove_worker(worker)

Alternatively, a LocalCluster is made for you automatically if you create an Client with no arguments:

>>> from distributed import Client
>>> client = Client()
>>> client
<Client: scheduler=127.0.0.1:8786 processes=8 cores=8>

3.23. Local Cluster 97

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.23.1 API

class distributed.deploy.local.LocalCluster(n_workers=None,
threads_per_worker=None, processes=True,
loop=None, start=True, ip=None,
scheduler_port=0, silence_logs=50,
diagnostics_port=8787, services={},
worker_services={}, service_kwargs=None,
**worker_kwargs)

Create local Scheduler and Workers

This creates a “cluster” of a scheduler and workers running on the local machine.

Parameters n_workers: int

Number of workers to start

processes: bool

Whether to use processes (True) or threads (False). Defaults to True

threads_per_worker: int

Number of threads per each worker

scheduler_port: int

Port of the scheduler. 8786 by default, use 0 to choose a random port

silence_logs: logging level

Level of logs to print out to stdout. logging.CRITICAL by default. Use a falsey
value like False or None for no change.

ip: string

IP address on which the scheduler will listen, defaults to only localhost

kwargs: dict

Extra worker arguments, will be passed to the Worker constructor.

service_kwargs: Dict[str, Dict]

Extra keywords to hand to the running services

Examples

>>> c = LocalCluster() # Create a local cluster with as many workers as cores
>>> c
LocalCluster("127.0.0.1:8786", workers=8, ncores=8)

>>> c = Client(c) # connect to local cluster

Add a new worker to the cluster >>> w = c.start_worker(ncores=2) # doctest: +SKIP

Shut down the extra worker >>> c.remove_worker(w) # doctest: +SKIP

Pass extra keyword arguments to Bokeh >>> LocalCluster(service_kwargs={‘bokeh’: {‘prefix’: ‘/foo’}}) #
doctest: +SKIP

close(timeout=20)
Close the cluster

98 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

scale_down(*args, **kwargs)
Remove workers from the cluster

Given a list of worker addresses this function should remove those workers from the cluster. This may
require tracking which jobs are associated to which worker address.

This can be implemented either as a function or as a Tornado coroutine.

scale_up(*args, **kwargs)
Bring the total count of workers up to n

This function/coroutine should bring the total number of workers up to the number n.

This can be implemented either as a function or as a Tornado coroutine.

start_worker(ncores=0, **kwargs)
Add a new worker to the running cluster

Parameters port: int (optional)

Port on which to serve the worker, defaults to 0 or random

ncores: int (optional)

Number of threads to use. Defaults to number of logical cores

Returns The created Worker or Nanny object. Can be discarded.

Examples

>>> c = LocalCluster()
>>> c.start_worker(ncores=2)

stop_worker(w)
Stop a running worker

Examples

>>> c = LocalCluster()
>>> w = c.start_worker(ncores=2)
>>> c.stop_worker(w)

3.24 IPython Integration

Dask.distributed integrates with IPython in three ways:

1. You can launch a Dask.distributed cluster from an IPyParallel cluster

2. You can launch IPython kernels from Dask Workers and Schedulers to assist with debugging

3. They both support the common concurrent.futures interface

3.24. IPython Integration 99

https://ipyparallel.readthedocs.io/en/latest/
https://docs.python.org/3/library/concurrent.futures.html

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.24.1 Launch Dask from IPyParallel

IPyParallel is IPython’s distributed computing framework that allows you to easily manage many IPython engines on
different computers.

An IPyParallel Client can launch a dask.distributed Scheduler and Workers on those IPython engines, ef-
fectively launching a full dask.distributed system.

This is possible with the Client.become_dask method:

$ ipcluster start

>>> from ipyparallel import Client
>>> c = Client() # connect to IPyParallel cluster

>>> e = c.become_dask() # start dask on top of IPyParallel
>>> e
<Client: scheduler="127.0.0.1:59683" processes=8 cores=8>

3.24.2 Launch IPython within Dask Workers

It is sometimes convenient to inspect the Worker or Scheduler process interactively. Fortunately IPython gives us
a way to launch interactive sessions within Python processes. This is available through the following methods:

Client.start_ipython_workers([workers, . . .]) Start IPython kernels on workers
Client.start_ipython_scheduler([magic_name,
. . .])

Start IPython kernel on the scheduler

These methods start IPython kernels running in a separate thread within the specified Worker or Schedulers. These
kernels are accessible either through IPython magics or a QT-Console.

Example with IPython Magics

>>> e.start_ipython_scheduler()
>>> %scheduler scheduler.processing
{'127.0.0.1:3595': ['inc-1', 'inc-2'],
'127.0.0.1:53589': ['inc-2', 'add-5']}

>>> info = e.start_ipython_workers()
>>> %remote info['127.0.0.1:3595'] worker.active
{'inc-1', 'inc-2'}

Example with qt-console

You can also open up a full interactive IPython qt-console on the scheduler or each of the workers:

>>> e.start_ipython_scheduler(qtconsole=True)
>>> e.start_ipython_workers(qtconsole=True)

100 Chapter 3. Contents

https://ipyparallel.readthedocs.io/en/latest/api/ipyparallel.html#ipyparallel.Client.become_dask
https://ipython.org/ipython-doc/3/interactive/qtconsole.html

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.25 Joblib Integration

Dask.distributed integrates with Joblib by providing an alternative cluster-computing backend, alongside Joblib’s
builtin threading and multiprocessing backends.

Joblib is a library for simple parallel programming primarily developed and used by the Scikit Learn community. As
of version 0.10.0 it contains a plugin mechanism to allow Joblib code to use other parallel frameworks to execute
computations. The dask.distributed scheduler implements such a plugin in the distributed.joblib
module and registers it appropriately with Joblib. As a result, any joblib code (including many scikit-learn algorithms)
will run on the distributed scheduler if you enclose it in a context manager as follows:

import distributed.joblib
from joblib import Parallel, parallel_backend

with parallel_backend('dask.distributed', scheduler_host='HOST:PORT'):
normal Joblib code

Note that scikit-learn bundles joblib internally, so if you want to specify the joblib backend you’ll need to import
parallel_backend from scikit-learn instead of joblib. As an example you might distributed a randomized
cross validated parameter search as follows.

import distributed.joblib
Scikit-learn bundles joblib, so you need to import from
`sklearn.externals.joblib` instead of `joblib` directly
from sklearn.externals.joblib import parallel_backend
from sklearn.datasets import load_digits
from sklearn.grid_search import RandomizedSearchCV
from sklearn.svm import SVC
import numpy as np

digits = load_digits()

param_space = {
'C': np.logspace(-6, 6, 13),
'gamma': np.logspace(-8, 8, 17),
'tol': np.logspace(-4, -1, 4),
'class_weight': [None, 'balanced'],

}

model = SVC(kernel='rbf')
search = RandomizedSearchCV(model, param_space, cv=3, n_iter=50, verbose=10)

with parallel_backend('dask.distributed', scheduler_host='localhost:8786'):
search.fit(digits.data, digits.target)

For large arguments that are used by multiple tasks, it may be more efficient to pre-scatter the data to every worker,
rather than serializing it once for every task. This can be done using the scatter keyword argument, which takes an
iterable of objects to send to each worker.

Serialize the training data only once to each worker
with parallel_backend('dask.distributed', scheduler_host='localhost:8786',

scatter=[digits.data, digits.target]):
search.fit(digits.data, digits.target)

3.25. Joblib Integration 101

https://pythonhosted.org/joblib/
https://pythonhosted.org/joblib/

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.26 Publish Datasets

A published dataset is a named reference to a Dask collection or list of futures that has been published to the cluster.
It is available for any client to see and persists beyond the scope of an individual session.

Publishing datasets is useful in the following cases:

• You want to share computations with colleagues

• You want to persist results on the cluster between interactive sessions

3.26.1 Motivating Example

In this example we load a dask.dataframe from S3, manipulate it, and then publish the result.

Connect and Load

from dask.distributed import Client
client = Client('scheduler-address:8786')

import dask.dataframe as dd
df = dd.read_csv('s3://my-bucket/*.csv')
df2 = df[df.balance < 0]
df2 = client.persist(df2)

>>> df2.head()
name balance

0 Alice -100
1 Bob -200
2 Charlie -300
3 Dennis -400
4 Edith -500

Publish

To share this collection with a colleague we publish it under the name 'negative_accounts'

client.publish_dataset(negative_accounts=df2)

Load published dataset from different client

Now any other client can connect to the scheduler and retrieve this published dataset.

>>> from dask.distributed import Client
>>> client = Client('scheduler-address:8786')

>>> client.list_datasets()
['negative_accounts']

>>> df = client.get_dataset('negative_accounts')
>>> df.head()

name balance
0 Alice -100
1 Bob -200
2 Charlie -300
3 Dennis -400
4 Edith -500

102 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

This allows users to easily share results. It also allows for the persistence of important and commonly used datasets
beyond a single session. Published datasets continue to reside in distributed memory even after all clients requesting
them have disconnected.

3.26.2 Dictionary interface

Alternatively you can use the .datasets mapping on the client to publish, list, get, and delete global datasets.

>>> client.datasets['negative_accounts'] = df

>>> list(client.datasets)
['negative_accounts']
>>> df = client.datasets['negative_accounts']

This mapping is globally shared among all clients connected to the same scheduler.

3.26.3 Notes

Published collections are not automatically persisted. If you publish an un-persisted collection then others will still
be able to get the collection from the scheduler, but operations on that collection will start from scratch. This allows
you to publish views on data that do not permanently take up cluster memory but can be surprising if you expect
“publishing” to automatically make a computed dataset rapidly available.

Any client can publish or unpublish a dataset.

Publishing too many large datasets can quickly consume a cluster’s RAM.

3.26.4 API

Client.publish_dataset(**kwargs) Publish named datasets to scheduler
Client.list_datasets(**kwargs) List named datasets available on the scheduler
Client.get_dataset(name, **kwargs) Get named dataset from the scheduler
Client.unpublish_dataset(name, **kwargs) Remove named datasets from scheduler

3.27 Data Streams with Queues

The Clientmethods scatter, map, and gather can consume and produce standard Python Queue objects. This
is useful for processing continuous streams of data. However, it does not constitute a full streaming data processing
pipeline like Storm.

3.27.1 Example

We connect to a local Client.

>>> from distributed import Client
>>> client = Client('127.0.0.1:8786')
>>> client
<Client: scheduler=127.0.0.1:8786 workers=1 threads=4>

We build a couple of toy data processing functions:

3.27. Data Streams with Queues 103

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

from time import sleep
from random import random

def inc(x):
from random import random
sleep(random() * 2)
return x + 1

def double(x):
from random import random
sleep(random())
return 2 * x

And we set up an input Queue and map our functions across it.

>>> from queue import Queue
>>> input_q = Queue()
>>> remote_q = client.scatter(input_q)
>>> inc_q = client.map(inc, remote_q)
>>> double_q = client.map(double, inc_q)

We will fill the input_q with local data from some stream, and then remote_q, inc_q and double_q will fill
with Future objects as data gets moved around.

We gather the futures from the double_q back to a queue holding local data in the local process.

>>> result_q = client.gather(double_q)

Insert Data Manually

Because we haven’t placed any data into any of the queues everything is empty, including the final output, result_q.

>>> result_q.qsize()
0

But when we insert an entry into the input_q, it starts to make its way through the pipeline and ends up in the
result_q.

>>> input_q.put(10)
>>> result_q.get()
22

Insert data in a separate thread

We simulate a slightly more realistic situation by dumping data into the input_q in a separate thread. This simulates
what you might get if you were to read from an active data source.

def load_data(q):
i = 0
while True:

q.put(i)
sleep(random())
i += 1

>>> from threading import Thread

104 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

>>> load_thread = Thread(target=load_data, args=(input_q,))
>>> load_thread.start()

>>> result_q.qsize()
4
>>> result_q.qsize()
9

We consume data from the result_q and print results to the screen.

>>> while True:
... item = result_q.get()
... print(item)
2
4
6
8
10
12
...

3.27.2 Limitations

• This doesn’t do any sort of auto-batching of computations, so ideally you batch your data to take significantly
longer than 1ms to run.

• This isn’t a proper streaming system. There is no support outside of what you see here. In particular there are
no policies for dropping data, joining over time windows, etc..

3.27.3 Extensions

We can extend this small example to more complex systems that have buffers, split queues, merge queues, etc. all by
manipulating normal Python Queues.

Here are a couple of useful function to multiplex and merge queues:

from queue import Queue
from threading import Thread

def multiplex(n, q, **kwargs):
""" Convert one queue into several equivalent Queues

>>> q1, q2, q3 = multiplex(3, in_q)
"""
out_queues = [Queue(**kwargs) for i in range(n)]
def f():

while True:
x = q.get()
for out_q in out_queues:

out_q.put(x)
t = Thread(target=f)
t.daemon = True
t.start()
return out_queues

3.27. Data Streams with Queues 105

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

def push(in_q, out_q):
while True:

x = in_q.get()
out_q.put(x)

def merge(*in_qs, **kwargs):
""" Merge multiple queues together

>>> out_q = merge(q1, q2, q3)
"""
out_q = Queue(**kwargs)
threads = [Thread(target=push, args=(q, out_q)) for q in in_qs]
for t in threads:

t.daemon = True
t.start()

return out_q

With useful functions like these we can build out more sophisticated data processing pipelines that split off and join
back together. By creating queues with maxsize= we can control buffering and apply back pressure.

3.28 Worker Resources

Access to scarce resources like memory, GPUs, or special hardware may constrain how many of certain tasks can run
on particular machines.

For example, we may have a cluster with ten computers, four of which have two GPUs each. We may have a thousand
tasks, a hundred of which require a GPU and ten of which require two GPUs at once. In this case we want to balance
tasks across the cluster with these resource constraints in mind, allocating GPU-constrained tasks to GPU-enabled
workers. Additionally we need to be sure to constrain the number of GPU tasks that run concurrently on any given
worker to ensure that we respect the provided limits.

This situation arises not only for GPUs but for many resources like tasks that require a large amount of memory at
runtime, special disk access, or access to special hardware. Dask allows you to specify abstract arbitrary resources to
constrain how your tasks run on your workers. Dask does not model these resources in any particular way (Dask does
not know what a GPU is) and it is up to the user to specify resource availability on workers and resource demands on
tasks.

3.28.1 Example

We consider a computation where we load data from many files, process each one with a function that requires a GPU,
and then aggregate all of the intermediate results with a task that takes up 70GB of memory.

We operate on a three-node cluster that has two machines with two GPUs each and one machine with 100GB of RAM.

When we set up our cluster we define resources per worker:

dask-worker scheduler:8786 --resources "GPU=2"
dask-worker scheduler:8786 --resources "GPU=2"
dask-worker scheduler:8786 --resources "MEMORY=100e9"

When we submit tasks to the cluster we specify constraints per task

from distributed import Client
client = Client('scheduler:8786')

106 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

data = [client.submit(load, fn) for fn in filenames]
processed = [client.submit(process, d, resources={'GPU': 1}) for d in data]
final = client.submit(aggregate, processed, resources={'MEMORY': 70e9})

3.28.2 Resources are Abstract

Resources listed in this way are just abstract quantities. We could equally well have used terms “mem”, “memory”,
“bytes” etc. above because, from Dask’s perspective, this is just an abstract term. You can choose any term as long as
you are consistent across workers and clients.

It’s worth noting that Dask separately track number of cores and available memory as actual resources and uses these
in normal scheduling operation.

3.28.3 Resources with collections

You can also use resources with Dask collections, like arrays, dataframes, and delayed objects. You can pass a
dictionary mapping keys of the collection to resource requirements during compute or persist calls.

x = dd.read_csv(...)
y = x.map_partitions(func1)
z = y.map_parititons(func2)

z.compute(resources={tuple(y.__dask_keys__()): {'GPU': 1})

In some cases (such as the case above) the keys for y may be optimized away before execution. You can avoid that
either by requiring them as an explicit output, or by passing the optimize_graph=False keyword.

z.compute(resources={tuple(y.__dask_keys__()): {'GPU': 1}, optimize_graph=False)

3.29 Submitting Applications

The dask-submit cli can be used to submit an application to the dask cluster running remotely. If your code
depends on resources that can only be access from cluster running dask, dask-submit provides a mechanism to
send the script to the cluster for execution from a different machine.

For example, S3 buckets could not be visible from your local machine and hence any attempt to create a dask graph
from local machine may not work.

3.29.1 Submitting dask Applications with dask-submit

In order to remotely submit scripts to the cluster from a local machine or a CI/CD environment, we need to run a
remote client on the same machine as the scheduler:

#scheduler machine
dask-remote --port 8788

After making sure the dask-remote is running, you can submit a script by:

#local machine
dask-submit <dask-remote-address>:<port> <script.py>

3.29. Submitting Applications 107

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Some of the commonly used arguments are:

• REMOTE_CLIENT_ADDRESS: host name where dask-remote client is running

• FILEPATH: Local path to file containing dask application

For example, given the following dask application saved in a file called script.py:

from distributed import Client

def inc(x):
return x + 1

if __name__=='__main__':
client = Client('127.0.0.1:8786')
x = client.submit(inc, 10)
print(x.result())

We can submit this application from a local machine by running:

dask-submit <remote-client-address>:<port> script.py

3.30 Launch Tasks from Tasks

Sometimes it is convenient to launch tasks from other tasks. For example you may not know what computations to run
until you have the results of some initial computations.

3.30.1 Motivating example

We want to download one piece of data and turn it into a list. Then we want to submit one task for every element of
that list. We don’t know how long the list will be until we have the data.

So we send off our original download_and_convert_to_list function, which downloads the data and converts
it to a list on one of our worker machines:

future = client.submit(download_and_convert_to_list, uri)

But now we need to submit new tasks for individual parts of this data. We have three options.

1. Gather the data back to the local process and then submit new jobs from the local process

2. Gather only enough information about the data back to the local process and submit jobs from the local process

3. Submit a task to the cluster that will submit other tasks directly from that worker

3.30.2 Gather the data locally

If the data is not large then we can bring it back to the client to perform the necessary logic on our local machine:

>>> data = future.result() # gather data to local process
>>> data # data is a list
[...]

>>> futures = e.map(process_element, data) # submit new tasks on data
>>> analysis = e.submit(aggregate, futures) # submit final aggregation task

108 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

This is straightforward and, if data is small then it is probably the simplest, and therefore correct choice. However,
if data is large then we have to choose another option.

3.30.3 Submit tasks from client

We can run small functions on our remote data to determine enough to submit the right kinds of tasks. In the following
example we compute the len function on data remotely and then break up data into its various elements.

>>> n = client.submit(len, data) # compute number of elements
>>> n = n.result() # gather n (small) locally

>>> from operator import getitem
>>> elements = [client.submit(getitem, data, i) for i in range(n)] # split data

>>> futures = client.map(process_element, elements)
>>> analysis = client.submit(aggregate, futures)

We compute the length remotely, gather back this very small result, and then use it to submit more tasks to break up the
data and process on the cluster. This is more complex because we had to go back and forth a couple of times between
the cluster and the local process, but the data moved was very small, and so this only added a few milliseconds to our
total processing time.

Extended Example

Computing the Fibonacci numbers creates involves a recursive function. When the function is run, it calls itself using
values it computed. We will use this as an example throughout this documentation to illustrate different techniques of
submitting tasks from tasks.

def fib(n):
if n < 2:

return n
a = fib(n - 1)
b = fib(n - 2)
return a + b

print(fib(10)) # prints "55"

We will use this example to show the different interfaces.

3.30.4 Submit tasks from worker

Note: this interface is new and experimental. It may be changed without warning in future versions.

We can submit tasks from other tasks. This allows us to make decisions while on worker nodes.

To submit new tasks from a worker that worker must first create a new client object that connects to the scheduler.
There are three options for this:

1. dask.delayed and dask.compute

2. get_client with secede and rejoin

3. worker_client

3.30. Launch Tasks from Tasks 109

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

dask.delayed

The Dask delayed behaves as normal: it submits the functions to the graph, optimizes for less bandwidth/computation
and gathers the results. For more detail, see dask.delayed.

from distributed import Client
from dask import delayed, compute

@delayed
def fib(n):

if n < 2:
return n

We can use dask.delayed and dask.compute to launch
computation from within tasks
a = fib(n - 1) # these calls are delayed
b = fib(n - 2)
a, b = compute(a, b) # execute both in parallel
return a + b

if __name__ == "__main__":
these features require the dask.distributed scheduler
client = Client()

result = fib(10).compute()
print(result) # prints "55"

Getting the client on a worker

The get_client function provides a normal Client object that gives full access to the dask cluster, including the
ability to submit, scatter, and gather results.

from distributed import Client, get_client, secede, rejoin

def fib(n):
if n < 2:

return n
client = get_client()
a_future = client.submit(fib, n - 1)
b_future = client.submit(fib, n - 2)
a, b = client.gather([a_future, b_future])
return a + b

if __name__ == "__main__":
client = Client()
future = client.submit(fib, 10)
result = future.result()
print(result) # prints "55"

However, this can deadlock the scheduler if too many tasks request jobs at once. Each task does not communicate
to the scheduler that they are waiting on results and are free to compute other tasks. This can deadlock the cluster if
every scheduling slot is running a task and they all request more tasks.

To avoid this deadlocking issue we can use secede and rejoin. These functions will remove and rejoin the current
task from the cluster respectively.

110 Chapter 3. Contents

https://dask.pydata.org/en/latest/delayed.html

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

def fib(n):
if n < 2:

return n
client = get_client()
a_future = client.submit(fib, n - 1)
b_future = client.submit(fib, n - 2)
secede()
a, b = client.gather([a_future, b_future])
rejoin()
return a + b

Connection with context manager

The worker_client function performs the same task as get_client, but is implemented as a context manager.
Using worker_client as a context manager ensures proper cleanup on the worker.

from dask.distributed import worker_client

def fib(n):
if n < 2:

return n
with worker_client() as client:

a_future = client.submit(fib, n - 1)
b_future = client.submit(fib, n - 2)
a, b = client.gather([a_future, b_future])

return a + b

if __name__ == "__main__":
client = Client()
future = client.submit(fib, 10)
result = future.result()
print(result) # prints "55"

Tasks that invoke worker_client are conservatively assumed to be long running. They can take a long time,
waiting for other tasks to finish, gathering results, etc. In order to avoid having them take up processing slots the
following actions occur whenever a task invokes worker_client.

1. The thread on the worker running this function secedes from the thread pool and goes off on its own. This
allows the thread pool to populate that slot with a new thread and continue processing additional tasks without
counting this long running task against its normal quota.

2. The Worker sends a message back to the scheduler temporarily increasing its allowed number of tasks by one.
This likewise lets the scheduler allocate more tasks to this worker, not counting this long running task against it.

Establishing a connection to the scheduler takes a few milliseconds and so it is wise for computations that use this
feature to be at least a few times longer in duration than this.

3.31 TLS/SSL

Currently dask distributed has experimental support for TLS/SSL communication, providing mutual authentication
and encryption of communications between cluster endpoints (Clients, Schedulers and Workers).

TLS is enabled by using a tls address such as tls:// (the default being tcp, which sends data unauthenticated and
unencrypted). In TLS mode, all cluster endpoints must present a valid TLS certificate signed by a given Certificate

3.31. TLS/SSL 111

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Authority (CA). It is generally recommended to use a custom CA for your organization, as it will allow signing
certificates for internal hostnames or IP addresses.

3.31.1 Parameters

When using TLS, one has to provide additional parameters:

• a CA certificate(s) file, which allows TLS to decide whether an endpoint’s certificate has been signed by the
correct authority;

• a certificate file for each endpoint, which is presented to other endpoints so as to achieve mutual authentication;

• a private key file, which is the cryptographic means to prove to other endpoints that you are the authorized user
of a given certificate.

Note: As per OpenSSL’s requirements, all those files should be in PEM format. Also, it is allowed to concatenate the
certificate and private key into a single file (you can then just specify the certificate parameter and leave the private
key parameter absent).

It is up to you whether each endpoint uses a different certificate and private key, or whether all endpoints share the
same, or whether each endpoint kind (Client, Scheduler, Worker) gets its own certificate / key pair. Unless you have
extraordinary requirements, however, the CA certificate should probably be the same for all endpoints.

One can also pass additional parameters:

• a set of allowed ciphers, if you have strong requirements as to which algorithms are considered secure; this
setting’s value should be an OpenSSL cipher string;

• whether to require encryption, to avoid using plain TCP communications by mistake.

All those parameters can be passed in several ways:

• through the Dask configuration file;

• if using the command line, through options to dask-scheduler and dask-worker;

• if using the API, through a Security object. For example, here is how you might configure a Security
object for client use:

from distributed import Client
from distributed.security import Security

sec = Security(tls_ca_file='cluster_ca.pem',
tls_client_cert='cli_cert.pem',
tls_client_key='cli_key.pem',
require_encryption=True)

client = Client(..., security=sec)

3.31.2 Security policy

Dask always verifies the certificate presented by a remote endpoint against the configured CA certificate(s). Certifi-
cates are verified for both “client” and “server” endpoints (in the TCP sense), ensuring the endpoints are mutually
authenticated. The hostname or IP address for which a certificate has been issued is not checked; this should not be an
issue if you are using your own internal Certificate Authority.

112 Chapter 3. Contents

https://www.openssl.org/docs/man1.1.0/apps/ciphers.html

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

It is not possible to disable certificate verification, as it would render the communications vulnerable to Man-in-the-
Middle attacks.

3.31.3 Performance implications

Encryption is fast on recent CPUs, most of which have hardware acceleration for AES-based encryption. AES is nor-
mally selected by the TLS layer unless you have forced the ciphers parameter to something else. However, encryption
may still have a non-negligible overhead if you are transferring very large data over very high speed network links.

See also:

A study of AES-NI acceleration shows recent x86 CPUs can AES-encrypt more than 1 GB per second on each CPU
core.

3.32 Web Interface

Information about the current state of the network helps to track progress, identify performance issues, and debug
failures.

Dask.distributed includes a web interface to help deliver this information over a normal web page in real time. This
web interface is launched by default wherever the scheduler is launched if the scheduler machine has Bokeh installed
(conda install bokeh -c bokeh).

3.32.1 List of Servers

There are a few sets of diagnostic pages served at different ports:

• Main Scheduler pages at http://scheduler-address:8787. These pages, particularly the /status
page are the main page that most people associate with Dask. These pages are served from a separate standalone
Bokeh server application running in a separate process.

• Debug Scheduler pages at http://scheduler-address:8788. These pages have more detailed diag-
nostic information about the scheduler. They are more often used by developers than by users, but may still be
of interest to the performance-conscious. These pages run from inside the scheduler process, and so compete
for resources with the main scheduler.

• Debug Worker pages for each worker at http://worker-address:8789. These pages have detailed di-
agnostic information about the worker. Like the diagnostic scheduler pages they are of more utility to developers
or to people looking to understand the performance of their underlying cluster. If port 8789 is unavailable (for
example it is in use by another worker) then a random port is chosen. A list of all ports can be obtained from
looking at the service ports for each worker in the result of calling client.scheduler_info()

The rest of this document will be about the main pages at http://scheduler-address:8787.

The available pages are http://scheduler-address:8787/<page>/ where <page> is one of

• status: a stream of recently run tasks, progress bars, resource use

• tasks: a larger stream of the last 100k tasks

• workers: basic information about workers and their current load

3.32. Web Interface 113

https://calomel.org/aesni_ssl_performance.html
http://bokeh.pydata.org/en/latest/

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.32.2 Plots

Example Computation

The following plots show a trace of the following computation:

from distributed import Client
from time import sleep
import random

def inc(x):
sleep(random.random() / 10)
return x + 1

def dec(x):
sleep(random.random() / 10)
return x - 1

def add(x, y):
sleep(random.random() / 10)
return x + y

client = Client('127.0.0.1:8786')

incs = client.map(inc, range(100))
decs = client.map(dec, range(100))
adds = client.map(add, incs, decs)
total = client.submit(sum, adds)

del incs, decs, adds
total.result()

Progress

The interface shows the progress of the various computations as well as the exact number completed.

Each bar is assigned a color according to the function being run. Each bar has a few components. On the left the
lighter shade is the number of tasks that have both completed and have been released from memory. The darker shade
to the right corresponds to the tasks that are completed and whose data still reside in memory. If errors occur then they
appear as a black colored block to the right.

Typical computations may involve dozens of kinds of functions. We handle this visually with the following approaches:

1. Functions are ordered by the number of total tasks

2. The colors are assigned in a round-robin fashion from a standard palette

3. The progress bars shrink horizontally to make space for more functions

4. Only the largest functions (in terms of number of tasks) are displayed

Counts of tasks processing, waiting for dependencies, processing, etc.. are displayed in the title bar.

114 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Memory Use

The interface shows the relative memory use of each function with a horizontal bar sorted by function name.

The title shows the number of total bytes in use. Hovering over any bar tells you the specific function and how many
bytes its results are actively taking up in memory. This does not count data that has been released.

Task Stream

The task stream plot shows when tasks complete on which workers. Worker cores are on the y-axis and time is on
the x-axis. As a worker completes a task its start and end times are recorded and a rectangle is added to this plot
accordingly.

If data transfer occurs between workers a red bar appears preceding the task bar showing the duration of the transfer.
If an error occurs than a black bar replaces the normal color. This plot show the last 1000 tasks. It resets if there is a
delay greater than 10 seconds.

For a full history of the last 100,000 tasks see the tasks/ page.

Resources

The resources plot show the average CPU and Memory use over time as well as average network traffic. More detailed
information on a per-worker basis is available in the workers/ page.

3.32.3 Connecting to Web Interface

Default

By default, dask-scheduler prints out the address of the web interface:

INFO - Bokeh UI at: http://10.129.39.91:8787/status
...
INFO - Starting Bokeh server on port 8787 with applications at paths ['/status', '/
→˓tasks']

The machine hosting the scheduler runs an HTTP server serving at that address.

3.32.4 Troubleshooting

Some clusters restrict the ports that are visible to the outside world. These ports may include the default port for the
web interface, 8787. There are a few ways to handle this:

1. Open port 8787 to the outside world. Often this involves asking your cluster administrator.

2. Use a different port that is publicly accessible using the --bokeh-port PORT option on the
dask-scheduler command.

3. Use fancier techniques, like Port Forwarding

3.32. Web Interface 115

https://en.wikipedia.org/wiki/Port_forwarding

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Running distributed on a remote machine can cause issues with viewing the web UI – this depends on the remote
machines network configuration.

Port Forwarding

If you have SSH access then one way to gain access to a blocked port is through SSH port forwarding. A typical use
case looks like the following:

local$ ssh -L 8000:localhost:8787 user@remote
remote$ dask-scheduler # now, the web UI is visible at localhost:8000
remote$ # continue to set up dask if needed -- add workers, etc

It is then possible to go to localhost:8000 and see Dask Web UI. This same approach is not specific to
dask.distributed, but can be used by any service that operates over a network, such as Jupyter notebooks. For ex-
ample, if we chose to do this we could forward port 8888 (the default Jupyter port) to port 8001 with ssh -L
8001:localhost:8888 user@remote.

3.33 Changelog

3.33.1 1.20.2 - 2017-12-07

• Clear deque handlers after each test (GH#1586) Antoine Pitrou

• Handle deserialization in FutureState.set_error (GH#1592) Matthew Rocklin

• Add process leak checker to tests (GH#1596) Antoine Pitrou

• Customize process title for subprocess (GH#1590) Antoine Pitrou

• Make linting a separate CI job (GH#1599) Antoine Pitrou

• Fix error from get_client() with no global client (GH#1595) Daniel Li

• Remove Worker.host_health, correct WorkerTable metrics (GH#1600) Matthew Rocklin

• Don’t mark tasks as suspicious when retire_workers called. Addresses (GH#1607) ‘Russ Bubley‘_

• Do not include processing workers in workers_to_close (GH#1609) ‘Russ Bubley‘_

• Disallow simultaneous scale up and down in Adaptive (GH#1608) ‘Russ Bubley‘_

• Parse bytestrings in –memory-limit (GH#1615) Matthew Rocklin

• Use environment variable for scheduler address if present (GH#1610) Matthew Rocklin

• Fix deprecation warning from logger.warn (GH#1616) Brett Naul

3.33.2 1.20.1 - 2017-11-26

• Wrap import ssl statements with try-except block for ssl-crippled environments, (GH#1570) Xander John-
son

• Support zero memory-limit in Nanny (GH#1571) Matthew Rocklin

• Avoid PeriodicCallback double starts (GH#1573) Matthew Rocklin

• Add disposable workspace facility (GH#1543) Antoine Pitrou

• Use format_time in task_stream plots (GH#1575) Matthew Rocklin

116 Chapter 3. Contents

https://github.com/dask/distributed/pull/1586
https://github.com/pitrou
https://github.com/dask/distributed/pull/1592
https://github.com/mrocklin
https://github.com/dask/distributed/pull/1596
https://github.com/pitrou
https://github.com/dask/distributed/pull/1590
https://github.com/pitrou
https://github.com/dask/distributed/pull/1599
https://github.com/pitrou
https://github.com/dask/distributed/pull/1595
https://github.com/li-dan
https://github.com/dask/distributed/pull/1600
https://github.com/mrocklin
https://github.com/dask/distributed/pull/1607
https://github.com/dask/distributed/pull/1609
https://github.com/dask/distributed/pull/1608
https://github.com/dask/distributed/pull/1615
https://github.com/mrocklin
https://github.com/dask/distributed/pull/1610
https://github.com/mrocklin
https://github.com/dask/distributed/pull/1616
https://github.com/bnaul
https://github.com/dask/distributed/pull/1570
https://github.com/metasyn
https://github.com/metasyn
https://github.com/dask/distributed/pull/1571
https://github.com/mrocklin
https://github.com/dask/distributed/pull/1573
https://github.com/mrocklin
https://github.com/dask/distributed/pull/1543
https://github.com/pitrou
https://github.com/dask/distributed/pull/1575
https://github.com/mrocklin

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

• Avoid delayed finalize calls in compute (GH#1577) Matthew Rocklin

• Doc fix about secede (GH#1583) Scott Sievert

• Add tracemalloc option when tracking test leaks (GH#1585) Antoine Pitrou

• Add JSON routes to Bokeh server (GH#1584) Matthew Rocklin

• Handle exceptions cleanly in Variables and Queues (GH#1580) Matthew Rocklin

3.33.3 1.20.0 - 2017-11-17

• Drop use of pandas.msgpack (GH#1473) Matthew Rocklin

• Add methods to get/set scheduler metadata Matthew Rocklin

• Add distributed lock Matthew Rocklin

• Add reschedule exception for worker tasks Matthew Rocklin

• Fix nbytes() for bytearrays Matthew Rocklin

• Capture scheduler and worker logs Matthew Rocklin

• Garbage collect after data eviction on high worker memory usage (GH#1488) Olivier Grisel

• Add scheduler HTML routes to bokeh server (GH#1478) (GH#1514) Matthew Rocklin

• Add pytest plugin to test for resource leaks (GH#1499) Antoine Pitrou

• Improve documentation for scheduler states (GH#1498) Antoine Pitrou

• Correct warn_if_longer timeout in ThrottledGC (GH#1496) Fabian Keller

• Catch race condition in as_completed on cancelled futures (GH#1507) Matthew Rocklin

• Transactional work stealing (GH#1489) (GH#1528) Matthew Rocklin

• Avoid forkserver in PyPy (GH#1509) Matthew Rocklin

• Add dict access to get/set datasets (GH#1508) Mike DePalatis

• Support Tornado 5 (GH#1509) (GH#1512) (GH#1518) (GH#1534) Antoine Pitrou

• Move thread_state in Dask (GH#1523) Jim Crist

• Use new Dask collections interface (GH#1513) Matthew Rocklin

• Add nanny flag to dask-mpi Matthew Rocklin

• Remove JSON-based HTTP servers Matthew Rocklin

• Avoid doing I/O in repr/str (GH#1536) Matthew Rocklin

• Fix URL for MPI4Py project (GH#1546) Ian Hopkinson

• Allow automatic retries of a failed task (GH#1524) Antoine Pitrou

• Clean and accelerate tests (GH#1548) (GH#1549) (GH#1552) (GH#1553) (GH#1560) (GH#1564) Antoine
Pitrou

• Move HDFS functionality to the hdfs3 library (GH#1561) Jim Crist

• Fix bug when using events page with no events (GH#1562) @rbubley

• Improve diagnostic naming of tasks within tuples (GH#1566) Kelvyn Yang

3.33. Changelog 117

https://github.com/dask/distributed/pull/1577
https://github.com/mrocklin
https://github.com/dask/distributed/pull/1583
https://github.com/stsievert
https://github.com/dask/distributed/pull/1585
https://github.com/pitrou
https://github.com/dask/distributed/pull/1584
https://github.com/mrocklin
https://github.com/dask/distributed/pull/1580
https://github.com/mrocklin
https://github.com/dask/distributed/pull/1473
https://github.com/mrocklin
https://github.com/mrocklin
https://github.com/mrocklin
https://github.com/mrocklin
https://github.com/mrocklin
https://github.com/mrocklin
https://github.com/dask/distributed/pull/1488
https://github.com/ogrisel
https://github.com/dask/distributed/pull/1478
https://github.com/dask/distributed/pull/1514
https://github.com/mrocklin
https://github.com/dask/distributed/pull/1499
https://github.com/pitrou
https://github.com/dask/distributed/pull/1498
https://github.com/pitrou
https://github.com/dask/distributed/pull/1496
https://github.com/bluenote10
https://github.com/dask/distributed/pull/1507
https://github.com/mrocklin
https://github.com/dask/distributed/pull/1489
https://github.com/dask/distributed/pull/1528
https://github.com/mrocklin
https://github.com/dask/distributed/pull/1509
https://github.com/mrocklin
https://github.com/dask/distributed/pull/1508
https://github.com/mivade
https://github.com/dask/distributed/pull/1509
https://github.com/dask/distributed/pull/1512
https://github.com/dask/distributed/pull/1518
https://github.com/dask/distributed/pull/1534
https://github.com/pitrou
https://github.com/dask/distributed/pull/1523
https://github.com/jcrist
https://github.com/dask/distributed/pull/1513
https://github.com/mrocklin
https://github.com/mrocklin
https://github.com/mrocklin
https://github.com/dask/distributed/pull/1536
https://github.com/mrocklin
https://github.com/dask/distributed/pull/1546
https://github.com/IanHopkinson
https://github.com/dask/distributed/pull/1524
https://github.com/pitrou
https://github.com/dask/distributed/pull/1548
https://github.com/dask/distributed/pull/1549
https://github.com/dask/distributed/pull/1552
https://github.com/dask/distributed/pull/1553
https://github.com/dask/distributed/pull/1560
https://github.com/dask/distributed/pull/1564
https://github.com/pitrou
https://github.com/pitrou
https://github.com/dask/distributed/pull/1561
https://github.com/jcrist
https://github.com/dask/distributed/pull/1562
https://github.com/rbubley
https://github.com/dask/distributed/pull/1566
https://github.com/kelvynyang

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.33.4 1.19.3 - 2017-10-16

• Handle None case in profile.identity (GH#1456)

• Asyncio rewrite (GH#1458)

• Add rejoin function partner to secede (GH#1462)

• Nested compute (GH#1465)

• Use LooseVersion when comparing Bokeh versions (GH#1470)

3.33.5 1.19.2 - 2017-10-06

• as_completed doesn’t block on cancelled futures (GH#1436)

• Notify waiting threads/coroutines on cancellation (GH#1438)

• Set Future(inform=True) as default (GH#1437)

• Rename Scheduler.transition_story to story (GH#1445)

• Future uses default client by default (GH#1449)

• Add keys= keyword to Client.call_stack (GH#1446)

• Add get_current_task to worker (GH#1444)

• Ensure that Client remains asynchornous before ioloop starts (GH#1452)

• Remove “click for worker page” in bokeh plot (GH#1453)

• Add Client.current() (GH#1450)

• Clean handling of restart timeouts (GH#1442)

3.33.6 1.19.1 - September 25th, 2017

• Fix tool issues with TaskStream plot (GH#1425)

• Move profile module to top level (GH#1423)

3.33.7 1.19.0 - September 24th, 2017

• Avoid storing messages in message log (GH#1361)

• fileConfig does not disable existing loggers (GH#1380)

• Offload upload_file disk I/O to separate thread (GH#1383)

• Add missing SSLContext (GH#1385)

• Collect worker thread information from sys._curent_frames (GH#1387)

• Add nanny timeout (GH#1395)

• Restart worker if memory use goes above 95% (GH#1397)

• Track workers memory use with psutil (GH#1398)

• Track scheduler delay times in workers (GH#1400)

• Add time slider to profile plot (GH#1403)

118 Chapter 3. Contents

https://github.com/dask/distributed/pull/1456
https://github.com/dask/distributed/pull/1458
https://github.com/dask/distributed/pull/1462
https://github.com/dask/distributed/pull/1465
https://github.com/dask/distributed/pull/1470
https://github.com/dask/distributed/pull/1436
https://github.com/dask/distributed/pull/1438
https://github.com/dask/distributed/pull/1437
https://github.com/dask/distributed/pull/1445
https://github.com/dask/distributed/pull/1449
https://github.com/dask/distributed/pull/1446
https://github.com/dask/distributed/pull/1444
https://github.com/dask/distributed/pull/1452
https://github.com/dask/distributed/pull/1453
https://github.com/dask/distributed/pull/1450
https://github.com/dask/distributed/pull/1442
https://github.com/dask/distributed/pull/1425
https://github.com/dask/distributed/pull/1423
https://github.com/dask/distributed/pull/1361
https://github.com/dask/distributed/pull/1380
https://github.com/dask/distributed/pull/1383
https://github.com/dask/distributed/pull/1385
https://github.com/dask/distributed/pull/1387
https://github.com/dask/distributed/pull/1395
https://github.com/dask/distributed/pull/1397
https://github.com/dask/distributed/pull/1398
https://github.com/dask/distributed/pull/1400
https://github.com/dask/distributed/pull/1403

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

• Change memory-limit keyword to refer to maximum number of bytes (GH#1405)

• Add cancel(force=) keyword (GH#1408)

3.33.8 1.18.2 - September 2nd, 2017

• Silently pass on cancelled futures in as_completed (GH#1366)

• Fix unicode keys error in Python 2 (GH#1370)

• Support numeric worker names

• Add dask-mpi executable (GH#1367)

3.33.9 1.18.1 - August 25th, 2017

• Clean up forgotten keys in fire-and-forget workloads (GH#1250)

• Handle missing extensions (GH#1263)

• Allow recreate_exception on persisted collections (GH#1253)

• Add asynchronous= keyword to blocking client methods (GH#1272)

• Restrict to horizontal panning in bokeh plots (GH#1274)

• Rename client.shutdown to client.close (GH#1275)

• Avoid blocking on event loop (GH#1270)

• Avoid cloudpickle errors for Client.get_versions (GH#1279)

• Yield on Tornado IOStream.write futures (GH#1289)

• Assume async behavior if inside a sync statement (GH#1284)

• Avoid error messages on closing (GH#1297), (GH#1296) (GH#1318)

(GH#1319)

• Add timeout= keyword to get_client (GH#1290)

• Respect timeouts when restarting (GH#1304)

• Clean file descriptor and memory leaks in tests (GH#1317)

• Deprecate Executor (GH#1302)

• Add timeout to ThreadPoolExecutor.shutdown (GH#1330)

• Clean up AsyncProcess handling (GH#1324)

• Allow unicode keys in Python 2 scheduler (GH#1328)

• Avoid leaking stolen data (GH#1326)

• Improve error handling on failed nanny starts (GH#1337), (GH#1331)

• Make Adaptive more flexible

• Support --contact-address and --listen-address in worker (GH#1278)

• Remove old dworker, dscheduler executables (GH#1355)

• Exit workers if nanny process fails (GH#1345)

• Auto pep8 and flake (GH#1353)

3.33. Changelog 119

https://github.com/dask/distributed/pull/1405
https://github.com/dask/distributed/pull/1408
https://github.com/dask/distributed/pull/1366
https://github.com/dask/distributed/pull/1370
https://github.com/dask/distributed/pull/1367
https://github.com/dask/distributed/pull/1250
https://github.com/dask/distributed/pull/1263
https://github.com/dask/distributed/pull/1253
https://github.com/dask/distributed/pull/1272
https://github.com/dask/distributed/pull/1274
https://github.com/dask/distributed/pull/1275
https://github.com/dask/distributed/pull/1270
https://github.com/dask/distributed/pull/1279
https://github.com/dask/distributed/pull/1289
https://github.com/dask/distributed/pull/1284
https://github.com/dask/distributed/pull/1297
https://github.com/dask/distributed/pull/1296
https://github.com/dask/distributed/pull/1318
https://github.com/dask/distributed/pull/1319
https://github.com/dask/distributed/pull/1290
https://github.com/dask/distributed/pull/1304
https://github.com/dask/distributed/pull/1317
https://github.com/dask/distributed/pull/1302
https://github.com/dask/distributed/pull/1330
https://github.com/dask/distributed/pull/1324
https://github.com/dask/distributed/pull/1328
https://github.com/dask/distributed/pull/1326
https://github.com/dask/distributed/pull/1337
https://github.com/dask/distributed/pull/1331
https://github.com/dask/distributed/pull/1278
https://github.com/dask/distributed/pull/1355
https://github.com/dask/distributed/pull/1345
https://github.com/dask/distributed/pull/1353

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.33.10 1.18.0 - July 8th, 2017

• Multi-threading safety (GH#1191), (GH#1228), (GH#1229)

• Improve handling of byte counting (GH#1198) (GH#1224)

• Add get_client, secede functions, refactor worker-client relationship

(GH#1201)

• Allow logging configuraiton using logging.dictConfig() (GH#1206) (GH#1211)

• Offload serialization and deserialization to separate thread (GH#1218)

• Support fire-and-forget tasks (GH#1221)

• Support bytestrings as keys (for Julia) (GH#1234)

• Resolve testing corner-cases (GH#1236), (GH#1237), (GH#1240), (GH#1241), (GH#1242), (GH#1244)

• Automatic use of scatter/gather(direct=True) in more cases (GH#1239)

3.33.11 1.17.1 - June 14th, 2017

• Remove Python 3.4 testing from travis-ci (GH#1157)

• Remove ZMQ Support (GH#1160)

• Fix memoryview nbytes issue in Python 2.7 (GH#1165)

• Re-enable counters (GH#1168)

• Improve scheduler.restart (GH#1175)

3.33.12 1.17.0 - June 9th, 2017

• Reevaluate worker occupancy periodically during scheduler downtime (GH#1038) (GH#1101)

• Add AioClient asyncio-compatible client API (GH#1029) (GH#1092) (GH#1099)

• Update Keras serializer (GH#1067)

• Support TLS/SSL connections for security (GH#866) (GH#1034)

• Always create new worker directory when passed --local-directory (GH#1079)

• Support pre-scattering data when using joblib frontent (GH#1022)

• Make workers more robust to failure of sizeof function (GH#1108) and writing to disk (GH#1096)

• Add is_empty and update methods to as_completed (GH#1113)

• Remove _get coroutine and replace with get(..., sync=False) (GH#1109)

• Improve API compatibility with async/await syntax (GH#1115) (GH#1124)

• Add distributed Queues (GH#1117) and shared Variables (GH#1128) to enable inter-client coordination

• Support direct client-to-worker scattering and gathering (GH#1130) as well as performance enhancements when
scattering data

• Style improvements for bokeh web dashboards (GH#1126) (GH#1141) as well as a removal of the external
bokeh process

• HTML reprs for Future and Client objects (GH#1136)

120 Chapter 3. Contents

https://github.com/dask/distributed/pull/1191
https://github.com/dask/distributed/pull/1228
https://github.com/dask/distributed/pull/1229
https://github.com/dask/distributed/pull/1198
https://github.com/dask/distributed/pull/1224
https://github.com/dask/distributed/pull/1201
https://github.com/dask/distributed/pull/1206
https://github.com/dask/distributed/pull/1211
https://github.com/dask/distributed/pull/1218
https://github.com/dask/distributed/pull/1221
https://github.com/dask/distributed/pull/1234
https://github.com/dask/distributed/pull/1236
https://github.com/dask/distributed/pull/1237
https://github.com/dask/distributed/pull/1240
https://github.com/dask/distributed/pull/1241
https://github.com/dask/distributed/pull/1242
https://github.com/dask/distributed/pull/1244
https://github.com/dask/distributed/pull/1239
https://github.com/dask/distributed/pull/1157
https://github.com/dask/distributed/pull/1160
https://github.com/dask/distributed/pull/1165
https://github.com/dask/distributed/pull/1168
https://github.com/dask/distributed/pull/1175
https://github.com/dask/distributed/pull/1038
https://github.com/dask/distributed/pull/1101
https://github.com/dask/distributed/pull/1029
https://github.com/dask/distributed/pull/1092
https://github.com/dask/distributed/pull/1099
https://github.com/dask/distributed/pull/1067
https://github.com/dask/distributed/pull/866
https://github.com/dask/distributed/pull/1034
https://github.com/dask/distributed/pull/1079
https://github.com/dask/distributed/pull/1022
https://github.com/dask/distributed/pull/1108
https://github.com/dask/distributed/pull/1096
https://github.com/dask/distributed/pull/1113
https://github.com/dask/distributed/pull/1109
https://github.com/dask/distributed/pull/1115
https://github.com/dask/distributed/pull/1124
https://github.com/dask/distributed/pull/1117
https://github.com/dask/distributed/pull/1128
https://github.com/dask/distributed/pull/1130
https://github.com/dask/distributed/pull/1126
https://github.com/dask/distributed/pull/1141
https://github.com/dask/distributed/pull/1136

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

• Support nested collections in client.compute (GH#1144)

• Use normal client API in asynchronous mode (GH#1152)

• Remove old distributed.collections submodule (GH#1153)

3.33.13 1.16.3 - May 5th, 2017

• Add bokeh template files to MANIFEST (GH#1063)

• Don’t set worker_client.get as default get (GH#1061)

• Clean up logging on Client().shutdown() (GH#1055)

3.33.14 1.16.2 - May 3rd, 2017

• Support async with Client syntax (GH#1053)

• Use internal bokeh server for default diagnostics server (GH#1047)

• Improve styling of bokeh plots when empty (GH#1046) (GH#1037)

• Support efficient serialization for sparse arrays (GH#1040)

• Prioritize newly arrived work in worker (GH#1035)

• Prescatter data with joblib backend (GH#1022)

• Make client.restart more robust to worker failure (GH#1018)

• Support preloading a module or script in dask-worker or dask-scheduler processes (GH#1016)

• Specify network interface in command line interface (GH#1007)

• Client.scatter supports a single element (GH#1003)

• Use blosc compression on all memoryviews passing through comms (GH#998)

• Add concurrent.futures-compatible Executor (GH#997)

• Add as_completed.batches method and return results (GH#994) (GH#971)

• Allow worker_clients to optionally stay within the thread pool (GH#993)

• Add bytes-stored and tasks-processing diagnostic histograms (GH#990)

• Run supports non-msgpack-serializable results (GH#965)

3.33.15 1.16.1 - March 22nd, 2017

• Use inproc transport in LocalCluster (GH#919)

• Add structured and queryable cluster event logs (GH#922)

• Use connection pool for inter-worker communication (GH#935)

• Robustly shut down spawned worker processes at shutdown (GH#928)

• Worker death timeout (GH#940)

• More visual reporting of exceptions in progressbar (GH#941)

• Render disk and serialization events to task stream visual (GH#943)

3.33. Changelog 121

https://github.com/dask/distributed/pull/1144
https://github.com/dask/distributed/pull/1152
https://github.com/dask/distributed/pull/1153
https://github.com/dask/distributed/pull/1063
https://github.com/dask/distributed/pull/1061
https://github.com/dask/distributed/pull/1055
https://github.com/dask/distributed/pull/1053
https://github.com/dask/distributed/pull/1047
https://github.com/dask/distributed/pull/1046
https://github.com/dask/distributed/pull/1037
https://github.com/dask/distributed/pull/1040
https://github.com/dask/distributed/pull/1035
https://github.com/dask/distributed/pull/1022
https://github.com/dask/distributed/pull/1018
https://github.com/dask/distributed/pull/1016
https://github.com/dask/distributed/pull/1007
https://github.com/dask/distributed/pull/1003
https://github.com/dask/distributed/pull/998
https://github.com/dask/distributed/pull/997
https://github.com/dask/distributed/pull/994
https://github.com/dask/distributed/pull/971
https://github.com/dask/distributed/pull/993
https://github.com/dask/distributed/pull/990
https://github.com/dask/distributed/pull/965
https://github.com/dask/distributed/pull/919
https://github.com/dask/distributed/pull/922
https://github.com/dask/distributed/pull/935
https://github.com/dask/distributed/pull/928
https://github.com/dask/distributed/pull/940
https://github.com/dask/distributed/pull/941
https://github.com/dask/distributed/pull/943

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

• Support async for / await protocol (GH#952)

• Ensure random generators are re-seeded in worker processes (GH#953)

• Upload sourcecode as zip module (GH#886)

• Replay remote exceptions in local process (GH#894)

3.33.16 1.16.0 - February 24th, 2017

• First come first served priorities on client submissions (GH#840)

• Can specify Bokeh internal ports (GH#850)

• Allow stolen tasks to return from either worker (GH#853), (GH#875)

• Add worker resource constraints during execution (GH#857)

• Send small data through Channels (GH#858)

• Better estimates for SciPy sparse matrix memory costs (GH#863)

• Avoid stealing long running tasks (GH#873)

• Maintain fortran ordering of NumPy arrays (GH#876)

• Add --scheduler-file keyword to dask-scheduler (GH#877)

• Add serializer for Keras models (GH#878)

• Support uploading modules from zip files (GH#886)

• Improve titles of Bokeh dashboards (GH#895)

3.33.17 1.15.2 - January 27th, 2017

• Fix a bug where arrays with large dtypes or shapes were being improperly compressed (GH#830 GH#832
GH#833)

• Extend as_completed to accept new futures during iteration (GH#829)

• Add --nohost keyword to dask-ssh startup utility (GH#827)

• Support scheduler shutdown of remote workers, useful for adaptive clusters (:pr: 811 GH#816 GH#821)

• Add Client.run_on_scheduler method for running debug functions on the scheduler (GH#808)

3.33.18 1.15.1 - January 11th, 2017

• Make compatibile with Bokeh 0.12.4 (GH#803)

• Avoid compressing arrays if not helpful (GH#777)

• Optimize inter-worker data transfer (GH#770) (GH#790)

• Add –local-directory keyword to worker (GH#788)

• Enable workers to arrive to the cluster with their own data. Useful if a worker leaves and comes back (GH#785)

• Resolve thread safety bug when using local_client (GH#802)

• Resolve scheduling issues in worker (GH#804)

122 Chapter 3. Contents

https://github.com/dask/distributed/pull/952
https://github.com/dask/distributed/pull/953
https://github.com/dask/distributed/pull/886
https://github.com/dask/distributed/pull/894
https://github.com/dask/distributed/pull/840
https://github.com/dask/distributed/pull/850
https://github.com/dask/distributed/pull/853
https://github.com/dask/distributed/pull/875
https://github.com/dask/distributed/pull/857
https://github.com/dask/distributed/pull/858
https://github.com/dask/distributed/pull/863
https://github.com/dask/distributed/pull/873
https://github.com/dask/distributed/pull/876
https://github.com/dask/distributed/pull/877
https://github.com/dask/distributed/pull/878
https://github.com/dask/distributed/pull/886
https://github.com/dask/distributed/pull/895
https://github.com/dask/distributed/pull/830
https://github.com/dask/distributed/pull/832
https://github.com/dask/distributed/pull/833
https://github.com/dask/distributed/pull/829
https://github.com/dask/distributed/pull/827
https://github.com/dask/distributed/pull/816
https://github.com/dask/distributed/pull/821
https://github.com/dask/distributed/pull/808
https://github.com/dask/distributed/pull/803
https://github.com/dask/distributed/pull/777
https://github.com/dask/distributed/pull/770
https://github.com/dask/distributed/pull/790
https://github.com/dask/distributed/pull/788
https://github.com/dask/distributed/pull/785
https://github.com/dask/distributed/pull/802
https://github.com/dask/distributed/pull/804

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.33.19 1.15.0 - January 2nd, 2017

• Major Worker refactor (GH#704)

• Major Scheduler refactor (GH#717) (GH#722) (GH#724) (GH#742) (GH#743

• Add check (default is False) option to Client.get_versions to raise if the versions don’t match on
client, scheduler & workers (GH#664)

• Future.add_done_callback executes in separate thread (GH#656)

• Clean up numpy serialization (GH#670)

• Support serialization of Tornado v4.5 coroutines (GH#673)

• Use CPickle instead of Pickle in Python 2 (GH#684)

• Use Forkserver rather than Fork on Unix in Python 3 (GH#687)

• Support abstract resources for per-task constraints (GH#694) (GH#720) (GH#737)

• Add TCP timeouts (GH#697)

• Add embedded Bokeh server to workers (GH#709) (GH#713) (GH#738)

• Add embedded Bokeh server to scheduler (GH#724) (GH#736) (GH#738)

• Add more precise timers for Windows (GH#713)

• Add Versioneer (GH#715)

• Support inter-client channels (GH#729) (GH#749)

• Scheduler Performance improvements (GH#740) (GH#760)

• Improve load balancing and work stealing (GH#747) (GH#754) (GH#757)

• Run Tornado coroutines on workers

• Avoid slow sizeof call on Pandas dataframes (GH#758)

3.33.20 1.14.3 - November 13th, 2016

• Remove custom Bokeh export tool that implicitly relied on nodejs (GH#655)

• Clean up scheduler logging (GH#657)

3.33.21 1.14.2 - November 11th, 2016

• Support more numpy dtypes in custom serialization, (GH#627), (GH#630), (GH#636)

• Update Bokeh plots (GH#628)

• Improve spill to disk heuristics (GH#633)

• Add Export tool to Task Stream plot

• Reverse frame order in loads for very many frames (GH#651)

• Add timeout when waiting on write (GH#653)

3.33. Changelog 123

https://github.com/dask/distributed/pull/704
https://github.com/dask/distributed/pull/717
https://github.com/dask/distributed/pull/722
https://github.com/dask/distributed/pull/724
https://github.com/dask/distributed/pull/742
https://github.com/dask/distributed/pull/743
https://github.com/dask/distributed/pull/664
https://github.com/dask/distributed/pull/656
https://github.com/dask/distributed/pull/670
https://github.com/dask/distributed/pull/673
https://github.com/dask/distributed/pull/684
https://github.com/dask/distributed/pull/687
https://github.com/dask/distributed/pull/694
https://github.com/dask/distributed/pull/720
https://github.com/dask/distributed/pull/737
https://github.com/dask/distributed/pull/697
https://github.com/dask/distributed/pull/709
https://github.com/dask/distributed/pull/713
https://github.com/dask/distributed/pull/738
https://github.com/dask/distributed/pull/724
https://github.com/dask/distributed/pull/736
https://github.com/dask/distributed/pull/738
https://github.com/dask/distributed/pull/713
https://github.com/dask/distributed/pull/715
https://github.com/dask/distributed/pull/729
https://github.com/dask/distributed/pull/749
https://github.com/dask/distributed/pull/740
https://github.com/dask/distributed/pull/760
https://github.com/dask/distributed/pull/747
https://github.com/dask/distributed/pull/754
https://github.com/dask/distributed/pull/757
https://github.com/dask/distributed/pull/758
https://github.com/dask/distributed/pull/655
https://github.com/dask/distributed/pull/657
https://github.com/dask/distributed/pull/627
https://github.com/dask/distributed/pull/630
https://github.com/dask/distributed/pull/636
https://github.com/dask/distributed/pull/628
https://github.com/dask/distributed/pull/633
https://github.com/dask/distributed/pull/651
https://github.com/dask/distributed/pull/653

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.33.22 1.14.0 - November 3rd, 2016

• Add Client.get_versions() function to return software and package information from the scheduler,
workers, and client (GH#595)

• Improved windows support (GH#577) (GH#590) (GH#583) (GH#597)

• Clean up rpc objects explicitly (GH#584)

• Normalize collections against known futures (GH#587)

• Add key= keyword to map to specify keynames (GH#589)

• Custom data serialization (GH#606)

• Refactor the web interface (GH#608) (GH#615) (GH#621)

• Allow user-supplied Executor in Worker (GH#609)

• Pass Worker kwargs through LocalCluster

3.33.23 1.13.3 - October 15th, 2016

• Schedulers can retire workers cleanly

• Add Future.add_done_callback for concurrent.futures compatibility

• Update web interface to be consistent with Bokeh 0.12.3

• Close streams explicitly, avoiding race conditions and supporting more robust restarts on Windows.

• Improved shuffled performance for dask.dataframe

• Add adaptive allocation cluster manager

• Reduce administrative overhead when dealing with many workers

• dask-ssh --log-directory . no longer errors

• Microperformance tuning for the scheduler

3.33.24 1.13.2

• Revert dask_worker to use fork rather than subprocess by default

• Scatter retains type information

• Bokeh always uses subprocess rather than spawn

3.33.25 1.13.1

• Fix critical Windows error with dask_worker executable

3.33.26 1.13.0

• Rename Executor to Client (GH#492)

• Add --memory-limit option to dask-worker, enabling spill-to-disk behavior when running out of mem-
ory (GH#485)

124 Chapter 3. Contents

https://github.com/dask/distributed/pull/595
https://github.com/dask/distributed/pull/577
https://github.com/dask/distributed/pull/590
https://github.com/dask/distributed/pull/583
https://github.com/dask/distributed/pull/597
https://github.com/dask/distributed/pull/584
https://github.com/dask/distributed/pull/587
https://github.com/dask/distributed/pull/589
https://github.com/dask/distributed/pull/606
https://github.com/dask/distributed/pull/608
https://github.com/dask/distributed/pull/615
https://github.com/dask/distributed/pull/621
https://github.com/dask/distributed/pull/609
https://github.com/dask/distributed/pull/492
https://github.com/dask/distributed/pull/485

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

• Add --pid-file option to dask-worker and --dask-scheduler (GH#496)

• Add upload_environment function to distribute conda environments. This is experimental, undocu-
mented, and may change without notice. (GH#494)

• Add workers= keyword argument to Client.compute and Client.persist, supporting location-
restricted workloads with Dask collections (GH#484)

• Add upload_environment function to distribute conda environments. This is experimental, undocu-
mented, and may change without notice. (GH#494)

– Add optional dask_worker= keyword to client.run functions that gets provided the worker or
nanny object

– Add nanny=False keyword to Client.run, allowing for the execution of arbitrary functions on the
nannies as well as normal workers

3.33.27 1.12.2

This release adds some new features and removes dead code

• Publish and share datasets on the scheduler between many clients (GH#453). See Publish Datasets.

• Launch tasks from other tasks (experimental) (GH#471). See Launch Tasks from Tasks.

• Remove unused code, notably the Center object and older client functions (GH#478)

• Executor() and LocalCluster() is now robust to Bokeh’s absence (GH#481)

• Removed s3fs and boto3 from requirements. These have moved to Dask.

3.33.28 1.12.1

This release is largely a bugfix release, recovering from the previous large refactor.

• Fixes from previous refactor

– Ensure idempotence across clients

– Stress test losing scattered data permanently

• IPython fixes

– Add start_ipython_scheduler method to Executor

– Add %remote magic for workers

– Clean up code and tests

• Pool connects to maintain reuse and reduce number of open file handles

• Re-implement work stealing algorithm

• Support cancellation of tuple keys, such as occur in dask.arrays

• Start synchronizing against worker data that may be superfluous

• Improve bokeh plots styling

– Add memory plot tracking number of bytes

– Make the progress bars more compact and align colors

– Add workers/ page with workers table, stacks/processing plot, and memory

3.33. Changelog 125

https://github.com/dask/distributed/pull/496
https://github.com/dask/distributed/pull/494
https://github.com/dask/distributed/pull/484
https://github.com/dask/distributed/pull/494
https://github.com/dask/distributed/pull/453
https://github.com/dask/distributed/pull/471
https://github.com/dask/distributed/pull/478
https://github.com/dask/distributed/pull/481

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

• Add this release notes document

3.33.29 1.12.0

This release was largely a refactoring release. Internals were changed significantly without many new features.

• Major refactor of the scheduler to use transitions system

• Tweak protocol to traverse down complex messages in search of large bytestrings

• Add dask-submit and dask-remote

• Refactor HDFS writing to align with changes in the dask library

• Executor reconnects to scheduler on broken connection or failed scheduler

• Support sklearn.external.joblib as well as normal joblib

3.34 Communications

Workers, the Scheduler, and Clients communicate by sending each other Python objects (such as Protocol messages
or user data). The communication layer handles appropriate encoding and shipping of those Python objects between
the distributed endpoints. The communication layer is able to select between different transport implementations,
depending on user choice or (possibly) internal optimizations.

The communication layer lives in the distributed.comm package.

3.34.1 Addresses

Communication addresses are canonically represented as URIs, such as tcp://127.0.0.1:1234. For compati-
bility with existing code, if the URI scheme is omitted, a default scheme of tcp is assumed (so 127.0.0.1:456 is
really the same as tcp://127.0.0.1:456). The default scheme may change in the future.

The following schemes are currently implemented in the distributed source tree:

• tcp is the main transport; it uses TCP sockets and allows for IPv4 and IPv6 addresses.

• tls is a secure transport using the well-known TLS protocol over TCP sockets. Using it requires specifying
keys and certificates as outlined in TLS/SSL.

• inproc is an in-process transport using simple object queues; it eliminates serialization and I/O overhead,
providing almost zero-cost communication between endpoints as long as they are situated in the same process.

Some URIs may be valid for listening but not for connecting. For example, the URI tcp:// will listen on all IPv4
and IPv6 addresses and on an arbitrary port, but you cannot connect to that address.

Higher-level APIs in distributed may accept other address formats for convenience or compatibility, for example
a (host, port) pair. However, the abstract communications layer always deals with URIs.

Functions

There are a number of top-level functions in distributed.comm to help deal with addresses:

distributed.comm.parse_address(addr, strict=False)
Split address into its scheme and scheme-dependent location string.

126 Chapter 3. Contents

https://en.wikipedia.org/wiki/Transport_Layer_Security

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

>>> parse_address('tcp://127.0.0.1')
('tcp', '127.0.0.1')

If strict is set to true the address must have a scheme.

distributed.comm.unparse_address(scheme, loc)
Undo parse_address().

>>> unparse_address('tcp', '127.0.0.1')
'tcp://127.0.0.1'

distributed.comm.normalize_address(addr)
Canonicalize address, adding a default scheme if necessary.

>>> normalize_address('tls://[::1]')
'tls://[::1]'
>>> normalize_address('[::1]')
'tcp://[::1]'

distributed.comm.resolve_address(addr)
Apply scheme-specific address resolution to addr, replacing all symbolic references with concrete location
specifiers.

In practice, this can mean hostnames are resolved to IP addresses.

>>> resolve_address('tcp://localhost:8786')
'tcp://127.0.0.1:8786'

distributed.comm.get_address_host(addr)
Return a hostname / IP address identifying the machine this address is located on.

In contrast to get_address_host_port(), this function should always succeed for well-formed addresses.

>>> get_address_host('tcp://1.2.3.4:80')
'1.2.3.4'

3.34.2 Communications API

The basic unit for dealing with established communications is the Comm object:

class distributed.comm.Comm
A message-oriented communication object, representing an established communication channel. There should
be only one reader and one writer at a time: to manage current communications, even with a single peer, you
must create distinct Comm objects.

Messages are arbitrary Python objects. Concrete implementations of this class can implement different serial-
ization mechanisms depending on the underlying transport’s characteristics.

abort()
Close the communication immediately and abruptly. Useful in destructors or generators’ finally
blocks.

close()
Close the communication cleanly. This will attempt to flush outgoing buffers before actually closing the
underlying transport.

This method is a coroutine.

3.34. Communications 127

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

closed()
Return whether the stream is closed.

extra_info
Return backend-specific information about the communication, as a dict. Typically, this is information
which is initialized when the communication is established and doesn’t vary afterwards.

local_address
The local address. For logging and debugging purposes only.

peer_address
The peer’s address. For logging and debugging purposes only.

read()
Read and return a message (a Python object).

This method is a coroutine.

write(msg)
Write a message (a Python object).

This method is a coroutine.

You don’t create Comm objects directly: you either listen for incoming communications, or connect to a peer
listening for connections:

distributed.comm.connect(*args, **kwargs)
Connect to the given address (a URI such as tcp://127.0.0.1:1234) and yield a Comm object. If the
connection attempt fails, it is retried until the timeout is expired.

distributed.comm.listen(addr, handle_comm, deserialize=True, connection_args=None)
Create a listener object with the given parameters. When its start() method is called, the listener will listen
on the given address (a URI such as tcp://0.0.0.0) and call handle_comm with a Comm object for each
incoming connection.

handle_comm can be a regular function or a coroutine.

Listener objects expose the following interface:

class distributed.comm.core.Listener

contact_address
An address this listener can be contacted on. This can be different from listen_address if the latter is some
wildcard address such as ‘tcp://0.0.0.0:123’.

listen_address
The listening address as a URI string.

start()
Start listening for incoming connections.

stop()
Stop listening. This does not shutdown already established communications, but prevents accepting new
ones.

3.34.3 Extending the Communication Layer

Each transport is represented by a URI scheme (such as tcp) and backed by a dedicated Backend implementation,
which provides entry points into all transport-specific routines.

128 Chapter 3. Contents

tcp://0.0.0.0:123

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

class distributed.comm.registry.Backend
A communication backend, selected by a given URI scheme (e.g. ‘tcp’).

get_address_host(loc)
Get a host name (normally an IP address) identifying the host the address is located on. loc is a scheme-less
address.

get_address_host_port(loc)
Get the (host, port) tuple of the scheme-less address loc. This should only be implemented by IP-based
transports.

get_connector()
Get a connector object usable for connecting to addresses.

get_listener(loc, handle_comm, deserialize, **connection_args)
Get a listener object for the scheme-less address loc.

get_local_address_for(loc)
Get the local listening address suitable for reaching loc.

resolve_address(loc)
Resolve the address into a canonical form. loc is a scheme-less address.

Simple implementations may return loc unchanged.

3.35 Development Guidelines

This repository is part of the Dask projects. General development guidelines including where to ask for help, a layout
of repositories, testing practices, and documentation and style standards are available at the Dask developer guidelines
in the main documentation.

3.35.1 Install

After setting up an environment as described in the Dask developer guidelines you can clone this repository with git:

git clone git@github.com:dask/distributed.git

and install it from source:

cd distributed
python setup.py install

3.35.2 Test

Test using py.test:

py.test distributed --verbose

3.35.3 Tornado

Dask.distributed is a Tornado TCP application. Tornado provides us with both a communication layer on top of
sockets, as well as a syntax for writing asynchronous coroutines, similar to asyncio. You can make modest changes to
the policies within this library without understanding much about Tornado, however moderate changes will probably

3.35. Development Guidelines 129

http://dask.pydata.org/en/latest/
http://dask.pydata.org/en/latest/develop.html
http://dask.pydata.org/en/latest/develop.html

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

require you to understand Tornado IOLoops, coroutines, and a little about non-blocking communication.. The Tornado
API documentation is quite good and we recommend that you read the following resources:

• http://www.tornadoweb.org/en/stable/gen.html

• http://www.tornadoweb.org/en/stable/ioloop.html

Additionally, if you want to interact at a low level with the communication between workers and scheduler then you
should understand the Tornado TCPServer and IOStream available here:

• http://www.tornadoweb.org/en/stable/networking.html

Dask.distributed wraps a bit of logic around Tornado. See Foundations for more information.

3.35.4 Writing Tests

Testing distributed systems is normally quite difficult because it is difficult to inspect the state of all components
when something goes wrong. Fortunately, the non-blocking asynchronous model within Tornado allows us to run a
scheduler, multiple workers, and multiple clients all within a single thread. This gives us predictable performance,
clean shutdowns, and the ability to drop into any point of the code during execution. At the same time, sometimes we
want everything to run in different processes in order to simulate a more realistic setting.

The test suite contains three kinds of tests

1. @gen_cluster: Fully asynchronous tests where all components live in the same event loop in the main
thread. These are good for testing complex logic and inspecting the state of the system directly. They are also
easier to debug and cause the fewest problems with shutdowns.

2. with cluster(): Tests with multiple processes forked from the master process. These are good for testing
the synchronous (normal user) API and when triggering hard failures for resilience tests.

3. popen: Tests that call out to the command line to start the system. These are rare and mostly for testing the
command line interface.

If you are comfortable with the Tornado interface then you will be happiest using the @gen_cluster style of test

@gen_cluster(client=True)
def test_submit(c, s, a, b):

assert isinstance(c, Client)
assert isinstance(s, Scheduler)
assert isinstance(a, Worker)
assert isinstance(b, Worker)

future = c.submit(inc, 1)
assert future.key in c.futures

result = future.result() # This synchronous API call would block
result = yield future
assert result == 2

assert future.key in s.tasks
assert future.key in a.data or future.key in b.data

The @gen_cluster decorator sets up a scheduler, client, and workers for you and cleans them up after the test.
It also allows you to directly inspect the state of every element of the cluster directly. However, you can not use
the normal synchronous API (doing so will cause the test to wait forever) and instead you need to use the coroutine
API, where all blocking functions are prepended with an underscore (_). Beware, it is a common mistake to use the
blocking interface within these tests.

130 Chapter 3. Contents

http://www.tornadoweb.org/en/stable/gen.html
http://www.tornadoweb.org/en/stable/ioloop.html
http://www.tornadoweb.org/en/stable/networking.html

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

If you want to test the normal synchronous API you can use a with cluster style test, which sets up a scheduler
and workers for you in different forked processes:

def test_submit_sync(loop):
with cluster() as (s, [a, b]):

with Client(('127.0.0.1', s['port']), loop=loop) as c:
future = c.submit(inc, 1)
assert future.key in c.futures

result = future.result() # use the synchronous/blocking API here
assert result == 2

a['proc'].terminate() # kill one of the workers

result = future.result() # test that future remains valid
assert result == 2

In this style of test you do not have access to the scheduler or workers. The variables s, a, b are now dictio-
naries holding a multiprocessing.Process object and a port integer. However, you can now use the normal
synchronous API (never use yield in this style of test) and you can close processes easily by terminating them.

Typically for most user-facing functions you will find both kinds of tests. The @gen_cluster tests test particular
logic while the with cluster tests test basic interface and resilience.

You should avoid popen style tests unless absolutely necessary, such as if you need to test the command line interface.

3.36 Foundations

You should read through the quickstart before reading this document.

Distributed computing is hard for two reasons:

1. Consistent coordination of distributed systems requires sophistication

2. Concurrent network programming is tricky and error prone

The foundations of dask.distributed provide abstractions to hide some complexity of concurrent network pro-
gramming (#2). These abstractions ease the construction of sophisticated parallel systems (#1) in a safer environment.
However, as with all layered abstractions, ours has flaws. Critical feedback is welcome.

3.36.1 Concurrency with Tornado Coroutines

Worker and Scheduler nodes operate concurrently. They serve several overlapping requests and perform several over-
lapping computations at the same time without blocking. There are several approaches for concurrent programming,
we’ve chosen to use Tornado for the following reasons:

1. Developing and debugging is more comfortable without threads

2. Tornado’s documentation is excellent

3. Stackoverflow coverage is excellent

4. Performance is satisfactory

3.36. Foundations 131

https://tornado.readthedocs.io/en/latest/coroutine.html

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.36.2 Endpoint-to-endpoint Communication

The various distributed endpoints (Client, Scheduler, Worker) communicate by sending each other arbitrary Python
objects. Encoding, sending and then decoding those objects is the job of the communication layer.

Ancillary services such as a Bokeh-based Web interface, however, have their own implementation and semantics.

3.36.3 Protocol Handling

While the abstract communication layer can transfer arbitrary Python objects (as long as they are serializable), partici-
pants in a distributed cluster concretely obey the distributed Protocol, which specifies request-response semantics
using a well-defined message format.

Dedicated infrastructure in distributed handles the various aspects of the protocol, such as dispatching the various
operations supported by an endpoint.

Servers

Worker, Scheduler, and Nanny objects all inherit from a Server class.

class distributed.core.Server(handlers, connection_limit=512, deserialize=True,
io_loop=None)

Distributed TCP Server

Superclass for endpoints in a distributed cluster, such as Worker and Scheduler objects.

Handlers

Servers define operations with a handlers dict mapping operation names to functions. The first argument
of a handler function will be a Comm for the communication established with the client. Other arguments will
receive inputs from the keys of the incoming message which will always be a dictionary.

>>> def pingpong(comm):
... return b'pong'

>>> def add(comm, x, y):
... return x + y

>>> handlers = {'ping': pingpong, 'add': add}
>>> server = Server(handlers)
>>> server.listen('tcp://0.0.0.0:8000')

Message Format

The server expects messages to be dictionaries with a special key, ‘op’ that corresponds to the name of the
operation, and other key-value pairs as required by the function.

So in the example above the following would be good messages.

• {'op': 'ping'}

• {'op': 'add', 'x': 10, 'y': 20}

RPC

To interact with remote servers we typically use rpc objects which expose a familiar method call interface to invoke
remote operations.

132 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

class distributed.core.rpc(arg=None, comm=None, deserialize=True, timeout=None, connec-
tion_args=None)

Conveniently interact with a remote server

>>> remote = rpc(address)
>>> response = yield remote.add(x=10, y=20)

One rpc object can be reused for several interactions. Additionally, this object creates and destroys many comms
as necessary and so is safe to use in multiple overlapping communications.

When done, close comms explicitly.

>>> remote.close_comms()

3.36.4 Examples

Here is a small example using distributed.core to create and interact with a custom server.

Server Side

from tornado import gen
from tornado.ioloop import IOLoop
from distributed.core import Server

def add(comm, x=None, y=None): # simple handler, just a function
return x + y

@gen.coroutine
def stream_data(comm, interval=1): # complex handler, multiple responses

data = 0
while True:

yield gen.sleep(interval)
data += 1
yield comm.write(data)

s = Server({'add': add, 'stream_data': stream_data})
s.listen('tcp://:8888') # listen on TCP port 8888

IOLoop.current().start()

Client Side

from tornado import gen
from tornado.ioloop import IOLoop
from distributed.core import connect

@gen.coroutine
def f():

comm = yield connect('tcp://127.0.0.1:8888')
yield comm.write({'op': 'add', 'x': 1, 'y': 2})
result = yield comm.read()
yield comm.close()
print(result)

3.36. Foundations 133

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

>>> IOLoop().run_sync(f)
3

@gen.coroutine
def g():

comm = yield connect('tcp://127.0.0.1:8888')
yield comm.write({'op': 'stream_data', 'interval': 1})
while True:

result = yield comm.read()
print(result)

>>> IOLoop().run_sync(g)
1
2
3
...

Client Side with rpc

RPC provides a more pythonic interface. It also provides other benefits, such as using multiple streams in concurrent
cases. Most distributed code uses rpc. The exception is when we need to perform multiple reads or writes, as with
the stream data case above.

from tornado import gen
from tornado.ioloop import IOLoop
from distributed.core import rpc

@gen.coroutine
def f():

comm = yield connect('tcp://127.0.0.1', 8888)
yield comm.write({'op': 'add', 'x': 1, 'y': 2})
result = yield comm.read()
r = rpc('tcp://127.0.0.1:8888')
result = yield r.add(x=1, y=2)
r.close_comms()

print(result)

>>> IOLoop().run_sync(f)
3

3.37 Journey of a Task

We follow a single task through the user interface, scheduler, worker nodes, and back. Hopefully this helps to illustrate
the inner workings of the system.

3.37.1 User code

A user computes the addition of two variables already on the cluster, then pulls the result back to the local process.

client = Client('host:port')
x = e.submit(...)

134 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

y = e.submit(...)

z = client.submit(add, x, y) # we follow z

print(z.result())

3.37.2 Step 1: Client

z begins its life when the Client.submit function sends the following message to the Scheduler:

{'op': 'update-graph',
'tasks': {'z': (add, x, y)},
'keys': ['z']}

The client then creates a Future object with the key 'z' and returns that object back to the user. This happens even
before the message has been received by the scheduler. The status of the future says 'pending'.

3.37.3 Step 2: Arrive in the Scheduler

A few milliseconds later, the scheduler receives this message on an open socket.

The scheduler updates its state with this little graph that shows how to compute z.:

scheduler.tasks.update(msg['tasks'])

The scheduler also updates a lot of other state. Notably, it has to identify that x and y are themselves variables, and
connect all of those dependencies. This is a long and detail oriented process that involves updating roughly 10 sets and
dictionaries. Interested readers should investigate distributed/scheduler.py::update_state(). While
this is fairly complex and tedious to describe rest assured that it all happens in constant time and in about a millisecond.

3.37.4 Step 3: Select a Worker

Once the latter of x and y finishes, the scheduler notices that all of z’s dependencies are in memory and that z itself
may now run. Which worker should z select? We consider a sequence of criteria:

1. First, we quickly downselect to only those workers that have either x or y in local memory.

2. Then, we select the worker that would have to gather the least number of bytes in order to get both x and y
locally. E.g. if two different workers have x and y and if y takes up more bytes than x then we select the
machine that holds y so that we don’t have to communicate as much.

3. If there are multiple workers that require the minimum number of communication bytes then we select the
worker that is the least busy

z considers the workers and chooses one based on the above criteria. In the common case the choice is pretty obvious
after step 1. z waits on a stack associated with the chosen worker. The worker may still be busy though, so z may
wait a while.

Note: This policy is under flux and this part of this document is quite possibly out of date.

3.37.5 Step 4: Transmit to the Worker

Eventually the worker finishes a task, has a spare core, and z finds itself at the top of the stack (note, that this may be
some time after the last section if other tasks placed themselves on top of the worker’s stack in the meantime.)

3.37. Journey of a Task 135

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

We place z into a worker_queue associated with that worker and a worker_core coroutine pulls it out. z’s
function, the keys associated to its arguments, and the locations of workers that hold those keys are packed up into a
message that looks like this:

{'op': 'compute',
'function': execute_task,
'args': ((add, 'x', 'y'),),
'who_has': {'x': {(worker_host, port)},

'y': {(worker_host, port), (worker_host, port)}},
'key': 'z'}

This message is serialized and sent across a TCP socket to the worker.

3.37.6 Step 5: Execute on the Worker

The worker unpacks the message, and notices that it needs to have both x and y. If the worker does not already have
both of these then it gathers them from the workers listed in the who_has dictionary also in the message. For each
key that it doesn’t have it selects a valid worker from who_has at random and gathers data from it.

After this exchange, the worker has both the value for x and the value for y. So it launches the computation add(x,
y) in a local ThreadPoolExecutor and waits on the result.

In the mean time the worker repeats this process concurrently for other tasks. Nothing blocks.

Eventually the computation completes. The Worker stores this result in its local memory:

data['x'] = ...

And transmits back a success, and the number of bytes of the result:

Worker: Hey Scheduler, 'z' worked great.
I'm holding onto it.
It takes up 64 bytes.

The worker does not transmit back the actual value for z.

3.37.7 Step 6: Scheduler Aftermath

The scheduler receives this message and does a few things:

1. It notes that the worker has a free core, and sends up another task if available

2. If x or y are no longer needed then it sends a message out to relevant workers to delete them from local memory.

3. It sends a message to all of the clients that z is ready and so all client Future objects that are currently waiting
should, wake up. In particular, this wakes up the z.result() command executed by the user originally.

3.37.8 Step 7: Gather

When the user calls z.result() they wait both on the completion of the computation and for the computation to
be sent back over the wire to the local process. Usually this isn’t necessary, usually you don’t want to move data back
to the local process but instead want to keep in on the cluster.

But perhaps the user really wanted to actually know this value, so they called z.result().

136 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

The scheduler checks who has z and sends them a message asking for the result. This message doesn’t wait in a queue
or for other jobs to complete, it starts instantly. The value gets serialized, sent over TCP, and then deserialized and
returned to the user (passing through a queue or two on the way.)

3.37.9 Step 8: Garbage Collection

The user leaves this part of their code and the local variable z goes out of scope. The Python garbage collector cleans
it up. This triggers a decremented reference on the client (we didn’t mention this, but when we created the Future
we also started a reference count.) If this is the only instance of a Future pointing to z then we send a message up to
the scheduler that it is OK to release z. The user no longer requires it to persist.

The scheduler receives this message and, if there are no computations that might depend on z in the immediate future,
it removes elements of this key from local scheduler state and adds the key to a list of keys to be deleted periodically.
Every 500 ms a message goes out to relevant workers telling them which keys they can delete from their local memory.
The graph/recipe to create the result of z persists in the scheduler for all time.

3.37.10 Overhead

The user experiences this in about 10 milliseconds, depending on network latency.

3.38 Protocol

The scheduler, workers, and clients pass messages between each other. Semantically these messages encode com-
mands, status updates, and data, like the following:

• Please compute the function sum on the data x and store in y

• The computation y has been completed

• Be advised that a new worker named alice is available for use

• Here is the data for the keys 'x', and 'y'

In practice we represent these messages with dictionaries/mappings:

{'op': 'compute',
'function': ...
'args': ['x']}

{'op': 'task-complete',
'key': 'y',
'nbytes': 26}

{'op': 'register-worker',
'address': '192.168.1.42',
'name': 'alice',
'ncores': 4}

{'x': b'...',
'y': b'...'}

When we communicate these messages between nodes we need to serialize these messages down to a string of bytes
that can then be deserialized on the other end to their in-memory dictionary form. For simple cases several options
exist like JSON, MsgPack, Protobuffers, and Thrift. The situation is made more complex by concerns like serializing
Python functions and Python objects, optional compression, cross-language support, large messages, and efficiency.

3.38. Protocol 137

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

This document describes the protocol used by dask.distributed today. Be advised that this protocol changes
rapidly as we continue to optimize for performance.

3.38.1 Overview

We may split a single message into multiple message-part to suit different protocols. Generally small bits of data are
encoded with MsgPack while large bytestrings and complex datatypes are handled by a custom format. Each message-
part gets its own header, which is always encoded as msgpack. After serializing all message parts we have a sequence
of bytestrings or frames which we send along the wire, prepended with length information.

The application doesn’t know any of this, it just sends us Python dictionaries with various datatypes and we produce
a list of bytestrings that get written to a socket. This format is fast both for many frequent messages and for large
messages.

3.38.2 MsgPack for Messages

Most messages are encoded with MsgPack, a self describing semi-structured serialization format that is very similar
to JSON, but smaller, faster, not human-readable, and supporting of bytestrings and (soon) timestamps. We chose
MsgPack as a base serialization format for the following reasons:

• It does not require separate headers, and so is easy and flexible to use which is particularly important in an early
stage project like dask.distributed

• It is very fast, much faster than JSON, and there are nicely optimized implementations. With few exceptions
(described later) MsgPack does not come anywhere near being a bottleneck, even under heavy use.

• Unlike JSON it supports bytestrings

• It covers the standard set of types necessary to encode most information

• It is widely implemented in a number of languages (see cross language section below)

However, MsgPack fails (correctly) in the following ways:

• It does not provide any way for us to encode Python functions or user defined data types

• It does not support bytestrings greater than 4GB and is generally inefficient for very large messages.

Because of these failings we supplement it with a language-specific protocol and a special case for large bytestrings.

3.38.3 CloudPickle for Functions and Some Data

Pickle and CloudPickle are Python libraries to serialize almost any Python object, including functions. We use these
libraries to transform the users’ functions and data into bytes before we include them in the dictionary/map that we
pass off to msgpack. In the introductory example you may have noticed that we skipped providing an example for the
function argument:

{'op': 'compute',
'function': ...
'args': ['x']}

That is because this value ... will actually be the result of calling cloudpickle.dumps(myfunction). Those
bytes will then be included in the dictionary that we send off to msgpack, which will only have to deal with bytes
rather than obscure Python functions.

Note: we actually call some combination of pickle and cloudpickle, depending on the situation. This is for performance
reasons.

138 Chapter 3. Contents

http://msgpack.org/index.html

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

3.38.4 Cross Language Specialization

The Client and Workers must agree on a language-specific serialization format. In the standard dask.distributed
client and worker objects this ends up being the following:

bytes = cloudpickle.dumps(obj, protocol=pickle.HIGHEST_PROTOCOL)
obj = cloudpickle.loads(bytes)

This varies between Python 2 and 3 and so your client and workers must match their Python versions and software
environments.

However, the Scheduler never uses the language-specific serialization and instead only deals with MsgPack. If the
client sends a pickled function up to the scheduler the scheduler will not unpack function but will instead keep it as
bytes. Eventually those bytes will be sent to a worker, which will then unpack the bytes into a proper Python function.
Because the Scheduler never unpacks language-specific serialized bytes it may be in a different language.

The client and workers must share the same language and software environment, the scheduler may differ.

This has a few advantages:

1. The Scheduler is protected from unpickling unsafe code

2. The Scheduler can be run under pypy for improved performance. This is only useful for larger clusters.

3. We could conceivably implement workers and clients for other languages (like R or Julia) and reuse the Python
scheduler. The worker and client code is fairly simple and much easier to reimplement than the scheduler, which
is complex.

4. The scheduler might some day be rewritten in more heavily optimized C or Go

3.38.5 Compression

Fast compression libraries like LZ4 or Snappy may increase effective bandwidth by compressing data before sending
and decompressing it after reception. This is especially valuable on lower-bandwidth networks.

If either of these libraries is available (we prefer LZ4 to Snappy) then for every message greater than 1kB we try to
compress the message and, if the compression is at least a 10% improvement, we send the compressed bytes rather
than the original payload. We record the compression used within the header as a string like 'lz4' or 'snappy'.

To avoid compressing large amounts of uncompressable data we first try to compress a sample. We take 10kB chunks
from five locations in the dataset, arrange them together, and try compressing the result. If this doesn’t result in
significant compression then we don’t try to compress the full result.

3.38.6 Header

The header is a small dictionary encoded in msgpack that includes some metadata about the message, such as com-
pression.

3.38.7 Serializing Data

For administrative messages like updating status msgpack is sufficient. However for large results or Python specific
data, like NumPy arrays or Pandas Dataframes, or for larger results we need to use something else to convert Python
objects to bytestrings. Exactly how we do this is described more in the Serialization documentation.

The application code marks Python specific results with the to_serialize function:

3.38. Protocol 139

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

>>> import numpy as np
>>> x = np.ones(5)

>>> from distributed.protocol import to_serialize
>>> msg = {'status': 'OK', 'data': to_serialize(x)}
>>> msg
{'data': <Serialize: [1. 1. 1. 1. 1.]>, 'status': 'OK'}

We separate the message into two messages, one encoding all of the data to be serialized and, and one encoding
everything else:

{'key': 'x', 'address': 'alice'}
{'data': <Serialize: [1. 1. 1. 1. 1.]>}

The first message we pass normally with msgpack. The second we pass in multiple parts, one part for each serialized
piece of data (see serialization) and one header including types, compression, etc. used for each value:

{'keys': ['data'],
'compression': ['lz4']}

b'...'
b'...'

3.38.8 Frames

At the end of the pipeline we have a sequence of bytestrings or frames. We need to tell the receiving end how many
frames there are and how long each these frames are. We order the frames and lengths of frames as follows:

1. The number of frames, stored as an 8 byte unsigned integer

2. The length of each frame, each stored as an 8 byte unsigned integer

3. Each of the frames

In the following sections we describe how we create these frames.

3.38.9 Technical Version

A message is broken up into the following components:

1. 8 bytes encoding how many frames there are in the message (N) as a uint64

2. 8 * N frames encoding the length of each frame as uint64 s

3. Header for the administrative message

4. The administrative message, msgpack encoded, possibly compressed

5. Header for all payload messages

6. Payload messages

Header for Administrative Message

The administrative message is arbitrary msgpack-encoded data. Usually a dictionary. It may optionally be compressed.
If so the compression type will be in the header.

140 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

Payload frames and Header

These frames are optional.

Payload frames are used to send large or language-specific data. These values will be inserted into the administrative
message after they are decoded. The header is msgpack encoded and contains encoding and compression information
for the all subsequent payload messages.

A Payload may be spread across many frames. Each frame may be separately compressed.

Simple Example

This simple example shows a minimal message. There is only an empty header and a small msgpack message. There
are no additional payload frames

Message: {'status': 'OK'}

Frames:

• Header: {}

• Administrative Message: {'status': 'OK'}

Example with Custom Data

This example contains a single payload message composed of a single frame. It uses a special serialization for NumPy
arrays.

Message: {'op': 'get-data', 'data': np.ones(5)}

Frames:

• Header: {}

• Administrative Message: {'op': 'get-data'}

• Payload header:

{'headers': [{'type': 'numpy.ndarray',
'compression': 'lz4',
'count': 1,
'lengths': [40],
'dtype': '<f8',
'strides': (8,),
'shape': (5,)}],

'keys': [('data',)]}

• Payload Frame: b'(\x00\x00\x00\x11\x00\x01\x00!\xf0?\x07\x00\x0f\x08\x00\x03P\x00\x00\x00\xf0?
'

3.39 Custom Serialization

When we communicate data between computers we first convert that data into a sequence of bytes that can be com-
municated across the network.

Dask can convert data to bytes using the standard solutions of Pickle and Cloudpickle. However, sometimes pickle
and cloudpickle are suboptimal so Dask also supports custom serialization formats for special types. This helps Dask

3.39. Custom Serialization 141

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

to be faster on common formats like NumPy and Pandas and gives power-users more control about how their objects
get moved around on the network if they want to extend the system.

We include a small example and then follow with the full API documentation describing the serialize and
deserialize functions, which convert objects into a msgpack header and a list of bytestrings and back.

3.39.1 Example

Here is how we special case handling raw Python bytes objects. In this case there is no need to call pickle.dumps
on the object. The object is already a sequence of bytes.

def serialize_bytes(obj):
header = {} # no special metadata
frames = [obj]
return header, frames

def deserialize_bytes(header, frames):
return frames[0]

register_serialization(bytes, serialize_bytes, deserialize_bytes)

3.39.2 API

register_serialization(cls, serialize, . . .) Register a new class for custom serialization
serialize(x) Convert object to a header and list of bytestrings
deserialize(header, frames) Convert serialized header and list of bytestrings back to a

Python object

distributed.protocol.serialize.register_serialization(cls, serialize, deserialize)
Register a new class for custom serialization

Parameters cls: type

serialize: function

deserialize: function

See also:

serialize, deserialize

Examples

>>> class Human(object):
... def __init__(self, name):
... self.name = name

>>> def serialize(human):
... header = {}
... frames = [human.name.encode()]
... return header, frames

142 Chapter 3. Contents

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

>>> def deserialize(header, frames):
... return Human(frames[0].decode())

>>> register_serialization(Human, serialize, deserialize)
>>> serialize(Human('Alice'))
({}, [b'Alice'])

distributed.protocol.serialize.serialize(x)
Convert object to a header and list of bytestrings

This takes in an arbitrary Python object and returns a msgpack serializable header and a list of bytes or mem-
oryview objects. By default this uses pickle/cloudpickle but can use special functions if they have been pre-
registered.

Returns header: dictionary containing any msgpack-serializable metadata

frames: list of bytes or memoryviews, commonly of length one

See also:

deserialize Convert header and frames back to object

to_serialize Mark that data in a message should be serialized

register_serialization Register custom serialization functions

Examples

>>> serialize(1)
({}, [b'\x80\x04\x95\x03\x00\x00\x00\x00\x00\x00\x00K\x01.'])

>>> serialize(b'123') # some special types get custom treatment
({'type': 'builtins.bytes'}, [b'123'])

>>> deserialize(*serialize(1))
1

distributed.protocol.serialize.deserialize(header, frames)
Convert serialized header and list of bytestrings back to a Python object

Parameters header: dict

frames: list of bytes

See also:

serialize

3.40 Scheduler Plugins

class distributed.diagnostics.plugin.SchedulerPlugin
Interface to extend the Scheduler

The scheduler operates by triggering and responding to events like task_finished, update_graph,
task_erred, etc..

3.40. Scheduler Plugins 143

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

A plugin enables custom code to run at each of those same events. The scheduler will run the analogous
methods on this class when each event is triggered. This runs user code within the scheduler thread that can
perform arbitrary operations in synchrony with the scheduler itself.

Plugins are often used for diagnostics and measurement, but have full access to the scheduler and could in
principle affect core scheduling.

To implement a plugin implement some of the methods of this class and add the plugin to the scheduler with
Scheduler.add_plugin(myplugin).

Examples

>>> class Counter(SchedulerPlugin):
... def __init__(self):
... self.counter = 0
...
... def transition(self, key, start, finish, *args, **kwargs):
... if start == 'processing' and finish == 'memory':
... self.counter += 1
...
... def restart(self, scheduler):
... self.counter = 0

>>> c = Counter()
>>> scheduler.add_plugin(c)

add_worker(scheduler=None, worker=None, **kwargs)
Run when a new worker enters the cluster

remove_worker(scheduler=None, worker=None, **kwargs)
Run when a worker leaves the cluster

restart(scheduler, **kwargs)
Run when the scheduler restarts itself

transition(key, start, finish, *args, **kwargs)
Run whenever a task changes state

Parameters key: string

start: string

Start state of the transition. One of released, waiting, processing, memory, error.

finish: string

Final state of the transition.

*args, **kwargs: More options passed when transitioning

This may include worker ID, compute time, etc.

update_graph(scheduler, dsk=None, keys=None, restrictions=None, **kwargs)
Run when a new graph / tasks enter the scheduler

144 Chapter 3. Contents

Index

A
abort() (distributed.comm.Comm method), 127
acquire() (distributed.Lock method), 43
Adaptive (class in distributed.deploy), 45
add_client() (distributed.scheduler.Scheduler method), 75
add_done_callback() (distributed.client.Future method),

38
add_keys() (distributed.scheduler.Scheduler method), 75
add_plugin() (distributed.scheduler.Scheduler method),

75
add_worker() (distributed.diagnostics.plugin.SchedulerPlugin

method), 144
add_worker() (distributed.scheduler.Scheduler method),

75
address (distributed.scheduler.WorkerState attribute), 70
as_completed() (in module distributed.client), 39
asynchronous (distributed.client.Client attribute), 20

B
Backend (class in distributed.comm.registry), 128
broadcast() (distributed.scheduler.Scheduler method), 75

C
call_stack() (distributed.client.Client method), 20
cancel() (distributed.client.Client method), 21
cancel() (distributed.client.Future method), 39
cancel_key() (distributed.scheduler.Scheduler method),

75
cancelled() (distributed.client.Future method), 39
cleanup() (distributed.scheduler.Scheduler method), 75
Client (class in distributed.client), 19
client_heartbeat() (distributed.scheduler.Scheduler

method), 75
client_releases_keys() (distributed.scheduler.Scheduler

method), 75
ClientState (class in distributed.scheduler), 71
close() (distributed.client.Client method), 21
close() (distributed.comm.Comm method), 127
close() (distributed.deploy.local.LocalCluster method), 98

close() (distributed.scheduler.Scheduler method), 75
close_comms() (distributed.scheduler.Scheduler method),

75
close_worker() (distributed.scheduler.Scheduler method),

76
closed() (distributed.comm.Comm method), 127
coerce_address() (distributed.scheduler.Scheduler

method), 76
coerce_hostname() (distributed.scheduler.Scheduler

method), 76
Comm (class in distributed.comm), 127
compute() (distributed.client.Client method), 21
connect() (in module distributed.comm), 128
contact_address (distributed.comm.core.Listener at-

tribute), 128
current() (distributed.client.Client class method), 22

D
decide_worker() (distributed.scheduler.Scheduler

method), 76
decide_worker() (in module distributed.scheduler), 80
delete() (distributed.Variable method), 44
deserialize() (in module distributed.protocol.serialize),

143
done() (distributed.client.Future method), 39

E
exception() (distributed.client.Future method), 39
extra_info (distributed.comm.Comm attribute), 128

F
feed() (distributed.scheduler.Scheduler method), 76
finished() (distributed.scheduler.Scheduler method), 76
Future (class in distributed.client), 38

G
gather() (distributed.client.Client method), 22
gather() (distributed.scheduler.Scheduler method), 76
get() (distributed.client.Client method), 23

145

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

get() (distributed.Queue method), 44
get() (distributed.Variable method), 45
get_address_host() (distributed.comm.registry.Backend

method), 129
get_address_host() (in module distributed.comm), 127
get_address_host_port() (dis-

tributed.comm.registry.Backend method),
129

get_client() (in module distributed), 42
get_comm_cost() (distributed.scheduler.Scheduler

method), 76
get_connector() (distributed.comm.registry.Backend

method), 129
get_dataset() (distributed.client.Client method), 23
get_executor() (distributed.client.Client method), 23
get_futures_error() (dis-

tributed.recreate_exceptions.ReplayExceptionClient
method), 37

get_listener() (distributed.comm.registry.Backend
method), 129

get_local_address_for() (dis-
tributed.comm.registry.Backend method),
129

get_metadata() (distributed.client.Client method), 23
get_restrictions() (distributed.client.Client class method),

23
get_scale_up_kwargs() (distributed.deploy.Adaptive

method), 45
get_scheduler_logs() (distributed.client.Client method),

24
get_task_duration() (distributed.scheduler.Scheduler

method), 76
get_versions() (distributed.client.Client method), 24
get_versions() (distributed.scheduler.Scheduler method),

76
get_worker() (in module distributed), 41
get_worker_logs() (distributed.client.Client method), 24
get_worker_service_addr() (dis-

tributed.scheduler.Scheduler method), 76

H
handle_client() (distributed.scheduler.Scheduler method),

76
handle_long_running() (distributed.scheduler.Scheduler

method), 76
handle_worker() (distributed.scheduler.Scheduler

method), 76
has_what() (distributed.client.Client method), 24

I
identity() (distributed.scheduler.Scheduler method), 77

L
list_datasets() (distributed.client.Client method), 24

listen() (in module distributed.comm), 128
listen_address (distributed.comm.core.Listener attribute),

128
Listener (class in distributed.comm.core), 128
local_address (distributed.comm.Comm attribute), 128
LocalCluster (class in distributed.deploy.local), 98
Lock (class in distributed), 43

M
map() (distributed.client.Client method), 25

N
nbytes() (distributed.client.Client method), 25
ncores() (distributed.client.Client method), 26
needs_cpu() (distributed.deploy.Adaptive method), 46
needs_memory() (distributed.deploy.Adaptive method),

46
normalize_address() (in module distributed.comm), 127
normalize_collection() (distributed.client.Client method),

26

P
parse_address() (in module distributed.comm), 126
peer_address (distributed.comm.Comm attribute), 128
persist() (distributed.client.Client method), 26
processing() (distributed.client.Client method), 27
profile() (distributed.client.Client method), 28
progress() (in module distributed.diagnostics), 40
publish_dataset() (distributed.client.Client method), 28
put() (distributed.Queue method), 44
Python Enhancement Proposals

PEP 3184, 62

Q
qsize() (distributed.Queue method), 44
Queue (class in distributed), 43

R
read() (distributed.comm.Comm method), 128
rebalance() (distributed.client.Client method), 29
rebalance() (distributed.scheduler.Scheduler method), 77
recreate_error_locally() (dis-

tributed.recreate_exceptions.ReplayExceptionClient
method), 37

reevaluate_occupancy() (distributed.scheduler.Scheduler
method), 77

register_serialization() (in module dis-
tributed.protocol.serialize), 142

rejoin() (in module distributed), 42
release() (distributed.Lock method), 43
remove_client() (distributed.scheduler.Scheduler

method), 77
remove_plugin() (distributed.scheduler.Scheduler

method), 77

146 Index

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

remove_worker() (distributed.diagnostics.plugin.SchedulerPlugin
method), 144

remove_worker() (distributed.scheduler.Scheduler
method), 77

ReplayExceptionClient (class in dis-
tributed.recreate_exceptions), 37

replicate() (distributed.client.Client method), 29
replicate() (distributed.scheduler.Scheduler method), 77
report() (distributed.scheduler.Scheduler method), 77
reschedule() (distributed.scheduler.Scheduler method), 78
resolve_address() (distributed.comm.registry.Backend

method), 129
resolve_address() (in module distributed.comm), 127
restart() (distributed.client.Client method), 29
restart() (distributed.diagnostics.plugin.SchedulerPlugin

method), 144
restart() (distributed.scheduler.Scheduler method), 78
result() (distributed.client.Future method), 39
retire_workers() (distributed.scheduler.Scheduler

method), 78
rpc (class in distributed.core), 132
run() (distributed.client.Client method), 30
run_coroutine() (distributed.client.Client method), 30
run_function() (distributed.scheduler.Scheduler method),

78
run_on_scheduler() (distributed.client.Client method), 31

S
scale_down() (distributed.deploy.local.LocalCluster

method), 98
scale_up() (distributed.deploy.local.LocalCluster

method), 99
scatter() (distributed.client.Client method), 31
scatter() (distributed.scheduler.Scheduler method), 78
Scheduler (class in distributed.scheduler), 74
scheduler_info() (distributed.client.Client method), 32
SchedulerPlugin (class in distributed.diagnostics.plugin),

143
secede() (in module distributed), 42
send_task_to_worker() (distributed.scheduler.Scheduler

method), 78
serialize() (in module distributed.protocol.serialize), 143
Server (class in distributed.core), 132
set() (distributed.Variable method), 45
set_metadata() (distributed.client.Client method), 32
should_scale_down() (distributed.deploy.Adaptive

method), 46
should_scale_up() (distributed.deploy.Adaptive method),

46
shutdown() (distributed.client.Client method), 33
stacks() (distributed.client.Client method), 33
start() (distributed.client.Client method), 33
start() (distributed.comm.core.Listener method), 128
start() (distributed.scheduler.Scheduler method), 78

start_ipython() (distributed.scheduler.Scheduler method),
78

start_ipython_scheduler() (distributed.client.Client
method), 34

start_ipython_workers() (distributed.client.Client
method), 34

start_worker() (distributed.deploy.local.LocalCluster
method), 99

stimulus_cancel() (distributed.scheduler.Scheduler
method), 78

stimulus_missing_data() (distributed.scheduler.Scheduler
method), 78

stimulus_task_erred() (distributed.scheduler.Scheduler
method), 78

stimulus_task_finished() (distributed.scheduler.Scheduler
method), 79

stop() (distributed.comm.core.Listener method), 128
stop_worker() (distributed.deploy.local.LocalCluster

method), 99
story() (distributed.scheduler.Scheduler method), 79
submit() (distributed.client.Client method), 35

T
TaskState (class in distributed.scheduler), 67
traceback() (distributed.client.Future method), 39
transition() (distributed.diagnostics.plugin.SchedulerPlugin

method), 144
transition() (distributed.scheduler.Scheduler method), 79
transition_story() (distributed.scheduler.Scheduler

method), 79
transitions() (distributed.scheduler.Scheduler method), 79

U
unparse_address() (in module distributed.comm), 127
unpublish_dataset() (distributed.client.Client method), 36
update_data() (distributed.scheduler.Scheduler method),

79
update_graph() (distributed.diagnostics.plugin.SchedulerPlugin

method), 144
update_graph() (distributed.scheduler.Scheduler method),

79
upload_file() (distributed.client.Client method), 36

V
valid_workers() (distributed.scheduler.Scheduler

method), 79
Variable (class in distributed), 44

W
wait() (in module distributed.client), 41
who_has() (distributed.client.Client method), 36
Worker (class in distributed.worker), 84
worker_client() (in module distributed), 41

Index 147

Dask.distributed Documentation, Release 1.20.2+48.g5ef9c80

worker_objective() (distributed.scheduler.Scheduler
method), 79

worker_send() (distributed.scheduler.Scheduler method),
79

workers_list() (distributed.scheduler.Scheduler method),
80

workers_to_close() (distributed.deploy.Adaptive
method), 47

workers_to_close() (distributed.scheduler.Scheduler
method), 80

WorkerState (class in distributed.scheduler), 70
write() (distributed.comm.Comm method), 128

148 Index

	Motivation
	Architecture
	Contents

