wheel Documentation
Release 0.29.0

Daniel Holth

Jan 03, 2018

Contents

10

Why not egg?

Code of Conduct

Usage

Setuptools scripts handling

Defining the Python version

Defining conditional dependencies

Including the license in the generated wheel file
Automatically sign wheel files

Format

Slogans
10.1 The Story of Wheel e e e

11

13

15

17

19

21

wheel Documentation, Release 0.29.0

A built-package format for Python.

A wheel is a ZIP-format archive with a specially formatted filename and the .whl extension. It is designed to contain
all the files for a PEP 376 compatible install in a way that is very close to the on-disk format. Many packages will
be properly installed with only the “Unpack” step (simply extracting the file onto sys.path), and the unpacked archive
preserves enough information to “Spread” (copy data and scripts to their final locations) at any later time.

The wheel project provides a bdist_wheel command for setuptools (requires setuptools >= 0.8.0). Wheel files can be
installed with a newer pip from https://github.com/pypa/pip or with wheel’s own command line utility.

The wheel documentation is at http://wheel.rtfd.org/. The file format is documented in PEP 427 (http://www.python.
org/dev/peps/pep-0427/).

The reference implementation is at https://github.com/pypa/wheel

Contents 1

https://github.com/pypa/pip
http://wheel.rtfd.org/
http://www.python.org/dev/peps/pep-0427/
http://www.python.org/dev/peps/pep-0427/
https://github.com/pypa/wheel

wheel Documentation, Release 0.29.0

2 Contents

CHAPTER 1

Why not egg?

Python’s egg format predates the packaging related standards we have today, the most important being PEP 376
“Database of Installed Python Distributions” which specifies the .dist-info directory (instead of .egg-info) and PEP 426
“Metadata for Python Software Packages 2.0”” which specifies how to express dependencies (instead of requires.txt in
.egg-info).

Wheel implements these things. It also provides a richer file naming convention that communicates the Python imple-
mentation and ABI as well as simply the language version used in a particular package.

Unlike .egg, wheel will be a fully-documented standard at the binary level that is truly easy to install even if you do
not want to use the reference implementation.

wheel Documentation, Release 0.29.0

4 Chapter 1. Why not egg?

CHAPTER 2

Code of Conduct

Everyone interacting in the wheel project’s codebases, issue trackers, chat rooms, and mailing lists is expected to
follow the PyPA Code of Conduct.

https://www.pypa.io/en/latest/code-of-conduct/

wheel Documentation, Release 0.29.0

6 Chapter 2. Code of Conduct

CHAPTER 3

Usage

The current version of wheel can be used to speed up repeated installations by reducing the number of times you have
to compile your software. When you are creating a virtualenv for each revision of your software the savings can be
dramatic. This example packages pyramid and all its dependencies as wheels, and then installs pyramid from the built
packages:

Make sure you have the latest pip that supports wheel
pip install —--upgrade pip

Install wheel
pip install wheel

Build a directory of wheels for pyramid and all its dependencies
pip wheel —--wheel-dir=/tmp/wheelhouse pyramid

Install from cached wheels
pip install —--use-wheel --no-index --find-links=/tmp/wheelhouse pyramid

Install from cached wheels remotely
pip install —--use-wheel --no-index —--find-links=https://wheelhouse.example.com/
—pyramid

For Ixml, an up to 3-minute “search for the newest version and compile” can become a less-than-1 second “unpack
from wheel”.

As a side effect the wheel directory, “/tmp/wheelhouse” in the example, contains installable copies of the exact versions
of your application’s dependencies. By installing from those cached wheels you can recreate that environment quickly
and with no surprises.

To build an individual wheel, run python setup.py bdist_wheel. Note thatbdist_wheel only works with
distribute (import setuptools);plain distutils does notsupport pluggable commands like bdist_wheel.
On the other hand pip always runs setup . py with setuptools enabled.

Wheel also includes its own installer that can only install wheels (not sdists) from a local file or folder, but has the
advantage of working even when distribute or pip has not been installed.

Wheel’s builtin utility can be invoked directly from wheel’s own wheel:

wheel Documentation, Release 0.29.0

$ python wheel-0.21.0-py2.py3-none-any.whl/wheel -h

usage: wheel [-h]

{keygen, sign,unsign, verify, unpack,install,install-scripts, convert, help}

positional arguments:

{keygen, sign,unsign,verify,unpack, install,install-scripts, convert, help}

keygen
sign
unsign

verify

unpack

install
install-scripts
convert

help

optional arguments:
-h, —-help

commands

Generate signing key

Sign wheel

Remove RECORD. jws from a wheel by truncating the zip
file. RECORD. jws must be at the end of the archive.
The zip file must be an ordinary archive, with the
compressed files and the directory in the same order,
and without any non-zip content after the truncation
point.

Verify a wheel. The signature will be verified for
internal consistency ONLY and printed. Wheel's own
unpack/install commands verify the manifest against
the signature and file contents.

Unpack wheel

Install wheels

Install console_scripts

Convert egg or wininst to wheel

Show this help

show this help message and exit

Chapter 3. Usage

CHAPTER 4

Setuptools scripts handling

Setuptools’ popular console_scripts and gui_scripts entry points can be used to generate platform-specific scripts
wrappers. Most usefully these wrappers include .exe launchers if they are generated on a Windows machine.

As of 0.23.0, bdist_wheel no longer places pre-generated versions of these wrappers into the *.data/scripts/ directory
of the archive (non-setuptools scripts are still present, of course).

If the scripts are needed, use a real installer like pip. The wheel tool python -m wheel install-scripts package [package
...] can also be used at any time to call setuptools to write the appropriate scripts wrappers.

wheel Documentation, Release 0.29.0

10 Chapter 4. Setuptools scripts handling

CHAPTER B

Defining the Python version

The bdist_wheel command automatically determines the correct tags to use for the generated wheel. These are based
on the Python interpreter used to generate the wheel and whether the project contains C extension code or not. While
this is usually correct for C code, it can be too conservative for pure Python code. The bdist_wheel command therefore
supports two flags that can be used to specify the Python version tag to use more precisely:

—-universal Specifies that a pure-python wheel is "universal"
(i.e., it works on any version of Python). This
equates to the tag "py2.py3".

—--python-tag XXX Specifies the precise python version tag to use for
a pure-python wheel.

——py-limited-api {cp32|cp33|cp34|...}

Specifies Python Py_LIMITED_API compatibility with

the version of CPython passed and later versions.

The wheel will be tagged cpNN.abi3.{arch} on CPython 3.
This flag does not affect Python 2 builds or alternate
Python implementations.

To conform to the limited API, all your C
extensions must use only functions from the limited
API, pass Extension(py_limited_api=True) and e.g.
#define Py LIMITED API=0x03020000 depending on

the exact minimun Python you wish to support.

The —universal and —python-tag flags have no effect when used on a project that includes C extension code.

The default for a pure Python project (if no explicit flags are given) is “pyN” where N is the major version of the
Python interpreter used to build the wheel. This is generally the correct choice, as projects would not typically ship
different wheels for different minor versions of Python.

A reasonable use of the —python-tag argument would be for a project that uses Python syntax only introduced in a
particular Python version. There are no current examples of this, but if wheels had been available when Python 2.5
was released (the first version containing the with statement), wheels for a project that used the with statement would
typically use —python-tag py25. However, unless a separate version of the wheel was shipped which avoided the use
of the new syntax, there is little benefit in explicitly marking the tag in this manner.

11

wheel Documentation, Release 0.29.0

Typically, projects would not specify Python tags on the command line, but would use setup.cfg to set them as a project
default:

[bdist_wheel]
universal=1

or:

[bdist_wheel]
python-tag = py32

12 Chapter 5. Defining the Python version

CHAPTER O

Defining conditional dependencies

In wheel, the only way to have conditional dependencies (that might only be needed on certain platforms) is to use
environment markers as defined by PEP 426.

As of wheel 0.24.0, the recommended way to do this is in the setuptools ext ras_require parameter. A : separates
the extra name from the marker. Wheel’s own setup.py has an example:

extras_require={

':python_version=="2.6"": ['argparse'],
'signatures': ['keyring'],
'signatures:sys_platform!="win32"': ['pyxdg'],
'faster-signatures': ['ed2551911'],

'"tool': []

}y

Leaving out the name of the extra (like with “argparse” here) means that only the conditions after : determine whether
the dependencies will be installed or not.

As of setuptools 36.2.1, you can pass extras as part of install_requires. The above requirements could thus be
written like this:

install_requires=|[
'argparse; python_version=="2.6"",
'keyring; extra=="signatures"',
'pyxdg; extra=="signatures" and sys_platform!="win32""',

'ed2551911; extra=="faster-signatures"'

Alternatively (as of setuptools 36.2.7), you can specify your requirements in the [options] section of your
setup.cfg:

[options]

install_requires =
argparse; python_version=="2.6"
keyring; extra=="signatures"

13

https://www.python.org/dev/peps/pep-0426

wheel Documentation, Release 0.29.0

pyxdg; extra=="signatures" and sys_platform!="win32"
ed2551911; extra=="faster-signatures"

Warning: Specifying extras via install_requires does not yet work with pip (v9.0.1 as of this writing).

14 Chapter 6. Defining conditional dependencies

CHAPTER /

Including the license in the generated wheel file

Several open source licenses require the license text to be included in every distributable artifact of the project. Cur-
rently, the only way to to do this with “wheel” is to specify the 1icense_file key inthe [metadata] section of
the project’s setup.cfg:

[metadata]
license_file = LICENSE.txt

The file path should be relative to the project root. The file will be packaged as LICENSE. txt (regardless of the
original name) in the . dist-info directory in the wheel.

There is currently no way to include multiple license related files, but this is going to change in the near future. You
can track the progress by subscribing to issue 138 on Github.

15

https://github.com/pypa/wheel/issues/138

wheel Documentation, Release 0.29.0

16 Chapter 7. Including the license in the generated wheel file

CHAPTER 8

Automatically sign wheel files

Wheel contains an experimental digital signatures scheme based on Ed25519 signatures; these signatures are unrelated
to pgp/gpg signatures and do not include a trust model.

python setup.py bdist_wheel will automatically sign wheel files if the environment variable WHEEL_TOOL is set to
the path of the wheel command line tool.:

Install wheel with dependencies for generating signatures
pip install wheel[signatures]

Generate a signing key (only once)

wheel keygen

v o 0 =

U

export WHEEL_TOOL=/path/to/wheel
$ python setup.py bdist_wheel

Signing is done in a subprocess because it is not convenient for the build environment to contain bindings to the
keyring and cryptography libraries. The keyring library may not be able to find your keys (choosing a different key
storage back end based on available dependencies) unless you run it from the same environment used for keygen.

Note: You can also include the faster-signatures extra when installing “wheel” to improve the performance
of wheel signing.

17

wheel Documentation, Release 0.29.0

18 Chapter 8. Automatically sign wheel files

CHAPTER 9

Format

The wheel format is documented as PEP 427 “The Wheel Binary Package Format...” (http://www.python.org/dev/
peps/pep-0427/).

19

http://www.python.org/dev/peps/pep-0427/
http://www.python.org/dev/peps/pep-0427/

wheel Documentation, Release 0.29.0

20 Chapter 9. Format

cHAaPTER 10

Slogans

Wheel
* Because ‘newegg’ was taken.
 Python packaging - reinvented.
* A container for cheese.

¢ It makes it easier to roll out software.

10.1 The Story of Wheel

I was impressed with Tarek’s packaging talk at PyCon 2010, and I admire PEP 345 (Metadata for Python Software
Packages 1.2) and PEP 376 (Database of Installed Python Distributions) which standardize a richer metadata format
and show how distributions should be installed on disk. So naturally with all the hubbub about packaging in Python
3.3, I decided to try it to reap the benefits of a more standardized and predictable Python packaging experience.

I began by converting cryptacular, a password hashing package which has a simple C extension, to use setup.cfg.
I downloaded the Python 3.3 source, struggled with the difference between setup.py and setup.cfg syntax, fixed the
define_macros feature, stopped using the missing extras functionality, and several hours later I was able to generate my
METADATA from setup.cfg. 1 rejoiced at my newfound freedom from the tyranny of arbitrary code execution during
the build and install process.

It was a lot of work. The package is worse off than before, and it can’t be built or installed without patching the Python
source code itself.

It was about that time that distutils-sig had a discussion about the need to include a generated setup.cfg from setup.cfg
because setup.cfg wasn’t static enough. Wait, what?

Of course there is a different way to massively simplify the install process. It’s called built or binary packages. You
never have to run setup.py because there is no sefup.py. There is only METADATA aka PKG-INFO. Installation has
two steps: ‘build package’; ‘install package’, and you can skip the first step, have someone else do it for you, do it on
another machine, or install the build system from a binary package and let the build system handle the building. The
build is still complicated, but installation is simple.

21

wheel Documentation, Release 0.29.0

With the binary package strategy people who want to install use a simple, compatible installer, and people who want
to package use whatever is convenient for them for as long as it meets their needs. No one has to rewrite setup.py for
their own or the 20k+ other packages on PyPi unless a different build system does a better job.

Wheel is my attempt to benefit from the excellent distutils-sig work without having to fix the intractable distutils
software itself. Like METADATA and .dist-info directories but unlike Extension(), it’s simple enough that there really
could be alternate implementations; the simplest (but less than ideal) installer is nothing more than “unzip archive.whl”
somewhere on sys.path.

If you’ve made it this far you probably wonder whether I've heard of eggs. Some comparisons:

Wheel is an installation format; egg is importable. Wheel archives do not need to include .pyc and are less tied
to a specific Python version or implementation. Wheel can install (pure Python) packages built with previous
versions of Python so you don’t always have to wait for the packager to catch up.

Wheel uses .dist-info directories; egg uses .egg-info. Wheel is compatible with the new world of Python pack-
aging and the new concepts it brings.

Wheel has a richer file naming convention for today’s multi-implementation world. A single wheel archive can
indicate its compatibility with a number of Python language versions and implementations, ABIs, and system
architectures. Historically the ABI has been specific to a CPython release, but when we get a longer-term ABI,
wheel will be ready.

Wheel is lossless. The first wheel implementation bdist_wheel always generates egg-info, and then converts it
to a.whi. Later tools will allow for the conversion of existing eggs and bdist_wininst distributions.

Wheel is versioned. Every wheel file contains the version of the wheel specification and the implementation that
packaged it. Hopefully the next migration can simply be to Wheel 2.0.

I hope you will benefit from wheel.

22

Chapter 10. Slogans

Index

P

Python Enhancement Proposals
PEP 426, 13

23

	Why not egg?
	Code of Conduct
	Usage
	Setuptools scripts handling
	Defining the Python version
	Defining conditional dependencies
	Including the license in the generated wheel file
	Automatically sign wheel files
	Format
	Slogans
	The Story of Wheel

