Cython Reference Guide
Release 0.28a0

Stefan Behnel, Robert Bradshaw, William Stein
Gary Furnish, Dag Seljebotn, Greg Ewing
Gabriel Gellner, editor

January 25, 2018

Contents

Compilation 3
1.1 Compiling from the command line e 3
1.2 Compiling with distutils e 4
1.3 Imntegrating multiple modules oL 8
1.4 Compiling with pyximport e e e 8
1.5 Compiling with cython.inline i i v i i i i e e e e e e e e e e e 9
1.6 Compiling with Sage o e e e e 9
1.7 Compiler direCtives o e e e e e e e e 9
Language Basics 13
2.1 CythonFile Types« o e e e 13
2.2 Declaring Data Types o o i i e e e e e e e e e e e 15
2.3 Statements and EXpressions oL L e e e e e e 19
24 Functionsand Methods 21
2.5 Error and Exception Handling e e e 24
2.6 Conditional Compilation o e e e e e e e e e e e 26
Extension Types 29
3.1 AMribUtes . . . oL e e e e e e 29
32 Methods e 30
3.3 Properties i e e e e e e e e e e e e e e e e e e 30
34 Special Methods L e 32
3.5 Subclassing e e 34
3.6 Forward Declarations e e 35
3.7 Extension Typesand None o o i i i e e e e e 35
3.8 Weak Referencing L e e e e e 36
3.9 Dynamic Attributes L L e e e 36
3.10 External and Public Types o e e 37
3.11 Type Names vs. Constructor Names i it i v e ettt e 38
Interfacing with Other Code 41
S 41
42 CHt oot e 41
4.3 Fortran e e e e e e e e 41
4.4 NumPy . . . e e e 41
Special Mention 43

Limitations 45
Compiler Directives 47
Indices and tables 49
8.1 Special Methods Table e 49

Cython Reference Guide, Release 0.28a0

Note:

Todo: Most of the boldface is to be changed to refs or other markup later.

Contents:

Contents 1

Cython Reference Guide, Release 0.28a0

2 Contents

CHAPTER 1

Compilation

Cython code, unlike Python, must be compiled. This happens in two stages:
* A .pyx file is compiled by Cython to a . c file.
e The . c file is compiled by a C compiler to a . so file (or a . pyd file on Windows)

The following sub-sections describe several ways to build your extension modules, and how to pass directives to the
Cython compiler.

1.1 Compiling from the command line

Run the cythonize compiler command with your options and list of . pyx files to generate. For example:

E cythonize —-a -1 yourmod.pyx

This creates a yourmod. c file (or yourmod. cpp in C++ mode), compiles it, and puts the resulting extension
module (. so or .pyd, depending on your platform) next to the source file for direct import (-1 builds “in place”).
The —a switch additionally produces an annotated html file of the source code.

The cythonize command accepts multiple source files and glob patterns like x«/+.pyx as argument and also
understands the common —3j option for running multiple parallel build jobs. When called without further options, it
will only translate the source files to . c or . cpp files. Pass the —h flag for a complete list of supported options.

There is also a simpler command line tool named cython which only invokes the source code translator.

In the case of manual compilation, how to compile your . c files will vary depending on your operating system and
compiler. The Python documentation for writing extension modules should have some details for your system. On a
Linux system, for example, it might look similar to this:

E gcc —-shared -pthread -fPIC -fwrapv -02 -Wall -fno-strict-aliasing \
-I/usr/include/python3.5 -o yourmod.so yourmod.c

(gcc will need to have paths to your included header files and paths to libraries you want to link with.)

Cython Reference Guide, Release 0.28a0

After compilation, a yourmod. so file is written into the target directory and your module, yourmod, is available for
you to import as with any other Python module. Note that if you are not relying on cythonize or distutils, you will
not automatically benefit from the platform specific file extension that CPython generates for disambiguation, such as
yourmod.cpython-35m-x86_64-1inux-gnu. so on aregular 64bit Linux installation of CPython 3.5.

1.2 Compiling with distutils

The distutils package is part of the standard library. It is the standard way of building Python packages, including
native extension modules. The following example configures the build for a Cython file called hello.pyx. First, create
a setup.py script:

from distutils.core import setup
from Cython.Build import cythonize

setup (
name = "My hello app",
ext_modules = cythonize('hello.pyx'), # accepts a glob pattern

Now, run the command python setup.py build_ext —-—-inplace inyour system’s command shell and you
are done. Import your new extension module into your python shell or script as normal.

The cythonize command also allows for multi-threaded compilation and dependency resolution. Recompilation
will be skipped if the target file is up to date with its main source file and dependencies.

1.2.1 Configuring the C-Build

If you have include files in non-standard places you can pass an include_path parameter to cythonize:

from distutils.core import setup
from Cython.Build import cythonize

setup (
name = "My hello app",
ext_modules = cythonize("src/+.pyx", include_path = [...]),

Often, Python packages that offer a C-level API provide a way to find the necessary include files, e.g. for NumPy:

include_path = [numpy.get_include ()]

Note for Numpy users. Despite this, you will still get warnings like the following from the compiler, because Cython
is using a deprecated Numpy API:

.../include/numpy/npy_1_7_deprecated_api.h:15:2: warning: #warning "Using deprecated,,
—NumPy API, disable it by " "#defining NPY_NO_DEPRECATED API NPY 1_7 API VERSION" [-
—Wcpp]

For the time being, it is just a warning that you can ignore.

If you need to specify compiler options, libraries to link with or other linker options you will need to create
Extension instances manually (note that glob syntax can still be used to specify multiple extensions in one line):

4 Chapter 1. Compilation

Cython Reference Guide, Release 0.28a0

from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize

extensions = [
Extension("primes", ["primes.pyx"],
include_dirs = [...],
libraries = [...],
library_dirs = [...]),

Everything but primes.pyx 1s included here.
Extension ("+", ["x.pyx"],

include_dirs = [...],
libraries = [...],
library_dirs = [...]),
1
setup (
name = "My hello app",
ext_modules = cythonize (extensions),

Note that when using setuptools, you should import it before Cython as setuptools may replace the Extension class
in distutils. Otherwise, both might disagree about the class to use here.

If your options are static (for example you do not need to call a tool like pkg—config to determine them) you can
also provide them directly in your .pyx or .pxd source file using a special comment block at the start of the file:

distutils: libraries = spam eggs
distutils: include dirs = /opt/food/include

If you cimport multiple .pxd files defining libraries, then Cython merges the list of libraries, so this works as expected
(similarly with other options, like include_dirs above).

If you have some C files that have been wrapped with Cython and you want to compile them into your extension, you
can define the distutils sources parameter:

distutils: sources = helper.c, another helper.c

Note that these sources are added to the list of sources of the current extension module. Spelling this out in the
setup.py file looks as follows:

from distutils.core import setup
from Cython.Build import cythonize
from distutils.extension import Extension

sourcefiles = ['example.pyx', 'helper.c', 'another_helper.c']
extensions = [Extension("example", sourcefiles)]
setup (

ext_modules = cythonize (extensions)

The Extension class takes many options, and a fuller explanation can be found in the distutils documentation. Some
useful options to know about are include_dirs, libraries, and library_dirs which specify where to find
the . h and library files when linking to external libraries.

Sometimes this is not enough and you need finer customization of the distutils Extension. To do this, you can pro-
vide a custom function create_extension to create the final Extension object after Cython has processed the

1.2. Compiling with distutils 5

http://docs.python.org/extending/building.html

Cython Reference Guide, Release 0.28a0

sources, dependencies and # distutils directives but before the file is actually Cythonized. This function takes 2
arguments template and kwds, where template is the Extension object given as input to Cython and kwds is
a dict with all keywords which should be used to create the Ext ension. The function create_extension must
return a 2-tuple (extension, metadata), where extension is the created Extension and metadata is
metadata which will be written as JSON at the top of the generated C files. This metadata is only used for debugging
purposes, so you can put whatever you want in there (as long as it can be converted to JSON). The default function
(defined in Cython.Build.Dependencies)is:

def default_create_extension (template, kwds):
if 'depends' in kwds:

include_dirs = kwds.get ('include_dirs', []) + ["."]

depends = resolve_depends (kwds['depends'], include_dirs)

kwds ['depends'] = sorted(set (depends + template.depends))
t = template.__class___

ext = t (*x+kwds)
metadata = dict (distutils=kwds, module_name=kwds|['name'])
return (ext, metadata)

In case that you pass a string instead of an Extension to cythonize (), the template will be an
Extension without sources. For example, if you do cythonize ("*.pyx"), the template will be
Extension (name="x.pyx", sources=[]).

Just as an example, this adds my1ib as library to every extension:

from Cython.Build.Dependencies import default_create_extension

def my_create_extension (template, kwds) :
libs = kwds.get ('libraries', []) + ["mylib"]
kwds['libraries'] = libs

return default_create_extension (template, kwds)

ext_modules = cythonize(..., create_extension=my_create_extension)

Note: If you Cythonize in parallel (using the nthreads argument), then the argument to create_extension
must be pickleable. In particular, it cannot be a lambda function.

1.2.2 Distributing Cython modules

It is strongly recommended that you distribute the generated . c files as well as your Cython sources, so that users can
install your module without needing to have Cython available.

It is also recommended that Cython compilation not be enabled by default in the version you distribute. Even if the
user has Cython installed, he/she probably doesn’t want to use it just to install your module. Also, the installed version
may not be the same one you used, and may not compile your sources correctly.

This simply means that the setup . py file that you ship with will just be a normal distutils file on the generated .c
files, for the basic example we would have instead:

from distutils.core import setup
from distutils.extension import Extension

setup (
ext_modules = [Extension("example", ["example.c"])]

6 Chapter 1. Compilation

https://docs.python.org/3/library/stdtypes.html#dict

Cython Reference Guide, Release 0.28a0

This is easy to combine with cythonize () by changing the file extension of the extension module sources:

from distutils.core import setup
from distutils.extension import Extension

USE_CYTHON = ... # command line option, try-import,
ext = '.pyx' if USE_CYTHON else '.c'
extensions = [Extension ("example", ["example"+ext])]

if USE_CYTHON:
from Cython.Build import cythonize

extensions = cythonize (extensions)
setup (
ext_modules = extensions

If you have many extensions and want to avoid the additional complexity in the declarations, you can declare them
with their normal Cython sources and then call the following function instead of cythonize () to adapt the sources
list in the Extensions when not using Cython:

import os.path

def no_cythonize (extensions, «*+_ignore):
for extension in extensions:
sources = []
for sfile in extension.sources:
path, ext = os.path.splitext(sfile)

if ext in ('.pyx', '.py'):
if extension.language == 'c++':
ext = '".cpp'
else:
ext = '.c'

sfile = path + ext
sources.append(sfile)
extension.sources[:] = sources
return extensions

Another option is to make Cython a setup dependency of your system and use Cython’s build_ext module which runs
cythonize as part of the build process:

setup (
setup_requires=|
'cython>=0.x",
]I
extensions = [Extension("«", ["x.pyx"])],
cmdclass={"'build ext': Cython.Build.build_ext},

If you want to expose the C-level interface of your library for other libraries to cimport from, use package_data to
install the . pxd files, e.g.:

setup (
package_data = {
'my_package': ['x.pxd'],

1.2. Compiling with distutils 7

Cython Reference Guide, Release 0.28a0

'my_package/sub_package': ['x.pxd'],
by

These . pxd files need not have corresponding . pyx modules if they contain purely declarations of external libraries.

1.3 Integrating multiple modules

In some scenarios, it can be useful to link multiple Cython modules (or other extension modules) into a single binary,
e.g. when embedding Python in another application. This can be done through the inittab import mechanism of
CPython.

Create a new C file to integrate the extension modules and add this macro to it:

#1f PY MAJOR VERSION < 3

define MODINIT (name) 1init ## name
#else

define MODINIT (name) PyInit_ ## name
#endif

If you are only targeting Python 3.x, just use PyInit__ as prefix.

Then, for each or the modules, declare its module init function as follows, replacing . . . by the name of the module:

PyMODINIT_FUNC MODINIT(...) (void);

In C++, declare them as extern C.

If you are not sure of the name of the module init function, refer to your generated module source file and look for a
function name starting with PyInit_.

Next, before you start the Python runtime from your application code withPy_Initialize (), youneed to initialise
the modules at runtime using the Py Import_AppendInittab () C-APIfunction, again inserting the name of each
of the modules:

PyImport_AppendInittab("...", MODINIT(...));

This enables normal imports for the embedded extension modules.

In order to prevent the joined binary from exporting all of the module init functions as public symbols, Cython 0.28
and later can hide these symbols if the macro CYTHON_NO_PYINIT_EXPORT is defined while C-compiling the
module C files.

Also take a look at the cython_freeze tool.

1.4 Compiling with pyximport

For building Cython modules during development without explicitly running setup . py after each change, you can
use pyximport:

>>> import pyximport; pyximport.install ()
>>> import helloworld
Hello World

8 Chapter 1. Compilation

https://github.com/cython/cython/blob/master/bin/cython_freeze

Cython Reference Guide, Release 0.28a0

This allows you to automatically run Cython on every .pyx that Python is trying to import. You should use this for
simple Cython builds only where no extra C libraries and no special building setup is needed.

It is also possible to compile new . py modules that are being imported (including the standard library and installed
packages). For using this feature, just tell that to pyximport:

>>> pyximport.install (pyimport = True)

In the case that Cython fails to compile a Python module, pyximport will fall back to loading the source modules
instead.

Note that it is not recommended to let pyximport build code on end user side as it hooks into their import system.
The best way to cater for end users is to provide pre-built binary packages in the wheel packaging format.

1.5 Compiling with cython.inline

One can also compile Cython in a fashion similar to SciPy’s weave.inline. For example:

>>> import cython
>>> def f (a):
ret = cython.inline("return a+b", b=3)

Unbound variables are automatically pulled from the surrounding local and global scopes, and the result of the com-
pilation is cached for efficient re-use.

1.6 Compiling with Sage

The Sage notebook allows transparently editing and compiling Cython code simply by typing $cython at the top of
a cell and evaluate it. Variables and functions defined in a Cython cell are imported into the running session. Please
check Sage documentation for details.

You can tailor the behavior of the Cython compiler by specifying the directives below.

1.7 Compiler directives

Compiler directives are instructions which affect the behavior of Cython code. Here is the list of currently supported
directives:

binding (True / False) Controls whether free functions behave more like Python’s CFunctions (e.g. len ()) or,
when set to True, more like Python’s functions. When enabled, functions will bind to an instance when looked up
as a class attribute (hence the name) and will emulate the attributes of Python functions, including introspections
like argument names and annotations. Default is False.

boundscheck (True / False) If set to False, Cython is free to assume that indexing operations ([]-operator) in the
code will not cause any IndexErrors to be raised. Lists, tuples, and strings are affected only if the index can
be determined to be non-negative (or if wraparound is False). Conditions which would normally trigger an
IndexError may instead cause segfaults or data corruption if this is set to False. Default is True.

wraparound (True / False) In Python arrays can be indexed relative to the end. For example A[-1] indexes the
last value of a list. In C negative indexing is not supported. If set to False, Cython will neither check for nor
correctly handle negative indices, possibly causing segfaults or data corruption. Default is True.

1.5. Compiling with cython.inline 9

https://wheel.readthedocs.io/
http://www.sagemath.org/doc/
https://docs.python.org/3/library/functions.html#len

Cython Reference Guide, Release 0.28a0

initializedcheck (True/ False) If set to True, Cython checks that a memoryview is initialized whenever its
elements are accessed or assigned to. Setting this to False disables these checks. Default is True.

nonecheck (True / False) If set to False, Cython is free to assume that native field accesses on variables typed
as an extension type, or buffer accesses on a buffer variable, never occurs when the variable is set to None.
Otherwise a check is inserted and the appropriate exception is raised. This is off by default for performance
reasons. Default is False.

overflowcheck (True/ False) If set to True, raise errors on overflowing C integer arithmetic operations. Incurs a
modest runtime penalty, but is much faster than using Python ints. Default is False.

overflowcheck. £fold (True / False) If set to True, and overflowcheck is True, check the overflow bit for nested,
side-effect-free arithmetic expressions once rather than at every step. Depending on the compiler, architecture,
and optimization settings, this may help or hurt performance. A simple suite of benchmarks can be found in
Demos/overflow_perf.pyx. Default is True.

embedsignature (True/ False) If set to True, Cython will embed a textual copy of the call signature in the doc-
string of all Python visible functions and classes. Tools like IPython and epydoc can thus display the signature,
which cannot otherwise be retrieved after compilation. Default is False.

cdivision (True/ False) If set to False, Cython will adjust the remainder and quotient operators C types to match
those of Python ints (which differ when the operands have opposite signs) and raise a ZeroDivisionError
when the right operand is 0. This has up to a 35% speed penalty. If set to True, no checks are performed. See
CEP 516. Default is False.

cdivision_warnings (True/ False) If set to True, Cython will emit a runtime warning whenever division is
performed with negative operands. See CEP 516. Default is False.

always_allow_keywords (True/False) Avoid the METH_NOARGS and METH_O when constructing func-
tions/methods which take zero or one arguments. Has no effect on special methods and functions with more than
one argument. The METH_NOARGS and METH_ O signatures provide faster calling conventions but disallow the
use of keywords.

profile (True/False) Write hooks for Python profilers into the compiled C code. Default is False.

linetrace (True/False) Write line tracing hooks for Python profilers or coverage reporting into the compiled C
code. This also enables profiling. Default is False. Note that the generated module will not actually use line
tracing, unless you additionally pass the C macro definition CYTHON_TRACE=1 to the C compiler (e.g. using
the distutils option define_macros). Define CYTHON_TRACE_NOGIL=1 to also include nogi 1 functions
and sections.

infer_types (True/False) Infer types of untyped variables in function bodies. Default is None, indicating that
only safe (semantically-unchanging) inferences are allowed. In particular, inferring integral types for variables
used in arithmetic expressions is considered unsafe (due to possible overflow) and must be explicitly requested.

language_level (2/3) Globally set the Python language level to be used for module compilation. Default is
compatibility with Python 2. To enable Python 3 source code semantics, set this to 3 at the start of a module or
pass the “-3” command line option to the compiler. Note that cimported and included source files inherit this
setting from the module being compiled, unless they explicitly set their own language level.

c_string_type (bytes/ str / unicode) Globally set the type of an implicit coercion from char* or std::string.

c_string encoding (ascii, default, utf-8, etc.) Globally set the encoding to use when implicitly coercing char*
or std:string to a unicode object. Coercion from a unicode object to C type is only allowed when set to ascii
or default, the latter being utf-8 in Python 3 and nearly-always ascii in Python 2.

type_version_tag (True/ False) Enables the attribute cache for extension types in CPython by setting the type
flag Py_ TPFLAGS_HAVE_VERSION_TAG. Default is True, meaning that the cache is enabled for Cython
implemented types. To disable it explicitly in the rare cases where a type needs to juggle with its tp_dict
internally without paying attention to cache consistency, this option can be set to False.

10 Chapter 1. Compilation

https://github.com/cython/cython/wiki/enhancements-division
https://github.com/cython/cython/wiki/enhancements-division

Cython Reference Guide, Release 0.28a0

unraisable_tracebacks (True/ False) Whether to print tracebacks when suppressing unraisable exceptions.

1.7.1 Configurable optimisations

optimize.use_switch (True/False) Whether to expand chained if-else statements (including statements like
if x == 1 or x == 2:) into C switch statements. This can have performance benefits if there are lots
of values but cause compiler errors if there are any duplicate values (which may not be detectable at Cython
compile time for all C constants). Default is True.

optimize.unpack_method_calls (True/False) Cython can generate code that optimistically checks for
Python method objects at call time and unpacks the underlying function to call it directly. This can substantially
speed up method calls, especially for builtins, but may also have a slight negative performance impact in some
cases where the guess goes completely wrong. Disabling this option can also reduce the code size. Default is
True.

1.7.2 Warnings

All warning directives take True / False as options to turn the warning on / off.

warn.undeclared (default False) Warns about any variables that are implicitly declared without a cde f decla-
ration

warn.unreachable (default True) Warns about code paths that are statically determined to be unreachable, e.g.
returning twice unconditionally.

warn.maybe uninitialized (default False) Warns about use of variables that are conditionally uninitialized.
warn.unused (default False) Warns about unused variables and declarations
warn.unused_arg (default False) Warns about unused function arguments

warn.unused_result (default False) Warns about unused assignment to the same name, suchas r = 2; r
=1 +2

warn.multiple_declarators (default True) Warns about multiple variables declared on the same line with
at least one pointer type. For example cdef doublex a, b - which, asin C, declares a as a pointer, b as a
value type, but could be mininterpreted as declaring two pointers.

1.7.3 How to set directives

Globally

One can set compiler directives through a special header comment at the top of the file, like this:

#!python
#cython: language_level=3, boundscheck=False

The comment must appear before any code (but can appear after other comments or whitespace).

One can also pass a directive on the command line by using the -X switch:

E cython —-X boundscheck=True

Directives passed on the command line will override directives set in header comments.

1.7. Compiler directives 11

Cython Reference Guide, Release 0.28a0

Locally

For local blocks, you need to cimport the special builtin cython module:

#!python
cimport cython

Then you can use the directives either as decorators or in a with statement, like this:

#!python
@cython.boundscheck (False) # turn off boundscheck for this function
def f():

turn it temporarily on again for this block
with cython.boundscheck (True) :

Warning: These two methods of setting directives are not affected by overriding the directive on the command-
line using the -X option.

In setup.py

Compiler directives can also be set in the setup . py file by passing a keyword argument to cythonize:

from distutils.core import setup
from Cython.Build import cythonize

setup (
name = "My hello app",
ext_modules = cythonize('hello.pyx', compiler_directives={'embedsignature': True}

‘-’)l

)

This will override the default directives as specified in the compiler_directives dictionary. Note that explicit
per-file or local directives as explained above take precedence over the values passed to cythonize.

12 Chapter 1. Compilation

CHAPTER 2

Language Basics

2.1 Cython File Types

There are three file types in Cython:
* Implementation files carry a . pyx suffix
* Definition files carry a . pxd suffix
¢ Include files which carry a . pxi suffix

2.1.1 Implementation File

What can it contain?

* Basically anything Cythonic, but see below.

What can’t it contain?

e There are some restrictions when it comes to extension types, if the extension type is already defined else
where. .. more on this later

2.1.2 Definition File

What can it contain?

* Any kind of C type declaration.
¢ extern C function or variable declarations.

* Declarations for module implementations.

13

Cython Reference Guide, Release 0.28a0

* The definition parts of extension types.

 All declarations of functions, etc., for an external library

What can’t it contain?

* Any non-extern C variable declaration.

* Implementations of C or Python functions.

* Python class definitions

* Python executable statements.

* Any declaration that is defined as public to make it accessible to other Cython modules.
* This is not necessary, as it is automatic.

* a public declaration is only needed to make it accessible to external C code.

What else?

cimport

e Use the cimport statement, as you would Python’s import statement, to access these files from other definition
or implementation files.

 cimport does not need to be called in . pyx file for . pxd file that has the same name, as they are already in the
same namespace.

* For cimport to find the stated definition file, the path to the file must be appended to the —I option of the Cython
compile command.

compilation order

* When a . pyx file is to be compiled, Cython first checks to see if a corresponding . pxd file exits and processes
it first.

2.1.3 Include File

What can it contain?

* Any Cythonic code really, because the entire file is textually embedded at the location you prescribe.

How do | use it?

¢ Include the .px1i file with an include statement like: include "spamstuff.pxi
* The include statement can appear anywhere in your Cython file and at any indentation level
¢ The code in the . pxi file needs to be rooted at the “zero” indentation level.

¢ The included code can itself contain other include statements.

14 Chapter 2. Language Basics

Cython Reference Guide, Release 0.28a0

2.2 Declaring Data Types

As a dynamic language, Python encourages a programming style of considering classes and objects in terms of their
methods and attributes, more than where they fit into the class hierarchy.

This can make Python a very relaxed and comfortable language for rapid development, but with a price - the ‘red
tape’ of managing data types is dumped onto the interpreter. At run time, the interpreter does a lot of work searching
namespaces, fetching attributes and parsing argument and keyword tuples. This run-time ‘late binding’ is a major
cause of Python’s relative slowness compared to ‘early binding’ languages such as C++.

However with Cython it is possible to gain significant speed-ups through the use of ‘early binding’ programming
techniques.

Note: Typing is not a necessity

Providing static typing to parameters and variables is convenience to speed up your code, but it is not a necessity.
Optimize where and when needed. In fact, typing can slow down your code in the case where the typing does not
allow optimizations but where Cython still needs to check that the type of some object matches the declared type.

2.2.1 The cdef Statement

The cdef statement is used to make C level declarations for:

Variables

cdef int i, j, k
cdef float f, g[42], =*h

Structs

cdef struct Grail:
int age
float volume

Note: Structs can be declared as cdef packed struct, which has the same effect as the C directive #pragma
pack(1l).

Unions

cdef union Food:
char xspam
float xeggs

Enums

cdef enum CheeseType:
cheddar, edam,
camembert

Declaring an enum as cpdef will create a PEP 435-style Python wrapper:

cpdef enum CheeseState:
hard = 1

2.2. Declaring Data Types 15

https://www.python.org/dev/peps/pep-0435

Cython Reference Guide, Release 0.28a0

soft = 2
runny = 3
Functions

cdef int eggs (unsigned long 1, float f):

Extension Types

cdef class Spam:

Note: Constants

Constants can be defined by using an anonymous enum:

cdef enum:
tons_of_spam = 3

2.2.2 Grouping cdef Declarations

A series of declarations can grouped into a cde £ block:

cdef:
struct Spam:
int tons

int i
float £
Spam *p

void f (Spam =xs):
print s.tons, "Tons of spam"

Note: ctypedef statement

The ctypedef statement is provided for naming types:

ctypedef unsigned long ULong

ctypedef int *IntPtr

2.2.3 C types and Python classes

There are three kinds of types that you can declare:

1. Ctypes, like cdef double x = 1.0. Inthe C code that Cython generates, this will create a C variable of
type double. So working with this variable is exactly as fast as working with a C variable of that type.

16 Chapter 2. Language Basics

Cython Reference Guide, Release 0.28a0

2. Builtin Python classes like cdef 1ist L = []. This requires an exact match of the class, it does not allow
subclasses. This allows Cython to optimize code by accessing internals of the builtin class. Cython uses a C
variable of type PyObject «.

3. Extension types (declared with cdef class). This does allow subclasses. This typing is mostly used to
access cdef methods and attributes of the extension type. The C code uses a variable which is a pointer to a
structure of the specific type, something like st ruct MyExtensionTypeObject«.

2.2.4 Parameters

¢ Both C and Python function types can be declared to have parameters with a given C data type.

¢ Use normal C declaration syntax:

def spam(int i, char =xs):

cdef int eggs(unsigned long 1, float f):

* As these parameters are passed into a Python declared function, they are automatically converted to the specified
C type value, if a conversion is possible and safe. This applies to numeric and string types, as well as some C++
container types.

* If no type is specified for a parameter or a return value, it is assumed to be a Python object.

» The following takes two Python objects as parameters and returns a Python object:

cdef spamobijs(x, y):

Note: This is different from the C language behavior, where missing types are assumed as
int by default.

» Python object types have reference counting performed according to the standard Python/C-API rules:
* Borrowed references are taken as parameters

¢ New references are returned

Warning: This only applies to Cython code. Other Python packages which are implemented in C
like NumPy may not follow these conventions.

* The name object can be used to explicitly declare something as a Python Object.
* For sake of code clarity, it recommended to always use object explicitly in your code.

* This is also useful for cases where the name being declared would otherwise be taken for a type:

cdef foo (object int):

As areturn type:

cdef object foo(object int):

2.2. Declaring Data Types 17

Cython Reference Guide, Release 0.28a0

2.2.5 Automatic Type Conversion

For basic numeric and string types, in most situations, when a Python object is used in the context of a C value
and vice versa.

The following table summarizes the conversion possibilities, assuming sizeof (int) ==
sizeof (long):

C types From Python types | To Python types
[unsigned] char int, long int

[unsigned] short

int, long

unsigned int int, long long

unsigned long
[unsigned] long long

float, double, long double | int, long, float float
char * str/bytes str/bytes’
struct dict

Note:

Python String in a C Context
A Python string, passed to C context expecting a char «, is only valid as long as the Python string exists.
A reference to the Python string must be kept around for as long as the C string is needed.
If this can’t be guaranteed, then make a copy of the C string.

Cython may produce an error message: Obtaining charx from a temporary Python value and
will not resume compiling in situations like this:

cdef char =*s
s = pystringl + pystring2

The reason is that concatenating two strings in Python produces a temporary variable.
The variable is decrefed, and the Python string deallocated as soon as the statement has finished,
Therefore the Ivalue “‘s*¢ is left dangling.

The solution is to assign the result of the concatenation to a Python variable, and then obtain the char« from
that:

cdef char xs
p = pystringl + pystring2
s =p

Note:

It is up to you to be aware of this, and not to depend on Cython’s error message, as it is not guaranteed

to be generated for every situation.

2.2.6 Type Casting

The syntax used in type casting uses "<" and ">", for example:

! The conversion is to/from str for Python 2.x, and bytes for Python 3.x.

18

Chapter 2. Language Basics

Cython Reference Guide, Release 0.28a0

cdef char »p
cdef float *g
p = <charx>q

* If one of the types is a Python object for <t ype>x, Cython will try to do a coercion.

Note: Cython will not stop a casting where there is no conversion, but it will emit a warning.

* To get the address of some Python object, use a cast to a pointer type like <void+> or <PyObject *>.

* The precedence of <. . .> is such that <type>a.b. c is interpreted as <type> (a.b.c).

Checked Type Casts

e A castlike <MyExtensionType>x will cast x to the class MyExtensionType without any checking at all.

* To have a cast checked, use the syntax like: <MyExtensionType?>x. In this case, Cython will apply a
runtime check that raises a TypeError if x is not an instance of MyExtensionType. As explained in C
types and Python classes, this tests for the exact class for builtin types, but allows subclasses for extension types.

2.3 Statements and Expressions

* For the most part, control structures and expressions follow Python syntax.

e When applied to Python objects, the semantics are the same unless otherwise noted.

* Most Python operators can be applied to C values with the obvious semantics.

* An expression with mixed Python and C values will have conversions performed automatically.

 Python operations are automatically checked for errors, with the appropriate action taken.

2.3.1 Differences Between Cython and C

* Most notable are C constructs which have no direct equivalent in Python.
* An integer literal is treated as a C constant
* It will be truncated to whatever size your C compiler thinks appropriate.

 Cast to a Python object like this:

<object>10000000000000000000

e The "L", "LL" and the "U" suffixes have the same meaning as in C
 There is no —> operator in Cython.. instead of p—>x, use p. x.
* There is no » operator in Cython.. instead of *p, use p[0].
* & is permissible and has the same semantics as in C.
e NULL is the null C pointer.
* Do NOT use 0.

* NULL is a reserved word in Cython

2.3. Statements and Expressions 19

Cython Reference Guide, Release 0.28a0

» Syntax for Type casts are <type>value.

2.3.2 Scope Rules

* All determination of scoping (local, module, built-in) in Cython is determined statically.

* As with Python, a variable assignment which is not declared explicitly is implicitly declared to be a Python
variable residing in the scope where it was assigned.

Note:

* Module-level scope behaves the same way as a Python local scope if you refer to the variable before assigning
to it.

* Tricks, like the following will NOT work in Cython:

try:
x = True
except NameError:
True = 1

* The above example will not work because True will always be looked up in the module-level scope. Do the
following instead:

import _ builtin
try:

True = _ _builtin_ .True
except AttributeError:

True = 1

2.3.3 Built-in Constants

Predefined Python built-in constants:

¢ None
¢ True

¢ False

2.3.4 Operator Precedence

* Cython uses Python precedence order, not C

2.3.5 For-loops

The “for ... in iterable” loop works as in Python, but is even more versatile in Cython as it can additionally be used
on C types.

* range () is C optimized when the index value has been declared by cde £, for example:

cdef size_t i
for i in range(n):

20

Chapter 2. Language Basics

Cython Reference Guide, Release 0.28a0

e Iteration over C arrays and sliced pointers is supported and automatically infers the type of the loop variable,
e.g.

cdef doublex data = ...
for x in data[:10]:

* [Iterating over many builtin types such as lists and tuples is optimized.

 There is also a more verbose C-style for-from syntax which, however, is deprecated in favour of the normal
Python “for ... in range()” loop. You might still find it in legacy code that was written for Pyrex, though.

* The target expression must be a plain variable name.
* The name between the lower and upper bounds must be the same as the target name.
forifrom0<=i<n: ...

* Or when using a step size:

for i from 0 <= i < n by s:

* To reverse the direction, reverse the conditional operation:

for i from n > i >= 0:

e The break and continue statements are permissible.

¢ Can contain an else clause.

2.4 Functions and Methods

* There are three types of function declarations in Cython as the sub-sections show below.

* Only “Python” functions can be called outside a Cython module from Python interpreted code.

2.4.1 Callable from Python (def)

* Are declared with the de f statement
* Are called with Python objects
* Return Python objects

* See Parameters for special consideration

2.4.2 Callable from C (cdef)

* Are declared with the cdef statement.
* Are called with either Python objects or C values.

¢ Can return either Python objects or C values.

2.4. Functions and Methods 21

Cython Reference Guide, Release 0.28a0

2.4.3 Callable from both Python and C (cpdef)

 Are declared with the cpde £ statement.
¢ Can be called from anywhere, because it uses a little Cython magic.

* Uses the faster C calling conventions when being called from other Cython code.

2.4.4 Overriding

cpdef methods can override cde f methods:

cdef class A:
cdef foo(self):
print "A"

cdef class B (RA)
cdef foo(self, x=None)
print "B", x

cdef class C(B):
cpdef foo(self, x=True, int k=3)
print "C", x, k

When subclassing an extension type with a Python class, de f methods can override cpde £ methods but not cde £
methods:

cdef class A:
cdef foo(self):
print ("A")

cdef class B(A):
cpdef foo(self):

print ("B")

class C(B): # NOTE: not cdef class
def foo(self):
print ("C")

If C above would be an extension type (cdef class), this would not work correctly. The Cython compiler will give
a warning in that case.

2.4.5 Function Pointers

* Functions declared in a st ruct are automatically converted to function pointers.

* see using exceptions with function pointers

2.4.6 Python Built-ins

Cython compiles calls to most built-in functions into direct calls to the corresponding Python/C API routines, making
them particularly fast.

Only direct function calls using these names are optimised. If you do something else with one of these names that
assumes it’s a Python object, such as assign it to a Python variable, and later call it, the call will be made as a Python
function call.

22 Chapter 2. Language Basics

Cython Reference Guide, Release 0.28a0

Function and arguments

Return type

Python/C API Equivalent

abs(obj) object, double, . .. PyNumber_Absolute, fabs, fabsf,
callable(obj) bint PyObject_Callable
delattr(obj, name) None PyObject_DelAttr
exec(code, [glob, [loc]]) object .

dir(obj) list PyObject_Dir

divmod(a, b) tuple PyNumber_Divmod
getattr(obj, name, [default]) (Note | object PyObject_GetAttr

1)

hasattr(obj, name) bint PyObject_HasAttr
hash(obj) int / long PyObject_Hash
intern(obj) object Py*_InternFromString
isinstance(obj, type) bint PyObject_IsInstance
issubclass(obj, type) bint PyObject_IsSubclass
iter(obj, [sentinel]) object PyObject_Getlter
len(obj) Py_ssize_t PyObject_Length

pow(Xx, y, [z]) object PyNumber_Power
reload(obj) object PyImport_ReloadModule
repr(obj) object PyObject_Repr
setattr(obj, name) void PyObject_SetAttr

Note 1: Pyrex originally provided a function getattr3 (obj, name,

default) () corresponding to the three-

argument form of the Python builtin getattr (). Cython still supports this function, but the usage is deprecated in

favour of the normal builtin, which Cython can optimise in both forms.

2.4.7 Optional Arguments

* Are supported for cdef and cpdef functions

 There are differences though whether you declare them in a . pyx file or a . pxd file:

* When in a . pyx file, the signature is the same as it is in Python itself:

cdef class A:
cdef foo(self):
print "A"
cdef class B (R)

print "B",
cdef class C(B):

print "C",

X

cpdef foo(self, x=True,
Xy

cdef foo(self, x=None)

k

int k=3)

e When in a . pxd file, the signature is different like this example: cdef foo (x=x):

cdef class A:
cdef foo(self)

cdef class B(A)
cdef foo(

cdef class C(B):

cpdef foo(self, x=x,

self, x=x)

int k=x)

2.4. Functions and Methods

23

https://docs.python.org/3/library/functions.html#getattr

Cython Reference Guide, Release 0.28a0

* The number of arguments may increase when subclassing, but the arg types and order must be the
same.

There may be a slight performance penalty when the optional arg is overridden with one that does not have
default values.

2.4.8 Keyword-only Arguments

As in Python 3, def functions can have keyword-only arguments listed after a " «" parameter and before a
"« " parameter if any:

def f(a, b, xargs, c, d = 42, e, **kwds):

Shown above, the ¢, d and e arguments can not be passed as positional arguments and must be passed as
keyword arguments.

Furthermore, c and e are required keyword arguments since they do not have a default value.

If the parameter name after the " =" is omitted, the function will not accept any extra positional arguments:

def g(a, b, %, ¢, d):

Shown above, the signature takes exactly two positional parameters and has two required keyword parameters

Error and Exception Handling

A plain cdef declared function, that does not return a Python object. . .

Has no way of reporting a Python exception to it’s caller.

Will only print a warning message and the exception is ignored.

In order to propagate exceptions like this to it’s caller, you need to declare an exception value for it.
There are three forms of declaring an exception for a C compiled program.

¢ First:

cdef int spam() except -1:

* In the example above, if an error occurs inside spam, it will immediately return with the value of
-1, causing an exception to be propagated to it’s caller.

 Functions declared with an exception value, should explicitly prevent a return of that value.

e Second:

cdef int spam() except? -1:

» Used when a —1 may possibly be returned and is not to be considered an error.
e The "?" tells Cython that —1 only indicates a possible error.

* Now, each time -1 is returned, Cython generates a call to PyErr_Occurred to verify it is an
actual error.

24

Chapter 2. Language Basics

Cython Reference Guide, Release 0.28a0

¢ Third:

cdef int spam() except =*

e Acall to PyErr_Occurred happens every time the function gets called.

Note: Returning void

A need to propagate errors when returning void must use this version.

Exception values can only be declared for functions returning an..
integer

enum

float

pointer type

Must be a constant expression

Note:

Note:

Function pointers
Require the same exception value specification as it’s user has declared.

Use cases here are when used as parameters and when assigned to a variable:

int (xgrail) (int, char x) except -1

Note: Python Objects

Declared exception values are not need.
Remember that Cython assumes that a function without a declared return value, returns a Python object.

Exceptions on such functions are implicitly propagated by returning NULL

Note:

C++

For exceptions from C++ compiled programs, see Wrapping C++ Classes

2.5.1 Checking return values for non-Cython functions..

Do not try to raise exceptions by returning the specified value.. Example:

cdef extern FILE xfopen(char xfilename, char *mode) except NULL # WRONG!

* The except clause does not work that way.

* It’s only purpose is to propagate Python exceptions that have already been raised by either. ..

2.5. Error and Exception Handling 25

Cython Reference Guide, Release 0.28a0

* A Cython function
¢ A C function that calls Python/C API routines.

» To propagate an exception for these circumstances you need to raise it yourself:

cdef FILE *p
p = fopen("spam.txt", "r")
if p == NULL:
raise SpamError ("Couldn't open the spam file")

2.6 Conditional Compilation

» The expressions in the following sub-sections must be valid compile-time expressions.
* They can evaluate to any Python value.
* The truth of the result is determined in the usual Python way.

2.6.1 Compile-Time Definitions

* Defined using the DEF statement:

DEF FavouriteFood = "spam"
DEF ArraySize = 42
DEF OtherArraySize = 2 % ArraySize + 17

* The right hand side must be a valid compile-time expression made up of either:
* Literal values
¢ Names defined by other DEF statements
* They can be combined using any of the Python expression syntax
* Cython provides the following predefined names
» Corresponding to the values returned by os . uname ()
« UNAME_SYSNAME
« UNAME_NODENAME
« UNAME_RELEASE
UNAME_VERSION
* UNAME_MACHINE

* A name defined by DEF can appear anywhere an identifier can appear.
* Cython replaces the name with the literal value before compilation.

* The compile-time expression, in this case, must evaluate to a Python value of int, long, float, or str:

cdef int al[ArraySize]
cdef int a2[OtherArraySize]
print "I like", FavouriteFood

26 Chapter 2. Language Basics

Cython Reference Guide, Release 0.28a0

2.6.2 Conditional Statements

» Similar semantics of the C pre-processor

The following statements can be used to conditionally include or exclude sections of code to compile.

e IF
e ELTF
e ELSE
IF UNAME_SYSNAME == "Windows":
include "icky_definitions.pxi"
ELIF UNAME_SYSNAME == "Darwin":
include "nice_definitions.pxi"
ELTF UNAME_SYSNAME == "Linux":
include "penguin_definitions.pxi"
ELSE:

include "other_ definitions.pxi"

* ELIF and ELSE are optional.
* IF can appear anywhere that a normal statement or declaration can appear
* It can contain any statements or declarations that would be valid in that context.

¢ This includes other IF and DEF statements

2.6. Conditional Compilation

27

Cython Reference Guide, Release 0.28a0

28 Chapter 2. Language Basics

CHAPTER 3

Extension Types

» Normal Python as well as extension type classes can be defined.

 Extension types:

* Are considered by Python as “built-in” types.

* Can be used to wrap arbitrary C-data structures, and provide a Python-like interface to them from Python.

* Attributes and methods can be called from Python or Cython code

* Are defined by the cdef class statement.

cdef class Shrubbery:
cdef int width, height

def _ init_ (self, w, h):
self.width = w
self.height = h

def describe(self):
print "This shrubbery is",
"by", self.height,

self.width,
"cubits."

\

3.1 Attributes

* Are stored directly in the object’s C struct.

* Are fixed at compile time.

* You can’t add attributes to an extension type instance at run time like in normal Python, unless you define a

___dict___ attribute.

* You can sub-class the extension type in Python to add attributes at run-time.

» There are two ways to access extension type attributes:

29

Cython Reference Guide, Release 0.28a0

* By Python look-up.

* Python code’s only method of access.

» By direct access to the C struct from Cython code.

* Cython code can use either method of access, though.
* By default, extension type attributes are:
* Only accessible by direct access.
* Not accessible from Python code.

» To make attributes accessible to Python, they must be declared public or readonly:

cdef class Shrubbery:
cdef public int width, height
cdef readonly float depth

e The width and height attributes are readable and writable from Python code.

* The depth attribute is readable but not writable.

Note:

Note: You can only expose simple C types, such as ints, floats, and strings, for Python access. You can also expose
Python-valued attributes.

Note: The public and readonly options apply only to Python access, not direct access. All the attributes of an
extension type are always readable and writable by C-level access.

3.2 Methods

* self is used in extension type methods just like it normally is in Python.

 See Functions and Methods; all of which applies here.

3.3 Properties

» Cython provides a special (deprecated) syntax:

cdef class Spam:

property cheese:

"A doc string can go here."

def _ _get_ (self):
This is called when the property is read.

30 Chapter 3. Extension Types

Cython Reference Guide, Release 0.28a0

def set__ (self, wvalue):

This is called when the property is written.

def _ del_ (self):
This is called when the property is deleted.

e The __get__(),__set__ (),and __del__ () methods are all optional.
* If they are omitted, an exception is raised on attribute access.

* Below, is a full example that defines a property which can..

¢ Add to a list each time it is written to ("__set__").

¢ Return the list when itisread ("__get__ ™).

* Empty the list when it is deleted ("__del__").

cheesy.pyx
cdef class CheeseShop:

cdef object cheeses

def _ cinit_ (self):
self.cheeses = []

property cheese: # note that this syntax is deprecated

def _ _get_ (self):
return "We don't have: " % self.cheeses

def _ set_ (self, wvalue):
self.cheeses.append(value)

def _ del_ (self):
del self.cheeses|[:]

Test input
from cheesy import CheeseShop

shop = CheeseShop ()
print shop.cheese

shop.cheese = "camembert"
print shop.cheese

shop.cheese = "cheddar"
print shop.cheese

del shop.cheese
print shop.cheese

Test output
We don't have:

[]
We don't have: ['
[
[

camembert ']
'camembert', 'cheddar']

]

We don't have:
We don't have:

3.3. Properties 31

Cython Reference Guide, Release 0.28a0

3.4 Special Methods

Note:
1. The semantics of Cython’s special methods are similar in principle to that of Python’s.
2. There are substantial differences in some behavior.

3. Some Cython special methods have no Python counter-part.

¢ See the Special Methods Table for the many that are available.

3.4.1 Declaration
* Must be declared with de f and cannot be declared with cdef.
» Performance is not affected by the de £ declaration because of special calling conventions
3.4.2 Docstrings
* Docstrings are not supported yet for some special method types.
* They can be included in the source, but may not appear in the corresponding ___doc___ attribute at run-time.
* This a Python library limitation because the PyTypeOb ject data structure is limited

3.4.3 Initialization: __cinit__ () and __init__ ()

* The object initialisation follows (mainly) three steps:

(Internal) allocation, recursively going from subclass to base class.

* Low-level initialisation along the way back, calling __cinit__ () ateach level.

* Python initialisation, explicitly calling __init__ () recursively from subclass to base class.

* Any arguments passed to the extension type’s constructor will be passed to both initialization methods.
e __cinit__ () is where you should perform C-level initialization of the object

 This includes any allocation of C data structures.

 Caution is warranted as to what you do in this method.

* The object may not be a fully valid Python object when it is called.

* Calling Python objects, including the extensions own methods, may be hazardous.

e Bythetime __cinit__ () iscalled...

* Memory has been allocated for the object.

e All C-level attributes have been initialized to O or null.

e The _ _cinit__ () methods of all base types have been called, starting with the top-most one.
* Subtypes are not fully initialised yet.

» Python object attributes of the type itself have been initialized to None.

32 Chapter 3. Extension Types

Cython Reference Guide, Release 0.28a0

* This initialization method is guaranteed to be called exactly once.
» For Extensions types that inherit a base type:
e The _ _cinit__ () method of the base type is automatically called before this one.

e The inherited __cinit__ () method cannot be called explicitly.

* Passing modified argument lists to the base type must be done through __init__ ().

* It may be wise to give the __cinit__ () method both "+ " and " %" arguments.

¢ Allows the method to accept or ignore additional arguments.

* Eliminates the need for a Python level sub-class, that changesthe __init__ () method’s

signature, to have to override both the __new__ () and __init__ () methods.

e If __cinit__ () is declared to take no arguments except self, it will ignore any extra
arguments passed to the constructor without complaining about a signature mis-match.

e __init__ () isfor higher-level initialization and is safer for Python access.
* By the time this method is called, the extension type is a fully valid Python object.
» All operations are safe.

* This method may sometimes be called more than once, or possibly not at all.

* Take this into consideration to make sure the design of your other methods are robust of this fact.

Note that all constructor arguments will be passed as Python objects. This implies that non-convertible C types such
as pointers or C++ objects cannot be passed into the constructor from Cython code. If this is needed, use a factory
function instead that handles the object initialisation. It often helps to directly call __new__ () in this function to

bypass the call tothe __init__ () constructor.

3.4.4 Finalization: _ dealloc_ ()

e This method is the counter-part to __cinit__ ().

* Any C-data that was explicitly allocated inthe __cinit__ () method should be freed here.
* Use caution in this method:

* The Python object to which this method belongs may not be completely intact at this point.

* Avoid invoking any Python operations that may touch the object.

* Don’t call any of this object’s methods.

* It’s best to just deallocate C-data structures here.

» All Python attributes of your extension type object are deallocated by Cython after the __dealloc__ ()

method returns.

3.4.5 Arithmetic Methods

Note: Most of these methods behave differently than in Python

¢ There are not “reversed” versions of these methods. .. there is no __ radd__ () for instance.

« If the first operand cannot perform the operation, the same method of the second operand is called, with the

operands in the same order.

3.4. Special Methods

33

Cython Reference Guide, Release 0.28a0

* Do not rely on the first parameter of these methods, being "self" or the right type.
* The types of both operands should be tested before deciding what to do.

* Return Not Implemented for unhandled, mis-matched operand types.

* The previously mentioned points..

* Also apply to ‘in-place’ method __ipow__ ().

* Do not apply to other ‘in-place’ methods like ___iadd__ (), in that these always take self as the first argu-
ment.

3.4.6 Rich Comparisons

There are two ways to implement comparison methods. Depending on the application, one way or the other may be
better:

* The first way uses the 6 Python special methods __eq__, _ 1t__ , etc. This is new since Cython 0.27 and
works exactly as in plain Python classes.

* The second way uses a single special method __richcmp__. This implements all rich comparison opera-
tions in one method. The signature is def ___richcmp__ (self, other, int op) matching the Py-
Object_RichCompare() Python/C API function. The integer argument op indicates which operation is to be
performed as shown in the table below:

< 0| Py_LT
== | 2 | Py_EQ
> 4 | Py_GT
<= |1 | Py_LE
I= | 3 | Py_NE
>= | 5 | Py_GE

The named constants can be cimported from the cpython.object module. They should generally be pre-
ferred over plain integers to improve readability.

3.4.7 The _ next__ () Method

» Extension types used to expose an iterator interface should define a ___next__ () method.

* Do not explicitly supply a next () method, because Python does that for you automatically.

3.5 Subclassing

* An extension type may inherit from a built-in type or another extension type:

cdef class Parrot:

cdef class Norwegian (Parrot) :

¢ A complete definition of the base type must be available to Cython

« If the base type is a built-in type, it must have been previously declared as an extern extension type.

34 Chapter 3. Extension Types

https://docs.python.org/3/reference/datamodel.html#basic-customization
https://docs.python.org/3/c-api/object.html#c.PyObject_RichCompare
https://docs.python.org/3/c-api/object.html#c.PyObject_RichCompare

Cython Reference Guide, Release 0.28a0

e cimport can be used to import the base type, if the extern declared base type is in a . pxd definition file.
¢ In Cython, multiple inheritance is not permitted.. singular inheritance only

» Cython extension types can also be sub-classed in Python.

* Here multiple inheritance is permissible as is normal for Python.

* Even multiple extension types may be inherited, but C-layout of all the base classes must be compatible.

3.6 Forward Declarations

» Extension types can be “forward-declared”.

* This is necessary when two extension types refer to each other:

cdef class Shrubbery # forward declaration

cdef class Shrubber:
cdef Shrubbery work_in_progress

cdef class Shrubbery:
cdef Shrubber creator

* An extension type that has a base-class, requires that both forward-declarations be specified:

cdef class A (B)

cdef class A(B):
attributes and methods

3.7 Extension Types and None

» Parameters and C-variables declared as an Extension type, may take the value of None.

* This is analogous to the way a C-pointer can take the value of NULL.

1. Exercise caution when using None

2. Read this section carefully.

* There is no problem as long as you are performing Python operations on it.
* This is because full dynamic type checking is applied

* When accessing an extension type’s C-attributes, make sure it is not None.
* Cython does not check this for reasons of efficiency.

* Be very aware of exposing Python functions that take extension types as arguments:

3.6. Forward Declarations 35

Cython Reference Guide, Release 0.28a0

def widen_shrubbery (Shrubbery sh, extra_width): # This is dangerous
sh.width = sh.width + extra_width

x Users could **crashx* the program by passing ~ None °~ for the "~ "sh ' parameter.
« This could be avoided by::

def widen_shrubbery (Shrubbery sh, extra_width):
if sh is None:
raise TypeError
sh.width = sh.width + extra_width

* Cython provides a more convenient way with a ~ not None ~ clause::

def widen_shrubbery (Shrubbery sh not None, extra_width):
sh.width = sh.width + extra_width

« Now this function automatically checks that "~ "sh™ " is not "~ "None ', as well as_
—that is the right type.

* not None can only be used in Python functions (declared with de f not cdef).

* For cdef functions, you will have to provide the check yourself.

* The self parameter of an extension type is guaranteed to never be None.

* When comparing a value x with None, and x is a Python object, note the following:
* x is Noneand x is not None are very efficient.
* They translate directly to C-pointer comparisons.

e x == Noneandx != Noneorif x: ... (aboolean condition), will invoke Python opera-
tions and will therefore be much slower.

3.8 Weak Referencing

* By default, weak references are not supported.

* It can be enabled by declaring a C attribute of the object type called __weakref__ ():

cdef class ExplodingAnimal:
"""This animal will self-destruct when it 1is
no longer strongly referenced."""

cdef object _ weakref

3.9 Dynamic Attributes

* By default, you cannot dynamically add attributes to a cdef class instance at runtime.

¢ It can be enabled by declaring a C attribute of the dict type called __dict__ :

cdef class ExtendableAnimal:
"""This animal can be extended with new

mmon

attributes at runtime.

36 Chapter 3. Extension Types

Cython Reference Guide, Release 0.28a0

cdef dict _ dict_

Note:

1. This can have a performance penalty, especially when using cpde £ methods in a class.

3.10 External and Public Types

3.10.1 Public

* When an extension type is declared public, Cython will generate a C-header (“.h”) file.
* The header file will contain the declarations for it’s object-struct and it’s type-object.

» External C-code can now access the attributes of the extension type.

3.10.2 External

* An extern extension type allows you to gain access to the internals of:
» Python objects defined in the Python core.
* Non-Cython extension modules

* The following example lets you get at the C-level members of Python’s built-in “complex” object:

cdef extern from "complexobiject.h":

struct Py complex:
double real
double imag

ctypedef class _ _builtin__ .complex [object PyComplexObject]:
cdef Py complex cval

A function which uses the above type
def spam(complex c):

print "Real:", c.cval.real

print "Imag:", c.cval.imag

Note: Some important things in the example: #. ctypedef has been used because Python’s header file has the
struct declared with:

ctypedef struct

} PyComplexObject;

1. The module of where this type object can be found is specified along side the name of the extension type. See
Implicit Importing.

2. When declaring an external extension type. ..

3.10. External and Public Types 37

Cython Reference Guide, Release 0.28a0

* Don’t declare any methods, because they are Python method class the are not needed.

 Similar to structs and unions, extension classes declared inside a cdef extern from block only need to
declare the C members which you will actually need to access in your module.

3.10.3 Name Specification Clause

Note: Only available to public and extern extension types.

* Example:

[object object_struct_name, type type_object_name]

* object_struct_name is the name to assume for the type’s C-struct.

* type_object_name is the name to assume for the type’s statically declared type-object.
* The object and type clauses can be written in any order.

e For cdef extern from declarations, This clause is required.

* The object clause is required because Cython must generate code that is compatible with the declarations in the
header file.

» Otherwise the object clause is optional.

* For public extension types, both the object and type clauses are required for Cython to generate code that is
compatible with external C-code.

3.11 Type Names vs. Constructor Names

¢ In a Cython module, the name of an extension type serves two distinct purposes:

1. When used in an expression, it refers to a “module-level” global variable holding the type’s constructor (i.e. it’s
type-object)

2. It can also be used as a C-type name to declare a “type” for variables, arguments, and return values.

* Example:

cdef extern class MyModule. Spam:

* The name “Spam” serves both of these roles.

* Only “Spam” can be used as the type-name.

* The constructor can be referred to by other names.

* Upon an explicit import of “MyModule”. ..

* MyModule. Spam () could be used as the constructor call.
* MyModule. Spam could not be used as a type-name

* When an “as” clause is used, the name specified takes over both roles:

38 Chapter 3. Extension Types

Cython Reference Guide, Release 0.28a0

cdef extern class MyModule.Spam as Yummy:

* Yummy becomes both type-name and a name for the constructor.

 There other ways of course, to get hold of the constructor, but Yummy is the only usable type-name.

3.11. Type Names vs. Constructor Names 39

Cython Reference Guide, Release 0.28a0

40 Chapter 3. Extension Types

CHAPTER 4

Interfacing with Other Code

41 C
4.2 C++
4.3 Fortran

4.4 NumPy

41

Cython Reference Guide, Release 0.28a0

42 Chapter 4. Interfacing with Other Code

CHAPTER B

Special Mention

43

Cython Reference Guide, Release 0.28a0

44 Chapter 5. Special Mention

CHAPTER O

Limitations

45

Cython Reference Guide, Release 0.28a0

46 Chapter 6. Limitations

CHAPTER /

Compiler Directives

See Compilation.

47

compilation.html#compiler-directives

Cython Reference Guide, Release 0.28a0

48 Chapter 7. Compiler Directives

CHAPTER 8

Indices and tables

8.1 Special Methods Table

This table lists all of the special methods together with their parameter and return types. In the table below, a parameter
name of self is used to indicate that the parameter has the type that the method belongs to. Other parameters with no
type specified in the table are generic Python objects.

You don’t have to declare your method as taking these parameter types. If you declare different types, conversions
will be performed as necessary.

8.1.1

General

Name Parameters Return type | Description

__cinit__ self, ... Basic initialisation (no direct Python equivalent)
__init__ self, ... Further initialisation

__dealloc__ self Basic deallocation (no direct Python equivalent)
_cmp__ X,y int 3-way comparison

_str__ self object str(self)

__repr__ self object repr(self)

__hash__ self int Hash function

_call self, ... object self(...)

__iter__ self object Return iterator for sequence

__getattr__ self, name object Get attribute

__getattribute__ | self, name object Get attribute, unconditionally

__setattr self, name, val Set attribute

__delattr__ self, name Delete attribute

49

Cython Reference Guide, Release 0.28a0

8.1.2 Rich comparison operators

__richcmp__ | X,y,intop | object | Rich comparison (no direct Python equivalent)
_eq__ X,y object | x ==y

_ne__ X,y object | x !=y (falls back to __eq___if not available)
N X,y object | X<y

_ gt X,y object | x>y

_le X,y object | x <=y

ge X,y object | x>=y

8.1.3 Arithmetic operators

Name Parameters | Return type | Description

_add__ X,y object binary + operator

__sub__ X,y object binary - operator

_mul__ X,y object * operator

_div__ X,y object / operator for old-style division
__floordiv__ | x,y object // operator

__truediv__ | X,y object / operator for new-style division
__mod__ X,y object % operator

_divmod__ | X,y object combined div and mod
__pow__ X,,Z object *% operator or pow(X, Y, Z)
__neg__ self object unary - operator

__pos__ self object unary + operator

__abs__ self object absolute value

__nonzero__ | self int convert to boolean

__invert__ self object ~ operator

__Ishift_ X,y object << operator

__rshift__ X,y object >> operator

_and__ X,y object & operator

_or__ X,y object | operator

__XOor__ X,y object A operator

8.1.4 Numeric conversions

Name Parameters | Return type | Description

_int__ self object Convert to integer
__long__ | self object Convert to long integer

_ float__ self object Convert to float

__oct__ self object Convert to octal

__hex__ self object Convert to hexadecimal
__index__ | self object Convert to sequence index

50 Chapter 8. Indices and tables

Cython Reference Guide, Release 0.28a0

8.1.5 In-place arithmetic operators

Name Parameters | Return type | Description

__dadd__ self, x object += operator

__isub___ self, x object -= operator

_imul__ self, x object *= operator

_idiv__ self, x object /= operator for old-style division
__ifloordiv__ | self, x object //= operator

__itruediv__ self, x object /= operator for new-style division
__imod__ self, x object %= operator

__ipow__ X, Y, Z object *%= operator

__ilshift__ self, x object <<= operator

__irshift__ self, x object >>= operator

__dand__ self, x object &= operator

__dor__ self, x object |= operator

__ixor__ self, x object A= operator

8.1.6 Sequences and mappings

Name Parameters Return type | Description
_len__ self int len(self)
__getitem__ | self, x object self[x]
__setitem___ self, X, y self[x] =y
__delitem___ self, x del self[x]
__getslice__ | self, Py_ssize_t i, Py_ssize_tj object selffi:j]
__setslice_ self, Py_ssize_t i, Py_ssize_tj, x selffi;j] = x
__delslice__ | self, Py_ssize_ti, Py_ssize_tj del selfTi:j]
__contains__ | self, x int x in self
8.1.7 Iterators
Name Parameters | Return type | Description
_ next__ | self object Get next item (called next in Python)

8.1.8 Buffer interface

Note: The buffer interface is intended for use by C code and is not directly accessible from Python. It is described in
the Python/C API Reference Manual under sections 6.6 and 10.6.

Name Parameters Return type | Description
__getreadbuffer__ self, int 1, void **p

__getwritebuffer__ | self, int i, void **p

__getsegcount__ self, int *p

__getcharbuffer__ self, int i, char **p

8.1. Special Methods Table 51

Cython Reference Guide, Release 0.28a0

8.1.9 Descriptor objects

Note: Descriptor objects are part of the support mechanism for new-style Python classes. See the discussion of
descriptors in the Python documentation. See also PEP 252, “Making Types Look More Like Classes”, and PEP 253,
“Subtyping Built-In Types”.

Name Parameters Return type | Description
_get self, instance, class | object Get value of attribute
_set__ self, instance, value Set value of attribute
__delete__ | self, instance Delete attribute

* genindex

¢ modindex

¢ search

52 Chapter 8. Indices and tables

https://www.python.org/dev/peps/pep-0252
https://www.python.org/dev/peps/pep-0253

Index

P

Python Enhancement Proposals
PEP 252, 52
PEP 253, 52
PEP 435, 15

53

	Compilation
	Compiling from the command line
	Compiling with distutils
	Integrating multiple modules
	Compiling with pyximport
	Compiling with cython.inline
	Compiling with Sage
	Compiler directives

	Language Basics
	Cython File Types
	Declaring Data Types
	Statements and Expressions
	Functions and Methods
	Error and Exception Handling
	Conditional Compilation

	Extension Types
	Attributes
	Methods
	Properties
	Special Methods
	Subclassing
	Forward Declarations
	Extension Types and None
	Weak Referencing
	Dynamic Attributes
	External and Public Types
	Type Names vs. Constructor Names

	Interfacing with Other Code
	C
	C++
	Fortran
	NumPy

	Special Mention
	Limitations
	Compiler Directives
	Indices and tables
	Special Methods Table

